1 /* $NetBSD: nfs_bio.c,v 1.128 2005/02/26 22:39:50 perry Exp $ */ 2 3 /* 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95 35 */ 36 37 #include <sys/cdefs.h> 38 __KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.128 2005/02/26 22:39:50 perry Exp $"); 39 40 #include "opt_nfs.h" 41 #include "opt_ddb.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/resourcevar.h> 46 #include <sys/signalvar.h> 47 #include <sys/proc.h> 48 #include <sys/buf.h> 49 #include <sys/vnode.h> 50 #include <sys/mount.h> 51 #include <sys/kernel.h> 52 #include <sys/namei.h> 53 #include <sys/dirent.h> 54 #include <sys/malloc.h> 55 56 #include <uvm/uvm_extern.h> 57 #include <uvm/uvm.h> 58 59 #include <nfs/rpcv2.h> 60 #include <nfs/nfsproto.h> 61 #include <nfs/nfs.h> 62 #include <nfs/nfsmount.h> 63 #include <nfs/nqnfs.h> 64 #include <nfs/nfsnode.h> 65 #include <nfs/nfs_var.h> 66 67 extern int nfs_numasync; 68 extern int nfs_commitsize; 69 extern struct nfsstats nfsstats; 70 71 static int nfs_doio_read __P((struct buf *, struct uio *)); 72 static int nfs_doio_write __P((struct buf *, struct uio *)); 73 static int nfs_doio_phys __P((struct buf *, struct uio *)); 74 75 /* 76 * Vnode op for read using bio 77 * Any similarity to readip() is purely coincidental 78 */ 79 int 80 nfs_bioread(vp, uio, ioflag, cred, cflag) 81 struct vnode *vp; 82 struct uio *uio; 83 int ioflag, cflag; 84 struct ucred *cred; 85 { 86 struct nfsnode *np = VTONFS(vp); 87 struct buf *bp = NULL, *rabp; 88 struct proc *p; 89 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 90 struct nfsdircache *ndp = NULL, *nndp = NULL; 91 caddr_t baddr, ep, edp; 92 int got_buf = 0, error = 0, n = 0, on = 0, en, enn; 93 int enough = 0; 94 struct dirent *dp, *pdp; 95 off_t curoff = 0; 96 97 #ifdef DIAGNOSTIC 98 if (uio->uio_rw != UIO_READ) 99 panic("nfs_read mode"); 100 #endif 101 if (uio->uio_resid == 0) 102 return (0); 103 if (vp->v_type != VDIR && uio->uio_offset < 0) 104 return (EINVAL); 105 p = uio->uio_procp; 106 #ifndef NFS_V2_ONLY 107 if ((nmp->nm_flag & NFSMNT_NFSV3) && 108 !(nmp->nm_iflag & NFSMNT_GOTFSINFO)) 109 (void)nfs_fsinfo(nmp, vp, cred, p); 110 #endif 111 if (vp->v_type != VDIR && 112 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 113 return (EFBIG); 114 115 /* 116 * For nfs, cache consistency can only be maintained approximately. 117 * Although RFC1094 does not specify the criteria, the following is 118 * believed to be compatible with the reference port. 119 * For nqnfs, full cache consistency is maintained within the loop. 120 * For nfs: 121 * If the file's modify time on the server has changed since the 122 * last read rpc or you have written to the file, 123 * you may have lost data cache consistency with the 124 * server, so flush all of the file's data out of the cache. 125 * Then force a getattr rpc to ensure that you have up to date 126 * attributes. 127 * NB: This implies that cache data can be read when up to 128 * NFS_ATTRTIMEO seconds out of date. If you find that you need current 129 * attributes this could be forced by setting n_attrstamp to 0 before 130 * the VOP_GETATTR() call. 131 */ 132 133 if ((nmp->nm_flag & NFSMNT_NQNFS) == 0 && vp->v_type != VLNK) { 134 error = nfs_flushstalebuf(vp, cred, p, 135 NFS_FLUSHSTALEBUF_MYWRITE); 136 if (error) 137 return error; 138 } 139 140 do { 141 #ifndef NFS_V2_ONLY 142 /* 143 * Get a valid lease. If cached data is stale, flush it. 144 */ 145 if (nmp->nm_flag & NFSMNT_NQNFS) { 146 if (NQNFS_CKINVALID(vp, np, ND_READ)) { 147 do { 148 error = nqnfs_getlease(vp, ND_READ, cred, p); 149 } while (error == NQNFS_EXPIRED); 150 if (error) 151 return (error); 152 if (np->n_lrev != np->n_brev || 153 (np->n_flag & NQNFSNONCACHE) || 154 ((np->n_flag & NMODIFIED) && vp->v_type == VDIR)) { 155 if (vp->v_type == VDIR) { 156 nfs_invaldircache(vp, 0); 157 } 158 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); 159 if (error) 160 return (error); 161 np->n_brev = np->n_lrev; 162 } 163 } else if (vp->v_type == VDIR && (np->n_flag & NMODIFIED)) { 164 nfs_invaldircache(vp, 0); 165 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); 166 if (error) 167 return (error); 168 } 169 } 170 #endif 171 /* 172 * Don't cache symlinks. 173 */ 174 if (np->n_flag & NQNFSNONCACHE 175 || ((vp->v_flag & VROOT) && vp->v_type == VLNK)) { 176 switch (vp->v_type) { 177 case VREG: 178 return (nfs_readrpc(vp, uio)); 179 case VLNK: 180 return (nfs_readlinkrpc(vp, uio, cred)); 181 case VDIR: 182 break; 183 default: 184 printf(" NQNFSNONCACHE: type %x unexpected\n", 185 vp->v_type); 186 }; 187 } 188 baddr = (caddr_t)0; 189 switch (vp->v_type) { 190 case VREG: 191 nfsstats.biocache_reads++; 192 193 error = 0; 194 if (uio->uio_offset >= np->n_size) { 195 break; 196 } 197 while (uio->uio_resid > 0) { 198 void *win; 199 int flags; 200 vsize_t bytelen = MIN(np->n_size - uio->uio_offset, 201 uio->uio_resid); 202 203 if (bytelen == 0) 204 break; 205 win = ubc_alloc(&vp->v_uobj, uio->uio_offset, 206 &bytelen, UBC_READ); 207 error = uiomove(win, bytelen, uio); 208 flags = UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0; 209 ubc_release(win, flags); 210 if (error) { 211 break; 212 } 213 } 214 n = 0; 215 break; 216 217 case VLNK: 218 nfsstats.biocache_readlinks++; 219 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, p); 220 if (!bp) 221 return (EINTR); 222 if ((bp->b_flags & B_DONE) == 0) { 223 bp->b_flags |= B_READ; 224 error = nfs_doio(bp, p); 225 if (error) { 226 brelse(bp); 227 return (error); 228 } 229 } 230 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid); 231 got_buf = 1; 232 on = 0; 233 break; 234 case VDIR: 235 diragain: 236 nfsstats.biocache_readdirs++; 237 ndp = nfs_searchdircache(vp, uio->uio_offset, 238 (nmp->nm_flag & NFSMNT_XLATECOOKIE), 0); 239 if (!ndp) { 240 /* 241 * We've been handed a cookie that is not 242 * in the cache. If we're not translating 243 * 32 <-> 64, it may be a value that was 244 * flushed out of the cache because it grew 245 * too big. Let the server judge if it's 246 * valid or not. In the translation case, 247 * we have no way of validating this value, 248 * so punt. 249 */ 250 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) 251 return (EINVAL); 252 ndp = nfs_enterdircache(vp, uio->uio_offset, 253 uio->uio_offset, 0, 0); 254 } 255 256 if (NFS_EOFVALID(np) && 257 ndp->dc_cookie == np->n_direofoffset) { 258 nfs_putdircache(np, ndp); 259 nfsstats.direofcache_hits++; 260 return (0); 261 } 262 263 bp = nfs_getcacheblk(vp, NFSDC_BLKNO(ndp), NFS_DIRBLKSIZ, p); 264 if (!bp) 265 return (EINTR); 266 if ((bp->b_flags & B_DONE) == 0) { 267 bp->b_flags |= B_READ; 268 bp->b_dcookie = ndp->dc_blkcookie; 269 error = nfs_doio(bp, p); 270 if (error) { 271 /* 272 * Yuck! The directory has been modified on the 273 * server. Punt and let the userland code 274 * deal with it. 275 */ 276 nfs_putdircache(np, ndp); 277 brelse(bp); 278 if (error == NFSERR_BAD_COOKIE) { 279 nfs_invaldircache(vp, 0); 280 nfs_vinvalbuf(vp, 0, cred, p, 1); 281 error = EINVAL; 282 } 283 return (error); 284 } 285 } 286 287 /* 288 * Just return if we hit EOF right away with this 289 * block. Always check here, because direofoffset 290 * may have been set by an nfsiod since the last 291 * check. 292 * 293 * also, empty block implies EOF. 294 */ 295 296 if (bp->b_bcount == bp->b_resid || 297 (NFS_EOFVALID(np) && 298 ndp->dc_blkcookie == np->n_direofoffset)) { 299 KASSERT(bp->b_bcount != bp->b_resid || 300 ndp->dc_blkcookie == bp->b_dcookie); 301 nfs_putdircache(np, ndp); 302 bp->b_flags |= B_NOCACHE; 303 brelse(bp); 304 return 0; 305 } 306 307 /* 308 * Find the entry we were looking for in the block. 309 */ 310 311 en = ndp->dc_entry; 312 313 pdp = dp = (struct dirent *)bp->b_data; 314 edp = bp->b_data + bp->b_bcount - bp->b_resid; 315 enn = 0; 316 while (enn < en && (caddr_t)dp < edp) { 317 pdp = dp; 318 dp = (struct dirent *)((caddr_t)dp + dp->d_reclen); 319 enn++; 320 } 321 322 /* 323 * If the entry number was bigger than the number of 324 * entries in the block, or the cookie of the previous 325 * entry doesn't match, the directory cache is 326 * stale. Flush it and try again (i.e. go to 327 * the server). 328 */ 329 if ((caddr_t)dp >= edp || (caddr_t)dp + dp->d_reclen > edp || 330 (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) { 331 #ifdef DEBUG 332 printf("invalid cache: %p %p %p off %lx %lx\n", 333 pdp, dp, edp, 334 (unsigned long)uio->uio_offset, 335 (unsigned long)NFS_GETCOOKIE(pdp)); 336 #endif 337 nfs_putdircache(np, ndp); 338 brelse(bp); 339 nfs_invaldircache(vp, 0); 340 nfs_vinvalbuf(vp, 0, cred, p, 0); 341 goto diragain; 342 } 343 344 on = (caddr_t)dp - bp->b_data; 345 346 /* 347 * Cache all entries that may be exported to the 348 * user, as they may be thrown back at us. The 349 * NFSBIO_CACHECOOKIES flag indicates that all 350 * entries are being 'exported', so cache them all. 351 */ 352 353 if (en == 0 && pdp == dp) { 354 dp = (struct dirent *) 355 ((caddr_t)dp + dp->d_reclen); 356 enn++; 357 } 358 359 if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) { 360 n = uio->uio_resid; 361 enough = 1; 362 } else 363 n = bp->b_bcount - bp->b_resid - on; 364 365 ep = bp->b_data + on + n; 366 367 /* 368 * Find last complete entry to copy, caching entries 369 * (if requested) as we go. 370 */ 371 372 while ((caddr_t)dp < ep && (caddr_t)dp + dp->d_reclen <= ep) { 373 if (cflag & NFSBIO_CACHECOOKIES) { 374 nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp), 375 ndp->dc_blkcookie, enn, bp->b_lblkno); 376 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 377 NFS_STASHCOOKIE32(pdp, 378 nndp->dc_cookie32); 379 } 380 nfs_putdircache(np, nndp); 381 } 382 pdp = dp; 383 dp = (struct dirent *)((caddr_t)dp + dp->d_reclen); 384 enn++; 385 } 386 nfs_putdircache(np, ndp); 387 388 /* 389 * If the last requested entry was not the last in the 390 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ), 391 * cache the cookie of the last requested one, and 392 * set of the offset to it. 393 */ 394 395 if ((on + n) < bp->b_bcount - bp->b_resid) { 396 curoff = NFS_GETCOOKIE(pdp); 397 nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie, 398 enn, bp->b_lblkno); 399 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 400 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32); 401 curoff = nndp->dc_cookie32; 402 } 403 nfs_putdircache(np, nndp); 404 } else 405 curoff = bp->b_dcookie; 406 407 /* 408 * Always cache the entry for the next block, 409 * so that readaheads can use it. 410 */ 411 nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0); 412 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 413 if (curoff == bp->b_dcookie) { 414 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32); 415 curoff = nndp->dc_cookie32; 416 } 417 } 418 419 n = ((caddr_t)pdp + pdp->d_reclen) - (bp->b_data + on); 420 421 /* 422 * If not eof and read aheads are enabled, start one. 423 * (You need the current block first, so that you have the 424 * directory offset cookie of the next block.) 425 */ 426 if (nfs_numasync > 0 && nmp->nm_readahead > 0 && 427 !NFS_EOFVALID(np) && !(np->n_flag & NQNFSNONCACHE)) { 428 rabp = nfs_getcacheblk(vp, NFSDC_BLKNO(nndp), 429 NFS_DIRBLKSIZ, p); 430 if (rabp) { 431 if ((rabp->b_flags & (B_DONE | B_DELWRI)) == 0) { 432 rabp->b_dcookie = nndp->dc_cookie; 433 rabp->b_flags |= (B_READ | B_ASYNC); 434 if (nfs_asyncio(rabp)) { 435 rabp->b_flags |= B_INVAL; 436 brelse(rabp); 437 } 438 } else 439 brelse(rabp); 440 } 441 } 442 nfs_putdircache(np, nndp); 443 got_buf = 1; 444 break; 445 default: 446 printf(" nfsbioread: type %x unexpected\n",vp->v_type); 447 break; 448 } 449 450 if (n > 0) { 451 if (!baddr) 452 baddr = bp->b_data; 453 error = uiomove(baddr + on, (int)n, uio); 454 } 455 switch (vp->v_type) { 456 case VREG: 457 break; 458 case VLNK: 459 n = 0; 460 break; 461 case VDIR: 462 if (np->n_flag & NQNFSNONCACHE) 463 bp->b_flags |= B_INVAL; 464 uio->uio_offset = curoff; 465 if (enough) 466 n = 0; 467 break; 468 default: 469 printf(" nfsbioread: type %x unexpected\n",vp->v_type); 470 } 471 if (got_buf) 472 brelse(bp); 473 } while (error == 0 && uio->uio_resid > 0 && n > 0); 474 return (error); 475 } 476 477 /* 478 * Vnode op for write using bio 479 */ 480 int 481 nfs_write(v) 482 void *v; 483 { 484 struct vop_write_args /* { 485 struct vnode *a_vp; 486 struct uio *a_uio; 487 int a_ioflag; 488 struct ucred *a_cred; 489 } */ *ap = v; 490 struct uio *uio = ap->a_uio; 491 struct proc *p = uio->uio_procp; 492 struct vnode *vp = ap->a_vp; 493 struct nfsnode *np = VTONFS(vp); 494 struct ucred *cred = ap->a_cred; 495 struct vattr vattr; 496 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 497 void *win; 498 voff_t oldoff, origoff; 499 vsize_t bytelen; 500 int flags, error = 0; 501 int ioflag = ap->a_ioflag; 502 int extended = 0, wrotedata = 0; 503 504 #ifdef DIAGNOSTIC 505 if (uio->uio_rw != UIO_WRITE) 506 panic("nfs_write mode"); 507 if (uio->uio_segflg == UIO_USERSPACE && uio->uio_procp != curproc) 508 panic("nfs_write proc"); 509 #endif 510 if (vp->v_type != VREG) 511 return (EIO); 512 if (np->n_flag & NWRITEERR) { 513 np->n_flag &= ~NWRITEERR; 514 return (np->n_error); 515 } 516 #ifndef NFS_V2_ONLY 517 if ((nmp->nm_flag & NFSMNT_NFSV3) && 518 !(nmp->nm_iflag & NFSMNT_GOTFSINFO)) 519 (void)nfs_fsinfo(nmp, vp, cred, p); 520 #endif 521 if (ioflag & (IO_APPEND | IO_SYNC)) { 522 if (np->n_flag & NMODIFIED) { 523 NFS_INVALIDATE_ATTRCACHE(np); 524 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); 525 if (error) 526 return (error); 527 } 528 if (ioflag & IO_APPEND) { 529 NFS_INVALIDATE_ATTRCACHE(np); 530 error = VOP_GETATTR(vp, &vattr, cred, p); 531 if (error) 532 return (error); 533 uio->uio_offset = np->n_size; 534 } 535 } 536 if (uio->uio_offset < 0) 537 return (EINVAL); 538 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 539 return (EFBIG); 540 if (uio->uio_resid == 0) 541 return (0); 542 /* 543 * Maybe this should be above the vnode op call, but so long as 544 * file servers have no limits, i don't think it matters 545 */ 546 if (p && uio->uio_offset + uio->uio_resid > 547 p->p_rlimit[RLIMIT_FSIZE].rlim_cur) { 548 psignal(p, SIGXFSZ); 549 return (EFBIG); 550 } 551 552 if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) { 553 int iomode = NFSV3WRITE_FILESYNC; 554 boolean_t stalewriteverf = FALSE; 555 556 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL); 557 error = nfs_writerpc(vp, uio, &iomode, FALSE, &stalewriteverf); 558 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL); 559 if (stalewriteverf) 560 nfs_clearcommit(vp->v_mount); 561 return (error); 562 } 563 564 origoff = uio->uio_offset; 565 do { 566 boolean_t extending; /* if we are extending whole pages */ 567 u_quad_t oldsize; 568 oldoff = uio->uio_offset; 569 bytelen = uio->uio_resid; 570 571 #ifndef NFS_V2_ONLY 572 /* 573 * Check for a valid write lease. 574 */ 575 if ((nmp->nm_flag & NFSMNT_NQNFS) && 576 NQNFS_CKINVALID(vp, np, ND_WRITE)) { 577 do { 578 error = nqnfs_getlease(vp, ND_WRITE, cred, p); 579 } while (error == NQNFS_EXPIRED); 580 if (error) 581 return (error); 582 if (np->n_lrev != np->n_brev || 583 (np->n_flag & NQNFSNONCACHE)) { 584 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); 585 if (error) 586 return (error); 587 np->n_brev = np->n_lrev; 588 } 589 } 590 #endif 591 nfsstats.biocache_writes++; 592 593 oldsize = np->n_size; 594 np->n_flag |= NMODIFIED; 595 if (np->n_size < uio->uio_offset + bytelen) { 596 np->n_size = uio->uio_offset + bytelen; 597 } 598 extending = ((uio->uio_offset & PAGE_MASK) == 0 && 599 (bytelen & PAGE_MASK) == 0 && 600 uio->uio_offset >= vp->v_size); 601 win = ubc_alloc(&vp->v_uobj, uio->uio_offset, &bytelen, 602 UBC_WRITE | (extending ? UBC_FAULTBUSY : 0)); 603 error = uiomove(win, bytelen, uio); 604 flags = UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0; 605 ubc_release(win, flags); 606 if (error) { 607 if (extending) { 608 /* 609 * backout size and free pages past eof. 610 */ 611 np->n_size = oldsize; 612 simple_lock(&vp->v_interlock); 613 (void)VOP_PUTPAGES(vp, round_page(vp->v_size), 614 0, PGO_SYNCIO | PGO_FREE); 615 } 616 break; 617 } 618 wrotedata = 1; 619 620 /* 621 * update UVM's notion of the size now that we've 622 * copied the data into the vnode's pages. 623 */ 624 625 if (vp->v_size < uio->uio_offset) { 626 uvm_vnp_setsize(vp, uio->uio_offset); 627 extended = 1; 628 } 629 630 if ((oldoff & ~(nmp->nm_wsize - 1)) != 631 (uio->uio_offset & ~(nmp->nm_wsize - 1))) { 632 simple_lock(&vp->v_interlock); 633 error = VOP_PUTPAGES(vp, 634 trunc_page(oldoff & ~(nmp->nm_wsize - 1)), 635 round_page((uio->uio_offset + nmp->nm_wsize - 1) & 636 ~(nmp->nm_wsize - 1)), PGO_CLEANIT); 637 } 638 } while (uio->uio_resid > 0); 639 if (wrotedata) 640 VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0)); 641 if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) { 642 simple_lock(&vp->v_interlock); 643 error = VOP_PUTPAGES(vp, 644 trunc_page(origoff & ~(nmp->nm_wsize - 1)), 645 round_page((uio->uio_offset + nmp->nm_wsize - 1) & 646 ~(nmp->nm_wsize - 1)), 647 PGO_CLEANIT | PGO_SYNCIO); 648 } 649 return error; 650 } 651 652 /* 653 * Get an nfs cache block. 654 * Allocate a new one if the block isn't currently in the cache 655 * and return the block marked busy. If the calling process is 656 * interrupted by a signal for an interruptible mount point, return 657 * NULL. 658 */ 659 struct buf * 660 nfs_getcacheblk(vp, bn, size, p) 661 struct vnode *vp; 662 daddr_t bn; 663 int size; 664 struct proc *p; 665 { 666 struct buf *bp; 667 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 668 669 if (nmp->nm_flag & NFSMNT_INT) { 670 bp = getblk(vp, bn, size, PCATCH, 0); 671 while (bp == NULL) { 672 if (nfs_sigintr(nmp, NULL, p)) 673 return (NULL); 674 bp = getblk(vp, bn, size, 0, 2 * hz); 675 } 676 } else 677 bp = getblk(vp, bn, size, 0, 0); 678 return (bp); 679 } 680 681 /* 682 * Flush and invalidate all dirty buffers. If another process is already 683 * doing the flush, just wait for completion. 684 */ 685 int 686 nfs_vinvalbuf(vp, flags, cred, p, intrflg) 687 struct vnode *vp; 688 int flags; 689 struct ucred *cred; 690 struct proc *p; 691 int intrflg; 692 { 693 struct nfsnode *np = VTONFS(vp); 694 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 695 int error = 0, slpflag, slptimeo; 696 697 if ((nmp->nm_flag & NFSMNT_INT) == 0) 698 intrflg = 0; 699 if (intrflg) { 700 slpflag = PCATCH; 701 slptimeo = 2 * hz; 702 } else { 703 slpflag = 0; 704 slptimeo = 0; 705 } 706 /* 707 * First wait for any other process doing a flush to complete. 708 */ 709 simple_lock(&vp->v_interlock); 710 while (np->n_flag & NFLUSHINPROG) { 711 np->n_flag |= NFLUSHWANT; 712 error = ltsleep(&np->n_flag, PRIBIO + 2, "nfsvinval", 713 slptimeo, &vp->v_interlock); 714 if (error && intrflg && nfs_sigintr(nmp, NULL, p)) { 715 simple_unlock(&vp->v_interlock); 716 return EINTR; 717 } 718 } 719 720 /* 721 * Now, flush as required. 722 */ 723 np->n_flag |= NFLUSHINPROG; 724 simple_unlock(&vp->v_interlock); 725 error = vinvalbuf(vp, flags, cred, p, slpflag, 0); 726 while (error) { 727 if (intrflg && nfs_sigintr(nmp, NULL, p)) { 728 error = EINTR; 729 break; 730 } 731 error = vinvalbuf(vp, flags, cred, p, 0, slptimeo); 732 } 733 simple_lock(&vp->v_interlock); 734 if (error == 0) 735 np->n_flag &= ~NMODIFIED; 736 np->n_flag &= ~NFLUSHINPROG; 737 if (np->n_flag & NFLUSHWANT) { 738 np->n_flag &= ~NFLUSHWANT; 739 wakeup(&np->n_flag); 740 } 741 simple_unlock(&vp->v_interlock); 742 return error; 743 } 744 745 /* 746 * nfs_flushstalebuf: flush cache if it's stale. 747 * 748 * => caller shouldn't own any pages or buffers which belong to the vnode. 749 */ 750 751 int 752 nfs_flushstalebuf(struct vnode *vp, struct ucred *cred, struct proc *p, 753 int flags) 754 { 755 struct nfsnode *np = VTONFS(vp); 756 struct vattr vattr; 757 int error; 758 759 if (np->n_flag & NMODIFIED) { 760 if ((flags & NFS_FLUSHSTALEBUF_MYWRITE) == 0 761 || vp->v_type != VREG) { 762 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); 763 if (error) 764 return error; 765 if (vp->v_type == VDIR) { 766 nfs_invaldircache(vp, 0); 767 } 768 } else { 769 /* 770 * XXX assuming writes are ours. 771 */ 772 } 773 NFS_INVALIDATE_ATTRCACHE(np); 774 error = VOP_GETATTR(vp, &vattr, cred, p); 775 if (error) 776 return error; 777 np->n_mtime = vattr.va_mtime; 778 } else { 779 error = VOP_GETATTR(vp, &vattr, cred, p); 780 if (error) 781 return error; 782 if (timespeccmp(&np->n_mtime, &vattr.va_mtime, !=)) { 783 if (vp->v_type == VDIR) { 784 nfs_invaldircache(vp, 0); 785 } 786 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1); 787 if (error) 788 return error; 789 np->n_mtime = vattr.va_mtime; 790 } 791 } 792 793 return error; 794 } 795 796 /* 797 * Initiate asynchronous I/O. Return an error if no nfsiods are available. 798 * This is mainly to avoid queueing async I/O requests when the nfsiods 799 * are all hung on a dead server. 800 */ 801 802 int 803 nfs_asyncio(bp) 804 struct buf *bp; 805 { 806 int i; 807 struct nfsmount *nmp; 808 int gotiod, slpflag = 0, slptimeo = 0, error; 809 810 if (nfs_numasync == 0) 811 return (EIO); 812 813 nmp = VFSTONFS(bp->b_vp->v_mount); 814 again: 815 if (nmp->nm_flag & NFSMNT_INT) 816 slpflag = PCATCH; 817 gotiod = FALSE; 818 819 /* 820 * Find a free iod to process this request. 821 */ 822 823 for (i = 0; i < NFS_MAXASYNCDAEMON; i++) { 824 struct nfs_iod *iod = &nfs_asyncdaemon[i]; 825 826 simple_lock(&iod->nid_slock); 827 if (iod->nid_want) { 828 /* 829 * Found one, so wake it up and tell it which 830 * mount to process. 831 */ 832 iod->nid_want = NULL; 833 iod->nid_mount = nmp; 834 wakeup(&iod->nid_want); 835 simple_lock(&nmp->nm_slock); 836 simple_unlock(&iod->nid_slock); 837 nmp->nm_bufqiods++; 838 gotiod = TRUE; 839 break; 840 } 841 simple_unlock(&iod->nid_slock); 842 } 843 844 /* 845 * If none are free, we may already have an iod working on this mount 846 * point. If so, it will process our request. 847 */ 848 849 if (!gotiod) { 850 simple_lock(&nmp->nm_slock); 851 if (nmp->nm_bufqiods > 0) 852 gotiod = TRUE; 853 } 854 855 LOCK_ASSERT(simple_lock_held(&nmp->nm_slock)); 856 857 /* 858 * If we have an iod which can process the request, then queue 859 * the buffer. However, even if we have an iod, do not initiate 860 * queue cleaning if curproc is the pageout daemon. if the NFS mount 861 * is via local loopback, we may put curproc (pagedaemon) to sleep 862 * waiting for the writes to complete. But the server (ourself) 863 * may block the write, waiting for its (ie., our) pagedaemon 864 * to produce clean pages to handle the write: deadlock. 865 * XXX: start non-loopback mounts straight away? If "lots free", 866 * let pagedaemon start loopback writes anyway? 867 */ 868 if (gotiod) { 869 870 /* 871 * Ensure that the queue never grows too large. 872 */ 873 if (curproc == uvm.pagedaemon_proc) { 874 /* Enque for later, to avoid free-page deadlock */ 875 (void) 0; 876 } else while (nmp->nm_bufqlen >= 2*nfs_numasync) { 877 nmp->nm_bufqwant = TRUE; 878 error = ltsleep(&nmp->nm_bufq, 879 slpflag | PRIBIO | PNORELOCK, 880 "nfsaio", slptimeo, &nmp->nm_slock); 881 if (error) { 882 if (nfs_sigintr(nmp, NULL, curproc)) 883 return (EINTR); 884 if (slpflag == PCATCH) { 885 slpflag = 0; 886 slptimeo = 2 * hz; 887 } 888 } 889 890 /* 891 * We might have lost our iod while sleeping, 892 * so check and loop if nescessary. 893 */ 894 895 if (nmp->nm_bufqiods == 0) 896 goto again; 897 898 simple_lock(&nmp->nm_slock); 899 } 900 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist); 901 nmp->nm_bufqlen++; 902 simple_unlock(&nmp->nm_slock); 903 return (0); 904 } 905 simple_unlock(&nmp->nm_slock); 906 907 /* 908 * All the iods are busy on other mounts, so return EIO to 909 * force the caller to process the i/o synchronously. 910 */ 911 912 return (EIO); 913 } 914 915 /* 916 * nfs_doio for read. 917 */ 918 static int 919 nfs_doio_read(bp, uiop) 920 struct buf *bp; 921 struct uio *uiop; 922 { 923 struct vnode *vp = bp->b_vp; 924 struct nfsnode *np = VTONFS(vp); 925 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 926 int error = 0; 927 928 uiop->uio_rw = UIO_READ; 929 switch (vp->v_type) { 930 case VREG: 931 nfsstats.read_bios++; 932 error = nfs_readrpc(vp, uiop); 933 if (!error && uiop->uio_resid) { 934 int diff, len; 935 936 /* 937 * If uio_resid > 0, there is a hole in the file and 938 * no writes after the hole have been pushed to 939 * the server yet or the file has been truncated 940 * on the server. 941 * Just zero fill the rest of the valid area. 942 */ 943 944 KASSERT(vp->v_size >= 945 uiop->uio_offset + uiop->uio_resid); 946 diff = bp->b_bcount - uiop->uio_resid; 947 len = uiop->uio_resid; 948 memset((char *)bp->b_data + diff, 0, len); 949 } 950 if (uiop->uio_procp && (vp->v_flag & VTEXT) && 951 (((nmp->nm_flag & NFSMNT_NQNFS) && 952 NQNFS_CKINVALID(vp, np, ND_READ) && 953 np->n_lrev != np->n_brev) || 954 (!(nmp->nm_flag & NFSMNT_NQNFS) && 955 timespeccmp(&np->n_mtime, &np->n_vattr->va_mtime, !=)))) { 956 uprintf("Process killed due to " 957 "text file modification\n"); 958 psignal(uiop->uio_procp, SIGKILL); 959 #if 0 /* XXX NJWLWP */ 960 uiop->uio_procp->p_holdcnt++; 961 #endif 962 } 963 break; 964 case VLNK: 965 KASSERT(uiop->uio_offset == (off_t)0); 966 nfsstats.readlink_bios++; 967 error = nfs_readlinkrpc(vp, uiop, curproc->p_ucred); 968 break; 969 case VDIR: 970 nfsstats.readdir_bios++; 971 uiop->uio_offset = bp->b_dcookie; 972 #ifndef NFS_V2_ONLY 973 if (nmp->nm_flag & NFSMNT_RDIRPLUS) { 974 error = nfs_readdirplusrpc(vp, uiop, np->n_rcred); 975 if (error == NFSERR_NOTSUPP) 976 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 977 } 978 #else 979 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 980 #endif 981 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) 982 error = nfs_readdirrpc(vp, uiop, np->n_rcred); 983 if (!error) { 984 bp->b_dcookie = uiop->uio_offset; 985 } 986 break; 987 default: 988 printf("nfs_doio: type %x unexpected\n", vp->v_type); 989 break; 990 } 991 if (error) { 992 bp->b_flags |= B_ERROR; 993 bp->b_error = error; 994 } 995 return error; 996 } 997 998 /* 999 * nfs_doio for write. 1000 */ 1001 static int 1002 nfs_doio_write(bp, uiop) 1003 struct buf *bp; 1004 struct uio *uiop; 1005 { 1006 struct vnode *vp = bp->b_vp; 1007 struct nfsnode *np = VTONFS(vp); 1008 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1009 int iomode; 1010 boolean_t stalewriteverf = FALSE; 1011 int i, npages = (bp->b_bcount + PAGE_SIZE - 1) >> PAGE_SHIFT; 1012 struct vm_page *pgs[npages]; 1013 #ifndef NFS_V2_ONLY 1014 boolean_t needcommit = TRUE; /* need only COMMIT RPC */ 1015 #else 1016 boolean_t needcommit = FALSE; /* need only COMMIT RPC */ 1017 #endif 1018 boolean_t pageprotected; 1019 struct uvm_object *uobj = &vp->v_uobj; 1020 int error; 1021 off_t off, cnt; 1022 1023 if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) { 1024 iomode = NFSV3WRITE_UNSTABLE; 1025 } else { 1026 iomode = NFSV3WRITE_FILESYNC; 1027 } 1028 1029 #ifndef NFS_V2_ONLY 1030 again: 1031 #endif 1032 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL); 1033 1034 for (i = 0; i < npages; i++) { 1035 pgs[i] = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT)); 1036 if (pgs[i]->uobject == uobj && 1037 pgs[i]->offset == uiop->uio_offset + (i << PAGE_SHIFT)) { 1038 KASSERT(pgs[i]->flags & PG_BUSY); 1039 /* 1040 * this page belongs to our object. 1041 */ 1042 simple_lock(&uobj->vmobjlock); 1043 /* 1044 * write out the page stably if it's about to 1045 * be released because we can't resend it 1046 * on the server crash. 1047 * 1048 * XXX assuming PG_RELEASE|PG_PAGEOUT won't be 1049 * changed until unbusy the page. 1050 */ 1051 if (pgs[i]->flags & (PG_RELEASED|PG_PAGEOUT)) 1052 iomode = NFSV3WRITE_FILESYNC; 1053 /* 1054 * if we met a page which hasn't been sent yet, 1055 * we need do WRITE RPC. 1056 */ 1057 if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0) 1058 needcommit = FALSE; 1059 simple_unlock(&uobj->vmobjlock); 1060 } else { 1061 iomode = NFSV3WRITE_FILESYNC; 1062 needcommit = FALSE; 1063 } 1064 } 1065 if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) { 1066 simple_lock(&uobj->vmobjlock); 1067 for (i = 0; i < npages; i++) { 1068 pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY; 1069 pmap_page_protect(pgs[i], VM_PROT_READ); 1070 } 1071 simple_unlock(&uobj->vmobjlock); 1072 pageprotected = TRUE; /* pages can't be modified during i/o. */ 1073 } else 1074 pageprotected = FALSE; 1075 1076 /* 1077 * Send the data to the server if necessary, 1078 * otherwise just send a commit rpc. 1079 */ 1080 #ifndef NFS_V2_ONLY 1081 if (needcommit) { 1082 1083 /* 1084 * If the buffer is in the range that we already committed, 1085 * there's nothing to do. 1086 * 1087 * If it's in the range that we need to commit, push the 1088 * whole range at once, otherwise only push the buffer. 1089 * In both these cases, acquire the commit lock to avoid 1090 * other processes modifying the range. 1091 */ 1092 1093 off = uiop->uio_offset; 1094 cnt = bp->b_bcount; 1095 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL); 1096 if (!nfs_in_committed_range(vp, off, bp->b_bcount)) { 1097 boolean_t pushedrange; 1098 if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) { 1099 pushedrange = TRUE; 1100 off = np->n_pushlo; 1101 cnt = np->n_pushhi - np->n_pushlo; 1102 } else { 1103 pushedrange = FALSE; 1104 } 1105 error = nfs_commit(vp, off, cnt, curproc); 1106 if (error == 0) { 1107 if (pushedrange) { 1108 nfs_merge_commit_ranges(vp); 1109 } else { 1110 nfs_add_committed_range(vp, off, cnt); 1111 } 1112 } 1113 } else { 1114 error = 0; 1115 } 1116 lockmgr(&np->n_commitlock, LK_RELEASE, NULL); 1117 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL); 1118 if (!error) { 1119 /* 1120 * pages are now on stable storage. 1121 */ 1122 uiop->uio_resid = 0; 1123 simple_lock(&uobj->vmobjlock); 1124 for (i = 0; i < npages; i++) { 1125 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY); 1126 } 1127 simple_unlock(&uobj->vmobjlock); 1128 return 0; 1129 } else if (error == NFSERR_STALEWRITEVERF) { 1130 nfs_clearcommit(vp->v_mount); 1131 goto again; 1132 } 1133 if (error) { 1134 bp->b_flags |= B_ERROR; 1135 bp->b_error = np->n_error = error; 1136 np->n_flag |= NWRITEERR; 1137 } 1138 return error; 1139 } 1140 #endif 1141 off = uiop->uio_offset; 1142 cnt = bp->b_bcount; 1143 uiop->uio_rw = UIO_WRITE; 1144 nfsstats.write_bios++; 1145 error = nfs_writerpc(vp, uiop, &iomode, pageprotected, &stalewriteverf); 1146 #ifndef NFS_V2_ONLY 1147 if (!error && iomode == NFSV3WRITE_UNSTABLE) { 1148 /* 1149 * we need to commit pages later. 1150 */ 1151 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL); 1152 nfs_add_tobecommitted_range(vp, off, cnt); 1153 /* 1154 * if there can be too many uncommitted pages, commit them now. 1155 */ 1156 if (np->n_pushhi - np->n_pushlo > nfs_commitsize) { 1157 off = np->n_pushlo; 1158 cnt = nfs_commitsize >> 1; 1159 error = nfs_commit(vp, off, cnt, curproc); 1160 if (!error) { 1161 nfs_add_committed_range(vp, off, cnt); 1162 nfs_del_tobecommitted_range(vp, off, cnt); 1163 } 1164 if (error == NFSERR_STALEWRITEVERF) { 1165 stalewriteverf = TRUE; 1166 error = 0; /* it isn't a real error */ 1167 } 1168 } else { 1169 /* 1170 * re-dirty pages so that they will be passed 1171 * to us later again. 1172 */ 1173 simple_lock(&uobj->vmobjlock); 1174 for (i = 0; i < npages; i++) { 1175 pgs[i]->flags &= ~PG_CLEAN; 1176 } 1177 simple_unlock(&uobj->vmobjlock); 1178 } 1179 lockmgr(&np->n_commitlock, LK_RELEASE, NULL); 1180 } else 1181 #endif 1182 if (!error) { 1183 /* 1184 * pages are now on stable storage. 1185 */ 1186 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL); 1187 nfs_del_committed_range(vp, off, cnt); 1188 lockmgr(&np->n_commitlock, LK_RELEASE, NULL); 1189 simple_lock(&uobj->vmobjlock); 1190 for (i = 0; i < npages; i++) { 1191 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY); 1192 } 1193 simple_unlock(&uobj->vmobjlock); 1194 } else { 1195 /* 1196 * we got an error. 1197 */ 1198 bp->b_flags |= B_ERROR; 1199 bp->b_error = np->n_error = error; 1200 np->n_flag |= NWRITEERR; 1201 } 1202 1203 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL); 1204 1205 if (stalewriteverf) { 1206 nfs_clearcommit(vp->v_mount); 1207 } 1208 return error; 1209 } 1210 1211 /* 1212 * nfs_doio for B_PHYS. 1213 */ 1214 static int 1215 nfs_doio_phys(bp, uiop) 1216 struct buf *bp; 1217 struct uio *uiop; 1218 { 1219 struct vnode *vp = bp->b_vp; 1220 int error; 1221 1222 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT; 1223 if (bp->b_flags & B_READ) { 1224 uiop->uio_rw = UIO_READ; 1225 nfsstats.read_physios++; 1226 error = nfs_readrpc(vp, uiop); 1227 } else { 1228 int iomode = NFSV3WRITE_DATASYNC; 1229 boolean_t stalewriteverf; 1230 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1231 1232 uiop->uio_rw = UIO_WRITE; 1233 nfsstats.write_physios++; 1234 lockmgr(&nmp->nm_writeverflock, LK_SHARED, NULL); 1235 error = nfs_writerpc(vp, uiop, &iomode, FALSE, &stalewriteverf); 1236 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL); 1237 if (stalewriteverf) { 1238 nfs_clearcommit(bp->b_vp->v_mount); 1239 } 1240 } 1241 if (error) { 1242 bp->b_flags |= B_ERROR; 1243 bp->b_error = error; 1244 } 1245 return error; 1246 } 1247 1248 /* 1249 * Do an I/O operation to/from a cache block. This may be called 1250 * synchronously or from an nfsiod. 1251 */ 1252 int 1253 nfs_doio(bp, p) 1254 struct buf *bp; 1255 struct proc *p; 1256 { 1257 int error; 1258 struct uio uio; 1259 struct uio *uiop = &uio; 1260 struct iovec io; 1261 UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist); 1262 1263 uiop->uio_iov = &io; 1264 uiop->uio_iovcnt = 1; 1265 uiop->uio_segflg = UIO_SYSSPACE; 1266 uiop->uio_procp = NULL; 1267 uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT); 1268 io.iov_base = bp->b_data; 1269 io.iov_len = uiop->uio_resid = bp->b_bcount; 1270 1271 /* 1272 * Historically, paging was done with physio, but no more... 1273 */ 1274 if (bp->b_flags & B_PHYS) { 1275 /* 1276 * ...though reading /dev/drum still gets us here. 1277 */ 1278 error = nfs_doio_phys(bp, uiop); 1279 } else if (bp->b_flags & B_READ) { 1280 error = nfs_doio_read(bp, uiop); 1281 } else { 1282 error = nfs_doio_write(bp, uiop); 1283 } 1284 bp->b_resid = uiop->uio_resid; 1285 biodone(bp); 1286 return (error); 1287 } 1288 1289 /* 1290 * Vnode op for VM getpages. 1291 */ 1292 1293 int 1294 nfs_getpages(v) 1295 void *v; 1296 { 1297 struct vop_getpages_args /* { 1298 struct vnode *a_vp; 1299 voff_t a_offset; 1300 struct vm_page **a_m; 1301 int *a_count; 1302 int a_centeridx; 1303 vm_prot_t a_access_type; 1304 int a_advice; 1305 int a_flags; 1306 } */ *ap = v; 1307 1308 struct vnode *vp = ap->a_vp; 1309 struct uvm_object *uobj = &vp->v_uobj; 1310 struct nfsnode *np = VTONFS(vp); 1311 const int npages = *ap->a_count; 1312 struct vm_page *pg, **pgs, *opgs[npages]; 1313 off_t origoffset, len; 1314 int i, error; 1315 boolean_t v3 = NFS_ISV3(vp); 1316 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0; 1317 boolean_t locked = (ap->a_flags & PGO_LOCKED) != 0; 1318 1319 /* 1320 * call the genfs code to get the pages. `pgs' may be NULL 1321 * when doing read-ahead. 1322 */ 1323 1324 pgs = ap->a_m; 1325 if (write && locked && v3) { 1326 KASSERT(pgs != NULL); 1327 #ifdef DEBUG 1328 1329 /* 1330 * If PGO_LOCKED is set, real pages shouldn't exists 1331 * in the array. 1332 */ 1333 1334 for (i = 0; i < npages; i++) 1335 KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE); 1336 #endif 1337 memcpy(opgs, pgs, npages * sizeof(struct vm_pages *)); 1338 } 1339 error = genfs_getpages(v); 1340 if (error) { 1341 return (error); 1342 } 1343 1344 /* 1345 * for read faults where the nfs node is not yet marked NMODIFIED, 1346 * set PG_RDONLY on the pages so that we come back here if someone 1347 * tries to modify later via the mapping that will be entered for 1348 * this fault. 1349 */ 1350 1351 if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) { 1352 if (!locked) { 1353 simple_lock(&uobj->vmobjlock); 1354 } 1355 for (i = 0; i < npages; i++) { 1356 pg = pgs[i]; 1357 if (pg == NULL || pg == PGO_DONTCARE) { 1358 continue; 1359 } 1360 pg->flags |= PG_RDONLY; 1361 } 1362 if (!locked) { 1363 simple_unlock(&uobj->vmobjlock); 1364 } 1365 } 1366 if (!write) { 1367 return (0); 1368 } 1369 1370 /* 1371 * this is a write fault, update the commit info. 1372 */ 1373 1374 origoffset = ap->a_offset; 1375 len = npages << PAGE_SHIFT; 1376 1377 if (v3) { 1378 error = lockmgr(&np->n_commitlock, 1379 LK_EXCLUSIVE | (locked ? LK_NOWAIT : 0), NULL); 1380 if (error) { 1381 KASSERT(locked != 0); 1382 1383 /* 1384 * Since PGO_LOCKED is set, we need to unbusy 1385 * all pages fetched by genfs_getpages() above, 1386 * tell the caller that there are no pages 1387 * available and put back original pgs array. 1388 */ 1389 1390 uvm_lock_pageq(); 1391 uvm_page_unbusy(pgs, npages); 1392 uvm_unlock_pageq(); 1393 *ap->a_count = 0; 1394 memcpy(pgs, opgs, 1395 npages * sizeof(struct vm_pages *)); 1396 return (error); 1397 } 1398 nfs_del_committed_range(vp, origoffset, len); 1399 nfs_del_tobecommitted_range(vp, origoffset, len); 1400 } 1401 np->n_flag |= NMODIFIED; 1402 if (!locked) { 1403 simple_lock(&uobj->vmobjlock); 1404 } 1405 for (i = 0; i < npages; i++) { 1406 pg = pgs[i]; 1407 if (pg == NULL || pg == PGO_DONTCARE) { 1408 continue; 1409 } 1410 pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY); 1411 } 1412 if (!locked) { 1413 simple_unlock(&uobj->vmobjlock); 1414 } 1415 if (v3) { 1416 lockmgr(&np->n_commitlock, LK_RELEASE, NULL); 1417 } 1418 return (0); 1419 } 1420