1 /* $NetBSD: key.c,v 1.250 2018/04/09 06:26:05 yamaguchi Exp $ */ 2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */ 3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 4 5 /* 6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the project nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.250 2018/04/09 06:26:05 yamaguchi Exp $"); 36 37 /* 38 * This code is referred to RFC 2367 39 */ 40 41 #if defined(_KERNEL_OPT) 42 #include "opt_inet.h" 43 #include "opt_ipsec.h" 44 #include "opt_gateway.h" 45 #include "opt_net_mpsafe.h" 46 #endif 47 48 #include <sys/types.h> 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/callout.h> 52 #include <sys/kernel.h> 53 #include <sys/mbuf.h> 54 #include <sys/domain.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/errno.h> 59 #include <sys/proc.h> 60 #include <sys/queue.h> 61 #include <sys/syslog.h> 62 #include <sys/once.h> 63 #include <sys/cprng.h> 64 #include <sys/psref.h> 65 #include <sys/lwp.h> 66 #include <sys/workqueue.h> 67 #include <sys/kmem.h> 68 #include <sys/cpu.h> 69 #include <sys/atomic.h> 70 #include <sys/pslist.h> 71 #include <sys/mutex.h> 72 #include <sys/condvar.h> 73 #include <sys/localcount.h> 74 #include <sys/pserialize.h> 75 76 #include <net/if.h> 77 #include <net/route.h> 78 79 #include <netinet/in.h> 80 #include <netinet/in_systm.h> 81 #include <netinet/ip.h> 82 #include <netinet/in_var.h> 83 #ifdef INET 84 #include <netinet/ip_var.h> 85 #endif 86 87 #ifdef INET6 88 #include <netinet/ip6.h> 89 #include <netinet6/in6_var.h> 90 #include <netinet6/ip6_var.h> 91 #endif /* INET6 */ 92 93 #ifdef INET 94 #include <netinet/in_pcb.h> 95 #endif 96 #ifdef INET6 97 #include <netinet6/in6_pcb.h> 98 #endif /* INET6 */ 99 100 #include <net/pfkeyv2.h> 101 #include <netipsec/keydb.h> 102 #include <netipsec/key.h> 103 #include <netipsec/keysock.h> 104 #include <netipsec/key_debug.h> 105 106 #include <netipsec/ipsec.h> 107 #ifdef INET6 108 #include <netipsec/ipsec6.h> 109 #endif 110 #include <netipsec/ipsec_private.h> 111 112 #include <netipsec/xform.h> 113 #include <netipsec/ipcomp.h> 114 115 #define FULLMASK 0xff 116 #define _BITS(bytes) ((bytes) << 3) 117 118 #define PORT_NONE 0 119 #define PORT_LOOSE 1 120 #define PORT_STRICT 2 121 122 percpu_t *pfkeystat_percpu; 123 124 /* 125 * Note on SA reference counting: 126 * - SAs that are not in DEAD state will have (total external reference + 1) 127 * following value in reference count field. they cannot be freed and are 128 * referenced from SA header. 129 * - SAs that are in DEAD state will have (total external reference) 130 * in reference count field. they are ready to be freed. reference from 131 * SA header will be removed in key_delsav(), when the reference count 132 * field hits 0 (= no external reference other than from SA header. 133 */ 134 135 u_int32_t key_debug_level = 0; 136 static u_int key_spi_trycnt = 1000; 137 static u_int32_t key_spi_minval = 0x100; 138 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ 139 static u_int32_t policy_id = 0; 140 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ 141 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 142 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 143 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 144 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/ 145 146 static u_int32_t acq_seq = 0; 147 148 /* 149 * Locking order: there is no order for now; it means that any locks aren't 150 * overlapped. 151 */ 152 /* 153 * Locking notes on SPD: 154 * - Modifications to the key_spd.splist must be done with holding key_spd.lock 155 * which is a adaptive mutex 156 * - Read accesses to the key_spd.splist must be in pserialize(9) read sections 157 * - SP's lifetime is managed by localcount(9) 158 * - An SP that has been inserted to the key_spd.splist is initially referenced 159 * by none, i.e., a reference from the key_spd.splist isn't counted 160 * - When an SP is being destroyed, we change its state as DEAD, wait for 161 * references to the SP to be released, and then deallocate the SP 162 * (see key_unlink_sp) 163 * - Getting an SP 164 * - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx) 165 * - Must iterate the list and increment the reference count of a found SP 166 * (by key_sp_ref) in a pserialize read section 167 * - We can gain another reference from a held SP only if we check its state 168 * and take its reference in a pserialize read section 169 * (see esp_output for example) 170 * - We may get an SP from an SP cache. See below 171 * - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref) 172 * - Updating member variables of an SP 173 * - Most member variables of an SP are immutable 174 * - Only sp->state and sp->lastused can be changed 175 * - sp->state of an SP is updated only when destroying it under key_spd.lock 176 * - SP caches 177 * - SPs can be cached in PCBs 178 * - The lifetime of the caches is controlled by the global generation counter 179 * (ipsec_spdgen) 180 * - The global counter value is stored when an SP is cached 181 * - If the stored value is different from the global counter then the cache 182 * is considered invalidated 183 * - The counter is incremented when an SP is being destroyed 184 * - So checking the generation and taking a reference to an SP should be 185 * in a pserialize read section 186 * - Note that caching doesn't increment the reference counter of an SP 187 * - SPs in sockets 188 * - Userland programs can set a policy to a socket by 189 * setsockopt(IP_IPSEC_POLICY) 190 * - Such policies (SPs) are set to a socket (PCB) and also inserted to 191 * the key_spd.socksplist list (not the key_spd.splist) 192 * - Such a policy is destroyed when a corresponding socket is destroed, 193 * however, a socket can be destroyed in softint so we cannot destroy 194 * it directly instead we just mark it DEAD and delay the destruction 195 * until GC by the timer 196 * - SP origin 197 * - SPs can be created by both userland programs and kernel components. 198 * The SPs created in kernel must not be removed by userland programs, 199 * although the SPs can be read by userland programs. 200 */ 201 /* 202 * Locking notes on SAD: 203 * - Data structures 204 * - SAs are managed by the list called key_sad.sahlist and sav lists of sah 205 * entries 206 * - An sav is supposed to be an SA from a viewpoint of users 207 * - A sah has sav lists for each SA state 208 * - Multiple sahs with the same saidx can exist 209 * - Only one entry has MATURE state and others should be DEAD 210 * - DEAD entries are just ignored from searching 211 * - Modifications to the key_sad.sahlist and sah.savlist must be done with 212 * holding key_sad.lock which is a adaptive mutex 213 * - Read accesses to the key_sad.sahlist and sah.savlist must be in 214 * pserialize(9) read sections 215 * - sah's lifetime is managed by localcount(9) 216 * - Getting an sah entry 217 * - We get an sah from the key_sad.sahlist 218 * - Must iterate the list and increment the reference count of a found sah 219 * (by key_sah_ref) in a pserialize read section 220 * - A gotten sah must be released after use by key_sah_unref 221 * - An sah is destroyed when its state become DEAD and no sav is 222 * listed to the sah 223 * - The destruction is done only in the timer (see key_timehandler_sad) 224 * - sav's lifetime is managed by localcount(9) 225 * - Getting an sav entry 226 * - First get an sah by saidx and get an sav from either of sah's savlists 227 * - Must iterate the list and increment the reference count of a found sav 228 * (by key_sa_ref) in a pserialize read section 229 * - We can gain another reference from a held SA only if we check its state 230 * and take its reference in a pserialize read section 231 * (see esp_output for example) 232 * - A gotten sav must be released after use by key_sa_unref 233 * - An sav is destroyed when its state become DEAD 234 */ 235 /* 236 * Locking notes on misc data: 237 * - All lists of key_misc are protected by key_misc.lock 238 * - key_misc.lock must be held even for read accesses 239 */ 240 241 /* SPD */ 242 static struct { 243 kmutex_t lock; 244 kcondvar_t cv_lc; 245 struct pslist_head splist[IPSEC_DIR_MAX]; 246 /* 247 * The list has SPs that are set to a socket via 248 * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy. 249 */ 250 struct pslist_head socksplist; 251 252 pserialize_t psz; 253 kcondvar_t cv_psz; 254 bool psz_performing; 255 } key_spd __cacheline_aligned; 256 257 /* SAD */ 258 static struct { 259 kmutex_t lock; 260 kcondvar_t cv_lc; 261 struct pslist_head sahlist; 262 263 pserialize_t psz; 264 kcondvar_t cv_psz; 265 bool psz_performing; 266 } key_sad __cacheline_aligned; 267 268 /* Misc data */ 269 static struct { 270 kmutex_t lock; 271 /* registed list */ 272 LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1]; 273 #ifndef IPSEC_NONBLOCK_ACQUIRE 274 /* acquiring list */ 275 LIST_HEAD(_acqlist, secacq) acqlist; 276 #endif 277 #ifdef notyet 278 /* SP acquiring list */ 279 LIST_HEAD(_spacqlist, secspacq) spacqlist; 280 #endif 281 } key_misc __cacheline_aligned; 282 283 /* Macros for key_spd.splist */ 284 #define SPLIST_ENTRY_INIT(sp) \ 285 PSLIST_ENTRY_INIT((sp), pslist_entry) 286 #define SPLIST_ENTRY_DESTROY(sp) \ 287 PSLIST_ENTRY_DESTROY((sp), pslist_entry) 288 #define SPLIST_WRITER_REMOVE(sp) \ 289 PSLIST_WRITER_REMOVE((sp), pslist_entry) 290 #define SPLIST_READER_EMPTY(dir) \ 291 (PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ 292 pslist_entry) == NULL) 293 #define SPLIST_READER_FOREACH(sp, dir) \ 294 PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)], \ 295 struct secpolicy, pslist_entry) 296 #define SPLIST_WRITER_FOREACH(sp, dir) \ 297 PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)], \ 298 struct secpolicy, pslist_entry) 299 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \ 300 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry) 301 #define SPLIST_WRITER_EMPTY(dir) \ 302 (PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ 303 pslist_entry) == NULL) 304 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \ 305 PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp), \ 306 pslist_entry) 307 #define SPLIST_WRITER_NEXT(sp) \ 308 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry) 309 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \ 310 do { \ 311 if (SPLIST_WRITER_EMPTY((dir))) { \ 312 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \ 313 } else { \ 314 struct secpolicy *__sp; \ 315 SPLIST_WRITER_FOREACH(__sp, (dir)) { \ 316 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \ 317 SPLIST_WRITER_INSERT_AFTER(__sp,\ 318 (new)); \ 319 break; \ 320 } \ 321 } \ 322 } \ 323 } while (0) 324 325 /* Macros for key_spd.socksplist */ 326 #define SOCKSPLIST_WRITER_FOREACH(sp) \ 327 PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist, \ 328 struct secpolicy, pslist_entry) 329 #define SOCKSPLIST_READER_EMPTY() \ 330 (PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy, \ 331 pslist_entry) == NULL) 332 333 /* Macros for key_sad.sahlist */ 334 #define SAHLIST_ENTRY_INIT(sah) \ 335 PSLIST_ENTRY_INIT((sah), pslist_entry) 336 #define SAHLIST_ENTRY_DESTROY(sah) \ 337 PSLIST_ENTRY_DESTROY((sah), pslist_entry) 338 #define SAHLIST_WRITER_REMOVE(sah) \ 339 PSLIST_WRITER_REMOVE((sah), pslist_entry) 340 #define SAHLIST_READER_FOREACH(sah) \ 341 PSLIST_READER_FOREACH((sah), &key_sad.sahlist, struct secashead,\ 342 pslist_entry) 343 #define SAHLIST_WRITER_FOREACH(sah) \ 344 PSLIST_WRITER_FOREACH((sah), &key_sad.sahlist, struct secashead,\ 345 pslist_entry) 346 #define SAHLIST_WRITER_INSERT_HEAD(sah) \ 347 PSLIST_WRITER_INSERT_HEAD(&key_sad.sahlist, (sah), pslist_entry) 348 349 /* Macros for key_sad.sahlist#savlist */ 350 #define SAVLIST_ENTRY_INIT(sav) \ 351 PSLIST_ENTRY_INIT((sav), pslist_entry) 352 #define SAVLIST_ENTRY_DESTROY(sav) \ 353 PSLIST_ENTRY_DESTROY((sav), pslist_entry) 354 #define SAVLIST_READER_FIRST(sah, state) \ 355 PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ 356 pslist_entry) 357 #define SAVLIST_WRITER_REMOVE(sav) \ 358 PSLIST_WRITER_REMOVE((sav), pslist_entry) 359 #define SAVLIST_READER_FOREACH(sav, sah, state) \ 360 PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)], \ 361 struct secasvar, pslist_entry) 362 #define SAVLIST_WRITER_FOREACH(sav, sah, state) \ 363 PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)], \ 364 struct secasvar, pslist_entry) 365 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \ 366 PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry) 367 #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \ 368 PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry) 369 #define SAVLIST_WRITER_EMPTY(sah, state) \ 370 (PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ 371 pslist_entry) == NULL) 372 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \ 373 PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav), \ 374 pslist_entry) 375 #define SAVLIST_WRITER_NEXT(sav) \ 376 PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry) 377 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \ 378 do { \ 379 if (SAVLIST_WRITER_EMPTY((sah), (state))) { \ 380 SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\ 381 } else { \ 382 struct secasvar *__sav; \ 383 SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \ 384 if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\ 385 SAVLIST_WRITER_INSERT_AFTER(__sav,\ 386 (new)); \ 387 break; \ 388 } \ 389 } \ 390 } \ 391 } while (0) 392 #define SAVLIST_READER_NEXT(sav) \ 393 PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry) 394 395 396 /* search order for SAs */ 397 /* 398 * This order is important because we must select the oldest SA 399 * for outbound processing. For inbound, This is not important. 400 */ 401 static const u_int saorder_state_valid_prefer_old[] = { 402 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 403 }; 404 static const u_int saorder_state_valid_prefer_new[] = { 405 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 406 }; 407 408 static const u_int saorder_state_alive[] = { 409 /* except DEAD */ 410 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 411 }; 412 static const u_int saorder_state_any[] = { 413 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 414 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 415 }; 416 417 #define SASTATE_ALIVE_FOREACH(s) \ 418 for (int _i = 0; \ 419 _i < __arraycount(saorder_state_alive) ? \ 420 (s) = saorder_state_alive[_i], true : false; \ 421 _i++) 422 #define SASTATE_ANY_FOREACH(s) \ 423 for (int _i = 0; \ 424 _i < __arraycount(saorder_state_any) ? \ 425 (s) = saorder_state_any[_i], true : false; \ 426 _i++) 427 #define SASTATE_USABLE_FOREACH(s) \ 428 for (int _i = 0; \ 429 _i < __arraycount(saorder_state_valid_prefer_new) ? \ 430 (s) = saorder_state_valid_prefer_new[_i], \ 431 true : false; \ 432 _i++) 433 434 static const int minsize[] = { 435 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 436 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 437 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 438 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 439 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 440 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 441 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 442 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 443 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 444 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 445 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 446 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 447 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 448 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 449 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 450 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 451 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 452 0, /* SADB_X_EXT_KMPRIVATE */ 453 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 454 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 455 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 456 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 457 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 458 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 459 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 460 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 461 }; 462 static const int maxsize[] = { 463 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 464 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 465 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 466 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 467 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 468 0, /* SADB_EXT_ADDRESS_SRC */ 469 0, /* SADB_EXT_ADDRESS_DST */ 470 0, /* SADB_EXT_ADDRESS_PROXY */ 471 0, /* SADB_EXT_KEY_AUTH */ 472 0, /* SADB_EXT_KEY_ENCRYPT */ 473 0, /* SADB_EXT_IDENTITY_SRC */ 474 0, /* SADB_EXT_IDENTITY_DST */ 475 0, /* SADB_EXT_SENSITIVITY */ 476 0, /* SADB_EXT_PROPOSAL */ 477 0, /* SADB_EXT_SUPPORTED_AUTH */ 478 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 479 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 480 0, /* SADB_X_EXT_KMPRIVATE */ 481 0, /* SADB_X_EXT_POLICY */ 482 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 483 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 484 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 485 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 486 0, /* SADB_X_EXT_NAT_T_OAI */ 487 0, /* SADB_X_EXT_NAT_T_OAR */ 488 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 489 }; 490 491 static int ipsec_esp_keymin = 256; 492 static int ipsec_esp_auth = 0; 493 static int ipsec_ah_keymin = 128; 494 495 #ifdef SYSCTL_DECL 496 SYSCTL_DECL(_net_key); 497 #endif 498 499 #ifdef SYSCTL_INT 500 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \ 501 &key_debug_level, 0, ""); 502 503 /* max count of trial for the decision of spi value */ 504 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \ 505 &key_spi_trycnt, 0, ""); 506 507 /* minimum spi value to allocate automatically. */ 508 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \ 509 &key_spi_minval, 0, ""); 510 511 /* maximun spi value to allocate automatically. */ 512 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \ 513 &key_spi_maxval, 0, ""); 514 515 /* interval to initialize randseed */ 516 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \ 517 &key_int_random, 0, ""); 518 519 /* lifetime for larval SA */ 520 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \ 521 &key_larval_lifetime, 0, ""); 522 523 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 524 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \ 525 &key_blockacq_count, 0, ""); 526 527 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 528 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \ 529 &key_blockacq_lifetime, 0, ""); 530 531 /* ESP auth */ 532 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \ 533 &ipsec_esp_auth, 0, ""); 534 535 /* minimum ESP key length */ 536 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \ 537 &ipsec_esp_keymin, 0, ""); 538 539 /* minimum AH key length */ 540 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \ 541 &ipsec_ah_keymin, 0, ""); 542 543 /* perfered old SA rather than new SA */ 544 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\ 545 &key_prefered_oldsa, 0, ""); 546 #endif /* SYSCTL_INT */ 547 548 #define __LIST_CHAINED(elm) \ 549 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 550 #define LIST_INSERT_TAIL(head, elm, type, field) \ 551 do {\ 552 struct type *curelm = LIST_FIRST(head); \ 553 if (curelm == NULL) {\ 554 LIST_INSERT_HEAD(head, elm, field); \ 555 } else { \ 556 while (LIST_NEXT(curelm, field)) \ 557 curelm = LIST_NEXT(curelm, field);\ 558 LIST_INSERT_AFTER(curelm, elm, field);\ 559 }\ 560 } while (0) 561 562 #define KEY_CHKSASTATE(head, sav) \ 563 /* do */ { \ 564 if ((head) != (sav)) { \ 565 IPSECLOG(LOG_DEBUG, \ 566 "state mismatched (TREE=%d SA=%d)\n", \ 567 (head), (sav)); \ 568 continue; \ 569 } \ 570 } /* while (0) */ 571 572 #define KEY_CHKSPDIR(head, sp) \ 573 do { \ 574 if ((head) != (sp)) { \ 575 IPSECLOG(LOG_DEBUG, \ 576 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\ 577 (head), (sp)); \ 578 } \ 579 } while (0) 580 581 /* 582 * set parameters into secasindex buffer. 583 * Must allocate secasindex buffer before calling this function. 584 */ 585 static int 586 key_setsecasidx(int, int, int, const struct sockaddr *, 587 const struct sockaddr *, struct secasindex *); 588 589 /* key statistics */ 590 struct _keystat { 591 u_long getspi_count; /* the avarage of count to try to get new SPI */ 592 } keystat; 593 594 static void 595 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *); 596 597 static const struct sockaddr * 598 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx) 599 { 600 601 return PFKEY_ADDR_SADDR(mhp->ext[idx]); 602 } 603 604 static void 605 key_fill_replymsg(struct mbuf *m, int seq) 606 { 607 struct sadb_msg *msg; 608 609 KASSERT(m->m_len >= sizeof(*msg)); 610 611 msg = mtod(m, struct sadb_msg *); 612 msg->sadb_msg_errno = 0; 613 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 614 if (seq != 0) 615 msg->sadb_msg_seq = seq; 616 } 617 618 #if 0 619 static void key_freeso(struct socket *); 620 static void key_freesp_so(struct secpolicy **); 621 #endif 622 static struct secpolicy *key_getsp (const struct secpolicyindex *); 623 static struct secpolicy *key_getspbyid (u_int32_t); 624 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *, bool); 625 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t, bool); 626 static void key_destroy_sp(struct secpolicy *); 627 static struct mbuf *key_gather_mbuf (struct mbuf *, 628 const struct sadb_msghdr *, int, int, ...); 629 static int key_api_spdadd(struct socket *, struct mbuf *, 630 const struct sadb_msghdr *); 631 static u_int32_t key_getnewspid (void); 632 static int key_api_spddelete(struct socket *, struct mbuf *, 633 const struct sadb_msghdr *); 634 static int key_api_spddelete2(struct socket *, struct mbuf *, 635 const struct sadb_msghdr *); 636 static int key_api_spdget(struct socket *, struct mbuf *, 637 const struct sadb_msghdr *); 638 static int key_api_spdflush(struct socket *, struct mbuf *, 639 const struct sadb_msghdr *); 640 static int key_api_spddump(struct socket *, struct mbuf *, 641 const struct sadb_msghdr *); 642 static struct mbuf * key_setspddump (int *errorp, pid_t); 643 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid); 644 static int key_api_nat_map(struct socket *, struct mbuf *, 645 const struct sadb_msghdr *); 646 static struct mbuf *key_setdumpsp (struct secpolicy *, 647 u_int8_t, u_int32_t, pid_t); 648 static u_int key_getspreqmsglen (const struct secpolicy *); 649 static int key_spdexpire (struct secpolicy *); 650 static struct secashead *key_newsah (const struct secasindex *); 651 static void key_unlink_sah(struct secashead *); 652 static void key_destroy_sah(struct secashead *); 653 static bool key_sah_has_sav(struct secashead *); 654 static void key_sah_ref(struct secashead *); 655 static void key_sah_unref(struct secashead *); 656 static void key_init_sav(struct secasvar *); 657 static void key_destroy_sav(struct secasvar *); 658 static void key_destroy_sav_with_ref(struct secasvar *); 659 static struct secasvar *key_newsav(struct mbuf *, 660 const struct sadb_msghdr *, int *, const char*, int); 661 #define KEY_NEWSAV(m, sadb, e) \ 662 key_newsav(m, sadb, e, __func__, __LINE__) 663 static void key_delsav (struct secasvar *); 664 static struct secashead *key_getsah(const struct secasindex *, int); 665 static struct secashead *key_getsah_ref(const struct secasindex *, int); 666 static bool key_checkspidup(const struct secasindex *, u_int32_t); 667 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t); 668 static int key_setsaval (struct secasvar *, struct mbuf *, 669 const struct sadb_msghdr *); 670 static void key_freesaval(struct secasvar *); 671 static int key_init_xform(struct secasvar *); 672 static void key_clear_xform(struct secasvar *); 673 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t, 674 u_int8_t, u_int32_t, u_int32_t); 675 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t); 676 static struct mbuf *key_setsadbxtype (u_int16_t); 677 static struct mbuf *key_setsadbxfrag (u_int16_t); 678 static void key_porttosaddr (union sockaddr_union *, u_int16_t); 679 static int key_checksalen (const union sockaddr_union *); 680 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t, 681 u_int32_t, pid_t, u_int16_t, int); 682 static struct mbuf *key_setsadbsa (struct secasvar *); 683 static struct mbuf *key_setsadbaddr(u_int16_t, 684 const struct sockaddr *, u_int8_t, u_int16_t, int); 685 #if 0 686 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *, 687 int, u_int64_t); 688 #endif 689 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t); 690 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t, 691 u_int32_t, int); 692 static void *key_newbuf (const void *, u_int); 693 #ifdef INET6 694 static int key_ismyaddr6 (const struct sockaddr_in6 *); 695 #endif 696 697 static void sysctl_net_keyv2_setup(struct sysctllog **); 698 static void sysctl_net_key_compat_setup(struct sysctllog **); 699 700 /* flags for key_saidx_match() */ 701 #define CMP_HEAD 1 /* protocol, addresses. */ 702 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 703 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 704 #define CMP_EXACTLY 4 /* all elements. */ 705 static int key_saidx_match(const struct secasindex *, 706 const struct secasindex *, int); 707 708 static int key_sockaddr_match(const struct sockaddr *, 709 const struct sockaddr *, int); 710 static int key_bb_match_withmask(const void *, const void *, u_int); 711 static u_int16_t key_satype2proto (u_int8_t); 712 static u_int8_t key_proto2satype (u_int16_t); 713 714 static int key_spidx_match_exactly(const struct secpolicyindex *, 715 const struct secpolicyindex *); 716 static int key_spidx_match_withmask(const struct secpolicyindex *, 717 const struct secpolicyindex *); 718 719 static int key_api_getspi(struct socket *, struct mbuf *, 720 const struct sadb_msghdr *); 721 static u_int32_t key_do_getnewspi (const struct sadb_spirange *, 722 const struct secasindex *); 723 static int key_handle_natt_info (struct secasvar *, 724 const struct sadb_msghdr *); 725 static int key_set_natt_ports (union sockaddr_union *, 726 union sockaddr_union *, 727 const struct sadb_msghdr *); 728 static int key_api_update(struct socket *, struct mbuf *, 729 const struct sadb_msghdr *); 730 #ifdef IPSEC_DOSEQCHECK 731 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t); 732 #endif 733 static int key_api_add(struct socket *, struct mbuf *, 734 const struct sadb_msghdr *); 735 static int key_setident (struct secashead *, struct mbuf *, 736 const struct sadb_msghdr *); 737 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *, 738 const struct sadb_msghdr *); 739 static int key_api_delete(struct socket *, struct mbuf *, 740 const struct sadb_msghdr *); 741 static int key_api_get(struct socket *, struct mbuf *, 742 const struct sadb_msghdr *); 743 744 static void key_getcomb_setlifetime (struct sadb_comb *); 745 static struct mbuf *key_getcomb_esp(int); 746 static struct mbuf *key_getcomb_ah(int); 747 static struct mbuf *key_getcomb_ipcomp(int); 748 static struct mbuf *key_getprop(const struct secasindex *, int); 749 750 static int key_acquire(const struct secasindex *, const struct secpolicy *, 751 int); 752 static int key_acquire_sendup_mbuf_later(struct mbuf *); 753 static void key_acquire_sendup_pending_mbuf(void); 754 #ifndef IPSEC_NONBLOCK_ACQUIRE 755 static struct secacq *key_newacq (const struct secasindex *); 756 static struct secacq *key_getacq (const struct secasindex *); 757 static struct secacq *key_getacqbyseq (u_int32_t); 758 #endif 759 #ifdef notyet 760 static struct secspacq *key_newspacq (const struct secpolicyindex *); 761 static struct secspacq *key_getspacq (const struct secpolicyindex *); 762 #endif 763 static int key_api_acquire(struct socket *, struct mbuf *, 764 const struct sadb_msghdr *); 765 static int key_api_register(struct socket *, struct mbuf *, 766 const struct sadb_msghdr *); 767 static int key_expire (struct secasvar *); 768 static int key_api_flush(struct socket *, struct mbuf *, 769 const struct sadb_msghdr *); 770 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp, 771 int *lenp, pid_t pid); 772 static int key_api_dump(struct socket *, struct mbuf *, 773 const struct sadb_msghdr *); 774 static int key_api_promisc(struct socket *, struct mbuf *, 775 const struct sadb_msghdr *); 776 static int key_senderror (struct socket *, struct mbuf *, int); 777 static int key_validate_ext (const struct sadb_ext *, int); 778 static int key_align (struct mbuf *, struct sadb_msghdr *); 779 #if 0 780 static const char *key_getfqdn (void); 781 static const char *key_getuserfqdn (void); 782 #endif 783 static void key_sa_chgstate (struct secasvar *, u_int8_t); 784 785 static struct mbuf *key_alloc_mbuf(int, int); 786 static struct mbuf *key_alloc_mbuf_simple(int, int); 787 788 static void key_timehandler(void *); 789 static void key_timehandler_work(struct work *, void *); 790 static struct callout key_timehandler_ch; 791 static struct workqueue *key_timehandler_wq; 792 static struct work key_timehandler_wk; 793 794 /* 795 * Utilities for percpu counters for sadb_lifetime_allocations and 796 * sadb_lifetime_bytes. 797 */ 798 #define LIFETIME_COUNTER_ALLOCATIONS 0 799 #define LIFETIME_COUNTER_BYTES 1 800 #define LIFETIME_COUNTER_SIZE 2 801 802 typedef uint64_t lifetime_counters_t[LIFETIME_COUNTER_SIZE]; 803 804 static void 805 key_sum_lifetime_counters(void *p, void *arg, struct cpu_info *ci __unused) 806 { 807 lifetime_counters_t *one = p; 808 lifetime_counters_t *sum = arg; 809 810 (*sum)[LIFETIME_COUNTER_ALLOCATIONS] += (*one)[LIFETIME_COUNTER_ALLOCATIONS]; 811 (*sum)[LIFETIME_COUNTER_BYTES] += (*one)[LIFETIME_COUNTER_BYTES]; 812 } 813 814 u_int 815 key_sp_refcnt(const struct secpolicy *sp) 816 { 817 818 /* FIXME */ 819 return 0; 820 } 821 822 static void 823 key_spd_pserialize_perform(void) 824 { 825 826 KASSERT(mutex_owned(&key_spd.lock)); 827 828 while (key_spd.psz_performing) 829 cv_wait(&key_spd.cv_psz, &key_spd.lock); 830 key_spd.psz_performing = true; 831 mutex_exit(&key_spd.lock); 832 833 pserialize_perform(key_spd.psz); 834 835 mutex_enter(&key_spd.lock); 836 key_spd.psz_performing = false; 837 cv_broadcast(&key_spd.cv_psz); 838 } 839 840 /* 841 * Remove the sp from the key_spd.splist and wait for references to the sp 842 * to be released. key_spd.lock must be held. 843 */ 844 static void 845 key_unlink_sp(struct secpolicy *sp) 846 { 847 848 KASSERT(mutex_owned(&key_spd.lock)); 849 850 sp->state = IPSEC_SPSTATE_DEAD; 851 SPLIST_WRITER_REMOVE(sp); 852 853 /* Invalidate all cached SPD pointers in the PCBs. */ 854 ipsec_invalpcbcacheall(); 855 856 KDASSERT(mutex_ownable(softnet_lock)); 857 key_spd_pserialize_perform(); 858 859 localcount_drain(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); 860 } 861 862 /* 863 * Return 0 when there are known to be no SP's for the specified 864 * direction. Otherwise return 1. This is used by IPsec code 865 * to optimize performance. 866 */ 867 int 868 key_havesp(u_int dir) 869 { 870 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 871 !SPLIST_READER_EMPTY(dir) : 1); 872 } 873 874 /* %%% IPsec policy management */ 875 /* 876 * allocating a SP for OUTBOUND or INBOUND packet. 877 * Must call key_freesp() later. 878 * OUT: NULL: not found 879 * others: found and return the pointer. 880 */ 881 struct secpolicy * 882 key_lookup_sp_byspidx(const struct secpolicyindex *spidx, 883 u_int dir, const char* where, int tag) 884 { 885 struct secpolicy *sp; 886 int s; 887 888 KASSERT(spidx != NULL); 889 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir); 890 891 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); 892 893 /* get a SP entry */ 894 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { 895 kdebug_secpolicyindex("objects", spidx); 896 } 897 898 s = pserialize_read_enter(); 899 SPLIST_READER_FOREACH(sp, dir) { 900 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { 901 kdebug_secpolicyindex("in SPD", &sp->spidx); 902 } 903 904 if (sp->state == IPSEC_SPSTATE_DEAD) 905 continue; 906 if (key_spidx_match_withmask(&sp->spidx, spidx)) 907 goto found; 908 } 909 sp = NULL; 910 found: 911 if (sp) { 912 /* sanity check */ 913 KEY_CHKSPDIR(sp->spidx.dir, dir); 914 915 /* found a SPD entry */ 916 sp->lastused = time_uptime; 917 key_sp_ref(sp, where, tag); 918 } 919 pserialize_read_exit(s); 920 921 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 922 "DP return SP:%p (ID=%u) refcnt %u\n", 923 sp, sp ? sp->id : 0, key_sp_refcnt(sp)); 924 return sp; 925 } 926 927 /* 928 * return a policy that matches this particular inbound packet. 929 * XXX slow 930 */ 931 struct secpolicy * 932 key_gettunnel(const struct sockaddr *osrc, 933 const struct sockaddr *odst, 934 const struct sockaddr *isrc, 935 const struct sockaddr *idst, 936 const char* where, int tag) 937 { 938 struct secpolicy *sp; 939 const int dir = IPSEC_DIR_INBOUND; 940 int s; 941 struct ipsecrequest *r1, *r2, *p; 942 struct secpolicyindex spidx; 943 944 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); 945 946 if (isrc->sa_family != idst->sa_family) { 947 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.", 948 isrc->sa_family, idst->sa_family); 949 sp = NULL; 950 goto done; 951 } 952 953 s = pserialize_read_enter(); 954 SPLIST_READER_FOREACH(sp, dir) { 955 if (sp->state == IPSEC_SPSTATE_DEAD) 956 continue; 957 958 r1 = r2 = NULL; 959 for (p = sp->req; p; p = p->next) { 960 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 961 continue; 962 963 r1 = r2; 964 r2 = p; 965 966 if (!r1) { 967 /* here we look at address matches only */ 968 spidx = sp->spidx; 969 if (isrc->sa_len > sizeof(spidx.src) || 970 idst->sa_len > sizeof(spidx.dst)) 971 continue; 972 memcpy(&spidx.src, isrc, isrc->sa_len); 973 memcpy(&spidx.dst, idst, idst->sa_len); 974 if (!key_spidx_match_withmask(&sp->spidx, &spidx)) 975 continue; 976 } else { 977 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) || 978 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE)) 979 continue; 980 } 981 982 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) || 983 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE)) 984 continue; 985 986 goto found; 987 } 988 } 989 sp = NULL; 990 found: 991 if (sp) { 992 sp->lastused = time_uptime; 993 key_sp_ref(sp, where, tag); 994 } 995 pserialize_read_exit(s); 996 done: 997 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 998 "DP return SP:%p (ID=%u) refcnt %u\n", 999 sp, sp ? sp->id : 0, key_sp_refcnt(sp)); 1000 return sp; 1001 } 1002 1003 /* 1004 * allocating an SA entry for an *OUTBOUND* packet. 1005 * checking each request entries in SP, and acquire an SA if need. 1006 * OUT: 0: there are valid requests. 1007 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 1008 */ 1009 int 1010 key_checkrequest(const struct ipsecrequest *isr, const struct secasindex *saidx, 1011 struct secasvar **ret) 1012 { 1013 u_int level; 1014 int error; 1015 struct secasvar *sav; 1016 1017 KASSERT(isr != NULL); 1018 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT || 1019 saidx->mode == IPSEC_MODE_TUNNEL, 1020 "unexpected policy %u", saidx->mode); 1021 1022 /* get current level */ 1023 level = ipsec_get_reqlevel(isr); 1024 1025 /* 1026 * XXX guard against protocol callbacks from the crypto 1027 * thread as they reference ipsecrequest.sav which we 1028 * temporarily null out below. Need to rethink how we 1029 * handle bundled SA's in the callback thread. 1030 */ 1031 IPSEC_SPLASSERT_SOFTNET("key_checkrequest"); 1032 1033 sav = key_lookup_sa_bysaidx(saidx); 1034 if (sav != NULL) { 1035 *ret = sav; 1036 return 0; 1037 } 1038 1039 /* there is no SA */ 1040 error = key_acquire(saidx, isr->sp, M_NOWAIT); 1041 if (error != 0) { 1042 /* XXX What should I do ? */ 1043 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", 1044 error); 1045 return error; 1046 } 1047 1048 if (level != IPSEC_LEVEL_REQUIRE) { 1049 /* XXX sigh, the interface to this routine is botched */ 1050 *ret = NULL; 1051 return 0; 1052 } else { 1053 return ENOENT; 1054 } 1055 } 1056 1057 /* 1058 * looking up a SA for policy entry from SAD. 1059 * NOTE: searching SAD of aliving state. 1060 * OUT: NULL: not found. 1061 * others: found and return the pointer. 1062 */ 1063 struct secasvar * 1064 key_lookup_sa_bysaidx(const struct secasindex *saidx) 1065 { 1066 struct secashead *sah; 1067 struct secasvar *sav = NULL; 1068 u_int stateidx, state; 1069 const u_int *saorder_state_valid; 1070 int arraysize; 1071 int s; 1072 1073 s = pserialize_read_enter(); 1074 sah = key_getsah(saidx, CMP_MODE_REQID); 1075 if (sah == NULL) 1076 goto out; 1077 1078 /* 1079 * search a valid state list for outbound packet. 1080 * This search order is important. 1081 */ 1082 if (key_prefered_oldsa) { 1083 saorder_state_valid = saorder_state_valid_prefer_old; 1084 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1085 } else { 1086 saorder_state_valid = saorder_state_valid_prefer_new; 1087 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1088 } 1089 1090 /* search valid state */ 1091 for (stateidx = 0; 1092 stateidx < arraysize; 1093 stateidx++) { 1094 1095 state = saorder_state_valid[stateidx]; 1096 1097 if (key_prefered_oldsa) 1098 sav = SAVLIST_READER_FIRST(sah, state); 1099 else { 1100 /* XXX need O(1) lookup */ 1101 struct secasvar *last = NULL; 1102 1103 SAVLIST_READER_FOREACH(sav, sah, state) 1104 last = sav; 1105 sav = last; 1106 } 1107 if (sav != NULL) { 1108 KEY_SA_REF(sav); 1109 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1110 "DP cause refcnt++:%d SA:%p\n", 1111 key_sa_refcnt(sav), sav); 1112 break; 1113 } 1114 } 1115 out: 1116 pserialize_read_exit(s); 1117 1118 return sav; 1119 } 1120 1121 #if 0 1122 static void 1123 key_sendup_message_delete(struct secasvar *sav) 1124 { 1125 struct mbuf *m, *result = 0; 1126 uint8_t satype; 1127 1128 satype = key_proto2satype(sav->sah->saidx.proto); 1129 if (satype == 0) 1130 goto msgfail; 1131 1132 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1); 1133 if (m == NULL) 1134 goto msgfail; 1135 result = m; 1136 1137 /* set sadb_address for saidx's. */ 1138 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, 1139 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY); 1140 if (m == NULL) 1141 goto msgfail; 1142 m_cat(result, m); 1143 1144 /* set sadb_address for saidx's. */ 1145 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa, 1146 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY); 1147 if (m == NULL) 1148 goto msgfail; 1149 m_cat(result, m); 1150 1151 /* create SA extension */ 1152 m = key_setsadbsa(sav); 1153 if (m == NULL) 1154 goto msgfail; 1155 m_cat(result, m); 1156 1157 if (result->m_len < sizeof(struct sadb_msg)) { 1158 result = m_pullup(result, sizeof(struct sadb_msg)); 1159 if (result == NULL) 1160 goto msgfail; 1161 } 1162 1163 result->m_pkthdr.len = 0; 1164 for (m = result; m; m = m->m_next) 1165 result->m_pkthdr.len += m->m_len; 1166 mtod(result, struct sadb_msg *)->sadb_msg_len = 1167 PFKEY_UNIT64(result->m_pkthdr.len); 1168 1169 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 1170 result = NULL; 1171 msgfail: 1172 if (result) 1173 m_freem(result); 1174 } 1175 #endif 1176 1177 /* 1178 * allocating a usable SA entry for a *INBOUND* packet. 1179 * Must call key_freesav() later. 1180 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1181 * NULL: not found, or error occurred. 1182 * 1183 * In the comparison, no source address is used--for RFC2401 conformance. 1184 * To quote, from section 4.1: 1185 * A security association is uniquely identified by a triple consisting 1186 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1187 * security protocol (AH or ESP) identifier. 1188 * Note that, however, we do need to keep source address in IPsec SA. 1189 * IKE specification and PF_KEY specification do assume that we 1190 * keep source address in IPsec SA. We see a tricky situation here. 1191 * 1192 * sport and dport are used for NAT-T. network order is always used. 1193 */ 1194 struct secasvar * 1195 key_lookup_sa( 1196 const union sockaddr_union *dst, 1197 u_int proto, 1198 u_int32_t spi, 1199 u_int16_t sport, 1200 u_int16_t dport, 1201 const char* where, int tag) 1202 { 1203 struct secashead *sah; 1204 struct secasvar *sav; 1205 u_int state; 1206 int chkport; 1207 int s; 1208 1209 int must_check_spi = 1; 1210 int must_check_alg = 0; 1211 u_int16_t cpi = 0; 1212 u_int8_t algo = 0; 1213 1214 if ((sport != 0) && (dport != 0)) 1215 chkport = PORT_STRICT; 1216 else 1217 chkport = PORT_NONE; 1218 1219 KASSERT(dst != NULL); 1220 1221 /* 1222 * XXX IPCOMP case 1223 * We use cpi to define spi here. In the case where cpi <= 1224 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not 1225 * the real spi. In this case, don't check the spi but check the 1226 * algorithm 1227 */ 1228 1229 if (proto == IPPROTO_IPCOMP) { 1230 u_int32_t tmp; 1231 tmp = ntohl(spi); 1232 cpi = (u_int16_t) tmp; 1233 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) { 1234 algo = (u_int8_t) cpi; 1235 must_check_spi = 0; 1236 must_check_alg = 1; 1237 } 1238 } 1239 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1240 "DP from %s:%u check_spi=%d, check_alg=%d\n", 1241 where, tag, must_check_spi, must_check_alg); 1242 1243 1244 /* 1245 * searching SAD. 1246 * XXX: to be checked internal IP header somewhere. Also when 1247 * IPsec tunnel packet is received. But ESP tunnel mode is 1248 * encrypted so we can't check internal IP header. 1249 */ 1250 s = pserialize_read_enter(); 1251 SAHLIST_READER_FOREACH(sah) { 1252 /* search valid state */ 1253 SASTATE_USABLE_FOREACH(state) { 1254 SAVLIST_READER_FOREACH(sav, sah, state) { 1255 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1256 "try match spi %#x, %#x\n", 1257 ntohl(spi), ntohl(sav->spi)); 1258 /* sanity check */ 1259 KEY_CHKSASTATE(sav->state, state); 1260 /* do not return entries w/ unusable state */ 1261 if (!SADB_SASTATE_USABLE_P(sav)) { 1262 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1263 "bad state %d\n", sav->state); 1264 continue; 1265 } 1266 if (proto != sav->sah->saidx.proto) { 1267 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1268 "proto fail %d != %d\n", 1269 proto, sav->sah->saidx.proto); 1270 continue; 1271 } 1272 if (must_check_spi && spi != sav->spi) { 1273 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1274 "spi fail %#x != %#x\n", 1275 ntohl(spi), ntohl(sav->spi)); 1276 continue; 1277 } 1278 /* XXX only on the ipcomp case */ 1279 if (must_check_alg && algo != sav->alg_comp) { 1280 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1281 "algo fail %d != %d\n", 1282 algo, sav->alg_comp); 1283 continue; 1284 } 1285 1286 #if 0 /* don't check src */ 1287 /* Fix port in src->sa */ 1288 1289 /* check src address */ 1290 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE)) 1291 continue; 1292 #endif 1293 /* fix port of dst address XXX*/ 1294 key_porttosaddr(__UNCONST(dst), dport); 1295 /* check dst address */ 1296 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport)) 1297 continue; 1298 key_sa_ref(sav, where, tag); 1299 goto done; 1300 } 1301 } 1302 } 1303 sav = NULL; 1304 done: 1305 pserialize_read_exit(s); 1306 1307 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1308 "DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav)); 1309 return sav; 1310 } 1311 1312 static void 1313 key_validate_savlist(const struct secashead *sah, const u_int state) 1314 { 1315 #ifdef DEBUG 1316 struct secasvar *sav, *next; 1317 int s; 1318 1319 /* 1320 * The list should be sorted by lft_c->sadb_lifetime_addtime 1321 * in ascending order. 1322 */ 1323 s = pserialize_read_enter(); 1324 SAVLIST_READER_FOREACH(sav, sah, state) { 1325 next = SAVLIST_READER_NEXT(sav); 1326 if (next != NULL && 1327 sav->lft_c != NULL && next->lft_c != NULL) { 1328 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <= 1329 next->lft_c->sadb_lifetime_addtime, 1330 "savlist is not sorted: sah=%p, state=%d, " 1331 "sav=%" PRIu64 ", next=%" PRIu64, sah, state, 1332 sav->lft_c->sadb_lifetime_addtime, 1333 next->lft_c->sadb_lifetime_addtime); 1334 } 1335 } 1336 pserialize_read_exit(s); 1337 #endif 1338 } 1339 1340 void 1341 key_init_sp(struct secpolicy *sp) 1342 { 1343 1344 ASSERT_SLEEPABLE(); 1345 1346 sp->state = IPSEC_SPSTATE_ALIVE; 1347 if (sp->policy == IPSEC_POLICY_IPSEC) 1348 KASSERT(sp->req != NULL); 1349 localcount_init(&sp->localcount); 1350 SPLIST_ENTRY_INIT(sp); 1351 } 1352 1353 /* 1354 * Must be called in a pserialize read section. A held SP 1355 * must be released by key_sp_unref after use. 1356 */ 1357 void 1358 key_sp_ref(struct secpolicy *sp, const char* where, int tag) 1359 { 1360 1361 localcount_acquire(&sp->localcount); 1362 1363 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1364 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n", 1365 sp, sp->id, where, tag, key_sp_refcnt(sp)); 1366 } 1367 1368 /* 1369 * Must be called without holding key_spd.lock because the lock 1370 * would be held in localcount_release. 1371 */ 1372 void 1373 key_sp_unref(struct secpolicy *sp, const char* where, int tag) 1374 { 1375 1376 KDASSERT(mutex_ownable(&key_spd.lock)); 1377 1378 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1379 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n", 1380 sp, sp->id, where, tag, key_sp_refcnt(sp)); 1381 1382 localcount_release(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); 1383 } 1384 1385 static void 1386 key_init_sav(struct secasvar *sav) 1387 { 1388 1389 ASSERT_SLEEPABLE(); 1390 1391 localcount_init(&sav->localcount); 1392 SAVLIST_ENTRY_INIT(sav); 1393 } 1394 1395 u_int 1396 key_sa_refcnt(const struct secasvar *sav) 1397 { 1398 1399 /* FIXME */ 1400 return 0; 1401 } 1402 1403 void 1404 key_sa_ref(struct secasvar *sav, const char* where, int tag) 1405 { 1406 1407 localcount_acquire(&sav->localcount); 1408 1409 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1410 "DP cause refcnt++: SA:%p from %s:%u\n", 1411 sav, where, tag); 1412 } 1413 1414 void 1415 key_sa_unref(struct secasvar *sav, const char* where, int tag) 1416 { 1417 1418 KDASSERT(mutex_ownable(&key_sad.lock)); 1419 1420 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1421 "DP cause refcnt--: SA:%p from %s:%u\n", 1422 sav, where, tag); 1423 1424 localcount_release(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1425 } 1426 1427 #if 0 1428 /* 1429 * Must be called after calling key_lookup_sp*(). 1430 * For the packet with socket. 1431 */ 1432 static void 1433 key_freeso(struct socket *so) 1434 { 1435 /* sanity check */ 1436 KASSERT(so != NULL); 1437 1438 switch (so->so_proto->pr_domain->dom_family) { 1439 #ifdef INET 1440 case PF_INET: 1441 { 1442 struct inpcb *pcb = sotoinpcb(so); 1443 1444 /* Does it have a PCB ? */ 1445 if (pcb == NULL) 1446 return; 1447 1448 struct inpcbpolicy *sp = pcb->inp_sp; 1449 key_freesp_so(&sp->sp_in); 1450 key_freesp_so(&sp->sp_out); 1451 } 1452 break; 1453 #endif 1454 #ifdef INET6 1455 case PF_INET6: 1456 { 1457 #ifdef HAVE_NRL_INPCB 1458 struct inpcb *pcb = sotoinpcb(so); 1459 struct inpcbpolicy *sp = pcb->inp_sp; 1460 1461 /* Does it have a PCB ? */ 1462 if (pcb == NULL) 1463 return; 1464 key_freesp_so(&sp->sp_in); 1465 key_freesp_so(&sp->sp_out); 1466 #else 1467 struct in6pcb *pcb = sotoin6pcb(so); 1468 1469 /* Does it have a PCB ? */ 1470 if (pcb == NULL) 1471 return; 1472 key_freesp_so(&pcb->in6p_sp->sp_in); 1473 key_freesp_so(&pcb->in6p_sp->sp_out); 1474 #endif 1475 } 1476 break; 1477 #endif /* INET6 */ 1478 default: 1479 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n", 1480 so->so_proto->pr_domain->dom_family); 1481 return; 1482 } 1483 } 1484 1485 static void 1486 key_freesp_so(struct secpolicy **sp) 1487 { 1488 1489 KASSERT(sp != NULL); 1490 KASSERT(*sp != NULL); 1491 1492 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1493 (*sp)->policy == IPSEC_POLICY_BYPASS) 1494 return; 1495 1496 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC, 1497 "invalid policy %u", (*sp)->policy); 1498 KEY_SP_UNREF(&sp); 1499 } 1500 #endif 1501 1502 static void 1503 key_sad_pserialize_perform(void) 1504 { 1505 1506 KASSERT(mutex_owned(&key_sad.lock)); 1507 1508 while (key_sad.psz_performing) 1509 cv_wait(&key_sad.cv_psz, &key_sad.lock); 1510 key_sad.psz_performing = true; 1511 mutex_exit(&key_sad.lock); 1512 1513 pserialize_perform(key_sad.psz); 1514 1515 mutex_enter(&key_sad.lock); 1516 key_sad.psz_performing = false; 1517 cv_broadcast(&key_sad.cv_psz); 1518 } 1519 1520 /* 1521 * Remove the sav from the savlist of its sah and wait for references to the sav 1522 * to be released. key_sad.lock must be held. 1523 */ 1524 static void 1525 key_unlink_sav(struct secasvar *sav) 1526 { 1527 1528 KASSERT(mutex_owned(&key_sad.lock)); 1529 1530 SAVLIST_WRITER_REMOVE(sav); 1531 1532 KDASSERT(mutex_ownable(softnet_lock)); 1533 key_sad_pserialize_perform(); 1534 1535 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1536 } 1537 1538 /* 1539 * Destroy an sav where the sav must be unlinked from an sah 1540 * by say key_unlink_sav. 1541 */ 1542 static void 1543 key_destroy_sav(struct secasvar *sav) 1544 { 1545 1546 ASSERT_SLEEPABLE(); 1547 1548 localcount_fini(&sav->localcount); 1549 SAVLIST_ENTRY_DESTROY(sav); 1550 1551 key_delsav(sav); 1552 } 1553 1554 /* 1555 * Destroy sav with holding its reference. 1556 */ 1557 static void 1558 key_destroy_sav_with_ref(struct secasvar *sav) 1559 { 1560 1561 ASSERT_SLEEPABLE(); 1562 1563 mutex_enter(&key_sad.lock); 1564 sav->state = SADB_SASTATE_DEAD; 1565 SAVLIST_WRITER_REMOVE(sav); 1566 mutex_exit(&key_sad.lock); 1567 1568 /* We cannot unref with holding key_sad.lock */ 1569 KEY_SA_UNREF(&sav); 1570 1571 mutex_enter(&key_sad.lock); 1572 KDASSERT(mutex_ownable(softnet_lock)); 1573 key_sad_pserialize_perform(); 1574 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1575 mutex_exit(&key_sad.lock); 1576 1577 key_destroy_sav(sav); 1578 } 1579 1580 /* %%% SPD management */ 1581 /* 1582 * free security policy entry. 1583 */ 1584 static void 1585 key_destroy_sp(struct secpolicy *sp) 1586 { 1587 1588 SPLIST_ENTRY_DESTROY(sp); 1589 localcount_fini(&sp->localcount); 1590 1591 key_free_sp(sp); 1592 1593 key_update_used(); 1594 } 1595 1596 void 1597 key_free_sp(struct secpolicy *sp) 1598 { 1599 struct ipsecrequest *isr = sp->req, *nextisr; 1600 1601 while (isr != NULL) { 1602 nextisr = isr->next; 1603 kmem_free(isr, sizeof(*isr)); 1604 isr = nextisr; 1605 } 1606 1607 kmem_free(sp, sizeof(*sp)); 1608 } 1609 1610 void 1611 key_socksplist_add(struct secpolicy *sp) 1612 { 1613 1614 mutex_enter(&key_spd.lock); 1615 PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry); 1616 mutex_exit(&key_spd.lock); 1617 1618 key_update_used(); 1619 } 1620 1621 /* 1622 * search SPD 1623 * OUT: NULL : not found 1624 * others : found, pointer to a SP. 1625 */ 1626 static struct secpolicy * 1627 key_getsp(const struct secpolicyindex *spidx) 1628 { 1629 struct secpolicy *sp; 1630 int s; 1631 1632 KASSERT(spidx != NULL); 1633 1634 s = pserialize_read_enter(); 1635 SPLIST_READER_FOREACH(sp, spidx->dir) { 1636 if (sp->state == IPSEC_SPSTATE_DEAD) 1637 continue; 1638 if (key_spidx_match_exactly(spidx, &sp->spidx)) { 1639 KEY_SP_REF(sp); 1640 pserialize_read_exit(s); 1641 return sp; 1642 } 1643 } 1644 pserialize_read_exit(s); 1645 1646 return NULL; 1647 } 1648 1649 /* 1650 * search SPD and remove found SP 1651 * OUT: NULL : not found 1652 * others : found, pointer to a SP. 1653 */ 1654 static struct secpolicy * 1655 key_lookup_and_remove_sp(const struct secpolicyindex *spidx, bool from_kernel) 1656 { 1657 struct secpolicy *sp = NULL; 1658 1659 mutex_enter(&key_spd.lock); 1660 SPLIST_WRITER_FOREACH(sp, spidx->dir) { 1661 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 1662 /* 1663 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1664 * removed by userland programs. 1665 */ 1666 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1667 continue; 1668 if (key_spidx_match_exactly(spidx, &sp->spidx)) { 1669 key_unlink_sp(sp); 1670 goto out; 1671 } 1672 } 1673 sp = NULL; 1674 out: 1675 mutex_exit(&key_spd.lock); 1676 1677 return sp; 1678 } 1679 1680 /* 1681 * get SP by index. 1682 * OUT: NULL : not found 1683 * others : found, pointer to a SP. 1684 */ 1685 static struct secpolicy * 1686 key_getspbyid(u_int32_t id) 1687 { 1688 struct secpolicy *sp; 1689 int s; 1690 1691 s = pserialize_read_enter(); 1692 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { 1693 if (sp->state == IPSEC_SPSTATE_DEAD) 1694 continue; 1695 if (sp->id == id) { 1696 KEY_SP_REF(sp); 1697 goto out; 1698 } 1699 } 1700 1701 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { 1702 if (sp->state == IPSEC_SPSTATE_DEAD) 1703 continue; 1704 if (sp->id == id) { 1705 KEY_SP_REF(sp); 1706 goto out; 1707 } 1708 } 1709 out: 1710 pserialize_read_exit(s); 1711 return sp; 1712 } 1713 1714 /* 1715 * get SP by index, remove and return it. 1716 * OUT: NULL : not found 1717 * others : found, pointer to a SP. 1718 */ 1719 static struct secpolicy * 1720 key_lookupbyid_and_remove_sp(u_int32_t id, bool from_kernel) 1721 { 1722 struct secpolicy *sp; 1723 1724 mutex_enter(&key_spd.lock); 1725 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { 1726 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 1727 /* 1728 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1729 * removed by userland programs. 1730 */ 1731 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1732 continue; 1733 if (sp->id == id) 1734 goto out; 1735 } 1736 1737 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { 1738 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 1739 /* 1740 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1741 * removed by userland programs. 1742 */ 1743 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1744 continue; 1745 if (sp->id == id) 1746 goto out; 1747 } 1748 out: 1749 if (sp != NULL) 1750 key_unlink_sp(sp); 1751 mutex_exit(&key_spd.lock); 1752 return sp; 1753 } 1754 1755 struct secpolicy * 1756 key_newsp(const char* where, int tag) 1757 { 1758 struct secpolicy *newsp = NULL; 1759 1760 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP); 1761 1762 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1763 "DP from %s:%u return SP:%p\n", where, tag, newsp); 1764 return newsp; 1765 } 1766 1767 /* 1768 * create secpolicy structure from sadb_x_policy structure. 1769 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1770 * so must be set properly later. 1771 */ 1772 static struct secpolicy * 1773 _key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error, 1774 bool from_kernel) 1775 { 1776 struct secpolicy *newsp; 1777 1778 KASSERT(!cpu_softintr_p()); 1779 KASSERT(xpl0 != NULL); 1780 KASSERT(len >= sizeof(*xpl0)); 1781 1782 if (len != PFKEY_EXTLEN(xpl0)) { 1783 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); 1784 *error = EINVAL; 1785 return NULL; 1786 } 1787 1788 newsp = KEY_NEWSP(); 1789 if (newsp == NULL) { 1790 *error = ENOBUFS; 1791 return NULL; 1792 } 1793 1794 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1795 newsp->policy = xpl0->sadb_x_policy_type; 1796 1797 /* check policy */ 1798 switch (xpl0->sadb_x_policy_type) { 1799 case IPSEC_POLICY_DISCARD: 1800 case IPSEC_POLICY_NONE: 1801 case IPSEC_POLICY_ENTRUST: 1802 case IPSEC_POLICY_BYPASS: 1803 newsp->req = NULL; 1804 *error = 0; 1805 return newsp; 1806 1807 case IPSEC_POLICY_IPSEC: 1808 /* Continued */ 1809 break; 1810 default: 1811 IPSECLOG(LOG_DEBUG, "invalid policy type.\n"); 1812 key_free_sp(newsp); 1813 *error = EINVAL; 1814 return NULL; 1815 } 1816 1817 /* IPSEC_POLICY_IPSEC */ 1818 { 1819 int tlen; 1820 const struct sadb_x_ipsecrequest *xisr; 1821 uint16_t xisr_reqid; 1822 struct ipsecrequest **p_isr = &newsp->req; 1823 1824 /* validity check */ 1825 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1826 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); 1827 *error = EINVAL; 1828 goto free_exit; 1829 } 1830 1831 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1832 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1); 1833 1834 while (tlen > 0) { 1835 /* length check */ 1836 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1837 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n"); 1838 *error = EINVAL; 1839 goto free_exit; 1840 } 1841 1842 /* allocate request buffer */ 1843 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP); 1844 1845 /* set values */ 1846 (*p_isr)->next = NULL; 1847 1848 switch (xisr->sadb_x_ipsecrequest_proto) { 1849 case IPPROTO_ESP: 1850 case IPPROTO_AH: 1851 case IPPROTO_IPCOMP: 1852 break; 1853 default: 1854 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n", 1855 xisr->sadb_x_ipsecrequest_proto); 1856 *error = EPROTONOSUPPORT; 1857 goto free_exit; 1858 } 1859 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1860 1861 switch (xisr->sadb_x_ipsecrequest_mode) { 1862 case IPSEC_MODE_TRANSPORT: 1863 case IPSEC_MODE_TUNNEL: 1864 break; 1865 case IPSEC_MODE_ANY: 1866 default: 1867 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n", 1868 xisr->sadb_x_ipsecrequest_mode); 1869 *error = EINVAL; 1870 goto free_exit; 1871 } 1872 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1873 1874 switch (xisr->sadb_x_ipsecrequest_level) { 1875 case IPSEC_LEVEL_DEFAULT: 1876 case IPSEC_LEVEL_USE: 1877 case IPSEC_LEVEL_REQUIRE: 1878 break; 1879 case IPSEC_LEVEL_UNIQUE: 1880 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid; 1881 /* validity check */ 1882 /* 1883 * case 1) from_kernel == false 1884 * That means the request comes from userland. 1885 * If range violation of reqid, kernel will 1886 * update it, don't refuse it. 1887 * 1888 * case 2) from_kernel == true 1889 * That means the request comes from kernel 1890 * (e.g. ipsec(4) I/F). 1891 * Use thre requested reqid to avoid inconsistency 1892 * between kernel's reqid and the reqid in pf_key 1893 * message sent to userland. The pf_key message is 1894 * built by diverting request mbuf. 1895 */ 1896 if (!from_kernel && 1897 xisr_reqid > IPSEC_MANUAL_REQID_MAX) { 1898 IPSECLOG(LOG_DEBUG, 1899 "reqid=%d range " 1900 "violation, updated by kernel.\n", 1901 xisr_reqid); 1902 xisr_reqid = 0; 1903 } 1904 1905 /* allocate new reqid id if reqid is zero. */ 1906 if (xisr_reqid == 0) { 1907 u_int16_t reqid = key_newreqid(); 1908 if (reqid == 0) { 1909 *error = ENOBUFS; 1910 goto free_exit; 1911 } 1912 (*p_isr)->saidx.reqid = reqid; 1913 } else { 1914 /* set it for manual keying. */ 1915 (*p_isr)->saidx.reqid = xisr_reqid; 1916 } 1917 break; 1918 1919 default: 1920 IPSECLOG(LOG_DEBUG, "invalid level=%u\n", 1921 xisr->sadb_x_ipsecrequest_level); 1922 *error = EINVAL; 1923 goto free_exit; 1924 } 1925 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1926 1927 /* set IP addresses if there */ 1928 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1929 const struct sockaddr *paddr; 1930 1931 paddr = (const struct sockaddr *)(xisr + 1); 1932 1933 /* validity check */ 1934 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) { 1935 IPSECLOG(LOG_DEBUG, "invalid request " 1936 "address length.\n"); 1937 *error = EINVAL; 1938 goto free_exit; 1939 } 1940 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len); 1941 1942 paddr = (const struct sockaddr *)((const char *)paddr 1943 + paddr->sa_len); 1944 1945 /* validity check */ 1946 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) { 1947 IPSECLOG(LOG_DEBUG, "invalid request " 1948 "address length.\n"); 1949 *error = EINVAL; 1950 goto free_exit; 1951 } 1952 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len); 1953 } 1954 1955 (*p_isr)->sp = newsp; 1956 1957 /* initialization for the next. */ 1958 p_isr = &(*p_isr)->next; 1959 tlen -= xisr->sadb_x_ipsecrequest_len; 1960 1961 /* validity check */ 1962 if (tlen < 0) { 1963 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n"); 1964 *error = EINVAL; 1965 goto free_exit; 1966 } 1967 1968 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr + 1969 xisr->sadb_x_ipsecrequest_len); 1970 } 1971 } 1972 1973 *error = 0; 1974 return newsp; 1975 1976 free_exit: 1977 key_free_sp(newsp); 1978 return NULL; 1979 } 1980 1981 struct secpolicy * 1982 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error) 1983 { 1984 1985 return _key_msg2sp(xpl0, len, error, false); 1986 } 1987 1988 u_int16_t 1989 key_newreqid(void) 1990 { 1991 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1992 1993 auto_reqid = (auto_reqid == 0xffff ? 1994 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1995 1996 /* XXX should be unique check */ 1997 1998 return auto_reqid; 1999 } 2000 2001 /* 2002 * copy secpolicy struct to sadb_x_policy structure indicated. 2003 */ 2004 struct mbuf * 2005 key_sp2msg(const struct secpolicy *sp, int mflag) 2006 { 2007 struct sadb_x_policy *xpl; 2008 int tlen; 2009 char *p; 2010 struct mbuf *m; 2011 2012 KASSERT(sp != NULL); 2013 2014 tlen = key_getspreqmsglen(sp); 2015 2016 m = key_alloc_mbuf(tlen, mflag); 2017 if (!m || m->m_next) { /*XXX*/ 2018 if (m) 2019 m_freem(m); 2020 return NULL; 2021 } 2022 2023 m->m_len = tlen; 2024 m->m_next = NULL; 2025 xpl = mtod(m, struct sadb_x_policy *); 2026 memset(xpl, 0, tlen); 2027 2028 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 2029 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 2030 xpl->sadb_x_policy_type = sp->policy; 2031 xpl->sadb_x_policy_dir = sp->spidx.dir; 2032 xpl->sadb_x_policy_id = sp->id; 2033 p = (char *)xpl + sizeof(*xpl); 2034 2035 /* if is the policy for ipsec ? */ 2036 if (sp->policy == IPSEC_POLICY_IPSEC) { 2037 struct sadb_x_ipsecrequest *xisr; 2038 struct ipsecrequest *isr; 2039 2040 for (isr = sp->req; isr != NULL; isr = isr->next) { 2041 2042 xisr = (struct sadb_x_ipsecrequest *)p; 2043 2044 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 2045 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 2046 xisr->sadb_x_ipsecrequest_level = isr->level; 2047 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 2048 2049 p += sizeof(*xisr); 2050 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len); 2051 p += isr->saidx.src.sa.sa_len; 2052 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len); 2053 p += isr->saidx.src.sa.sa_len; 2054 2055 xisr->sadb_x_ipsecrequest_len = 2056 PFKEY_ALIGN8(sizeof(*xisr) 2057 + isr->saidx.src.sa.sa_len 2058 + isr->saidx.dst.sa.sa_len); 2059 } 2060 } 2061 2062 return m; 2063 } 2064 2065 /* 2066 * m will not be freed nor modified. It never return NULL. 2067 * If it returns a mbuf of M_PKTHDR, the mbuf ensures to have 2068 * contiguous length at least sizeof(struct sadb_msg). 2069 */ 2070 static struct mbuf * 2071 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 2072 int ndeep, int nitem, ...) 2073 { 2074 va_list ap; 2075 int idx; 2076 int i; 2077 struct mbuf *result = NULL, *n; 2078 int len; 2079 2080 KASSERT(m != NULL); 2081 KASSERT(mhp != NULL); 2082 KASSERT(!cpu_softintr_p()); 2083 2084 va_start(ap, nitem); 2085 for (i = 0; i < nitem; i++) { 2086 idx = va_arg(ap, int); 2087 KASSERT(idx >= 0); 2088 KASSERT(idx <= SADB_EXT_MAX); 2089 /* don't attempt to pull empty extension */ 2090 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 2091 continue; 2092 if (idx != SADB_EXT_RESERVED && 2093 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 2094 continue; 2095 2096 if (idx == SADB_EXT_RESERVED) { 2097 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN); 2098 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2099 MGETHDR(n, M_WAITOK, MT_DATA); 2100 n->m_len = len; 2101 n->m_next = NULL; 2102 m_copydata(m, 0, sizeof(struct sadb_msg), 2103 mtod(n, void *)); 2104 } else if (i < ndeep) { 2105 len = mhp->extlen[idx]; 2106 n = key_alloc_mbuf(len, M_WAITOK); 2107 KASSERT(n->m_next == NULL); 2108 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 2109 mtod(n, void *)); 2110 } else { 2111 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 2112 M_WAITOK); 2113 } 2114 KASSERT(n != NULL); 2115 2116 if (result) 2117 m_cat(result, n); 2118 else 2119 result = n; 2120 } 2121 va_end(ap); 2122 2123 KASSERT(result != NULL); 2124 if ((result->m_flags & M_PKTHDR) != 0) { 2125 result->m_pkthdr.len = 0; 2126 for (n = result; n; n = n->m_next) 2127 result->m_pkthdr.len += n->m_len; 2128 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 2129 } 2130 2131 return result; 2132 } 2133 2134 /* 2135 * The argument _sp must not overwrite until SP is created and registered 2136 * successfully. 2137 */ 2138 static int 2139 key_spdadd(struct socket *so, struct mbuf *m, 2140 const struct sadb_msghdr *mhp, struct secpolicy **_sp, 2141 bool from_kernel) 2142 { 2143 const struct sockaddr *src, *dst; 2144 const struct sadb_x_policy *xpl0; 2145 struct sadb_x_policy *xpl; 2146 const struct sadb_lifetime *lft = NULL; 2147 struct secpolicyindex spidx; 2148 struct secpolicy *newsp; 2149 int error; 2150 uint32_t sadb_x_policy_id; 2151 2152 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2153 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2154 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2155 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2156 return key_senderror(so, m, EINVAL); 2157 } 2158 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2159 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2160 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2161 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2162 return key_senderror(so, m, EINVAL); 2163 } 2164 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 2165 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < 2166 sizeof(struct sadb_lifetime)) { 2167 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2168 return key_senderror(so, m, EINVAL); 2169 } 2170 lft = mhp->ext[SADB_EXT_LIFETIME_HARD]; 2171 } 2172 2173 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 2174 2175 /* checking the direciton. */ 2176 switch (xpl0->sadb_x_policy_dir) { 2177 case IPSEC_DIR_INBOUND: 2178 case IPSEC_DIR_OUTBOUND: 2179 break; 2180 default: 2181 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); 2182 return key_senderror(so, m, EINVAL); 2183 } 2184 2185 /* check policy */ 2186 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */ 2187 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST || 2188 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 2189 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n"); 2190 return key_senderror(so, m, EINVAL); 2191 } 2192 2193 /* policy requests are mandatory when action is ipsec. */ 2194 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX && 2195 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 2196 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 2197 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n"); 2198 return key_senderror(so, m, EINVAL); 2199 } 2200 2201 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 2202 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 2203 2204 /* sanity check on addr pair */ 2205 if (src->sa_family != dst->sa_family) 2206 return key_senderror(so, m, EINVAL); 2207 if (src->sa_len != dst->sa_len) 2208 return key_senderror(so, m, EINVAL); 2209 2210 key_init_spidx_bymsghdr(&spidx, mhp); 2211 2212 /* 2213 * checking there is SP already or not. 2214 * SPDUPDATE doesn't depend on whether there is a SP or not. 2215 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 2216 * then error. 2217 */ 2218 { 2219 struct secpolicy *sp; 2220 2221 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2222 sp = key_lookup_and_remove_sp(&spidx, from_kernel); 2223 if (sp != NULL) 2224 key_destroy_sp(sp); 2225 } else { 2226 sp = key_getsp(&spidx); 2227 if (sp != NULL) { 2228 KEY_SP_UNREF(&sp); 2229 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n"); 2230 return key_senderror(so, m, EEXIST); 2231 } 2232 } 2233 } 2234 2235 /* allocation new SP entry */ 2236 newsp = _key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error, from_kernel); 2237 if (newsp == NULL) { 2238 return key_senderror(so, m, error); 2239 } 2240 2241 newsp->id = key_getnewspid(); 2242 if (newsp->id == 0) { 2243 kmem_free(newsp, sizeof(*newsp)); 2244 return key_senderror(so, m, ENOBUFS); 2245 } 2246 2247 newsp->spidx = spidx; 2248 newsp->created = time_uptime; 2249 newsp->lastused = newsp->created; 2250 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 2251 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 2252 if (from_kernel) 2253 newsp->origin = IPSEC_SPORIGIN_KERNEL; 2254 else 2255 newsp->origin = IPSEC_SPORIGIN_USER; 2256 2257 key_init_sp(newsp); 2258 if (from_kernel) 2259 KEY_SP_REF(newsp); 2260 2261 sadb_x_policy_id = newsp->id; 2262 2263 if (_sp != NULL) 2264 *_sp = newsp; 2265 2266 mutex_enter(&key_spd.lock); 2267 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp); 2268 mutex_exit(&key_spd.lock); 2269 /* 2270 * We don't have a reference to newsp, so we must not touch newsp from 2271 * now on. If you want to do, you must take a reference beforehand. 2272 */ 2273 newsp = NULL; 2274 2275 #ifdef notyet 2276 /* delete the entry in key_misc.spacqlist */ 2277 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2278 struct secspacq *spacq = key_getspacq(&spidx); 2279 if (spacq != NULL) { 2280 /* reset counter in order to deletion by timehandler. */ 2281 spacq->created = time_uptime; 2282 spacq->count = 0; 2283 } 2284 } 2285 #endif 2286 2287 /* Invalidate all cached SPD pointers in the PCBs. */ 2288 ipsec_invalpcbcacheall(); 2289 2290 #if defined(GATEWAY) 2291 /* Invalidate the ipflow cache, as well. */ 2292 ipflow_invalidate_all(0); 2293 #ifdef INET6 2294 if (in6_present) 2295 ip6flow_invalidate_all(0); 2296 #endif /* INET6 */ 2297 #endif /* GATEWAY */ 2298 2299 key_update_used(); 2300 2301 { 2302 struct mbuf *n, *mpolicy; 2303 int off; 2304 2305 /* create new sadb_msg to reply. */ 2306 if (lft) { 2307 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 2308 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 2309 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2310 } else { 2311 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 2312 SADB_X_EXT_POLICY, 2313 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2314 } 2315 2316 key_fill_replymsg(n, 0); 2317 off = 0; 2318 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 2319 sizeof(*xpl), &off); 2320 if (mpolicy == NULL) { 2321 /* n is already freed */ 2322 /* 2323 * valid sp has been created, so we does not overwrite _sp 2324 * NULL here. let caller decide to use the sp or not. 2325 */ 2326 return key_senderror(so, m, ENOBUFS); 2327 } 2328 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off); 2329 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 2330 m_freem(n); 2331 /* ditto */ 2332 return key_senderror(so, m, EINVAL); 2333 } 2334 2335 xpl->sadb_x_policy_id = sadb_x_policy_id; 2336 2337 m_freem(m); 2338 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2339 } 2340 } 2341 2342 /* 2343 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 2344 * add an entry to SP database, when received 2345 * <base, address(SD), (lifetime(H),) policy> 2346 * from the user(?). 2347 * Adding to SP database, 2348 * and send 2349 * <base, address(SD), (lifetime(H),) policy> 2350 * to the socket which was send. 2351 * 2352 * SPDADD set a unique policy entry. 2353 * SPDSETIDX like SPDADD without a part of policy requests. 2354 * SPDUPDATE replace a unique policy entry. 2355 * 2356 * m will always be freed. 2357 */ 2358 static int 2359 key_api_spdadd(struct socket *so, struct mbuf *m, 2360 const struct sadb_msghdr *mhp) 2361 { 2362 2363 return key_spdadd(so, m, mhp, NULL, false); 2364 } 2365 2366 struct secpolicy * 2367 key_kpi_spdadd(struct mbuf *m) 2368 { 2369 struct sadb_msghdr mh; 2370 int error; 2371 struct secpolicy *sp = NULL; 2372 2373 error = key_align(m, &mh); 2374 if (error) 2375 return NULL; 2376 2377 error = key_spdadd(NULL, m, &mh, &sp, true); 2378 if (error) { 2379 /* 2380 * Currently, when key_spdadd() cannot send a PFKEY message 2381 * which means SP has been created, key_spdadd() returns error 2382 * although SP is created successfully. 2383 * Kernel components would not care PFKEY messages, so return 2384 * the "sp" regardless of error code. key_spdadd() overwrites 2385 * the argument only if SP is created successfully. 2386 */ 2387 } 2388 return sp; 2389 } 2390 2391 /* 2392 * get new policy id. 2393 * OUT: 2394 * 0: failure. 2395 * others: success. 2396 */ 2397 static u_int32_t 2398 key_getnewspid(void) 2399 { 2400 u_int32_t newid = 0; 2401 int count = key_spi_trycnt; /* XXX */ 2402 struct secpolicy *sp; 2403 2404 /* when requesting to allocate spi ranged */ 2405 while (count--) { 2406 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); 2407 2408 sp = key_getspbyid(newid); 2409 if (sp == NULL) 2410 break; 2411 2412 KEY_SP_UNREF(&sp); 2413 } 2414 2415 if (count == 0 || newid == 0) { 2416 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n"); 2417 return 0; 2418 } 2419 2420 return newid; 2421 } 2422 2423 /* 2424 * SADB_SPDDELETE processing 2425 * receive 2426 * <base, address(SD), policy(*)> 2427 * from the user(?), and set SADB_SASTATE_DEAD, 2428 * and send, 2429 * <base, address(SD), policy(*)> 2430 * to the ikmpd. 2431 * policy(*) including direction of policy. 2432 * 2433 * m will always be freed. 2434 */ 2435 static int 2436 key_api_spddelete(struct socket *so, struct mbuf *m, 2437 const struct sadb_msghdr *mhp) 2438 { 2439 struct sadb_x_policy *xpl0; 2440 struct secpolicyindex spidx; 2441 struct secpolicy *sp; 2442 2443 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2444 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2445 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2446 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2447 return key_senderror(so, m, EINVAL); 2448 } 2449 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2450 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2451 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2452 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2453 return key_senderror(so, m, EINVAL); 2454 } 2455 2456 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 2457 2458 /* checking the directon. */ 2459 switch (xpl0->sadb_x_policy_dir) { 2460 case IPSEC_DIR_INBOUND: 2461 case IPSEC_DIR_OUTBOUND: 2462 break; 2463 default: 2464 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); 2465 return key_senderror(so, m, EINVAL); 2466 } 2467 2468 /* make secindex */ 2469 key_init_spidx_bymsghdr(&spidx, mhp); 2470 2471 /* Is there SP in SPD ? */ 2472 sp = key_lookup_and_remove_sp(&spidx, false); 2473 if (sp == NULL) { 2474 IPSECLOG(LOG_DEBUG, "no SP found.\n"); 2475 return key_senderror(so, m, EINVAL); 2476 } 2477 2478 /* save policy id to buffer to be returned. */ 2479 xpl0->sadb_x_policy_id = sp->id; 2480 2481 key_destroy_sp(sp); 2482 2483 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2484 2485 { 2486 struct mbuf *n; 2487 2488 /* create new sadb_msg to reply. */ 2489 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2490 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2491 key_fill_replymsg(n, 0); 2492 m_freem(m); 2493 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2494 } 2495 } 2496 2497 static struct mbuf * 2498 key_alloc_mbuf_simple(int len, int mflag) 2499 { 2500 struct mbuf *n; 2501 2502 KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p())); 2503 2504 MGETHDR(n, mflag, MT_DATA); 2505 if (n && len > MHLEN) { 2506 MCLGET(n, mflag); 2507 if ((n->m_flags & M_EXT) == 0) { 2508 m_freem(n); 2509 n = NULL; 2510 } 2511 } 2512 return n; 2513 } 2514 2515 /* 2516 * SADB_SPDDELETE2 processing 2517 * receive 2518 * <base, policy(*)> 2519 * from the user(?), and set SADB_SASTATE_DEAD, 2520 * and send, 2521 * <base, policy(*)> 2522 * to the ikmpd. 2523 * policy(*) including direction of policy. 2524 * 2525 * m will always be freed. 2526 */ 2527 static int 2528 key_spddelete2(struct socket *so, struct mbuf *m, 2529 const struct sadb_msghdr *mhp, bool from_kernel) 2530 { 2531 u_int32_t id; 2532 struct secpolicy *sp; 2533 const struct sadb_x_policy *xpl; 2534 2535 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2536 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2537 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2538 return key_senderror(so, m, EINVAL); 2539 } 2540 2541 xpl = mhp->ext[SADB_X_EXT_POLICY]; 2542 id = xpl->sadb_x_policy_id; 2543 2544 /* Is there SP in SPD ? */ 2545 sp = key_lookupbyid_and_remove_sp(id, from_kernel); 2546 if (sp == NULL) { 2547 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); 2548 return key_senderror(so, m, EINVAL); 2549 } 2550 2551 key_destroy_sp(sp); 2552 2553 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2554 2555 { 2556 struct mbuf *n, *nn; 2557 int off, len; 2558 2559 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); 2560 2561 /* create new sadb_msg to reply. */ 2562 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2563 2564 n = key_alloc_mbuf_simple(len, M_WAITOK); 2565 n->m_len = len; 2566 n->m_next = NULL; 2567 off = 0; 2568 2569 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 2570 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2571 2572 KASSERTMSG(off == len, "length inconsistency"); 2573 2574 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2575 mhp->extlen[SADB_X_EXT_POLICY], M_WAITOK); 2576 2577 n->m_pkthdr.len = 0; 2578 for (nn = n; nn; nn = nn->m_next) 2579 n->m_pkthdr.len += nn->m_len; 2580 2581 key_fill_replymsg(n, 0); 2582 m_freem(m); 2583 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2584 } 2585 } 2586 2587 /* 2588 * SADB_SPDDELETE2 processing 2589 * receive 2590 * <base, policy(*)> 2591 * from the user(?), and set SADB_SASTATE_DEAD, 2592 * and send, 2593 * <base, policy(*)> 2594 * to the ikmpd. 2595 * policy(*) including direction of policy. 2596 * 2597 * m will always be freed. 2598 */ 2599 static int 2600 key_api_spddelete2(struct socket *so, struct mbuf *m, 2601 const struct sadb_msghdr *mhp) 2602 { 2603 2604 return key_spddelete2(so, m, mhp, false); 2605 } 2606 2607 int 2608 key_kpi_spddelete2(struct mbuf *m) 2609 { 2610 struct sadb_msghdr mh; 2611 int error; 2612 2613 error = key_align(m, &mh); 2614 if (error) 2615 return EINVAL; 2616 2617 return key_spddelete2(NULL, m, &mh, true); 2618 } 2619 2620 /* 2621 * SADB_X_GET processing 2622 * receive 2623 * <base, policy(*)> 2624 * from the user(?), 2625 * and send, 2626 * <base, address(SD), policy> 2627 * to the ikmpd. 2628 * policy(*) including direction of policy. 2629 * 2630 * m will always be freed. 2631 */ 2632 static int 2633 key_api_spdget(struct socket *so, struct mbuf *m, 2634 const struct sadb_msghdr *mhp) 2635 { 2636 u_int32_t id; 2637 struct secpolicy *sp; 2638 struct mbuf *n; 2639 const struct sadb_x_policy *xpl; 2640 2641 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2642 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2643 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2644 return key_senderror(so, m, EINVAL); 2645 } 2646 2647 xpl = mhp->ext[SADB_X_EXT_POLICY]; 2648 id = xpl->sadb_x_policy_id; 2649 2650 /* Is there SP in SPD ? */ 2651 sp = key_getspbyid(id); 2652 if (sp == NULL) { 2653 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); 2654 return key_senderror(so, m, ENOENT); 2655 } 2656 2657 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, 2658 mhp->msg->sadb_msg_pid); 2659 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */ 2660 m_freem(m); 2661 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2662 } 2663 2664 #ifdef notyet 2665 /* 2666 * SADB_X_SPDACQUIRE processing. 2667 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2668 * send 2669 * <base, policy(*)> 2670 * to KMD, and expect to receive 2671 * <base> with SADB_X_SPDACQUIRE if error occurred, 2672 * or 2673 * <base, policy> 2674 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2675 * policy(*) is without policy requests. 2676 * 2677 * 0 : succeed 2678 * others: error number 2679 */ 2680 int 2681 key_spdacquire(const struct secpolicy *sp) 2682 { 2683 struct mbuf *result = NULL, *m; 2684 struct secspacq *newspacq; 2685 int error; 2686 2687 KASSERT(sp != NULL); 2688 KASSERTMSG(sp->req == NULL, "called but there is request"); 2689 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC, 2690 "policy mismathed. IPsec is expected"); 2691 2692 /* Get an entry to check whether sent message or not. */ 2693 newspacq = key_getspacq(&sp->spidx); 2694 if (newspacq != NULL) { 2695 if (key_blockacq_count < newspacq->count) { 2696 /* reset counter and do send message. */ 2697 newspacq->count = 0; 2698 } else { 2699 /* increment counter and do nothing. */ 2700 newspacq->count++; 2701 return 0; 2702 } 2703 } else { 2704 /* make new entry for blocking to send SADB_ACQUIRE. */ 2705 newspacq = key_newspacq(&sp->spidx); 2706 if (newspacq == NULL) 2707 return ENOBUFS; 2708 2709 /* add to key_misc.acqlist */ 2710 LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain); 2711 } 2712 2713 /* create new sadb_msg to reply. */ 2714 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2715 if (!m) { 2716 error = ENOBUFS; 2717 goto fail; 2718 } 2719 result = m; 2720 2721 result->m_pkthdr.len = 0; 2722 for (m = result; m; m = m->m_next) 2723 result->m_pkthdr.len += m->m_len; 2724 2725 mtod(result, struct sadb_msg *)->sadb_msg_len = 2726 PFKEY_UNIT64(result->m_pkthdr.len); 2727 2728 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2729 2730 fail: 2731 if (result) 2732 m_freem(result); 2733 return error; 2734 } 2735 #endif /* notyet */ 2736 2737 /* 2738 * SADB_SPDFLUSH processing 2739 * receive 2740 * <base> 2741 * from the user, and free all entries in secpctree. 2742 * and send, 2743 * <base> 2744 * to the user. 2745 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2746 * 2747 * m will always be freed. 2748 */ 2749 static int 2750 key_api_spdflush(struct socket *so, struct mbuf *m, 2751 const struct sadb_msghdr *mhp) 2752 { 2753 struct sadb_msg *newmsg; 2754 struct secpolicy *sp; 2755 u_int dir; 2756 2757 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2758 return key_senderror(so, m, EINVAL); 2759 2760 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2761 retry: 2762 mutex_enter(&key_spd.lock); 2763 SPLIST_WRITER_FOREACH(sp, dir) { 2764 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 2765 /* 2766 * Userlang programs can remove SPs created by userland 2767 * probrams only, that is, they cannot remove SPs 2768 * created in kernel(e.g. ipsec(4) I/F). 2769 */ 2770 if (sp->origin == IPSEC_SPORIGIN_USER) { 2771 key_unlink_sp(sp); 2772 mutex_exit(&key_spd.lock); 2773 key_destroy_sp(sp); 2774 goto retry; 2775 } 2776 } 2777 mutex_exit(&key_spd.lock); 2778 } 2779 2780 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2781 2782 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2783 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 2784 return key_senderror(so, m, ENOBUFS); 2785 } 2786 2787 if (m->m_next) 2788 m_freem(m->m_next); 2789 m->m_next = NULL; 2790 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2791 newmsg = mtod(m, struct sadb_msg *); 2792 newmsg->sadb_msg_errno = 0; 2793 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2794 2795 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2796 } 2797 2798 static struct sockaddr key_src = { 2799 .sa_len = 2, 2800 .sa_family = PF_KEY, 2801 }; 2802 2803 static struct mbuf * 2804 key_setspddump_chain(int *errorp, int *lenp, pid_t pid) 2805 { 2806 struct secpolicy *sp; 2807 int cnt; 2808 u_int dir; 2809 struct mbuf *m, *n, *prev; 2810 int totlen; 2811 2812 KASSERT(mutex_owned(&key_spd.lock)); 2813 2814 *lenp = 0; 2815 2816 /* search SPD entry and get buffer size. */ 2817 cnt = 0; 2818 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2819 SPLIST_WRITER_FOREACH(sp, dir) { 2820 cnt++; 2821 } 2822 } 2823 2824 if (cnt == 0) { 2825 *errorp = ENOENT; 2826 return (NULL); 2827 } 2828 2829 m = NULL; 2830 prev = m; 2831 totlen = 0; 2832 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2833 SPLIST_WRITER_FOREACH(sp, dir) { 2834 --cnt; 2835 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 2836 2837 totlen += n->m_pkthdr.len; 2838 if (!m) { 2839 m = n; 2840 } else { 2841 prev->m_nextpkt = n; 2842 } 2843 prev = n; 2844 } 2845 } 2846 2847 *lenp = totlen; 2848 *errorp = 0; 2849 return (m); 2850 } 2851 2852 /* 2853 * SADB_SPDDUMP processing 2854 * receive 2855 * <base> 2856 * from the user, and dump all SP leaves 2857 * and send, 2858 * <base> ..... 2859 * to the ikmpd. 2860 * 2861 * m will always be freed. 2862 */ 2863 static int 2864 key_api_spddump(struct socket *so, struct mbuf *m0, 2865 const struct sadb_msghdr *mhp) 2866 { 2867 struct mbuf *n; 2868 int error, len; 2869 int ok; 2870 pid_t pid; 2871 2872 pid = mhp->msg->sadb_msg_pid; 2873 /* 2874 * If the requestor has insufficient socket-buffer space 2875 * for the entire chain, nobody gets any response to the DUMP. 2876 * XXX For now, only the requestor ever gets anything. 2877 * Moreover, if the requestor has any space at all, they receive 2878 * the entire chain, otherwise the request is refused with ENOBUFS. 2879 */ 2880 if (sbspace(&so->so_rcv) <= 0) { 2881 return key_senderror(so, m0, ENOBUFS); 2882 } 2883 2884 mutex_enter(&key_spd.lock); 2885 n = key_setspddump_chain(&error, &len, pid); 2886 mutex_exit(&key_spd.lock); 2887 2888 if (n == NULL) { 2889 return key_senderror(so, m0, ENOENT); 2890 } 2891 { 2892 uint64_t *ps = PFKEY_STAT_GETREF(); 2893 ps[PFKEY_STAT_IN_TOTAL]++; 2894 ps[PFKEY_STAT_IN_BYTES] += len; 2895 PFKEY_STAT_PUTREF(); 2896 } 2897 2898 /* 2899 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 2900 * The requestor receives either the entire chain, or an 2901 * error message with ENOBUFS. 2902 */ 2903 2904 /* 2905 * sbappendchainwith record takes the chain of entries, one 2906 * packet-record per SPD entry, prepends the key_src sockaddr 2907 * to each packet-record, links the sockaddr mbufs into a new 2908 * list of records, then appends the entire resulting 2909 * list to the requesting socket. 2910 */ 2911 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, 2912 SB_PRIO_ONESHOT_OVERFLOW); 2913 2914 if (!ok) { 2915 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 2916 m_freem(n); 2917 return key_senderror(so, m0, ENOBUFS); 2918 } 2919 2920 m_freem(m0); 2921 return error; 2922 } 2923 2924 /* 2925 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23 2926 */ 2927 static int 2928 key_api_nat_map(struct socket *so, struct mbuf *m, 2929 const struct sadb_msghdr *mhp) 2930 { 2931 struct sadb_x_nat_t_type *type; 2932 struct sadb_x_nat_t_port *sport; 2933 struct sadb_x_nat_t_port *dport; 2934 struct sadb_address *iaddr, *raddr; 2935 struct sadb_x_nat_t_frag *frag; 2936 2937 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 2938 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 2939 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) { 2940 IPSECLOG(LOG_DEBUG, "invalid message.\n"); 2941 return key_senderror(so, m, EINVAL); 2942 } 2943 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 2944 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 2945 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 2946 IPSECLOG(LOG_DEBUG, "invalid message.\n"); 2947 return key_senderror(so, m, EINVAL); 2948 } 2949 2950 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) && 2951 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) { 2952 IPSECLOG(LOG_DEBUG, "invalid message\n"); 2953 return key_senderror(so, m, EINVAL); 2954 } 2955 2956 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) && 2957 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) { 2958 IPSECLOG(LOG_DEBUG, "invalid message\n"); 2959 return key_senderror(so, m, EINVAL); 2960 } 2961 2962 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) && 2963 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) { 2964 IPSECLOG(LOG_DEBUG, "invalid message\n"); 2965 return key_senderror(so, m, EINVAL); 2966 } 2967 2968 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 2969 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 2970 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 2971 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; 2972 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; 2973 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 2974 2975 /* 2976 * XXX handle that, it should also contain a SA, or anything 2977 * that enable to update the SA information. 2978 */ 2979 2980 return 0; 2981 } 2982 2983 /* 2984 * Never return NULL. 2985 */ 2986 static struct mbuf * 2987 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid) 2988 { 2989 struct mbuf *result = NULL, *m; 2990 2991 KASSERT(!cpu_softintr_p()); 2992 2993 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, 2994 key_sp_refcnt(sp), M_WAITOK); 2995 result = m; 2996 2997 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2998 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK); 2999 m_cat(result, m); 3000 3001 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3002 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK); 3003 m_cat(result, m); 3004 3005 m = key_sp2msg(sp, M_WAITOK); 3006 m_cat(result, m); 3007 3008 KASSERT(result->m_flags & M_PKTHDR); 3009 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 3010 3011 result->m_pkthdr.len = 0; 3012 for (m = result; m; m = m->m_next) 3013 result->m_pkthdr.len += m->m_len; 3014 3015 mtod(result, struct sadb_msg *)->sadb_msg_len = 3016 PFKEY_UNIT64(result->m_pkthdr.len); 3017 3018 return result; 3019 } 3020 3021 /* 3022 * get PFKEY message length for security policy and request. 3023 */ 3024 static u_int 3025 key_getspreqmsglen(const struct secpolicy *sp) 3026 { 3027 u_int tlen; 3028 3029 tlen = sizeof(struct sadb_x_policy); 3030 3031 /* if is the policy for ipsec ? */ 3032 if (sp->policy != IPSEC_POLICY_IPSEC) 3033 return tlen; 3034 3035 /* get length of ipsec requests */ 3036 { 3037 const struct ipsecrequest *isr; 3038 int len; 3039 3040 for (isr = sp->req; isr != NULL; isr = isr->next) { 3041 len = sizeof(struct sadb_x_ipsecrequest) 3042 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len; 3043 3044 tlen += PFKEY_ALIGN8(len); 3045 } 3046 } 3047 3048 return tlen; 3049 } 3050 3051 /* 3052 * SADB_SPDEXPIRE processing 3053 * send 3054 * <base, address(SD), lifetime(CH), policy> 3055 * to KMD by PF_KEY. 3056 * 3057 * OUT: 0 : succeed 3058 * others : error number 3059 */ 3060 static int 3061 key_spdexpire(struct secpolicy *sp) 3062 { 3063 int s; 3064 struct mbuf *result = NULL, *m; 3065 int len; 3066 int error = -1; 3067 struct sadb_lifetime *lt; 3068 3069 /* XXX: Why do we lock ? */ 3070 s = splsoftnet(); /*called from softclock()*/ 3071 3072 KASSERT(sp != NULL); 3073 3074 /* set msg header */ 3075 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0, M_WAITOK); 3076 result = m; 3077 3078 /* create lifetime extension (current and hard) */ 3079 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 3080 m = key_alloc_mbuf(len, M_WAITOK); 3081 KASSERT(m->m_next == NULL); 3082 3083 memset(mtod(m, void *), 0, len); 3084 lt = mtod(m, struct sadb_lifetime *); 3085 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3086 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3087 lt->sadb_lifetime_allocations = 0; 3088 lt->sadb_lifetime_bytes = 0; 3089 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created); 3090 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused); 3091 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 3092 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3093 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 3094 lt->sadb_lifetime_allocations = 0; 3095 lt->sadb_lifetime_bytes = 0; 3096 lt->sadb_lifetime_addtime = sp->lifetime; 3097 lt->sadb_lifetime_usetime = sp->validtime; 3098 m_cat(result, m); 3099 3100 /* set sadb_address for source */ 3101 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa, 3102 sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK); 3103 m_cat(result, m); 3104 3105 /* set sadb_address for destination */ 3106 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa, 3107 sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK); 3108 m_cat(result, m); 3109 3110 /* set secpolicy */ 3111 m = key_sp2msg(sp, M_WAITOK); 3112 m_cat(result, m); 3113 3114 KASSERT(result->m_flags & M_PKTHDR); 3115 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 3116 3117 result->m_pkthdr.len = 0; 3118 for (m = result; m; m = m->m_next) 3119 result->m_pkthdr.len += m->m_len; 3120 3121 mtod(result, struct sadb_msg *)->sadb_msg_len = 3122 PFKEY_UNIT64(result->m_pkthdr.len); 3123 3124 error = key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 3125 splx(s); 3126 return error; 3127 } 3128 3129 /* %%% SAD management */ 3130 /* 3131 * allocating a memory for new SA head, and copy from the values of mhp. 3132 * OUT: NULL : failure due to the lack of memory. 3133 * others : pointer to new SA head. 3134 */ 3135 static struct secashead * 3136 key_newsah(const struct secasindex *saidx) 3137 { 3138 struct secashead *newsah; 3139 int i; 3140 3141 KASSERT(saidx != NULL); 3142 3143 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP); 3144 for (i = 0; i < __arraycount(newsah->savlist); i++) 3145 PSLIST_INIT(&newsah->savlist[i]); 3146 newsah->saidx = *saidx; 3147 3148 localcount_init(&newsah->localcount); 3149 /* Take a reference for the caller */ 3150 localcount_acquire(&newsah->localcount); 3151 3152 /* Add to the sah list */ 3153 SAHLIST_ENTRY_INIT(newsah); 3154 newsah->state = SADB_SASTATE_MATURE; 3155 mutex_enter(&key_sad.lock); 3156 SAHLIST_WRITER_INSERT_HEAD(newsah); 3157 mutex_exit(&key_sad.lock); 3158 3159 return newsah; 3160 } 3161 3162 static bool 3163 key_sah_has_sav(struct secashead *sah) 3164 { 3165 u_int state; 3166 3167 KASSERT(mutex_owned(&key_sad.lock)); 3168 3169 SASTATE_ANY_FOREACH(state) { 3170 if (!SAVLIST_WRITER_EMPTY(sah, state)) 3171 return true; 3172 } 3173 3174 return false; 3175 } 3176 3177 static void 3178 key_unlink_sah(struct secashead *sah) 3179 { 3180 3181 KASSERT(!cpu_softintr_p()); 3182 KASSERT(mutex_owned(&key_sad.lock)); 3183 KASSERT(sah->state == SADB_SASTATE_DEAD); 3184 3185 /* Remove from the sah list */ 3186 SAHLIST_WRITER_REMOVE(sah); 3187 3188 KDASSERT(mutex_ownable(softnet_lock)); 3189 key_sad_pserialize_perform(); 3190 3191 localcount_drain(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); 3192 } 3193 3194 static void 3195 key_destroy_sah(struct secashead *sah) 3196 { 3197 3198 rtcache_free(&sah->sa_route); 3199 3200 SAHLIST_ENTRY_DESTROY(sah); 3201 localcount_fini(&sah->localcount); 3202 3203 if (sah->idents != NULL) 3204 kmem_free(sah->idents, sah->idents_len); 3205 if (sah->identd != NULL) 3206 kmem_free(sah->identd, sah->identd_len); 3207 3208 kmem_free(sah, sizeof(*sah)); 3209 } 3210 3211 /* 3212 * allocating a new SA with LARVAL state. 3213 * key_api_add() and key_api_getspi() call, 3214 * and copy the values of mhp into new buffer. 3215 * When SAD message type is GETSPI: 3216 * to set sequence number from acq_seq++, 3217 * to set zero to SPI. 3218 * not to call key_setsava(). 3219 * OUT: NULL : fail 3220 * others : pointer to new secasvar. 3221 * 3222 * does not modify mbuf. does not free mbuf on error. 3223 */ 3224 static struct secasvar * 3225 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp, 3226 int *errp, const char* where, int tag) 3227 { 3228 struct secasvar *newsav; 3229 const struct sadb_sa *xsa; 3230 3231 KASSERT(!cpu_softintr_p()); 3232 KASSERT(m != NULL); 3233 KASSERT(mhp != NULL); 3234 KASSERT(mhp->msg != NULL); 3235 3236 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); 3237 3238 switch (mhp->msg->sadb_msg_type) { 3239 case SADB_GETSPI: 3240 newsav->spi = 0; 3241 3242 #ifdef IPSEC_DOSEQCHECK 3243 /* sync sequence number */ 3244 if (mhp->msg->sadb_msg_seq == 0) 3245 newsav->seq = 3246 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 3247 else 3248 #endif 3249 newsav->seq = mhp->msg->sadb_msg_seq; 3250 break; 3251 3252 case SADB_ADD: 3253 /* sanity check */ 3254 if (mhp->ext[SADB_EXT_SA] == NULL) { 3255 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 3256 *errp = EINVAL; 3257 goto error; 3258 } 3259 xsa = mhp->ext[SADB_EXT_SA]; 3260 newsav->spi = xsa->sadb_sa_spi; 3261 newsav->seq = mhp->msg->sadb_msg_seq; 3262 break; 3263 default: 3264 *errp = EINVAL; 3265 goto error; 3266 } 3267 3268 /* copy sav values */ 3269 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 3270 *errp = key_setsaval(newsav, m, mhp); 3271 if (*errp) 3272 goto error; 3273 } else { 3274 /* We don't allow lft_c to be NULL */ 3275 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime), 3276 KM_SLEEP); 3277 newsav->lft_c_counters_percpu = 3278 percpu_alloc(sizeof(lifetime_counters_t)); 3279 } 3280 3281 /* reset created */ 3282 newsav->created = time_uptime; 3283 newsav->pid = mhp->msg->sadb_msg_pid; 3284 3285 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 3286 "DP from %s:%u return SA:%p\n", where, tag, newsav); 3287 return newsav; 3288 3289 error: 3290 KASSERT(*errp != 0); 3291 kmem_free(newsav, sizeof(*newsav)); 3292 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 3293 "DP from %s:%u return SA:NULL\n", where, tag); 3294 return NULL; 3295 } 3296 3297 3298 static void 3299 key_clear_xform(struct secasvar *sav) 3300 { 3301 3302 /* 3303 * Cleanup xform state. Note that zeroize'ing causes the 3304 * keys to be cleared; otherwise we must do it ourself. 3305 */ 3306 if (sav->tdb_xform != NULL) { 3307 sav->tdb_xform->xf_zeroize(sav); 3308 sav->tdb_xform = NULL; 3309 } else { 3310 if (sav->key_auth != NULL) 3311 explicit_memset(_KEYBUF(sav->key_auth), 0, 3312 _KEYLEN(sav->key_auth)); 3313 if (sav->key_enc != NULL) 3314 explicit_memset(_KEYBUF(sav->key_enc), 0, 3315 _KEYLEN(sav->key_enc)); 3316 } 3317 } 3318 3319 /* 3320 * free() SA variable entry. 3321 */ 3322 static void 3323 key_delsav(struct secasvar *sav) 3324 { 3325 3326 key_clear_xform(sav); 3327 key_freesaval(sav); 3328 kmem_free(sav, sizeof(*sav)); 3329 } 3330 3331 /* 3332 * Must be called in a pserialize read section. A held sah 3333 * must be released by key_sah_unref after use. 3334 */ 3335 static void 3336 key_sah_ref(struct secashead *sah) 3337 { 3338 3339 localcount_acquire(&sah->localcount); 3340 } 3341 3342 /* 3343 * Must be called without holding key_sad.lock because the lock 3344 * would be held in localcount_release. 3345 */ 3346 static void 3347 key_sah_unref(struct secashead *sah) 3348 { 3349 3350 KDASSERT(mutex_ownable(&key_sad.lock)); 3351 3352 localcount_release(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); 3353 } 3354 3355 /* 3356 * Search SAD and return sah. Must be called in a pserialize 3357 * read section. 3358 * OUT: 3359 * NULL : not found 3360 * others : found, pointer to a SA. 3361 */ 3362 static struct secashead * 3363 key_getsah(const struct secasindex *saidx, int flag) 3364 { 3365 struct secashead *sah; 3366 3367 SAHLIST_READER_FOREACH(sah) { 3368 if (sah->state == SADB_SASTATE_DEAD) 3369 continue; 3370 if (key_saidx_match(&sah->saidx, saidx, flag)) 3371 return sah; 3372 } 3373 3374 return NULL; 3375 } 3376 3377 /* 3378 * Search SAD and return sah. If sah is returned, the caller must call 3379 * key_sah_unref to releaset a reference. 3380 * OUT: 3381 * NULL : not found 3382 * others : found, pointer to a SA. 3383 */ 3384 static struct secashead * 3385 key_getsah_ref(const struct secasindex *saidx, int flag) 3386 { 3387 struct secashead *sah; 3388 int s; 3389 3390 s = pserialize_read_enter(); 3391 sah = key_getsah(saidx, flag); 3392 if (sah != NULL) 3393 key_sah_ref(sah); 3394 pserialize_read_exit(s); 3395 3396 return sah; 3397 } 3398 3399 /* 3400 * check not to be duplicated SPI. 3401 * NOTE: this function is too slow due to searching all SAD. 3402 * OUT: 3403 * NULL : not found 3404 * others : found, pointer to a SA. 3405 */ 3406 static bool 3407 key_checkspidup(const struct secasindex *saidx, u_int32_t spi) 3408 { 3409 struct secashead *sah; 3410 struct secasvar *sav; 3411 int s; 3412 3413 /* check address family */ 3414 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 3415 IPSECLOG(LOG_DEBUG, "address family mismatched.\n"); 3416 return false; 3417 } 3418 3419 /* check all SAD */ 3420 s = pserialize_read_enter(); 3421 SAHLIST_READER_FOREACH(sah) { 3422 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 3423 continue; 3424 sav = key_getsavbyspi(sah, spi); 3425 if (sav != NULL) { 3426 pserialize_read_exit(s); 3427 KEY_SA_UNREF(&sav); 3428 return true; 3429 } 3430 } 3431 pserialize_read_exit(s); 3432 3433 return false; 3434 } 3435 3436 /* 3437 * search SAD litmited alive SA, protocol, SPI. 3438 * OUT: 3439 * NULL : not found 3440 * others : found, pointer to a SA. 3441 */ 3442 static struct secasvar * 3443 key_getsavbyspi(struct secashead *sah, u_int32_t spi) 3444 { 3445 struct secasvar *sav = NULL; 3446 u_int state; 3447 int s; 3448 3449 /* search all status */ 3450 s = pserialize_read_enter(); 3451 SASTATE_ALIVE_FOREACH(state) { 3452 SAVLIST_READER_FOREACH(sav, sah, state) { 3453 /* sanity check */ 3454 if (sav->state != state) { 3455 IPSECLOG(LOG_DEBUG, 3456 "invalid sav->state (queue: %d SA: %d)\n", 3457 state, sav->state); 3458 continue; 3459 } 3460 3461 if (sav->spi == spi) { 3462 KEY_SA_REF(sav); 3463 goto out; 3464 } 3465 } 3466 } 3467 out: 3468 pserialize_read_exit(s); 3469 3470 return sav; 3471 } 3472 3473 /* 3474 * Free allocated data to member variables of sav: 3475 * sav->replay, sav->key_* and sav->lft_*. 3476 */ 3477 static void 3478 key_freesaval(struct secasvar *sav) 3479 { 3480 3481 KASSERT(key_sa_refcnt(sav) == 0); 3482 3483 if (sav->replay != NULL) 3484 kmem_intr_free(sav->replay, sav->replay_len); 3485 if (sav->key_auth != NULL) 3486 kmem_intr_free(sav->key_auth, sav->key_auth_len); 3487 if (sav->key_enc != NULL) 3488 kmem_intr_free(sav->key_enc, sav->key_enc_len); 3489 if (sav->lft_c_counters_percpu != NULL) { 3490 percpu_free(sav->lft_c_counters_percpu, 3491 sizeof(lifetime_counters_t)); 3492 } 3493 if (sav->lft_c != NULL) 3494 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c))); 3495 if (sav->lft_h != NULL) 3496 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h))); 3497 if (sav->lft_s != NULL) 3498 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s))); 3499 } 3500 3501 /* 3502 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3503 * You must update these if need. 3504 * OUT: 0: success. 3505 * !0: failure. 3506 * 3507 * does not modify mbuf. does not free mbuf on error. 3508 */ 3509 static int 3510 key_setsaval(struct secasvar *sav, struct mbuf *m, 3511 const struct sadb_msghdr *mhp) 3512 { 3513 int error = 0; 3514 3515 KASSERT(!cpu_softintr_p()); 3516 KASSERT(m != NULL); 3517 KASSERT(mhp != NULL); 3518 KASSERT(mhp->msg != NULL); 3519 3520 /* We shouldn't initialize sav variables while someone uses it. */ 3521 KASSERT(key_sa_refcnt(sav) == 0); 3522 3523 /* SA */ 3524 if (mhp->ext[SADB_EXT_SA] != NULL) { 3525 const struct sadb_sa *sa0; 3526 3527 sa0 = mhp->ext[SADB_EXT_SA]; 3528 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3529 error = EINVAL; 3530 goto fail; 3531 } 3532 3533 sav->alg_auth = sa0->sadb_sa_auth; 3534 sav->alg_enc = sa0->sadb_sa_encrypt; 3535 sav->flags = sa0->sadb_sa_flags; 3536 3537 /* replay window */ 3538 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3539 size_t len = sizeof(struct secreplay) + 3540 sa0->sadb_sa_replay; 3541 sav->replay = kmem_zalloc(len, KM_SLEEP); 3542 sav->replay_len = len; 3543 if (sa0->sadb_sa_replay != 0) 3544 sav->replay->bitmap = (char*)(sav->replay+1); 3545 sav->replay->wsize = sa0->sadb_sa_replay; 3546 } 3547 } 3548 3549 /* Authentication keys */ 3550 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3551 const struct sadb_key *key0; 3552 int len; 3553 3554 key0 = mhp->ext[SADB_EXT_KEY_AUTH]; 3555 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3556 3557 error = 0; 3558 if (len < sizeof(*key0)) { 3559 error = EINVAL; 3560 goto fail; 3561 } 3562 switch (mhp->msg->sadb_msg_satype) { 3563 case SADB_SATYPE_AH: 3564 case SADB_SATYPE_ESP: 3565 case SADB_X_SATYPE_TCPSIGNATURE: 3566 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3567 sav->alg_auth != SADB_X_AALG_NULL) 3568 error = EINVAL; 3569 break; 3570 case SADB_X_SATYPE_IPCOMP: 3571 default: 3572 error = EINVAL; 3573 break; 3574 } 3575 if (error) { 3576 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n"); 3577 goto fail; 3578 } 3579 3580 sav->key_auth = key_newbuf(key0, len); 3581 sav->key_auth_len = len; 3582 } 3583 3584 /* Encryption key */ 3585 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3586 const struct sadb_key *key0; 3587 int len; 3588 3589 key0 = mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3590 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3591 3592 error = 0; 3593 if (len < sizeof(*key0)) { 3594 error = EINVAL; 3595 goto fail; 3596 } 3597 switch (mhp->msg->sadb_msg_satype) { 3598 case SADB_SATYPE_ESP: 3599 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3600 sav->alg_enc != SADB_EALG_NULL) { 3601 error = EINVAL; 3602 break; 3603 } 3604 sav->key_enc = key_newbuf(key0, len); 3605 sav->key_enc_len = len; 3606 break; 3607 case SADB_X_SATYPE_IPCOMP: 3608 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3609 error = EINVAL; 3610 sav->key_enc = NULL; /*just in case*/ 3611 break; 3612 case SADB_SATYPE_AH: 3613 case SADB_X_SATYPE_TCPSIGNATURE: 3614 default: 3615 error = EINVAL; 3616 break; 3617 } 3618 if (error) { 3619 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n"); 3620 goto fail; 3621 } 3622 } 3623 3624 /* set iv */ 3625 sav->ivlen = 0; 3626 3627 switch (mhp->msg->sadb_msg_satype) { 3628 case SADB_SATYPE_AH: 3629 error = xform_init(sav, XF_AH); 3630 break; 3631 case SADB_SATYPE_ESP: 3632 error = xform_init(sav, XF_ESP); 3633 break; 3634 case SADB_X_SATYPE_IPCOMP: 3635 error = xform_init(sav, XF_IPCOMP); 3636 break; 3637 case SADB_X_SATYPE_TCPSIGNATURE: 3638 error = xform_init(sav, XF_TCPSIGNATURE); 3639 break; 3640 } 3641 if (error) { 3642 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n", 3643 mhp->msg->sadb_msg_satype); 3644 goto fail; 3645 } 3646 3647 /* reset created */ 3648 sav->created = time_uptime; 3649 3650 /* make lifetime for CURRENT */ 3651 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP); 3652 3653 sav->lft_c->sadb_lifetime_len = 3654 PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3655 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3656 sav->lft_c->sadb_lifetime_allocations = 0; 3657 sav->lft_c->sadb_lifetime_bytes = 0; 3658 sav->lft_c->sadb_lifetime_addtime = time_uptime; 3659 sav->lft_c->sadb_lifetime_usetime = 0; 3660 3661 sav->lft_c_counters_percpu = percpu_alloc(sizeof(lifetime_counters_t)); 3662 3663 /* lifetimes for HARD and SOFT */ 3664 { 3665 const struct sadb_lifetime *lft0; 3666 3667 lft0 = mhp->ext[SADB_EXT_LIFETIME_HARD]; 3668 if (lft0 != NULL) { 3669 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3670 error = EINVAL; 3671 goto fail; 3672 } 3673 sav->lft_h = key_newbuf(lft0, sizeof(*lft0)); 3674 } 3675 3676 lft0 = mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3677 if (lft0 != NULL) { 3678 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3679 error = EINVAL; 3680 goto fail; 3681 } 3682 sav->lft_s = key_newbuf(lft0, sizeof(*lft0)); 3683 /* to be initialize ? */ 3684 } 3685 } 3686 3687 return 0; 3688 3689 fail: 3690 key_clear_xform(sav); 3691 key_freesaval(sav); 3692 3693 return error; 3694 } 3695 3696 /* 3697 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3698 * OUT: 0: valid 3699 * other: errno 3700 */ 3701 static int 3702 key_init_xform(struct secasvar *sav) 3703 { 3704 int error; 3705 3706 /* We shouldn't initialize sav variables while someone uses it. */ 3707 KASSERT(key_sa_refcnt(sav) == 0); 3708 3709 /* check SPI value */ 3710 switch (sav->sah->saidx.proto) { 3711 case IPPROTO_ESP: 3712 case IPPROTO_AH: 3713 if (ntohl(sav->spi) <= 255) { 3714 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n", 3715 (u_int32_t)ntohl(sav->spi)); 3716 return EINVAL; 3717 } 3718 break; 3719 } 3720 3721 /* check satype */ 3722 switch (sav->sah->saidx.proto) { 3723 case IPPROTO_ESP: 3724 /* check flags */ 3725 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3726 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3727 IPSECLOG(LOG_DEBUG, 3728 "invalid flag (derived) given to old-esp.\n"); 3729 return EINVAL; 3730 } 3731 error = xform_init(sav, XF_ESP); 3732 break; 3733 case IPPROTO_AH: 3734 /* check flags */ 3735 if (sav->flags & SADB_X_EXT_DERIV) { 3736 IPSECLOG(LOG_DEBUG, 3737 "invalid flag (derived) given to AH SA.\n"); 3738 return EINVAL; 3739 } 3740 if (sav->alg_enc != SADB_EALG_NONE) { 3741 IPSECLOG(LOG_DEBUG, 3742 "protocol and algorithm mismated.\n"); 3743 return(EINVAL); 3744 } 3745 error = xform_init(sav, XF_AH); 3746 break; 3747 case IPPROTO_IPCOMP: 3748 if (sav->alg_auth != SADB_AALG_NONE) { 3749 IPSECLOG(LOG_DEBUG, 3750 "protocol and algorithm mismated.\n"); 3751 return(EINVAL); 3752 } 3753 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3754 && ntohl(sav->spi) >= 0x10000) { 3755 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n"); 3756 return(EINVAL); 3757 } 3758 error = xform_init(sav, XF_IPCOMP); 3759 break; 3760 case IPPROTO_TCP: 3761 if (sav->alg_enc != SADB_EALG_NONE) { 3762 IPSECLOG(LOG_DEBUG, 3763 "protocol and algorithm mismated.\n"); 3764 return(EINVAL); 3765 } 3766 error = xform_init(sav, XF_TCPSIGNATURE); 3767 break; 3768 default: 3769 IPSECLOG(LOG_DEBUG, "Invalid satype.\n"); 3770 error = EPROTONOSUPPORT; 3771 break; 3772 } 3773 3774 return error; 3775 } 3776 3777 /* 3778 * subroutine for SADB_GET and SADB_DUMP. It never return NULL. 3779 */ 3780 static struct mbuf * 3781 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3782 u_int32_t seq, u_int32_t pid) 3783 { 3784 struct mbuf *result = NULL, *tres = NULL, *m; 3785 int l = 0; 3786 int i; 3787 void *p; 3788 struct sadb_lifetime lt; 3789 int dumporder[] = { 3790 SADB_EXT_SA, SADB_X_EXT_SA2, 3791 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3792 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3793 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3794 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3795 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3796 SADB_X_EXT_NAT_T_TYPE, 3797 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3798 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3799 SADB_X_EXT_NAT_T_FRAG, 3800 3801 }; 3802 3803 m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav), M_WAITOK); 3804 result = m; 3805 3806 for (i = __arraycount(dumporder) - 1; i >= 0; i--) { 3807 m = NULL; 3808 p = NULL; 3809 switch (dumporder[i]) { 3810 case SADB_EXT_SA: 3811 m = key_setsadbsa(sav); 3812 break; 3813 3814 case SADB_X_EXT_SA2: 3815 m = key_setsadbxsa2(sav->sah->saidx.mode, 3816 sav->replay ? sav->replay->count : 0, 3817 sav->sah->saidx.reqid); 3818 break; 3819 3820 case SADB_EXT_ADDRESS_SRC: 3821 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3822 &sav->sah->saidx.src.sa, 3823 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 3824 break; 3825 3826 case SADB_EXT_ADDRESS_DST: 3827 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3828 &sav->sah->saidx.dst.sa, 3829 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 3830 break; 3831 3832 case SADB_EXT_KEY_AUTH: 3833 if (!sav->key_auth) 3834 continue; 3835 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len); 3836 p = sav->key_auth; 3837 break; 3838 3839 case SADB_EXT_KEY_ENCRYPT: 3840 if (!sav->key_enc) 3841 continue; 3842 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len); 3843 p = sav->key_enc; 3844 break; 3845 3846 case SADB_EXT_LIFETIME_CURRENT: { 3847 lifetime_counters_t sum = {0}; 3848 3849 KASSERT(sav->lft_c != NULL); 3850 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len); 3851 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime)); 3852 lt.sadb_lifetime_addtime = 3853 time_mono_to_wall(lt.sadb_lifetime_addtime); 3854 lt.sadb_lifetime_usetime = 3855 time_mono_to_wall(lt.sadb_lifetime_usetime); 3856 percpu_foreach(sav->lft_c_counters_percpu, 3857 key_sum_lifetime_counters, sum); 3858 lt.sadb_lifetime_allocations = 3859 sum[LIFETIME_COUNTER_ALLOCATIONS]; 3860 lt.sadb_lifetime_bytes = 3861 sum[LIFETIME_COUNTER_BYTES]; 3862 p = < 3863 break; 3864 } 3865 3866 case SADB_EXT_LIFETIME_HARD: 3867 if (!sav->lft_h) 3868 continue; 3869 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len); 3870 p = sav->lft_h; 3871 break; 3872 3873 case SADB_EXT_LIFETIME_SOFT: 3874 if (!sav->lft_s) 3875 continue; 3876 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len); 3877 p = sav->lft_s; 3878 break; 3879 3880 case SADB_X_EXT_NAT_T_TYPE: 3881 m = key_setsadbxtype(sav->natt_type); 3882 break; 3883 3884 case SADB_X_EXT_NAT_T_DPORT: 3885 if (sav->natt_type == 0) 3886 continue; 3887 m = key_setsadbxport( 3888 key_portfromsaddr(&sav->sah->saidx.dst), 3889 SADB_X_EXT_NAT_T_DPORT); 3890 break; 3891 3892 case SADB_X_EXT_NAT_T_SPORT: 3893 if (sav->natt_type == 0) 3894 continue; 3895 m = key_setsadbxport( 3896 key_portfromsaddr(&sav->sah->saidx.src), 3897 SADB_X_EXT_NAT_T_SPORT); 3898 break; 3899 3900 case SADB_X_EXT_NAT_T_FRAG: 3901 /* don't send frag info if not set */ 3902 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET) 3903 continue; 3904 m = key_setsadbxfrag(sav->esp_frag); 3905 break; 3906 3907 case SADB_X_EXT_NAT_T_OAI: 3908 case SADB_X_EXT_NAT_T_OAR: 3909 continue; 3910 3911 case SADB_EXT_ADDRESS_PROXY: 3912 case SADB_EXT_IDENTITY_SRC: 3913 case SADB_EXT_IDENTITY_DST: 3914 /* XXX: should we brought from SPD ? */ 3915 case SADB_EXT_SENSITIVITY: 3916 default: 3917 continue; 3918 } 3919 3920 KASSERT(!(m && p)); 3921 KASSERT(m != NULL || p != NULL); 3922 if (p && tres) { 3923 M_PREPEND(tres, l, M_WAITOK); 3924 memcpy(mtod(tres, void *), p, l); 3925 continue; 3926 } 3927 if (p) { 3928 m = key_alloc_mbuf(l, M_WAITOK); 3929 m_copyback(m, 0, l, p); 3930 } 3931 3932 if (tres) 3933 m_cat(m, tres); 3934 tres = m; 3935 } 3936 3937 m_cat(result, tres); 3938 tres = NULL; /* avoid free on error below */ 3939 3940 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 3941 3942 result->m_pkthdr.len = 0; 3943 for (m = result; m; m = m->m_next) 3944 result->m_pkthdr.len += m->m_len; 3945 3946 mtod(result, struct sadb_msg *)->sadb_msg_len = 3947 PFKEY_UNIT64(result->m_pkthdr.len); 3948 3949 return result; 3950 } 3951 3952 3953 /* 3954 * set a type in sadb_x_nat_t_type 3955 */ 3956 static struct mbuf * 3957 key_setsadbxtype(u_int16_t type) 3958 { 3959 struct mbuf *m; 3960 size_t len; 3961 struct sadb_x_nat_t_type *p; 3962 3963 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3964 3965 m = key_alloc_mbuf(len, M_WAITOK); 3966 KASSERT(m->m_next == NULL); 3967 3968 p = mtod(m, struct sadb_x_nat_t_type *); 3969 3970 memset(p, 0, len); 3971 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3972 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3973 p->sadb_x_nat_t_type_type = type; 3974 3975 return m; 3976 } 3977 /* 3978 * set a port in sadb_x_nat_t_port. port is in network order 3979 */ 3980 static struct mbuf * 3981 key_setsadbxport(u_int16_t port, u_int16_t type) 3982 { 3983 struct mbuf *m; 3984 size_t len; 3985 struct sadb_x_nat_t_port *p; 3986 3987 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3988 3989 m = key_alloc_mbuf(len, M_WAITOK); 3990 KASSERT(m->m_next == NULL); 3991 3992 p = mtod(m, struct sadb_x_nat_t_port *); 3993 3994 memset(p, 0, len); 3995 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3996 p->sadb_x_nat_t_port_exttype = type; 3997 p->sadb_x_nat_t_port_port = port; 3998 3999 return m; 4000 } 4001 4002 /* 4003 * set fragmentation info in sadb_x_nat_t_frag 4004 */ 4005 static struct mbuf * 4006 key_setsadbxfrag(u_int16_t flen) 4007 { 4008 struct mbuf *m; 4009 size_t len; 4010 struct sadb_x_nat_t_frag *p; 4011 4012 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag)); 4013 4014 m = key_alloc_mbuf(len, M_WAITOK); 4015 KASSERT(m->m_next == NULL); 4016 4017 p = mtod(m, struct sadb_x_nat_t_frag *); 4018 4019 memset(p, 0, len); 4020 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len); 4021 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG; 4022 p->sadb_x_nat_t_frag_fraglen = flen; 4023 4024 return m; 4025 } 4026 4027 /* 4028 * Get port from sockaddr, port is in network order 4029 */ 4030 u_int16_t 4031 key_portfromsaddr(const union sockaddr_union *saddr) 4032 { 4033 u_int16_t port; 4034 4035 switch (saddr->sa.sa_family) { 4036 case AF_INET: { 4037 port = saddr->sin.sin_port; 4038 break; 4039 } 4040 #ifdef INET6 4041 case AF_INET6: { 4042 port = saddr->sin6.sin6_port; 4043 break; 4044 } 4045 #endif 4046 default: 4047 printf("%s: unexpected address family\n", __func__); 4048 port = 0; 4049 break; 4050 } 4051 4052 return port; 4053 } 4054 4055 4056 /* 4057 * Set port is struct sockaddr. port is in network order 4058 */ 4059 static void 4060 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port) 4061 { 4062 switch (saddr->sa.sa_family) { 4063 case AF_INET: { 4064 saddr->sin.sin_port = port; 4065 break; 4066 } 4067 #ifdef INET6 4068 case AF_INET6: { 4069 saddr->sin6.sin6_port = port; 4070 break; 4071 } 4072 #endif 4073 default: 4074 printf("%s: unexpected address family %d\n", __func__, 4075 saddr->sa.sa_family); 4076 break; 4077 } 4078 4079 return; 4080 } 4081 4082 /* 4083 * Safety check sa_len 4084 */ 4085 static int 4086 key_checksalen(const union sockaddr_union *saddr) 4087 { 4088 switch (saddr->sa.sa_family) { 4089 case AF_INET: 4090 if (saddr->sa.sa_len != sizeof(struct sockaddr_in)) 4091 return -1; 4092 break; 4093 #ifdef INET6 4094 case AF_INET6: 4095 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6)) 4096 return -1; 4097 break; 4098 #endif 4099 default: 4100 printf("%s: unexpected sa_family %d\n", __func__, 4101 saddr->sa.sa_family); 4102 return -1; 4103 break; 4104 } 4105 return 0; 4106 } 4107 4108 4109 /* 4110 * set data into sadb_msg. 4111 */ 4112 static struct mbuf * 4113 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, 4114 u_int32_t seq, pid_t pid, u_int16_t reserved, int mflag) 4115 { 4116 struct mbuf *m; 4117 struct sadb_msg *p; 4118 int len; 4119 4120 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); 4121 4122 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4123 4124 m = key_alloc_mbuf_simple(len, mflag); 4125 if (!m) 4126 return NULL; 4127 m->m_pkthdr.len = m->m_len = len; 4128 m->m_next = NULL; 4129 4130 p = mtod(m, struct sadb_msg *); 4131 4132 memset(p, 0, len); 4133 p->sadb_msg_version = PF_KEY_V2; 4134 p->sadb_msg_type = type; 4135 p->sadb_msg_errno = 0; 4136 p->sadb_msg_satype = satype; 4137 p->sadb_msg_len = PFKEY_UNIT64(tlen); 4138 p->sadb_msg_reserved = reserved; 4139 p->sadb_msg_seq = seq; 4140 p->sadb_msg_pid = (u_int32_t)pid; 4141 4142 return m; 4143 } 4144 4145 /* 4146 * copy secasvar data into sadb_address. 4147 */ 4148 static struct mbuf * 4149 key_setsadbsa(struct secasvar *sav) 4150 { 4151 struct mbuf *m; 4152 struct sadb_sa *p; 4153 int len; 4154 4155 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4156 m = key_alloc_mbuf(len, M_WAITOK); 4157 KASSERT(m->m_next == NULL); 4158 4159 p = mtod(m, struct sadb_sa *); 4160 4161 memset(p, 0, len); 4162 p->sadb_sa_len = PFKEY_UNIT64(len); 4163 p->sadb_sa_exttype = SADB_EXT_SA; 4164 p->sadb_sa_spi = sav->spi; 4165 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 4166 p->sadb_sa_state = sav->state; 4167 p->sadb_sa_auth = sav->alg_auth; 4168 p->sadb_sa_encrypt = sav->alg_enc; 4169 p->sadb_sa_flags = sav->flags; 4170 4171 return m; 4172 } 4173 4174 /* 4175 * set data into sadb_address. 4176 */ 4177 static struct mbuf * 4178 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 4179 u_int8_t prefixlen, u_int16_t ul_proto, int mflag) 4180 { 4181 struct mbuf *m; 4182 struct sadb_address *p; 4183 size_t len; 4184 4185 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 4186 PFKEY_ALIGN8(saddr->sa_len); 4187 m = key_alloc_mbuf(len, mflag); 4188 if (!m || m->m_next) { /*XXX*/ 4189 if (m) 4190 m_freem(m); 4191 return NULL; 4192 } 4193 4194 p = mtod(m, struct sadb_address *); 4195 4196 memset(p, 0, len); 4197 p->sadb_address_len = PFKEY_UNIT64(len); 4198 p->sadb_address_exttype = exttype; 4199 p->sadb_address_proto = ul_proto; 4200 if (prefixlen == FULLMASK) { 4201 switch (saddr->sa_family) { 4202 case AF_INET: 4203 prefixlen = sizeof(struct in_addr) << 3; 4204 break; 4205 case AF_INET6: 4206 prefixlen = sizeof(struct in6_addr) << 3; 4207 break; 4208 default: 4209 ; /*XXX*/ 4210 } 4211 } 4212 p->sadb_address_prefixlen = prefixlen; 4213 p->sadb_address_reserved = 0; 4214 4215 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 4216 saddr, saddr->sa_len); 4217 4218 return m; 4219 } 4220 4221 #if 0 4222 /* 4223 * set data into sadb_ident. 4224 */ 4225 static struct mbuf * 4226 key_setsadbident(u_int16_t exttype, u_int16_t idtype, 4227 void *string, int stringlen, u_int64_t id) 4228 { 4229 struct mbuf *m; 4230 struct sadb_ident *p; 4231 size_t len; 4232 4233 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen); 4234 m = key_alloc_mbuf(len); 4235 if (!m || m->m_next) { /*XXX*/ 4236 if (m) 4237 m_freem(m); 4238 return NULL; 4239 } 4240 4241 p = mtod(m, struct sadb_ident *); 4242 4243 memset(p, 0, len); 4244 p->sadb_ident_len = PFKEY_UNIT64(len); 4245 p->sadb_ident_exttype = exttype; 4246 p->sadb_ident_type = idtype; 4247 p->sadb_ident_reserved = 0; 4248 p->sadb_ident_id = id; 4249 4250 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)), 4251 string, stringlen); 4252 4253 return m; 4254 } 4255 #endif 4256 4257 /* 4258 * set data into sadb_x_sa2. 4259 */ 4260 static struct mbuf * 4261 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid) 4262 { 4263 struct mbuf *m; 4264 struct sadb_x_sa2 *p; 4265 size_t len; 4266 4267 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 4268 m = key_alloc_mbuf(len, M_WAITOK); 4269 KASSERT(m->m_next == NULL); 4270 4271 p = mtod(m, struct sadb_x_sa2 *); 4272 4273 memset(p, 0, len); 4274 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 4275 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 4276 p->sadb_x_sa2_mode = mode; 4277 p->sadb_x_sa2_reserved1 = 0; 4278 p->sadb_x_sa2_reserved2 = 0; 4279 p->sadb_x_sa2_sequence = seq; 4280 p->sadb_x_sa2_reqid = reqid; 4281 4282 return m; 4283 } 4284 4285 /* 4286 * set data into sadb_x_policy 4287 */ 4288 static struct mbuf * 4289 key_setsadbxpolicy(const u_int16_t type, const u_int8_t dir, const u_int32_t id, 4290 int mflag) 4291 { 4292 struct mbuf *m; 4293 struct sadb_x_policy *p; 4294 size_t len; 4295 4296 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 4297 m = key_alloc_mbuf(len, mflag); 4298 if (!m || m->m_next) { /*XXX*/ 4299 if (m) 4300 m_freem(m); 4301 return NULL; 4302 } 4303 4304 p = mtod(m, struct sadb_x_policy *); 4305 4306 memset(p, 0, len); 4307 p->sadb_x_policy_len = PFKEY_UNIT64(len); 4308 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 4309 p->sadb_x_policy_type = type; 4310 p->sadb_x_policy_dir = dir; 4311 p->sadb_x_policy_id = id; 4312 4313 return m; 4314 } 4315 4316 /* %%% utilities */ 4317 /* 4318 * copy a buffer into the new buffer allocated. 4319 */ 4320 static void * 4321 key_newbuf(const void *src, u_int len) 4322 { 4323 void *new; 4324 4325 new = kmem_alloc(len, KM_SLEEP); 4326 memcpy(new, src, len); 4327 4328 return new; 4329 } 4330 4331 /* compare my own address 4332 * OUT: 1: true, i.e. my address. 4333 * 0: false 4334 */ 4335 int 4336 key_ismyaddr(const struct sockaddr *sa) 4337 { 4338 #ifdef INET 4339 const struct sockaddr_in *sin; 4340 const struct in_ifaddr *ia; 4341 int s; 4342 #endif 4343 4344 KASSERT(sa != NULL); 4345 4346 switch (sa->sa_family) { 4347 #ifdef INET 4348 case AF_INET: 4349 sin = (const struct sockaddr_in *)sa; 4350 s = pserialize_read_enter(); 4351 IN_ADDRLIST_READER_FOREACH(ia) { 4352 if (sin->sin_family == ia->ia_addr.sin_family && 4353 sin->sin_len == ia->ia_addr.sin_len && 4354 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 4355 { 4356 pserialize_read_exit(s); 4357 return 1; 4358 } 4359 } 4360 pserialize_read_exit(s); 4361 break; 4362 #endif 4363 #ifdef INET6 4364 case AF_INET6: 4365 return key_ismyaddr6((const struct sockaddr_in6 *)sa); 4366 #endif 4367 } 4368 4369 return 0; 4370 } 4371 4372 #ifdef INET6 4373 /* 4374 * compare my own address for IPv6. 4375 * 1: ours 4376 * 0: other 4377 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 4378 */ 4379 #include <netinet6/in6_var.h> 4380 4381 static int 4382 key_ismyaddr6(const struct sockaddr_in6 *sin6) 4383 { 4384 struct in6_ifaddr *ia; 4385 int s; 4386 struct psref psref; 4387 int bound; 4388 int ours = 1; 4389 4390 bound = curlwp_bind(); 4391 s = pserialize_read_enter(); 4392 IN6_ADDRLIST_READER_FOREACH(ia) { 4393 bool ingroup; 4394 4395 if (key_sockaddr_match((const struct sockaddr *)&sin6, 4396 (const struct sockaddr *)&ia->ia_addr, 0)) { 4397 pserialize_read_exit(s); 4398 goto ours; 4399 } 4400 ia6_acquire(ia, &psref); 4401 pserialize_read_exit(s); 4402 4403 /* 4404 * XXX Multicast 4405 * XXX why do we care about multlicast here while we don't care 4406 * about IPv4 multicast?? 4407 * XXX scope 4408 */ 4409 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp); 4410 if (ingroup) { 4411 ia6_release(ia, &psref); 4412 goto ours; 4413 } 4414 4415 s = pserialize_read_enter(); 4416 ia6_release(ia, &psref); 4417 } 4418 pserialize_read_exit(s); 4419 4420 /* loopback, just for safety */ 4421 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 4422 goto ours; 4423 4424 ours = 0; 4425 ours: 4426 curlwp_bindx(bound); 4427 4428 return ours; 4429 } 4430 #endif /*INET6*/ 4431 4432 /* 4433 * compare two secasindex structure. 4434 * flag can specify to compare 2 saidxes. 4435 * compare two secasindex structure without both mode and reqid. 4436 * don't compare port. 4437 * IN: 4438 * saidx0: source, it can be in SAD. 4439 * saidx1: object. 4440 * OUT: 4441 * 1 : equal 4442 * 0 : not equal 4443 */ 4444 static int 4445 key_saidx_match( 4446 const struct secasindex *saidx0, 4447 const struct secasindex *saidx1, 4448 int flag) 4449 { 4450 int chkport; 4451 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst; 4452 4453 KASSERT(saidx0 != NULL); 4454 KASSERT(saidx1 != NULL); 4455 4456 /* sanity */ 4457 if (saidx0->proto != saidx1->proto) 4458 return 0; 4459 4460 if (flag == CMP_EXACTLY) { 4461 if (saidx0->mode != saidx1->mode) 4462 return 0; 4463 if (saidx0->reqid != saidx1->reqid) 4464 return 0; 4465 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4466 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4467 return 0; 4468 } else { 4469 4470 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4471 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) { 4472 /* 4473 * If reqid of SPD is non-zero, unique SA is required. 4474 * The result must be of same reqid in this case. 4475 */ 4476 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4477 return 0; 4478 } 4479 4480 if (flag == CMP_MODE_REQID) { 4481 if (saidx0->mode != IPSEC_MODE_ANY && 4482 saidx0->mode != saidx1->mode) 4483 return 0; 4484 } 4485 4486 4487 sa0src = &saidx0->src.sa; 4488 sa0dst = &saidx0->dst.sa; 4489 sa1src = &saidx1->src.sa; 4490 sa1dst = &saidx1->dst.sa; 4491 /* 4492 * If NAT-T is enabled, check ports for tunnel mode. 4493 * Don't do it for transport mode, as there is no 4494 * port information available in the SP. 4495 * Also don't check ports if they are set to zero 4496 * in the SPD: This means we have a non-generated 4497 * SPD which can't know UDP ports. 4498 */ 4499 if (saidx1->mode == IPSEC_MODE_TUNNEL) 4500 chkport = PORT_LOOSE; 4501 else 4502 chkport = PORT_NONE; 4503 4504 if (!key_sockaddr_match(sa0src, sa1src, chkport)) { 4505 return 0; 4506 } 4507 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) { 4508 return 0; 4509 } 4510 } 4511 4512 return 1; 4513 } 4514 4515 /* 4516 * compare two secindex structure exactly. 4517 * IN: 4518 * spidx0: source, it is often in SPD. 4519 * spidx1: object, it is often from PFKEY message. 4520 * OUT: 4521 * 1 : equal 4522 * 0 : not equal 4523 */ 4524 static int 4525 key_spidx_match_exactly( 4526 const struct secpolicyindex *spidx0, 4527 const struct secpolicyindex *spidx1) 4528 { 4529 4530 KASSERT(spidx0 != NULL); 4531 KASSERT(spidx1 != NULL); 4532 4533 /* sanity */ 4534 if (spidx0->prefs != spidx1->prefs || 4535 spidx0->prefd != spidx1->prefd || 4536 spidx0->ul_proto != spidx1->ul_proto) 4537 return 0; 4538 4539 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) && 4540 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT); 4541 } 4542 4543 /* 4544 * compare two secindex structure with mask. 4545 * IN: 4546 * spidx0: source, it is often in SPD. 4547 * spidx1: object, it is often from IP header. 4548 * OUT: 4549 * 1 : equal 4550 * 0 : not equal 4551 */ 4552 static int 4553 key_spidx_match_withmask( 4554 const struct secpolicyindex *spidx0, 4555 const struct secpolicyindex *spidx1) 4556 { 4557 4558 KASSERT(spidx0 != NULL); 4559 KASSERT(spidx1 != NULL); 4560 4561 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4562 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4563 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4564 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4565 return 0; 4566 4567 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4568 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY && 4569 spidx0->ul_proto != spidx1->ul_proto) 4570 return 0; 4571 4572 switch (spidx0->src.sa.sa_family) { 4573 case AF_INET: 4574 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY && 4575 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4576 return 0; 4577 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr, 4578 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4579 return 0; 4580 break; 4581 case AF_INET6: 4582 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY && 4583 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4584 return 0; 4585 /* 4586 * scope_id check. if sin6_scope_id is 0, we regard it 4587 * as a wildcard scope, which matches any scope zone ID. 4588 */ 4589 if (spidx0->src.sin6.sin6_scope_id && 4590 spidx1->src.sin6.sin6_scope_id && 4591 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4592 return 0; 4593 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr, 4594 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4595 return 0; 4596 break; 4597 default: 4598 /* XXX */ 4599 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4600 return 0; 4601 break; 4602 } 4603 4604 switch (spidx0->dst.sa.sa_family) { 4605 case AF_INET: 4606 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY && 4607 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4608 return 0; 4609 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr, 4610 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4611 return 0; 4612 break; 4613 case AF_INET6: 4614 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY && 4615 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4616 return 0; 4617 /* 4618 * scope_id check. if sin6_scope_id is 0, we regard it 4619 * as a wildcard scope, which matches any scope zone ID. 4620 */ 4621 if (spidx0->src.sin6.sin6_scope_id && 4622 spidx1->src.sin6.sin6_scope_id && 4623 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4624 return 0; 4625 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr, 4626 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4627 return 0; 4628 break; 4629 default: 4630 /* XXX */ 4631 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4632 return 0; 4633 break; 4634 } 4635 4636 /* XXX Do we check other field ? e.g. flowinfo */ 4637 4638 return 1; 4639 } 4640 4641 /* returns 0 on match */ 4642 static int 4643 key_portcomp(in_port_t port1, in_port_t port2, int howport) 4644 { 4645 switch (howport) { 4646 case PORT_NONE: 4647 return 0; 4648 case PORT_LOOSE: 4649 if (port1 == 0 || port2 == 0) 4650 return 0; 4651 /*FALLTHROUGH*/ 4652 case PORT_STRICT: 4653 if (port1 != port2) { 4654 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4655 "port fail %d != %d\n", port1, port2); 4656 return 1; 4657 } 4658 return 0; 4659 default: 4660 KASSERT(0); 4661 return 1; 4662 } 4663 } 4664 4665 /* returns 1 on match */ 4666 static int 4667 key_sockaddr_match( 4668 const struct sockaddr *sa1, 4669 const struct sockaddr *sa2, 4670 int howport) 4671 { 4672 const struct sockaddr_in *sin1, *sin2; 4673 const struct sockaddr_in6 *sin61, *sin62; 4674 char s1[IPSEC_ADDRSTRLEN], s2[IPSEC_ADDRSTRLEN]; 4675 4676 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) { 4677 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4678 "fam/len fail %d != %d || %d != %d\n", 4679 sa1->sa_family, sa2->sa_family, sa1->sa_len, 4680 sa2->sa_len); 4681 return 0; 4682 } 4683 4684 switch (sa1->sa_family) { 4685 case AF_INET: 4686 if (sa1->sa_len != sizeof(struct sockaddr_in)) { 4687 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4688 "len fail %d != %zu\n", 4689 sa1->sa_len, sizeof(struct sockaddr_in)); 4690 return 0; 4691 } 4692 sin1 = (const struct sockaddr_in *)sa1; 4693 sin2 = (const struct sockaddr_in *)sa2; 4694 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) { 4695 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4696 "addr fail %s != %s\n", 4697 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), 4698 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2)); 4699 return 0; 4700 } 4701 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) { 4702 return 0; 4703 } 4704 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4705 "addr success %s[%d] == %s[%d]\n", 4706 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), 4707 sin1->sin_port, 4708 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2), 4709 sin2->sin_port); 4710 break; 4711 case AF_INET6: 4712 sin61 = (const struct sockaddr_in6 *)sa1; 4713 sin62 = (const struct sockaddr_in6 *)sa2; 4714 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4715 return 0; /*EINVAL*/ 4716 4717 if (sin61->sin6_scope_id != sin62->sin6_scope_id) { 4718 return 0; 4719 } 4720 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) { 4721 return 0; 4722 } 4723 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) { 4724 return 0; 4725 } 4726 break; 4727 default: 4728 if (memcmp(sa1, sa2, sa1->sa_len) != 0) 4729 return 0; 4730 break; 4731 } 4732 4733 return 1; 4734 } 4735 4736 /* 4737 * compare two buffers with mask. 4738 * IN: 4739 * addr1: source 4740 * addr2: object 4741 * bits: Number of bits to compare 4742 * OUT: 4743 * 1 : equal 4744 * 0 : not equal 4745 */ 4746 static int 4747 key_bb_match_withmask(const void *a1, const void *a2, u_int bits) 4748 { 4749 const unsigned char *p1 = a1; 4750 const unsigned char *p2 = a2; 4751 4752 /* XXX: This could be considerably faster if we compare a word 4753 * at a time, but it is complicated on LSB Endian machines */ 4754 4755 /* Handle null pointers */ 4756 if (p1 == NULL || p2 == NULL) 4757 return (p1 == p2); 4758 4759 while (bits >= 8) { 4760 if (*p1++ != *p2++) 4761 return 0; 4762 bits -= 8; 4763 } 4764 4765 if (bits > 0) { 4766 u_int8_t mask = ~((1<<(8-bits))-1); 4767 if ((*p1 & mask) != (*p2 & mask)) 4768 return 0; 4769 } 4770 return 1; /* Match! */ 4771 } 4772 4773 static void 4774 key_timehandler_spd(time_t now) 4775 { 4776 u_int dir; 4777 struct secpolicy *sp; 4778 4779 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4780 retry: 4781 mutex_enter(&key_spd.lock); 4782 SPLIST_WRITER_FOREACH(sp, dir) { 4783 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 4784 4785 if (sp->lifetime == 0 && sp->validtime == 0) 4786 continue; 4787 4788 if ((sp->lifetime && now - sp->created > sp->lifetime) || 4789 (sp->validtime && now - sp->lastused > sp->validtime)) { 4790 key_unlink_sp(sp); 4791 mutex_exit(&key_spd.lock); 4792 key_spdexpire(sp); 4793 key_destroy_sp(sp); 4794 goto retry; 4795 } 4796 } 4797 mutex_exit(&key_spd.lock); 4798 } 4799 4800 retry_socksplist: 4801 mutex_enter(&key_spd.lock); 4802 SOCKSPLIST_WRITER_FOREACH(sp) { 4803 if (sp->state != IPSEC_SPSTATE_DEAD) 4804 continue; 4805 4806 key_unlink_sp(sp); 4807 mutex_exit(&key_spd.lock); 4808 key_destroy_sp(sp); 4809 goto retry_socksplist; 4810 } 4811 mutex_exit(&key_spd.lock); 4812 } 4813 4814 static void 4815 key_timehandler_sad(time_t now) 4816 { 4817 struct secashead *sah; 4818 int s; 4819 4820 restart: 4821 mutex_enter(&key_sad.lock); 4822 SAHLIST_WRITER_FOREACH(sah) { 4823 /* If sah has been dead and has no sav, then delete it */ 4824 if (sah->state == SADB_SASTATE_DEAD && 4825 !key_sah_has_sav(sah)) { 4826 key_unlink_sah(sah); 4827 mutex_exit(&key_sad.lock); 4828 key_destroy_sah(sah); 4829 goto restart; 4830 } 4831 } 4832 mutex_exit(&key_sad.lock); 4833 4834 s = pserialize_read_enter(); 4835 SAHLIST_READER_FOREACH(sah) { 4836 struct secasvar *sav; 4837 4838 key_sah_ref(sah); 4839 pserialize_read_exit(s); 4840 4841 /* if LARVAL entry doesn't become MATURE, delete it. */ 4842 mutex_enter(&key_sad.lock); 4843 restart_sav_LARVAL: 4844 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) { 4845 if (now - sav->created > key_larval_lifetime) { 4846 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4847 goto restart_sav_LARVAL; 4848 } 4849 } 4850 mutex_exit(&key_sad.lock); 4851 4852 /* 4853 * check MATURE entry to start to send expire message 4854 * whether or not. 4855 */ 4856 restart_sav_MATURE: 4857 mutex_enter(&key_sad.lock); 4858 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_MATURE) { 4859 /* we don't need to check. */ 4860 if (sav->lft_s == NULL) 4861 continue; 4862 4863 /* sanity check */ 4864 KASSERT(sav->lft_c != NULL); 4865 4866 /* check SOFT lifetime */ 4867 if (sav->lft_s->sadb_lifetime_addtime != 0 && 4868 now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 4869 /* 4870 * check SA to be used whether or not. 4871 * when SA hasn't been used, delete it. 4872 */ 4873 if (sav->lft_c->sadb_lifetime_usetime == 0) { 4874 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4875 mutex_exit(&key_sad.lock); 4876 } else { 4877 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4878 mutex_exit(&key_sad.lock); 4879 /* 4880 * XXX If we keep to send expire 4881 * message in the status of 4882 * DYING. Do remove below code. 4883 */ 4884 key_expire(sav); 4885 } 4886 goto restart_sav_MATURE; 4887 } 4888 /* check SOFT lifetime by bytes */ 4889 /* 4890 * XXX I don't know the way to delete this SA 4891 * when new SA is installed. Caution when it's 4892 * installed too big lifetime by time. 4893 */ 4894 else { 4895 uint64_t lft_c_bytes = 0; 4896 lifetime_counters_t sum = {0}; 4897 4898 percpu_foreach(sav->lft_c_counters_percpu, 4899 key_sum_lifetime_counters, sum); 4900 lft_c_bytes = sum[LIFETIME_COUNTER_BYTES]; 4901 4902 if (sav->lft_s->sadb_lifetime_bytes == 0 || 4903 sav->lft_s->sadb_lifetime_bytes >= lft_c_bytes) 4904 continue; 4905 4906 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4907 mutex_exit(&key_sad.lock); 4908 /* 4909 * XXX If we keep to send expire 4910 * message in the status of 4911 * DYING. Do remove below code. 4912 */ 4913 key_expire(sav); 4914 goto restart_sav_MATURE; 4915 } 4916 } 4917 mutex_exit(&key_sad.lock); 4918 4919 /* check DYING entry to change status to DEAD. */ 4920 mutex_enter(&key_sad.lock); 4921 restart_sav_DYING: 4922 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DYING) { 4923 /* we don't need to check. */ 4924 if (sav->lft_h == NULL) 4925 continue; 4926 4927 /* sanity check */ 4928 KASSERT(sav->lft_c != NULL); 4929 4930 if (sav->lft_h->sadb_lifetime_addtime != 0 && 4931 now - sav->created > sav->lft_h->sadb_lifetime_addtime) { 4932 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4933 goto restart_sav_DYING; 4934 } 4935 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4936 else if (sav->lft_s != NULL 4937 && sav->lft_s->sadb_lifetime_addtime != 0 4938 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 4939 /* 4940 * XXX: should be checked to be 4941 * installed the valid SA. 4942 */ 4943 4944 /* 4945 * If there is no SA then sending 4946 * expire message. 4947 */ 4948 key_expire(sav); 4949 } 4950 #endif 4951 /* check HARD lifetime by bytes */ 4952 else { 4953 uint64_t lft_c_bytes = 0; 4954 lifetime_counters_t sum = {0}; 4955 4956 percpu_foreach(sav->lft_c_counters_percpu, 4957 key_sum_lifetime_counters, sum); 4958 lft_c_bytes = sum[LIFETIME_COUNTER_BYTES]; 4959 4960 if (sav->lft_h->sadb_lifetime_bytes == 0 || 4961 sav->lft_h->sadb_lifetime_bytes >= lft_c_bytes) 4962 continue; 4963 4964 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4965 goto restart_sav_DYING; 4966 } 4967 } 4968 mutex_exit(&key_sad.lock); 4969 4970 /* delete entry in DEAD */ 4971 restart_sav_DEAD: 4972 mutex_enter(&key_sad.lock); 4973 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DEAD) { 4974 key_unlink_sav(sav); 4975 mutex_exit(&key_sad.lock); 4976 key_destroy_sav(sav); 4977 goto restart_sav_DEAD; 4978 } 4979 mutex_exit(&key_sad.lock); 4980 4981 s = pserialize_read_enter(); 4982 key_sah_unref(sah); 4983 } 4984 pserialize_read_exit(s); 4985 } 4986 4987 static void 4988 key_timehandler_acq(time_t now) 4989 { 4990 #ifndef IPSEC_NONBLOCK_ACQUIRE 4991 struct secacq *acq, *nextacq; 4992 4993 restart: 4994 mutex_enter(&key_misc.lock); 4995 LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) { 4996 if (now - acq->created > key_blockacq_lifetime) { 4997 LIST_REMOVE(acq, chain); 4998 mutex_exit(&key_misc.lock); 4999 kmem_free(acq, sizeof(*acq)); 5000 goto restart; 5001 } 5002 } 5003 mutex_exit(&key_misc.lock); 5004 #endif 5005 } 5006 5007 static void 5008 key_timehandler_spacq(time_t now) 5009 { 5010 #ifdef notyet 5011 struct secspacq *acq, *nextacq; 5012 5013 LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) { 5014 if (now - acq->created > key_blockacq_lifetime) { 5015 KASSERT(__LIST_CHAINED(acq)); 5016 LIST_REMOVE(acq, chain); 5017 kmem_free(acq, sizeof(*acq)); 5018 } 5019 } 5020 #endif 5021 } 5022 5023 static unsigned int key_timehandler_work_enqueued = 0; 5024 5025 /* 5026 * time handler. 5027 * scanning SPD and SAD to check status for each entries, 5028 * and do to remove or to expire. 5029 */ 5030 static void 5031 key_timehandler_work(struct work *wk, void *arg) 5032 { 5033 time_t now = time_uptime; 5034 5035 /* We can allow enqueuing another work at this point */ 5036 atomic_swap_uint(&key_timehandler_work_enqueued, 0); 5037 5038 key_timehandler_spd(now); 5039 key_timehandler_sad(now); 5040 key_timehandler_acq(now); 5041 key_timehandler_spacq(now); 5042 5043 key_acquire_sendup_pending_mbuf(); 5044 5045 /* do exchange to tick time !! */ 5046 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 5047 5048 return; 5049 } 5050 5051 static void 5052 key_timehandler(void *arg) 5053 { 5054 5055 /* Avoid enqueuing another work when one is already enqueued */ 5056 if (atomic_swap_uint(&key_timehandler_work_enqueued, 1) == 1) 5057 return; 5058 5059 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL); 5060 } 5061 5062 u_long 5063 key_random(void) 5064 { 5065 u_long value; 5066 5067 key_randomfill(&value, sizeof(value)); 5068 return value; 5069 } 5070 5071 void 5072 key_randomfill(void *p, size_t l) 5073 { 5074 5075 cprng_fast(p, l); 5076 } 5077 5078 /* 5079 * map SADB_SATYPE_* to IPPROTO_*. 5080 * if satype == SADB_SATYPE then satype is mapped to ~0. 5081 * OUT: 5082 * 0: invalid satype. 5083 */ 5084 static u_int16_t 5085 key_satype2proto(u_int8_t satype) 5086 { 5087 switch (satype) { 5088 case SADB_SATYPE_UNSPEC: 5089 return IPSEC_PROTO_ANY; 5090 case SADB_SATYPE_AH: 5091 return IPPROTO_AH; 5092 case SADB_SATYPE_ESP: 5093 return IPPROTO_ESP; 5094 case SADB_X_SATYPE_IPCOMP: 5095 return IPPROTO_IPCOMP; 5096 case SADB_X_SATYPE_TCPSIGNATURE: 5097 return IPPROTO_TCP; 5098 default: 5099 return 0; 5100 } 5101 /* NOTREACHED */ 5102 } 5103 5104 /* 5105 * map IPPROTO_* to SADB_SATYPE_* 5106 * OUT: 5107 * 0: invalid protocol type. 5108 */ 5109 static u_int8_t 5110 key_proto2satype(u_int16_t proto) 5111 { 5112 switch (proto) { 5113 case IPPROTO_AH: 5114 return SADB_SATYPE_AH; 5115 case IPPROTO_ESP: 5116 return SADB_SATYPE_ESP; 5117 case IPPROTO_IPCOMP: 5118 return SADB_X_SATYPE_IPCOMP; 5119 case IPPROTO_TCP: 5120 return SADB_X_SATYPE_TCPSIGNATURE; 5121 default: 5122 return 0; 5123 } 5124 /* NOTREACHED */ 5125 } 5126 5127 static int 5128 key_setsecasidx(int proto, int mode, int reqid, 5129 const struct sockaddr *src, const struct sockaddr *dst, 5130 struct secasindex * saidx) 5131 { 5132 const union sockaddr_union *src_u = (const union sockaddr_union *)src; 5133 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst; 5134 5135 /* sa len safety check */ 5136 if (key_checksalen(src_u) != 0) 5137 return -1; 5138 if (key_checksalen(dst_u) != 0) 5139 return -1; 5140 5141 memset(saidx, 0, sizeof(*saidx)); 5142 saidx->proto = proto; 5143 saidx->mode = mode; 5144 saidx->reqid = reqid; 5145 memcpy(&saidx->src, src_u, src_u->sa.sa_len); 5146 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len); 5147 5148 key_porttosaddr(&((saidx)->src), 0); 5149 key_porttosaddr(&((saidx)->dst), 0); 5150 return 0; 5151 } 5152 5153 static void 5154 key_init_spidx_bymsghdr(struct secpolicyindex *spidx, 5155 const struct sadb_msghdr *mhp) 5156 { 5157 const struct sadb_address *src0, *dst0; 5158 const struct sockaddr *src, *dst; 5159 const struct sadb_x_policy *xpl0; 5160 5161 src0 = mhp->ext[SADB_EXT_ADDRESS_SRC]; 5162 dst0 = mhp->ext[SADB_EXT_ADDRESS_DST]; 5163 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5164 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5165 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 5166 5167 memset(spidx, 0, sizeof(*spidx)); 5168 spidx->dir = xpl0->sadb_x_policy_dir; 5169 spidx->prefs = src0->sadb_address_prefixlen; 5170 spidx->prefd = dst0->sadb_address_prefixlen; 5171 spidx->ul_proto = src0->sadb_address_proto; 5172 /* XXX boundary check against sa_len */ 5173 memcpy(&spidx->src, src, src->sa_len); 5174 memcpy(&spidx->dst, dst, dst->sa_len); 5175 } 5176 5177 /* %%% PF_KEY */ 5178 /* 5179 * SADB_GETSPI processing is to receive 5180 * <base, (SA2), src address, dst address, (SPI range)> 5181 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 5182 * tree with the status of LARVAL, and send 5183 * <base, SA(*), address(SD)> 5184 * to the IKMPd. 5185 * 5186 * IN: mhp: pointer to the pointer to each header. 5187 * OUT: NULL if fail. 5188 * other if success, return pointer to the message to send. 5189 */ 5190 static int 5191 key_api_getspi(struct socket *so, struct mbuf *m, 5192 const struct sadb_msghdr *mhp) 5193 { 5194 const struct sockaddr *src, *dst; 5195 struct secasindex saidx; 5196 struct secashead *sah; 5197 struct secasvar *newsav; 5198 u_int8_t proto; 5199 u_int32_t spi; 5200 u_int8_t mode; 5201 u_int16_t reqid; 5202 int error; 5203 5204 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5205 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5206 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5207 return key_senderror(so, m, EINVAL); 5208 } 5209 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5210 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5211 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5212 return key_senderror(so, m, EINVAL); 5213 } 5214 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5215 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5216 mode = sa2->sadb_x_sa2_mode; 5217 reqid = sa2->sadb_x_sa2_reqid; 5218 } else { 5219 mode = IPSEC_MODE_ANY; 5220 reqid = 0; 5221 } 5222 5223 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5224 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5225 5226 /* map satype to proto */ 5227 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5228 if (proto == 0) { 5229 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5230 return key_senderror(so, m, EINVAL); 5231 } 5232 5233 5234 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5235 if (error != 0) 5236 return key_senderror(so, m, EINVAL); 5237 5238 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5239 if (error != 0) 5240 return key_senderror(so, m, EINVAL); 5241 5242 /* SPI allocation */ 5243 spi = key_do_getnewspi(mhp->ext[SADB_EXT_SPIRANGE], &saidx); 5244 if (spi == 0) 5245 return key_senderror(so, m, EINVAL); 5246 5247 /* get a SA index */ 5248 sah = key_getsah_ref(&saidx, CMP_REQID); 5249 if (sah == NULL) { 5250 /* create a new SA index */ 5251 sah = key_newsah(&saidx); 5252 if (sah == NULL) { 5253 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5254 return key_senderror(so, m, ENOBUFS); 5255 } 5256 } 5257 5258 /* get a new SA */ 5259 /* XXX rewrite */ 5260 newsav = KEY_NEWSAV(m, mhp, &error); 5261 if (newsav == NULL) { 5262 key_sah_unref(sah); 5263 /* XXX don't free new SA index allocated in above. */ 5264 return key_senderror(so, m, error); 5265 } 5266 5267 /* set spi */ 5268 newsav->spi = htonl(spi); 5269 5270 /* Add to sah#savlist */ 5271 key_init_sav(newsav); 5272 newsav->sah = sah; 5273 newsav->state = SADB_SASTATE_LARVAL; 5274 mutex_enter(&key_sad.lock); 5275 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav); 5276 mutex_exit(&key_sad.lock); 5277 key_validate_savlist(sah, SADB_SASTATE_LARVAL); 5278 5279 key_sah_unref(sah); 5280 5281 #ifndef IPSEC_NONBLOCK_ACQUIRE 5282 /* delete the entry in key_misc.acqlist */ 5283 if (mhp->msg->sadb_msg_seq != 0) { 5284 struct secacq *acq; 5285 mutex_enter(&key_misc.lock); 5286 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); 5287 if (acq != NULL) { 5288 /* reset counter in order to deletion by timehandler. */ 5289 acq->created = time_uptime; 5290 acq->count = 0; 5291 } 5292 mutex_exit(&key_misc.lock); 5293 } 5294 #endif 5295 5296 { 5297 struct mbuf *n, *nn; 5298 struct sadb_sa *m_sa; 5299 int off, len; 5300 5301 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 5302 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES); 5303 5304 /* create new sadb_msg to reply. */ 5305 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 5306 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5307 5308 n = key_alloc_mbuf_simple(len, M_WAITOK); 5309 n->m_len = len; 5310 n->m_next = NULL; 5311 off = 0; 5312 5313 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 5314 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 5315 5316 m_sa = (struct sadb_sa *)(mtod(n, char *) + off); 5317 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 5318 m_sa->sadb_sa_exttype = SADB_EXT_SA; 5319 m_sa->sadb_sa_spi = htonl(spi); 5320 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5321 5322 KASSERTMSG(off == len, "length inconsistency"); 5323 5324 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 5325 SADB_EXT_ADDRESS_DST); 5326 5327 KASSERT(n->m_len >= sizeof(struct sadb_msg)); 5328 5329 n->m_pkthdr.len = 0; 5330 for (nn = n; nn; nn = nn->m_next) 5331 n->m_pkthdr.len += nn->m_len; 5332 5333 key_fill_replymsg(n, newsav->seq); 5334 m_freem(m); 5335 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5336 } 5337 } 5338 5339 /* 5340 * allocating new SPI 5341 * called by key_api_getspi(). 5342 * OUT: 5343 * 0: failure. 5344 * others: success. 5345 */ 5346 static u_int32_t 5347 key_do_getnewspi(const struct sadb_spirange *spirange, 5348 const struct secasindex *saidx) 5349 { 5350 u_int32_t newspi; 5351 u_int32_t spmin, spmax; 5352 int count = key_spi_trycnt; 5353 5354 /* set spi range to allocate */ 5355 if (spirange != NULL) { 5356 spmin = spirange->sadb_spirange_min; 5357 spmax = spirange->sadb_spirange_max; 5358 } else { 5359 spmin = key_spi_minval; 5360 spmax = key_spi_maxval; 5361 } 5362 /* IPCOMP needs 2-byte SPI */ 5363 if (saidx->proto == IPPROTO_IPCOMP) { 5364 u_int32_t t; 5365 if (spmin >= 0x10000) 5366 spmin = 0xffff; 5367 if (spmax >= 0x10000) 5368 spmax = 0xffff; 5369 if (spmin > spmax) { 5370 t = spmin; spmin = spmax; spmax = t; 5371 } 5372 } 5373 5374 if (spmin == spmax) { 5375 if (key_checkspidup(saidx, htonl(spmin))) { 5376 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin); 5377 return 0; 5378 } 5379 5380 count--; /* taking one cost. */ 5381 newspi = spmin; 5382 5383 } else { 5384 5385 /* init SPI */ 5386 newspi = 0; 5387 5388 /* when requesting to allocate spi ranged */ 5389 while (count--) { 5390 /* generate pseudo-random SPI value ranged. */ 5391 newspi = spmin + (key_random() % (spmax - spmin + 1)); 5392 5393 if (!key_checkspidup(saidx, htonl(newspi))) 5394 break; 5395 } 5396 5397 if (count == 0 || newspi == 0) { 5398 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n"); 5399 return 0; 5400 } 5401 } 5402 5403 /* statistics */ 5404 keystat.getspi_count = 5405 (keystat.getspi_count + key_spi_trycnt - count) / 2; 5406 5407 return newspi; 5408 } 5409 5410 static int 5411 key_handle_natt_info(struct secasvar *sav, 5412 const struct sadb_msghdr *mhp) 5413 { 5414 const char *msg = "?" ; 5415 struct sadb_x_nat_t_type *type; 5416 struct sadb_x_nat_t_port *sport, *dport; 5417 struct sadb_address *iaddr, *raddr; 5418 struct sadb_x_nat_t_frag *frag; 5419 5420 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 5421 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 5422 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) 5423 return 0; 5424 5425 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) { 5426 msg = "TYPE"; 5427 goto bad; 5428 } 5429 5430 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) { 5431 msg = "SPORT"; 5432 goto bad; 5433 } 5434 5435 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5436 msg = "DPORT"; 5437 goto bad; 5438 } 5439 5440 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) { 5441 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); 5442 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) { 5443 msg = "OAI"; 5444 goto bad; 5445 } 5446 } 5447 5448 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5449 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); 5450 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5451 msg = "OAR"; 5452 goto bad; 5453 } 5454 } 5455 5456 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5457 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5458 msg = "FRAG"; 5459 goto bad; 5460 } 5461 } 5462 5463 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5464 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5465 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5466 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5467 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5468 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5469 5470 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", 5471 type->sadb_x_nat_t_type_type, 5472 ntohs(sport->sadb_x_nat_t_port_port), 5473 ntohs(dport->sadb_x_nat_t_port_port)); 5474 5475 sav->natt_type = type->sadb_x_nat_t_type_type; 5476 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port); 5477 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port); 5478 if (frag) 5479 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen; 5480 else 5481 sav->esp_frag = IP_MAXPACKET; 5482 5483 return 0; 5484 bad: 5485 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg); 5486 __USE(msg); 5487 return -1; 5488 } 5489 5490 /* Just update the IPSEC_NAT_T ports if present */ 5491 static int 5492 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst, 5493 const struct sadb_msghdr *mhp) 5494 { 5495 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 5496 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); 5497 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 5498 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); 5499 5500 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) && 5501 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) && 5502 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) { 5503 struct sadb_x_nat_t_type *type; 5504 struct sadb_x_nat_t_port *sport; 5505 struct sadb_x_nat_t_port *dport; 5506 5507 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 5508 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 5509 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 5510 IPSECLOG(LOG_DEBUG, "invalid message\n"); 5511 return -1; 5512 } 5513 5514 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5515 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5516 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5517 5518 key_porttosaddr(src, sport->sadb_x_nat_t_port_port); 5519 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port); 5520 5521 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", 5522 type->sadb_x_nat_t_type_type, 5523 ntohs(sport->sadb_x_nat_t_port_port), 5524 ntohs(dport->sadb_x_nat_t_port_port)); 5525 } 5526 5527 return 0; 5528 } 5529 5530 5531 /* 5532 * SADB_UPDATE processing 5533 * receive 5534 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5535 * key(AE), (identity(SD),) (sensitivity)> 5536 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 5537 * and send 5538 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5539 * (identity(SD),) (sensitivity)> 5540 * to the ikmpd. 5541 * 5542 * m will always be freed. 5543 */ 5544 static int 5545 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5546 { 5547 struct sadb_sa *sa0; 5548 const struct sockaddr *src, *dst; 5549 struct secasindex saidx; 5550 struct secashead *sah; 5551 struct secasvar *sav, *newsav; 5552 u_int16_t proto; 5553 u_int8_t mode; 5554 u_int16_t reqid; 5555 int error; 5556 5557 /* map satype to proto */ 5558 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5559 if (proto == 0) { 5560 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5561 return key_senderror(so, m, EINVAL); 5562 } 5563 5564 if (mhp->ext[SADB_EXT_SA] == NULL || 5565 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5566 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5567 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5568 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5569 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5570 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5571 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5572 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5573 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5574 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5575 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5576 return key_senderror(so, m, EINVAL); 5577 } 5578 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5579 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5580 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5581 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5582 return key_senderror(so, m, EINVAL); 5583 } 5584 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5585 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5586 mode = sa2->sadb_x_sa2_mode; 5587 reqid = sa2->sadb_x_sa2_reqid; 5588 } else { 5589 mode = IPSEC_MODE_ANY; 5590 reqid = 0; 5591 } 5592 /* XXX boundary checking for other extensions */ 5593 5594 sa0 = mhp->ext[SADB_EXT_SA]; 5595 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5596 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5597 5598 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5599 if (error != 0) 5600 return key_senderror(so, m, EINVAL); 5601 5602 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5603 if (error != 0) 5604 return key_senderror(so, m, EINVAL); 5605 5606 /* get a SA header */ 5607 sah = key_getsah_ref(&saidx, CMP_REQID); 5608 if (sah == NULL) { 5609 IPSECLOG(LOG_DEBUG, "no SA index found.\n"); 5610 return key_senderror(so, m, ENOENT); 5611 } 5612 5613 /* set spidx if there */ 5614 /* XXX rewrite */ 5615 error = key_setident(sah, m, mhp); 5616 if (error) 5617 goto error_sah; 5618 5619 /* find a SA with sequence number. */ 5620 #ifdef IPSEC_DOSEQCHECK 5621 if (mhp->msg->sadb_msg_seq != 0) { 5622 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq); 5623 if (sav == NULL) { 5624 IPSECLOG(LOG_DEBUG, 5625 "no larval SA with sequence %u exists.\n", 5626 mhp->msg->sadb_msg_seq); 5627 error = ENOENT; 5628 goto error_sah; 5629 } 5630 } 5631 #else 5632 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5633 if (sav == NULL) { 5634 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n", 5635 (u_int32_t)ntohl(sa0->sadb_sa_spi)); 5636 error = EINVAL; 5637 goto error_sah; 5638 } 5639 #endif 5640 5641 /* validity check */ 5642 if (sav->sah->saidx.proto != proto) { 5643 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n", 5644 sav->sah->saidx.proto, proto); 5645 error = EINVAL; 5646 goto error; 5647 } 5648 #ifdef IPSEC_DOSEQCHECK 5649 if (sav->spi != sa0->sadb_sa_spi) { 5650 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n", 5651 (u_int32_t)ntohl(sav->spi), 5652 (u_int32_t)ntohl(sa0->sadb_sa_spi)); 5653 error = EINVAL; 5654 goto error; 5655 } 5656 #endif 5657 if (sav->pid != mhp->msg->sadb_msg_pid) { 5658 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n", 5659 sav->pid, mhp->msg->sadb_msg_pid); 5660 error = EINVAL; 5661 goto error; 5662 } 5663 5664 /* 5665 * Allocate a new SA instead of modifying the existing SA directly 5666 * to avoid race conditions. 5667 */ 5668 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); 5669 5670 /* copy sav values */ 5671 newsav->spi = sav->spi; 5672 newsav->seq = sav->seq; 5673 newsav->created = sav->created; 5674 newsav->pid = sav->pid; 5675 newsav->sah = sav->sah; 5676 5677 error = key_setsaval(newsav, m, mhp); 5678 if (error) { 5679 key_delsav(newsav); 5680 goto error; 5681 } 5682 5683 error = key_handle_natt_info(newsav, mhp); 5684 if (error != 0) { 5685 key_delsav(newsav); 5686 goto error; 5687 } 5688 5689 error = key_init_xform(newsav); 5690 if (error != 0) { 5691 key_delsav(newsav); 5692 goto error; 5693 } 5694 5695 /* Add to sah#savlist */ 5696 key_init_sav(newsav); 5697 newsav->state = SADB_SASTATE_MATURE; 5698 mutex_enter(&key_sad.lock); 5699 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); 5700 mutex_exit(&key_sad.lock); 5701 key_validate_savlist(sah, SADB_SASTATE_MATURE); 5702 5703 key_sah_unref(sah); 5704 sah = NULL; 5705 5706 key_destroy_sav_with_ref(sav); 5707 sav = NULL; 5708 5709 { 5710 struct mbuf *n; 5711 5712 /* set msg buf from mhp */ 5713 n = key_getmsgbuf_x1(m, mhp); 5714 if (n == NULL) { 5715 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5716 return key_senderror(so, m, ENOBUFS); 5717 } 5718 5719 m_freem(m); 5720 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5721 } 5722 error: 5723 KEY_SA_UNREF(&sav); 5724 error_sah: 5725 key_sah_unref(sah); 5726 return key_senderror(so, m, error); 5727 } 5728 5729 /* 5730 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5731 * only called by key_api_update(). 5732 * OUT: 5733 * NULL : not found 5734 * others : found, pointer to a SA. 5735 */ 5736 #ifdef IPSEC_DOSEQCHECK 5737 static struct secasvar * 5738 key_getsavbyseq(struct secashead *sah, u_int32_t seq) 5739 { 5740 struct secasvar *sav; 5741 u_int state; 5742 int s; 5743 5744 state = SADB_SASTATE_LARVAL; 5745 5746 /* search SAD with sequence number ? */ 5747 s = pserialize_read_enter(); 5748 SAVLIST_READER_FOREACH(sav, sah, state) { 5749 KEY_CHKSASTATE(state, sav->state); 5750 5751 if (sav->seq == seq) { 5752 SA_ADDREF(sav); 5753 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 5754 "DP cause refcnt++:%d SA:%p\n", 5755 key_sa_refcnt(sav), sav); 5756 break; 5757 } 5758 } 5759 pserialize_read_exit(s); 5760 5761 return sav; 5762 } 5763 #endif 5764 5765 /* 5766 * SADB_ADD processing 5767 * add an entry to SA database, when received 5768 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5769 * key(AE), (identity(SD),) (sensitivity)> 5770 * from the ikmpd, 5771 * and send 5772 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5773 * (identity(SD),) (sensitivity)> 5774 * to the ikmpd. 5775 * 5776 * IGNORE identity and sensitivity messages. 5777 * 5778 * m will always be freed. 5779 */ 5780 static int 5781 key_api_add(struct socket *so, struct mbuf *m, 5782 const struct sadb_msghdr *mhp) 5783 { 5784 struct sadb_sa *sa0; 5785 const struct sockaddr *src, *dst; 5786 struct secasindex saidx; 5787 struct secashead *sah; 5788 struct secasvar *newsav; 5789 u_int16_t proto; 5790 u_int8_t mode; 5791 u_int16_t reqid; 5792 int error; 5793 5794 /* map satype to proto */ 5795 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5796 if (proto == 0) { 5797 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5798 return key_senderror(so, m, EINVAL); 5799 } 5800 5801 if (mhp->ext[SADB_EXT_SA] == NULL || 5802 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5803 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5804 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5805 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5806 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5807 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5808 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5809 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5810 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5811 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5812 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5813 return key_senderror(so, m, EINVAL); 5814 } 5815 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5816 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5817 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5818 /* XXX need more */ 5819 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5820 return key_senderror(so, m, EINVAL); 5821 } 5822 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5823 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5824 mode = sa2->sadb_x_sa2_mode; 5825 reqid = sa2->sadb_x_sa2_reqid; 5826 } else { 5827 mode = IPSEC_MODE_ANY; 5828 reqid = 0; 5829 } 5830 5831 sa0 = mhp->ext[SADB_EXT_SA]; 5832 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5833 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5834 5835 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5836 if (error != 0) 5837 return key_senderror(so, m, EINVAL); 5838 5839 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5840 if (error != 0) 5841 return key_senderror(so, m, EINVAL); 5842 5843 /* get a SA header */ 5844 sah = key_getsah_ref(&saidx, CMP_REQID); 5845 if (sah == NULL) { 5846 /* create a new SA header */ 5847 sah = key_newsah(&saidx); 5848 if (sah == NULL) { 5849 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5850 return key_senderror(so, m, ENOBUFS); 5851 } 5852 } 5853 5854 /* set spidx if there */ 5855 /* XXX rewrite */ 5856 error = key_setident(sah, m, mhp); 5857 if (error) 5858 goto error; 5859 5860 { 5861 struct secasvar *sav; 5862 5863 /* We can create new SA only if SPI is differenct. */ 5864 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5865 if (sav != NULL) { 5866 KEY_SA_UNREF(&sav); 5867 IPSECLOG(LOG_DEBUG, "SA already exists.\n"); 5868 error = EEXIST; 5869 goto error; 5870 } 5871 } 5872 5873 /* create new SA entry. */ 5874 newsav = KEY_NEWSAV(m, mhp, &error); 5875 if (newsav == NULL) 5876 goto error; 5877 newsav->sah = sah; 5878 5879 error = key_handle_natt_info(newsav, mhp); 5880 if (error != 0) { 5881 key_delsav(newsav); 5882 error = EINVAL; 5883 goto error; 5884 } 5885 5886 error = key_init_xform(newsav); 5887 if (error != 0) { 5888 key_delsav(newsav); 5889 goto error; 5890 } 5891 5892 /* Add to sah#savlist */ 5893 key_init_sav(newsav); 5894 newsav->state = SADB_SASTATE_MATURE; 5895 mutex_enter(&key_sad.lock); 5896 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); 5897 mutex_exit(&key_sad.lock); 5898 key_validate_savlist(sah, SADB_SASTATE_MATURE); 5899 5900 key_sah_unref(sah); 5901 sah = NULL; 5902 5903 /* 5904 * don't call key_freesav() here, as we would like to keep the SA 5905 * in the database on success. 5906 */ 5907 5908 { 5909 struct mbuf *n; 5910 5911 /* set msg buf from mhp */ 5912 n = key_getmsgbuf_x1(m, mhp); 5913 if (n == NULL) { 5914 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5915 return key_senderror(so, m, ENOBUFS); 5916 } 5917 5918 m_freem(m); 5919 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5920 } 5921 error: 5922 key_sah_unref(sah); 5923 return key_senderror(so, m, error); 5924 } 5925 5926 /* m is retained */ 5927 static int 5928 key_setident(struct secashead *sah, struct mbuf *m, 5929 const struct sadb_msghdr *mhp) 5930 { 5931 const struct sadb_ident *idsrc, *iddst; 5932 int idsrclen, iddstlen; 5933 5934 KASSERT(!cpu_softintr_p()); 5935 KASSERT(sah != NULL); 5936 KASSERT(m != NULL); 5937 KASSERT(mhp != NULL); 5938 KASSERT(mhp->msg != NULL); 5939 5940 /* 5941 * Can be called with an existing sah from key_api_update(). 5942 */ 5943 if (sah->idents != NULL) { 5944 kmem_free(sah->idents, sah->idents_len); 5945 sah->idents = NULL; 5946 sah->idents_len = 0; 5947 } 5948 if (sah->identd != NULL) { 5949 kmem_free(sah->identd, sah->identd_len); 5950 sah->identd = NULL; 5951 sah->identd_len = 0; 5952 } 5953 5954 /* don't make buffer if not there */ 5955 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5956 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5957 sah->idents = NULL; 5958 sah->identd = NULL; 5959 return 0; 5960 } 5961 5962 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5963 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5964 IPSECLOG(LOG_DEBUG, "invalid identity.\n"); 5965 return EINVAL; 5966 } 5967 5968 idsrc = mhp->ext[SADB_EXT_IDENTITY_SRC]; 5969 iddst = mhp->ext[SADB_EXT_IDENTITY_DST]; 5970 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5971 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5972 5973 /* validity check */ 5974 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5975 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n"); 5976 return EINVAL; 5977 } 5978 5979 switch (idsrc->sadb_ident_type) { 5980 case SADB_IDENTTYPE_PREFIX: 5981 case SADB_IDENTTYPE_FQDN: 5982 case SADB_IDENTTYPE_USERFQDN: 5983 default: 5984 /* XXX do nothing */ 5985 sah->idents = NULL; 5986 sah->identd = NULL; 5987 return 0; 5988 } 5989 5990 /* make structure */ 5991 sah->idents = kmem_alloc(idsrclen, KM_SLEEP); 5992 sah->idents_len = idsrclen; 5993 sah->identd = kmem_alloc(iddstlen, KM_SLEEP); 5994 sah->identd_len = iddstlen; 5995 memcpy(sah->idents, idsrc, idsrclen); 5996 memcpy(sah->identd, iddst, iddstlen); 5997 5998 return 0; 5999 } 6000 6001 /* 6002 * m will not be freed on return. It never return NULL. 6003 * it is caller's responsibility to free the result. 6004 */ 6005 static struct mbuf * 6006 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 6007 { 6008 struct mbuf *n; 6009 6010 KASSERT(m != NULL); 6011 KASSERT(mhp != NULL); 6012 KASSERT(mhp->msg != NULL); 6013 6014 /* create new sadb_msg to reply. */ 6015 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED, 6016 SADB_EXT_SA, SADB_X_EXT_SA2, 6017 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 6018 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 6019 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, 6020 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, 6021 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, 6022 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG); 6023 6024 KASSERT(n->m_len >= sizeof(struct sadb_msg)); 6025 6026 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 6027 mtod(n, struct sadb_msg *)->sadb_msg_len = 6028 PFKEY_UNIT64(n->m_pkthdr.len); 6029 6030 return n; 6031 } 6032 6033 static int key_delete_all (struct socket *, struct mbuf *, 6034 const struct sadb_msghdr *, u_int16_t); 6035 6036 /* 6037 * SADB_DELETE processing 6038 * receive 6039 * <base, SA(*), address(SD)> 6040 * from the ikmpd, and set SADB_SASTATE_DEAD, 6041 * and send, 6042 * <base, SA(*), address(SD)> 6043 * to the ikmpd. 6044 * 6045 * m will always be freed. 6046 */ 6047 static int 6048 key_api_delete(struct socket *so, struct mbuf *m, 6049 const struct sadb_msghdr *mhp) 6050 { 6051 struct sadb_sa *sa0; 6052 const struct sockaddr *src, *dst; 6053 struct secasindex saidx; 6054 struct secashead *sah; 6055 struct secasvar *sav = NULL; 6056 u_int16_t proto; 6057 int error; 6058 6059 /* map satype to proto */ 6060 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 6061 if (proto == 0) { 6062 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6063 return key_senderror(so, m, EINVAL); 6064 } 6065 6066 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6067 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 6068 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6069 return key_senderror(so, m, EINVAL); 6070 } 6071 6072 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6073 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6074 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6075 return key_senderror(so, m, EINVAL); 6076 } 6077 6078 if (mhp->ext[SADB_EXT_SA] == NULL) { 6079 /* 6080 * Caller wants us to delete all non-LARVAL SAs 6081 * that match the src/dst. This is used during 6082 * IKE INITIAL-CONTACT. 6083 */ 6084 IPSECLOG(LOG_DEBUG, "doing delete all.\n"); 6085 return key_delete_all(so, m, mhp, proto); 6086 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 6087 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6088 return key_senderror(so, m, EINVAL); 6089 } 6090 6091 sa0 = mhp->ext[SADB_EXT_SA]; 6092 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6093 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6094 6095 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6096 if (error != 0) 6097 return key_senderror(so, m, EINVAL); 6098 6099 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6100 if (error != 0) 6101 return key_senderror(so, m, EINVAL); 6102 6103 /* get a SA header */ 6104 sah = key_getsah_ref(&saidx, CMP_HEAD); 6105 if (sah != NULL) { 6106 /* get a SA with SPI. */ 6107 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 6108 key_sah_unref(sah); 6109 } 6110 6111 if (sav == NULL) { 6112 IPSECLOG(LOG_DEBUG, "no SA found.\n"); 6113 return key_senderror(so, m, ENOENT); 6114 } 6115 6116 key_destroy_sav_with_ref(sav); 6117 sav = NULL; 6118 6119 { 6120 struct mbuf *n; 6121 6122 /* create new sadb_msg to reply. */ 6123 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 6124 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6125 6126 key_fill_replymsg(n, 0); 6127 m_freem(m); 6128 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6129 } 6130 } 6131 6132 /* 6133 * delete all SAs for src/dst. Called from key_api_delete(). 6134 */ 6135 static int 6136 key_delete_all(struct socket *so, struct mbuf *m, 6137 const struct sadb_msghdr *mhp, u_int16_t proto) 6138 { 6139 const struct sockaddr *src, *dst; 6140 struct secasindex saidx; 6141 struct secashead *sah; 6142 struct secasvar *sav; 6143 u_int state; 6144 int error; 6145 6146 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6147 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6148 6149 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6150 if (error != 0) 6151 return key_senderror(so, m, EINVAL); 6152 6153 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6154 if (error != 0) 6155 return key_senderror(so, m, EINVAL); 6156 6157 sah = key_getsah_ref(&saidx, CMP_HEAD); 6158 if (sah != NULL) { 6159 /* Delete all non-LARVAL SAs. */ 6160 SASTATE_ALIVE_FOREACH(state) { 6161 if (state == SADB_SASTATE_LARVAL) 6162 continue; 6163 restart: 6164 mutex_enter(&key_sad.lock); 6165 SAVLIST_WRITER_FOREACH(sav, sah, state) { 6166 sav->state = SADB_SASTATE_DEAD; 6167 key_unlink_sav(sav); 6168 mutex_exit(&key_sad.lock); 6169 key_destroy_sav(sav); 6170 goto restart; 6171 } 6172 mutex_exit(&key_sad.lock); 6173 } 6174 key_sah_unref(sah); 6175 } 6176 { 6177 struct mbuf *n; 6178 6179 /* create new sadb_msg to reply. */ 6180 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 6181 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6182 6183 key_fill_replymsg(n, 0); 6184 m_freem(m); 6185 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6186 } 6187 } 6188 6189 /* 6190 * SADB_GET processing 6191 * receive 6192 * <base, SA(*), address(SD)> 6193 * from the ikmpd, and get a SP and a SA to respond, 6194 * and send, 6195 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 6196 * (identity(SD),) (sensitivity)> 6197 * to the ikmpd. 6198 * 6199 * m will always be freed. 6200 */ 6201 static int 6202 key_api_get(struct socket *so, struct mbuf *m, 6203 const struct sadb_msghdr *mhp) 6204 { 6205 struct sadb_sa *sa0; 6206 const struct sockaddr *src, *dst; 6207 struct secasindex saidx; 6208 struct secasvar *sav = NULL; 6209 u_int16_t proto; 6210 int error; 6211 6212 /* map satype to proto */ 6213 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6214 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6215 return key_senderror(so, m, EINVAL); 6216 } 6217 6218 if (mhp->ext[SADB_EXT_SA] == NULL || 6219 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6220 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 6221 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6222 return key_senderror(so, m, EINVAL); 6223 } 6224 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 6225 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6226 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6227 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6228 return key_senderror(so, m, EINVAL); 6229 } 6230 6231 sa0 = mhp->ext[SADB_EXT_SA]; 6232 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6233 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6234 6235 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6236 if (error != 0) 6237 return key_senderror(so, m, EINVAL); 6238 6239 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6240 if (error != 0) 6241 return key_senderror(so, m, EINVAL); 6242 6243 /* get a SA header */ 6244 { 6245 struct secashead *sah; 6246 int s = pserialize_read_enter(); 6247 6248 sah = key_getsah(&saidx, CMP_HEAD); 6249 if (sah != NULL) { 6250 /* get a SA with SPI. */ 6251 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 6252 } 6253 pserialize_read_exit(s); 6254 } 6255 if (sav == NULL) { 6256 IPSECLOG(LOG_DEBUG, "no SA found.\n"); 6257 return key_senderror(so, m, ENOENT); 6258 } 6259 6260 { 6261 struct mbuf *n; 6262 u_int8_t satype; 6263 6264 /* map proto to satype */ 6265 satype = key_proto2satype(sav->sah->saidx.proto); 6266 if (satype == 0) { 6267 KEY_SA_UNREF(&sav); 6268 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n"); 6269 return key_senderror(so, m, EINVAL); 6270 } 6271 6272 /* create new sadb_msg to reply. */ 6273 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 6274 mhp->msg->sadb_msg_pid); 6275 KEY_SA_UNREF(&sav); 6276 m_freem(m); 6277 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6278 } 6279 } 6280 6281 /* XXX make it sysctl-configurable? */ 6282 static void 6283 key_getcomb_setlifetime(struct sadb_comb *comb) 6284 { 6285 6286 comb->sadb_comb_soft_allocations = 1; 6287 comb->sadb_comb_hard_allocations = 1; 6288 comb->sadb_comb_soft_bytes = 0; 6289 comb->sadb_comb_hard_bytes = 0; 6290 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 6291 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100; 6292 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */ 6293 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 6294 } 6295 6296 /* 6297 * XXX reorder combinations by preference 6298 * XXX no idea if the user wants ESP authentication or not 6299 */ 6300 static struct mbuf * 6301 key_getcomb_esp(int mflag) 6302 { 6303 struct sadb_comb *comb; 6304 const struct enc_xform *algo; 6305 struct mbuf *result = NULL, *m, *n; 6306 int encmin; 6307 int i, off, o; 6308 int totlen; 6309 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6310 6311 m = NULL; 6312 for (i = 1; i <= SADB_EALG_MAX; i++) { 6313 algo = esp_algorithm_lookup(i); 6314 if (algo == NULL) 6315 continue; 6316 6317 /* discard algorithms with key size smaller than system min */ 6318 if (_BITS(algo->maxkey) < ipsec_esp_keymin) 6319 continue; 6320 if (_BITS(algo->minkey) < ipsec_esp_keymin) 6321 encmin = ipsec_esp_keymin; 6322 else 6323 encmin = _BITS(algo->minkey); 6324 6325 if (ipsec_esp_auth) 6326 m = key_getcomb_ah(mflag); 6327 else { 6328 KASSERTMSG(l <= MLEN, 6329 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6330 MGET(m, mflag, MT_DATA); 6331 if (m) { 6332 M_ALIGN(m, l); 6333 m->m_len = l; 6334 m->m_next = NULL; 6335 memset(mtod(m, void *), 0, m->m_len); 6336 } 6337 } 6338 if (!m) 6339 goto fail; 6340 6341 totlen = 0; 6342 for (n = m; n; n = n->m_next) 6343 totlen += n->m_len; 6344 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l); 6345 6346 for (off = 0; off < totlen; off += l) { 6347 n = m_pulldown(m, off, l, &o); 6348 if (!n) { 6349 /* m is already freed */ 6350 goto fail; 6351 } 6352 comb = (struct sadb_comb *)(mtod(n, char *) + o); 6353 memset(comb, 0, sizeof(*comb)); 6354 key_getcomb_setlifetime(comb); 6355 comb->sadb_comb_encrypt = i; 6356 comb->sadb_comb_encrypt_minbits = encmin; 6357 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6358 } 6359 6360 if (!result) 6361 result = m; 6362 else 6363 m_cat(result, m); 6364 } 6365 6366 return result; 6367 6368 fail: 6369 if (result) 6370 m_freem(result); 6371 return NULL; 6372 } 6373 6374 static void 6375 key_getsizes_ah(const struct auth_hash *ah, int alg, 6376 u_int16_t* ksmin, u_int16_t* ksmax) 6377 { 6378 *ksmin = *ksmax = ah->keysize; 6379 if (ah->keysize == 0) { 6380 /* 6381 * Transform takes arbitrary key size but algorithm 6382 * key size is restricted. Enforce this here. 6383 */ 6384 switch (alg) { 6385 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break; 6386 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break; 6387 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break; 6388 default: 6389 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg); 6390 break; 6391 } 6392 } 6393 } 6394 6395 /* 6396 * XXX reorder combinations by preference 6397 */ 6398 static struct mbuf * 6399 key_getcomb_ah(int mflag) 6400 { 6401 struct sadb_comb *comb; 6402 const struct auth_hash *algo; 6403 struct mbuf *m; 6404 u_int16_t minkeysize, maxkeysize; 6405 int i; 6406 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6407 6408 m = NULL; 6409 for (i = 1; i <= SADB_AALG_MAX; i++) { 6410 #if 1 6411 /* we prefer HMAC algorithms, not old algorithms */ 6412 if (i != SADB_AALG_SHA1HMAC && 6413 i != SADB_AALG_MD5HMAC && 6414 i != SADB_X_AALG_SHA2_256 && 6415 i != SADB_X_AALG_SHA2_384 && 6416 i != SADB_X_AALG_SHA2_512) 6417 continue; 6418 #endif 6419 algo = ah_algorithm_lookup(i); 6420 if (!algo) 6421 continue; 6422 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6423 /* discard algorithms with key size smaller than system min */ 6424 if (_BITS(minkeysize) < ipsec_ah_keymin) 6425 continue; 6426 6427 if (!m) { 6428 KASSERTMSG(l <= MLEN, 6429 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6430 MGET(m, mflag, MT_DATA); 6431 if (m) { 6432 M_ALIGN(m, l); 6433 m->m_len = l; 6434 m->m_next = NULL; 6435 } 6436 } else 6437 M_PREPEND(m, l, mflag); 6438 if (!m) 6439 return NULL; 6440 6441 if (m->m_len < sizeof(struct sadb_comb)) { 6442 m = m_pullup(m, sizeof(struct sadb_comb)); 6443 if (m == NULL) 6444 return NULL; 6445 } 6446 6447 comb = mtod(m, struct sadb_comb *); 6448 memset(comb, 0, sizeof(*comb)); 6449 key_getcomb_setlifetime(comb); 6450 comb->sadb_comb_auth = i; 6451 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6452 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6453 } 6454 6455 return m; 6456 } 6457 6458 /* 6459 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6460 * XXX reorder combinations by preference 6461 */ 6462 static struct mbuf * 6463 key_getcomb_ipcomp(int mflag) 6464 { 6465 struct sadb_comb *comb; 6466 const struct comp_algo *algo; 6467 struct mbuf *m; 6468 int i; 6469 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6470 6471 m = NULL; 6472 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6473 algo = ipcomp_algorithm_lookup(i); 6474 if (!algo) 6475 continue; 6476 6477 if (!m) { 6478 KASSERTMSG(l <= MLEN, 6479 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6480 MGET(m, mflag, MT_DATA); 6481 if (m) { 6482 M_ALIGN(m, l); 6483 m->m_len = l; 6484 m->m_next = NULL; 6485 } 6486 } else 6487 M_PREPEND(m, l, mflag); 6488 if (!m) 6489 return NULL; 6490 6491 if (m->m_len < sizeof(struct sadb_comb)) { 6492 m = m_pullup(m, sizeof(struct sadb_comb)); 6493 if (m == NULL) 6494 return NULL; 6495 } 6496 6497 comb = mtod(m, struct sadb_comb *); 6498 memset(comb, 0, sizeof(*comb)); 6499 key_getcomb_setlifetime(comb); 6500 comb->sadb_comb_encrypt = i; 6501 /* what should we set into sadb_comb_*_{min,max}bits? */ 6502 } 6503 6504 return m; 6505 } 6506 6507 /* 6508 * XXX no way to pass mode (transport/tunnel) to userland 6509 * XXX replay checking? 6510 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6511 */ 6512 static struct mbuf * 6513 key_getprop(const struct secasindex *saidx, int mflag) 6514 { 6515 struct sadb_prop *prop; 6516 struct mbuf *m, *n; 6517 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6518 int totlen; 6519 6520 switch (saidx->proto) { 6521 case IPPROTO_ESP: 6522 m = key_getcomb_esp(mflag); 6523 break; 6524 case IPPROTO_AH: 6525 m = key_getcomb_ah(mflag); 6526 break; 6527 case IPPROTO_IPCOMP: 6528 m = key_getcomb_ipcomp(mflag); 6529 break; 6530 default: 6531 return NULL; 6532 } 6533 6534 if (!m) 6535 return NULL; 6536 M_PREPEND(m, l, mflag); 6537 if (!m) 6538 return NULL; 6539 6540 totlen = 0; 6541 for (n = m; n; n = n->m_next) 6542 totlen += n->m_len; 6543 6544 prop = mtod(m, struct sadb_prop *); 6545 memset(prop, 0, sizeof(*prop)); 6546 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6547 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6548 prop->sadb_prop_replay = 32; /* XXX */ 6549 6550 return m; 6551 } 6552 6553 /* 6554 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire(). 6555 * send 6556 * <base, SA, address(SD), (address(P)), x_policy, 6557 * (identity(SD),) (sensitivity,) proposal> 6558 * to KMD, and expect to receive 6559 * <base> with SADB_ACQUIRE if error occurred, 6560 * or 6561 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6562 * from KMD by PF_KEY. 6563 * 6564 * XXX x_policy is outside of RFC2367 (KAME extension). 6565 * XXX sensitivity is not supported. 6566 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6567 * see comment for key_getcomb_ipcomp(). 6568 * 6569 * OUT: 6570 * 0 : succeed 6571 * others: error number 6572 */ 6573 static int 6574 key_acquire(const struct secasindex *saidx, const struct secpolicy *sp, int mflag) 6575 { 6576 struct mbuf *result = NULL, *m; 6577 #ifndef IPSEC_NONBLOCK_ACQUIRE 6578 struct secacq *newacq; 6579 #endif 6580 u_int8_t satype; 6581 int error = -1; 6582 u_int32_t seq; 6583 6584 /* sanity check */ 6585 KASSERT(saidx != NULL); 6586 satype = key_proto2satype(saidx->proto); 6587 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto); 6588 6589 #ifndef IPSEC_NONBLOCK_ACQUIRE 6590 /* 6591 * We never do anything about acquirng SA. There is anather 6592 * solution that kernel blocks to send SADB_ACQUIRE message until 6593 * getting something message from IKEd. In later case, to be 6594 * managed with ACQUIRING list. 6595 */ 6596 /* Get an entry to check whether sending message or not. */ 6597 mutex_enter(&key_misc.lock); 6598 newacq = key_getacq(saidx); 6599 if (newacq != NULL) { 6600 if (key_blockacq_count < newacq->count) { 6601 /* reset counter and do send message. */ 6602 newacq->count = 0; 6603 } else { 6604 /* increment counter and do nothing. */ 6605 newacq->count++; 6606 mutex_exit(&key_misc.lock); 6607 return 0; 6608 } 6609 } else { 6610 /* make new entry for blocking to send SADB_ACQUIRE. */ 6611 newacq = key_newacq(saidx); 6612 if (newacq == NULL) { 6613 mutex_exit(&key_misc.lock); 6614 return ENOBUFS; 6615 } 6616 6617 /* add to key_misc.acqlist */ 6618 LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain); 6619 } 6620 6621 seq = newacq->seq; 6622 mutex_exit(&key_misc.lock); 6623 #else 6624 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 6625 #endif 6626 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0, mflag); 6627 if (!m) { 6628 error = ENOBUFS; 6629 goto fail; 6630 } 6631 result = m; 6632 6633 /* set sadb_address for saidx's. */ 6634 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK, 6635 IPSEC_ULPROTO_ANY, mflag); 6636 if (!m) { 6637 error = ENOBUFS; 6638 goto fail; 6639 } 6640 m_cat(result, m); 6641 6642 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK, 6643 IPSEC_ULPROTO_ANY, mflag); 6644 if (!m) { 6645 error = ENOBUFS; 6646 goto fail; 6647 } 6648 m_cat(result, m); 6649 6650 /* XXX proxy address (optional) */ 6651 6652 /* set sadb_x_policy */ 6653 if (sp) { 6654 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id, 6655 mflag); 6656 if (!m) { 6657 error = ENOBUFS; 6658 goto fail; 6659 } 6660 m_cat(result, m); 6661 } 6662 6663 /* XXX identity (optional) */ 6664 #if 0 6665 if (idexttype && fqdn) { 6666 /* create identity extension (FQDN) */ 6667 struct sadb_ident *id; 6668 int fqdnlen; 6669 6670 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6671 id = (struct sadb_ident *)p; 6672 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6673 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6674 id->sadb_ident_exttype = idexttype; 6675 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6676 memcpy(id + 1, fqdn, fqdnlen); 6677 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6678 } 6679 6680 if (idexttype) { 6681 /* create identity extension (USERFQDN) */ 6682 struct sadb_ident *id; 6683 int userfqdnlen; 6684 6685 if (userfqdn) { 6686 /* +1 for terminating-NUL */ 6687 userfqdnlen = strlen(userfqdn) + 1; 6688 } else 6689 userfqdnlen = 0; 6690 id = (struct sadb_ident *)p; 6691 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6692 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6693 id->sadb_ident_exttype = idexttype; 6694 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6695 /* XXX is it correct? */ 6696 if (curlwp) 6697 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred); 6698 if (userfqdn && userfqdnlen) 6699 memcpy(id + 1, userfqdn, userfqdnlen); 6700 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6701 } 6702 #endif 6703 6704 /* XXX sensitivity (optional) */ 6705 6706 /* create proposal/combination extension */ 6707 m = key_getprop(saidx, mflag); 6708 #if 0 6709 /* 6710 * spec conformant: always attach proposal/combination extension, 6711 * the problem is that we have no way to attach it for ipcomp, 6712 * due to the way sadb_comb is declared in RFC2367. 6713 */ 6714 if (!m) { 6715 error = ENOBUFS; 6716 goto fail; 6717 } 6718 m_cat(result, m); 6719 #else 6720 /* 6721 * outside of spec; make proposal/combination extension optional. 6722 */ 6723 if (m) 6724 m_cat(result, m); 6725 #endif 6726 6727 KASSERT(result->m_flags & M_PKTHDR); 6728 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 6729 6730 result->m_pkthdr.len = 0; 6731 for (m = result; m; m = m->m_next) 6732 result->m_pkthdr.len += m->m_len; 6733 6734 mtod(result, struct sadb_msg *)->sadb_msg_len = 6735 PFKEY_UNIT64(result->m_pkthdr.len); 6736 6737 /* 6738 * Called from key_api_acquire that must come from userland, so 6739 * we can call key_sendup_mbuf immediately. 6740 */ 6741 if (mflag == M_WAITOK) 6742 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6743 /* 6744 * XXX we cannot call key_sendup_mbuf directly here because 6745 * it can cause a deadlock: 6746 * - We have a reference to an SP (and an SA) here 6747 * - key_sendup_mbuf will try to take key_so_mtx 6748 * - Some other thread may try to localcount_drain to the SP with 6749 * holding key_so_mtx in say key_api_spdflush 6750 * - In this case localcount_drain never return because key_sendup_mbuf 6751 * that has stuck on key_so_mtx never release a reference to the SP 6752 * 6753 * So defer key_sendup_mbuf to the timer. 6754 */ 6755 return key_acquire_sendup_mbuf_later(result); 6756 6757 fail: 6758 if (result) 6759 m_freem(result); 6760 return error; 6761 } 6762 6763 static struct mbuf *key_acquire_mbuf_head = NULL; 6764 static unsigned key_acquire_mbuf_count = 0; 6765 #define KEY_ACQUIRE_MBUF_MAX 10 6766 6767 static void 6768 key_acquire_sendup_pending_mbuf(void) 6769 { 6770 struct mbuf *m, *prev; 6771 int error; 6772 6773 again: 6774 prev = NULL; 6775 mutex_enter(&key_misc.lock); 6776 m = key_acquire_mbuf_head; 6777 /* Get an earliest mbuf (one at the tail of the list) */ 6778 while (m != NULL) { 6779 if (m->m_nextpkt == NULL) { 6780 if (prev != NULL) 6781 prev->m_nextpkt = NULL; 6782 if (m == key_acquire_mbuf_head) 6783 key_acquire_mbuf_head = NULL; 6784 key_acquire_mbuf_count--; 6785 break; 6786 } 6787 prev = m; 6788 m = m->m_nextpkt; 6789 } 6790 mutex_exit(&key_misc.lock); 6791 6792 if (m == NULL) 6793 return; 6794 6795 m->m_nextpkt = NULL; 6796 error = key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 6797 if (error != 0) 6798 IPSECLOG(LOG_WARNING, "key_sendup_mbuf failed (error=%d)\n", 6799 error); 6800 6801 if (prev != NULL) 6802 goto again; 6803 } 6804 6805 static int 6806 key_acquire_sendup_mbuf_later(struct mbuf *m) 6807 { 6808 6809 mutex_enter(&key_misc.lock); 6810 /* Avoid queuing too much mbufs */ 6811 if (key_acquire_mbuf_count >= KEY_ACQUIRE_MBUF_MAX) { 6812 mutex_exit(&key_misc.lock); 6813 m_freem(m); 6814 return ENOBUFS; /* XXX */ 6815 } 6816 /* Enqueue mbuf at the head of the list */ 6817 m->m_nextpkt = key_acquire_mbuf_head; 6818 key_acquire_mbuf_head = m; 6819 key_acquire_mbuf_count++; 6820 mutex_exit(&key_misc.lock); 6821 6822 /* Kick the timer */ 6823 key_timehandler(NULL); 6824 6825 return 0; 6826 } 6827 6828 #ifndef IPSEC_NONBLOCK_ACQUIRE 6829 static struct secacq * 6830 key_newacq(const struct secasindex *saidx) 6831 { 6832 struct secacq *newacq; 6833 6834 /* get new entry */ 6835 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP); 6836 if (newacq == NULL) { 6837 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 6838 return NULL; 6839 } 6840 6841 /* copy secindex */ 6842 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx)); 6843 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); 6844 newacq->created = time_uptime; 6845 newacq->count = 0; 6846 6847 return newacq; 6848 } 6849 6850 static struct secacq * 6851 key_getacq(const struct secasindex *saidx) 6852 { 6853 struct secacq *acq; 6854 6855 KASSERT(mutex_owned(&key_misc.lock)); 6856 6857 LIST_FOREACH(acq, &key_misc.acqlist, chain) { 6858 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY)) 6859 return acq; 6860 } 6861 6862 return NULL; 6863 } 6864 6865 static struct secacq * 6866 key_getacqbyseq(u_int32_t seq) 6867 { 6868 struct secacq *acq; 6869 6870 KASSERT(mutex_owned(&key_misc.lock)); 6871 6872 LIST_FOREACH(acq, &key_misc.acqlist, chain) { 6873 if (acq->seq == seq) 6874 return acq; 6875 } 6876 6877 return NULL; 6878 } 6879 #endif 6880 6881 #ifdef notyet 6882 static struct secspacq * 6883 key_newspacq(const struct secpolicyindex *spidx) 6884 { 6885 struct secspacq *acq; 6886 6887 /* get new entry */ 6888 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP); 6889 if (acq == NULL) { 6890 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 6891 return NULL; 6892 } 6893 6894 /* copy secindex */ 6895 memcpy(&acq->spidx, spidx, sizeof(acq->spidx)); 6896 acq->created = time_uptime; 6897 acq->count = 0; 6898 6899 return acq; 6900 } 6901 6902 static struct secspacq * 6903 key_getspacq(const struct secpolicyindex *spidx) 6904 { 6905 struct secspacq *acq; 6906 6907 LIST_FOREACH(acq, &key_misc.spacqlist, chain) { 6908 if (key_spidx_match_exactly(spidx, &acq->spidx)) 6909 return acq; 6910 } 6911 6912 return NULL; 6913 } 6914 #endif /* notyet */ 6915 6916 /* 6917 * SADB_ACQUIRE processing, 6918 * in first situation, is receiving 6919 * <base> 6920 * from the ikmpd, and clear sequence of its secasvar entry. 6921 * 6922 * In second situation, is receiving 6923 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6924 * from a user land process, and return 6925 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6926 * to the socket. 6927 * 6928 * m will always be freed. 6929 */ 6930 static int 6931 key_api_acquire(struct socket *so, struct mbuf *m, 6932 const struct sadb_msghdr *mhp) 6933 { 6934 const struct sockaddr *src, *dst; 6935 struct secasindex saidx; 6936 u_int16_t proto; 6937 int error; 6938 6939 /* 6940 * Error message from KMd. 6941 * We assume that if error was occurred in IKEd, the length of PFKEY 6942 * message is equal to the size of sadb_msg structure. 6943 * We do not raise error even if error occurred in this function. 6944 */ 6945 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6946 #ifndef IPSEC_NONBLOCK_ACQUIRE 6947 struct secacq *acq; 6948 6949 /* check sequence number */ 6950 if (mhp->msg->sadb_msg_seq == 0) { 6951 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n"); 6952 m_freem(m); 6953 return 0; 6954 } 6955 6956 mutex_enter(&key_misc.lock); 6957 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); 6958 if (acq == NULL) { 6959 mutex_exit(&key_misc.lock); 6960 /* 6961 * the specified larval SA is already gone, or we got 6962 * a bogus sequence number. we can silently ignore it. 6963 */ 6964 m_freem(m); 6965 return 0; 6966 } 6967 6968 /* reset acq counter in order to deletion by timehander. */ 6969 acq->created = time_uptime; 6970 acq->count = 0; 6971 mutex_exit(&key_misc.lock); 6972 #endif 6973 m_freem(m); 6974 return 0; 6975 } 6976 6977 /* 6978 * This message is from user land. 6979 */ 6980 6981 /* map satype to proto */ 6982 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 6983 if (proto == 0) { 6984 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6985 return key_senderror(so, m, EINVAL); 6986 } 6987 6988 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6989 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6990 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6991 /* error */ 6992 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6993 return key_senderror(so, m, EINVAL); 6994 } 6995 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6996 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6997 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6998 /* error */ 6999 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 7000 return key_senderror(so, m, EINVAL); 7001 } 7002 7003 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 7004 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 7005 7006 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 7007 if (error != 0) 7008 return key_senderror(so, m, EINVAL); 7009 7010 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 7011 if (error != 0) 7012 return key_senderror(so, m, EINVAL); 7013 7014 /* get a SA index */ 7015 { 7016 struct secashead *sah; 7017 int s = pserialize_read_enter(); 7018 7019 sah = key_getsah(&saidx, CMP_MODE_REQID); 7020 if (sah != NULL) { 7021 pserialize_read_exit(s); 7022 IPSECLOG(LOG_DEBUG, "a SA exists already.\n"); 7023 return key_senderror(so, m, EEXIST); 7024 } 7025 pserialize_read_exit(s); 7026 } 7027 7028 error = key_acquire(&saidx, NULL, M_WAITOK); 7029 if (error != 0) { 7030 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", 7031 error); 7032 return key_senderror(so, m, error); 7033 } 7034 7035 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 7036 } 7037 7038 /* 7039 * SADB_REGISTER processing. 7040 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 7041 * receive 7042 * <base> 7043 * from the ikmpd, and register a socket to send PF_KEY messages, 7044 * and send 7045 * <base, supported> 7046 * to KMD by PF_KEY. 7047 * If socket is detached, must free from regnode. 7048 * 7049 * m will always be freed. 7050 */ 7051 static int 7052 key_api_register(struct socket *so, struct mbuf *m, 7053 const struct sadb_msghdr *mhp) 7054 { 7055 struct secreg *reg, *newreg = 0; 7056 7057 /* check for invalid register message */ 7058 if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist)) 7059 return key_senderror(so, m, EINVAL); 7060 7061 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 7062 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 7063 goto setmsg; 7064 7065 /* Allocate regnode in advance, out of mutex */ 7066 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP); 7067 7068 /* check whether existing or not */ 7069 mutex_enter(&key_misc.lock); 7070 LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) { 7071 if (reg->so == so) { 7072 IPSECLOG(LOG_DEBUG, "socket exists already.\n"); 7073 mutex_exit(&key_misc.lock); 7074 kmem_free(newreg, sizeof(*newreg)); 7075 return key_senderror(so, m, EEXIST); 7076 } 7077 } 7078 7079 newreg->so = so; 7080 ((struct keycb *)sotorawcb(so))->kp_registered++; 7081 7082 /* add regnode to key_misc.reglist. */ 7083 LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain); 7084 mutex_exit(&key_misc.lock); 7085 7086 setmsg: 7087 { 7088 struct mbuf *n; 7089 struct sadb_supported *sup; 7090 u_int len, alen, elen; 7091 int off; 7092 int i; 7093 struct sadb_alg *alg; 7094 7095 /* create new sadb_msg to reply. */ 7096 alen = 0; 7097 for (i = 1; i <= SADB_AALG_MAX; i++) { 7098 if (ah_algorithm_lookup(i)) 7099 alen += sizeof(struct sadb_alg); 7100 } 7101 if (alen) 7102 alen += sizeof(struct sadb_supported); 7103 elen = 0; 7104 for (i = 1; i <= SADB_EALG_MAX; i++) { 7105 if (esp_algorithm_lookup(i)) 7106 elen += sizeof(struct sadb_alg); 7107 } 7108 if (elen) 7109 elen += sizeof(struct sadb_supported); 7110 7111 len = sizeof(struct sadb_msg) + alen + elen; 7112 7113 if (len > MCLBYTES) 7114 return key_senderror(so, m, ENOBUFS); 7115 7116 n = key_alloc_mbuf_simple(len, M_WAITOK); 7117 n->m_pkthdr.len = n->m_len = len; 7118 n->m_next = NULL; 7119 off = 0; 7120 7121 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 7122 key_fill_replymsg(n, 0); 7123 7124 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 7125 7126 /* for authentication algorithm */ 7127 if (alen) { 7128 sup = (struct sadb_supported *)(mtod(n, char *) + off); 7129 sup->sadb_supported_len = PFKEY_UNIT64(alen); 7130 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 7131 off += PFKEY_ALIGN8(sizeof(*sup)); 7132 7133 for (i = 1; i <= SADB_AALG_MAX; i++) { 7134 const struct auth_hash *aalgo; 7135 u_int16_t minkeysize, maxkeysize; 7136 7137 aalgo = ah_algorithm_lookup(i); 7138 if (!aalgo) 7139 continue; 7140 alg = (struct sadb_alg *)(mtod(n, char *) + off); 7141 alg->sadb_alg_id = i; 7142 alg->sadb_alg_ivlen = 0; 7143 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 7144 alg->sadb_alg_minbits = _BITS(minkeysize); 7145 alg->sadb_alg_maxbits = _BITS(maxkeysize); 7146 off += PFKEY_ALIGN8(sizeof(*alg)); 7147 } 7148 } 7149 7150 /* for encryption algorithm */ 7151 if (elen) { 7152 sup = (struct sadb_supported *)(mtod(n, char *) + off); 7153 sup->sadb_supported_len = PFKEY_UNIT64(elen); 7154 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 7155 off += PFKEY_ALIGN8(sizeof(*sup)); 7156 7157 for (i = 1; i <= SADB_EALG_MAX; i++) { 7158 const struct enc_xform *ealgo; 7159 7160 ealgo = esp_algorithm_lookup(i); 7161 if (!ealgo) 7162 continue; 7163 alg = (struct sadb_alg *)(mtod(n, char *) + off); 7164 alg->sadb_alg_id = i; 7165 alg->sadb_alg_ivlen = ealgo->blocksize; 7166 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 7167 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 7168 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 7169 } 7170 } 7171 7172 KASSERTMSG(off == len, "length inconsistency"); 7173 7174 m_freem(m); 7175 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 7176 } 7177 } 7178 7179 /* 7180 * free secreg entry registered. 7181 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 7182 */ 7183 void 7184 key_freereg(struct socket *so) 7185 { 7186 struct secreg *reg; 7187 int i; 7188 7189 KASSERT(!cpu_softintr_p()); 7190 KASSERT(so != NULL); 7191 7192 /* 7193 * check whether existing or not. 7194 * check all type of SA, because there is a potential that 7195 * one socket is registered to multiple type of SA. 7196 */ 7197 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7198 mutex_enter(&key_misc.lock); 7199 LIST_FOREACH(reg, &key_misc.reglist[i], chain) { 7200 if (reg->so == so) { 7201 LIST_REMOVE(reg, chain); 7202 break; 7203 } 7204 } 7205 mutex_exit(&key_misc.lock); 7206 if (reg != NULL) 7207 kmem_free(reg, sizeof(*reg)); 7208 } 7209 7210 return; 7211 } 7212 7213 /* 7214 * SADB_EXPIRE processing 7215 * send 7216 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 7217 * to KMD by PF_KEY. 7218 * NOTE: We send only soft lifetime extension. 7219 * 7220 * OUT: 0 : succeed 7221 * others : error number 7222 */ 7223 static int 7224 key_expire(struct secasvar *sav) 7225 { 7226 int s; 7227 int satype; 7228 struct mbuf *result = NULL, *m; 7229 int len; 7230 int error = -1; 7231 struct sadb_lifetime *lt; 7232 lifetime_counters_t sum = {0}; 7233 7234 /* XXX: Why do we lock ? */ 7235 s = splsoftnet(); /*called from softclock()*/ 7236 7237 KASSERT(sav != NULL); 7238 7239 satype = key_proto2satype(sav->sah->saidx.proto); 7240 KASSERTMSG(satype != 0, "invalid proto is passed"); 7241 7242 /* set msg header */ 7243 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav), 7244 M_WAITOK); 7245 result = m; 7246 7247 /* create SA extension */ 7248 m = key_setsadbsa(sav); 7249 m_cat(result, m); 7250 7251 /* create SA extension */ 7252 m = key_setsadbxsa2(sav->sah->saidx.mode, 7253 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid); 7254 m_cat(result, m); 7255 7256 /* create lifetime extension (current and soft) */ 7257 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 7258 m = key_alloc_mbuf(len, M_WAITOK); 7259 KASSERT(m->m_next == NULL); 7260 7261 memset(mtod(m, void *), 0, len); 7262 lt = mtod(m, struct sadb_lifetime *); 7263 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7264 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 7265 percpu_foreach(sav->lft_c_counters_percpu, 7266 key_sum_lifetime_counters, sum); 7267 lt->sadb_lifetime_allocations = sum[LIFETIME_COUNTER_ALLOCATIONS]; 7268 lt->sadb_lifetime_bytes = sum[LIFETIME_COUNTER_BYTES]; 7269 lt->sadb_lifetime_addtime = 7270 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime); 7271 lt->sadb_lifetime_usetime = 7272 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime); 7273 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 7274 memcpy(lt, sav->lft_s, sizeof(*lt)); 7275 m_cat(result, m); 7276 7277 /* set sadb_address for source */ 7278 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, 7279 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 7280 m_cat(result, m); 7281 7282 /* set sadb_address for destination */ 7283 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa, 7284 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 7285 m_cat(result, m); 7286 7287 if ((result->m_flags & M_PKTHDR) == 0) { 7288 error = EINVAL; 7289 goto fail; 7290 } 7291 7292 if (result->m_len < sizeof(struct sadb_msg)) { 7293 result = m_pullup(result, sizeof(struct sadb_msg)); 7294 if (result == NULL) { 7295 error = ENOBUFS; 7296 goto fail; 7297 } 7298 } 7299 7300 result->m_pkthdr.len = 0; 7301 for (m = result; m; m = m->m_next) 7302 result->m_pkthdr.len += m->m_len; 7303 7304 mtod(result, struct sadb_msg *)->sadb_msg_len = 7305 PFKEY_UNIT64(result->m_pkthdr.len); 7306 7307 splx(s); 7308 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7309 7310 fail: 7311 if (result) 7312 m_freem(result); 7313 splx(s); 7314 return error; 7315 } 7316 7317 /* 7318 * SADB_FLUSH processing 7319 * receive 7320 * <base> 7321 * from the ikmpd, and free all entries in secastree. 7322 * and send, 7323 * <base> 7324 * to the ikmpd. 7325 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7326 * 7327 * m will always be freed. 7328 */ 7329 static int 7330 key_api_flush(struct socket *so, struct mbuf *m, 7331 const struct sadb_msghdr *mhp) 7332 { 7333 struct sadb_msg *newmsg; 7334 struct secashead *sah; 7335 struct secasvar *sav; 7336 u_int16_t proto; 7337 u_int8_t state; 7338 int s; 7339 7340 /* map satype to proto */ 7341 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 7342 if (proto == 0) { 7343 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7344 return key_senderror(so, m, EINVAL); 7345 } 7346 7347 /* no SATYPE specified, i.e. flushing all SA. */ 7348 s = pserialize_read_enter(); 7349 SAHLIST_READER_FOREACH(sah) { 7350 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && 7351 proto != sah->saidx.proto) 7352 continue; 7353 7354 key_sah_ref(sah); 7355 pserialize_read_exit(s); 7356 7357 SASTATE_ALIVE_FOREACH(state) { 7358 restart: 7359 mutex_enter(&key_sad.lock); 7360 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7361 sav->state = SADB_SASTATE_DEAD; 7362 key_unlink_sav(sav); 7363 mutex_exit(&key_sad.lock); 7364 key_destroy_sav(sav); 7365 goto restart; 7366 } 7367 mutex_exit(&key_sad.lock); 7368 } 7369 7370 s = pserialize_read_enter(); 7371 sah->state = SADB_SASTATE_DEAD; 7372 key_sah_unref(sah); 7373 } 7374 pserialize_read_exit(s); 7375 7376 if (m->m_len < sizeof(struct sadb_msg) || 7377 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7378 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 7379 return key_senderror(so, m, ENOBUFS); 7380 } 7381 7382 if (m->m_next) 7383 m_freem(m->m_next); 7384 m->m_next = NULL; 7385 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7386 newmsg = mtod(m, struct sadb_msg *); 7387 newmsg->sadb_msg_errno = 0; 7388 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7389 7390 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7391 } 7392 7393 7394 static struct mbuf * 7395 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid) 7396 { 7397 struct secashead *sah; 7398 struct secasvar *sav; 7399 u_int16_t proto; 7400 u_int8_t satype; 7401 u_int8_t state; 7402 int cnt; 7403 struct mbuf *m, *n, *prev; 7404 7405 KASSERT(mutex_owned(&key_sad.lock)); 7406 7407 *lenp = 0; 7408 7409 /* map satype to proto */ 7410 proto = key_satype2proto(req_satype); 7411 if (proto == 0) { 7412 *errorp = EINVAL; 7413 return (NULL); 7414 } 7415 7416 /* count sav entries to be sent to userland. */ 7417 cnt = 0; 7418 SAHLIST_WRITER_FOREACH(sah) { 7419 if (req_satype != SADB_SATYPE_UNSPEC && 7420 proto != sah->saidx.proto) 7421 continue; 7422 7423 SASTATE_ANY_FOREACH(state) { 7424 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7425 cnt++; 7426 } 7427 } 7428 } 7429 7430 if (cnt == 0) { 7431 *errorp = ENOENT; 7432 return (NULL); 7433 } 7434 7435 /* send this to the userland, one at a time. */ 7436 m = NULL; 7437 prev = m; 7438 SAHLIST_WRITER_FOREACH(sah) { 7439 if (req_satype != SADB_SATYPE_UNSPEC && 7440 proto != sah->saidx.proto) 7441 continue; 7442 7443 /* map proto to satype */ 7444 satype = key_proto2satype(sah->saidx.proto); 7445 if (satype == 0) { 7446 m_freem(m); 7447 *errorp = EINVAL; 7448 return (NULL); 7449 } 7450 7451 SASTATE_ANY_FOREACH(state) { 7452 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7453 n = key_setdumpsa(sav, SADB_DUMP, satype, 7454 --cnt, pid); 7455 if (!m) 7456 m = n; 7457 else 7458 prev->m_nextpkt = n; 7459 prev = n; 7460 } 7461 } 7462 } 7463 7464 if (!m) { 7465 *errorp = EINVAL; 7466 return (NULL); 7467 } 7468 7469 if ((m->m_flags & M_PKTHDR) != 0) { 7470 m->m_pkthdr.len = 0; 7471 for (n = m; n; n = n->m_next) 7472 m->m_pkthdr.len += n->m_len; 7473 } 7474 7475 *errorp = 0; 7476 return (m); 7477 } 7478 7479 /* 7480 * SADB_DUMP processing 7481 * dump all entries including status of DEAD in SAD. 7482 * receive 7483 * <base> 7484 * from the ikmpd, and dump all secasvar leaves 7485 * and send, 7486 * <base> ..... 7487 * to the ikmpd. 7488 * 7489 * m will always be freed. 7490 */ 7491 static int 7492 key_api_dump(struct socket *so, struct mbuf *m0, 7493 const struct sadb_msghdr *mhp) 7494 { 7495 u_int16_t proto; 7496 u_int8_t satype; 7497 struct mbuf *n; 7498 int error, len, ok; 7499 7500 /* map satype to proto */ 7501 satype = mhp->msg->sadb_msg_satype; 7502 proto = key_satype2proto(satype); 7503 if (proto == 0) { 7504 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7505 return key_senderror(so, m0, EINVAL); 7506 } 7507 7508 /* 7509 * If the requestor has insufficient socket-buffer space 7510 * for the entire chain, nobody gets any response to the DUMP. 7511 * XXX For now, only the requestor ever gets anything. 7512 * Moreover, if the requestor has any space at all, they receive 7513 * the entire chain, otherwise the request is refused with ENOBUFS. 7514 */ 7515 if (sbspace(&so->so_rcv) <= 0) { 7516 return key_senderror(so, m0, ENOBUFS); 7517 } 7518 7519 mutex_enter(&key_sad.lock); 7520 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid); 7521 mutex_exit(&key_sad.lock); 7522 7523 if (n == NULL) { 7524 return key_senderror(so, m0, ENOENT); 7525 } 7526 { 7527 uint64_t *ps = PFKEY_STAT_GETREF(); 7528 ps[PFKEY_STAT_IN_TOTAL]++; 7529 ps[PFKEY_STAT_IN_BYTES] += len; 7530 PFKEY_STAT_PUTREF(); 7531 } 7532 7533 /* 7534 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 7535 * The requestor receives either the entire chain, or an 7536 * error message with ENOBUFS. 7537 * 7538 * sbappendaddrchain() takes the chain of entries, one 7539 * packet-record per SPD entry, prepends the key_src sockaddr 7540 * to each packet-record, links the sockaddr mbufs into a new 7541 * list of records, then appends the entire resulting 7542 * list to the requesting socket. 7543 */ 7544 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, 7545 SB_PRIO_ONESHOT_OVERFLOW); 7546 7547 if (!ok) { 7548 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 7549 m_freem(n); 7550 return key_senderror(so, m0, ENOBUFS); 7551 } 7552 7553 m_freem(m0); 7554 return 0; 7555 } 7556 7557 /* 7558 * SADB_X_PROMISC processing 7559 * 7560 * m will always be freed. 7561 */ 7562 static int 7563 key_api_promisc(struct socket *so, struct mbuf *m, 7564 const struct sadb_msghdr *mhp) 7565 { 7566 int olen; 7567 7568 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7569 7570 if (olen < sizeof(struct sadb_msg)) { 7571 #if 1 7572 return key_senderror(so, m, EINVAL); 7573 #else 7574 m_freem(m); 7575 return 0; 7576 #endif 7577 } else if (olen == sizeof(struct sadb_msg)) { 7578 /* enable/disable promisc mode */ 7579 struct keycb *kp = (struct keycb *)sotorawcb(so); 7580 if (kp == NULL) 7581 return key_senderror(so, m, EINVAL); 7582 mhp->msg->sadb_msg_errno = 0; 7583 switch (mhp->msg->sadb_msg_satype) { 7584 case 0: 7585 case 1: 7586 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7587 break; 7588 default: 7589 return key_senderror(so, m, EINVAL); 7590 } 7591 7592 /* send the original message back to everyone */ 7593 mhp->msg->sadb_msg_errno = 0; 7594 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7595 } else { 7596 /* send packet as is */ 7597 7598 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7599 7600 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7601 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7602 } 7603 } 7604 7605 static int (*key_api_typesw[]) (struct socket *, struct mbuf *, 7606 const struct sadb_msghdr *) = { 7607 NULL, /* SADB_RESERVED */ 7608 key_api_getspi, /* SADB_GETSPI */ 7609 key_api_update, /* SADB_UPDATE */ 7610 key_api_add, /* SADB_ADD */ 7611 key_api_delete, /* SADB_DELETE */ 7612 key_api_get, /* SADB_GET */ 7613 key_api_acquire, /* SADB_ACQUIRE */ 7614 key_api_register, /* SADB_REGISTER */ 7615 NULL, /* SADB_EXPIRE */ 7616 key_api_flush, /* SADB_FLUSH */ 7617 key_api_dump, /* SADB_DUMP */ 7618 key_api_promisc, /* SADB_X_PROMISC */ 7619 NULL, /* SADB_X_PCHANGE */ 7620 key_api_spdadd, /* SADB_X_SPDUPDATE */ 7621 key_api_spdadd, /* SADB_X_SPDADD */ 7622 key_api_spddelete, /* SADB_X_SPDDELETE */ 7623 key_api_spdget, /* SADB_X_SPDGET */ 7624 NULL, /* SADB_X_SPDACQUIRE */ 7625 key_api_spddump, /* SADB_X_SPDDUMP */ 7626 key_api_spdflush, /* SADB_X_SPDFLUSH */ 7627 key_api_spdadd, /* SADB_X_SPDSETIDX */ 7628 NULL, /* SADB_X_SPDEXPIRE */ 7629 key_api_spddelete2, /* SADB_X_SPDDELETE2 */ 7630 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */ 7631 }; 7632 7633 /* 7634 * parse sadb_msg buffer to process PFKEYv2, 7635 * and create a data to response if needed. 7636 * I think to be dealed with mbuf directly. 7637 * IN: 7638 * msgp : pointer to pointer to a received buffer pulluped. 7639 * This is rewrited to response. 7640 * so : pointer to socket. 7641 * OUT: 7642 * length for buffer to send to user process. 7643 */ 7644 int 7645 key_parse(struct mbuf *m, struct socket *so) 7646 { 7647 struct sadb_msg *msg; 7648 struct sadb_msghdr mh; 7649 u_int orglen; 7650 int error; 7651 7652 KASSERT(m != NULL); 7653 KASSERT(so != NULL); 7654 7655 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7656 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) { 7657 kdebug_sadb("passed sadb_msg", msg); 7658 } 7659 #endif 7660 7661 if (m->m_len < sizeof(struct sadb_msg)) { 7662 m = m_pullup(m, sizeof(struct sadb_msg)); 7663 if (!m) 7664 return ENOBUFS; 7665 } 7666 msg = mtod(m, struct sadb_msg *); 7667 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7668 7669 if ((m->m_flags & M_PKTHDR) == 0 || 7670 m->m_pkthdr.len != orglen) { 7671 IPSECLOG(LOG_DEBUG, "invalid message length.\n"); 7672 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7673 error = EINVAL; 7674 goto senderror; 7675 } 7676 7677 if (msg->sadb_msg_version != PF_KEY_V2) { 7678 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n", 7679 msg->sadb_msg_version); 7680 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER); 7681 error = EINVAL; 7682 goto senderror; 7683 } 7684 7685 if (msg->sadb_msg_type > SADB_MAX) { 7686 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", 7687 msg->sadb_msg_type); 7688 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 7689 error = EINVAL; 7690 goto senderror; 7691 } 7692 7693 /* for old-fashioned code - should be nuked */ 7694 if (m->m_pkthdr.len > MCLBYTES) { 7695 m_freem(m); 7696 return ENOBUFS; 7697 } 7698 if (m->m_next) { 7699 struct mbuf *n; 7700 7701 n = key_alloc_mbuf_simple(m->m_pkthdr.len, M_WAITOK); 7702 7703 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *)); 7704 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7705 n->m_next = NULL; 7706 m_freem(m); 7707 m = n; 7708 } 7709 7710 /* align the mbuf chain so that extensions are in contiguous region. */ 7711 error = key_align(m, &mh); 7712 if (error) 7713 return error; 7714 7715 if (m->m_next) { /*XXX*/ 7716 m_freem(m); 7717 return ENOBUFS; 7718 } 7719 7720 msg = mh.msg; 7721 7722 /* check SA type */ 7723 switch (msg->sadb_msg_satype) { 7724 case SADB_SATYPE_UNSPEC: 7725 switch (msg->sadb_msg_type) { 7726 case SADB_GETSPI: 7727 case SADB_UPDATE: 7728 case SADB_ADD: 7729 case SADB_DELETE: 7730 case SADB_GET: 7731 case SADB_ACQUIRE: 7732 case SADB_EXPIRE: 7733 IPSECLOG(LOG_DEBUG, 7734 "must specify satype when msg type=%u.\n", 7735 msg->sadb_msg_type); 7736 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7737 error = EINVAL; 7738 goto senderror; 7739 } 7740 break; 7741 case SADB_SATYPE_AH: 7742 case SADB_SATYPE_ESP: 7743 case SADB_X_SATYPE_IPCOMP: 7744 case SADB_X_SATYPE_TCPSIGNATURE: 7745 switch (msg->sadb_msg_type) { 7746 case SADB_X_SPDADD: 7747 case SADB_X_SPDDELETE: 7748 case SADB_X_SPDGET: 7749 case SADB_X_SPDDUMP: 7750 case SADB_X_SPDFLUSH: 7751 case SADB_X_SPDSETIDX: 7752 case SADB_X_SPDUPDATE: 7753 case SADB_X_SPDDELETE2: 7754 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n", 7755 msg->sadb_msg_type); 7756 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7757 error = EINVAL; 7758 goto senderror; 7759 } 7760 break; 7761 case SADB_SATYPE_RSVP: 7762 case SADB_SATYPE_OSPFV2: 7763 case SADB_SATYPE_RIPV2: 7764 case SADB_SATYPE_MIP: 7765 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n", 7766 msg->sadb_msg_satype); 7767 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7768 error = EOPNOTSUPP; 7769 goto senderror; 7770 case 1: /* XXX: What does it do? */ 7771 if (msg->sadb_msg_type == SADB_X_PROMISC) 7772 break; 7773 /*FALLTHROUGH*/ 7774 default: 7775 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", 7776 msg->sadb_msg_satype); 7777 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7778 error = EINVAL; 7779 goto senderror; 7780 } 7781 7782 /* check field of upper layer protocol and address family */ 7783 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL && 7784 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7785 const struct sadb_address *src0, *dst0; 7786 const struct sockaddr *sa0, *da0; 7787 u_int plen; 7788 7789 src0 = mh.ext[SADB_EXT_ADDRESS_SRC]; 7790 dst0 = mh.ext[SADB_EXT_ADDRESS_DST]; 7791 sa0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_SRC); 7792 da0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_DST); 7793 7794 /* check upper layer protocol */ 7795 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7796 IPSECLOG(LOG_DEBUG, 7797 "upper layer protocol mismatched.\n"); 7798 goto invaddr; 7799 } 7800 7801 /* check family */ 7802 if (sa0->sa_family != da0->sa_family) { 7803 IPSECLOG(LOG_DEBUG, "address family mismatched.\n"); 7804 goto invaddr; 7805 } 7806 if (sa0->sa_len != da0->sa_len) { 7807 IPSECLOG(LOG_DEBUG, 7808 "address struct size mismatched.\n"); 7809 goto invaddr; 7810 } 7811 7812 switch (sa0->sa_family) { 7813 case AF_INET: 7814 if (sa0->sa_len != sizeof(struct sockaddr_in)) 7815 goto invaddr; 7816 break; 7817 case AF_INET6: 7818 if (sa0->sa_len != sizeof(struct sockaddr_in6)) 7819 goto invaddr; 7820 break; 7821 default: 7822 IPSECLOG(LOG_DEBUG, "unsupported address family.\n"); 7823 error = EAFNOSUPPORT; 7824 goto senderror; 7825 } 7826 7827 switch (sa0->sa_family) { 7828 case AF_INET: 7829 plen = sizeof(struct in_addr) << 3; 7830 break; 7831 case AF_INET6: 7832 plen = sizeof(struct in6_addr) << 3; 7833 break; 7834 default: 7835 plen = 0; /*fool gcc*/ 7836 break; 7837 } 7838 7839 /* check max prefix length */ 7840 if (src0->sadb_address_prefixlen > plen || 7841 dst0->sadb_address_prefixlen > plen) { 7842 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n"); 7843 goto invaddr; 7844 } 7845 7846 /* 7847 * prefixlen == 0 is valid because there can be a case when 7848 * all addresses are matched. 7849 */ 7850 } 7851 7852 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) || 7853 key_api_typesw[msg->sadb_msg_type] == NULL) { 7854 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 7855 error = EINVAL; 7856 goto senderror; 7857 } 7858 7859 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh); 7860 7861 invaddr: 7862 error = EINVAL; 7863 senderror: 7864 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 7865 return key_senderror(so, m, error); 7866 } 7867 7868 static int 7869 key_senderror(struct socket *so, struct mbuf *m, int code) 7870 { 7871 struct sadb_msg *msg; 7872 7873 KASSERT(m->m_len >= sizeof(struct sadb_msg)); 7874 7875 if (so == NULL) { 7876 /* 7877 * This means the request comes from kernel. 7878 * As the request comes from kernel, it is unnecessary to 7879 * send message to userland. Just return errcode directly. 7880 */ 7881 m_freem(m); 7882 return code; 7883 } 7884 7885 msg = mtod(m, struct sadb_msg *); 7886 msg->sadb_msg_errno = code; 7887 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7888 } 7889 7890 /* 7891 * set the pointer to each header into message buffer. 7892 * m will be freed on error. 7893 * XXX larger-than-MCLBYTES extension? 7894 */ 7895 static int 7896 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 7897 { 7898 struct mbuf *n; 7899 struct sadb_ext *ext; 7900 size_t off, end; 7901 int extlen; 7902 int toff; 7903 7904 KASSERT(m != NULL); 7905 KASSERT(mhp != NULL); 7906 KASSERT(m->m_len >= sizeof(struct sadb_msg)); 7907 7908 /* initialize */ 7909 memset(mhp, 0, sizeof(*mhp)); 7910 7911 mhp->msg = mtod(m, struct sadb_msg *); 7912 mhp->ext[0] = mhp->msg; /*XXX backward compat */ 7913 7914 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7915 extlen = end; /*just in case extlen is not updated*/ 7916 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7917 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7918 if (!n) { 7919 /* m is already freed */ 7920 return ENOBUFS; 7921 } 7922 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 7923 7924 /* set pointer */ 7925 switch (ext->sadb_ext_type) { 7926 case SADB_EXT_SA: 7927 case SADB_EXT_ADDRESS_SRC: 7928 case SADB_EXT_ADDRESS_DST: 7929 case SADB_EXT_ADDRESS_PROXY: 7930 case SADB_EXT_LIFETIME_CURRENT: 7931 case SADB_EXT_LIFETIME_HARD: 7932 case SADB_EXT_LIFETIME_SOFT: 7933 case SADB_EXT_KEY_AUTH: 7934 case SADB_EXT_KEY_ENCRYPT: 7935 case SADB_EXT_IDENTITY_SRC: 7936 case SADB_EXT_IDENTITY_DST: 7937 case SADB_EXT_SENSITIVITY: 7938 case SADB_EXT_PROPOSAL: 7939 case SADB_EXT_SUPPORTED_AUTH: 7940 case SADB_EXT_SUPPORTED_ENCRYPT: 7941 case SADB_EXT_SPIRANGE: 7942 case SADB_X_EXT_POLICY: 7943 case SADB_X_EXT_SA2: 7944 case SADB_X_EXT_NAT_T_TYPE: 7945 case SADB_X_EXT_NAT_T_SPORT: 7946 case SADB_X_EXT_NAT_T_DPORT: 7947 case SADB_X_EXT_NAT_T_OAI: 7948 case SADB_X_EXT_NAT_T_OAR: 7949 case SADB_X_EXT_NAT_T_FRAG: 7950 /* duplicate check */ 7951 /* 7952 * XXX Are there duplication payloads of either 7953 * KEY_AUTH or KEY_ENCRYPT ? 7954 */ 7955 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7956 IPSECLOG(LOG_DEBUG, 7957 "duplicate ext_type %u is passed.\n", 7958 ext->sadb_ext_type); 7959 m_freem(m); 7960 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT); 7961 return EINVAL; 7962 } 7963 break; 7964 default: 7965 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n", 7966 ext->sadb_ext_type); 7967 m_freem(m); 7968 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE); 7969 return EINVAL; 7970 } 7971 7972 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7973 7974 if (key_validate_ext(ext, extlen)) { 7975 m_freem(m); 7976 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7977 return EINVAL; 7978 } 7979 7980 n = m_pulldown(m, off, extlen, &toff); 7981 if (!n) { 7982 /* m is already freed */ 7983 return ENOBUFS; 7984 } 7985 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 7986 7987 mhp->ext[ext->sadb_ext_type] = ext; 7988 mhp->extoff[ext->sadb_ext_type] = off; 7989 mhp->extlen[ext->sadb_ext_type] = extlen; 7990 } 7991 7992 if (off != end) { 7993 m_freem(m); 7994 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7995 return EINVAL; 7996 } 7997 7998 return 0; 7999 } 8000 8001 static int 8002 key_validate_ext(const struct sadb_ext *ext, int len) 8003 { 8004 const struct sockaddr *sa; 8005 enum { NONE, ADDR } checktype = NONE; 8006 int baselen = 0; 8007 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 8008 8009 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 8010 return EINVAL; 8011 8012 /* if it does not match minimum/maximum length, bail */ 8013 if (ext->sadb_ext_type >= __arraycount(minsize) || 8014 ext->sadb_ext_type >= __arraycount(maxsize)) 8015 return EINVAL; 8016 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 8017 return EINVAL; 8018 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 8019 return EINVAL; 8020 8021 /* more checks based on sadb_ext_type XXX need more */ 8022 switch (ext->sadb_ext_type) { 8023 case SADB_EXT_ADDRESS_SRC: 8024 case SADB_EXT_ADDRESS_DST: 8025 case SADB_EXT_ADDRESS_PROXY: 8026 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 8027 checktype = ADDR; 8028 break; 8029 case SADB_EXT_IDENTITY_SRC: 8030 case SADB_EXT_IDENTITY_DST: 8031 if (((const struct sadb_ident *)ext)->sadb_ident_type == 8032 SADB_X_IDENTTYPE_ADDR) { 8033 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 8034 checktype = ADDR; 8035 } else 8036 checktype = NONE; 8037 break; 8038 default: 8039 checktype = NONE; 8040 break; 8041 } 8042 8043 switch (checktype) { 8044 case NONE: 8045 break; 8046 case ADDR: 8047 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 8048 if (len < baselen + sal) 8049 return EINVAL; 8050 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 8051 return EINVAL; 8052 break; 8053 } 8054 8055 return 0; 8056 } 8057 8058 static int 8059 key_do_init(void) 8060 { 8061 int i, error; 8062 8063 mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE); 8064 8065 mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE); 8066 cv_init(&key_spd.cv_lc, "key_sp_lc"); 8067 key_spd.psz = pserialize_create(); 8068 cv_init(&key_spd.cv_psz, "key_sp_psz"); 8069 key_spd.psz_performing = false; 8070 8071 mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE); 8072 cv_init(&key_sad.cv_lc, "key_sa_lc"); 8073 key_sad.psz = pserialize_create(); 8074 cv_init(&key_sad.cv_psz, "key_sa_psz"); 8075 key_sad.psz_performing = false; 8076 8077 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS); 8078 8079 callout_init(&key_timehandler_ch, CALLOUT_MPSAFE); 8080 error = workqueue_create(&key_timehandler_wq, "key_timehandler", 8081 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE); 8082 if (error != 0) 8083 panic("%s: workqueue_create failed (%d)\n", __func__, error); 8084 8085 for (i = 0; i < IPSEC_DIR_MAX; i++) { 8086 PSLIST_INIT(&key_spd.splist[i]); 8087 } 8088 8089 PSLIST_INIT(&key_spd.socksplist); 8090 8091 PSLIST_INIT(&key_sad.sahlist); 8092 8093 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 8094 LIST_INIT(&key_misc.reglist[i]); 8095 } 8096 8097 #ifndef IPSEC_NONBLOCK_ACQUIRE 8098 LIST_INIT(&key_misc.acqlist); 8099 #endif 8100 #ifdef notyet 8101 LIST_INIT(&key_misc.spacqlist); 8102 #endif 8103 8104 /* system default */ 8105 ip4_def_policy.policy = IPSEC_POLICY_NONE; 8106 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE; 8107 localcount_init(&ip4_def_policy.localcount); 8108 8109 #ifdef INET6 8110 ip6_def_policy.policy = IPSEC_POLICY_NONE; 8111 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE; 8112 localcount_init(&ip6_def_policy.localcount); 8113 #endif 8114 8115 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 8116 8117 /* initialize key statistics */ 8118 keystat.getspi_count = 1; 8119 8120 aprint_verbose("IPsec: Initialized Security Association Processing.\n"); 8121 8122 return (0); 8123 } 8124 8125 void 8126 key_init(void) 8127 { 8128 static ONCE_DECL(key_init_once); 8129 8130 sysctl_net_keyv2_setup(NULL); 8131 sysctl_net_key_compat_setup(NULL); 8132 8133 RUN_ONCE(&key_init_once, key_do_init); 8134 8135 key_init_so(); 8136 } 8137 8138 /* 8139 * XXX: maybe This function is called after INBOUND IPsec processing. 8140 * 8141 * Special check for tunnel-mode packets. 8142 * We must make some checks for consistency between inner and outer IP header. 8143 * 8144 * xxx more checks to be provided 8145 */ 8146 int 8147 key_checktunnelsanity( 8148 struct secasvar *sav, 8149 u_int family, 8150 void *src, 8151 void *dst 8152 ) 8153 { 8154 8155 /* XXX: check inner IP header */ 8156 8157 return 1; 8158 } 8159 8160 #if 0 8161 #define hostnamelen strlen(hostname) 8162 8163 /* 8164 * Get FQDN for the host. 8165 * If the administrator configured hostname (by hostname(1)) without 8166 * domain name, returns nothing. 8167 */ 8168 static const char * 8169 key_getfqdn(void) 8170 { 8171 int i; 8172 int hasdot; 8173 static char fqdn[MAXHOSTNAMELEN + 1]; 8174 8175 if (!hostnamelen) 8176 return NULL; 8177 8178 /* check if it comes with domain name. */ 8179 hasdot = 0; 8180 for (i = 0; i < hostnamelen; i++) { 8181 if (hostname[i] == '.') 8182 hasdot++; 8183 } 8184 if (!hasdot) 8185 return NULL; 8186 8187 /* NOTE: hostname may not be NUL-terminated. */ 8188 memset(fqdn, 0, sizeof(fqdn)); 8189 memcpy(fqdn, hostname, hostnamelen); 8190 fqdn[hostnamelen] = '\0'; 8191 return fqdn; 8192 } 8193 8194 /* 8195 * get username@FQDN for the host/user. 8196 */ 8197 static const char * 8198 key_getuserfqdn(void) 8199 { 8200 const char *host; 8201 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2]; 8202 struct proc *p = curproc; 8203 char *q; 8204 8205 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session) 8206 return NULL; 8207 if (!(host = key_getfqdn())) 8208 return NULL; 8209 8210 /* NOTE: s_login may not be-NUL terminated. */ 8211 memset(userfqdn, 0, sizeof(userfqdn)); 8212 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME); 8213 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */ 8214 q = userfqdn + strlen(userfqdn); 8215 *q++ = '@'; 8216 memcpy(q, host, strlen(host)); 8217 q += strlen(host); 8218 *q++ = '\0'; 8219 8220 return userfqdn; 8221 } 8222 #endif 8223 8224 /* record data transfer on SA, and update timestamps */ 8225 void 8226 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 8227 { 8228 lifetime_counters_t *counters; 8229 8230 KASSERT(sav != NULL); 8231 KASSERT(sav->lft_c != NULL); 8232 KASSERT(m != NULL); 8233 8234 counters = percpu_getref(sav->lft_c_counters_percpu); 8235 8236 /* 8237 * XXX Currently, there is a difference of bytes size 8238 * between inbound and outbound processing. 8239 */ 8240 (*counters)[LIFETIME_COUNTER_BYTES] += m->m_pkthdr.len; 8241 /* to check bytes lifetime is done in key_timehandler(). */ 8242 8243 /* 8244 * We use the number of packets as the unit of 8245 * sadb_lifetime_allocations. We increment the variable 8246 * whenever {esp,ah}_{in,out}put is called. 8247 */ 8248 (*counters)[LIFETIME_COUNTER_ALLOCATIONS]++; 8249 /* XXX check for expires? */ 8250 8251 percpu_putref(sav->lft_c_counters_percpu); 8252 8253 /* 8254 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock, 8255 * in seconds. HARD and SOFT lifetime are measured by the time 8256 * difference (again in seconds) from sadb_lifetime_usetime. 8257 * 8258 * usetime 8259 * v expire expire 8260 * -----+-----+--------+---> t 8261 * <--------------> HARD 8262 * <-----> SOFT 8263 */ 8264 sav->lft_c->sadb_lifetime_usetime = time_uptime; 8265 /* XXX check for expires? */ 8266 8267 return; 8268 } 8269 8270 /* dumb version */ 8271 void 8272 key_sa_routechange(struct sockaddr *dst) 8273 { 8274 struct secashead *sah; 8275 int s; 8276 8277 s = pserialize_read_enter(); 8278 SAHLIST_READER_FOREACH(sah) { 8279 struct route *ro; 8280 const struct sockaddr *sa; 8281 8282 key_sah_ref(sah); 8283 pserialize_read_exit(s); 8284 8285 ro = &sah->sa_route; 8286 sa = rtcache_getdst(ro); 8287 if (sa != NULL && dst->sa_len == sa->sa_len && 8288 memcmp(dst, sa, dst->sa_len) == 0) 8289 rtcache_free(ro); 8290 8291 s = pserialize_read_enter(); 8292 key_sah_unref(sah); 8293 } 8294 pserialize_read_exit(s); 8295 8296 return; 8297 } 8298 8299 static void 8300 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 8301 { 8302 struct secasvar *_sav; 8303 8304 ASSERT_SLEEPABLE(); 8305 KASSERT(mutex_owned(&key_sad.lock)); 8306 8307 if (sav->state == state) 8308 return; 8309 8310 key_unlink_sav(sav); 8311 localcount_fini(&sav->localcount); 8312 SAVLIST_ENTRY_DESTROY(sav); 8313 key_init_sav(sav); 8314 8315 sav->state = state; 8316 if (!SADB_SASTATE_USABLE_P(sav)) { 8317 /* We don't need to care about the order */ 8318 SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav); 8319 return; 8320 } 8321 /* 8322 * Sort the list by lft_c->sadb_lifetime_addtime 8323 * in ascending order. 8324 */ 8325 SAVLIST_WRITER_FOREACH(_sav, sav->sah, state) { 8326 if (_sav->lft_c->sadb_lifetime_addtime > 8327 sav->lft_c->sadb_lifetime_addtime) { 8328 SAVLIST_WRITER_INSERT_BEFORE(_sav, sav); 8329 break; 8330 } 8331 } 8332 if (_sav == NULL) { 8333 SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav); 8334 } 8335 key_validate_savlist(sav->sah, state); 8336 } 8337 8338 /* XXX too much? */ 8339 static struct mbuf * 8340 key_alloc_mbuf(int l, int mflag) 8341 { 8342 struct mbuf *m = NULL, *n; 8343 int len, t; 8344 8345 KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p())); 8346 8347 len = l; 8348 while (len > 0) { 8349 MGET(n, mflag, MT_DATA); 8350 if (n && len > MLEN) { 8351 MCLGET(n, mflag); 8352 if ((n->m_flags & M_EXT) == 0) { 8353 m_freem(n); 8354 n = NULL; 8355 } 8356 } 8357 if (!n) { 8358 m_freem(m); 8359 return NULL; 8360 } 8361 8362 n->m_next = NULL; 8363 n->m_len = 0; 8364 n->m_len = M_TRAILINGSPACE(n); 8365 /* use the bottom of mbuf, hoping we can prepend afterwards */ 8366 if (n->m_len > len) { 8367 t = (n->m_len - len) & ~(sizeof(long) - 1); 8368 n->m_data += t; 8369 n->m_len = len; 8370 } 8371 8372 len -= n->m_len; 8373 8374 if (m) 8375 m_cat(m, n); 8376 else 8377 m = n; 8378 } 8379 8380 return m; 8381 } 8382 8383 static struct mbuf * 8384 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid) 8385 { 8386 struct secashead *sah; 8387 struct secasvar *sav; 8388 u_int16_t proto; 8389 u_int8_t satype; 8390 u_int8_t state; 8391 int cnt; 8392 struct mbuf *m, *n; 8393 8394 KASSERT(mutex_owned(&key_sad.lock)); 8395 8396 /* map satype to proto */ 8397 proto = key_satype2proto(req_satype); 8398 if (proto == 0) { 8399 *errorp = EINVAL; 8400 return (NULL); 8401 } 8402 8403 /* count sav entries to be sent to the userland. */ 8404 cnt = 0; 8405 SAHLIST_WRITER_FOREACH(sah) { 8406 if (req_satype != SADB_SATYPE_UNSPEC && 8407 proto != sah->saidx.proto) 8408 continue; 8409 8410 SASTATE_ANY_FOREACH(state) { 8411 SAVLIST_WRITER_FOREACH(sav, sah, state) { 8412 cnt++; 8413 } 8414 } 8415 } 8416 8417 if (cnt == 0) { 8418 *errorp = ENOENT; 8419 return (NULL); 8420 } 8421 8422 /* send this to the userland, one at a time. */ 8423 m = NULL; 8424 SAHLIST_WRITER_FOREACH(sah) { 8425 if (req_satype != SADB_SATYPE_UNSPEC && 8426 proto != sah->saidx.proto) 8427 continue; 8428 8429 /* map proto to satype */ 8430 satype = key_proto2satype(sah->saidx.proto); 8431 if (satype == 0) { 8432 m_freem(m); 8433 *errorp = EINVAL; 8434 return (NULL); 8435 } 8436 8437 SASTATE_ANY_FOREACH(state) { 8438 SAVLIST_WRITER_FOREACH(sav, sah, state) { 8439 n = key_setdumpsa(sav, SADB_DUMP, satype, 8440 --cnt, pid); 8441 if (!m) 8442 m = n; 8443 else 8444 m_cat(m, n); 8445 } 8446 } 8447 } 8448 8449 if (!m) { 8450 *errorp = EINVAL; 8451 return (NULL); 8452 } 8453 8454 if ((m->m_flags & M_PKTHDR) != 0) { 8455 m->m_pkthdr.len = 0; 8456 for (n = m; n; n = n->m_next) 8457 m->m_pkthdr.len += n->m_len; 8458 } 8459 8460 *errorp = 0; 8461 return (m); 8462 } 8463 8464 static struct mbuf * 8465 key_setspddump(int *errorp, pid_t pid) 8466 { 8467 struct secpolicy *sp; 8468 int cnt; 8469 u_int dir; 8470 struct mbuf *m, *n; 8471 8472 KASSERT(mutex_owned(&key_spd.lock)); 8473 8474 /* search SPD entry and get buffer size. */ 8475 cnt = 0; 8476 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8477 SPLIST_WRITER_FOREACH(sp, dir) { 8478 cnt++; 8479 } 8480 } 8481 8482 if (cnt == 0) { 8483 *errorp = ENOENT; 8484 return (NULL); 8485 } 8486 8487 m = NULL; 8488 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8489 SPLIST_WRITER_FOREACH(sp, dir) { 8490 --cnt; 8491 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 8492 8493 if (!m) 8494 m = n; 8495 else { 8496 m->m_pkthdr.len += n->m_pkthdr.len; 8497 m_cat(m, n); 8498 } 8499 } 8500 } 8501 8502 *errorp = 0; 8503 return (m); 8504 } 8505 8506 int 8507 key_get_used(void) { 8508 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) || 8509 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) || 8510 !SOCKSPLIST_READER_EMPTY(); 8511 } 8512 8513 void 8514 key_update_used(void) 8515 { 8516 switch (ipsec_enabled) { 8517 default: 8518 case 0: 8519 #ifdef notyet 8520 /* XXX: racy */ 8521 ipsec_used = 0; 8522 #endif 8523 break; 8524 case 1: 8525 #ifndef notyet 8526 /* XXX: racy */ 8527 if (!ipsec_used) 8528 #endif 8529 ipsec_used = key_get_used(); 8530 break; 8531 case 2: 8532 ipsec_used = 1; 8533 break; 8534 } 8535 } 8536 8537 static int 8538 sysctl_net_key_dumpsa(SYSCTLFN_ARGS) 8539 { 8540 struct mbuf *m, *n; 8541 int err2 = 0; 8542 char *p, *ep; 8543 size_t len; 8544 int error; 8545 8546 if (newp) 8547 return (EPERM); 8548 if (namelen != 1) 8549 return (EINVAL); 8550 8551 mutex_enter(&key_sad.lock); 8552 m = key_setdump(name[0], &error, l->l_proc->p_pid); 8553 mutex_exit(&key_sad.lock); 8554 if (!m) 8555 return (error); 8556 if (!oldp) 8557 *oldlenp = m->m_pkthdr.len; 8558 else { 8559 p = oldp; 8560 if (*oldlenp < m->m_pkthdr.len) { 8561 err2 = ENOMEM; 8562 ep = p + *oldlenp; 8563 } else { 8564 *oldlenp = m->m_pkthdr.len; 8565 ep = p + m->m_pkthdr.len; 8566 } 8567 for (n = m; n; n = n->m_next) { 8568 len = (ep - p < n->m_len) ? 8569 ep - p : n->m_len; 8570 error = copyout(mtod(n, const void *), p, len); 8571 p += len; 8572 if (error) 8573 break; 8574 } 8575 if (error == 0) 8576 error = err2; 8577 } 8578 m_freem(m); 8579 8580 return (error); 8581 } 8582 8583 static int 8584 sysctl_net_key_dumpsp(SYSCTLFN_ARGS) 8585 { 8586 struct mbuf *m, *n; 8587 int err2 = 0; 8588 char *p, *ep; 8589 size_t len; 8590 int error; 8591 8592 if (newp) 8593 return (EPERM); 8594 if (namelen != 0) 8595 return (EINVAL); 8596 8597 mutex_enter(&key_spd.lock); 8598 m = key_setspddump(&error, l->l_proc->p_pid); 8599 mutex_exit(&key_spd.lock); 8600 if (!m) 8601 return (error); 8602 if (!oldp) 8603 *oldlenp = m->m_pkthdr.len; 8604 else { 8605 p = oldp; 8606 if (*oldlenp < m->m_pkthdr.len) { 8607 err2 = ENOMEM; 8608 ep = p + *oldlenp; 8609 } else { 8610 *oldlenp = m->m_pkthdr.len; 8611 ep = p + m->m_pkthdr.len; 8612 } 8613 for (n = m; n; n = n->m_next) { 8614 len = (ep - p < n->m_len) ? ep - p : n->m_len; 8615 error = copyout(mtod(n, const void *), p, len); 8616 p += len; 8617 if (error) 8618 break; 8619 } 8620 if (error == 0) 8621 error = err2; 8622 } 8623 m_freem(m); 8624 8625 return (error); 8626 } 8627 8628 /* 8629 * Create sysctl tree for native IPSEC key knobs, originally 8630 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }. 8631 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 }; 8632 * and in any case the part of our sysctl namespace used for dumping the 8633 * SPD and SA database *HAS* to be compatible with the KAME sysctl 8634 * namespace, for API reasons. 8635 * 8636 * Pending a consensus on the right way to fix this, add a level of 8637 * indirection in how we number the `native' IPSEC key nodes; 8638 * and (as requested by Andrew Brown) move registration of the 8639 * KAME-compatible names to a separate function. 8640 */ 8641 #if 0 8642 # define IPSEC_PFKEY PF_KEY_V2 8643 # define IPSEC_PFKEY_NAME "keyv2" 8644 #else 8645 # define IPSEC_PFKEY PF_KEY 8646 # define IPSEC_PFKEY_NAME "key" 8647 #endif 8648 8649 static int 8650 sysctl_net_key_stats(SYSCTLFN_ARGS) 8651 { 8652 8653 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS)); 8654 } 8655 8656 static void 8657 sysctl_net_keyv2_setup(struct sysctllog **clog) 8658 { 8659 8660 sysctl_createv(clog, 0, NULL, NULL, 8661 CTLFLAG_PERMANENT, 8662 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL, 8663 NULL, 0, NULL, 0, 8664 CTL_NET, IPSEC_PFKEY, CTL_EOL); 8665 8666 sysctl_createv(clog, 0, NULL, NULL, 8667 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8668 CTLTYPE_INT, "debug", NULL, 8669 NULL, 0, &key_debug_level, 0, 8670 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL); 8671 sysctl_createv(clog, 0, NULL, NULL, 8672 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8673 CTLTYPE_INT, "spi_try", NULL, 8674 NULL, 0, &key_spi_trycnt, 0, 8675 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL); 8676 sysctl_createv(clog, 0, NULL, NULL, 8677 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8678 CTLTYPE_INT, "spi_min_value", NULL, 8679 NULL, 0, &key_spi_minval, 0, 8680 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL); 8681 sysctl_createv(clog, 0, NULL, NULL, 8682 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8683 CTLTYPE_INT, "spi_max_value", NULL, 8684 NULL, 0, &key_spi_maxval, 0, 8685 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL); 8686 sysctl_createv(clog, 0, NULL, NULL, 8687 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8688 CTLTYPE_INT, "random_int", NULL, 8689 NULL, 0, &key_int_random, 0, 8690 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL); 8691 sysctl_createv(clog, 0, NULL, NULL, 8692 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8693 CTLTYPE_INT, "larval_lifetime", NULL, 8694 NULL, 0, &key_larval_lifetime, 0, 8695 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL); 8696 sysctl_createv(clog, 0, NULL, NULL, 8697 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8698 CTLTYPE_INT, "blockacq_count", NULL, 8699 NULL, 0, &key_blockacq_count, 0, 8700 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL); 8701 sysctl_createv(clog, 0, NULL, NULL, 8702 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8703 CTLTYPE_INT, "blockacq_lifetime", NULL, 8704 NULL, 0, &key_blockacq_lifetime, 0, 8705 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL); 8706 sysctl_createv(clog, 0, NULL, NULL, 8707 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8708 CTLTYPE_INT, "esp_keymin", NULL, 8709 NULL, 0, &ipsec_esp_keymin, 0, 8710 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL); 8711 sysctl_createv(clog, 0, NULL, NULL, 8712 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8713 CTLTYPE_INT, "prefered_oldsa", NULL, 8714 NULL, 0, &key_prefered_oldsa, 0, 8715 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL); 8716 sysctl_createv(clog, 0, NULL, NULL, 8717 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8718 CTLTYPE_INT, "esp_auth", NULL, 8719 NULL, 0, &ipsec_esp_auth, 0, 8720 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL); 8721 sysctl_createv(clog, 0, NULL, NULL, 8722 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8723 CTLTYPE_INT, "ah_keymin", NULL, 8724 NULL, 0, &ipsec_ah_keymin, 0, 8725 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL); 8726 sysctl_createv(clog, 0, NULL, NULL, 8727 CTLFLAG_PERMANENT, 8728 CTLTYPE_STRUCT, "stats", 8729 SYSCTL_DESCR("PF_KEY statistics"), 8730 sysctl_net_key_stats, 0, NULL, 0, 8731 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL); 8732 } 8733 8734 /* 8735 * Register sysctl names used by setkey(8). For historical reasons, 8736 * and to share a single API, these names appear under { CTL_NET, PF_KEY } 8737 * for both IPSEC and KAME IPSEC. 8738 */ 8739 static void 8740 sysctl_net_key_compat_setup(struct sysctllog **clog) 8741 { 8742 8743 sysctl_createv(clog, 0, NULL, NULL, 8744 CTLFLAG_PERMANENT, 8745 CTLTYPE_NODE, "key", NULL, 8746 NULL, 0, NULL, 0, 8747 CTL_NET, PF_KEY, CTL_EOL); 8748 8749 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */ 8750 sysctl_createv(clog, 0, NULL, NULL, 8751 CTLFLAG_PERMANENT, 8752 CTLTYPE_STRUCT, "dumpsa", NULL, 8753 sysctl_net_key_dumpsa, 0, NULL, 0, 8754 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL); 8755 sysctl_createv(clog, 0, NULL, NULL, 8756 CTLFLAG_PERMANENT, 8757 CTLTYPE_STRUCT, "dumpsp", NULL, 8758 sysctl_net_key_dumpsp, 0, NULL, 0, 8759 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL); 8760 } 8761