1 /* $NetBSD: nfs_bio.c,v 1.191 2015/07/15 03:28:55 manu Exp $ */ 2 3 /* 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * Rick Macklem at The University of Guelph. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95 35 */ 36 37 #include <sys/cdefs.h> 38 __KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.191 2015/07/15 03:28:55 manu Exp $"); 39 40 #ifdef _KERNEL_OPT 41 #include "opt_nfs.h" 42 #include "opt_ddb.h" 43 #endif 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/resourcevar.h> 48 #include <sys/signalvar.h> 49 #include <sys/proc.h> 50 #include <sys/buf.h> 51 #include <sys/vnode.h> 52 #include <sys/mount.h> 53 #include <sys/kernel.h> 54 #include <sys/namei.h> 55 #include <sys/dirent.h> 56 #include <sys/kauth.h> 57 58 #include <uvm/uvm_extern.h> 59 #include <uvm/uvm.h> 60 61 #include <nfs/rpcv2.h> 62 #include <nfs/nfsproto.h> 63 #include <nfs/nfs.h> 64 #include <nfs/nfsmount.h> 65 #include <nfs/nfsnode.h> 66 #include <nfs/nfs_var.h> 67 68 extern int nfs_numasync; 69 extern int nfs_commitsize; 70 extern struct nfsstats nfsstats; 71 72 static int nfs_doio_read(struct buf *, struct uio *); 73 static int nfs_doio_write(struct buf *, struct uio *); 74 static int nfs_doio_phys(struct buf *, struct uio *); 75 76 /* 77 * Vnode op for read using bio 78 * Any similarity to readip() is purely coincidental 79 */ 80 int 81 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, 82 kauth_cred_t cred, int cflag) 83 { 84 struct nfsnode *np = VTONFS(vp); 85 struct buf *bp = NULL, *rabp; 86 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 87 struct nfsdircache *ndp = NULL, *nndp = NULL; 88 void *baddr; 89 int got_buf = 0, error = 0, n = 0, on = 0, en, enn; 90 int enough = 0; 91 struct dirent *dp, *pdp, *edp, *ep; 92 off_t curoff = 0; 93 int advice; 94 struct lwp *l = curlwp; 95 96 #ifdef DIAGNOSTIC 97 if (uio->uio_rw != UIO_READ) 98 panic("nfs_read mode"); 99 #endif 100 if (uio->uio_resid == 0) 101 return (0); 102 if (vp->v_type != VDIR && uio->uio_offset < 0) 103 return (EINVAL); 104 #ifndef NFS_V2_ONLY 105 if ((nmp->nm_flag & NFSMNT_NFSV3) && 106 !(nmp->nm_iflag & NFSMNT_GOTFSINFO)) 107 (void)nfs_fsinfo(nmp, vp, cred, l); 108 #endif 109 if (vp->v_type != VDIR && 110 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 111 return (EFBIG); 112 113 /* 114 * For nfs, cache consistency can only be maintained approximately. 115 * Although RFC1094 does not specify the criteria, the following is 116 * believed to be compatible with the reference port. 117 * 118 * If the file's modify time on the server has changed since the 119 * last read rpc or you have written to the file, 120 * you may have lost data cache consistency with the 121 * server, so flush all of the file's data out of the cache. 122 * Then force a getattr rpc to ensure that you have up to date 123 * attributes. 124 * NB: This implies that cache data can be read when up to 125 * nfs_attrtimeo seconds out of date. If you find that you need current 126 * attributes this could be forced by setting n_attrstamp to 0 before 127 * the VOP_GETATTR() call. 128 */ 129 130 if (vp->v_type != VLNK) { 131 error = nfs_flushstalebuf(vp, cred, l, 132 NFS_FLUSHSTALEBUF_MYWRITE); 133 if (error) 134 return error; 135 } 136 137 do { 138 /* 139 * Don't cache symlinks. 140 */ 141 if ((vp->v_vflag & VV_ROOT) && vp->v_type == VLNK) { 142 return (nfs_readlinkrpc(vp, uio, cred)); 143 } 144 baddr = (void *)0; 145 switch (vp->v_type) { 146 case VREG: 147 nfsstats.biocache_reads++; 148 149 advice = IO_ADV_DECODE(ioflag); 150 error = 0; 151 while (uio->uio_resid > 0) { 152 vsize_t bytelen; 153 154 nfs_delayedtruncate(vp); 155 if (np->n_size <= uio->uio_offset) { 156 break; 157 } 158 bytelen = 159 MIN(np->n_size - uio->uio_offset, uio->uio_resid); 160 error = ubc_uiomove(&vp->v_uobj, uio, bytelen, advice, 161 UBC_READ | UBC_PARTIALOK | UBC_UNMAP_FLAG(vp)); 162 if (error) { 163 /* 164 * XXXkludge 165 * the file has been truncated on the server. 166 * there isn't much we can do. 167 */ 168 if (uio->uio_offset >= np->n_size) { 169 /* end of file */ 170 error = 0; 171 } else { 172 break; 173 } 174 } 175 } 176 break; 177 178 case VLNK: 179 nfsstats.biocache_readlinks++; 180 bp = nfs_getcacheblk(vp, (daddr_t)0, MAXPATHLEN, l); 181 if (!bp) 182 return (EINTR); 183 if ((bp->b_oflags & BO_DONE) == 0) { 184 bp->b_flags |= B_READ; 185 error = nfs_doio(bp); 186 if (error) { 187 brelse(bp, 0); 188 return (error); 189 } 190 } 191 n = MIN(uio->uio_resid, MAXPATHLEN - bp->b_resid); 192 got_buf = 1; 193 on = 0; 194 break; 195 case VDIR: 196 diragain: 197 nfsstats.biocache_readdirs++; 198 ndp = nfs_searchdircache(vp, uio->uio_offset, 199 (nmp->nm_flag & NFSMNT_XLATECOOKIE), 0); 200 if (!ndp) { 201 /* 202 * We've been handed a cookie that is not 203 * in the cache. If we're not translating 204 * 32 <-> 64, it may be a value that was 205 * flushed out of the cache because it grew 206 * too big. Let the server judge if it's 207 * valid or not. In the translation case, 208 * we have no way of validating this value, 209 * so punt. 210 */ 211 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) 212 return (EINVAL); 213 ndp = nfs_enterdircache(vp, uio->uio_offset, 214 uio->uio_offset, 0, 0); 215 } 216 217 if (NFS_EOFVALID(np) && 218 ndp->dc_cookie == np->n_direofoffset) { 219 nfs_putdircache(np, ndp); 220 nfsstats.direofcache_hits++; 221 return (0); 222 } 223 224 bp = nfs_getcacheblk(vp, NFSDC_BLKNO(ndp), NFS_DIRBLKSIZ, l); 225 if (!bp) 226 return (EINTR); 227 if ((bp->b_oflags & BO_DONE) == 0) { 228 bp->b_flags |= B_READ; 229 bp->b_dcookie = ndp->dc_blkcookie; 230 error = nfs_doio(bp); 231 if (error) { 232 /* 233 * Yuck! The directory has been modified on the 234 * server. Punt and let the userland code 235 * deal with it. 236 */ 237 nfs_putdircache(np, ndp); 238 brelse(bp, 0); 239 /* 240 * nfs_request maps NFSERR_BAD_COOKIE to EINVAL. 241 */ 242 if (error == EINVAL) { /* NFSERR_BAD_COOKIE */ 243 nfs_invaldircache(vp, 0); 244 nfs_vinvalbuf(vp, 0, cred, l, 1); 245 } 246 return (error); 247 } 248 } 249 250 /* 251 * Just return if we hit EOF right away with this 252 * block. Always check here, because direofoffset 253 * may have been set by an nfsiod since the last 254 * check. 255 * 256 * also, empty block implies EOF. 257 */ 258 259 if (bp->b_bcount == bp->b_resid || 260 (NFS_EOFVALID(np) && 261 ndp->dc_blkcookie == np->n_direofoffset)) { 262 KASSERT(bp->b_bcount != bp->b_resid || 263 ndp->dc_blkcookie == bp->b_dcookie); 264 nfs_putdircache(np, ndp); 265 brelse(bp, BC_NOCACHE); 266 return 0; 267 } 268 269 /* 270 * Find the entry we were looking for in the block. 271 */ 272 273 en = ndp->dc_entry; 274 275 pdp = dp = (struct dirent *)bp->b_data; 276 edp = (struct dirent *)(void *)((char *)bp->b_data + bp->b_bcount - 277 bp->b_resid); 278 enn = 0; 279 while (enn < en && dp < edp) { 280 pdp = dp; 281 dp = _DIRENT_NEXT(dp); 282 enn++; 283 } 284 285 /* 286 * If the entry number was bigger than the number of 287 * entries in the block, or the cookie of the previous 288 * entry doesn't match, the directory cache is 289 * stale. Flush it and try again (i.e. go to 290 * the server). 291 */ 292 if (dp >= edp || (struct dirent *)_DIRENT_NEXT(dp) > edp || 293 (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) { 294 #ifdef DEBUG 295 printf("invalid cache: %p %p %p off %jx %jx\n", 296 pdp, dp, edp, 297 (uintmax_t)uio->uio_offset, 298 (uintmax_t)NFS_GETCOOKIE(pdp)); 299 #endif 300 nfs_putdircache(np, ndp); 301 brelse(bp, 0); 302 nfs_invaldircache(vp, 0); 303 nfs_vinvalbuf(vp, 0, cred, l, 0); 304 goto diragain; 305 } 306 307 on = (char *)dp - (char *)bp->b_data; 308 309 /* 310 * Cache all entries that may be exported to the 311 * user, as they may be thrown back at us. The 312 * NFSBIO_CACHECOOKIES flag indicates that all 313 * entries are being 'exported', so cache them all. 314 */ 315 316 if (en == 0 && pdp == dp) { 317 dp = _DIRENT_NEXT(dp); 318 enn++; 319 } 320 321 if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) { 322 n = uio->uio_resid; 323 enough = 1; 324 } else 325 n = bp->b_bcount - bp->b_resid - on; 326 327 ep = (struct dirent *)(void *)((char *)bp->b_data + on + n); 328 329 /* 330 * Find last complete entry to copy, caching entries 331 * (if requested) as we go. 332 */ 333 334 while (dp < ep && (struct dirent *)_DIRENT_NEXT(dp) <= ep) { 335 if (cflag & NFSBIO_CACHECOOKIES) { 336 nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp), 337 ndp->dc_blkcookie, enn, bp->b_lblkno); 338 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 339 NFS_STASHCOOKIE32(pdp, 340 nndp->dc_cookie32); 341 } 342 nfs_putdircache(np, nndp); 343 } 344 pdp = dp; 345 dp = _DIRENT_NEXT(dp); 346 enn++; 347 } 348 nfs_putdircache(np, ndp); 349 350 /* 351 * If the last requested entry was not the last in the 352 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ), 353 * cache the cookie of the last requested one, and 354 * set of the offset to it. 355 */ 356 357 if ((on + n) < bp->b_bcount - bp->b_resid) { 358 curoff = NFS_GETCOOKIE(pdp); 359 nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie, 360 enn, bp->b_lblkno); 361 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 362 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32); 363 curoff = nndp->dc_cookie32; 364 } 365 nfs_putdircache(np, nndp); 366 } else 367 curoff = bp->b_dcookie; 368 369 /* 370 * Always cache the entry for the next block, 371 * so that readaheads can use it. 372 */ 373 nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0); 374 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) { 375 if (curoff == bp->b_dcookie) { 376 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32); 377 curoff = nndp->dc_cookie32; 378 } 379 } 380 381 n = (char *)_DIRENT_NEXT(pdp) - ((char *)bp->b_data + on); 382 383 /* 384 * If not eof and read aheads are enabled, start one. 385 * (You need the current block first, so that you have the 386 * directory offset cookie of the next block.) 387 */ 388 if (nfs_numasync > 0 && nmp->nm_readahead > 0 && 389 !NFS_EOFVALID(np)) { 390 rabp = nfs_getcacheblk(vp, NFSDC_BLKNO(nndp), 391 NFS_DIRBLKSIZ, l); 392 if (rabp) { 393 if ((rabp->b_oflags & (BO_DONE | BO_DELWRI)) == 0) { 394 rabp->b_dcookie = nndp->dc_cookie; 395 rabp->b_flags |= (B_READ | B_ASYNC); 396 if (nfs_asyncio(rabp)) { 397 brelse(rabp, BC_INVAL); 398 } 399 } else 400 brelse(rabp, 0); 401 } 402 } 403 nfs_putdircache(np, nndp); 404 got_buf = 1; 405 break; 406 default: 407 printf(" nfsbioread: type %x unexpected\n",vp->v_type); 408 break; 409 } 410 411 if (n > 0) { 412 if (!baddr) 413 baddr = bp->b_data; 414 error = uiomove((char *)baddr + on, (int)n, uio); 415 } 416 switch (vp->v_type) { 417 case VREG: 418 break; 419 case VLNK: 420 n = 0; 421 break; 422 case VDIR: 423 uio->uio_offset = curoff; 424 if (enough) 425 n = 0; 426 break; 427 default: 428 printf(" nfsbioread: type %x unexpected\n",vp->v_type); 429 } 430 if (got_buf) 431 brelse(bp, 0); 432 } while (error == 0 && uio->uio_resid > 0 && n > 0); 433 return (error); 434 } 435 436 /* 437 * Vnode op for write using bio 438 */ 439 int 440 nfs_write(void *v) 441 { 442 struct vop_write_args /* { 443 struct vnode *a_vp; 444 struct uio *a_uio; 445 int a_ioflag; 446 kauth_cred_t a_cred; 447 } */ *ap = v; 448 struct uio *uio = ap->a_uio; 449 struct lwp *l = curlwp; 450 struct vnode *vp = ap->a_vp; 451 struct nfsnode *np = VTONFS(vp); 452 kauth_cred_t cred = ap->a_cred; 453 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 454 voff_t oldoff, origoff; 455 vsize_t bytelen; 456 int error = 0; 457 int ioflag = ap->a_ioflag; 458 int extended = 0, wrotedata = 0; 459 460 #ifdef DIAGNOSTIC 461 if (uio->uio_rw != UIO_WRITE) 462 panic("nfs_write mode"); 463 #endif 464 if (vp->v_type != VREG) 465 return (EIO); 466 if (np->n_flag & NWRITEERR) { 467 np->n_flag &= ~NWRITEERR; 468 return (np->n_error); 469 } 470 #ifndef NFS_V2_ONLY 471 if ((nmp->nm_flag & NFSMNT_NFSV3) && 472 !(nmp->nm_iflag & NFSMNT_GOTFSINFO)) 473 (void)nfs_fsinfo(nmp, vp, cred, l); 474 #endif 475 if (ioflag & IO_APPEND) { 476 NFS_INVALIDATE_ATTRCACHE(np); 477 error = nfs_flushstalebuf(vp, cred, l, 478 NFS_FLUSHSTALEBUF_MYWRITE); 479 if (error) 480 return (error); 481 uio->uio_offset = np->n_size; 482 483 /* 484 * This is already checked above VOP_WRITE, but recheck 485 * the append case here to make sure our idea of the 486 * file size is as fresh as possible. 487 */ 488 if (uio->uio_offset + uio->uio_resid > 489 l->l_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) { 490 mutex_enter(proc_lock); 491 psignal(l->l_proc, SIGXFSZ); 492 mutex_exit(proc_lock); 493 return (EFBIG); 494 } 495 } 496 if (uio->uio_offset < 0) 497 return (EINVAL); 498 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 499 return (EFBIG); 500 if (uio->uio_resid == 0) 501 return (0); 502 503 origoff = uio->uio_offset; 504 do { 505 bool overwrite; /* if we are overwriting whole pages */ 506 u_quad_t oldsize; 507 oldoff = uio->uio_offset; 508 bytelen = uio->uio_resid; 509 510 nfsstats.biocache_writes++; 511 512 oldsize = np->n_size; 513 np->n_flag |= NMODIFIED; 514 if (np->n_size < uio->uio_offset + bytelen) { 515 np->n_size = uio->uio_offset + bytelen; 516 } 517 overwrite = false; 518 if ((uio->uio_offset & PAGE_MASK) == 0) { 519 if ((vp->v_vflag & VV_MAPPED) == 0 && 520 bytelen > PAGE_SIZE) { 521 bytelen = trunc_page(bytelen); 522 overwrite = true; 523 } else if ((bytelen & PAGE_MASK) == 0 && 524 uio->uio_offset >= vp->v_size) { 525 overwrite = true; 526 } 527 } 528 if (vp->v_size < uio->uio_offset + bytelen) { 529 uvm_vnp_setwritesize(vp, uio->uio_offset + bytelen); 530 } 531 error = ubc_uiomove(&vp->v_uobj, uio, bytelen, 532 UVM_ADV_RANDOM, UBC_WRITE | UBC_PARTIALOK | 533 (overwrite ? UBC_FAULTBUSY : 0) | 534 UBC_UNMAP_FLAG(vp)); 535 if (error) { 536 uvm_vnp_setwritesize(vp, vp->v_size); 537 if (overwrite && np->n_size != oldsize) { 538 /* 539 * backout size and free pages past eof. 540 */ 541 np->n_size = oldsize; 542 mutex_enter(vp->v_interlock); 543 (void)VOP_PUTPAGES(vp, round_page(vp->v_size), 544 0, PGO_SYNCIO | PGO_FREE); 545 } 546 break; 547 } 548 wrotedata = 1; 549 550 /* 551 * update UVM's notion of the size now that we've 552 * copied the data into the vnode's pages. 553 */ 554 555 if (vp->v_size < uio->uio_offset) { 556 uvm_vnp_setsize(vp, uio->uio_offset); 557 extended = 1; 558 } 559 560 if ((oldoff & ~(nmp->nm_wsize - 1)) != 561 (uio->uio_offset & ~(nmp->nm_wsize - 1))) { 562 mutex_enter(vp->v_interlock); 563 error = VOP_PUTPAGES(vp, 564 trunc_page(oldoff & ~(nmp->nm_wsize - 1)), 565 round_page((uio->uio_offset + nmp->nm_wsize - 1) & 566 ~(nmp->nm_wsize - 1)), PGO_CLEANIT); 567 } 568 } while (uio->uio_resid > 0); 569 if (wrotedata) 570 VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0)); 571 if (error == 0 && (ioflag & IO_SYNC) != 0) { 572 mutex_enter(vp->v_interlock); 573 error = VOP_PUTPAGES(vp, 574 trunc_page(origoff & ~(nmp->nm_wsize - 1)), 575 round_page((uio->uio_offset + nmp->nm_wsize - 1) & 576 ~(nmp->nm_wsize - 1)), 577 PGO_CLEANIT | PGO_SYNCIO); 578 } 579 return error; 580 } 581 582 /* 583 * Get an nfs cache block. 584 * Allocate a new one if the block isn't currently in the cache 585 * and return the block marked busy. If the calling process is 586 * interrupted by a signal for an interruptible mount point, return 587 * NULL. 588 */ 589 struct buf * 590 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct lwp *l) 591 { 592 struct buf *bp; 593 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 594 595 if (nmp->nm_flag & NFSMNT_INT) { 596 bp = getblk(vp, bn, size, PCATCH, 0); 597 while (bp == NULL) { 598 if (nfs_sigintr(nmp, NULL, l)) 599 return (NULL); 600 bp = getblk(vp, bn, size, 0, 2 * hz); 601 } 602 } else 603 bp = getblk(vp, bn, size, 0, 0); 604 return (bp); 605 } 606 607 /* 608 * Flush and invalidate all dirty buffers. If another process is already 609 * doing the flush, just wait for completion. 610 */ 611 int 612 nfs_vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred, 613 struct lwp *l, int intrflg) 614 { 615 struct nfsnode *np = VTONFS(vp); 616 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 617 int error = 0, allerror = 0, slptimeo; 618 bool catch_p; 619 620 if ((nmp->nm_flag & NFSMNT_INT) == 0) 621 intrflg = 0; 622 if (intrflg) { 623 catch_p = true; 624 slptimeo = 2 * hz; 625 } else { 626 catch_p = false; 627 if (nmp->nm_flag & NFSMNT_SOFT) 628 slptimeo = nmp->nm_retry * nmp->nm_timeo; 629 else 630 slptimeo = 0; 631 } 632 /* 633 * First wait for any other process doing a flush to complete. 634 */ 635 mutex_enter(vp->v_interlock); 636 while (np->n_flag & NFLUSHINPROG) { 637 np->n_flag |= NFLUSHWANT; 638 error = mtsleep(&np->n_flag, PRIBIO + 2, "nfsvinval", 639 slptimeo, vp->v_interlock); 640 if (error && intrflg && nfs_sigintr(nmp, NULL, l)) { 641 mutex_exit(vp->v_interlock); 642 return EINTR; 643 } 644 } 645 646 /* 647 * Now, flush as required. 648 */ 649 np->n_flag |= NFLUSHINPROG; 650 mutex_exit(vp->v_interlock); 651 error = vinvalbuf(vp, flags, cred, l, catch_p, 0); 652 while (error) { 653 if (allerror == 0) 654 allerror = error; 655 if (intrflg && nfs_sigintr(nmp, NULL, l)) { 656 error = EINTR; 657 break; 658 } 659 error = vinvalbuf(vp, flags, cred, l, 0, slptimeo); 660 } 661 mutex_enter(vp->v_interlock); 662 if (allerror != 0) { 663 /* 664 * Keep error from vinvalbuf so fsync/close will know. 665 */ 666 np->n_error = allerror; 667 np->n_flag |= NWRITEERR; 668 } 669 if (error == 0) 670 np->n_flag &= ~NMODIFIED; 671 np->n_flag &= ~NFLUSHINPROG; 672 if (np->n_flag & NFLUSHWANT) { 673 np->n_flag &= ~NFLUSHWANT; 674 wakeup(&np->n_flag); 675 } 676 mutex_exit(vp->v_interlock); 677 return error; 678 } 679 680 /* 681 * nfs_flushstalebuf: flush cache if it's stale. 682 * 683 * => caller shouldn't own any pages or buffers which belong to the vnode. 684 */ 685 686 int 687 nfs_flushstalebuf(struct vnode *vp, kauth_cred_t cred, struct lwp *l, 688 int flags) 689 { 690 struct nfsnode *np = VTONFS(vp); 691 struct vattr vattr; 692 int error; 693 694 if (np->n_flag & NMODIFIED) { 695 if ((flags & NFS_FLUSHSTALEBUF_MYWRITE) == 0 696 || vp->v_type != VREG) { 697 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1); 698 if (error) 699 return error; 700 if (vp->v_type == VDIR) { 701 nfs_invaldircache(vp, 0); 702 } 703 } else { 704 /* 705 * XXX assuming writes are ours. 706 */ 707 } 708 NFS_INVALIDATE_ATTRCACHE(np); 709 error = VOP_GETATTR(vp, &vattr, cred); 710 if (error) 711 return error; 712 np->n_mtime = vattr.va_mtime; 713 } else { 714 error = VOP_GETATTR(vp, &vattr, cred); 715 if (error) 716 return error; 717 if (timespeccmp(&np->n_mtime, &vattr.va_mtime, !=)) { 718 if (vp->v_type == VDIR) { 719 nfs_invaldircache(vp, 0); 720 } 721 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1); 722 if (error) 723 return error; 724 np->n_mtime = vattr.va_mtime; 725 } 726 } 727 728 return error; 729 } 730 731 /* 732 * Initiate asynchronous I/O. Return an error if no nfsiods are available. 733 * This is mainly to avoid queueing async I/O requests when the nfsiods 734 * are all hung on a dead server. 735 */ 736 737 int 738 nfs_asyncio(struct buf *bp) 739 { 740 struct nfs_iod *iod; 741 struct nfsmount *nmp; 742 int slptimeo = 0, error; 743 bool catch_p = false; 744 745 if (nfs_numasync == 0) 746 return (EIO); 747 748 nmp = VFSTONFS(bp->b_vp->v_mount); 749 750 if (nmp->nm_flag & NFSMNT_SOFT) 751 slptimeo = nmp->nm_retry * nmp->nm_timeo; 752 753 if (nmp->nm_iflag & NFSMNT_DISMNTFORCE) 754 slptimeo = hz; 755 756 again: 757 if (nmp->nm_flag & NFSMNT_INT) 758 catch_p = true; 759 760 /* 761 * Find a free iod to process this request. 762 */ 763 764 mutex_enter(&nfs_iodlist_lock); 765 iod = LIST_FIRST(&nfs_iodlist_idle); 766 if (iod) { 767 /* 768 * Found one, so wake it up and tell it which 769 * mount to process. 770 */ 771 LIST_REMOVE(iod, nid_idle); 772 mutex_enter(&iod->nid_lock); 773 mutex_exit(&nfs_iodlist_lock); 774 KASSERT(iod->nid_mount == NULL); 775 iod->nid_mount = nmp; 776 cv_signal(&iod->nid_cv); 777 mutex_enter(&nmp->nm_lock); 778 mutex_exit(&iod->nid_lock); 779 nmp->nm_bufqiods++; 780 if (nmp->nm_bufqlen < 2 * nmp->nm_bufqiods) { 781 cv_broadcast(&nmp->nm_aiocv); 782 } 783 } else { 784 mutex_exit(&nfs_iodlist_lock); 785 mutex_enter(&nmp->nm_lock); 786 } 787 788 KASSERT(mutex_owned(&nmp->nm_lock)); 789 790 /* 791 * If we have an iod which can process the request, then queue 792 * the buffer. However, even if we have an iod, do not initiate 793 * queue cleaning if curproc is the pageout daemon. if the NFS mount 794 * is via local loopback, we may put curproc (pagedaemon) to sleep 795 * waiting for the writes to complete. But the server (ourself) 796 * may block the write, waiting for its (ie., our) pagedaemon 797 * to produce clean pages to handle the write: deadlock. 798 * XXX: start non-loopback mounts straight away? If "lots free", 799 * let pagedaemon start loopback writes anyway? 800 */ 801 if (nmp->nm_bufqiods > 0) { 802 803 /* 804 * Ensure that the queue never grows too large. 805 */ 806 if (curlwp == uvm.pagedaemon_lwp) { 807 /* Enque for later, to avoid free-page deadlock */ 808 } else while (nmp->nm_bufqlen >= 2 * nmp->nm_bufqiods) { 809 if (catch_p) { 810 error = cv_timedwait_sig(&nmp->nm_aiocv, 811 &nmp->nm_lock, slptimeo); 812 } else { 813 error = cv_timedwait(&nmp->nm_aiocv, 814 &nmp->nm_lock, slptimeo); 815 } 816 if (error) { 817 if (error == EWOULDBLOCK && 818 nmp->nm_flag & NFSMNT_SOFT) { 819 mutex_exit(&nmp->nm_lock); 820 bp->b_error = EIO; 821 return (EIO); 822 } 823 824 if (nfs_sigintr(nmp, NULL, curlwp)) { 825 mutex_exit(&nmp->nm_lock); 826 return (EINTR); 827 } 828 if (catch_p) { 829 catch_p = false; 830 slptimeo = 2 * hz; 831 } 832 } 833 834 /* 835 * We might have lost our iod while sleeping, 836 * so check and loop if necessary. 837 */ 838 839 if (nmp->nm_bufqiods == 0) { 840 mutex_exit(&nmp->nm_lock); 841 goto again; 842 } 843 } 844 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist); 845 nmp->nm_bufqlen++; 846 mutex_exit(&nmp->nm_lock); 847 return (0); 848 } 849 mutex_exit(&nmp->nm_lock); 850 851 /* 852 * All the iods are busy on other mounts, so return EIO to 853 * force the caller to process the i/o synchronously. 854 */ 855 856 return (EIO); 857 } 858 859 /* 860 * nfs_doio for read. 861 */ 862 static int 863 nfs_doio_read(struct buf *bp, struct uio *uiop) 864 { 865 struct vnode *vp = bp->b_vp; 866 struct nfsnode *np = VTONFS(vp); 867 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 868 int error = 0; 869 870 uiop->uio_rw = UIO_READ; 871 switch (vp->v_type) { 872 case VREG: 873 nfsstats.read_bios++; 874 error = nfs_readrpc(vp, uiop); 875 if (!error && uiop->uio_resid) { 876 int diff, len; 877 878 /* 879 * If uio_resid > 0, there is a hole in the file and 880 * no writes after the hole have been pushed to 881 * the server yet or the file has been truncated 882 * on the server. 883 * Just zero fill the rest of the valid area. 884 */ 885 886 KASSERT(vp->v_size >= 887 uiop->uio_offset + uiop->uio_resid); 888 diff = bp->b_bcount - uiop->uio_resid; 889 len = uiop->uio_resid; 890 memset((char *)bp->b_data + diff, 0, len); 891 uiop->uio_resid = 0; 892 } 893 #if 0 894 if (uiop->uio_lwp && (vp->v_iflag & VI_TEXT) && 895 timespeccmp(&np->n_mtime, &np->n_vattr->va_mtime, !=)) { 896 mutex_enter(proc_lock); 897 killproc(uiop->uio_lwp->l_proc, "process text file was modified"); 898 mutex_exit(proc_lock); 899 #if 0 /* XXX NJWLWP */ 900 uiop->uio_lwp->l_proc->p_holdcnt++; 901 #endif 902 } 903 #endif 904 break; 905 case VLNK: 906 KASSERT(uiop->uio_offset == (off_t)0); 907 nfsstats.readlink_bios++; 908 error = nfs_readlinkrpc(vp, uiop, np->n_rcred); 909 break; 910 case VDIR: 911 nfsstats.readdir_bios++; 912 uiop->uio_offset = bp->b_dcookie; 913 #ifndef NFS_V2_ONLY 914 if (nmp->nm_flag & NFSMNT_RDIRPLUS) { 915 error = nfs_readdirplusrpc(vp, uiop, 916 curlwp->l_cred); 917 /* 918 * nfs_request maps NFSERR_NOTSUPP to ENOTSUP. 919 */ 920 if (error == ENOTSUP) 921 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 922 } 923 #else 924 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 925 #endif 926 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) 927 error = nfs_readdirrpc(vp, uiop, 928 curlwp->l_cred); 929 if (!error) { 930 bp->b_dcookie = uiop->uio_offset; 931 } 932 break; 933 default: 934 printf("nfs_doio: type %x unexpected\n", vp->v_type); 935 break; 936 } 937 bp->b_error = error; 938 return error; 939 } 940 941 /* 942 * nfs_doio for write. 943 */ 944 static int 945 nfs_doio_write(struct buf *bp, struct uio *uiop) 946 { 947 struct vnode *vp = bp->b_vp; 948 struct nfsnode *np = VTONFS(vp); 949 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 950 int iomode; 951 bool stalewriteverf = false; 952 int i, npages = (bp->b_bcount + PAGE_SIZE - 1) >> PAGE_SHIFT; 953 struct vm_page **pgs, *spgs[UBC_MAX_PAGES]; 954 #ifndef NFS_V2_ONLY 955 bool needcommit = true; /* need only COMMIT RPC */ 956 #else 957 bool needcommit = false; /* need only COMMIT RPC */ 958 #endif 959 bool pageprotected; 960 struct uvm_object *uobj = &vp->v_uobj; 961 int error; 962 off_t off, cnt; 963 964 if (npages < __arraycount(spgs)) 965 pgs = spgs; 966 else { 967 if ((pgs = kmem_alloc(sizeof(*pgs) * npages, KM_NOSLEEP)) == 968 NULL) 969 return ENOMEM; 970 } 971 972 if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) { 973 iomode = NFSV3WRITE_UNSTABLE; 974 } else { 975 iomode = NFSV3WRITE_FILESYNC; 976 } 977 978 #ifndef NFS_V2_ONLY 979 again: 980 #endif 981 rw_enter(&nmp->nm_writeverflock, RW_READER); 982 983 for (i = 0; i < npages; i++) { 984 pgs[i] = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT)); 985 if (pgs[i]->uobject == uobj && 986 pgs[i]->offset == uiop->uio_offset + (i << PAGE_SHIFT)) { 987 KASSERT(pgs[i]->flags & PG_BUSY); 988 /* 989 * this page belongs to our object. 990 */ 991 mutex_enter(uobj->vmobjlock); 992 /* 993 * write out the page stably if it's about to 994 * be released because we can't resend it 995 * on the server crash. 996 * 997 * XXX assuming PG_RELEASE|PG_PAGEOUT won't be 998 * changed until unbusy the page. 999 */ 1000 if (pgs[i]->flags & (PG_RELEASED|PG_PAGEOUT)) 1001 iomode = NFSV3WRITE_FILESYNC; 1002 /* 1003 * if we met a page which hasn't been sent yet, 1004 * we need do WRITE RPC. 1005 */ 1006 if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0) 1007 needcommit = false; 1008 mutex_exit(uobj->vmobjlock); 1009 } else { 1010 iomode = NFSV3WRITE_FILESYNC; 1011 needcommit = false; 1012 } 1013 } 1014 if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) { 1015 mutex_enter(uobj->vmobjlock); 1016 for (i = 0; i < npages; i++) { 1017 pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY; 1018 pmap_page_protect(pgs[i], VM_PROT_READ); 1019 } 1020 mutex_exit(uobj->vmobjlock); 1021 pageprotected = true; /* pages can't be modified during i/o. */ 1022 } else 1023 pageprotected = false; 1024 1025 /* 1026 * Send the data to the server if necessary, 1027 * otherwise just send a commit rpc. 1028 */ 1029 #ifndef NFS_V2_ONLY 1030 if (needcommit) { 1031 1032 /* 1033 * If the buffer is in the range that we already committed, 1034 * there's nothing to do. 1035 * 1036 * If it's in the range that we need to commit, push the 1037 * whole range at once, otherwise only push the buffer. 1038 * In both these cases, acquire the commit lock to avoid 1039 * other processes modifying the range. 1040 */ 1041 1042 off = uiop->uio_offset; 1043 cnt = bp->b_bcount; 1044 mutex_enter(&np->n_commitlock); 1045 if (!nfs_in_committed_range(vp, off, bp->b_bcount)) { 1046 bool pushedrange; 1047 if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) { 1048 pushedrange = true; 1049 off = np->n_pushlo; 1050 cnt = np->n_pushhi - np->n_pushlo; 1051 } else { 1052 pushedrange = false; 1053 } 1054 error = nfs_commit(vp, off, cnt, curlwp); 1055 if (error == 0) { 1056 if (pushedrange) { 1057 nfs_merge_commit_ranges(vp); 1058 } else { 1059 nfs_add_committed_range(vp, off, cnt); 1060 } 1061 } 1062 } else { 1063 error = 0; 1064 } 1065 mutex_exit(&np->n_commitlock); 1066 rw_exit(&nmp->nm_writeverflock); 1067 if (!error) { 1068 /* 1069 * pages are now on stable storage. 1070 */ 1071 uiop->uio_resid = 0; 1072 mutex_enter(uobj->vmobjlock); 1073 for (i = 0; i < npages; i++) { 1074 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY); 1075 } 1076 mutex_exit(uobj->vmobjlock); 1077 goto out; 1078 } else if (error == NFSERR_STALEWRITEVERF) { 1079 nfs_clearcommit(vp->v_mount); 1080 goto again; 1081 } 1082 if (error) { 1083 bp->b_error = np->n_error = error; 1084 np->n_flag |= NWRITEERR; 1085 } 1086 goto out; 1087 } 1088 #endif 1089 off = uiop->uio_offset; 1090 cnt = bp->b_bcount; 1091 uiop->uio_rw = UIO_WRITE; 1092 nfsstats.write_bios++; 1093 error = nfs_writerpc(vp, uiop, &iomode, pageprotected, &stalewriteverf); 1094 #ifndef NFS_V2_ONLY 1095 if (!error && iomode == NFSV3WRITE_UNSTABLE) { 1096 /* 1097 * we need to commit pages later. 1098 */ 1099 mutex_enter(&np->n_commitlock); 1100 nfs_add_tobecommitted_range(vp, off, cnt); 1101 /* 1102 * if there can be too many uncommitted pages, commit them now. 1103 */ 1104 if (np->n_pushhi - np->n_pushlo > nfs_commitsize) { 1105 off = np->n_pushlo; 1106 cnt = nfs_commitsize >> 1; 1107 error = nfs_commit(vp, off, cnt, curlwp); 1108 if (!error) { 1109 nfs_add_committed_range(vp, off, cnt); 1110 nfs_del_tobecommitted_range(vp, off, cnt); 1111 } 1112 if (error == NFSERR_STALEWRITEVERF) { 1113 stalewriteverf = true; 1114 error = 0; /* it isn't a real error */ 1115 } 1116 } else { 1117 /* 1118 * re-dirty pages so that they will be passed 1119 * to us later again. 1120 */ 1121 mutex_enter(uobj->vmobjlock); 1122 for (i = 0; i < npages; i++) { 1123 pgs[i]->flags &= ~PG_CLEAN; 1124 } 1125 mutex_exit(uobj->vmobjlock); 1126 } 1127 mutex_exit(&np->n_commitlock); 1128 } else 1129 #endif 1130 if (!error) { 1131 /* 1132 * pages are now on stable storage. 1133 */ 1134 mutex_enter(&np->n_commitlock); 1135 nfs_del_committed_range(vp, off, cnt); 1136 mutex_exit(&np->n_commitlock); 1137 mutex_enter(uobj->vmobjlock); 1138 for (i = 0; i < npages; i++) { 1139 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY); 1140 } 1141 mutex_exit(uobj->vmobjlock); 1142 } else { 1143 /* 1144 * we got an error. 1145 */ 1146 bp->b_error = np->n_error = error; 1147 np->n_flag |= NWRITEERR; 1148 } 1149 1150 rw_exit(&nmp->nm_writeverflock); 1151 1152 1153 if (stalewriteverf) { 1154 nfs_clearcommit(vp->v_mount); 1155 } 1156 #ifndef NFS_V2_ONLY 1157 out: 1158 #endif 1159 if (pgs != spgs) 1160 kmem_free(pgs, sizeof(*pgs) * npages); 1161 return error; 1162 } 1163 1164 /* 1165 * nfs_doio for B_PHYS. 1166 */ 1167 static int 1168 nfs_doio_phys(struct buf *bp, struct uio *uiop) 1169 { 1170 struct vnode *vp = bp->b_vp; 1171 int error; 1172 1173 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT; 1174 if (bp->b_flags & B_READ) { 1175 uiop->uio_rw = UIO_READ; 1176 nfsstats.read_physios++; 1177 error = nfs_readrpc(vp, uiop); 1178 } else { 1179 int iomode = NFSV3WRITE_DATASYNC; 1180 bool stalewriteverf; 1181 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1182 1183 uiop->uio_rw = UIO_WRITE; 1184 nfsstats.write_physios++; 1185 rw_enter(&nmp->nm_writeverflock, RW_READER); 1186 error = nfs_writerpc(vp, uiop, &iomode, false, &stalewriteverf); 1187 rw_exit(&nmp->nm_writeverflock); 1188 if (stalewriteverf) { 1189 nfs_clearcommit(bp->b_vp->v_mount); 1190 } 1191 } 1192 bp->b_error = error; 1193 return error; 1194 } 1195 1196 /* 1197 * Do an I/O operation to/from a cache block. This may be called 1198 * synchronously or from an nfsiod. 1199 */ 1200 int 1201 nfs_doio(struct buf *bp) 1202 { 1203 int error; 1204 struct uio uio; 1205 struct uio *uiop = &uio; 1206 struct iovec io; 1207 UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist); 1208 1209 uiop->uio_iov = &io; 1210 uiop->uio_iovcnt = 1; 1211 uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT); 1212 UIO_SETUP_SYSSPACE(uiop); 1213 io.iov_base = bp->b_data; 1214 io.iov_len = uiop->uio_resid = bp->b_bcount; 1215 1216 /* 1217 * Historically, paging was done with physio, but no more... 1218 */ 1219 if (bp->b_flags & B_PHYS) { 1220 /* 1221 * ...though reading /dev/drum still gets us here. 1222 */ 1223 error = nfs_doio_phys(bp, uiop); 1224 } else if (bp->b_flags & B_READ) { 1225 error = nfs_doio_read(bp, uiop); 1226 } else { 1227 error = nfs_doio_write(bp, uiop); 1228 } 1229 bp->b_resid = uiop->uio_resid; 1230 biodone(bp); 1231 return (error); 1232 } 1233 1234 /* 1235 * Vnode op for VM getpages. 1236 */ 1237 1238 int 1239 nfs_getpages(void *v) 1240 { 1241 struct vop_getpages_args /* { 1242 struct vnode *a_vp; 1243 voff_t a_offset; 1244 struct vm_page **a_m; 1245 int *a_count; 1246 int a_centeridx; 1247 vm_prot_t a_access_type; 1248 int a_advice; 1249 int a_flags; 1250 } */ *ap = v; 1251 1252 struct vnode *vp = ap->a_vp; 1253 struct uvm_object *uobj = &vp->v_uobj; 1254 struct nfsnode *np = VTONFS(vp); 1255 const int npages = *ap->a_count; 1256 struct vm_page *pg, **pgs, **opgs, *spgs[UBC_MAX_PAGES]; 1257 off_t origoffset, len; 1258 int i, error; 1259 bool v3 = NFS_ISV3(vp); 1260 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0; 1261 bool locked = (ap->a_flags & PGO_LOCKED) != 0; 1262 1263 /* 1264 * If we are not locked we are not really using opgs, 1265 * so just initialize it 1266 */ 1267 if (!locked || npages < __arraycount(spgs)) 1268 opgs = spgs; 1269 else { 1270 if ((opgs = kmem_alloc(npages * sizeof(*opgs), KM_NOSLEEP)) == 1271 NULL) 1272 return ENOMEM; 1273 } 1274 1275 /* 1276 * call the genfs code to get the pages. `pgs' may be NULL 1277 * when doing read-ahead. 1278 */ 1279 pgs = ap->a_m; 1280 if (write && locked && v3) { 1281 KASSERT(pgs != NULL); 1282 #ifdef DEBUG 1283 1284 /* 1285 * If PGO_LOCKED is set, real pages shouldn't exists 1286 * in the array. 1287 */ 1288 1289 for (i = 0; i < npages; i++) 1290 KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE); 1291 #endif 1292 memcpy(opgs, pgs, npages * sizeof(struct vm_pages *)); 1293 } 1294 error = genfs_getpages(v); 1295 if (error) 1296 goto out; 1297 1298 /* 1299 * for read faults where the nfs node is not yet marked NMODIFIED, 1300 * set PG_RDONLY on the pages so that we come back here if someone 1301 * tries to modify later via the mapping that will be entered for 1302 * this fault. 1303 */ 1304 1305 if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) { 1306 if (!locked) { 1307 mutex_enter(uobj->vmobjlock); 1308 } 1309 for (i = 0; i < npages; i++) { 1310 pg = pgs[i]; 1311 if (pg == NULL || pg == PGO_DONTCARE) { 1312 continue; 1313 } 1314 pg->flags |= PG_RDONLY; 1315 } 1316 if (!locked) { 1317 mutex_exit(uobj->vmobjlock); 1318 } 1319 } 1320 if (!write) 1321 goto out; 1322 1323 /* 1324 * this is a write fault, update the commit info. 1325 */ 1326 1327 origoffset = ap->a_offset; 1328 len = npages << PAGE_SHIFT; 1329 1330 if (v3) { 1331 if (!locked) { 1332 mutex_enter(&np->n_commitlock); 1333 } else { 1334 if (!mutex_tryenter(&np->n_commitlock)) { 1335 1336 /* 1337 * Since PGO_LOCKED is set, we need to unbusy 1338 * all pages fetched by genfs_getpages() above, 1339 * tell the caller that there are no pages 1340 * available and put back original pgs array. 1341 */ 1342 1343 mutex_enter(&uvm_pageqlock); 1344 uvm_page_unbusy(pgs, npages); 1345 mutex_exit(&uvm_pageqlock); 1346 *ap->a_count = 0; 1347 memcpy(pgs, opgs, 1348 npages * sizeof(struct vm_pages *)); 1349 error = EBUSY; 1350 goto out; 1351 } 1352 } 1353 nfs_del_committed_range(vp, origoffset, len); 1354 nfs_del_tobecommitted_range(vp, origoffset, len); 1355 } 1356 np->n_flag |= NMODIFIED; 1357 if (!locked) { 1358 mutex_enter(uobj->vmobjlock); 1359 } 1360 for (i = 0; i < npages; i++) { 1361 pg = pgs[i]; 1362 if (pg == NULL || pg == PGO_DONTCARE) { 1363 continue; 1364 } 1365 pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY); 1366 } 1367 if (!locked) { 1368 mutex_exit(uobj->vmobjlock); 1369 } 1370 if (v3) { 1371 mutex_exit(&np->n_commitlock); 1372 } 1373 out: 1374 if (opgs != spgs) 1375 kmem_free(opgs, sizeof(*opgs) * npages); 1376 return error; 1377 } 1378