xref: /netbsd-src/sys/nfs/nfs_bio.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: nfs_bio.c,v 1.171 2007/12/04 17:42:30 yamt Exp $	*/
2 
3 /*
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Rick Macklem at The University of Guelph.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
35  */
36 
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.171 2007/12/04 17:42:30 yamt Exp $");
39 
40 #include "opt_nfs.h"
41 #include "opt_ddb.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/resourcevar.h>
46 #include <sys/signalvar.h>
47 #include <sys/proc.h>
48 #include <sys/buf.h>
49 #include <sys/vnode.h>
50 #include <sys/mount.h>
51 #include <sys/kernel.h>
52 #include <sys/namei.h>
53 #include <sys/dirent.h>
54 #include <sys/malloc.h>
55 #include <sys/kauth.h>
56 
57 #include <uvm/uvm_extern.h>
58 #include <uvm/uvm.h>
59 
60 #include <nfs/rpcv2.h>
61 #include <nfs/nfsproto.h>
62 #include <nfs/nfs.h>
63 #include <nfs/nfsmount.h>
64 #include <nfs/nfsnode.h>
65 #include <nfs/nfs_var.h>
66 
67 extern int nfs_numasync;
68 extern int nfs_commitsize;
69 extern struct nfsstats nfsstats;
70 
71 static int nfs_doio_read __P((struct buf *, struct uio *));
72 static int nfs_doio_write __P((struct buf *, struct uio *));
73 static int nfs_doio_phys __P((struct buf *, struct uio *));
74 
75 /*
76  * Vnode op for read using bio
77  * Any similarity to readip() is purely coincidental
78  */
79 int
80 nfs_bioread(vp, uio, ioflag, cred, cflag)
81 	struct vnode *vp;
82 	struct uio *uio;
83 	int ioflag, cflag;
84 	kauth_cred_t cred;
85 {
86 	struct nfsnode *np = VTONFS(vp);
87 	struct buf *bp = NULL, *rabp;
88 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
89 	struct nfsdircache *ndp = NULL, *nndp = NULL;
90 	void *baddr;
91 	int got_buf = 0, error = 0, n = 0, on = 0, en, enn;
92 	int enough = 0;
93 	struct dirent *dp, *pdp, *edp, *ep;
94 	off_t curoff = 0;
95 	int advice;
96 	struct lwp *l = curlwp;
97 
98 #ifdef DIAGNOSTIC
99 	if (uio->uio_rw != UIO_READ)
100 		panic("nfs_read mode");
101 #endif
102 	if (uio->uio_resid == 0)
103 		return (0);
104 	if (vp->v_type != VDIR && uio->uio_offset < 0)
105 		return (EINVAL);
106 #ifndef NFS_V2_ONLY
107 	if ((nmp->nm_flag & NFSMNT_NFSV3) &&
108 	    !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
109 		(void)nfs_fsinfo(nmp, vp, cred, l);
110 #endif
111 	if (vp->v_type != VDIR &&
112 	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
113 		return (EFBIG);
114 
115 	/*
116 	 * For nfs, cache consistency can only be maintained approximately.
117 	 * Although RFC1094 does not specify the criteria, the following is
118 	 * believed to be compatible with the reference port.
119 	 *
120 	 * If the file's modify time on the server has changed since the
121 	 * last read rpc or you have written to the file,
122 	 * you may have lost data cache consistency with the
123 	 * server, so flush all of the file's data out of the cache.
124 	 * Then force a getattr rpc to ensure that you have up to date
125 	 * attributes.
126 	 * NB: This implies that cache data can be read when up to
127 	 * nfs_attrtimeo seconds out of date. If you find that you need current
128 	 * attributes this could be forced by setting n_attrstamp to 0 before
129 	 * the VOP_GETATTR() call.
130 	 */
131 
132 	if (vp->v_type != VLNK) {
133 		error = nfs_flushstalebuf(vp, cred, l,
134 		    NFS_FLUSHSTALEBUF_MYWRITE);
135 		if (error)
136 			return error;
137 	}
138 
139 	do {
140 	    /*
141 	     * Don't cache symlinks.
142 	     */
143 	    if ((vp->v_vflag & VV_ROOT) && vp->v_type == VLNK) {
144 		return (nfs_readlinkrpc(vp, uio, cred));
145 	    }
146 	    baddr = (void *)0;
147 	    switch (vp->v_type) {
148 	    case VREG:
149 		nfsstats.biocache_reads++;
150 
151 		advice = IO_ADV_DECODE(ioflag);
152 		error = 0;
153 		while (uio->uio_resid > 0) {
154 			vsize_t bytelen;
155 
156 			nfs_delayedtruncate(vp);
157 			if (np->n_size <= uio->uio_offset) {
158 				break;
159 			}
160 			bytelen =
161 			    MIN(np->n_size - uio->uio_offset, uio->uio_resid);
162 			error = ubc_uiomove(&vp->v_uobj, uio, bytelen,
163 			    advice, UBC_READ | UBC_PARTIALOK |
164 			    (UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0));
165 			if (error) {
166 				/*
167 				 * XXXkludge
168 				 * the file has been truncated on the server.
169 				 * there isn't much we can do.
170 				 */
171 				if (uio->uio_offset >= np->n_size) {
172 					/* end of file */
173 					error = 0;
174 				} else {
175 					break;
176 				}
177 			}
178 		}
179 		break;
180 
181 	    case VLNK:
182 		nfsstats.biocache_readlinks++;
183 		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, l);
184 		if (!bp)
185 			return (EINTR);
186 		if ((bp->b_flags & B_DONE) == 0) {
187 			bp->b_flags |= B_READ;
188 			error = nfs_doio(bp);
189 			if (error) {
190 				brelse(bp, 0);
191 				return (error);
192 			}
193 		}
194 		n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
195 		got_buf = 1;
196 		on = 0;
197 		break;
198 	    case VDIR:
199 diragain:
200 		nfsstats.biocache_readdirs++;
201 		ndp = nfs_searchdircache(vp, uio->uio_offset,
202 			(nmp->nm_flag & NFSMNT_XLATECOOKIE), 0);
203 		if (!ndp) {
204 			/*
205 			 * We've been handed a cookie that is not
206 			 * in the cache. If we're not translating
207 			 * 32 <-> 64, it may be a value that was
208 			 * flushed out of the cache because it grew
209 			 * too big. Let the server judge if it's
210 			 * valid or not. In the translation case,
211 			 * we have no way of validating this value,
212 			 * so punt.
213 			 */
214 			if (nmp->nm_flag & NFSMNT_XLATECOOKIE)
215 				return (EINVAL);
216 			ndp = nfs_enterdircache(vp, uio->uio_offset,
217 				uio->uio_offset, 0, 0);
218 		}
219 
220 		if (NFS_EOFVALID(np) &&
221 		    ndp->dc_cookie == np->n_direofoffset) {
222 			nfs_putdircache(np, ndp);
223 			nfsstats.direofcache_hits++;
224 			return (0);
225 		}
226 
227 		bp = nfs_getcacheblk(vp, NFSDC_BLKNO(ndp), NFS_DIRBLKSIZ, l);
228 		if (!bp)
229 		    return (EINTR);
230 		if ((bp->b_flags & B_DONE) == 0) {
231 		    bp->b_flags |= B_READ;
232 		    bp->b_dcookie = ndp->dc_blkcookie;
233 		    error = nfs_doio(bp);
234 		    if (error) {
235 			/*
236 			 * Yuck! The directory has been modified on the
237 			 * server. Punt and let the userland code
238 			 * deal with it.
239 			 */
240 			nfs_putdircache(np, ndp);
241 			brelse(bp, 0);
242 			/*
243 			 * nfs_request maps NFSERR_BAD_COOKIE to EINVAL.
244 			 */
245 			if (error == EINVAL) { /* NFSERR_BAD_COOKIE */
246 			    nfs_invaldircache(vp, 0);
247 			    nfs_vinvalbuf(vp, 0, cred, l, 1);
248 			}
249 			return (error);
250 		    }
251 		}
252 
253 		/*
254 		 * Just return if we hit EOF right away with this
255 		 * block. Always check here, because direofoffset
256 		 * may have been set by an nfsiod since the last
257 		 * check.
258 		 *
259 		 * also, empty block implies EOF.
260 		 */
261 
262 		if (bp->b_bcount == bp->b_resid ||
263 		    (NFS_EOFVALID(np) &&
264 		    ndp->dc_blkcookie == np->n_direofoffset)) {
265 			KASSERT(bp->b_bcount != bp->b_resid ||
266 			    ndp->dc_blkcookie == bp->b_dcookie);
267 			nfs_putdircache(np, ndp);
268 			brelse(bp, BC_NOCACHE);
269 			return 0;
270 		}
271 
272 		/*
273 		 * Find the entry we were looking for in the block.
274 		 */
275 
276 		en = ndp->dc_entry;
277 
278 		pdp = dp = (struct dirent *)bp->b_data;
279 		edp = (struct dirent *)(void *)((char *)bp->b_data + bp->b_bcount -
280 		    bp->b_resid);
281 		enn = 0;
282 		while (enn < en && dp < edp) {
283 			pdp = dp;
284 			dp = _DIRENT_NEXT(dp);
285 			enn++;
286 		}
287 
288 		/*
289 		 * If the entry number was bigger than the number of
290 		 * entries in the block, or the cookie of the previous
291 		 * entry doesn't match, the directory cache is
292 		 * stale. Flush it and try again (i.e. go to
293 		 * the server).
294 		 */
295 		if (dp >= edp || (struct dirent *)_DIRENT_NEXT(dp) > edp ||
296 		    (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) {
297 #ifdef DEBUG
298 		    	printf("invalid cache: %p %p %p off %lx %lx\n",
299 				pdp, dp, edp,
300 				(unsigned long)uio->uio_offset,
301 				(unsigned long)NFS_GETCOOKIE(pdp));
302 #endif
303 			nfs_putdircache(np, ndp);
304 			brelse(bp, 0);
305 			nfs_invaldircache(vp, 0);
306 			nfs_vinvalbuf(vp, 0, cred, l, 0);
307 			goto diragain;
308 		}
309 
310 		on = (char *)dp - (char *)bp->b_data;
311 
312 		/*
313 		 * Cache all entries that may be exported to the
314 		 * user, as they may be thrown back at us. The
315 		 * NFSBIO_CACHECOOKIES flag indicates that all
316 		 * entries are being 'exported', so cache them all.
317 		 */
318 
319 		if (en == 0 && pdp == dp) {
320 			dp = _DIRENT_NEXT(dp);
321 			enn++;
322 		}
323 
324 		if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) {
325 			n = uio->uio_resid;
326 			enough = 1;
327 		} else
328 			n = bp->b_bcount - bp->b_resid - on;
329 
330 		ep = (struct dirent *)(void *)((char *)bp->b_data + on + n);
331 
332 		/*
333 		 * Find last complete entry to copy, caching entries
334 		 * (if requested) as we go.
335 		 */
336 
337 		while (dp < ep && (struct dirent *)_DIRENT_NEXT(dp) <= ep) {
338 			if (cflag & NFSBIO_CACHECOOKIES) {
339 				nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp),
340 				    ndp->dc_blkcookie, enn, bp->b_lblkno);
341 				if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
342 					NFS_STASHCOOKIE32(pdp,
343 					    nndp->dc_cookie32);
344 				}
345 				nfs_putdircache(np, nndp);
346 			}
347 			pdp = dp;
348 			dp = _DIRENT_NEXT(dp);
349 			enn++;
350 		}
351 		nfs_putdircache(np, ndp);
352 
353 		/*
354 		 * If the last requested entry was not the last in the
355 		 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ),
356 		 * cache the cookie of the last requested one, and
357 		 * set of the offset to it.
358 		 */
359 
360 		if ((on + n) < bp->b_bcount - bp->b_resid) {
361 			curoff = NFS_GETCOOKIE(pdp);
362 			nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie,
363 			    enn, bp->b_lblkno);
364 			if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
365 				NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
366 				curoff = nndp->dc_cookie32;
367 			}
368 			nfs_putdircache(np, nndp);
369 		} else
370 			curoff = bp->b_dcookie;
371 
372 		/*
373 		 * Always cache the entry for the next block,
374 		 * so that readaheads can use it.
375 		 */
376 		nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0);
377 		if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
378 			if (curoff == bp->b_dcookie) {
379 				NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
380 				curoff = nndp->dc_cookie32;
381 			}
382 		}
383 
384 		n = (char *)_DIRENT_NEXT(pdp) - ((char *)bp->b_data + on);
385 
386 		/*
387 		 * If not eof and read aheads are enabled, start one.
388 		 * (You need the current block first, so that you have the
389 		 *  directory offset cookie of the next block.)
390 		 */
391 		if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
392 		    !NFS_EOFVALID(np)) {
393 			rabp = nfs_getcacheblk(vp, NFSDC_BLKNO(nndp),
394 						NFS_DIRBLKSIZ, l);
395 			if (rabp) {
396 			    if ((rabp->b_flags & (B_DONE | B_DELWRI)) == 0) {
397 				rabp->b_dcookie = nndp->dc_cookie;
398 				rabp->b_flags |= (B_READ | B_ASYNC);
399 				if (nfs_asyncio(rabp)) {
400 				    brelse(rabp, BC_INVAL);
401 				}
402 			    } else
403 				brelse(rabp, 0);
404 			}
405 		}
406 		nfs_putdircache(np, nndp);
407 		got_buf = 1;
408 		break;
409 	    default:
410 		printf(" nfsbioread: type %x unexpected\n",vp->v_type);
411 		break;
412 	    }
413 
414 	    if (n > 0) {
415 		if (!baddr)
416 			baddr = bp->b_data;
417 		error = uiomove((char *)baddr + on, (int)n, uio);
418 	    }
419 	    switch (vp->v_type) {
420 	    case VREG:
421 		break;
422 	    case VLNK:
423 		n = 0;
424 		break;
425 	    case VDIR:
426 		uio->uio_offset = curoff;
427 		if (enough)
428 			n = 0;
429 		break;
430 	    default:
431 		printf(" nfsbioread: type %x unexpected\n",vp->v_type);
432 	    }
433 	    if (got_buf)
434 		brelse(bp, 0);
435 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
436 	return (error);
437 }
438 
439 /*
440  * Vnode op for write using bio
441  */
442 int
443 nfs_write(v)
444 	void *v;
445 {
446 	struct vop_write_args /* {
447 		struct vnode *a_vp;
448 		struct uio *a_uio;
449 		int  a_ioflag;
450 		kauth_cred_t a_cred;
451 	} */ *ap = v;
452 	struct uio *uio = ap->a_uio;
453 	struct lwp *l = curlwp;
454 	struct vnode *vp = ap->a_vp;
455 	struct nfsnode *np = VTONFS(vp);
456 	kauth_cred_t cred = ap->a_cred;
457 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
458 	voff_t oldoff, origoff;
459 	vsize_t bytelen;
460 	int error = 0;
461 	int ioflag = ap->a_ioflag;
462 	int extended = 0, wrotedata = 0;
463 
464 #ifdef DIAGNOSTIC
465 	if (uio->uio_rw != UIO_WRITE)
466 		panic("nfs_write mode");
467 #endif
468 	if (vp->v_type != VREG)
469 		return (EIO);
470 	if (np->n_flag & NWRITEERR) {
471 		np->n_flag &= ~NWRITEERR;
472 		return (np->n_error);
473 	}
474 #ifndef NFS_V2_ONLY
475 	if ((nmp->nm_flag & NFSMNT_NFSV3) &&
476 	    !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
477 		(void)nfs_fsinfo(nmp, vp, cred, l);
478 #endif
479 	if (ioflag & IO_APPEND) {
480 		NFS_INVALIDATE_ATTRCACHE(np);
481 		error = nfs_flushstalebuf(vp, cred, l,
482 		    NFS_FLUSHSTALEBUF_MYWRITE);
483 		if (error)
484 			return (error);
485 		uio->uio_offset = np->n_size;
486 	}
487 	if (uio->uio_offset < 0)
488 		return (EINVAL);
489 	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
490 		return (EFBIG);
491 	if (uio->uio_resid == 0)
492 		return (0);
493 	/*
494 	 * Maybe this should be above the vnode op call, but so long as
495 	 * file servers have no limits, i don't think it matters
496 	 */
497 	if (l && l->l_proc && uio->uio_offset + uio->uio_resid >
498 	      l->l_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
499 		mutex_enter(&proclist_mutex);
500 		psignal(l->l_proc, SIGXFSZ);
501 		mutex_exit(&proclist_mutex);
502 		return (EFBIG);
503 	}
504 
505 	origoff = uio->uio_offset;
506 	do {
507 		bool overwrite; /* if we are overwriting whole pages */
508 		u_quad_t oldsize;
509 		oldoff = uio->uio_offset;
510 		bytelen = uio->uio_resid;
511 
512 		nfsstats.biocache_writes++;
513 
514 		oldsize = np->n_size;
515 		np->n_flag |= NMODIFIED;
516 		if (np->n_size < uio->uio_offset + bytelen) {
517 			np->n_size = uio->uio_offset + bytelen;
518 		}
519 		overwrite = false;
520 		if ((uio->uio_offset & PAGE_MASK) == 0) {
521 			if ((vp->v_vflag & VV_MAPPED) == 0 &&
522 			    bytelen > PAGE_SIZE) {
523 				bytelen = trunc_page(bytelen);
524 				overwrite = true;
525 			} else if ((bytelen & PAGE_MASK) == 0 &&
526 			    uio->uio_offset >= vp->v_size) {
527 				overwrite = true;
528 			}
529 		}
530 		if (vp->v_size < uio->uio_offset + bytelen) {
531 			uvm_vnp_setwritesize(vp, uio->uio_offset + bytelen);
532 		}
533 		error = ubc_uiomove(&vp->v_uobj, uio, bytelen,
534 		    UVM_ADV_RANDOM, UBC_WRITE | UBC_PARTIALOK |
535 		    (overwrite ? UBC_FAULTBUSY : 0) |
536 		    (UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0));
537 		if (error) {
538 			uvm_vnp_setwritesize(vp, vp->v_size);
539 			if (overwrite && np->n_size != oldsize) {
540 				/*
541 				 * backout size and free pages past eof.
542 				 */
543 				np->n_size = oldsize;
544 				simple_lock(&vp->v_interlock);
545 				(void)VOP_PUTPAGES(vp, round_page(vp->v_size),
546 				    0, PGO_SYNCIO | PGO_FREE);
547 			}
548 			break;
549 		}
550 		wrotedata = 1;
551 
552 		/*
553 		 * update UVM's notion of the size now that we've
554 		 * copied the data into the vnode's pages.
555 		 */
556 
557 		if (vp->v_size < uio->uio_offset) {
558 			uvm_vnp_setsize(vp, uio->uio_offset);
559 			extended = 1;
560 		}
561 
562 		if ((oldoff & ~(nmp->nm_wsize - 1)) !=
563 		    (uio->uio_offset & ~(nmp->nm_wsize - 1))) {
564 			simple_lock(&vp->v_interlock);
565 			error = VOP_PUTPAGES(vp,
566 			    trunc_page(oldoff & ~(nmp->nm_wsize - 1)),
567 			    round_page((uio->uio_offset + nmp->nm_wsize - 1) &
568 				       ~(nmp->nm_wsize - 1)), PGO_CLEANIT);
569 		}
570 	} while (uio->uio_resid > 0);
571 	if (wrotedata)
572 		VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0));
573 	if (error == 0 && (ioflag & IO_SYNC) != 0) {
574 		simple_lock(&vp->v_interlock);
575 		error = VOP_PUTPAGES(vp,
576 		    trunc_page(origoff & ~(nmp->nm_wsize - 1)),
577 		    round_page((uio->uio_offset + nmp->nm_wsize - 1) &
578 			       ~(nmp->nm_wsize - 1)),
579 		    PGO_CLEANIT | PGO_SYNCIO);
580 	}
581 	return error;
582 }
583 
584 /*
585  * Get an nfs cache block.
586  * Allocate a new one if the block isn't currently in the cache
587  * and return the block marked busy. If the calling process is
588  * interrupted by a signal for an interruptible mount point, return
589  * NULL.
590  */
591 struct buf *
592 nfs_getcacheblk(vp, bn, size, l)
593 	struct vnode *vp;
594 	daddr_t bn;
595 	int size;
596 	struct lwp *l;
597 {
598 	struct buf *bp;
599 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
600 
601 	if (nmp->nm_flag & NFSMNT_INT) {
602 		bp = getblk(vp, bn, size, PCATCH, 0);
603 		while (bp == NULL) {
604 			if (nfs_sigintr(nmp, NULL, l))
605 				return (NULL);
606 			bp = getblk(vp, bn, size, 0, 2 * hz);
607 		}
608 	} else
609 		bp = getblk(vp, bn, size, 0, 0);
610 	return (bp);
611 }
612 
613 /*
614  * Flush and invalidate all dirty buffers. If another process is already
615  * doing the flush, just wait for completion.
616  */
617 int
618 nfs_vinvalbuf(vp, flags, cred, l, intrflg)
619 	struct vnode *vp;
620 	int flags;
621 	kauth_cred_t cred;
622 	struct lwp *l;
623 	int intrflg;
624 {
625 	struct nfsnode *np = VTONFS(vp);
626 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
627 	int error = 0, slpflag, slptimeo;
628 
629 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
630 		intrflg = 0;
631 	if (intrflg) {
632 		slpflag = PCATCH;
633 		slptimeo = 2 * hz;
634 	} else {
635 		slpflag = 0;
636 		slptimeo = 0;
637 	}
638 	/*
639 	 * First wait for any other process doing a flush to complete.
640 	 */
641 	simple_lock(&vp->v_interlock);
642 	while (np->n_flag & NFLUSHINPROG) {
643 		np->n_flag |= NFLUSHWANT;
644 		error = ltsleep(&np->n_flag, PRIBIO + 2, "nfsvinval",
645 			slptimeo, &vp->v_interlock);
646 		if (error && intrflg && nfs_sigintr(nmp, NULL, l)) {
647 			simple_unlock(&vp->v_interlock);
648 			return EINTR;
649 		}
650 	}
651 
652 	/*
653 	 * Now, flush as required.
654 	 */
655 	np->n_flag |= NFLUSHINPROG;
656 	simple_unlock(&vp->v_interlock);
657 	error = vinvalbuf(vp, flags, cred, l, slpflag, 0);
658 	while (error) {
659 		if (intrflg && nfs_sigintr(nmp, NULL, l)) {
660 			error = EINTR;
661 			break;
662 		}
663 		error = vinvalbuf(vp, flags, cred, l, 0, slptimeo);
664 	}
665 	simple_lock(&vp->v_interlock);
666 	if (error == 0)
667 		np->n_flag &= ~NMODIFIED;
668 	np->n_flag &= ~NFLUSHINPROG;
669 	if (np->n_flag & NFLUSHWANT) {
670 		np->n_flag &= ~NFLUSHWANT;
671 		wakeup(&np->n_flag);
672 	}
673 	simple_unlock(&vp->v_interlock);
674 	return error;
675 }
676 
677 /*
678  * nfs_flushstalebuf: flush cache if it's stale.
679  *
680  * => caller shouldn't own any pages or buffers which belong to the vnode.
681  */
682 
683 int
684 nfs_flushstalebuf(struct vnode *vp, kauth_cred_t cred, struct lwp *l,
685     int flags)
686 {
687 	struct nfsnode *np = VTONFS(vp);
688 	struct vattr vattr;
689 	int error;
690 
691 	if (np->n_flag & NMODIFIED) {
692 		if ((flags & NFS_FLUSHSTALEBUF_MYWRITE) == 0
693 		    || vp->v_type != VREG) {
694 			error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
695 			if (error)
696 				return error;
697 			if (vp->v_type == VDIR) {
698 				nfs_invaldircache(vp, 0);
699 			}
700 		} else {
701 			/*
702 			 * XXX assuming writes are ours.
703 			 */
704 		}
705 		NFS_INVALIDATE_ATTRCACHE(np);
706 		error = VOP_GETATTR(vp, &vattr, cred);
707 		if (error)
708 			return error;
709 		np->n_mtime = vattr.va_mtime;
710 	} else {
711 		error = VOP_GETATTR(vp, &vattr, cred);
712 		if (error)
713 			return error;
714 		if (timespeccmp(&np->n_mtime, &vattr.va_mtime, !=)) {
715 			if (vp->v_type == VDIR) {
716 				nfs_invaldircache(vp, 0);
717 			}
718 			error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
719 			if (error)
720 				return error;
721 			np->n_mtime = vattr.va_mtime;
722 		}
723 	}
724 
725 	return error;
726 }
727 
728 /*
729  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
730  * This is mainly to avoid queueing async I/O requests when the nfsiods
731  * are all hung on a dead server.
732  */
733 
734 int
735 nfs_asyncio(bp)
736 	struct buf *bp;
737 {
738 	struct nfs_iod *iod;
739 	struct nfsmount *nmp;
740 	int slptimeo = 0, error;
741 	bool catch = false;
742 
743 	if (nfs_numasync == 0)
744 		return (EIO);
745 
746 	nmp = VFSTONFS(bp->b_vp->v_mount);
747 again:
748 	if (nmp->nm_flag & NFSMNT_INT)
749 		catch = true;
750 
751 	/*
752 	 * Find a free iod to process this request.
753 	 */
754 
755 	mutex_enter(&nfs_iodlist_lock);
756 	iod = LIST_FIRST(&nfs_iodlist_idle);
757 	if (iod) {
758 		/*
759 		 * Found one, so wake it up and tell it which
760 		 * mount to process.
761 		 */
762 		LIST_REMOVE(iod, nid_idle);
763 		mutex_enter(&iod->nid_lock);
764 		mutex_exit(&nfs_iodlist_lock);
765 		KASSERT(iod->nid_mount == NULL);
766 		iod->nid_mount = nmp;
767 		cv_signal(&iod->nid_cv);
768 		mutex_enter(&nmp->nm_lock);
769 		mutex_exit(&iod->nid_lock);
770 		nmp->nm_bufqiods++;
771 		if (nmp->nm_bufqlen < 2 * nmp->nm_bufqiods) {
772 			cv_broadcast(&nmp->nm_aiocv);
773 		}
774 	} else {
775 		mutex_exit(&nfs_iodlist_lock);
776 		mutex_enter(&nmp->nm_lock);
777 	}
778 
779 	KASSERT(mutex_owned(&nmp->nm_lock));
780 
781 	/*
782 	 * If we have an iod which can process the request, then queue
783 	 * the buffer.  However, even if we have an iod, do not initiate
784 	 * queue cleaning if curproc is the pageout daemon. if the NFS mount
785 	 * is via local loopback, we may put curproc (pagedaemon) to sleep
786 	 * waiting for the writes to complete. But the server (ourself)
787 	 * may block the write, waiting for its (ie., our) pagedaemon
788 	 * to produce clean pages to handle the write: deadlock.
789 	 * XXX: start non-loopback mounts straight away?  If "lots free",
790 	 * let pagedaemon start loopback writes anyway?
791 	 */
792 	if (nmp->nm_bufqiods > 0) {
793 
794 		/*
795 		 * Ensure that the queue never grows too large.
796 		 */
797 		if (curlwp == uvm.pagedaemon_lwp) {
798 	  		/* Enque for later, to avoid free-page deadlock */
799 		} else while (nmp->nm_bufqlen >= 2 * nmp->nm_bufqiods) {
800 			if (catch) {
801 				error = cv_timedwait_sig(&nmp->nm_aiocv,
802 				    &nmp->nm_lock, slptimeo);
803 			} else {
804 				error = cv_timedwait(&nmp->nm_aiocv,
805 				    &nmp->nm_lock, slptimeo);
806 			}
807 			if (error) {
808 				if (nfs_sigintr(nmp, NULL, curlwp)) {
809 					mutex_exit(&nmp->nm_lock);
810 					return (EINTR);
811 				}
812 				if (catch) {
813 					catch = false;
814 					slptimeo = 2 * hz;
815 				}
816 			}
817 
818 			/*
819 			 * We might have lost our iod while sleeping,
820 			 * so check and loop if necessary.
821 			 */
822 
823 			if (nmp->nm_bufqiods == 0) {
824 				mutex_exit(&nmp->nm_lock);
825 				goto again;
826 			}
827 		}
828 		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
829 		nmp->nm_bufqlen++;
830 		mutex_exit(&nmp->nm_lock);
831 		return (0);
832 	}
833 	mutex_exit(&nmp->nm_lock);
834 
835 	/*
836 	 * All the iods are busy on other mounts, so return EIO to
837 	 * force the caller to process the i/o synchronously.
838 	 */
839 
840 	return (EIO);
841 }
842 
843 /*
844  * nfs_doio for read.
845  */
846 static int
847 nfs_doio_read(bp, uiop)
848 	struct buf *bp;
849 	struct uio *uiop;
850 {
851 	struct vnode *vp = bp->b_vp;
852 	struct nfsnode *np = VTONFS(vp);
853 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
854 	int error = 0;
855 
856 	uiop->uio_rw = UIO_READ;
857 	switch (vp->v_type) {
858 	case VREG:
859 		nfsstats.read_bios++;
860 		error = nfs_readrpc(vp, uiop);
861 		if (!error && uiop->uio_resid) {
862 			int diff, len;
863 
864 			/*
865 			 * If uio_resid > 0, there is a hole in the file and
866 			 * no writes after the hole have been pushed to
867 			 * the server yet or the file has been truncated
868 			 * on the server.
869 			 * Just zero fill the rest of the valid area.
870 			 */
871 
872 			KASSERT(vp->v_size >=
873 			    uiop->uio_offset + uiop->uio_resid);
874 			diff = bp->b_bcount - uiop->uio_resid;
875 			len = uiop->uio_resid;
876 			memset((char *)bp->b_data + diff, 0, len);
877 			uiop->uio_resid = 0;
878 		}
879 #if 0
880 		if (uiop->uio_lwp && (vp->v_iflag & VI_TEXT) &&
881 		    timespeccmp(&np->n_mtime, &np->n_vattr->va_mtime, !=)) {
882 			killproc(uiop->uio_lwp->l_proc, "process text file was modified");
883 #if 0 /* XXX NJWLWP */
884 			uiop->uio_lwp->l_proc->p_holdcnt++;
885 #endif
886 		}
887 #endif
888 		break;
889 	case VLNK:
890 		KASSERT(uiop->uio_offset == (off_t)0);
891 		nfsstats.readlink_bios++;
892 		error = nfs_readlinkrpc(vp, uiop, np->n_rcred);
893 		break;
894 	case VDIR:
895 		nfsstats.readdir_bios++;
896 		uiop->uio_offset = bp->b_dcookie;
897 #ifndef NFS_V2_ONLY
898 		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
899 			error = nfs_readdirplusrpc(vp, uiop,
900 			    curlwp->l_cred);
901 			/*
902 			 * nfs_request maps NFSERR_NOTSUPP to ENOTSUP.
903 			 */
904 			if (error == ENOTSUP)
905 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
906 		}
907 #else
908 		nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
909 #endif
910 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
911 			error = nfs_readdirrpc(vp, uiop,
912 			    curlwp->l_cred);
913 		if (!error) {
914 			bp->b_dcookie = uiop->uio_offset;
915 		}
916 		break;
917 	default:
918 		printf("nfs_doio:  type %x unexpected\n", vp->v_type);
919 		break;
920 	}
921 	if (error) {
922 		bp->b_error = error;
923 	}
924 	return error;
925 }
926 
927 /*
928  * nfs_doio for write.
929  */
930 static int
931 nfs_doio_write(bp, uiop)
932 	struct buf *bp;
933 	struct uio *uiop;
934 {
935 	struct vnode *vp = bp->b_vp;
936 	struct nfsnode *np = VTONFS(vp);
937 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
938 	int iomode;
939 	bool stalewriteverf = false;
940 	int i, npages = (bp->b_bcount + PAGE_SIZE - 1) >> PAGE_SHIFT;
941 	struct vm_page *pgs[npages];
942 #ifndef NFS_V2_ONLY
943 	bool needcommit = true; /* need only COMMIT RPC */
944 #else
945 	bool needcommit = false; /* need only COMMIT RPC */
946 #endif
947 	bool pageprotected;
948 	struct uvm_object *uobj = &vp->v_uobj;
949 	int error;
950 	off_t off, cnt;
951 
952 	if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) {
953 		iomode = NFSV3WRITE_UNSTABLE;
954 	} else {
955 		iomode = NFSV3WRITE_FILESYNC;
956 	}
957 
958 #ifndef NFS_V2_ONLY
959 again:
960 #endif
961 	rw_enter(&nmp->nm_writeverflock, RW_READER);
962 
963 	for (i = 0; i < npages; i++) {
964 		pgs[i] = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT));
965 		if (pgs[i]->uobject == uobj &&
966 		    pgs[i]->offset == uiop->uio_offset + (i << PAGE_SHIFT)) {
967 			KASSERT(pgs[i]->flags & PG_BUSY);
968 			/*
969 			 * this page belongs to our object.
970 			 */
971 			simple_lock(&uobj->vmobjlock);
972 			/*
973 			 * write out the page stably if it's about to
974 			 * be released because we can't resend it
975 			 * on the server crash.
976 			 *
977 			 * XXX assuming PG_RELEASE|PG_PAGEOUT won't be
978 			 * changed until unbusy the page.
979 			 */
980 			if (pgs[i]->flags & (PG_RELEASED|PG_PAGEOUT))
981 				iomode = NFSV3WRITE_FILESYNC;
982 			/*
983 			 * if we met a page which hasn't been sent yet,
984 			 * we need do WRITE RPC.
985 			 */
986 			if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0)
987 				needcommit = false;
988 			simple_unlock(&uobj->vmobjlock);
989 		} else {
990 			iomode = NFSV3WRITE_FILESYNC;
991 			needcommit = false;
992 		}
993 	}
994 	if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) {
995 		simple_lock(&uobj->vmobjlock);
996 		for (i = 0; i < npages; i++) {
997 			pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY;
998 			pmap_page_protect(pgs[i], VM_PROT_READ);
999 		}
1000 		simple_unlock(&uobj->vmobjlock);
1001 		pageprotected = true; /* pages can't be modified during i/o. */
1002 	} else
1003 		pageprotected = false;
1004 
1005 	/*
1006 	 * Send the data to the server if necessary,
1007 	 * otherwise just send a commit rpc.
1008 	 */
1009 #ifndef NFS_V2_ONLY
1010 	if (needcommit) {
1011 
1012 		/*
1013 		 * If the buffer is in the range that we already committed,
1014 		 * there's nothing to do.
1015 		 *
1016 		 * If it's in the range that we need to commit, push the
1017 		 * whole range at once, otherwise only push the buffer.
1018 		 * In both these cases, acquire the commit lock to avoid
1019 		 * other processes modifying the range.
1020 		 */
1021 
1022 		off = uiop->uio_offset;
1023 		cnt = bp->b_bcount;
1024 		mutex_enter(&np->n_commitlock);
1025 		if (!nfs_in_committed_range(vp, off, bp->b_bcount)) {
1026 			bool pushedrange;
1027 			if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) {
1028 				pushedrange = true;
1029 				off = np->n_pushlo;
1030 				cnt = np->n_pushhi - np->n_pushlo;
1031 			} else {
1032 				pushedrange = false;
1033 			}
1034 			error = nfs_commit(vp, off, cnt, curlwp);
1035 			if (error == 0) {
1036 				if (pushedrange) {
1037 					nfs_merge_commit_ranges(vp);
1038 				} else {
1039 					nfs_add_committed_range(vp, off, cnt);
1040 				}
1041 			}
1042 		} else {
1043 			error = 0;
1044 		}
1045 		mutex_exit(&np->n_commitlock);
1046 		rw_exit(&nmp->nm_writeverflock);
1047 		if (!error) {
1048 			/*
1049 			 * pages are now on stable storage.
1050 			 */
1051 			uiop->uio_resid = 0;
1052 			simple_lock(&uobj->vmobjlock);
1053 			for (i = 0; i < npages; i++) {
1054 				pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1055 			}
1056 			simple_unlock(&uobj->vmobjlock);
1057 			return 0;
1058 		} else if (error == NFSERR_STALEWRITEVERF) {
1059 			nfs_clearcommit(vp->v_mount);
1060 			goto again;
1061 		}
1062 		if (error) {
1063 			bp->b_error = np->n_error = error;
1064 			np->n_flag |= NWRITEERR;
1065 		}
1066 		return error;
1067 	}
1068 #endif
1069 	off = uiop->uio_offset;
1070 	cnt = bp->b_bcount;
1071 	uiop->uio_rw = UIO_WRITE;
1072 	nfsstats.write_bios++;
1073 	error = nfs_writerpc(vp, uiop, &iomode, pageprotected, &stalewriteverf);
1074 #ifndef NFS_V2_ONLY
1075 	if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1076 		/*
1077 		 * we need to commit pages later.
1078 		 */
1079 		mutex_enter(&np->n_commitlock);
1080 		nfs_add_tobecommitted_range(vp, off, cnt);
1081 		/*
1082 		 * if there can be too many uncommitted pages, commit them now.
1083 		 */
1084 		if (np->n_pushhi - np->n_pushlo > nfs_commitsize) {
1085 			off = np->n_pushlo;
1086 			cnt = nfs_commitsize >> 1;
1087 			error = nfs_commit(vp, off, cnt, curlwp);
1088 			if (!error) {
1089 				nfs_add_committed_range(vp, off, cnt);
1090 				nfs_del_tobecommitted_range(vp, off, cnt);
1091 			}
1092 			if (error == NFSERR_STALEWRITEVERF) {
1093 				stalewriteverf = true;
1094 				error = 0; /* it isn't a real error */
1095 			}
1096 		} else {
1097 			/*
1098 			 * re-dirty pages so that they will be passed
1099 			 * to us later again.
1100 			 */
1101 			simple_lock(&uobj->vmobjlock);
1102 			for (i = 0; i < npages; i++) {
1103 				pgs[i]->flags &= ~PG_CLEAN;
1104 			}
1105 			simple_unlock(&uobj->vmobjlock);
1106 		}
1107 		mutex_exit(&np->n_commitlock);
1108 	} else
1109 #endif
1110 	if (!error) {
1111 		/*
1112 		 * pages are now on stable storage.
1113 		 */
1114 		mutex_enter(&np->n_commitlock);
1115 		nfs_del_committed_range(vp, off, cnt);
1116 		mutex_exit(&np->n_commitlock);
1117 		simple_lock(&uobj->vmobjlock);
1118 		for (i = 0; i < npages; i++) {
1119 			pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1120 		}
1121 		simple_unlock(&uobj->vmobjlock);
1122 	} else {
1123 		/*
1124 		 * we got an error.
1125 		 */
1126 		bp->b_error = np->n_error = error;
1127 		np->n_flag |= NWRITEERR;
1128 	}
1129 
1130 	rw_exit(&nmp->nm_writeverflock);
1131 
1132 	if (stalewriteverf) {
1133 		nfs_clearcommit(vp->v_mount);
1134 	}
1135 	return error;
1136 }
1137 
1138 /*
1139  * nfs_doio for B_PHYS.
1140  */
1141 static int
1142 nfs_doio_phys(bp, uiop)
1143 	struct buf *bp;
1144 	struct uio *uiop;
1145 {
1146 	struct vnode *vp = bp->b_vp;
1147 	int error;
1148 
1149 	uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT;
1150 	if (bp->b_flags & B_READ) {
1151 		uiop->uio_rw = UIO_READ;
1152 		nfsstats.read_physios++;
1153 		error = nfs_readrpc(vp, uiop);
1154 	} else {
1155 		int iomode = NFSV3WRITE_DATASYNC;
1156 		bool stalewriteverf;
1157 		struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1158 
1159 		uiop->uio_rw = UIO_WRITE;
1160 		nfsstats.write_physios++;
1161 		rw_enter(&nmp->nm_writeverflock, RW_READER);
1162 		error = nfs_writerpc(vp, uiop, &iomode, false, &stalewriteverf);
1163 		rw_exit(&nmp->nm_writeverflock);
1164 		if (stalewriteverf) {
1165 			nfs_clearcommit(bp->b_vp->v_mount);
1166 		}
1167 	}
1168 	if (error) {
1169 		bp->b_error = error;
1170 	}
1171 	return error;
1172 }
1173 
1174 /*
1175  * Do an I/O operation to/from a cache block. This may be called
1176  * synchronously or from an nfsiod.
1177  */
1178 int
1179 nfs_doio(bp)
1180 	struct buf *bp;
1181 {
1182 	int error;
1183 	struct uio uio;
1184 	struct uio *uiop = &uio;
1185 	struct iovec io;
1186 	UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist);
1187 
1188 	uiop->uio_iov = &io;
1189 	uiop->uio_iovcnt = 1;
1190 	uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT);
1191 	UIO_SETUP_SYSSPACE(uiop);
1192 	io.iov_base = bp->b_data;
1193 	io.iov_len = uiop->uio_resid = bp->b_bcount;
1194 
1195 	/*
1196 	 * Historically, paging was done with physio, but no more...
1197 	 */
1198 	if (bp->b_flags & B_PHYS) {
1199 		/*
1200 		 * ...though reading /dev/drum still gets us here.
1201 		 */
1202 		error = nfs_doio_phys(bp, uiop);
1203 	} else if (bp->b_flags & B_READ) {
1204 		error = nfs_doio_read(bp, uiop);
1205 	} else {
1206 		error = nfs_doio_write(bp, uiop);
1207 	}
1208 	bp->b_resid = uiop->uio_resid;
1209 	biodone(bp);
1210 	return (error);
1211 }
1212 
1213 /*
1214  * Vnode op for VM getpages.
1215  */
1216 
1217 int
1218 nfs_getpages(v)
1219 	void *v;
1220 {
1221 	struct vop_getpages_args /* {
1222 		struct vnode *a_vp;
1223 		voff_t a_offset;
1224 		struct vm_page **a_m;
1225 		int *a_count;
1226 		int a_centeridx;
1227 		vm_prot_t a_access_type;
1228 		int a_advice;
1229 		int a_flags;
1230 	} */ *ap = v;
1231 
1232 	struct vnode *vp = ap->a_vp;
1233 	struct uvm_object *uobj = &vp->v_uobj;
1234 	struct nfsnode *np = VTONFS(vp);
1235 	const int npages = *ap->a_count;
1236 	struct vm_page *pg, **pgs, *opgs[npages];
1237 	off_t origoffset, len;
1238 	int i, error;
1239 	bool v3 = NFS_ISV3(vp);
1240 	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1241 	bool locked = (ap->a_flags & PGO_LOCKED) != 0;
1242 
1243 	/*
1244 	 * call the genfs code to get the pages.  `pgs' may be NULL
1245 	 * when doing read-ahead.
1246 	 */
1247 
1248 	pgs = ap->a_m;
1249 	if (write && locked && v3) {
1250 		KASSERT(pgs != NULL);
1251 #ifdef DEBUG
1252 
1253 		/*
1254 		 * If PGO_LOCKED is set, real pages shouldn't exists
1255 		 * in the array.
1256 		 */
1257 
1258 		for (i = 0; i < npages; i++)
1259 			KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE);
1260 #endif
1261 		memcpy(opgs, pgs, npages * sizeof(struct vm_pages *));
1262 	}
1263 	error = genfs_getpages(v);
1264 	if (error) {
1265 		return (error);
1266 	}
1267 
1268 	/*
1269 	 * for read faults where the nfs node is not yet marked NMODIFIED,
1270 	 * set PG_RDONLY on the pages so that we come back here if someone
1271 	 * tries to modify later via the mapping that will be entered for
1272 	 * this fault.
1273 	 */
1274 
1275 	if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) {
1276 		if (!locked) {
1277 			simple_lock(&uobj->vmobjlock);
1278 		}
1279 		for (i = 0; i < npages; i++) {
1280 			pg = pgs[i];
1281 			if (pg == NULL || pg == PGO_DONTCARE) {
1282 				continue;
1283 			}
1284 			pg->flags |= PG_RDONLY;
1285 		}
1286 		if (!locked) {
1287 			simple_unlock(&uobj->vmobjlock);
1288 		}
1289 	}
1290 	if (!write) {
1291 		return (0);
1292 	}
1293 
1294 	/*
1295 	 * this is a write fault, update the commit info.
1296 	 */
1297 
1298 	origoffset = ap->a_offset;
1299 	len = npages << PAGE_SHIFT;
1300 
1301 	if (v3) {
1302 		if (!locked) {
1303 			mutex_enter(&np->n_commitlock);
1304 		} else {
1305 			if (!mutex_tryenter(&np->n_commitlock)) {
1306 
1307 				/*
1308 				 * Since PGO_LOCKED is set, we need to unbusy
1309 				 * all pages fetched by genfs_getpages() above,
1310 				 * tell the caller that there are no pages
1311 				 * available and put back original pgs array.
1312 				 */
1313 
1314 				uvm_lock_pageq();
1315 				uvm_page_unbusy(pgs, npages);
1316 				uvm_unlock_pageq();
1317 				*ap->a_count = 0;
1318 				memcpy(pgs, opgs,
1319 				    npages * sizeof(struct vm_pages *));
1320 				return EBUSY;
1321 			}
1322 		}
1323 		nfs_del_committed_range(vp, origoffset, len);
1324 		nfs_del_tobecommitted_range(vp, origoffset, len);
1325 	}
1326 	np->n_flag |= NMODIFIED;
1327 	if (!locked) {
1328 		simple_lock(&uobj->vmobjlock);
1329 	}
1330 	for (i = 0; i < npages; i++) {
1331 		pg = pgs[i];
1332 		if (pg == NULL || pg == PGO_DONTCARE) {
1333 			continue;
1334 		}
1335 		pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1336 	}
1337 	if (!locked) {
1338 		simple_unlock(&uobj->vmobjlock);
1339 	}
1340 	if (v3) {
1341 		mutex_exit(&np->n_commitlock);
1342 	}
1343 	return (0);
1344 }
1345