1 /* $NetBSD: nfs_bio.c,v 1.103 2003/05/22 15:59:24 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95 39 */ 40 41 #include <sys/cdefs.h> 42 __KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.103 2003/05/22 15:59:24 yamt Exp $"); 43 44 #include "opt_nfs.h" 45 #include "opt_ddb.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/resourcevar.h> 50 #include <sys/signalvar.h> 51 #include <sys/proc.h> 52 #include <sys/buf.h> 53 #include <sys/vnode.h> 54 #include <sys/mount.h> 55 #include <sys/kernel.h> 56 #include <sys/namei.h> 57 #include <sys/dirent.h> 58 #include <sys/malloc.h> 59 60 #include <uvm/uvm_extern.h> 61 #include <uvm/uvm.h> 62 63 #include <nfs/rpcv2.h> 64 #include <nfs/nfsproto.h> 65 #include <nfs/nfs.h> 66 #include <nfs/nfsmount.h> 67 #include <nfs/nqnfs.h> 68 #include <nfs/nfsnode.h> 69 #include <nfs/nfs_var.h> 70 71 extern int nfs_numasync; 72 extern int nfs_commitsize; 73 extern struct nfsstats nfsstats; 74 75 static int nfs_doio_read __P((struct buf *, struct uio *)); 76 static int nfs_doio_write __P((struct buf *, struct uio *)); 77 static int nfs_doio_phys __P((struct buf *, struct uio *)); 78 79 /* 80 * Vnode op for read using bio 81 * Any similarity to readip() is purely coincidental 82 */ 83 int 84 nfs_bioread(vp, uio, ioflag, cred, cflag) 85 struct vnode *vp; 86 struct uio *uio; 87 int ioflag, cflag; 88 struct ucred *cred; 89 { 90 struct nfsnode *np = VTONFS(vp); 91 struct buf *bp = NULL, *rabp; 92 struct vattr vattr; 93 struct proc *p; 94 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 95 struct nfsdircache *ndp = NULL, *nndp = NULL; 96 caddr_t baddr, ep, edp; 97 int got_buf = 0, error = 0, n = 0, on = 0, en, enn; 98 int enough = 0; 99 struct dirent *dp, *pdp; 100 off_t curoff = 0; 101 102 #ifdef DIAGNOSTIC 103 if (uio->uio_rw != UIO_READ) 104 panic("nfs_read mode"); 105 #endif 106 if (uio->uio_resid == 0) 107 return (0); 108 if (vp->v_type != VDIR && uio->uio_offset < 0) 109 return (EINVAL); 110 p = uio->uio_procp; 111 #ifndef NFS_V2_ONLY 112 if ((nmp->nm_flag & NFSMNT_NFSV3) && 113 !(nmp->nm_iflag & NFSMNT_GOTFSINFO)) 114 (void)nfs_fsinfo(nmp, vp, cred, p); 115 #endif 116 if (vp->v_type != VDIR && 117 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 118 return (EFBIG); 119 120 /* 121 * For nfs, cache consistency can only be maintained approximately. 122 * Although RFC1094 does not specify the criteria, the following is 123 * believed to be compatible with the reference port. 124 * For nqnfs, full cache consistency is maintained within the loop. 125 * For nfs: 126 * If the file's modify time on the server has changed since the 127 * last read rpc or you have written to the file, 128 * you may have lost data cache consistency with the 129 * server, so flush all of the file's data out of the cache. 130 * Then force a getattr rpc to ensure that you have up to date 131 * attributes. 132 * NB: This implies that cache data can be read when up to 133 * NFS_ATTRTIMEO seconds out of date. If you find that you need current 134 * attributes this could be forced by setting n_attrstamp to 0 before 135 * the VOP_GETATTR() call. 136 */ 137 138 if ((nmp->nm_flag & NFSMNT_NQNFS) == 0 && vp->v_type != VLNK) { 139 if (np->n_flag & NMODIFIED) { 140 if (vp->v_type != VREG) { 141 if (vp->v_type != VDIR) 142 panic("nfs: bioread, not dir"); 143 nfs_invaldircache(vp, 0); 144 np->n_direofoffset = 0; 145 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); 146 if (error) 147 return (error); 148 } 149 np->n_attrstamp = 0; 150 error = VOP_GETATTR(vp, &vattr, cred, p); 151 if (error) 152 return (error); 153 np->n_mtime = vattr.va_mtime.tv_sec; 154 } else { 155 error = VOP_GETATTR(vp, &vattr, cred, p); 156 if (error) 157 return (error); 158 if (np->n_mtime != vattr.va_mtime.tv_sec) { 159 if (vp->v_type == VDIR) { 160 nfs_invaldircache(vp, 0); 161 np->n_direofoffset = 0; 162 } 163 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); 164 if (error) 165 return (error); 166 np->n_mtime = vattr.va_mtime.tv_sec; 167 } 168 } 169 } 170 171 /* 172 * update the cached read creds for this node. 173 */ 174 175 if (np->n_rcred) { 176 crfree(np->n_rcred); 177 } 178 np->n_rcred = cred; 179 crhold(cred); 180 181 do { 182 #ifndef NFS_V2_ONLY 183 /* 184 * Get a valid lease. If cached data is stale, flush it. 185 */ 186 if (nmp->nm_flag & NFSMNT_NQNFS) { 187 if (NQNFS_CKINVALID(vp, np, ND_READ)) { 188 do { 189 error = nqnfs_getlease(vp, ND_READ, cred, p); 190 } while (error == NQNFS_EXPIRED); 191 if (error) 192 return (error); 193 if (np->n_lrev != np->n_brev || 194 (np->n_flag & NQNFSNONCACHE) || 195 ((np->n_flag & NMODIFIED) && vp->v_type == VDIR)) { 196 if (vp->v_type == VDIR) { 197 nfs_invaldircache(vp, 0); 198 np->n_direofoffset = 0; 199 } 200 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); 201 if (error) 202 return (error); 203 np->n_brev = np->n_lrev; 204 } 205 } else if (vp->v_type == VDIR && (np->n_flag & NMODIFIED)) { 206 nfs_invaldircache(vp, 0); 207 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); 208 np->n_direofoffset = 0; 209 if (error) 210 return (error); 211 } 212 } 213 #endif 214 /* 215 * Don't cache symlinks. 216 */ 217 if (np->n_flag & NQNFSNONCACHE 218 || ((vp->v_flag & VROOT) && vp->v_type == VLNK)) { 219 switch (vp->v_type) { 220 case VREG: 221 return (nfs_readrpc(vp, uio)); 222 case VLNK: 223 return (nfs_readlinkrpc(vp, uio, cred)); 224 case VDIR: 225 break; 226 default: 227 printf(" NQNFSNONCACHE: type %x unexpected\n", 228 vp->v_type); 229 }; 230 } 231 baddr = (caddr_t)0; 232 switch (vp->v_type) { 233 case VREG: 234 nfsstats.biocache_reads++; 235 236 error = 0; 237 if (uio->uio_offset >= np->n_size) { 238 break; 239 } 240 while (uio->uio_resid > 0) { 241 void *win; 242 vsize_t bytelen = MIN(np->n_size - uio->uio_offset, 243 uio->uio_resid); 244 245 if (bytelen == 0) 246 break; 247 win = ubc_alloc(&vp->v_uobj, uio->uio_offset, 248 &bytelen, UBC_READ); 249 error = uiomove(win, bytelen, uio); 250 ubc_release(win, 0); 251 if (error) { 252 break; 253 } 254 } 255 n = 0; 256 break; 257 258 case VLNK: 259 nfsstats.biocache_readlinks++; 260 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, p); 261 if (!bp) 262 return (EINTR); 263 if ((bp->b_flags & B_DONE) == 0) { 264 bp->b_flags |= B_READ; 265 error = nfs_doio(bp, p); 266 if (error) { 267 brelse(bp); 268 return (error); 269 } 270 } 271 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid); 272 got_buf = 1; 273 on = 0; 274 break; 275 case VDIR: 276 diragain: 277 nfsstats.biocache_readdirs++; 278 ndp = nfs_searchdircache(vp, uio->uio_offset, 279 (nmp->nm_flag & NFSMNT_XLATECOOKIE), 0); 280 if (!ndp) { 281 /* 282 * We've been handed a cookie that is not 283 * in the cache. If we're not translating 284 * 32 <-> 64, it may be a value that was 285 * flushed out of the cache because it grew 286 * too big. Let the server judge if it's 287 * valid or not. In the translation case, 288 * we have no way of validating this value, 289 * so punt. 290 */ 291 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) 292 return (EINVAL); 293 ndp = nfs_enterdircache(vp, uio->uio_offset, 294 uio->uio_offset, 0, 0); 295 } 296 297 if (uio->uio_offset != 0 && 298 ndp->dc_cookie == np->n_direofoffset) { 299 nfsstats.direofcache_hits++; 300 return (0); 301 } 302 303 bp = nfs_getcacheblk(vp, ndp->dc_blkno, NFS_DIRBLKSIZ, p); 304 if (!bp) 305 return (EINTR); 306 if ((bp->b_flags & B_DONE) == 0) { 307 bp->b_flags |= B_READ; 308 bp->b_dcookie = ndp->dc_blkcookie; 309 error = nfs_doio(bp, p); 310 if (error) { 311 /* 312 * Yuck! The directory has been modified on the 313 * server. Punt and let the userland code 314 * deal with it. 315 */ 316 brelse(bp); 317 if (error == NFSERR_BAD_COOKIE) { 318 nfs_invaldircache(vp, 0); 319 nfs_vinvalbuf(vp, 0, cred, p, 1); 320 error = EINVAL; 321 } 322 return (error); 323 } 324 } 325 326 /* 327 * Just return if we hit EOF right away with this 328 * block. Always check here, because direofoffset 329 * may have been set by an nfsiod since the last 330 * check. 331 */ 332 if (np->n_direofoffset != 0 && 333 ndp->dc_blkcookie == np->n_direofoffset) { 334 brelse(bp); 335 return (0); 336 } 337 338 /* 339 * Find the entry we were looking for in the block. 340 */ 341 342 en = ndp->dc_entry; 343 344 pdp = dp = (struct dirent *)bp->b_data; 345 edp = bp->b_data + bp->b_bcount - bp->b_resid; 346 enn = 0; 347 while (enn < en && (caddr_t)dp < edp) { 348 pdp = dp; 349 dp = (struct dirent *)((caddr_t)dp + dp->d_reclen); 350 enn++; 351 } 352 353 /* 354 * If the entry number was bigger than the number of 355 * entries in the block, or the cookie of the previous 356 * entry doesn't match, the directory cache is 357 * stale. Flush it and try again (i.e. go to 358 * the server). 359 */ 360 if ((caddr_t)dp >= edp || (caddr_t)dp + dp->d_reclen > edp || 361 (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) { 362 #ifdef DEBUG 363 printf("invalid cache: %p %p %p off %lx %lx\n", 364 pdp, dp, edp, 365 (unsigned long)uio->uio_offset, 366 (unsigned long)NFS_GETCOOKIE(pdp)); 367 #endif 368 brelse(bp); 369 nfs_invaldircache(vp, 0); 370 nfs_vinvalbuf(vp, 0, cred, p, 0); 371 goto diragain; 372 } 373 374 on = (caddr_t)dp - bp->b_data; 375 376 /* 377 * Cache all entries that may be exported to the 378 * user, as they may be thrown back at us. The 379 * NFSBIO_CACHECOOKIES flag indicates that all 380 * entries are being 'exported', so cache them all. 381 */ 382 383 if (en == 0 && pdp == dp) { 384 dp = (struct dirent *) 385 ((caddr_t)dp + dp->d_reclen); 386 enn++; 387 } 388 389 if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) { 390 n = uio->uio_resid; 391 enough = 1; 392 } else 393 n = bp->b_bcount - bp->b_resid - on; 394 395 ep = bp->b_data + on + n; 396 397 /* 398 * Find last complete entry to copy, caching entries 399 * (if requested) as we go. 400 */ 401 402 while ((caddr_t)dp < ep && (caddr_t)dp + dp->d_reclen <= ep) { 403 if (cflag & NFSBIO_CACHECOOKIES) { 404 nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp), 405 ndp->dc_blkcookie, enn, bp->b_lblkno); 406 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 407 NFS_STASHCOOKIE32(pdp, 408 nndp->dc_cookie32); 409 } 410 } 411 pdp = dp; 412 dp = (struct dirent *)((caddr_t)dp + dp->d_reclen); 413 enn++; 414 } 415 416 /* 417 * If the last requested entry was not the last in the 418 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ), 419 * cache the cookie of the last requested one, and 420 * set of the offset to it. 421 */ 422 423 if ((on + n) < bp->b_bcount - bp->b_resid) { 424 curoff = NFS_GETCOOKIE(pdp); 425 nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie, 426 enn, bp->b_lblkno); 427 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 428 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32); 429 curoff = nndp->dc_cookie32; 430 } 431 } else 432 curoff = bp->b_dcookie; 433 434 /* 435 * Always cache the entry for the next block, 436 * so that readaheads can use it. 437 */ 438 nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0); 439 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 440 if (curoff == bp->b_dcookie) { 441 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32); 442 curoff = nndp->dc_cookie32; 443 } 444 } 445 446 n = ((caddr_t)pdp + pdp->d_reclen) - (bp->b_data + on); 447 448 /* 449 * If not eof and read aheads are enabled, start one. 450 * (You need the current block first, so that you have the 451 * directory offset cookie of the next block.) 452 */ 453 if (nfs_numasync > 0 && nmp->nm_readahead > 0 && 454 np->n_direofoffset == 0 && !(np->n_flag & NQNFSNONCACHE)) { 455 rabp = nfs_getcacheblk(vp, nndp->dc_blkno, 456 NFS_DIRBLKSIZ, p); 457 if (rabp) { 458 if ((rabp->b_flags & (B_DONE | B_DELWRI)) == 0) { 459 rabp->b_dcookie = nndp->dc_cookie; 460 rabp->b_flags |= (B_READ | B_ASYNC); 461 if (nfs_asyncio(rabp)) { 462 rabp->b_flags |= B_INVAL; 463 brelse(rabp); 464 } 465 } else 466 brelse(rabp); 467 } 468 } 469 got_buf = 1; 470 break; 471 default: 472 printf(" nfsbioread: type %x unexpected\n",vp->v_type); 473 break; 474 } 475 476 if (n > 0) { 477 if (!baddr) 478 baddr = bp->b_data; 479 error = uiomove(baddr + on, (int)n, uio); 480 } 481 switch (vp->v_type) { 482 case VREG: 483 break; 484 case VLNK: 485 n = 0; 486 break; 487 case VDIR: 488 if (np->n_flag & NQNFSNONCACHE) 489 bp->b_flags |= B_INVAL; 490 uio->uio_offset = curoff; 491 if (enough) 492 n = 0; 493 break; 494 default: 495 printf(" nfsbioread: type %x unexpected\n",vp->v_type); 496 } 497 if (got_buf) 498 brelse(bp); 499 } while (error == 0 && uio->uio_resid > 0 && n > 0); 500 return (error); 501 } 502 503 /* 504 * Vnode op for write using bio 505 */ 506 int 507 nfs_write(v) 508 void *v; 509 { 510 struct vop_write_args /* { 511 struct vnode *a_vp; 512 struct uio *a_uio; 513 int a_ioflag; 514 struct ucred *a_cred; 515 } */ *ap = v; 516 struct uio *uio = ap->a_uio; 517 struct proc *p = uio->uio_procp; 518 struct vnode *vp = ap->a_vp; 519 struct nfsnode *np = VTONFS(vp); 520 struct ucred *cred = ap->a_cred; 521 int ioflag = ap->a_ioflag; 522 struct vattr vattr; 523 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 524 void *win; 525 voff_t oldoff, origoff; 526 vsize_t bytelen; 527 int error = 0; 528 int extended = 0, wrotedta = 0; 529 530 #ifdef DIAGNOSTIC 531 if (uio->uio_rw != UIO_WRITE) 532 panic("nfs_write mode"); 533 if (uio->uio_segflg == UIO_USERSPACE && uio->uio_procp != curproc) 534 panic("nfs_write proc"); 535 #endif 536 if (vp->v_type != VREG) 537 return (EIO); 538 if (np->n_flag & NWRITEERR) { 539 np->n_flag &= ~NWRITEERR; 540 return (np->n_error); 541 } 542 #ifndef NFS_V2_ONLY 543 if ((nmp->nm_flag & NFSMNT_NFSV3) && 544 !(nmp->nm_iflag & NFSMNT_GOTFSINFO)) 545 (void)nfs_fsinfo(nmp, vp, cred, p); 546 #endif 547 if (ioflag & (IO_APPEND | IO_SYNC)) { 548 if (np->n_flag & NMODIFIED) { 549 np->n_attrstamp = 0; 550 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); 551 if (error) 552 return (error); 553 } 554 if (ioflag & IO_APPEND) { 555 np->n_attrstamp = 0; 556 error = VOP_GETATTR(vp, &vattr, cred, p); 557 if (error) 558 return (error); 559 uio->uio_offset = np->n_size; 560 } 561 } 562 if (uio->uio_offset < 0) 563 return (EINVAL); 564 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 565 return (EFBIG); 566 if (uio->uio_resid == 0) 567 return (0); 568 /* 569 * Maybe this should be above the vnode op call, but so long as 570 * file servers have no limits, i don't think it matters 571 */ 572 if (p && uio->uio_offset + uio->uio_resid > 573 p->p_rlimit[RLIMIT_FSIZE].rlim_cur) { 574 psignal(p, SIGXFSZ); 575 return (EFBIG); 576 } 577 578 /* 579 * update the cached write creds for this node. 580 */ 581 582 if (np->n_wcred) { 583 crfree(np->n_wcred); 584 } 585 np->n_wcred = cred; 586 crhold(cred); 587 588 if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) { 589 int iomode = NFSV3WRITE_FILESYNC; 590 boolean_t stalewriteverf = FALSE; 591 592 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL); 593 error = nfs_writerpc(vp, uio, &iomode, FALSE, &stalewriteverf); 594 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL); 595 if (stalewriteverf) 596 nfs_clearcommit(vp->v_mount); 597 return (error); 598 } 599 600 origoff = uio->uio_offset; 601 do { 602 boolean_t extending; /* if we are extending whole pages */ 603 u_quad_t oldsize; 604 oldoff = uio->uio_offset; 605 bytelen = uio->uio_resid; 606 607 #ifndef NFS_V2_ONLY 608 /* 609 * Check for a valid write lease. 610 */ 611 if ((nmp->nm_flag & NFSMNT_NQNFS) && 612 NQNFS_CKINVALID(vp, np, ND_WRITE)) { 613 do { 614 error = nqnfs_getlease(vp, ND_WRITE, cred, p); 615 } while (error == NQNFS_EXPIRED); 616 if (error) 617 return (error); 618 if (np->n_lrev != np->n_brev || 619 (np->n_flag & NQNFSNONCACHE)) { 620 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); 621 if (error) 622 return (error); 623 np->n_brev = np->n_lrev; 624 } 625 } 626 #endif 627 nfsstats.biocache_writes++; 628 629 oldsize = np->n_size; 630 np->n_flag |= NMODIFIED; 631 if (np->n_size < uio->uio_offset + bytelen) { 632 np->n_size = uio->uio_offset + bytelen; 633 } 634 extending = ((uio->uio_offset & PAGE_MASK) == 0 && 635 (bytelen & PAGE_MASK) == 0 && 636 uio->uio_offset >= vp->v_size); 637 if (extending) { 638 win = ubc_alloc(&vp->v_uobj, uio->uio_offset, &bytelen, 639 UBC_WRITE | UBC_FAULTBUSY); 640 } else { 641 win = ubc_alloc(&vp->v_uobj, uio->uio_offset, &bytelen, 642 UBC_WRITE); 643 } 644 error = uiomove(win, bytelen, uio); 645 ubc_release(win, 0); 646 if (error) { 647 if (extending) { 648 /* 649 * backout size and free pages past eof. 650 */ 651 np->n_size = oldsize; 652 (void)VOP_PUTPAGES(vp, round_page(vp->v_size), 653 0, PGO_SYNCIO | PGO_FREE); 654 } 655 break; 656 } 657 wrotedta = 1; 658 659 /* 660 * update UVM's notion of the size now that we've 661 * copied the data into the vnode's pages. 662 */ 663 664 if (vp->v_size < uio->uio_offset) { 665 uvm_vnp_setsize(vp, uio->uio_offset); 666 extended = 1; 667 } 668 669 if ((oldoff & ~(nmp->nm_wsize - 1)) != 670 (uio->uio_offset & ~(nmp->nm_wsize - 1))) { 671 simple_lock(&vp->v_interlock); 672 error = VOP_PUTPAGES(vp, 673 trunc_page(oldoff & ~(nmp->nm_wsize - 1)), 674 round_page((uio->uio_offset + nmp->nm_wsize - 1) & 675 ~(nmp->nm_wsize - 1)), PGO_CLEANIT); 676 } 677 } while (uio->uio_resid > 0); 678 if (wrotedta) 679 VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0)); 680 if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) { 681 simple_lock(&vp->v_interlock); 682 error = VOP_PUTPAGES(vp, 683 trunc_page(origoff & ~(nmp->nm_wsize - 1)), 684 round_page((uio->uio_offset + nmp->nm_wsize - 1) & 685 ~(nmp->nm_wsize - 1)), 686 PGO_CLEANIT | PGO_SYNCIO); 687 } 688 return error; 689 } 690 691 /* 692 * Get an nfs cache block. 693 * Allocate a new one if the block isn't currently in the cache 694 * and return the block marked busy. If the calling process is 695 * interrupted by a signal for an interruptible mount point, return 696 * NULL. 697 */ 698 struct buf * 699 nfs_getcacheblk(vp, bn, size, p) 700 struct vnode *vp; 701 daddr_t bn; 702 int size; 703 struct proc *p; 704 { 705 struct buf *bp; 706 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 707 708 if (nmp->nm_flag & NFSMNT_INT) { 709 bp = getblk(vp, bn, size, PCATCH, 0); 710 while (bp == NULL) { 711 if (nfs_sigintr(nmp, NULL, p)) 712 return (NULL); 713 bp = getblk(vp, bn, size, 0, 2 * hz); 714 } 715 } else 716 bp = getblk(vp, bn, size, 0, 0); 717 return (bp); 718 } 719 720 /* 721 * Flush and invalidate all dirty buffers. If another process is already 722 * doing the flush, just wait for completion. 723 */ 724 int 725 nfs_vinvalbuf(vp, flags, cred, p, intrflg) 726 struct vnode *vp; 727 int flags; 728 struct ucred *cred; 729 struct proc *p; 730 int intrflg; 731 { 732 struct nfsnode *np = VTONFS(vp); 733 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 734 int error = 0, slpflag, slptimeo; 735 736 if ((nmp->nm_flag & NFSMNT_INT) == 0) 737 intrflg = 0; 738 if (intrflg) { 739 slpflag = PCATCH; 740 slptimeo = 2 * hz; 741 } else { 742 slpflag = 0; 743 slptimeo = 0; 744 } 745 /* 746 * First wait for any other process doing a flush to complete. 747 */ 748 simple_lock(&vp->v_interlock); 749 while (np->n_flag & NFLUSHINPROG) { 750 np->n_flag |= NFLUSHWANT; 751 error = ltsleep(&np->n_flag, PRIBIO + 2, "nfsvinval", 752 slptimeo, &vp->v_interlock); 753 if (error && intrflg && nfs_sigintr(nmp, NULL, p)) { 754 simple_unlock(&vp->v_interlock); 755 return EINTR; 756 } 757 } 758 759 /* 760 * Now, flush as required. 761 */ 762 np->n_flag |= NFLUSHINPROG; 763 simple_unlock(&vp->v_interlock); 764 error = vinvalbuf(vp, flags, cred, p, slpflag, 0); 765 while (error) { 766 if (intrflg && nfs_sigintr(nmp, NULL, p)) { 767 error = EINTR; 768 break; 769 } 770 error = vinvalbuf(vp, flags, cred, p, 0, slptimeo); 771 } 772 simple_lock(&vp->v_interlock); 773 if (error == 0) 774 np->n_flag &= ~NMODIFIED; 775 np->n_flag &= ~NFLUSHINPROG; 776 if (np->n_flag & NFLUSHWANT) { 777 np->n_flag &= ~NFLUSHWANT; 778 wakeup(&np->n_flag); 779 } 780 simple_unlock(&vp->v_interlock); 781 return error; 782 } 783 784 /* 785 * Initiate asynchronous I/O. Return an error if no nfsiods are available. 786 * This is mainly to avoid queueing async I/O requests when the nfsiods 787 * are all hung on a dead server. 788 */ 789 790 int 791 nfs_asyncio(bp) 792 struct buf *bp; 793 { 794 int i; 795 struct nfsmount *nmp; 796 int gotiod, slpflag = 0, slptimeo = 0, error; 797 798 if (nfs_numasync == 0) 799 return (EIO); 800 801 nmp = VFSTONFS(bp->b_vp->v_mount); 802 again: 803 if (nmp->nm_flag & NFSMNT_INT) 804 slpflag = PCATCH; 805 gotiod = FALSE; 806 807 /* 808 * Find a free iod to process this request. 809 */ 810 811 for (i = 0; i < NFS_MAXASYNCDAEMON; i++) { 812 struct nfs_iod *iod = &nfs_asyncdaemon[i]; 813 814 simple_lock(&iod->nid_slock); 815 if (iod->nid_want) { 816 /* 817 * Found one, so wake it up and tell it which 818 * mount to process. 819 */ 820 iod->nid_want = NULL; 821 iod->nid_mount = nmp; 822 wakeup(&iod->nid_want); 823 simple_lock(&nmp->nm_slock); 824 simple_unlock(&iod->nid_slock); 825 nmp->nm_bufqiods++; 826 gotiod = TRUE; 827 break; 828 } 829 simple_unlock(&iod->nid_slock); 830 } 831 832 /* 833 * If none are free, we may already have an iod working on this mount 834 * point. If so, it will process our request. 835 */ 836 837 if (!gotiod) { 838 simple_lock(&nmp->nm_slock); 839 if (nmp->nm_bufqiods > 0) 840 gotiod = TRUE; 841 } 842 843 LOCK_ASSERT(simple_lock_held(&nmp->nm_slock)); 844 845 /* 846 * If we have an iod which can process the request, then queue 847 * the buffer. 848 */ 849 850 if (gotiod) { 851 852 /* 853 * Ensure that the queue never grows too large. 854 */ 855 856 while (nmp->nm_bufqlen >= 2*nfs_numasync) { 857 nmp->nm_bufqwant = TRUE; 858 error = ltsleep(&nmp->nm_bufq, 859 slpflag | PRIBIO | PNORELOCK, 860 "nfsaio", slptimeo, &nmp->nm_slock); 861 if (error) { 862 if (nfs_sigintr(nmp, NULL, curproc)) 863 return (EINTR); 864 if (slpflag == PCATCH) { 865 slpflag = 0; 866 slptimeo = 2 * hz; 867 } 868 } 869 870 /* 871 * We might have lost our iod while sleeping, 872 * so check and loop if nescessary. 873 */ 874 875 if (nmp->nm_bufqiods == 0) 876 goto again; 877 878 simple_lock(&nmp->nm_slock); 879 } 880 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist); 881 nmp->nm_bufqlen++; 882 simple_unlock(&nmp->nm_slock); 883 return (0); 884 } 885 simple_unlock(&nmp->nm_slock); 886 887 /* 888 * All the iods are busy on other mounts, so return EIO to 889 * force the caller to process the i/o synchronously. 890 */ 891 892 return (EIO); 893 } 894 895 /* 896 * nfs_doio for read. 897 */ 898 static int 899 nfs_doio_read(bp, uiop) 900 struct buf *bp; 901 struct uio *uiop; 902 { 903 struct vnode *vp = bp->b_vp; 904 struct nfsnode *np = VTONFS(vp); 905 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 906 int error = 0; 907 908 uiop->uio_rw = UIO_READ; 909 switch (vp->v_type) { 910 case VREG: 911 nfsstats.read_bios++; 912 error = nfs_readrpc(vp, uiop); 913 if (!error && uiop->uio_resid) { 914 int diff, len; 915 916 /* 917 * If len > 0, there is a hole in the file and 918 * no writes after the hole have been pushed to 919 * the server yet. 920 * Just zero fill the rest of the valid area. 921 */ 922 923 diff = bp->b_bcount - uiop->uio_resid; 924 len = np->n_size - ((((off_t)bp->b_blkno) << DEV_BSHIFT) 925 + diff); 926 if (len > 0) { 927 len = MIN(len, uiop->uio_resid); 928 memset((char *)bp->b_data + diff, 0, len); 929 } 930 } 931 if (uiop->uio_procp && (vp->v_flag & VTEXT) && 932 (((nmp->nm_flag & NFSMNT_NQNFS) && 933 NQNFS_CKINVALID(vp, np, ND_READ) && 934 np->n_lrev != np->n_brev) || 935 (!(nmp->nm_flag & NFSMNT_NQNFS) && 936 np->n_mtime != np->n_vattr->va_mtime.tv_sec))) { 937 uprintf("Process killed due to " 938 "text file modification\n"); 939 psignal(uiop->uio_procp, SIGKILL); 940 #if 0 /* XXX NJWLWP */ 941 uiop->uio_procp->p_holdcnt++; 942 #endif 943 } 944 break; 945 case VLNK: 946 KASSERT(uiop->uio_offset == (off_t)0); 947 nfsstats.readlink_bios++; 948 error = nfs_readlinkrpc(vp, uiop, curproc->p_ucred); 949 break; 950 case VDIR: 951 nfsstats.readdir_bios++; 952 uiop->uio_offset = bp->b_dcookie; 953 if (nmp->nm_flag & NFSMNT_RDIRPLUS) { 954 error = nfs_readdirplusrpc(vp, uiop, curproc->p_ucred); 955 if (error == NFSERR_NOTSUPP) 956 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 957 } 958 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) 959 error = nfs_readdirrpc(vp, uiop, curproc->p_ucred); 960 if (!error) { 961 bp->b_dcookie = uiop->uio_offset; 962 } 963 break; 964 default: 965 printf("nfs_doio: type %x unexpected\n", vp->v_type); 966 break; 967 } 968 if (error) { 969 bp->b_flags |= B_ERROR; 970 bp->b_error = error; 971 } 972 return error; 973 } 974 975 /* 976 * nfs_doio for write. 977 */ 978 static int 979 nfs_doio_write(bp, uiop) 980 struct buf *bp; 981 struct uio *uiop; 982 { 983 struct vnode *vp = bp->b_vp; 984 struct nfsnode *np = VTONFS(vp); 985 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 986 int iomode; 987 boolean_t stalewriteverf = FALSE; 988 int i, npages = (bp->b_bcount + PAGE_SIZE - 1) >> PAGE_SHIFT; 989 struct vm_page *pgs[npages]; 990 boolean_t needcommit = TRUE; 991 boolean_t pageprotected; 992 struct uvm_object *uobj = &vp->v_uobj; 993 int error; 994 off_t off, cnt; 995 996 if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) { 997 iomode = NFSV3WRITE_UNSTABLE; 998 } else { 999 iomode = NFSV3WRITE_FILESYNC; 1000 } 1001 1002 again: 1003 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL); 1004 1005 for (i = 0; i < npages; i++) { 1006 pgs[i] = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT)); 1007 if (pgs[i]->uobject == uobj && 1008 pgs[i]->offset == uiop->uio_offset + (i << PAGE_SHIFT)) { 1009 KASSERT(pgs[i]->flags & PG_BUSY); 1010 /* 1011 * this page belongs to our object. 1012 */ 1013 simple_lock(&uobj->vmobjlock); 1014 if (pgs[i]->flags & (PG_RELEASED|PG_PAGEOUT)) 1015 iomode = NFSV3WRITE_FILESYNC; 1016 if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0) 1017 needcommit = FALSE; 1018 simple_unlock(&uobj->vmobjlock); 1019 } else { 1020 iomode = NFSV3WRITE_FILESYNC; 1021 needcommit = FALSE; 1022 } 1023 } 1024 if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) { 1025 simple_lock(&uobj->vmobjlock); 1026 for (i = 0; i < npages; i++) { 1027 pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY; 1028 pmap_page_protect(pgs[i], VM_PROT_READ); 1029 } 1030 simple_unlock(&uobj->vmobjlock); 1031 pageprotected = TRUE; /* pages can't be modified during i/o. */ 1032 } else 1033 pageprotected = FALSE; 1034 1035 /* 1036 * Send the data to the server if necessary, 1037 * otherwise just send a commit rpc. 1038 */ 1039 1040 if (needcommit) { 1041 1042 /* 1043 * If the buffer is in the range that we already committed, 1044 * there's nothing to do. 1045 * 1046 * If it's in the range that we need to commit, push the 1047 * whole range at once, otherwise only push the buffer. 1048 * In both these cases, acquire the commit lock to avoid 1049 * other processes modifying the range. 1050 */ 1051 1052 off = uiop->uio_offset; 1053 cnt = bp->b_bcount; 1054 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL); 1055 if (!nfs_in_committed_range(vp, off, bp->b_bcount)) { 1056 boolean_t pushedrange; 1057 if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) { 1058 pushedrange = TRUE; 1059 off = np->n_pushlo; 1060 cnt = np->n_pushhi - np->n_pushlo; 1061 } else { 1062 pushedrange = FALSE; 1063 } 1064 error = nfs_commit(vp, off, cnt, curproc); 1065 if (error == 0) { 1066 if (pushedrange) { 1067 nfs_merge_commit_ranges(vp); 1068 } else { 1069 nfs_add_committed_range(vp, off, cnt); 1070 } 1071 } 1072 } else { 1073 error = 0; 1074 } 1075 lockmgr(&np->n_commitlock, LK_RELEASE, NULL); 1076 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL); 1077 if (!error) { 1078 /* 1079 * pages are now on stable storage. 1080 */ 1081 uiop->uio_resid = 0; 1082 simple_lock(&uobj->vmobjlock); 1083 for (i = 0; i < npages; i++) { 1084 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY); 1085 } 1086 simple_unlock(&uobj->vmobjlock); 1087 return 0; 1088 } else if (error == NFSERR_STALEWRITEVERF) { 1089 nfs_clearcommit(vp->v_mount); 1090 goto again; 1091 } 1092 if (error) { 1093 bp->b_flags |= B_ERROR; 1094 bp->b_error = np->n_error = error; 1095 np->n_flag |= NWRITEERR; 1096 } 1097 return error; 1098 } 1099 off = uiop->uio_offset; 1100 cnt = bp->b_bcount; 1101 uiop->uio_rw = UIO_WRITE; 1102 nfsstats.write_bios++; 1103 error = nfs_writerpc(vp, uiop, &iomode, pageprotected, &stalewriteverf); 1104 if (!error && iomode == NFSV3WRITE_UNSTABLE) { 1105 /* 1106 * we need to commit pages later. 1107 */ 1108 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL); 1109 nfs_add_tobecommitted_range(vp, off, cnt); 1110 /* 1111 * if there can be too many uncommitted pages, commit them now. 1112 */ 1113 if (np->n_pushhi - np->n_pushlo > nfs_commitsize) { 1114 off = np->n_pushlo; 1115 cnt = nfs_commitsize >> 1; 1116 error = nfs_commit(vp, off, cnt, curproc); 1117 if (!error) { 1118 nfs_add_committed_range(vp, off, cnt); 1119 nfs_del_tobecommitted_range(vp, off, cnt); 1120 } 1121 if (error == NFSERR_STALEWRITEVERF) { 1122 stalewriteverf = TRUE; 1123 error = 0; /* it isn't a real error */ 1124 } 1125 } else { 1126 /* 1127 * re-dirty pages so that they will be passed 1128 * to us later again. 1129 */ 1130 simple_lock(&uobj->vmobjlock); 1131 for (i = 0; i < npages; i++) { 1132 pgs[i]->flags &= ~PG_CLEAN; 1133 } 1134 simple_unlock(&uobj->vmobjlock); 1135 } 1136 lockmgr(&np->n_commitlock, LK_RELEASE, NULL); 1137 } else if (!error) { 1138 /* 1139 * pages are now on stable storage. 1140 */ 1141 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL); 1142 nfs_del_committed_range(vp, off, cnt); 1143 lockmgr(&np->n_commitlock, LK_RELEASE, NULL); 1144 simple_lock(&uobj->vmobjlock); 1145 for (i = 0; i < npages; i++) { 1146 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY); 1147 } 1148 simple_unlock(&uobj->vmobjlock); 1149 } else { 1150 /* 1151 * we got an error. 1152 */ 1153 bp->b_flags |= B_ERROR; 1154 bp->b_error = np->n_error = error; 1155 np->n_flag |= NWRITEERR; 1156 } 1157 1158 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL); 1159 1160 if (stalewriteverf) { 1161 nfs_clearcommit(vp->v_mount); 1162 } 1163 return error; 1164 } 1165 1166 /* 1167 * nfs_doio for B_PHYS. 1168 */ 1169 static int 1170 nfs_doio_phys(bp, uiop) 1171 struct buf *bp; 1172 struct uio *uiop; 1173 { 1174 struct vnode *vp = bp->b_vp; 1175 int error; 1176 1177 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT; 1178 if (bp->b_flags & B_READ) { 1179 uiop->uio_rw = UIO_READ; 1180 nfsstats.read_physios++; 1181 error = nfs_readrpc(vp, uiop); 1182 } else { 1183 int iomode = NFSV3WRITE_DATASYNC; 1184 boolean_t stalewriteverf; 1185 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1186 1187 uiop->uio_rw = UIO_WRITE; 1188 nfsstats.write_physios++; 1189 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL); 1190 error = nfs_writerpc(vp, uiop, &iomode, FALSE, &stalewriteverf); 1191 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL); 1192 if (stalewriteverf) { 1193 nfs_clearcommit(bp->b_vp->v_mount); 1194 } 1195 } 1196 if (error) { 1197 bp->b_flags |= B_ERROR; 1198 bp->b_error = error; 1199 } 1200 return error; 1201 } 1202 1203 /* 1204 * Do an I/O operation to/from a cache block. This may be called 1205 * synchronously or from an nfsiod. 1206 */ 1207 int 1208 nfs_doio(bp, p) 1209 struct buf *bp; 1210 struct proc *p; 1211 { 1212 int error; 1213 struct uio uio; 1214 struct uio *uiop = &uio; 1215 struct iovec io; 1216 UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist); 1217 1218 uiop->uio_iov = &io; 1219 uiop->uio_iovcnt = 1; 1220 uiop->uio_segflg = UIO_SYSSPACE; 1221 uiop->uio_procp = p; 1222 uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT); 1223 io.iov_base = bp->b_data; 1224 io.iov_len = uiop->uio_resid = bp->b_bcount; 1225 1226 /* 1227 * Historically, paging was done with physio, but no more... 1228 */ 1229 if (bp->b_flags & B_PHYS) { 1230 /* 1231 * ...though reading /dev/drum still gets us here. 1232 */ 1233 error = nfs_doio_phys(bp, uiop); 1234 } else if (bp->b_flags & B_READ) { 1235 error = nfs_doio_read(bp, uiop); 1236 } else { 1237 error = nfs_doio_write(bp, uiop); 1238 } 1239 bp->b_resid = uiop->uio_resid; 1240 biodone(bp); 1241 return (error); 1242 } 1243 1244 /* 1245 * Vnode op for VM getpages. 1246 */ 1247 1248 int 1249 nfs_getpages(v) 1250 void *v; 1251 { 1252 struct vop_getpages_args /* { 1253 struct vnode *a_vp; 1254 voff_t a_offset; 1255 struct vm_page **a_m; 1256 int *a_count; 1257 int a_centeridx; 1258 vm_prot_t a_access_type; 1259 int a_advice; 1260 int a_flags; 1261 } */ *ap = v; 1262 1263 struct vnode *vp = ap->a_vp; 1264 struct uvm_object *uobj = &vp->v_uobj; 1265 struct nfsnode *np = VTONFS(vp); 1266 const int npages = *ap->a_count; 1267 struct vm_page *pg, **pgs, *opgs[npages]; 1268 off_t origoffset, len; 1269 int i, error; 1270 boolean_t v3 = NFS_ISV3(vp); 1271 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 1272 boolean_t locked = (ap->a_flags & PGO_LOCKED) != 0; 1273 1274 /* 1275 * update the cached read creds for this node. 1276 */ 1277 1278 if (np->n_rcred) { 1279 crfree(np->n_rcred); 1280 } 1281 np->n_rcred = curproc->p_ucred; 1282 crhold(np->n_rcred); 1283 1284 /* 1285 * if we have delayed truncation and it's safe, do it now. 1286 */ 1287 1288 if (ap->a_flags & PGO_SYNCIO) { 1289 nfs_delayedtruncate(vp); 1290 } 1291 1292 /* 1293 * call the genfs code to get the pages. `pgs' may be NULL 1294 * when doing read-ahead. 1295 */ 1296 1297 pgs = ap->a_m; 1298 if (write && locked && v3) { 1299 KASSERT(pgs != NULL); 1300 #ifdef DEBUG 1301 1302 /* 1303 * If PGO_LOCKED is set, real pages shouldn't exists 1304 * in the array. 1305 */ 1306 1307 for (i = 0; i < npages; i++) 1308 KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE); 1309 #endif 1310 memcpy(opgs, pgs, npages * sizeof(struct vm_pages *)); 1311 } 1312 error = genfs_getpages(v); 1313 if (error) { 1314 return (error); 1315 } 1316 1317 /* 1318 * for read faults where the nfs node is not yet marked NMODIFIED, 1319 * set PG_RDONLY on the pages so that we come back here if someone 1320 * tries to modify later via the mapping that will be entered for 1321 * this fault. 1322 */ 1323 1324 if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) { 1325 if (!locked) { 1326 simple_lock(&uobj->vmobjlock); 1327 } 1328 for (i = 0; i < npages; i++) { 1329 pg = pgs[i]; 1330 if (pg == NULL || pg == PGO_DONTCARE) { 1331 continue; 1332 } 1333 pg->flags |= PG_RDONLY; 1334 } 1335 if (!locked) { 1336 simple_unlock(&uobj->vmobjlock); 1337 } 1338 } 1339 if (!write) { 1340 return (0); 1341 } 1342 1343 /* 1344 * this is a write fault, update the commit info. 1345 */ 1346 1347 origoffset = ap->a_offset; 1348 len = npages << PAGE_SHIFT; 1349 1350 if (v3) { 1351 error = lockmgr(&np->n_commitlock, 1352 LK_EXCLUSIVE | (locked ? LK_NOWAIT : 0), NULL); 1353 if (error) { 1354 KASSERT(locked != 0); 1355 1356 /* 1357 * Since PGO_LOCKED is set, we need to unbusy 1358 * all pages fetched by genfs_getpages() above, 1359 * tell the caller that there are no pages 1360 * available and put back original pgs array. 1361 */ 1362 1363 uvm_lock_pageq(); 1364 uvm_page_unbusy(pgs, npages); 1365 uvm_unlock_pageq(); 1366 *ap->a_count = 0; 1367 memcpy(pgs, opgs, 1368 npages * sizeof(struct vm_pages *)); 1369 return (error); 1370 } 1371 nfs_del_committed_range(vp, origoffset, len); 1372 nfs_del_tobecommitted_range(vp, origoffset, len); 1373 } 1374 np->n_flag |= NMODIFIED; 1375 if (!locked) { 1376 simple_lock(&uobj->vmobjlock); 1377 } 1378 for (i = 0; i < npages; i++) { 1379 pg = pgs[i]; 1380 if (pg == NULL || pg == PGO_DONTCARE) { 1381 continue; 1382 } 1383 pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY); 1384 } 1385 if (!locked) { 1386 simple_unlock(&uobj->vmobjlock); 1387 } 1388 if (v3) { 1389 lockmgr(&np->n_commitlock, LK_RELEASE, NULL); 1390 } 1391 return (0); 1392 } 1393