1 /* $NetBSD: key.c,v 1.261 2019/01/27 02:08:48 pgoyette Exp $ */ 2 /* $FreeBSD: key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */ 3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 4 5 /* 6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the project nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.261 2019/01/27 02:08:48 pgoyette Exp $"); 36 37 /* 38 * This code is referred to RFC 2367 39 */ 40 41 #if defined(_KERNEL_OPT) 42 #include "opt_inet.h" 43 #include "opt_ipsec.h" 44 #include "opt_gateway.h" 45 #include "opt_net_mpsafe.h" 46 #endif 47 48 #include <sys/types.h> 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/callout.h> 52 #include <sys/kernel.h> 53 #include <sys/mbuf.h> 54 #include <sys/domain.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/errno.h> 59 #include <sys/proc.h> 60 #include <sys/queue.h> 61 #include <sys/syslog.h> 62 #include <sys/once.h> 63 #include <sys/cprng.h> 64 #include <sys/psref.h> 65 #include <sys/lwp.h> 66 #include <sys/workqueue.h> 67 #include <sys/kmem.h> 68 #include <sys/cpu.h> 69 #include <sys/atomic.h> 70 #include <sys/pslist.h> 71 #include <sys/mutex.h> 72 #include <sys/condvar.h> 73 #include <sys/localcount.h> 74 #include <sys/pserialize.h> 75 #include <sys/hash.h> 76 77 #include <net/if.h> 78 #include <net/route.h> 79 80 #include <netinet/in.h> 81 #include <netinet/in_systm.h> 82 #include <netinet/ip.h> 83 #include <netinet/in_var.h> 84 #ifdef INET 85 #include <netinet/ip_var.h> 86 #endif 87 88 #ifdef INET6 89 #include <netinet/ip6.h> 90 #include <netinet6/in6_var.h> 91 #include <netinet6/ip6_var.h> 92 #endif /* INET6 */ 93 94 #ifdef INET 95 #include <netinet/in_pcb.h> 96 #endif 97 #ifdef INET6 98 #include <netinet6/in6_pcb.h> 99 #endif /* INET6 */ 100 101 #include <net/pfkeyv2.h> 102 #include <netipsec/keydb.h> 103 #include <netipsec/key.h> 104 #include <netipsec/keysock.h> 105 #include <netipsec/key_debug.h> 106 107 #include <netipsec/ipsec.h> 108 #ifdef INET6 109 #include <netipsec/ipsec6.h> 110 #endif 111 #include <netipsec/ipsec_private.h> 112 113 #include <netipsec/xform.h> 114 #include <netipsec/ipcomp.h> 115 116 #define FULLMASK 0xffu 117 #define _BITS(bytes) ((bytes) << 3) 118 119 #define PORT_NONE 0 120 #define PORT_LOOSE 1 121 #define PORT_STRICT 2 122 123 #ifndef SAHHASH_NHASH 124 #define SAHHASH_NHASH 128 125 #endif 126 127 #ifndef SAVLUT_NHASH 128 #define SAVLUT_NHASH 128 129 #endif 130 131 percpu_t *pfkeystat_percpu; 132 133 /* 134 * Note on SA reference counting: 135 * - SAs that are not in DEAD state will have (total external reference + 1) 136 * following value in reference count field. they cannot be freed and are 137 * referenced from SA header. 138 * - SAs that are in DEAD state will have (total external reference) 139 * in reference count field. they are ready to be freed. reference from 140 * SA header will be removed in key_delsav(), when the reference count 141 * field hits 0 (= no external reference other than from SA header. 142 */ 143 144 u_int32_t key_debug_level = 0; 145 static u_int key_spi_trycnt = 1000; 146 static u_int32_t key_spi_minval = 0x100; 147 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ 148 static u_int32_t policy_id = 0; 149 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ 150 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 151 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 152 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 153 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/ 154 155 static u_int32_t acq_seq = 0; 156 157 /* 158 * Locking order: there is no order for now; it means that any locks aren't 159 * overlapped. 160 */ 161 /* 162 * Locking notes on SPD: 163 * - Modifications to the key_spd.splist must be done with holding key_spd.lock 164 * which is a adaptive mutex 165 * - Read accesses to the key_spd.splist must be in pserialize(9) read sections 166 * - SP's lifetime is managed by localcount(9) 167 * - An SP that has been inserted to the key_spd.splist is initially referenced 168 * by none, i.e., a reference from the key_spd.splist isn't counted 169 * - When an SP is being destroyed, we change its state as DEAD, wait for 170 * references to the SP to be released, and then deallocate the SP 171 * (see key_unlink_sp) 172 * - Getting an SP 173 * - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx) 174 * - Must iterate the list and increment the reference count of a found SP 175 * (by key_sp_ref) in a pserialize read section 176 * - We can gain another reference from a held SP only if we check its state 177 * and take its reference in a pserialize read section 178 * (see esp_output for example) 179 * - We may get an SP from an SP cache. See below 180 * - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref) 181 * - Updating member variables of an SP 182 * - Most member variables of an SP are immutable 183 * - Only sp->state and sp->lastused can be changed 184 * - sp->state of an SP is updated only when destroying it under key_spd.lock 185 * - SP caches 186 * - SPs can be cached in PCBs 187 * - The lifetime of the caches is controlled by the global generation counter 188 * (ipsec_spdgen) 189 * - The global counter value is stored when an SP is cached 190 * - If the stored value is different from the global counter then the cache 191 * is considered invalidated 192 * - The counter is incremented when an SP is being destroyed 193 * - So checking the generation and taking a reference to an SP should be 194 * in a pserialize read section 195 * - Note that caching doesn't increment the reference counter of an SP 196 * - SPs in sockets 197 * - Userland programs can set a policy to a socket by 198 * setsockopt(IP_IPSEC_POLICY) 199 * - Such policies (SPs) are set to a socket (PCB) and also inserted to 200 * the key_spd.socksplist list (not the key_spd.splist) 201 * - Such a policy is destroyed when a corresponding socket is destroed, 202 * however, a socket can be destroyed in softint so we cannot destroy 203 * it directly instead we just mark it DEAD and delay the destruction 204 * until GC by the timer 205 * - SP origin 206 * - SPs can be created by both userland programs and kernel components. 207 * The SPs created in kernel must not be removed by userland programs, 208 * although the SPs can be read by userland programs. 209 */ 210 /* 211 * Locking notes on SAD: 212 * - Data structures 213 * - SAs are managed by the list called key_sad.sahlists and sav lists of 214 * sah entries 215 * - An sav is supposed to be an SA from a viewpoint of users 216 * - A sah has sav lists for each SA state 217 * - Multiple saves with the same saidx can exist 218 * - Only one entry has MATURE state and others should be DEAD 219 * - DEAD entries are just ignored from searching 220 * - All sav whose state is MATURE or DYING are registered to the lookup 221 * table called key_sad.savlut in addition to the savlists. 222 * - The table is used to search an sav without use of saidx. 223 * - Modifications to the key_sad.sahlists, sah.savlist and key_sad.savlut 224 * must be done with holding key_sad.lock which is a adaptive mutex 225 * - Read accesses to the key_sad.sahlists, sah.savlist and key_sad.savlut 226 * must be in pserialize(9) read sections 227 * - sah's lifetime is managed by localcount(9) 228 * - Getting an sah entry 229 * - We get an sah from the key_sad.sahlists 230 * - Must iterate the list and increment the reference count of a found sah 231 * (by key_sah_ref) in a pserialize read section 232 * - A gotten sah must be released after use by key_sah_unref 233 * - An sah is destroyed when its state become DEAD and no sav is 234 * listed to the sah 235 * - The destruction is done only in the timer (see key_timehandler_sad) 236 * - sav's lifetime is managed by localcount(9) 237 * - Getting an sav entry 238 * - First get an sah by saidx and get an sav from either of sah's savlists 239 * - Must iterate the list and increment the reference count of a found sav 240 * (by key_sa_ref) in a pserialize read section 241 * - We can gain another reference from a held SA only if we check its state 242 * and take its reference in a pserialize read section 243 * (see esp_output for example) 244 * - A gotten sav must be released after use by key_sa_unref 245 * - An sav is destroyed when its state become DEAD 246 */ 247 /* 248 * Locking notes on misc data: 249 * - All lists of key_misc are protected by key_misc.lock 250 * - key_misc.lock must be held even for read accesses 251 */ 252 253 /* SPD */ 254 static struct { 255 kmutex_t lock; 256 kcondvar_t cv_lc; 257 struct pslist_head splist[IPSEC_DIR_MAX]; 258 /* 259 * The list has SPs that are set to a socket via 260 * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy. 261 */ 262 struct pslist_head socksplist; 263 264 pserialize_t psz; 265 kcondvar_t cv_psz; 266 bool psz_performing; 267 } key_spd __cacheline_aligned; 268 269 /* SAD */ 270 static struct { 271 kmutex_t lock; 272 kcondvar_t cv_lc; 273 struct pslist_head *sahlists; 274 u_long sahlistmask; 275 struct pslist_head *savlut; 276 u_long savlutmask; 277 278 pserialize_t psz; 279 kcondvar_t cv_psz; 280 bool psz_performing; 281 } key_sad __cacheline_aligned; 282 283 /* Misc data */ 284 static struct { 285 kmutex_t lock; 286 /* registed list */ 287 LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1]; 288 #ifndef IPSEC_NONBLOCK_ACQUIRE 289 /* acquiring list */ 290 LIST_HEAD(_acqlist, secacq) acqlist; 291 #endif 292 #ifdef notyet 293 /* SP acquiring list */ 294 LIST_HEAD(_spacqlist, secspacq) spacqlist; 295 #endif 296 } key_misc __cacheline_aligned; 297 298 /* Macros for key_spd.splist */ 299 #define SPLIST_ENTRY_INIT(sp) \ 300 PSLIST_ENTRY_INIT((sp), pslist_entry) 301 #define SPLIST_ENTRY_DESTROY(sp) \ 302 PSLIST_ENTRY_DESTROY((sp), pslist_entry) 303 #define SPLIST_WRITER_REMOVE(sp) \ 304 PSLIST_WRITER_REMOVE((sp), pslist_entry) 305 #define SPLIST_READER_EMPTY(dir) \ 306 (PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ 307 pslist_entry) == NULL) 308 #define SPLIST_READER_FOREACH(sp, dir) \ 309 PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)], \ 310 struct secpolicy, pslist_entry) 311 #define SPLIST_WRITER_FOREACH(sp, dir) \ 312 PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)], \ 313 struct secpolicy, pslist_entry) 314 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \ 315 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry) 316 #define SPLIST_WRITER_EMPTY(dir) \ 317 (PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ 318 pslist_entry) == NULL) 319 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \ 320 PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp), \ 321 pslist_entry) 322 #define SPLIST_WRITER_NEXT(sp) \ 323 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry) 324 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \ 325 do { \ 326 if (SPLIST_WRITER_EMPTY((dir))) { \ 327 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \ 328 } else { \ 329 struct secpolicy *__sp; \ 330 SPLIST_WRITER_FOREACH(__sp, (dir)) { \ 331 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \ 332 SPLIST_WRITER_INSERT_AFTER(__sp,\ 333 (new)); \ 334 break; \ 335 } \ 336 } \ 337 } \ 338 } while (0) 339 340 /* Macros for key_spd.socksplist */ 341 #define SOCKSPLIST_WRITER_FOREACH(sp) \ 342 PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist, \ 343 struct secpolicy, pslist_entry) 344 #define SOCKSPLIST_READER_EMPTY() \ 345 (PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy, \ 346 pslist_entry) == NULL) 347 348 /* Macros for key_sad.sahlist */ 349 #define SAHLIST_ENTRY_INIT(sah) \ 350 PSLIST_ENTRY_INIT((sah), pslist_entry) 351 #define SAHLIST_ENTRY_DESTROY(sah) \ 352 PSLIST_ENTRY_DESTROY((sah), pslist_entry) 353 #define SAHLIST_WRITER_REMOVE(sah) \ 354 PSLIST_WRITER_REMOVE((sah), pslist_entry) 355 #define SAHLIST_READER_FOREACH(sah) \ 356 for(int _i_sah = 0; _i_sah <= key_sad.sahlistmask; _i_sah++) \ 357 PSLIST_READER_FOREACH((sah), &key_sad.sahlists[_i_sah], \ 358 struct secashead, pslist_entry) 359 #define SAHLIST_READER_FOREACH_SAIDX(sah, saidx) \ 360 PSLIST_READER_FOREACH((sah), \ 361 &key_sad.sahlists[key_saidxhash((saidx), \ 362 key_sad.sahlistmask)], \ 363 struct secashead, pslist_entry) 364 #define SAHLIST_WRITER_FOREACH(sah) \ 365 for(int _i_sah = 0; _i_sah <= key_sad.sahlistmask; _i_sah++) \ 366 PSLIST_WRITER_FOREACH((sah), &key_sad.sahlists[_i_sah], \ 367 struct secashead, pslist_entry) 368 #define SAHLIST_WRITER_INSERT_HEAD(sah) \ 369 PSLIST_WRITER_INSERT_HEAD( \ 370 &key_sad.sahlists[key_saidxhash(&(sah)->saidx, \ 371 key_sad.sahlistmask)], \ 372 (sah), pslist_entry) 373 374 /* Macros for key_sad.sahlist#savlist */ 375 #define SAVLIST_ENTRY_INIT(sav) \ 376 PSLIST_ENTRY_INIT((sav), pslist_entry) 377 #define SAVLIST_ENTRY_DESTROY(sav) \ 378 PSLIST_ENTRY_DESTROY((sav), pslist_entry) 379 #define SAVLIST_READER_FIRST(sah, state) \ 380 PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ 381 pslist_entry) 382 #define SAVLIST_WRITER_REMOVE(sav) \ 383 PSLIST_WRITER_REMOVE((sav), pslist_entry) 384 #define SAVLIST_READER_FOREACH(sav, sah, state) \ 385 PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)], \ 386 struct secasvar, pslist_entry) 387 #define SAVLIST_WRITER_FOREACH(sav, sah, state) \ 388 PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)], \ 389 struct secasvar, pslist_entry) 390 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \ 391 PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry) 392 #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \ 393 PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry) 394 #define SAVLIST_WRITER_EMPTY(sah, state) \ 395 (PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ 396 pslist_entry) == NULL) 397 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \ 398 PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav), \ 399 pslist_entry) 400 #define SAVLIST_WRITER_NEXT(sav) \ 401 PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry) 402 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \ 403 do { \ 404 if (SAVLIST_WRITER_EMPTY((sah), (state))) { \ 405 SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\ 406 } else { \ 407 struct secasvar *__sav; \ 408 SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \ 409 if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\ 410 SAVLIST_WRITER_INSERT_AFTER(__sav,\ 411 (new)); \ 412 break; \ 413 } \ 414 } \ 415 } \ 416 } while (0) 417 #define SAVLIST_READER_NEXT(sav) \ 418 PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry) 419 420 /* Macros for key_sad.savlut */ 421 #define SAVLUT_ENTRY_INIT(sav) \ 422 PSLIST_ENTRY_INIT((sav), pslist_entry_savlut) 423 #define SAVLUT_READER_FOREACH(sav, dst, proto, hash_key) \ 424 PSLIST_READER_FOREACH((sav), \ 425 &key_sad.savlut[key_savluthash(dst, proto, hash_key, \ 426 key_sad.savlutmask)], \ 427 struct secasvar, pslist_entry_savlut) 428 #define SAVLUT_WRITER_INSERT_HEAD(sav) \ 429 key_savlut_writer_insert_head((sav)) 430 #define SAVLUT_WRITER_REMOVE(sav) \ 431 do { \ 432 if (!(sav)->savlut_added) \ 433 break; \ 434 PSLIST_WRITER_REMOVE((sav), pslist_entry_savlut); \ 435 (sav)->savlut_added = false; \ 436 } while(0) 437 438 /* search order for SAs */ 439 /* 440 * This order is important because we must select the oldest SA 441 * for outbound processing. For inbound, This is not important. 442 */ 443 static const u_int saorder_state_valid_prefer_old[] = { 444 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 445 }; 446 static const u_int saorder_state_valid_prefer_new[] = { 447 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 448 }; 449 450 static const u_int saorder_state_alive[] = { 451 /* except DEAD */ 452 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 453 }; 454 static const u_int saorder_state_any[] = { 455 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 456 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 457 }; 458 459 #define SASTATE_ALIVE_FOREACH(s) \ 460 for (int _i = 0; \ 461 _i < __arraycount(saorder_state_alive) ? \ 462 (s) = saorder_state_alive[_i], true : false; \ 463 _i++) 464 #define SASTATE_ANY_FOREACH(s) \ 465 for (int _i = 0; \ 466 _i < __arraycount(saorder_state_any) ? \ 467 (s) = saorder_state_any[_i], true : false; \ 468 _i++) 469 #define SASTATE_USABLE_FOREACH(s) \ 470 for (int _i = 0; \ 471 _i < __arraycount(saorder_state_valid_prefer_new) ? \ 472 (s) = saorder_state_valid_prefer_new[_i], \ 473 true : false; \ 474 _i++) 475 476 static const int minsize[] = { 477 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 478 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 479 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 480 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 481 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 482 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 483 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 484 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 485 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 486 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 487 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 488 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 489 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 490 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 491 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 492 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 493 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 494 0, /* SADB_X_EXT_KMPRIVATE */ 495 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 496 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 497 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 498 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 499 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 500 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 501 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 502 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 503 }; 504 static const int maxsize[] = { 505 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 506 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 507 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 508 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 509 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 510 0, /* SADB_EXT_ADDRESS_SRC */ 511 0, /* SADB_EXT_ADDRESS_DST */ 512 0, /* SADB_EXT_ADDRESS_PROXY */ 513 0, /* SADB_EXT_KEY_AUTH */ 514 0, /* SADB_EXT_KEY_ENCRYPT */ 515 0, /* SADB_EXT_IDENTITY_SRC */ 516 0, /* SADB_EXT_IDENTITY_DST */ 517 0, /* SADB_EXT_SENSITIVITY */ 518 0, /* SADB_EXT_PROPOSAL */ 519 0, /* SADB_EXT_SUPPORTED_AUTH */ 520 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 521 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 522 0, /* SADB_X_EXT_KMPRIVATE */ 523 0, /* SADB_X_EXT_POLICY */ 524 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 525 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 526 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 527 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 528 0, /* SADB_X_EXT_NAT_T_OAI */ 529 0, /* SADB_X_EXT_NAT_T_OAR */ 530 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 531 }; 532 533 static int ipsec_esp_keymin = 256; 534 static int ipsec_esp_auth = 0; 535 static int ipsec_ah_keymin = 128; 536 537 #ifdef SYSCTL_DECL 538 SYSCTL_DECL(_net_key); 539 #endif 540 541 #ifdef SYSCTL_INT 542 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \ 543 &key_debug_level, 0, ""); 544 545 /* max count of trial for the decision of spi value */ 546 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \ 547 &key_spi_trycnt, 0, ""); 548 549 /* minimum spi value to allocate automatically. */ 550 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \ 551 &key_spi_minval, 0, ""); 552 553 /* maximun spi value to allocate automatically. */ 554 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \ 555 &key_spi_maxval, 0, ""); 556 557 /* interval to initialize randseed */ 558 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \ 559 &key_int_random, 0, ""); 560 561 /* lifetime for larval SA */ 562 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \ 563 &key_larval_lifetime, 0, ""); 564 565 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 566 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \ 567 &key_blockacq_count, 0, ""); 568 569 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 570 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \ 571 &key_blockacq_lifetime, 0, ""); 572 573 /* ESP auth */ 574 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \ 575 &ipsec_esp_auth, 0, ""); 576 577 /* minimum ESP key length */ 578 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \ 579 &ipsec_esp_keymin, 0, ""); 580 581 /* minimum AH key length */ 582 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \ 583 &ipsec_ah_keymin, 0, ""); 584 585 /* perfered old SA rather than new SA */ 586 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\ 587 &key_prefered_oldsa, 0, ""); 588 #endif /* SYSCTL_INT */ 589 590 #define __LIST_CHAINED(elm) \ 591 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 592 #define LIST_INSERT_TAIL(head, elm, type, field) \ 593 do {\ 594 struct type *curelm = LIST_FIRST(head); \ 595 if (curelm == NULL) {\ 596 LIST_INSERT_HEAD(head, elm, field); \ 597 } else { \ 598 while (LIST_NEXT(curelm, field)) \ 599 curelm = LIST_NEXT(curelm, field);\ 600 LIST_INSERT_AFTER(curelm, elm, field);\ 601 }\ 602 } while (0) 603 604 #define KEY_CHKSASTATE(head, sav) \ 605 /* do */ { \ 606 if ((head) != (sav)) { \ 607 IPSECLOG(LOG_DEBUG, \ 608 "state mismatched (TREE=%d SA=%d)\n", \ 609 (head), (sav)); \ 610 continue; \ 611 } \ 612 } /* while (0) */ 613 614 #define KEY_CHKSPDIR(head, sp) \ 615 do { \ 616 if ((head) != (sp)) { \ 617 IPSECLOG(LOG_DEBUG, \ 618 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\ 619 (head), (sp)); \ 620 } \ 621 } while (0) 622 623 /* 624 * set parameters into secasindex buffer. 625 * Must allocate secasindex buffer before calling this function. 626 */ 627 static int 628 key_setsecasidx(int, int, int, const struct sockaddr *, 629 const struct sockaddr *, struct secasindex *); 630 631 /* key statistics */ 632 struct _keystat { 633 u_long getspi_count; /* the avarage of count to try to get new SPI */ 634 } keystat; 635 636 static void 637 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *); 638 639 static const struct sockaddr * 640 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx) 641 { 642 643 return PFKEY_ADDR_SADDR(mhp->ext[idx]); 644 } 645 646 static void 647 key_fill_replymsg(struct mbuf *m, int seq) 648 { 649 struct sadb_msg *msg; 650 651 KASSERT(m->m_len >= sizeof(*msg)); 652 653 msg = mtod(m, struct sadb_msg *); 654 msg->sadb_msg_errno = 0; 655 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 656 if (seq != 0) 657 msg->sadb_msg_seq = seq; 658 } 659 660 #if 0 661 static void key_freeso(struct socket *); 662 static void key_freesp_so(struct secpolicy **); 663 #endif 664 static struct secpolicy *key_getsp (const struct secpolicyindex *); 665 static struct secpolicy *key_getspbyid (u_int32_t); 666 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *, bool); 667 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t, bool); 668 static void key_destroy_sp(struct secpolicy *); 669 static struct mbuf *key_gather_mbuf (struct mbuf *, 670 const struct sadb_msghdr *, int, int, ...); 671 static int key_api_spdadd(struct socket *, struct mbuf *, 672 const struct sadb_msghdr *); 673 static u_int32_t key_getnewspid (void); 674 static int key_api_spddelete(struct socket *, struct mbuf *, 675 const struct sadb_msghdr *); 676 static int key_api_spddelete2(struct socket *, struct mbuf *, 677 const struct sadb_msghdr *); 678 static int key_api_spdget(struct socket *, struct mbuf *, 679 const struct sadb_msghdr *); 680 static int key_api_spdflush(struct socket *, struct mbuf *, 681 const struct sadb_msghdr *); 682 static int key_api_spddump(struct socket *, struct mbuf *, 683 const struct sadb_msghdr *); 684 static struct mbuf * key_setspddump (int *errorp, pid_t); 685 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid); 686 static int key_api_nat_map(struct socket *, struct mbuf *, 687 const struct sadb_msghdr *); 688 static struct mbuf *key_setdumpsp (struct secpolicy *, 689 u_int8_t, u_int32_t, pid_t); 690 static u_int key_getspreqmsglen (const struct secpolicy *); 691 static int key_spdexpire (struct secpolicy *); 692 static struct secashead *key_newsah (const struct secasindex *); 693 static void key_unlink_sah(struct secashead *); 694 static void key_destroy_sah(struct secashead *); 695 static bool key_sah_has_sav(struct secashead *); 696 static void key_sah_ref(struct secashead *); 697 static void key_sah_unref(struct secashead *); 698 static void key_init_sav(struct secasvar *); 699 static void key_destroy_sav(struct secasvar *); 700 static void key_destroy_sav_with_ref(struct secasvar *); 701 static struct secasvar *key_newsav(struct mbuf *, 702 const struct sadb_msghdr *, int *, const char*, int); 703 #define KEY_NEWSAV(m, sadb, e) \ 704 key_newsav(m, sadb, e, __func__, __LINE__) 705 static void key_delsav (struct secasvar *); 706 static struct secashead *key_getsah(const struct secasindex *, int); 707 static struct secashead *key_getsah_ref(const struct secasindex *, int); 708 static bool key_checkspidup(const struct secasindex *, u_int32_t); 709 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t); 710 static int key_setsaval (struct secasvar *, struct mbuf *, 711 const struct sadb_msghdr *); 712 static void key_freesaval(struct secasvar *); 713 static int key_init_xform(struct secasvar *); 714 static void key_clear_xform(struct secasvar *); 715 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t, 716 u_int8_t, u_int32_t, u_int32_t); 717 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t); 718 static struct mbuf *key_setsadbxtype (u_int16_t); 719 static struct mbuf *key_setsadbxfrag (u_int16_t); 720 static void key_porttosaddr (union sockaddr_union *, u_int16_t); 721 static int key_checksalen (const union sockaddr_union *); 722 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t, 723 u_int32_t, pid_t, u_int16_t, int); 724 static struct mbuf *key_setsadbsa (struct secasvar *); 725 static struct mbuf *key_setsadbaddr(u_int16_t, 726 const struct sockaddr *, u_int8_t, u_int16_t, int); 727 #if 0 728 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *, 729 int, u_int64_t); 730 #endif 731 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t); 732 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t, 733 u_int32_t, int); 734 static void *key_newbuf (const void *, u_int); 735 #ifdef INET6 736 static int key_ismyaddr6 (const struct sockaddr_in6 *); 737 #endif 738 739 static void sysctl_net_keyv2_setup(struct sysctllog **); 740 static void sysctl_net_key_compat_setup(struct sysctllog **); 741 742 /* flags for key_saidx_match() */ 743 #define CMP_HEAD 1 /* protocol, addresses. */ 744 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 745 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 746 #define CMP_EXACTLY 4 /* all elements. */ 747 static int key_saidx_match(const struct secasindex *, 748 const struct secasindex *, int); 749 750 static int key_sockaddr_match(const struct sockaddr *, 751 const struct sockaddr *, int); 752 static int key_bb_match_withmask(const void *, const void *, u_int); 753 static u_int16_t key_satype2proto (u_int8_t); 754 static u_int8_t key_proto2satype (u_int16_t); 755 756 static int key_spidx_match_exactly(const struct secpolicyindex *, 757 const struct secpolicyindex *); 758 static int key_spidx_match_withmask(const struct secpolicyindex *, 759 const struct secpolicyindex *); 760 761 static int key_api_getspi(struct socket *, struct mbuf *, 762 const struct sadb_msghdr *); 763 static u_int32_t key_do_getnewspi (const struct sadb_spirange *, 764 const struct secasindex *); 765 static int key_handle_natt_info (struct secasvar *, 766 const struct sadb_msghdr *); 767 static int key_set_natt_ports (union sockaddr_union *, 768 union sockaddr_union *, 769 const struct sadb_msghdr *); 770 static int key_api_update(struct socket *, struct mbuf *, 771 const struct sadb_msghdr *); 772 #ifdef IPSEC_DOSEQCHECK 773 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t); 774 #endif 775 static int key_api_add(struct socket *, struct mbuf *, 776 const struct sadb_msghdr *); 777 static int key_setident (struct secashead *, struct mbuf *, 778 const struct sadb_msghdr *); 779 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *, 780 const struct sadb_msghdr *); 781 static int key_api_delete(struct socket *, struct mbuf *, 782 const struct sadb_msghdr *); 783 static int key_api_get(struct socket *, struct mbuf *, 784 const struct sadb_msghdr *); 785 786 static void key_getcomb_setlifetime (struct sadb_comb *); 787 static struct mbuf *key_getcomb_esp(int); 788 static struct mbuf *key_getcomb_ah(int); 789 static struct mbuf *key_getcomb_ipcomp(int); 790 static struct mbuf *key_getprop(const struct secasindex *, int); 791 792 static int key_acquire(const struct secasindex *, const struct secpolicy *, 793 int); 794 static int key_acquire_sendup_mbuf_later(struct mbuf *); 795 static void key_acquire_sendup_pending_mbuf(void); 796 #ifndef IPSEC_NONBLOCK_ACQUIRE 797 static struct secacq *key_newacq (const struct secasindex *); 798 static struct secacq *key_getacq (const struct secasindex *); 799 static struct secacq *key_getacqbyseq (u_int32_t); 800 #endif 801 #ifdef notyet 802 static struct secspacq *key_newspacq (const struct secpolicyindex *); 803 static struct secspacq *key_getspacq (const struct secpolicyindex *); 804 #endif 805 static int key_api_acquire(struct socket *, struct mbuf *, 806 const struct sadb_msghdr *); 807 static int key_api_register(struct socket *, struct mbuf *, 808 const struct sadb_msghdr *); 809 static int key_expire (struct secasvar *); 810 static int key_api_flush(struct socket *, struct mbuf *, 811 const struct sadb_msghdr *); 812 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp, 813 int *lenp, pid_t pid); 814 static int key_api_dump(struct socket *, struct mbuf *, 815 const struct sadb_msghdr *); 816 static int key_api_promisc(struct socket *, struct mbuf *, 817 const struct sadb_msghdr *); 818 static int key_senderror (struct socket *, struct mbuf *, int); 819 static int key_validate_ext (const struct sadb_ext *, int); 820 static int key_align (struct mbuf *, struct sadb_msghdr *); 821 #if 0 822 static const char *key_getfqdn (void); 823 static const char *key_getuserfqdn (void); 824 #endif 825 static void key_sa_chgstate (struct secasvar *, u_int8_t); 826 827 static struct mbuf *key_alloc_mbuf(int, int); 828 static struct mbuf *key_alloc_mbuf_simple(int, int); 829 830 static void key_timehandler(void *); 831 static void key_timehandler_work(struct work *, void *); 832 static struct callout key_timehandler_ch; 833 static struct workqueue *key_timehandler_wq; 834 static struct work key_timehandler_wk; 835 836 static inline void 837 key_savlut_writer_insert_head(struct secasvar *sav); 838 static inline uint32_t 839 key_saidxhash(const struct secasindex *, u_long); 840 static inline uint32_t 841 key_savluthash(const struct sockaddr *, 842 uint32_t, uint32_t, u_long); 843 844 /* 845 * Utilities for percpu counters for sadb_lifetime_allocations and 846 * sadb_lifetime_bytes. 847 */ 848 #define LIFETIME_COUNTER_ALLOCATIONS 0 849 #define LIFETIME_COUNTER_BYTES 1 850 #define LIFETIME_COUNTER_SIZE 2 851 852 typedef uint64_t lifetime_counters_t[LIFETIME_COUNTER_SIZE]; 853 854 static void 855 key_sum_lifetime_counters(void *p, void *arg, struct cpu_info *ci __unused) 856 { 857 lifetime_counters_t *one = p; 858 lifetime_counters_t *sum = arg; 859 860 (*sum)[LIFETIME_COUNTER_ALLOCATIONS] += (*one)[LIFETIME_COUNTER_ALLOCATIONS]; 861 (*sum)[LIFETIME_COUNTER_BYTES] += (*one)[LIFETIME_COUNTER_BYTES]; 862 } 863 864 u_int 865 key_sp_refcnt(const struct secpolicy *sp) 866 { 867 868 /* FIXME */ 869 return 0; 870 } 871 872 static void 873 key_spd_pserialize_perform(void) 874 { 875 876 KASSERT(mutex_owned(&key_spd.lock)); 877 878 while (key_spd.psz_performing) 879 cv_wait(&key_spd.cv_psz, &key_spd.lock); 880 key_spd.psz_performing = true; 881 mutex_exit(&key_spd.lock); 882 883 pserialize_perform(key_spd.psz); 884 885 mutex_enter(&key_spd.lock); 886 key_spd.psz_performing = false; 887 cv_broadcast(&key_spd.cv_psz); 888 } 889 890 /* 891 * Remove the sp from the key_spd.splist and wait for references to the sp 892 * to be released. key_spd.lock must be held. 893 */ 894 static void 895 key_unlink_sp(struct secpolicy *sp) 896 { 897 898 KASSERT(mutex_owned(&key_spd.lock)); 899 900 sp->state = IPSEC_SPSTATE_DEAD; 901 SPLIST_WRITER_REMOVE(sp); 902 903 /* Invalidate all cached SPD pointers in the PCBs. */ 904 ipsec_invalpcbcacheall(); 905 906 KDASSERT(mutex_ownable(softnet_lock)); 907 key_spd_pserialize_perform(); 908 909 localcount_drain(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); 910 } 911 912 /* 913 * Return 0 when there are known to be no SP's for the specified 914 * direction. Otherwise return 1. This is used by IPsec code 915 * to optimize performance. 916 */ 917 int 918 key_havesp(u_int dir) 919 { 920 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 921 !SPLIST_READER_EMPTY(dir) : 1); 922 } 923 924 /* %%% IPsec policy management */ 925 /* 926 * allocating a SP for OUTBOUND or INBOUND packet. 927 * Must call key_freesp() later. 928 * OUT: NULL: not found 929 * others: found and return the pointer. 930 */ 931 struct secpolicy * 932 key_lookup_sp_byspidx(const struct secpolicyindex *spidx, 933 u_int dir, const char* where, int tag) 934 { 935 struct secpolicy *sp; 936 int s; 937 938 KASSERT(spidx != NULL); 939 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir); 940 941 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); 942 943 /* get a SP entry */ 944 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { 945 kdebug_secpolicyindex("objects", spidx); 946 } 947 948 s = pserialize_read_enter(); 949 SPLIST_READER_FOREACH(sp, dir) { 950 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { 951 kdebug_secpolicyindex("in SPD", &sp->spidx); 952 } 953 954 if (sp->state == IPSEC_SPSTATE_DEAD) 955 continue; 956 if (key_spidx_match_withmask(&sp->spidx, spidx)) 957 goto found; 958 } 959 sp = NULL; 960 found: 961 if (sp) { 962 /* sanity check */ 963 KEY_CHKSPDIR(sp->spidx.dir, dir); 964 965 /* found a SPD entry */ 966 sp->lastused = time_uptime; 967 key_sp_ref(sp, where, tag); 968 } 969 pserialize_read_exit(s); 970 971 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 972 "DP return SP:%p (ID=%u) refcnt %u\n", 973 sp, sp ? sp->id : 0, key_sp_refcnt(sp)); 974 return sp; 975 } 976 977 /* 978 * return a policy that matches this particular inbound packet. 979 * XXX slow 980 */ 981 struct secpolicy * 982 key_gettunnel(const struct sockaddr *osrc, 983 const struct sockaddr *odst, 984 const struct sockaddr *isrc, 985 const struct sockaddr *idst, 986 const char* where, int tag) 987 { 988 struct secpolicy *sp; 989 const int dir = IPSEC_DIR_INBOUND; 990 int s; 991 struct ipsecrequest *r1, *r2, *p; 992 struct secpolicyindex spidx; 993 994 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); 995 996 if (isrc->sa_family != idst->sa_family) { 997 IPSECLOG(LOG_ERR, 998 "address family mismatched src %u, dst %u.\n", 999 isrc->sa_family, idst->sa_family); 1000 sp = NULL; 1001 goto done; 1002 } 1003 1004 s = pserialize_read_enter(); 1005 SPLIST_READER_FOREACH(sp, dir) { 1006 if (sp->state == IPSEC_SPSTATE_DEAD) 1007 continue; 1008 1009 r1 = r2 = NULL; 1010 for (p = sp->req; p; p = p->next) { 1011 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 1012 continue; 1013 1014 r1 = r2; 1015 r2 = p; 1016 1017 if (!r1) { 1018 /* here we look at address matches only */ 1019 spidx = sp->spidx; 1020 if (isrc->sa_len > sizeof(spidx.src) || 1021 idst->sa_len > sizeof(spidx.dst)) 1022 continue; 1023 memcpy(&spidx.src, isrc, isrc->sa_len); 1024 memcpy(&spidx.dst, idst, idst->sa_len); 1025 if (!key_spidx_match_withmask(&sp->spidx, &spidx)) 1026 continue; 1027 } else { 1028 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) || 1029 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE)) 1030 continue; 1031 } 1032 1033 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) || 1034 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE)) 1035 continue; 1036 1037 goto found; 1038 } 1039 } 1040 sp = NULL; 1041 found: 1042 if (sp) { 1043 sp->lastused = time_uptime; 1044 key_sp_ref(sp, where, tag); 1045 } 1046 pserialize_read_exit(s); 1047 done: 1048 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1049 "DP return SP:%p (ID=%u) refcnt %u\n", 1050 sp, sp ? sp->id : 0, key_sp_refcnt(sp)); 1051 return sp; 1052 } 1053 1054 /* 1055 * allocating an SA entry for an *OUTBOUND* packet. 1056 * checking each request entries in SP, and acquire an SA if need. 1057 * OUT: 0: there are valid requests. 1058 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 1059 */ 1060 int 1061 key_checkrequest(const struct ipsecrequest *isr, const struct secasindex *saidx, 1062 struct secasvar **ret) 1063 { 1064 u_int level; 1065 int error; 1066 struct secasvar *sav; 1067 1068 KASSERT(isr != NULL); 1069 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT || 1070 saidx->mode == IPSEC_MODE_TUNNEL, 1071 "unexpected policy %u", saidx->mode); 1072 1073 /* get current level */ 1074 level = ipsec_get_reqlevel(isr); 1075 1076 /* 1077 * XXX guard against protocol callbacks from the crypto 1078 * thread as they reference ipsecrequest.sav which we 1079 * temporarily null out below. Need to rethink how we 1080 * handle bundled SA's in the callback thread. 1081 */ 1082 1083 sav = key_lookup_sa_bysaidx(saidx); 1084 if (sav != NULL) { 1085 *ret = sav; 1086 return 0; 1087 } 1088 1089 /* there is no SA */ 1090 error = key_acquire(saidx, isr->sp, M_NOWAIT); 1091 if (error != 0) { 1092 /* XXX What should I do ? */ 1093 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", 1094 error); 1095 return error; 1096 } 1097 1098 if (level != IPSEC_LEVEL_REQUIRE) { 1099 /* XXX sigh, the interface to this routine is botched */ 1100 *ret = NULL; 1101 return 0; 1102 } else { 1103 return ENOENT; 1104 } 1105 } 1106 1107 /* 1108 * looking up a SA for policy entry from SAD. 1109 * NOTE: searching SAD of aliving state. 1110 * OUT: NULL: not found. 1111 * others: found and return the pointer. 1112 */ 1113 struct secasvar * 1114 key_lookup_sa_bysaidx(const struct secasindex *saidx) 1115 { 1116 struct secashead *sah; 1117 struct secasvar *sav = NULL; 1118 u_int stateidx, state; 1119 const u_int *saorder_state_valid; 1120 int arraysize; 1121 int s; 1122 1123 s = pserialize_read_enter(); 1124 sah = key_getsah(saidx, CMP_MODE_REQID); 1125 if (sah == NULL) 1126 goto out; 1127 1128 /* 1129 * search a valid state list for outbound packet. 1130 * This search order is important. 1131 */ 1132 if (key_prefered_oldsa) { 1133 saorder_state_valid = saorder_state_valid_prefer_old; 1134 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1135 } else { 1136 saorder_state_valid = saorder_state_valid_prefer_new; 1137 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1138 } 1139 1140 /* search valid state */ 1141 for (stateidx = 0; 1142 stateidx < arraysize; 1143 stateidx++) { 1144 1145 state = saorder_state_valid[stateidx]; 1146 1147 if (key_prefered_oldsa) 1148 sav = SAVLIST_READER_FIRST(sah, state); 1149 else { 1150 /* XXX need O(1) lookup */ 1151 struct secasvar *last = NULL; 1152 1153 SAVLIST_READER_FOREACH(sav, sah, state) 1154 last = sav; 1155 sav = last; 1156 } 1157 if (sav != NULL) { 1158 KEY_SA_REF(sav); 1159 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1160 "DP cause refcnt++:%d SA:%p\n", 1161 key_sa_refcnt(sav), sav); 1162 break; 1163 } 1164 } 1165 out: 1166 pserialize_read_exit(s); 1167 1168 return sav; 1169 } 1170 1171 #if 0 1172 static void 1173 key_sendup_message_delete(struct secasvar *sav) 1174 { 1175 struct mbuf *m, *result = 0; 1176 uint8_t satype; 1177 1178 satype = key_proto2satype(sav->sah->saidx.proto); 1179 if (satype == 0) 1180 goto msgfail; 1181 1182 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1); 1183 if (m == NULL) 1184 goto msgfail; 1185 result = m; 1186 1187 /* set sadb_address for saidx's. */ 1188 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, 1189 _BITS(sav->sah->saidx.src.sa.sa_len), IPSEC_ULPROTO_ANY); 1190 if (m == NULL) 1191 goto msgfail; 1192 m_cat(result, m); 1193 1194 /* set sadb_address for saidx's. */ 1195 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa, 1196 _BITS(sav->sah->saidx.src.sa.sa_len), IPSEC_ULPROTO_ANY); 1197 if (m == NULL) 1198 goto msgfail; 1199 m_cat(result, m); 1200 1201 /* create SA extension */ 1202 m = key_setsadbsa(sav); 1203 if (m == NULL) 1204 goto msgfail; 1205 m_cat(result, m); 1206 1207 if (result->m_len < sizeof(struct sadb_msg)) { 1208 result = m_pullup(result, sizeof(struct sadb_msg)); 1209 if (result == NULL) 1210 goto msgfail; 1211 } 1212 1213 result->m_pkthdr.len = 0; 1214 for (m = result; m; m = m->m_next) 1215 result->m_pkthdr.len += m->m_len; 1216 mtod(result, struct sadb_msg *)->sadb_msg_len = 1217 PFKEY_UNIT64(result->m_pkthdr.len); 1218 1219 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 1220 result = NULL; 1221 msgfail: 1222 if (result) 1223 m_freem(result); 1224 } 1225 #endif 1226 1227 /* 1228 * allocating a usable SA entry for a *INBOUND* packet. 1229 * Must call key_freesav() later. 1230 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1231 * NULL: not found, or error occurred. 1232 * 1233 * In the comparison, no source address is used--for RFC2401 conformance. 1234 * To quote, from section 4.1: 1235 * A security association is uniquely identified by a triple consisting 1236 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1237 * security protocol (AH or ESP) identifier. 1238 * Note that, however, we do need to keep source address in IPsec SA. 1239 * IKE specification and PF_KEY specification do assume that we 1240 * keep source address in IPsec SA. We see a tricky situation here. 1241 * 1242 * sport and dport are used for NAT-T. network order is always used. 1243 */ 1244 struct secasvar * 1245 key_lookup_sa( 1246 const union sockaddr_union *dst, 1247 u_int proto, 1248 u_int32_t spi, 1249 u_int16_t sport, 1250 u_int16_t dport, 1251 const char* where, int tag) 1252 { 1253 struct secasvar *sav; 1254 int chkport; 1255 int s; 1256 1257 int must_check_spi = 1; 1258 int must_check_alg = 0; 1259 u_int16_t cpi = 0; 1260 u_int8_t algo = 0; 1261 uint32_t hash_key = spi; 1262 1263 if ((sport != 0) && (dport != 0)) 1264 chkport = PORT_STRICT; 1265 else 1266 chkport = PORT_NONE; 1267 1268 KASSERT(dst != NULL); 1269 1270 /* 1271 * XXX IPCOMP case 1272 * We use cpi to define spi here. In the case where cpi <= 1273 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not 1274 * the real spi. In this case, don't check the spi but check the 1275 * algorithm 1276 */ 1277 1278 if (proto == IPPROTO_IPCOMP) { 1279 u_int32_t tmp; 1280 tmp = ntohl(spi); 1281 cpi = (u_int16_t) tmp; 1282 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) { 1283 algo = (u_int8_t) cpi; 1284 hash_key = algo; 1285 must_check_spi = 0; 1286 must_check_alg = 1; 1287 } 1288 } 1289 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1290 "DP from %s:%u check_spi=%d, check_alg=%d\n", 1291 where, tag, must_check_spi, must_check_alg); 1292 1293 1294 /* 1295 * searching SAD. 1296 * XXX: to be checked internal IP header somewhere. Also when 1297 * IPsec tunnel packet is received. But ESP tunnel mode is 1298 * encrypted so we can't check internal IP header. 1299 */ 1300 s = pserialize_read_enter(); 1301 SAVLUT_READER_FOREACH(sav, &dst->sa, proto, hash_key) { 1302 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1303 "try match spi %#x, %#x\n", 1304 ntohl(spi), ntohl(sav->spi)); 1305 1306 /* do not return entries w/ unusable state */ 1307 if (!SADB_SASTATE_USABLE_P(sav)) { 1308 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1309 "bad state %d\n", sav->state); 1310 continue; 1311 } 1312 if (proto != sav->sah->saidx.proto) { 1313 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1314 "proto fail %d != %d\n", 1315 proto, sav->sah->saidx.proto); 1316 continue; 1317 } 1318 if (must_check_spi && spi != sav->spi) { 1319 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1320 "spi fail %#x != %#x\n", 1321 ntohl(spi), ntohl(sav->spi)); 1322 continue; 1323 } 1324 /* XXX only on the ipcomp case */ 1325 if (must_check_alg && algo != sav->alg_comp) { 1326 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1327 "algo fail %d != %d\n", 1328 algo, sav->alg_comp); 1329 continue; 1330 } 1331 1332 #if 0 /* don't check src */ 1333 /* Fix port in src->sa */ 1334 1335 /* check src address */ 1336 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE)) 1337 continue; 1338 #endif 1339 /* fix port of dst address XXX*/ 1340 key_porttosaddr(__UNCONST(dst), dport); 1341 /* check dst address */ 1342 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport)) 1343 continue; 1344 key_sa_ref(sav, where, tag); 1345 goto done; 1346 } 1347 sav = NULL; 1348 done: 1349 pserialize_read_exit(s); 1350 1351 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1352 "DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav)); 1353 return sav; 1354 } 1355 1356 static void 1357 key_validate_savlist(const struct secashead *sah, const u_int state) 1358 { 1359 #ifdef DEBUG 1360 struct secasvar *sav, *next; 1361 int s; 1362 1363 /* 1364 * The list should be sorted by lft_c->sadb_lifetime_addtime 1365 * in ascending order. 1366 */ 1367 s = pserialize_read_enter(); 1368 SAVLIST_READER_FOREACH(sav, sah, state) { 1369 next = SAVLIST_READER_NEXT(sav); 1370 if (next != NULL && 1371 sav->lft_c != NULL && next->lft_c != NULL) { 1372 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <= 1373 next->lft_c->sadb_lifetime_addtime, 1374 "savlist is not sorted: sah=%p, state=%d, " 1375 "sav=%" PRIu64 ", next=%" PRIu64, sah, state, 1376 sav->lft_c->sadb_lifetime_addtime, 1377 next->lft_c->sadb_lifetime_addtime); 1378 } 1379 } 1380 pserialize_read_exit(s); 1381 #endif 1382 } 1383 1384 void 1385 key_init_sp(struct secpolicy *sp) 1386 { 1387 1388 ASSERT_SLEEPABLE(); 1389 1390 sp->state = IPSEC_SPSTATE_ALIVE; 1391 if (sp->policy == IPSEC_POLICY_IPSEC) 1392 KASSERT(sp->req != NULL); 1393 localcount_init(&sp->localcount); 1394 SPLIST_ENTRY_INIT(sp); 1395 } 1396 1397 /* 1398 * Must be called in a pserialize read section. A held SP 1399 * must be released by key_sp_unref after use. 1400 */ 1401 void 1402 key_sp_ref(struct secpolicy *sp, const char* where, int tag) 1403 { 1404 1405 localcount_acquire(&sp->localcount); 1406 1407 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1408 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n", 1409 sp, sp->id, where, tag, key_sp_refcnt(sp)); 1410 } 1411 1412 /* 1413 * Must be called without holding key_spd.lock because the lock 1414 * would be held in localcount_release. 1415 */ 1416 void 1417 key_sp_unref(struct secpolicy *sp, const char* where, int tag) 1418 { 1419 1420 KDASSERT(mutex_ownable(&key_spd.lock)); 1421 1422 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1423 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n", 1424 sp, sp->id, where, tag, key_sp_refcnt(sp)); 1425 1426 localcount_release(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); 1427 } 1428 1429 static void 1430 key_init_sav(struct secasvar *sav) 1431 { 1432 1433 ASSERT_SLEEPABLE(); 1434 1435 localcount_init(&sav->localcount); 1436 SAVLIST_ENTRY_INIT(sav); 1437 SAVLUT_ENTRY_INIT(sav); 1438 } 1439 1440 u_int 1441 key_sa_refcnt(const struct secasvar *sav) 1442 { 1443 1444 /* FIXME */ 1445 return 0; 1446 } 1447 1448 void 1449 key_sa_ref(struct secasvar *sav, const char* where, int tag) 1450 { 1451 1452 localcount_acquire(&sav->localcount); 1453 1454 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1455 "DP cause refcnt++: SA:%p from %s:%u\n", 1456 sav, where, tag); 1457 } 1458 1459 void 1460 key_sa_unref(struct secasvar *sav, const char* where, int tag) 1461 { 1462 1463 KDASSERT(mutex_ownable(&key_sad.lock)); 1464 1465 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1466 "DP cause refcnt--: SA:%p from %s:%u\n", 1467 sav, where, tag); 1468 1469 localcount_release(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1470 } 1471 1472 #if 0 1473 /* 1474 * Must be called after calling key_lookup_sp*(). 1475 * For the packet with socket. 1476 */ 1477 static void 1478 key_freeso(struct socket *so) 1479 { 1480 /* sanity check */ 1481 KASSERT(so != NULL); 1482 1483 switch (so->so_proto->pr_domain->dom_family) { 1484 #ifdef INET 1485 case PF_INET: 1486 { 1487 struct inpcb *pcb = sotoinpcb(so); 1488 1489 /* Does it have a PCB ? */ 1490 if (pcb == NULL) 1491 return; 1492 1493 struct inpcbpolicy *sp = pcb->inp_sp; 1494 key_freesp_so(&sp->sp_in); 1495 key_freesp_so(&sp->sp_out); 1496 } 1497 break; 1498 #endif 1499 #ifdef INET6 1500 case PF_INET6: 1501 { 1502 #ifdef HAVE_NRL_INPCB 1503 struct inpcb *pcb = sotoinpcb(so); 1504 struct inpcbpolicy *sp = pcb->inp_sp; 1505 1506 /* Does it have a PCB ? */ 1507 if (pcb == NULL) 1508 return; 1509 key_freesp_so(&sp->sp_in); 1510 key_freesp_so(&sp->sp_out); 1511 #else 1512 struct in6pcb *pcb = sotoin6pcb(so); 1513 1514 /* Does it have a PCB ? */ 1515 if (pcb == NULL) 1516 return; 1517 key_freesp_so(&pcb->in6p_sp->sp_in); 1518 key_freesp_so(&pcb->in6p_sp->sp_out); 1519 #endif 1520 } 1521 break; 1522 #endif /* INET6 */ 1523 default: 1524 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n", 1525 so->so_proto->pr_domain->dom_family); 1526 return; 1527 } 1528 } 1529 1530 static void 1531 key_freesp_so(struct secpolicy **sp) 1532 { 1533 1534 KASSERT(sp != NULL); 1535 KASSERT(*sp != NULL); 1536 1537 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1538 (*sp)->policy == IPSEC_POLICY_BYPASS) 1539 return; 1540 1541 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC, 1542 "invalid policy %u", (*sp)->policy); 1543 KEY_SP_UNREF(&sp); 1544 } 1545 #endif 1546 1547 static void 1548 key_sad_pserialize_perform(void) 1549 { 1550 1551 KASSERT(mutex_owned(&key_sad.lock)); 1552 1553 while (key_sad.psz_performing) 1554 cv_wait(&key_sad.cv_psz, &key_sad.lock); 1555 key_sad.psz_performing = true; 1556 mutex_exit(&key_sad.lock); 1557 1558 pserialize_perform(key_sad.psz); 1559 1560 mutex_enter(&key_sad.lock); 1561 key_sad.psz_performing = false; 1562 cv_broadcast(&key_sad.cv_psz); 1563 } 1564 1565 /* 1566 * Remove the sav from the savlist of its sah and wait for references to the sav 1567 * to be released. key_sad.lock must be held. 1568 */ 1569 static void 1570 key_unlink_sav(struct secasvar *sav) 1571 { 1572 1573 KASSERT(mutex_owned(&key_sad.lock)); 1574 1575 SAVLIST_WRITER_REMOVE(sav); 1576 SAVLUT_WRITER_REMOVE(sav); 1577 1578 KDASSERT(mutex_ownable(softnet_lock)); 1579 key_sad_pserialize_perform(); 1580 1581 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1582 } 1583 1584 /* 1585 * Destroy an sav where the sav must be unlinked from an sah 1586 * by say key_unlink_sav. 1587 */ 1588 static void 1589 key_destroy_sav(struct secasvar *sav) 1590 { 1591 1592 ASSERT_SLEEPABLE(); 1593 1594 localcount_fini(&sav->localcount); 1595 SAVLIST_ENTRY_DESTROY(sav); 1596 1597 key_delsav(sav); 1598 } 1599 1600 /* 1601 * Destroy sav with holding its reference. 1602 */ 1603 static void 1604 key_destroy_sav_with_ref(struct secasvar *sav) 1605 { 1606 1607 ASSERT_SLEEPABLE(); 1608 1609 mutex_enter(&key_sad.lock); 1610 sav->state = SADB_SASTATE_DEAD; 1611 SAVLIST_WRITER_REMOVE(sav); 1612 SAVLUT_WRITER_REMOVE(sav); 1613 mutex_exit(&key_sad.lock); 1614 1615 /* We cannot unref with holding key_sad.lock */ 1616 KEY_SA_UNREF(&sav); 1617 1618 mutex_enter(&key_sad.lock); 1619 KDASSERT(mutex_ownable(softnet_lock)); 1620 key_sad_pserialize_perform(); 1621 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1622 mutex_exit(&key_sad.lock); 1623 1624 key_destroy_sav(sav); 1625 } 1626 1627 /* %%% SPD management */ 1628 /* 1629 * free security policy entry. 1630 */ 1631 static void 1632 key_destroy_sp(struct secpolicy *sp) 1633 { 1634 1635 SPLIST_ENTRY_DESTROY(sp); 1636 localcount_fini(&sp->localcount); 1637 1638 key_free_sp(sp); 1639 1640 key_update_used(); 1641 } 1642 1643 void 1644 key_free_sp(struct secpolicy *sp) 1645 { 1646 struct ipsecrequest *isr = sp->req, *nextisr; 1647 1648 while (isr != NULL) { 1649 nextisr = isr->next; 1650 kmem_free(isr, sizeof(*isr)); 1651 isr = nextisr; 1652 } 1653 1654 kmem_free(sp, sizeof(*sp)); 1655 } 1656 1657 void 1658 key_socksplist_add(struct secpolicy *sp) 1659 { 1660 1661 mutex_enter(&key_spd.lock); 1662 PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry); 1663 mutex_exit(&key_spd.lock); 1664 1665 key_update_used(); 1666 } 1667 1668 /* 1669 * search SPD 1670 * OUT: NULL : not found 1671 * others : found, pointer to a SP. 1672 */ 1673 static struct secpolicy * 1674 key_getsp(const struct secpolicyindex *spidx) 1675 { 1676 struct secpolicy *sp; 1677 int s; 1678 1679 KASSERT(spidx != NULL); 1680 1681 s = pserialize_read_enter(); 1682 SPLIST_READER_FOREACH(sp, spidx->dir) { 1683 if (sp->state == IPSEC_SPSTATE_DEAD) 1684 continue; 1685 if (key_spidx_match_exactly(spidx, &sp->spidx)) { 1686 KEY_SP_REF(sp); 1687 pserialize_read_exit(s); 1688 return sp; 1689 } 1690 } 1691 pserialize_read_exit(s); 1692 1693 return NULL; 1694 } 1695 1696 /* 1697 * search SPD and remove found SP 1698 * OUT: NULL : not found 1699 * others : found, pointer to a SP. 1700 */ 1701 static struct secpolicy * 1702 key_lookup_and_remove_sp(const struct secpolicyindex *spidx, bool from_kernel) 1703 { 1704 struct secpolicy *sp = NULL; 1705 1706 mutex_enter(&key_spd.lock); 1707 SPLIST_WRITER_FOREACH(sp, spidx->dir) { 1708 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 1709 /* 1710 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1711 * removed by userland programs. 1712 */ 1713 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1714 continue; 1715 if (key_spidx_match_exactly(spidx, &sp->spidx)) { 1716 key_unlink_sp(sp); 1717 goto out; 1718 } 1719 } 1720 sp = NULL; 1721 out: 1722 mutex_exit(&key_spd.lock); 1723 1724 return sp; 1725 } 1726 1727 /* 1728 * get SP by index. 1729 * OUT: NULL : not found 1730 * others : found, pointer to a SP. 1731 */ 1732 static struct secpolicy * 1733 key_getspbyid(u_int32_t id) 1734 { 1735 struct secpolicy *sp; 1736 int s; 1737 1738 s = pserialize_read_enter(); 1739 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { 1740 if (sp->state == IPSEC_SPSTATE_DEAD) 1741 continue; 1742 if (sp->id == id) { 1743 KEY_SP_REF(sp); 1744 goto out; 1745 } 1746 } 1747 1748 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { 1749 if (sp->state == IPSEC_SPSTATE_DEAD) 1750 continue; 1751 if (sp->id == id) { 1752 KEY_SP_REF(sp); 1753 goto out; 1754 } 1755 } 1756 out: 1757 pserialize_read_exit(s); 1758 return sp; 1759 } 1760 1761 /* 1762 * get SP by index, remove and return it. 1763 * OUT: NULL : not found 1764 * others : found, pointer to a SP. 1765 */ 1766 static struct secpolicy * 1767 key_lookupbyid_and_remove_sp(u_int32_t id, bool from_kernel) 1768 { 1769 struct secpolicy *sp; 1770 1771 mutex_enter(&key_spd.lock); 1772 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { 1773 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 1774 /* 1775 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1776 * removed by userland programs. 1777 */ 1778 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1779 continue; 1780 if (sp->id == id) 1781 goto out; 1782 } 1783 1784 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { 1785 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 1786 /* 1787 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1788 * removed by userland programs. 1789 */ 1790 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1791 continue; 1792 if (sp->id == id) 1793 goto out; 1794 } 1795 out: 1796 if (sp != NULL) 1797 key_unlink_sp(sp); 1798 mutex_exit(&key_spd.lock); 1799 return sp; 1800 } 1801 1802 struct secpolicy * 1803 key_newsp(const char* where, int tag) 1804 { 1805 struct secpolicy *newsp = NULL; 1806 1807 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP); 1808 1809 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1810 "DP from %s:%u return SP:%p\n", where, tag, newsp); 1811 return newsp; 1812 } 1813 1814 /* 1815 * create secpolicy structure from sadb_x_policy structure. 1816 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1817 * so must be set properly later. 1818 */ 1819 static struct secpolicy * 1820 _key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error, 1821 bool from_kernel) 1822 { 1823 struct secpolicy *newsp; 1824 1825 KASSERT(!cpu_softintr_p()); 1826 KASSERT(xpl0 != NULL); 1827 KASSERT(len >= sizeof(*xpl0)); 1828 1829 if (len != PFKEY_EXTLEN(xpl0)) { 1830 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); 1831 *error = EINVAL; 1832 return NULL; 1833 } 1834 1835 newsp = KEY_NEWSP(); 1836 if (newsp == NULL) { 1837 *error = ENOBUFS; 1838 return NULL; 1839 } 1840 1841 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1842 newsp->policy = xpl0->sadb_x_policy_type; 1843 1844 /* check policy */ 1845 switch (xpl0->sadb_x_policy_type) { 1846 case IPSEC_POLICY_DISCARD: 1847 case IPSEC_POLICY_NONE: 1848 case IPSEC_POLICY_ENTRUST: 1849 case IPSEC_POLICY_BYPASS: 1850 newsp->req = NULL; 1851 *error = 0; 1852 return newsp; 1853 1854 case IPSEC_POLICY_IPSEC: 1855 /* Continued */ 1856 break; 1857 default: 1858 IPSECLOG(LOG_DEBUG, "invalid policy type.\n"); 1859 key_free_sp(newsp); 1860 *error = EINVAL; 1861 return NULL; 1862 } 1863 1864 /* IPSEC_POLICY_IPSEC */ 1865 { 1866 int tlen; 1867 const struct sadb_x_ipsecrequest *xisr; 1868 uint16_t xisr_reqid; 1869 struct ipsecrequest **p_isr = &newsp->req; 1870 1871 /* validity check */ 1872 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1873 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); 1874 *error = EINVAL; 1875 goto free_exit; 1876 } 1877 1878 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1879 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1); 1880 1881 while (tlen > 0) { 1882 /* length check */ 1883 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1884 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n"); 1885 *error = EINVAL; 1886 goto free_exit; 1887 } 1888 1889 /* allocate request buffer */ 1890 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP); 1891 1892 /* set values */ 1893 (*p_isr)->next = NULL; 1894 1895 switch (xisr->sadb_x_ipsecrequest_proto) { 1896 case IPPROTO_ESP: 1897 case IPPROTO_AH: 1898 case IPPROTO_IPCOMP: 1899 break; 1900 default: 1901 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n", 1902 xisr->sadb_x_ipsecrequest_proto); 1903 *error = EPROTONOSUPPORT; 1904 goto free_exit; 1905 } 1906 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1907 1908 switch (xisr->sadb_x_ipsecrequest_mode) { 1909 case IPSEC_MODE_TRANSPORT: 1910 case IPSEC_MODE_TUNNEL: 1911 break; 1912 case IPSEC_MODE_ANY: 1913 default: 1914 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n", 1915 xisr->sadb_x_ipsecrequest_mode); 1916 *error = EINVAL; 1917 goto free_exit; 1918 } 1919 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1920 1921 switch (xisr->sadb_x_ipsecrequest_level) { 1922 case IPSEC_LEVEL_DEFAULT: 1923 case IPSEC_LEVEL_USE: 1924 case IPSEC_LEVEL_REQUIRE: 1925 break; 1926 case IPSEC_LEVEL_UNIQUE: 1927 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid; 1928 /* validity check */ 1929 /* 1930 * case 1) from_kernel == false 1931 * That means the request comes from userland. 1932 * If range violation of reqid, kernel will 1933 * update it, don't refuse it. 1934 * 1935 * case 2) from_kernel == true 1936 * That means the request comes from kernel 1937 * (e.g. ipsec(4) I/F). 1938 * Use thre requested reqid to avoid inconsistency 1939 * between kernel's reqid and the reqid in pf_key 1940 * message sent to userland. The pf_key message is 1941 * built by diverting request mbuf. 1942 */ 1943 if (!from_kernel && 1944 xisr_reqid > IPSEC_MANUAL_REQID_MAX) { 1945 IPSECLOG(LOG_DEBUG, 1946 "reqid=%d range " 1947 "violation, updated by kernel.\n", 1948 xisr_reqid); 1949 xisr_reqid = 0; 1950 } 1951 1952 /* allocate new reqid id if reqid is zero. */ 1953 if (xisr_reqid == 0) { 1954 u_int16_t reqid = key_newreqid(); 1955 if (reqid == 0) { 1956 *error = ENOBUFS; 1957 goto free_exit; 1958 } 1959 (*p_isr)->saidx.reqid = reqid; 1960 } else { 1961 /* set it for manual keying. */ 1962 (*p_isr)->saidx.reqid = xisr_reqid; 1963 } 1964 break; 1965 1966 default: 1967 IPSECLOG(LOG_DEBUG, "invalid level=%u\n", 1968 xisr->sadb_x_ipsecrequest_level); 1969 *error = EINVAL; 1970 goto free_exit; 1971 } 1972 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1973 1974 /* set IP addresses if there */ 1975 /* 1976 * NOTE: 1977 * MOBIKE Extensions for PF_KEY draft says: 1978 * If tunnel mode is specified, the sadb_x_ipsecrequest 1979 * structure is followed by two sockaddr structures that 1980 * define the tunnel endpoint addresses. In the case that 1981 * transport mode is used, no additional addresses are 1982 * specified. 1983 * see: https://tools.ietf.org/html/draft-schilcher-mobike-pfkey-extension-01 1984 * 1985 * And then, the IP addresses will be set by 1986 * ipsec_fill_saidx_bymbuf() from packet in transport mode. 1987 * This behavior is used by NAT-T enabled ipsecif(4). 1988 */ 1989 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1990 const struct sockaddr *paddr; 1991 1992 paddr = (const struct sockaddr *)(xisr + 1); 1993 1994 /* validity check */ 1995 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) { 1996 IPSECLOG(LOG_DEBUG, "invalid request " 1997 "address length.\n"); 1998 *error = EINVAL; 1999 goto free_exit; 2000 } 2001 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len); 2002 2003 paddr = (const struct sockaddr *)((const char *)paddr 2004 + paddr->sa_len); 2005 2006 /* validity check */ 2007 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) { 2008 IPSECLOG(LOG_DEBUG, "invalid request " 2009 "address length.\n"); 2010 *error = EINVAL; 2011 goto free_exit; 2012 } 2013 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len); 2014 } 2015 2016 (*p_isr)->sp = newsp; 2017 2018 /* initialization for the next. */ 2019 p_isr = &(*p_isr)->next; 2020 tlen -= xisr->sadb_x_ipsecrequest_len; 2021 2022 /* validity check */ 2023 if (tlen < 0) { 2024 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n"); 2025 *error = EINVAL; 2026 goto free_exit; 2027 } 2028 2029 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr + 2030 xisr->sadb_x_ipsecrequest_len); 2031 } 2032 } 2033 2034 *error = 0; 2035 return newsp; 2036 2037 free_exit: 2038 key_free_sp(newsp); 2039 return NULL; 2040 } 2041 2042 struct secpolicy * 2043 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error) 2044 { 2045 2046 return _key_msg2sp(xpl0, len, error, false); 2047 } 2048 2049 u_int16_t 2050 key_newreqid(void) 2051 { 2052 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 2053 2054 auto_reqid = (auto_reqid == 0xffff ? 2055 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 2056 2057 /* XXX should be unique check */ 2058 2059 return auto_reqid; 2060 } 2061 2062 /* 2063 * copy secpolicy struct to sadb_x_policy structure indicated. 2064 */ 2065 struct mbuf * 2066 key_sp2msg(const struct secpolicy *sp, int mflag) 2067 { 2068 struct sadb_x_policy *xpl; 2069 int tlen; 2070 char *p; 2071 struct mbuf *m; 2072 2073 KASSERT(sp != NULL); 2074 2075 tlen = key_getspreqmsglen(sp); 2076 2077 m = key_alloc_mbuf(tlen, mflag); 2078 if (!m || m->m_next) { /*XXX*/ 2079 if (m) 2080 m_freem(m); 2081 return NULL; 2082 } 2083 2084 m->m_len = tlen; 2085 m->m_next = NULL; 2086 xpl = mtod(m, struct sadb_x_policy *); 2087 memset(xpl, 0, tlen); 2088 2089 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 2090 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 2091 xpl->sadb_x_policy_type = sp->policy; 2092 xpl->sadb_x_policy_dir = sp->spidx.dir; 2093 xpl->sadb_x_policy_id = sp->id; 2094 p = (char *)xpl + sizeof(*xpl); 2095 2096 /* if is the policy for ipsec ? */ 2097 if (sp->policy == IPSEC_POLICY_IPSEC) { 2098 struct sadb_x_ipsecrequest *xisr; 2099 struct ipsecrequest *isr; 2100 2101 for (isr = sp->req; isr != NULL; isr = isr->next) { 2102 2103 xisr = (struct sadb_x_ipsecrequest *)p; 2104 2105 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 2106 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 2107 xisr->sadb_x_ipsecrequest_level = isr->level; 2108 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 2109 2110 p += sizeof(*xisr); 2111 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len); 2112 p += isr->saidx.src.sa.sa_len; 2113 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len); 2114 p += isr->saidx.src.sa.sa_len; 2115 2116 xisr->sadb_x_ipsecrequest_len = 2117 PFKEY_ALIGN8(sizeof(*xisr) 2118 + isr->saidx.src.sa.sa_len 2119 + isr->saidx.dst.sa.sa_len); 2120 } 2121 } 2122 2123 return m; 2124 } 2125 2126 /* 2127 * m will not be freed nor modified. It never return NULL. 2128 * If it returns a mbuf of M_PKTHDR, the mbuf ensures to have 2129 * contiguous length at least sizeof(struct sadb_msg). 2130 */ 2131 static struct mbuf * 2132 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 2133 int ndeep, int nitem, ...) 2134 { 2135 va_list ap; 2136 int idx; 2137 int i; 2138 struct mbuf *result = NULL, *n; 2139 int len; 2140 2141 KASSERT(m != NULL); 2142 KASSERT(mhp != NULL); 2143 KASSERT(!cpu_softintr_p()); 2144 2145 va_start(ap, nitem); 2146 for (i = 0; i < nitem; i++) { 2147 idx = va_arg(ap, int); 2148 KASSERT(idx >= 0); 2149 KASSERT(idx <= SADB_EXT_MAX); 2150 /* don't attempt to pull empty extension */ 2151 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 2152 continue; 2153 if (idx != SADB_EXT_RESERVED && 2154 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 2155 continue; 2156 2157 if (idx == SADB_EXT_RESERVED) { 2158 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN); 2159 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2160 MGETHDR(n, M_WAITOK, MT_DATA); 2161 n->m_len = len; 2162 n->m_next = NULL; 2163 m_copydata(m, 0, sizeof(struct sadb_msg), 2164 mtod(n, void *)); 2165 } else if (i < ndeep) { 2166 len = mhp->extlen[idx]; 2167 n = key_alloc_mbuf(len, M_WAITOK); 2168 KASSERT(n->m_next == NULL); 2169 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 2170 mtod(n, void *)); 2171 } else { 2172 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 2173 M_WAITOK); 2174 } 2175 KASSERT(n != NULL); 2176 2177 if (result) 2178 m_cat(result, n); 2179 else 2180 result = n; 2181 } 2182 va_end(ap); 2183 2184 KASSERT(result != NULL); 2185 if ((result->m_flags & M_PKTHDR) != 0) { 2186 result->m_pkthdr.len = 0; 2187 for (n = result; n; n = n->m_next) 2188 result->m_pkthdr.len += n->m_len; 2189 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 2190 } 2191 2192 return result; 2193 } 2194 2195 /* 2196 * The argument _sp must not overwrite until SP is created and registered 2197 * successfully. 2198 */ 2199 static int 2200 key_spdadd(struct socket *so, struct mbuf *m, 2201 const struct sadb_msghdr *mhp, struct secpolicy **_sp, 2202 bool from_kernel) 2203 { 2204 const struct sockaddr *src, *dst; 2205 const struct sadb_x_policy *xpl0; 2206 struct sadb_x_policy *xpl; 2207 const struct sadb_lifetime *lft = NULL; 2208 struct secpolicyindex spidx; 2209 struct secpolicy *newsp; 2210 int error; 2211 uint32_t sadb_x_policy_id; 2212 2213 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2214 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2215 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2216 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2217 return key_senderror(so, m, EINVAL); 2218 } 2219 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2220 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2221 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2222 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2223 return key_senderror(so, m, EINVAL); 2224 } 2225 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 2226 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < 2227 sizeof(struct sadb_lifetime)) { 2228 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2229 return key_senderror(so, m, EINVAL); 2230 } 2231 lft = mhp->ext[SADB_EXT_LIFETIME_HARD]; 2232 } 2233 2234 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 2235 2236 /* checking the direciton. */ 2237 switch (xpl0->sadb_x_policy_dir) { 2238 case IPSEC_DIR_INBOUND: 2239 case IPSEC_DIR_OUTBOUND: 2240 break; 2241 default: 2242 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); 2243 return key_senderror(so, m, EINVAL); 2244 } 2245 2246 /* check policy */ 2247 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */ 2248 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST || 2249 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 2250 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n"); 2251 return key_senderror(so, m, EINVAL); 2252 } 2253 2254 /* policy requests are mandatory when action is ipsec. */ 2255 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX && 2256 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 2257 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 2258 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n"); 2259 return key_senderror(so, m, EINVAL); 2260 } 2261 2262 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 2263 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 2264 2265 /* sanity check on addr pair */ 2266 if (src->sa_family != dst->sa_family) 2267 return key_senderror(so, m, EINVAL); 2268 if (src->sa_len != dst->sa_len) 2269 return key_senderror(so, m, EINVAL); 2270 2271 key_init_spidx_bymsghdr(&spidx, mhp); 2272 2273 /* 2274 * checking there is SP already or not. 2275 * SPDUPDATE doesn't depend on whether there is a SP or not. 2276 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 2277 * then error. 2278 */ 2279 { 2280 struct secpolicy *sp; 2281 2282 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2283 sp = key_lookup_and_remove_sp(&spidx, from_kernel); 2284 if (sp != NULL) 2285 key_destroy_sp(sp); 2286 } else { 2287 sp = key_getsp(&spidx); 2288 if (sp != NULL) { 2289 KEY_SP_UNREF(&sp); 2290 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n"); 2291 return key_senderror(so, m, EEXIST); 2292 } 2293 } 2294 } 2295 2296 /* allocation new SP entry */ 2297 newsp = _key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error, from_kernel); 2298 if (newsp == NULL) { 2299 return key_senderror(so, m, error); 2300 } 2301 2302 newsp->id = key_getnewspid(); 2303 if (newsp->id == 0) { 2304 kmem_free(newsp, sizeof(*newsp)); 2305 return key_senderror(so, m, ENOBUFS); 2306 } 2307 2308 newsp->spidx = spidx; 2309 newsp->created = time_uptime; 2310 newsp->lastused = newsp->created; 2311 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 2312 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 2313 if (from_kernel) 2314 newsp->origin = IPSEC_SPORIGIN_KERNEL; 2315 else 2316 newsp->origin = IPSEC_SPORIGIN_USER; 2317 2318 key_init_sp(newsp); 2319 if (from_kernel) 2320 KEY_SP_REF(newsp); 2321 2322 sadb_x_policy_id = newsp->id; 2323 2324 if (_sp != NULL) 2325 *_sp = newsp; 2326 2327 mutex_enter(&key_spd.lock); 2328 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp); 2329 mutex_exit(&key_spd.lock); 2330 /* 2331 * We don't have a reference to newsp, so we must not touch newsp from 2332 * now on. If you want to do, you must take a reference beforehand. 2333 */ 2334 newsp = NULL; 2335 2336 #ifdef notyet 2337 /* delete the entry in key_misc.spacqlist */ 2338 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2339 struct secspacq *spacq = key_getspacq(&spidx); 2340 if (spacq != NULL) { 2341 /* reset counter in order to deletion by timehandler. */ 2342 spacq->created = time_uptime; 2343 spacq->count = 0; 2344 } 2345 } 2346 #endif 2347 2348 /* Invalidate all cached SPD pointers in the PCBs. */ 2349 ipsec_invalpcbcacheall(); 2350 2351 #if defined(GATEWAY) 2352 /* Invalidate the ipflow cache, as well. */ 2353 ipflow_invalidate_all(0); 2354 #ifdef INET6 2355 if (in6_present) 2356 ip6flow_invalidate_all(0); 2357 #endif /* INET6 */ 2358 #endif /* GATEWAY */ 2359 2360 key_update_used(); 2361 2362 { 2363 struct mbuf *n, *mpolicy; 2364 int off; 2365 2366 /* create new sadb_msg to reply. */ 2367 if (lft) { 2368 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 2369 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 2370 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2371 } else { 2372 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 2373 SADB_X_EXT_POLICY, 2374 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2375 } 2376 2377 key_fill_replymsg(n, 0); 2378 off = 0; 2379 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 2380 sizeof(*xpl), &off); 2381 if (mpolicy == NULL) { 2382 /* n is already freed */ 2383 /* 2384 * valid sp has been created, so we does not overwrite _sp 2385 * NULL here. let caller decide to use the sp or not. 2386 */ 2387 return key_senderror(so, m, ENOBUFS); 2388 } 2389 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off); 2390 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 2391 m_freem(n); 2392 /* ditto */ 2393 return key_senderror(so, m, EINVAL); 2394 } 2395 2396 xpl->sadb_x_policy_id = sadb_x_policy_id; 2397 2398 m_freem(m); 2399 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2400 } 2401 } 2402 2403 /* 2404 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 2405 * add an entry to SP database, when received 2406 * <base, address(SD), (lifetime(H),) policy> 2407 * from the user(?). 2408 * Adding to SP database, 2409 * and send 2410 * <base, address(SD), (lifetime(H),) policy> 2411 * to the socket which was send. 2412 * 2413 * SPDADD set a unique policy entry. 2414 * SPDSETIDX like SPDADD without a part of policy requests. 2415 * SPDUPDATE replace a unique policy entry. 2416 * 2417 * m will always be freed. 2418 */ 2419 static int 2420 key_api_spdadd(struct socket *so, struct mbuf *m, 2421 const struct sadb_msghdr *mhp) 2422 { 2423 2424 return key_spdadd(so, m, mhp, NULL, false); 2425 } 2426 2427 struct secpolicy * 2428 key_kpi_spdadd(struct mbuf *m) 2429 { 2430 struct sadb_msghdr mh; 2431 int error; 2432 struct secpolicy *sp = NULL; 2433 2434 error = key_align(m, &mh); 2435 if (error) 2436 return NULL; 2437 2438 error = key_spdadd(NULL, m, &mh, &sp, true); 2439 if (error) { 2440 /* 2441 * Currently, when key_spdadd() cannot send a PFKEY message 2442 * which means SP has been created, key_spdadd() returns error 2443 * although SP is created successfully. 2444 * Kernel components would not care PFKEY messages, so return 2445 * the "sp" regardless of error code. key_spdadd() overwrites 2446 * the argument only if SP is created successfully. 2447 */ 2448 } 2449 return sp; 2450 } 2451 2452 /* 2453 * get new policy id. 2454 * OUT: 2455 * 0: failure. 2456 * others: success. 2457 */ 2458 static u_int32_t 2459 key_getnewspid(void) 2460 { 2461 u_int32_t newid = 0; 2462 int count = key_spi_trycnt; /* XXX */ 2463 struct secpolicy *sp; 2464 2465 /* when requesting to allocate spi ranged */ 2466 while (count--) { 2467 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); 2468 2469 sp = key_getspbyid(newid); 2470 if (sp == NULL) 2471 break; 2472 2473 KEY_SP_UNREF(&sp); 2474 } 2475 2476 if (count == 0 || newid == 0) { 2477 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n"); 2478 return 0; 2479 } 2480 2481 return newid; 2482 } 2483 2484 /* 2485 * SADB_SPDDELETE processing 2486 * receive 2487 * <base, address(SD), policy(*)> 2488 * from the user(?), and set SADB_SASTATE_DEAD, 2489 * and send, 2490 * <base, address(SD), policy(*)> 2491 * to the ikmpd. 2492 * policy(*) including direction of policy. 2493 * 2494 * m will always be freed. 2495 */ 2496 static int 2497 key_api_spddelete(struct socket *so, struct mbuf *m, 2498 const struct sadb_msghdr *mhp) 2499 { 2500 struct sadb_x_policy *xpl0; 2501 struct secpolicyindex spidx; 2502 struct secpolicy *sp; 2503 2504 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2505 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2506 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2507 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2508 return key_senderror(so, m, EINVAL); 2509 } 2510 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2511 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2512 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2513 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2514 return key_senderror(so, m, EINVAL); 2515 } 2516 2517 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 2518 2519 /* checking the directon. */ 2520 switch (xpl0->sadb_x_policy_dir) { 2521 case IPSEC_DIR_INBOUND: 2522 case IPSEC_DIR_OUTBOUND: 2523 break; 2524 default: 2525 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); 2526 return key_senderror(so, m, EINVAL); 2527 } 2528 2529 /* make secindex */ 2530 key_init_spidx_bymsghdr(&spidx, mhp); 2531 2532 /* Is there SP in SPD ? */ 2533 sp = key_lookup_and_remove_sp(&spidx, false); 2534 if (sp == NULL) { 2535 IPSECLOG(LOG_DEBUG, "no SP found.\n"); 2536 return key_senderror(so, m, EINVAL); 2537 } 2538 2539 /* save policy id to buffer to be returned. */ 2540 xpl0->sadb_x_policy_id = sp->id; 2541 2542 key_destroy_sp(sp); 2543 2544 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2545 2546 { 2547 struct mbuf *n; 2548 2549 /* create new sadb_msg to reply. */ 2550 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2551 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2552 key_fill_replymsg(n, 0); 2553 m_freem(m); 2554 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2555 } 2556 } 2557 2558 static struct mbuf * 2559 key_alloc_mbuf_simple(int len, int mflag) 2560 { 2561 struct mbuf *n; 2562 2563 KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p())); 2564 2565 MGETHDR(n, mflag, MT_DATA); 2566 if (n && len > MHLEN) { 2567 MCLGET(n, mflag); 2568 if ((n->m_flags & M_EXT) == 0) { 2569 m_freem(n); 2570 n = NULL; 2571 } 2572 } 2573 return n; 2574 } 2575 2576 /* 2577 * SADB_SPDDELETE2 processing 2578 * receive 2579 * <base, policy(*)> 2580 * from the user(?), and set SADB_SASTATE_DEAD, 2581 * and send, 2582 * <base, policy(*)> 2583 * to the ikmpd. 2584 * policy(*) including direction of policy. 2585 * 2586 * m will always be freed. 2587 */ 2588 static int 2589 key_spddelete2(struct socket *so, struct mbuf *m, 2590 const struct sadb_msghdr *mhp, bool from_kernel) 2591 { 2592 u_int32_t id; 2593 struct secpolicy *sp; 2594 const struct sadb_x_policy *xpl; 2595 2596 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2597 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2598 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2599 return key_senderror(so, m, EINVAL); 2600 } 2601 2602 xpl = mhp->ext[SADB_X_EXT_POLICY]; 2603 id = xpl->sadb_x_policy_id; 2604 2605 /* Is there SP in SPD ? */ 2606 sp = key_lookupbyid_and_remove_sp(id, from_kernel); 2607 if (sp == NULL) { 2608 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); 2609 return key_senderror(so, m, EINVAL); 2610 } 2611 2612 key_destroy_sp(sp); 2613 2614 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2615 2616 { 2617 struct mbuf *n, *nn; 2618 int off, len; 2619 2620 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); 2621 2622 /* create new sadb_msg to reply. */ 2623 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2624 2625 n = key_alloc_mbuf_simple(len, M_WAITOK); 2626 n->m_len = len; 2627 n->m_next = NULL; 2628 off = 0; 2629 2630 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 2631 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2632 2633 KASSERTMSG(off == len, "length inconsistency"); 2634 2635 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2636 mhp->extlen[SADB_X_EXT_POLICY], M_WAITOK); 2637 2638 n->m_pkthdr.len = 0; 2639 for (nn = n; nn; nn = nn->m_next) 2640 n->m_pkthdr.len += nn->m_len; 2641 2642 key_fill_replymsg(n, 0); 2643 m_freem(m); 2644 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2645 } 2646 } 2647 2648 /* 2649 * SADB_SPDDELETE2 processing 2650 * receive 2651 * <base, policy(*)> 2652 * from the user(?), and set SADB_SASTATE_DEAD, 2653 * and send, 2654 * <base, policy(*)> 2655 * to the ikmpd. 2656 * policy(*) including direction of policy. 2657 * 2658 * m will always be freed. 2659 */ 2660 static int 2661 key_api_spddelete2(struct socket *so, struct mbuf *m, 2662 const struct sadb_msghdr *mhp) 2663 { 2664 2665 return key_spddelete2(so, m, mhp, false); 2666 } 2667 2668 int 2669 key_kpi_spddelete2(struct mbuf *m) 2670 { 2671 struct sadb_msghdr mh; 2672 int error; 2673 2674 error = key_align(m, &mh); 2675 if (error) 2676 return EINVAL; 2677 2678 return key_spddelete2(NULL, m, &mh, true); 2679 } 2680 2681 /* 2682 * SADB_X_GET processing 2683 * receive 2684 * <base, policy(*)> 2685 * from the user(?), 2686 * and send, 2687 * <base, address(SD), policy> 2688 * to the ikmpd. 2689 * policy(*) including direction of policy. 2690 * 2691 * m will always be freed. 2692 */ 2693 static int 2694 key_api_spdget(struct socket *so, struct mbuf *m, 2695 const struct sadb_msghdr *mhp) 2696 { 2697 u_int32_t id; 2698 struct secpolicy *sp; 2699 struct mbuf *n; 2700 const struct sadb_x_policy *xpl; 2701 2702 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2703 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2704 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2705 return key_senderror(so, m, EINVAL); 2706 } 2707 2708 xpl = mhp->ext[SADB_X_EXT_POLICY]; 2709 id = xpl->sadb_x_policy_id; 2710 2711 /* Is there SP in SPD ? */ 2712 sp = key_getspbyid(id); 2713 if (sp == NULL) { 2714 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); 2715 return key_senderror(so, m, ENOENT); 2716 } 2717 2718 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, 2719 mhp->msg->sadb_msg_pid); 2720 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */ 2721 m_freem(m); 2722 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2723 } 2724 2725 #ifdef notyet 2726 /* 2727 * SADB_X_SPDACQUIRE processing. 2728 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2729 * send 2730 * <base, policy(*)> 2731 * to KMD, and expect to receive 2732 * <base> with SADB_X_SPDACQUIRE if error occurred, 2733 * or 2734 * <base, policy> 2735 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2736 * policy(*) is without policy requests. 2737 * 2738 * 0 : succeed 2739 * others: error number 2740 */ 2741 int 2742 key_spdacquire(const struct secpolicy *sp) 2743 { 2744 struct mbuf *result = NULL, *m; 2745 struct secspacq *newspacq; 2746 int error; 2747 2748 KASSERT(sp != NULL); 2749 KASSERTMSG(sp->req == NULL, "called but there is request"); 2750 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC, 2751 "policy mismathed. IPsec is expected"); 2752 2753 /* Get an entry to check whether sent message or not. */ 2754 newspacq = key_getspacq(&sp->spidx); 2755 if (newspacq != NULL) { 2756 if (key_blockacq_count < newspacq->count) { 2757 /* reset counter and do send message. */ 2758 newspacq->count = 0; 2759 } else { 2760 /* increment counter and do nothing. */ 2761 newspacq->count++; 2762 return 0; 2763 } 2764 } else { 2765 /* make new entry for blocking to send SADB_ACQUIRE. */ 2766 newspacq = key_newspacq(&sp->spidx); 2767 if (newspacq == NULL) 2768 return ENOBUFS; 2769 2770 /* add to key_misc.acqlist */ 2771 LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain); 2772 } 2773 2774 /* create new sadb_msg to reply. */ 2775 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2776 if (!m) { 2777 error = ENOBUFS; 2778 goto fail; 2779 } 2780 result = m; 2781 2782 result->m_pkthdr.len = 0; 2783 for (m = result; m; m = m->m_next) 2784 result->m_pkthdr.len += m->m_len; 2785 2786 mtod(result, struct sadb_msg *)->sadb_msg_len = 2787 PFKEY_UNIT64(result->m_pkthdr.len); 2788 2789 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2790 2791 fail: 2792 if (result) 2793 m_freem(result); 2794 return error; 2795 } 2796 #endif /* notyet */ 2797 2798 /* 2799 * SADB_SPDFLUSH processing 2800 * receive 2801 * <base> 2802 * from the user, and free all entries in secpctree. 2803 * and send, 2804 * <base> 2805 * to the user. 2806 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2807 * 2808 * m will always be freed. 2809 */ 2810 static int 2811 key_api_spdflush(struct socket *so, struct mbuf *m, 2812 const struct sadb_msghdr *mhp) 2813 { 2814 struct sadb_msg *newmsg; 2815 struct secpolicy *sp; 2816 u_int dir; 2817 2818 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2819 return key_senderror(so, m, EINVAL); 2820 2821 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2822 retry: 2823 mutex_enter(&key_spd.lock); 2824 SPLIST_WRITER_FOREACH(sp, dir) { 2825 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 2826 /* 2827 * Userlang programs can remove SPs created by userland 2828 * probrams only, that is, they cannot remove SPs 2829 * created in kernel(e.g. ipsec(4) I/F). 2830 */ 2831 if (sp->origin == IPSEC_SPORIGIN_USER) { 2832 key_unlink_sp(sp); 2833 mutex_exit(&key_spd.lock); 2834 key_destroy_sp(sp); 2835 goto retry; 2836 } 2837 } 2838 mutex_exit(&key_spd.lock); 2839 } 2840 2841 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2842 2843 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2844 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 2845 return key_senderror(so, m, ENOBUFS); 2846 } 2847 2848 if (m->m_next) 2849 m_freem(m->m_next); 2850 m->m_next = NULL; 2851 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2852 newmsg = mtod(m, struct sadb_msg *); 2853 newmsg->sadb_msg_errno = 0; 2854 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2855 2856 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2857 } 2858 2859 static struct sockaddr key_src = { 2860 .sa_len = 2, 2861 .sa_family = PF_KEY, 2862 }; 2863 2864 static struct mbuf * 2865 key_setspddump_chain(int *errorp, int *lenp, pid_t pid) 2866 { 2867 struct secpolicy *sp; 2868 int cnt; 2869 u_int dir; 2870 struct mbuf *m, *n, *prev; 2871 int totlen; 2872 2873 KASSERT(mutex_owned(&key_spd.lock)); 2874 2875 *lenp = 0; 2876 2877 /* search SPD entry and get buffer size. */ 2878 cnt = 0; 2879 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2880 SPLIST_WRITER_FOREACH(sp, dir) { 2881 cnt++; 2882 } 2883 } 2884 2885 if (cnt == 0) { 2886 *errorp = ENOENT; 2887 return (NULL); 2888 } 2889 2890 m = NULL; 2891 prev = m; 2892 totlen = 0; 2893 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2894 SPLIST_WRITER_FOREACH(sp, dir) { 2895 --cnt; 2896 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 2897 2898 totlen += n->m_pkthdr.len; 2899 if (!m) { 2900 m = n; 2901 } else { 2902 prev->m_nextpkt = n; 2903 } 2904 prev = n; 2905 } 2906 } 2907 2908 *lenp = totlen; 2909 *errorp = 0; 2910 return (m); 2911 } 2912 2913 /* 2914 * SADB_SPDDUMP processing 2915 * receive 2916 * <base> 2917 * from the user, and dump all SP leaves 2918 * and send, 2919 * <base> ..... 2920 * to the ikmpd. 2921 * 2922 * m will always be freed. 2923 */ 2924 static int 2925 key_api_spddump(struct socket *so, struct mbuf *m0, 2926 const struct sadb_msghdr *mhp) 2927 { 2928 struct mbuf *n; 2929 int error, len; 2930 int ok; 2931 pid_t pid; 2932 2933 pid = mhp->msg->sadb_msg_pid; 2934 /* 2935 * If the requestor has insufficient socket-buffer space 2936 * for the entire chain, nobody gets any response to the DUMP. 2937 * XXX For now, only the requestor ever gets anything. 2938 * Moreover, if the requestor has any space at all, they receive 2939 * the entire chain, otherwise the request is refused with ENOBUFS. 2940 */ 2941 if (sbspace(&so->so_rcv) <= 0) { 2942 return key_senderror(so, m0, ENOBUFS); 2943 } 2944 2945 mutex_enter(&key_spd.lock); 2946 n = key_setspddump_chain(&error, &len, pid); 2947 mutex_exit(&key_spd.lock); 2948 2949 if (n == NULL) { 2950 return key_senderror(so, m0, ENOENT); 2951 } 2952 { 2953 uint64_t *ps = PFKEY_STAT_GETREF(); 2954 ps[PFKEY_STAT_IN_TOTAL]++; 2955 ps[PFKEY_STAT_IN_BYTES] += len; 2956 PFKEY_STAT_PUTREF(); 2957 } 2958 2959 /* 2960 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 2961 * The requestor receives either the entire chain, or an 2962 * error message with ENOBUFS. 2963 */ 2964 2965 /* 2966 * sbappendchainwith record takes the chain of entries, one 2967 * packet-record per SPD entry, prepends the key_src sockaddr 2968 * to each packet-record, links the sockaddr mbufs into a new 2969 * list of records, then appends the entire resulting 2970 * list to the requesting socket. 2971 */ 2972 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, 2973 SB_PRIO_ONESHOT_OVERFLOW); 2974 2975 if (!ok) { 2976 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 2977 m_freem(n); 2978 return key_senderror(so, m0, ENOBUFS); 2979 } 2980 2981 m_freem(m0); 2982 return error; 2983 } 2984 2985 /* 2986 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23 2987 */ 2988 static int 2989 key_api_nat_map(struct socket *so, struct mbuf *m, 2990 const struct sadb_msghdr *mhp) 2991 { 2992 struct sadb_x_nat_t_type *type; 2993 struct sadb_x_nat_t_port *sport; 2994 struct sadb_x_nat_t_port *dport; 2995 struct sadb_address *iaddr, *raddr; 2996 struct sadb_x_nat_t_frag *frag; 2997 2998 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 2999 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 3000 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) { 3001 IPSECLOG(LOG_DEBUG, "invalid message.\n"); 3002 return key_senderror(so, m, EINVAL); 3003 } 3004 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 3005 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 3006 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 3007 IPSECLOG(LOG_DEBUG, "invalid message.\n"); 3008 return key_senderror(so, m, EINVAL); 3009 } 3010 3011 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) && 3012 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) { 3013 IPSECLOG(LOG_DEBUG, "invalid message\n"); 3014 return key_senderror(so, m, EINVAL); 3015 } 3016 3017 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) && 3018 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) { 3019 IPSECLOG(LOG_DEBUG, "invalid message\n"); 3020 return key_senderror(so, m, EINVAL); 3021 } 3022 3023 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) && 3024 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) { 3025 IPSECLOG(LOG_DEBUG, "invalid message\n"); 3026 return key_senderror(so, m, EINVAL); 3027 } 3028 3029 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 3030 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 3031 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 3032 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; 3033 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; 3034 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 3035 3036 /* 3037 * XXX handle that, it should also contain a SA, or anything 3038 * that enable to update the SA information. 3039 */ 3040 3041 return 0; 3042 } 3043 3044 /* 3045 * Never return NULL. 3046 */ 3047 static struct mbuf * 3048 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid) 3049 { 3050 struct mbuf *result = NULL, *m; 3051 3052 KASSERT(!cpu_softintr_p()); 3053 3054 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, 3055 key_sp_refcnt(sp), M_WAITOK); 3056 result = m; 3057 3058 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3059 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK); 3060 m_cat(result, m); 3061 3062 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3063 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK); 3064 m_cat(result, m); 3065 3066 m = key_sp2msg(sp, M_WAITOK); 3067 m_cat(result, m); 3068 3069 KASSERT(result->m_flags & M_PKTHDR); 3070 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 3071 3072 result->m_pkthdr.len = 0; 3073 for (m = result; m; m = m->m_next) 3074 result->m_pkthdr.len += m->m_len; 3075 3076 mtod(result, struct sadb_msg *)->sadb_msg_len = 3077 PFKEY_UNIT64(result->m_pkthdr.len); 3078 3079 return result; 3080 } 3081 3082 /* 3083 * get PFKEY message length for security policy and request. 3084 */ 3085 static u_int 3086 key_getspreqmsglen(const struct secpolicy *sp) 3087 { 3088 u_int tlen; 3089 3090 tlen = sizeof(struct sadb_x_policy); 3091 3092 /* if is the policy for ipsec ? */ 3093 if (sp->policy != IPSEC_POLICY_IPSEC) 3094 return tlen; 3095 3096 /* get length of ipsec requests */ 3097 { 3098 const struct ipsecrequest *isr; 3099 int len; 3100 3101 for (isr = sp->req; isr != NULL; isr = isr->next) { 3102 len = sizeof(struct sadb_x_ipsecrequest) 3103 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len; 3104 3105 tlen += PFKEY_ALIGN8(len); 3106 } 3107 } 3108 3109 return tlen; 3110 } 3111 3112 /* 3113 * SADB_SPDEXPIRE processing 3114 * send 3115 * <base, address(SD), lifetime(CH), policy> 3116 * to KMD by PF_KEY. 3117 * 3118 * OUT: 0 : succeed 3119 * others : error number 3120 */ 3121 static int 3122 key_spdexpire(struct secpolicy *sp) 3123 { 3124 int s; 3125 struct mbuf *result = NULL, *m; 3126 int len; 3127 int error = -1; 3128 struct sadb_lifetime *lt; 3129 3130 /* XXX: Why do we lock ? */ 3131 s = splsoftnet(); /*called from softclock()*/ 3132 3133 KASSERT(sp != NULL); 3134 3135 /* set msg header */ 3136 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0, M_WAITOK); 3137 result = m; 3138 3139 /* create lifetime extension (current and hard) */ 3140 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 3141 m = key_alloc_mbuf(len, M_WAITOK); 3142 KASSERT(m->m_next == NULL); 3143 3144 memset(mtod(m, void *), 0, len); 3145 lt = mtod(m, struct sadb_lifetime *); 3146 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3147 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3148 lt->sadb_lifetime_allocations = 0; 3149 lt->sadb_lifetime_bytes = 0; 3150 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created); 3151 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused); 3152 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 3153 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3154 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 3155 lt->sadb_lifetime_allocations = 0; 3156 lt->sadb_lifetime_bytes = 0; 3157 lt->sadb_lifetime_addtime = sp->lifetime; 3158 lt->sadb_lifetime_usetime = sp->validtime; 3159 m_cat(result, m); 3160 3161 /* set sadb_address for source */ 3162 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa, 3163 sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK); 3164 m_cat(result, m); 3165 3166 /* set sadb_address for destination */ 3167 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa, 3168 sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK); 3169 m_cat(result, m); 3170 3171 /* set secpolicy */ 3172 m = key_sp2msg(sp, M_WAITOK); 3173 m_cat(result, m); 3174 3175 KASSERT(result->m_flags & M_PKTHDR); 3176 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 3177 3178 result->m_pkthdr.len = 0; 3179 for (m = result; m; m = m->m_next) 3180 result->m_pkthdr.len += m->m_len; 3181 3182 mtod(result, struct sadb_msg *)->sadb_msg_len = 3183 PFKEY_UNIT64(result->m_pkthdr.len); 3184 3185 error = key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 3186 splx(s); 3187 return error; 3188 } 3189 3190 /* %%% SAD management */ 3191 /* 3192 * allocating a memory for new SA head, and copy from the values of mhp. 3193 * OUT: NULL : failure due to the lack of memory. 3194 * others : pointer to new SA head. 3195 */ 3196 static struct secashead * 3197 key_newsah(const struct secasindex *saidx) 3198 { 3199 struct secashead *newsah; 3200 int i; 3201 3202 KASSERT(saidx != NULL); 3203 3204 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP); 3205 for (i = 0; i < __arraycount(newsah->savlist); i++) 3206 PSLIST_INIT(&newsah->savlist[i]); 3207 newsah->saidx = *saidx; 3208 3209 localcount_init(&newsah->localcount); 3210 /* Take a reference for the caller */ 3211 localcount_acquire(&newsah->localcount); 3212 3213 /* Add to the sah list */ 3214 SAHLIST_ENTRY_INIT(newsah); 3215 newsah->state = SADB_SASTATE_MATURE; 3216 mutex_enter(&key_sad.lock); 3217 SAHLIST_WRITER_INSERT_HEAD(newsah); 3218 mutex_exit(&key_sad.lock); 3219 3220 return newsah; 3221 } 3222 3223 static bool 3224 key_sah_has_sav(struct secashead *sah) 3225 { 3226 u_int state; 3227 3228 KASSERT(mutex_owned(&key_sad.lock)); 3229 3230 SASTATE_ANY_FOREACH(state) { 3231 if (!SAVLIST_WRITER_EMPTY(sah, state)) 3232 return true; 3233 } 3234 3235 return false; 3236 } 3237 3238 static void 3239 key_unlink_sah(struct secashead *sah) 3240 { 3241 3242 KASSERT(!cpu_softintr_p()); 3243 KASSERT(mutex_owned(&key_sad.lock)); 3244 KASSERT(sah->state == SADB_SASTATE_DEAD); 3245 3246 /* Remove from the sah list */ 3247 SAHLIST_WRITER_REMOVE(sah); 3248 3249 KDASSERT(mutex_ownable(softnet_lock)); 3250 key_sad_pserialize_perform(); 3251 3252 localcount_drain(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); 3253 } 3254 3255 static void 3256 key_destroy_sah(struct secashead *sah) 3257 { 3258 3259 rtcache_free(&sah->sa_route); 3260 3261 SAHLIST_ENTRY_DESTROY(sah); 3262 localcount_fini(&sah->localcount); 3263 3264 if (sah->idents != NULL) 3265 kmem_free(sah->idents, sah->idents_len); 3266 if (sah->identd != NULL) 3267 kmem_free(sah->identd, sah->identd_len); 3268 3269 kmem_free(sah, sizeof(*sah)); 3270 } 3271 3272 /* 3273 * allocating a new SA with LARVAL state. 3274 * key_api_add() and key_api_getspi() call, 3275 * and copy the values of mhp into new buffer. 3276 * When SAD message type is GETSPI: 3277 * to set sequence number from acq_seq++, 3278 * to set zero to SPI. 3279 * not to call key_setsava(). 3280 * OUT: NULL : fail 3281 * others : pointer to new secasvar. 3282 * 3283 * does not modify mbuf. does not free mbuf on error. 3284 */ 3285 static struct secasvar * 3286 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp, 3287 int *errp, const char* where, int tag) 3288 { 3289 struct secasvar *newsav; 3290 const struct sadb_sa *xsa; 3291 3292 KASSERT(!cpu_softintr_p()); 3293 KASSERT(m != NULL); 3294 KASSERT(mhp != NULL); 3295 KASSERT(mhp->msg != NULL); 3296 3297 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); 3298 3299 switch (mhp->msg->sadb_msg_type) { 3300 case SADB_GETSPI: 3301 newsav->spi = 0; 3302 3303 #ifdef IPSEC_DOSEQCHECK 3304 /* sync sequence number */ 3305 if (mhp->msg->sadb_msg_seq == 0) 3306 newsav->seq = 3307 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 3308 else 3309 #endif 3310 newsav->seq = mhp->msg->sadb_msg_seq; 3311 break; 3312 3313 case SADB_ADD: 3314 /* sanity check */ 3315 if (mhp->ext[SADB_EXT_SA] == NULL) { 3316 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 3317 *errp = EINVAL; 3318 goto error; 3319 } 3320 xsa = mhp->ext[SADB_EXT_SA]; 3321 newsav->spi = xsa->sadb_sa_spi; 3322 newsav->seq = mhp->msg->sadb_msg_seq; 3323 break; 3324 default: 3325 *errp = EINVAL; 3326 goto error; 3327 } 3328 3329 /* copy sav values */ 3330 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 3331 *errp = key_setsaval(newsav, m, mhp); 3332 if (*errp) 3333 goto error; 3334 } else { 3335 /* We don't allow lft_c to be NULL */ 3336 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime), 3337 KM_SLEEP); 3338 newsav->lft_c_counters_percpu = 3339 percpu_alloc(sizeof(lifetime_counters_t)); 3340 } 3341 3342 /* reset created */ 3343 newsav->created = time_uptime; 3344 newsav->pid = mhp->msg->sadb_msg_pid; 3345 3346 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 3347 "DP from %s:%u return SA:%p\n", where, tag, newsav); 3348 return newsav; 3349 3350 error: 3351 KASSERT(*errp != 0); 3352 kmem_free(newsav, sizeof(*newsav)); 3353 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 3354 "DP from %s:%u return SA:NULL\n", where, tag); 3355 return NULL; 3356 } 3357 3358 3359 static void 3360 key_clear_xform(struct secasvar *sav) 3361 { 3362 3363 /* 3364 * Cleanup xform state. Note that zeroize'ing causes the 3365 * keys to be cleared; otherwise we must do it ourself. 3366 */ 3367 if (sav->tdb_xform != NULL) { 3368 sav->tdb_xform->xf_zeroize(sav); 3369 sav->tdb_xform = NULL; 3370 } else { 3371 if (sav->key_auth != NULL) 3372 explicit_memset(_KEYBUF(sav->key_auth), 0, 3373 _KEYLEN(sav->key_auth)); 3374 if (sav->key_enc != NULL) 3375 explicit_memset(_KEYBUF(sav->key_enc), 0, 3376 _KEYLEN(sav->key_enc)); 3377 } 3378 } 3379 3380 /* 3381 * free() SA variable entry. 3382 */ 3383 static void 3384 key_delsav(struct secasvar *sav) 3385 { 3386 3387 key_clear_xform(sav); 3388 key_freesaval(sav); 3389 kmem_free(sav, sizeof(*sav)); 3390 } 3391 3392 /* 3393 * Must be called in a pserialize read section. A held sah 3394 * must be released by key_sah_unref after use. 3395 */ 3396 static void 3397 key_sah_ref(struct secashead *sah) 3398 { 3399 3400 localcount_acquire(&sah->localcount); 3401 } 3402 3403 /* 3404 * Must be called without holding key_sad.lock because the lock 3405 * would be held in localcount_release. 3406 */ 3407 static void 3408 key_sah_unref(struct secashead *sah) 3409 { 3410 3411 KDASSERT(mutex_ownable(&key_sad.lock)); 3412 3413 localcount_release(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); 3414 } 3415 3416 /* 3417 * Search SAD and return sah. Must be called in a pserialize 3418 * read section. 3419 * OUT: 3420 * NULL : not found 3421 * others : found, pointer to a SA. 3422 */ 3423 static struct secashead * 3424 key_getsah(const struct secasindex *saidx, int flag) 3425 { 3426 struct secashead *sah; 3427 3428 SAHLIST_READER_FOREACH_SAIDX(sah, saidx) { 3429 if (sah->state == SADB_SASTATE_DEAD) 3430 continue; 3431 if (key_saidx_match(&sah->saidx, saidx, flag)) 3432 return sah; 3433 } 3434 3435 return NULL; 3436 } 3437 3438 /* 3439 * Search SAD and return sah. If sah is returned, the caller must call 3440 * key_sah_unref to releaset a reference. 3441 * OUT: 3442 * NULL : not found 3443 * others : found, pointer to a SA. 3444 */ 3445 static struct secashead * 3446 key_getsah_ref(const struct secasindex *saidx, int flag) 3447 { 3448 struct secashead *sah; 3449 int s; 3450 3451 s = pserialize_read_enter(); 3452 sah = key_getsah(saidx, flag); 3453 if (sah != NULL) 3454 key_sah_ref(sah); 3455 pserialize_read_exit(s); 3456 3457 return sah; 3458 } 3459 3460 /* 3461 * check not to be duplicated SPI. 3462 * NOTE: this function is too slow due to searching all SAD. 3463 * OUT: 3464 * NULL : not found 3465 * others : found, pointer to a SA. 3466 */ 3467 static bool 3468 key_checkspidup(const struct secasindex *saidx, u_int32_t spi) 3469 { 3470 struct secashead *sah; 3471 struct secasvar *sav; 3472 3473 /* check address family */ 3474 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 3475 IPSECLOG(LOG_DEBUG, 3476 "address family mismatched src %u, dst %u.\n", 3477 saidx->src.sa.sa_family, saidx->dst.sa.sa_family); 3478 return false; 3479 } 3480 3481 /* check all SAD */ 3482 /* key_ismyaddr may sleep, so use mutex, not pserialize, here. */ 3483 mutex_enter(&key_sad.lock); 3484 SAHLIST_WRITER_FOREACH(sah) { 3485 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 3486 continue; 3487 sav = key_getsavbyspi(sah, spi); 3488 if (sav != NULL) { 3489 KEY_SA_UNREF(&sav); 3490 mutex_exit(&key_sad.lock); 3491 return true; 3492 } 3493 } 3494 mutex_exit(&key_sad.lock); 3495 3496 return false; 3497 } 3498 3499 /* 3500 * search SAD litmited alive SA, protocol, SPI. 3501 * OUT: 3502 * NULL : not found 3503 * others : found, pointer to a SA. 3504 */ 3505 static struct secasvar * 3506 key_getsavbyspi(struct secashead *sah, u_int32_t spi) 3507 { 3508 struct secasvar *sav = NULL; 3509 u_int state; 3510 int s; 3511 3512 /* search all status */ 3513 s = pserialize_read_enter(); 3514 SASTATE_ALIVE_FOREACH(state) { 3515 SAVLIST_READER_FOREACH(sav, sah, state) { 3516 /* sanity check */ 3517 if (sav->state != state) { 3518 IPSECLOG(LOG_DEBUG, 3519 "invalid sav->state (queue: %d SA: %d)\n", 3520 state, sav->state); 3521 continue; 3522 } 3523 3524 if (sav->spi == spi) { 3525 KEY_SA_REF(sav); 3526 goto out; 3527 } 3528 } 3529 } 3530 out: 3531 pserialize_read_exit(s); 3532 3533 return sav; 3534 } 3535 3536 /* 3537 * Free allocated data to member variables of sav: 3538 * sav->replay, sav->key_* and sav->lft_*. 3539 */ 3540 static void 3541 key_freesaval(struct secasvar *sav) 3542 { 3543 3544 KASSERT(key_sa_refcnt(sav) == 0); 3545 3546 if (sav->replay != NULL) 3547 kmem_intr_free(sav->replay, sav->replay_len); 3548 if (sav->key_auth != NULL) 3549 kmem_intr_free(sav->key_auth, sav->key_auth_len); 3550 if (sav->key_enc != NULL) 3551 kmem_intr_free(sav->key_enc, sav->key_enc_len); 3552 if (sav->lft_c_counters_percpu != NULL) { 3553 percpu_free(sav->lft_c_counters_percpu, 3554 sizeof(lifetime_counters_t)); 3555 } 3556 if (sav->lft_c != NULL) 3557 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c))); 3558 if (sav->lft_h != NULL) 3559 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h))); 3560 if (sav->lft_s != NULL) 3561 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s))); 3562 } 3563 3564 /* 3565 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3566 * You must update these if need. 3567 * OUT: 0: success. 3568 * !0: failure. 3569 * 3570 * does not modify mbuf. does not free mbuf on error. 3571 */ 3572 static int 3573 key_setsaval(struct secasvar *sav, struct mbuf *m, 3574 const struct sadb_msghdr *mhp) 3575 { 3576 int error = 0; 3577 3578 KASSERT(!cpu_softintr_p()); 3579 KASSERT(m != NULL); 3580 KASSERT(mhp != NULL); 3581 KASSERT(mhp->msg != NULL); 3582 3583 /* We shouldn't initialize sav variables while someone uses it. */ 3584 KASSERT(key_sa_refcnt(sav) == 0); 3585 3586 /* SA */ 3587 if (mhp->ext[SADB_EXT_SA] != NULL) { 3588 const struct sadb_sa *sa0; 3589 3590 sa0 = mhp->ext[SADB_EXT_SA]; 3591 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3592 error = EINVAL; 3593 goto fail; 3594 } 3595 3596 sav->alg_auth = sa0->sadb_sa_auth; 3597 sav->alg_enc = sa0->sadb_sa_encrypt; 3598 sav->flags = sa0->sadb_sa_flags; 3599 3600 /* replay window */ 3601 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3602 size_t len = sizeof(struct secreplay) + 3603 sa0->sadb_sa_replay; 3604 sav->replay = kmem_zalloc(len, KM_SLEEP); 3605 sav->replay_len = len; 3606 if (sa0->sadb_sa_replay != 0) 3607 sav->replay->bitmap = (char*)(sav->replay+1); 3608 sav->replay->wsize = sa0->sadb_sa_replay; 3609 } 3610 } 3611 3612 /* Authentication keys */ 3613 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3614 const struct sadb_key *key0; 3615 int len; 3616 3617 key0 = mhp->ext[SADB_EXT_KEY_AUTH]; 3618 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3619 3620 error = 0; 3621 if (len < sizeof(*key0)) { 3622 error = EINVAL; 3623 goto fail; 3624 } 3625 switch (mhp->msg->sadb_msg_satype) { 3626 case SADB_SATYPE_AH: 3627 case SADB_SATYPE_ESP: 3628 case SADB_X_SATYPE_TCPSIGNATURE: 3629 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3630 sav->alg_auth != SADB_X_AALG_NULL) 3631 error = EINVAL; 3632 break; 3633 case SADB_X_SATYPE_IPCOMP: 3634 default: 3635 error = EINVAL; 3636 break; 3637 } 3638 if (error) { 3639 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n"); 3640 goto fail; 3641 } 3642 3643 sav->key_auth = key_newbuf(key0, len); 3644 sav->key_auth_len = len; 3645 } 3646 3647 /* Encryption key */ 3648 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3649 const struct sadb_key *key0; 3650 int len; 3651 3652 key0 = mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3653 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3654 3655 error = 0; 3656 if (len < sizeof(*key0)) { 3657 error = EINVAL; 3658 goto fail; 3659 } 3660 switch (mhp->msg->sadb_msg_satype) { 3661 case SADB_SATYPE_ESP: 3662 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3663 sav->alg_enc != SADB_EALG_NULL) { 3664 error = EINVAL; 3665 break; 3666 } 3667 sav->key_enc = key_newbuf(key0, len); 3668 sav->key_enc_len = len; 3669 break; 3670 case SADB_X_SATYPE_IPCOMP: 3671 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3672 error = EINVAL; 3673 sav->key_enc = NULL; /*just in case*/ 3674 break; 3675 case SADB_SATYPE_AH: 3676 case SADB_X_SATYPE_TCPSIGNATURE: 3677 default: 3678 error = EINVAL; 3679 break; 3680 } 3681 if (error) { 3682 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n"); 3683 goto fail; 3684 } 3685 } 3686 3687 /* set iv */ 3688 sav->ivlen = 0; 3689 3690 switch (mhp->msg->sadb_msg_satype) { 3691 case SADB_SATYPE_AH: 3692 error = xform_init(sav, XF_AH); 3693 break; 3694 case SADB_SATYPE_ESP: 3695 error = xform_init(sav, XF_ESP); 3696 break; 3697 case SADB_X_SATYPE_IPCOMP: 3698 error = xform_init(sav, XF_IPCOMP); 3699 break; 3700 case SADB_X_SATYPE_TCPSIGNATURE: 3701 error = xform_init(sav, XF_TCPSIGNATURE); 3702 break; 3703 } 3704 if (error) { 3705 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n", 3706 mhp->msg->sadb_msg_satype); 3707 goto fail; 3708 } 3709 3710 /* reset created */ 3711 sav->created = time_uptime; 3712 3713 /* make lifetime for CURRENT */ 3714 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP); 3715 3716 sav->lft_c->sadb_lifetime_len = 3717 PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3718 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3719 sav->lft_c->sadb_lifetime_allocations = 0; 3720 sav->lft_c->sadb_lifetime_bytes = 0; 3721 sav->lft_c->sadb_lifetime_addtime = time_uptime; 3722 sav->lft_c->sadb_lifetime_usetime = 0; 3723 3724 sav->lft_c_counters_percpu = percpu_alloc(sizeof(lifetime_counters_t)); 3725 3726 /* lifetimes for HARD and SOFT */ 3727 { 3728 const struct sadb_lifetime *lft0; 3729 3730 lft0 = mhp->ext[SADB_EXT_LIFETIME_HARD]; 3731 if (lft0 != NULL) { 3732 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3733 error = EINVAL; 3734 goto fail; 3735 } 3736 sav->lft_h = key_newbuf(lft0, sizeof(*lft0)); 3737 } 3738 3739 lft0 = mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3740 if (lft0 != NULL) { 3741 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3742 error = EINVAL; 3743 goto fail; 3744 } 3745 sav->lft_s = key_newbuf(lft0, sizeof(*lft0)); 3746 /* to be initialize ? */ 3747 } 3748 } 3749 3750 return 0; 3751 3752 fail: 3753 key_clear_xform(sav); 3754 key_freesaval(sav); 3755 3756 return error; 3757 } 3758 3759 /* 3760 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3761 * OUT: 0: valid 3762 * other: errno 3763 */ 3764 static int 3765 key_init_xform(struct secasvar *sav) 3766 { 3767 int error; 3768 3769 /* We shouldn't initialize sav variables while someone uses it. */ 3770 KASSERT(key_sa_refcnt(sav) == 0); 3771 3772 /* check SPI value */ 3773 switch (sav->sah->saidx.proto) { 3774 case IPPROTO_ESP: 3775 case IPPROTO_AH: 3776 if (ntohl(sav->spi) <= 255) { 3777 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n", 3778 (u_int32_t)ntohl(sav->spi)); 3779 return EINVAL; 3780 } 3781 break; 3782 } 3783 3784 /* check algo */ 3785 switch (sav->sah->saidx.proto) { 3786 case IPPROTO_AH: 3787 case IPPROTO_TCP: 3788 if (sav->alg_enc != SADB_EALG_NONE) { 3789 IPSECLOG(LOG_DEBUG, 3790 "protocol %u and algorithm mismatched %u != %u.\n", 3791 sav->sah->saidx.proto, 3792 sav->alg_enc, SADB_EALG_NONE); 3793 return EINVAL; 3794 } 3795 break; 3796 case IPPROTO_IPCOMP: 3797 if (sav->alg_auth != SADB_AALG_NONE) { 3798 IPSECLOG(LOG_DEBUG, 3799 "protocol %u and algorithm mismatched %d != %d.\n", 3800 sav->sah->saidx.proto, 3801 sav->alg_auth, SADB_AALG_NONE); 3802 return(EINVAL); 3803 } 3804 break; 3805 default: 3806 break; 3807 } 3808 3809 /* check satype */ 3810 switch (sav->sah->saidx.proto) { 3811 case IPPROTO_ESP: 3812 /* check flags */ 3813 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3814 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3815 IPSECLOG(LOG_DEBUG, 3816 "invalid flag (derived) given to old-esp.\n"); 3817 return EINVAL; 3818 } 3819 error = xform_init(sav, XF_ESP); 3820 break; 3821 case IPPROTO_AH: 3822 /* check flags */ 3823 if (sav->flags & SADB_X_EXT_DERIV) { 3824 IPSECLOG(LOG_DEBUG, 3825 "invalid flag (derived) given to AH SA.\n"); 3826 return EINVAL; 3827 } 3828 error = xform_init(sav, XF_AH); 3829 break; 3830 case IPPROTO_IPCOMP: 3831 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3832 && ntohl(sav->spi) >= 0x10000) { 3833 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n"); 3834 return(EINVAL); 3835 } 3836 error = xform_init(sav, XF_IPCOMP); 3837 break; 3838 case IPPROTO_TCP: 3839 error = xform_init(sav, XF_TCPSIGNATURE); 3840 break; 3841 default: 3842 IPSECLOG(LOG_DEBUG, "Invalid satype.\n"); 3843 error = EPROTONOSUPPORT; 3844 break; 3845 } 3846 3847 return error; 3848 } 3849 3850 /* 3851 * subroutine for SADB_GET and SADB_DUMP. It never return NULL. 3852 */ 3853 static struct mbuf * 3854 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3855 u_int32_t seq, u_int32_t pid) 3856 { 3857 struct mbuf *result = NULL, *tres = NULL, *m; 3858 int l = 0; 3859 int i; 3860 void *p; 3861 struct sadb_lifetime lt; 3862 int dumporder[] = { 3863 SADB_EXT_SA, SADB_X_EXT_SA2, 3864 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3865 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3866 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3867 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3868 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3869 SADB_X_EXT_NAT_T_TYPE, 3870 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3871 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3872 SADB_X_EXT_NAT_T_FRAG, 3873 3874 }; 3875 3876 m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav), M_WAITOK); 3877 result = m; 3878 3879 for (i = __arraycount(dumporder) - 1; i >= 0; i--) { 3880 m = NULL; 3881 p = NULL; 3882 switch (dumporder[i]) { 3883 case SADB_EXT_SA: 3884 m = key_setsadbsa(sav); 3885 break; 3886 3887 case SADB_X_EXT_SA2: 3888 m = key_setsadbxsa2(sav->sah->saidx.mode, 3889 sav->replay ? sav->replay->count : 0, 3890 sav->sah->saidx.reqid); 3891 break; 3892 3893 case SADB_EXT_ADDRESS_SRC: 3894 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3895 &sav->sah->saidx.src.sa, 3896 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 3897 break; 3898 3899 case SADB_EXT_ADDRESS_DST: 3900 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3901 &sav->sah->saidx.dst.sa, 3902 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 3903 break; 3904 3905 case SADB_EXT_KEY_AUTH: 3906 if (!sav->key_auth) 3907 continue; 3908 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len); 3909 p = sav->key_auth; 3910 break; 3911 3912 case SADB_EXT_KEY_ENCRYPT: 3913 if (!sav->key_enc) 3914 continue; 3915 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len); 3916 p = sav->key_enc; 3917 break; 3918 3919 case SADB_EXT_LIFETIME_CURRENT: { 3920 lifetime_counters_t sum = {0}; 3921 3922 KASSERT(sav->lft_c != NULL); 3923 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len); 3924 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime)); 3925 lt.sadb_lifetime_addtime = 3926 time_mono_to_wall(lt.sadb_lifetime_addtime); 3927 lt.sadb_lifetime_usetime = 3928 time_mono_to_wall(lt.sadb_lifetime_usetime); 3929 percpu_foreach(sav->lft_c_counters_percpu, 3930 key_sum_lifetime_counters, sum); 3931 lt.sadb_lifetime_allocations = 3932 sum[LIFETIME_COUNTER_ALLOCATIONS]; 3933 lt.sadb_lifetime_bytes = 3934 sum[LIFETIME_COUNTER_BYTES]; 3935 p = < 3936 break; 3937 } 3938 3939 case SADB_EXT_LIFETIME_HARD: 3940 if (!sav->lft_h) 3941 continue; 3942 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len); 3943 p = sav->lft_h; 3944 break; 3945 3946 case SADB_EXT_LIFETIME_SOFT: 3947 if (!sav->lft_s) 3948 continue; 3949 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len); 3950 p = sav->lft_s; 3951 break; 3952 3953 case SADB_X_EXT_NAT_T_TYPE: 3954 m = key_setsadbxtype(sav->natt_type); 3955 break; 3956 3957 case SADB_X_EXT_NAT_T_DPORT: 3958 if (sav->natt_type == 0) 3959 continue; 3960 m = key_setsadbxport( 3961 key_portfromsaddr(&sav->sah->saidx.dst), 3962 SADB_X_EXT_NAT_T_DPORT); 3963 break; 3964 3965 case SADB_X_EXT_NAT_T_SPORT: 3966 if (sav->natt_type == 0) 3967 continue; 3968 m = key_setsadbxport( 3969 key_portfromsaddr(&sav->sah->saidx.src), 3970 SADB_X_EXT_NAT_T_SPORT); 3971 break; 3972 3973 case SADB_X_EXT_NAT_T_FRAG: 3974 /* don't send frag info if not set */ 3975 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET) 3976 continue; 3977 m = key_setsadbxfrag(sav->esp_frag); 3978 break; 3979 3980 case SADB_X_EXT_NAT_T_OAI: 3981 case SADB_X_EXT_NAT_T_OAR: 3982 continue; 3983 3984 case SADB_EXT_ADDRESS_PROXY: 3985 case SADB_EXT_IDENTITY_SRC: 3986 case SADB_EXT_IDENTITY_DST: 3987 /* XXX: should we brought from SPD ? */ 3988 case SADB_EXT_SENSITIVITY: 3989 default: 3990 continue; 3991 } 3992 3993 KASSERT(!(m && p)); 3994 KASSERT(m != NULL || p != NULL); 3995 if (p && tres) { 3996 M_PREPEND(tres, l, M_WAITOK); 3997 memcpy(mtod(tres, void *), p, l); 3998 continue; 3999 } 4000 if (p) { 4001 m = key_alloc_mbuf(l, M_WAITOK); 4002 m_copyback(m, 0, l, p); 4003 } 4004 4005 if (tres) 4006 m_cat(m, tres); 4007 tres = m; 4008 } 4009 4010 m_cat(result, tres); 4011 tres = NULL; /* avoid free on error below */ 4012 4013 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 4014 4015 result->m_pkthdr.len = 0; 4016 for (m = result; m; m = m->m_next) 4017 result->m_pkthdr.len += m->m_len; 4018 4019 mtod(result, struct sadb_msg *)->sadb_msg_len = 4020 PFKEY_UNIT64(result->m_pkthdr.len); 4021 4022 return result; 4023 } 4024 4025 4026 /* 4027 * set a type in sadb_x_nat_t_type 4028 */ 4029 static struct mbuf * 4030 key_setsadbxtype(u_int16_t type) 4031 { 4032 struct mbuf *m; 4033 size_t len; 4034 struct sadb_x_nat_t_type *p; 4035 4036 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 4037 4038 m = key_alloc_mbuf(len, M_WAITOK); 4039 KASSERT(m->m_next == NULL); 4040 4041 p = mtod(m, struct sadb_x_nat_t_type *); 4042 4043 memset(p, 0, len); 4044 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 4045 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 4046 p->sadb_x_nat_t_type_type = type; 4047 4048 return m; 4049 } 4050 /* 4051 * set a port in sadb_x_nat_t_port. port is in network order 4052 */ 4053 static struct mbuf * 4054 key_setsadbxport(u_int16_t port, u_int16_t type) 4055 { 4056 struct mbuf *m; 4057 size_t len; 4058 struct sadb_x_nat_t_port *p; 4059 4060 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 4061 4062 m = key_alloc_mbuf(len, M_WAITOK); 4063 KASSERT(m->m_next == NULL); 4064 4065 p = mtod(m, struct sadb_x_nat_t_port *); 4066 4067 memset(p, 0, len); 4068 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 4069 p->sadb_x_nat_t_port_exttype = type; 4070 p->sadb_x_nat_t_port_port = port; 4071 4072 return m; 4073 } 4074 4075 /* 4076 * set fragmentation info in sadb_x_nat_t_frag 4077 */ 4078 static struct mbuf * 4079 key_setsadbxfrag(u_int16_t flen) 4080 { 4081 struct mbuf *m; 4082 size_t len; 4083 struct sadb_x_nat_t_frag *p; 4084 4085 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag)); 4086 4087 m = key_alloc_mbuf(len, M_WAITOK); 4088 KASSERT(m->m_next == NULL); 4089 4090 p = mtod(m, struct sadb_x_nat_t_frag *); 4091 4092 memset(p, 0, len); 4093 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len); 4094 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG; 4095 p->sadb_x_nat_t_frag_fraglen = flen; 4096 4097 return m; 4098 } 4099 4100 /* 4101 * Get port from sockaddr, port is in network order 4102 */ 4103 u_int16_t 4104 key_portfromsaddr(const union sockaddr_union *saddr) 4105 { 4106 u_int16_t port; 4107 4108 switch (saddr->sa.sa_family) { 4109 case AF_INET: { 4110 port = saddr->sin.sin_port; 4111 break; 4112 } 4113 #ifdef INET6 4114 case AF_INET6: { 4115 port = saddr->sin6.sin6_port; 4116 break; 4117 } 4118 #endif 4119 default: 4120 printf("%s: unexpected address family\n", __func__); 4121 port = 0; 4122 break; 4123 } 4124 4125 return port; 4126 } 4127 4128 4129 /* 4130 * Set port is struct sockaddr. port is in network order 4131 */ 4132 static void 4133 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port) 4134 { 4135 switch (saddr->sa.sa_family) { 4136 case AF_INET: { 4137 saddr->sin.sin_port = port; 4138 break; 4139 } 4140 #ifdef INET6 4141 case AF_INET6: { 4142 saddr->sin6.sin6_port = port; 4143 break; 4144 } 4145 #endif 4146 default: 4147 printf("%s: unexpected address family %d\n", __func__, 4148 saddr->sa.sa_family); 4149 break; 4150 } 4151 4152 return; 4153 } 4154 4155 /* 4156 * Safety check sa_len 4157 */ 4158 static int 4159 key_checksalen(const union sockaddr_union *saddr) 4160 { 4161 switch (saddr->sa.sa_family) { 4162 case AF_INET: 4163 if (saddr->sa.sa_len != sizeof(struct sockaddr_in)) 4164 return -1; 4165 break; 4166 #ifdef INET6 4167 case AF_INET6: 4168 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6)) 4169 return -1; 4170 break; 4171 #endif 4172 default: 4173 printf("%s: unexpected sa_family %d\n", __func__, 4174 saddr->sa.sa_family); 4175 return -1; 4176 break; 4177 } 4178 return 0; 4179 } 4180 4181 4182 /* 4183 * set data into sadb_msg. 4184 */ 4185 static struct mbuf * 4186 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, 4187 u_int32_t seq, pid_t pid, u_int16_t reserved, int mflag) 4188 { 4189 struct mbuf *m; 4190 struct sadb_msg *p; 4191 int len; 4192 4193 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); 4194 4195 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4196 4197 m = key_alloc_mbuf_simple(len, mflag); 4198 if (!m) 4199 return NULL; 4200 m->m_pkthdr.len = m->m_len = len; 4201 m->m_next = NULL; 4202 4203 p = mtod(m, struct sadb_msg *); 4204 4205 memset(p, 0, len); 4206 p->sadb_msg_version = PF_KEY_V2; 4207 p->sadb_msg_type = type; 4208 p->sadb_msg_errno = 0; 4209 p->sadb_msg_satype = satype; 4210 p->sadb_msg_len = PFKEY_UNIT64(tlen); 4211 p->sadb_msg_reserved = reserved; 4212 p->sadb_msg_seq = seq; 4213 p->sadb_msg_pid = (u_int32_t)pid; 4214 4215 return m; 4216 } 4217 4218 /* 4219 * copy secasvar data into sadb_address. 4220 */ 4221 static struct mbuf * 4222 key_setsadbsa(struct secasvar *sav) 4223 { 4224 struct mbuf *m; 4225 struct sadb_sa *p; 4226 int len; 4227 4228 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4229 m = key_alloc_mbuf(len, M_WAITOK); 4230 KASSERT(m->m_next == NULL); 4231 4232 p = mtod(m, struct sadb_sa *); 4233 4234 memset(p, 0, len); 4235 p->sadb_sa_len = PFKEY_UNIT64(len); 4236 p->sadb_sa_exttype = SADB_EXT_SA; 4237 p->sadb_sa_spi = sav->spi; 4238 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 4239 p->sadb_sa_state = sav->state; 4240 p->sadb_sa_auth = sav->alg_auth; 4241 p->sadb_sa_encrypt = sav->alg_enc; 4242 p->sadb_sa_flags = sav->flags; 4243 4244 return m; 4245 } 4246 4247 static uint8_t 4248 key_sabits(const struct sockaddr *saddr) 4249 { 4250 switch (saddr->sa_family) { 4251 case AF_INET: 4252 return _BITS(sizeof(struct in_addr)); 4253 case AF_INET6: 4254 return _BITS(sizeof(struct in6_addr)); 4255 default: 4256 return FULLMASK; 4257 } 4258 } 4259 4260 /* 4261 * set data into sadb_address. 4262 */ 4263 static struct mbuf * 4264 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 4265 u_int8_t prefixlen, u_int16_t ul_proto, int mflag) 4266 { 4267 struct mbuf *m; 4268 struct sadb_address *p; 4269 size_t len; 4270 4271 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 4272 PFKEY_ALIGN8(saddr->sa_len); 4273 m = key_alloc_mbuf(len, mflag); 4274 if (!m || m->m_next) { /*XXX*/ 4275 if (m) 4276 m_freem(m); 4277 return NULL; 4278 } 4279 4280 p = mtod(m, struct sadb_address *); 4281 4282 memset(p, 0, len); 4283 p->sadb_address_len = PFKEY_UNIT64(len); 4284 p->sadb_address_exttype = exttype; 4285 p->sadb_address_proto = ul_proto; 4286 if (prefixlen == FULLMASK) { 4287 prefixlen = key_sabits(saddr); 4288 } 4289 p->sadb_address_prefixlen = prefixlen; 4290 p->sadb_address_reserved = 0; 4291 4292 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 4293 saddr, saddr->sa_len); 4294 4295 return m; 4296 } 4297 4298 #if 0 4299 /* 4300 * set data into sadb_ident. 4301 */ 4302 static struct mbuf * 4303 key_setsadbident(u_int16_t exttype, u_int16_t idtype, 4304 void *string, int stringlen, u_int64_t id) 4305 { 4306 struct mbuf *m; 4307 struct sadb_ident *p; 4308 size_t len; 4309 4310 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen); 4311 m = key_alloc_mbuf(len); 4312 if (!m || m->m_next) { /*XXX*/ 4313 if (m) 4314 m_freem(m); 4315 return NULL; 4316 } 4317 4318 p = mtod(m, struct sadb_ident *); 4319 4320 memset(p, 0, len); 4321 p->sadb_ident_len = PFKEY_UNIT64(len); 4322 p->sadb_ident_exttype = exttype; 4323 p->sadb_ident_type = idtype; 4324 p->sadb_ident_reserved = 0; 4325 p->sadb_ident_id = id; 4326 4327 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)), 4328 string, stringlen); 4329 4330 return m; 4331 } 4332 #endif 4333 4334 /* 4335 * set data into sadb_x_sa2. 4336 */ 4337 static struct mbuf * 4338 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid) 4339 { 4340 struct mbuf *m; 4341 struct sadb_x_sa2 *p; 4342 size_t len; 4343 4344 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 4345 m = key_alloc_mbuf(len, M_WAITOK); 4346 KASSERT(m->m_next == NULL); 4347 4348 p = mtod(m, struct sadb_x_sa2 *); 4349 4350 memset(p, 0, len); 4351 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 4352 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 4353 p->sadb_x_sa2_mode = mode; 4354 p->sadb_x_sa2_reserved1 = 0; 4355 p->sadb_x_sa2_reserved2 = 0; 4356 p->sadb_x_sa2_sequence = seq; 4357 p->sadb_x_sa2_reqid = reqid; 4358 4359 return m; 4360 } 4361 4362 /* 4363 * set data into sadb_x_policy 4364 */ 4365 static struct mbuf * 4366 key_setsadbxpolicy(const u_int16_t type, const u_int8_t dir, const u_int32_t id, 4367 int mflag) 4368 { 4369 struct mbuf *m; 4370 struct sadb_x_policy *p; 4371 size_t len; 4372 4373 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 4374 m = key_alloc_mbuf(len, mflag); 4375 if (!m || m->m_next) { /*XXX*/ 4376 if (m) 4377 m_freem(m); 4378 return NULL; 4379 } 4380 4381 p = mtod(m, struct sadb_x_policy *); 4382 4383 memset(p, 0, len); 4384 p->sadb_x_policy_len = PFKEY_UNIT64(len); 4385 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 4386 p->sadb_x_policy_type = type; 4387 p->sadb_x_policy_dir = dir; 4388 p->sadb_x_policy_id = id; 4389 4390 return m; 4391 } 4392 4393 /* %%% utilities */ 4394 /* 4395 * copy a buffer into the new buffer allocated. 4396 */ 4397 static void * 4398 key_newbuf(const void *src, u_int len) 4399 { 4400 void *new; 4401 4402 new = kmem_alloc(len, KM_SLEEP); 4403 memcpy(new, src, len); 4404 4405 return new; 4406 } 4407 4408 /* compare my own address 4409 * OUT: 1: true, i.e. my address. 4410 * 0: false 4411 */ 4412 int 4413 key_ismyaddr(const struct sockaddr *sa) 4414 { 4415 #ifdef INET 4416 const struct sockaddr_in *sin; 4417 const struct in_ifaddr *ia; 4418 int s; 4419 #endif 4420 4421 KASSERT(sa != NULL); 4422 4423 switch (sa->sa_family) { 4424 #ifdef INET 4425 case AF_INET: 4426 sin = (const struct sockaddr_in *)sa; 4427 s = pserialize_read_enter(); 4428 IN_ADDRLIST_READER_FOREACH(ia) { 4429 if (sin->sin_family == ia->ia_addr.sin_family && 4430 sin->sin_len == ia->ia_addr.sin_len && 4431 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 4432 { 4433 pserialize_read_exit(s); 4434 return 1; 4435 } 4436 } 4437 pserialize_read_exit(s); 4438 break; 4439 #endif 4440 #ifdef INET6 4441 case AF_INET6: 4442 return key_ismyaddr6((const struct sockaddr_in6 *)sa); 4443 #endif 4444 } 4445 4446 return 0; 4447 } 4448 4449 #ifdef INET6 4450 /* 4451 * compare my own address for IPv6. 4452 * 1: ours 4453 * 0: other 4454 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 4455 */ 4456 #include <netinet6/in6_var.h> 4457 4458 static int 4459 key_ismyaddr6(const struct sockaddr_in6 *sin6) 4460 { 4461 struct in6_ifaddr *ia; 4462 int s; 4463 struct psref psref; 4464 int bound; 4465 int ours = 1; 4466 4467 bound = curlwp_bind(); 4468 s = pserialize_read_enter(); 4469 IN6_ADDRLIST_READER_FOREACH(ia) { 4470 bool ingroup; 4471 4472 if (key_sockaddr_match((const struct sockaddr *)&sin6, 4473 (const struct sockaddr *)&ia->ia_addr, 0)) { 4474 pserialize_read_exit(s); 4475 goto ours; 4476 } 4477 ia6_acquire(ia, &psref); 4478 pserialize_read_exit(s); 4479 4480 /* 4481 * XXX Multicast 4482 * XXX why do we care about multlicast here while we don't care 4483 * about IPv4 multicast?? 4484 * XXX scope 4485 */ 4486 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp); 4487 if (ingroup) { 4488 ia6_release(ia, &psref); 4489 goto ours; 4490 } 4491 4492 s = pserialize_read_enter(); 4493 ia6_release(ia, &psref); 4494 } 4495 pserialize_read_exit(s); 4496 4497 /* loopback, just for safety */ 4498 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 4499 goto ours; 4500 4501 ours = 0; 4502 ours: 4503 curlwp_bindx(bound); 4504 4505 return ours; 4506 } 4507 #endif /*INET6*/ 4508 4509 /* 4510 * compare two secasindex structure. 4511 * flag can specify to compare 2 saidxes. 4512 * compare two secasindex structure without both mode and reqid. 4513 * don't compare port. 4514 * IN: 4515 * saidx0: source, it can be in SAD. 4516 * saidx1: object. 4517 * OUT: 4518 * 1 : equal 4519 * 0 : not equal 4520 */ 4521 static int 4522 key_saidx_match( 4523 const struct secasindex *saidx0, 4524 const struct secasindex *saidx1, 4525 int flag) 4526 { 4527 int chkport; 4528 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst; 4529 4530 KASSERT(saidx0 != NULL); 4531 KASSERT(saidx1 != NULL); 4532 4533 /* sanity */ 4534 if (saidx0->proto != saidx1->proto) 4535 return 0; 4536 4537 if (flag == CMP_EXACTLY) { 4538 if (saidx0->mode != saidx1->mode) 4539 return 0; 4540 if (saidx0->reqid != saidx1->reqid) 4541 return 0; 4542 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4543 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4544 return 0; 4545 } else { 4546 4547 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4548 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) { 4549 /* 4550 * If reqid of SPD is non-zero, unique SA is required. 4551 * The result must be of same reqid in this case. 4552 */ 4553 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4554 return 0; 4555 } 4556 4557 if (flag == CMP_MODE_REQID) { 4558 if (saidx0->mode != IPSEC_MODE_ANY && 4559 saidx0->mode != saidx1->mode) 4560 return 0; 4561 } 4562 4563 4564 sa0src = &saidx0->src.sa; 4565 sa0dst = &saidx0->dst.sa; 4566 sa1src = &saidx1->src.sa; 4567 sa1dst = &saidx1->dst.sa; 4568 /* 4569 * If NAT-T is enabled, check ports for tunnel mode. 4570 * For ipsecif(4), check ports for transport mode, too. 4571 * Don't check ports if they are set to zero 4572 * in the SPD: This means we have a non-generated 4573 * SPD which can't know UDP ports. 4574 */ 4575 if (saidx1->mode == IPSEC_MODE_TUNNEL || 4576 saidx1->mode == IPSEC_MODE_TRANSPORT) 4577 chkport = PORT_LOOSE; 4578 else 4579 chkport = PORT_NONE; 4580 4581 if (!key_sockaddr_match(sa0src, sa1src, chkport)) { 4582 return 0; 4583 } 4584 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) { 4585 return 0; 4586 } 4587 } 4588 4589 return 1; 4590 } 4591 4592 /* 4593 * compare two secindex structure exactly. 4594 * IN: 4595 * spidx0: source, it is often in SPD. 4596 * spidx1: object, it is often from PFKEY message. 4597 * OUT: 4598 * 1 : equal 4599 * 0 : not equal 4600 */ 4601 static int 4602 key_spidx_match_exactly( 4603 const struct secpolicyindex *spidx0, 4604 const struct secpolicyindex *spidx1) 4605 { 4606 4607 KASSERT(spidx0 != NULL); 4608 KASSERT(spidx1 != NULL); 4609 4610 /* sanity */ 4611 if (spidx0->prefs != spidx1->prefs || 4612 spidx0->prefd != spidx1->prefd || 4613 spidx0->ul_proto != spidx1->ul_proto) 4614 return 0; 4615 4616 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) && 4617 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT); 4618 } 4619 4620 /* 4621 * compare two secindex structure with mask. 4622 * IN: 4623 * spidx0: source, it is often in SPD. 4624 * spidx1: object, it is often from IP header. 4625 * OUT: 4626 * 1 : equal 4627 * 0 : not equal 4628 */ 4629 static int 4630 key_spidx_match_withmask( 4631 const struct secpolicyindex *spidx0, 4632 const struct secpolicyindex *spidx1) 4633 { 4634 4635 KASSERT(spidx0 != NULL); 4636 KASSERT(spidx1 != NULL); 4637 4638 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4639 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4640 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4641 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4642 return 0; 4643 4644 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4645 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY && 4646 spidx0->ul_proto != spidx1->ul_proto) 4647 return 0; 4648 4649 switch (spidx0->src.sa.sa_family) { 4650 case AF_INET: 4651 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY && 4652 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4653 return 0; 4654 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr, 4655 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4656 return 0; 4657 break; 4658 case AF_INET6: 4659 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY && 4660 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4661 return 0; 4662 /* 4663 * scope_id check. if sin6_scope_id is 0, we regard it 4664 * as a wildcard scope, which matches any scope zone ID. 4665 */ 4666 if (spidx0->src.sin6.sin6_scope_id && 4667 spidx1->src.sin6.sin6_scope_id && 4668 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4669 return 0; 4670 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr, 4671 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4672 return 0; 4673 break; 4674 default: 4675 /* XXX */ 4676 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4677 return 0; 4678 break; 4679 } 4680 4681 switch (spidx0->dst.sa.sa_family) { 4682 case AF_INET: 4683 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY && 4684 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4685 return 0; 4686 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr, 4687 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4688 return 0; 4689 break; 4690 case AF_INET6: 4691 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY && 4692 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4693 return 0; 4694 /* 4695 * scope_id check. if sin6_scope_id is 0, we regard it 4696 * as a wildcard scope, which matches any scope zone ID. 4697 */ 4698 if (spidx0->src.sin6.sin6_scope_id && 4699 spidx1->src.sin6.sin6_scope_id && 4700 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4701 return 0; 4702 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr, 4703 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4704 return 0; 4705 break; 4706 default: 4707 /* XXX */ 4708 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4709 return 0; 4710 break; 4711 } 4712 4713 /* XXX Do we check other field ? e.g. flowinfo */ 4714 4715 return 1; 4716 } 4717 4718 /* returns 0 on match */ 4719 static int 4720 key_portcomp(in_port_t port1, in_port_t port2, int howport) 4721 { 4722 switch (howport) { 4723 case PORT_NONE: 4724 return 0; 4725 case PORT_LOOSE: 4726 if (port1 == 0 || port2 == 0) 4727 return 0; 4728 /*FALLTHROUGH*/ 4729 case PORT_STRICT: 4730 if (port1 != port2) { 4731 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4732 "port fail %d != %d\n", port1, port2); 4733 return 1; 4734 } 4735 return 0; 4736 default: 4737 KASSERT(0); 4738 return 1; 4739 } 4740 } 4741 4742 /* returns 1 on match */ 4743 static int 4744 key_sockaddr_match( 4745 const struct sockaddr *sa1, 4746 const struct sockaddr *sa2, 4747 int howport) 4748 { 4749 const struct sockaddr_in *sin1, *sin2; 4750 const struct sockaddr_in6 *sin61, *sin62; 4751 char s1[IPSEC_ADDRSTRLEN], s2[IPSEC_ADDRSTRLEN]; 4752 4753 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) { 4754 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4755 "fam/len fail %d != %d || %d != %d\n", 4756 sa1->sa_family, sa2->sa_family, sa1->sa_len, 4757 sa2->sa_len); 4758 return 0; 4759 } 4760 4761 switch (sa1->sa_family) { 4762 case AF_INET: 4763 if (sa1->sa_len != sizeof(struct sockaddr_in)) { 4764 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4765 "len fail %d != %zu\n", 4766 sa1->sa_len, sizeof(struct sockaddr_in)); 4767 return 0; 4768 } 4769 sin1 = (const struct sockaddr_in *)sa1; 4770 sin2 = (const struct sockaddr_in *)sa2; 4771 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) { 4772 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4773 "addr fail %s != %s\n", 4774 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), 4775 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2)); 4776 return 0; 4777 } 4778 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) { 4779 return 0; 4780 } 4781 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4782 "addr success %s[%d] == %s[%d]\n", 4783 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), 4784 sin1->sin_port, 4785 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2), 4786 sin2->sin_port); 4787 break; 4788 case AF_INET6: 4789 sin61 = (const struct sockaddr_in6 *)sa1; 4790 sin62 = (const struct sockaddr_in6 *)sa2; 4791 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4792 return 0; /*EINVAL*/ 4793 4794 if (sin61->sin6_scope_id != sin62->sin6_scope_id) { 4795 return 0; 4796 } 4797 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) { 4798 return 0; 4799 } 4800 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) { 4801 return 0; 4802 } 4803 break; 4804 default: 4805 if (memcmp(sa1, sa2, sa1->sa_len) != 0) 4806 return 0; 4807 break; 4808 } 4809 4810 return 1; 4811 } 4812 4813 /* 4814 * compare two buffers with mask. 4815 * IN: 4816 * addr1: source 4817 * addr2: object 4818 * bits: Number of bits to compare 4819 * OUT: 4820 * 1 : equal 4821 * 0 : not equal 4822 */ 4823 static int 4824 key_bb_match_withmask(const void *a1, const void *a2, u_int bits) 4825 { 4826 const unsigned char *p1 = a1; 4827 const unsigned char *p2 = a2; 4828 4829 /* XXX: This could be considerably faster if we compare a word 4830 * at a time, but it is complicated on LSB Endian machines */ 4831 4832 /* Handle null pointers */ 4833 if (p1 == NULL || p2 == NULL) 4834 return (p1 == p2); 4835 4836 while (bits >= 8) { 4837 if (*p1++ != *p2++) 4838 return 0; 4839 bits -= 8; 4840 } 4841 4842 if (bits > 0) { 4843 u_int8_t mask = ~((1<<(8-bits))-1); 4844 if ((*p1 & mask) != (*p2 & mask)) 4845 return 0; 4846 } 4847 return 1; /* Match! */ 4848 } 4849 4850 static void 4851 key_timehandler_spd(time_t now) 4852 { 4853 u_int dir; 4854 struct secpolicy *sp; 4855 4856 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4857 retry: 4858 mutex_enter(&key_spd.lock); 4859 SPLIST_WRITER_FOREACH(sp, dir) { 4860 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 4861 4862 if (sp->lifetime == 0 && sp->validtime == 0) 4863 continue; 4864 4865 if ((sp->lifetime && now - sp->created > sp->lifetime) || 4866 (sp->validtime && now - sp->lastused > sp->validtime)) { 4867 key_unlink_sp(sp); 4868 mutex_exit(&key_spd.lock); 4869 key_spdexpire(sp); 4870 key_destroy_sp(sp); 4871 goto retry; 4872 } 4873 } 4874 mutex_exit(&key_spd.lock); 4875 } 4876 4877 retry_socksplist: 4878 mutex_enter(&key_spd.lock); 4879 SOCKSPLIST_WRITER_FOREACH(sp) { 4880 if (sp->state != IPSEC_SPSTATE_DEAD) 4881 continue; 4882 4883 key_unlink_sp(sp); 4884 mutex_exit(&key_spd.lock); 4885 key_destroy_sp(sp); 4886 goto retry_socksplist; 4887 } 4888 mutex_exit(&key_spd.lock); 4889 } 4890 4891 static void 4892 key_timehandler_sad(time_t now) 4893 { 4894 struct secashead *sah; 4895 int s; 4896 4897 restart: 4898 mutex_enter(&key_sad.lock); 4899 SAHLIST_WRITER_FOREACH(sah) { 4900 /* If sah has been dead and has no sav, then delete it */ 4901 if (sah->state == SADB_SASTATE_DEAD && 4902 !key_sah_has_sav(sah)) { 4903 key_unlink_sah(sah); 4904 mutex_exit(&key_sad.lock); 4905 key_destroy_sah(sah); 4906 goto restart; 4907 } 4908 } 4909 mutex_exit(&key_sad.lock); 4910 4911 s = pserialize_read_enter(); 4912 SAHLIST_READER_FOREACH(sah) { 4913 struct secasvar *sav; 4914 4915 key_sah_ref(sah); 4916 pserialize_read_exit(s); 4917 4918 /* if LARVAL entry doesn't become MATURE, delete it. */ 4919 mutex_enter(&key_sad.lock); 4920 restart_sav_LARVAL: 4921 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) { 4922 if (now - sav->created > key_larval_lifetime) { 4923 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4924 goto restart_sav_LARVAL; 4925 } 4926 } 4927 mutex_exit(&key_sad.lock); 4928 4929 /* 4930 * check MATURE entry to start to send expire message 4931 * whether or not. 4932 */ 4933 restart_sav_MATURE: 4934 mutex_enter(&key_sad.lock); 4935 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_MATURE) { 4936 /* we don't need to check. */ 4937 if (sav->lft_s == NULL) 4938 continue; 4939 4940 /* sanity check */ 4941 KASSERT(sav->lft_c != NULL); 4942 4943 /* check SOFT lifetime */ 4944 if (sav->lft_s->sadb_lifetime_addtime != 0 && 4945 now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 4946 /* 4947 * check SA to be used whether or not. 4948 * when SA hasn't been used, delete it. 4949 */ 4950 if (sav->lft_c->sadb_lifetime_usetime == 0) { 4951 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4952 mutex_exit(&key_sad.lock); 4953 } else { 4954 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4955 mutex_exit(&key_sad.lock); 4956 /* 4957 * XXX If we keep to send expire 4958 * message in the status of 4959 * DYING. Do remove below code. 4960 */ 4961 key_expire(sav); 4962 } 4963 goto restart_sav_MATURE; 4964 } 4965 /* check SOFT lifetime by bytes */ 4966 /* 4967 * XXX I don't know the way to delete this SA 4968 * when new SA is installed. Caution when it's 4969 * installed too big lifetime by time. 4970 */ 4971 else { 4972 uint64_t lft_c_bytes = 0; 4973 lifetime_counters_t sum = {0}; 4974 4975 percpu_foreach(sav->lft_c_counters_percpu, 4976 key_sum_lifetime_counters, sum); 4977 lft_c_bytes = sum[LIFETIME_COUNTER_BYTES]; 4978 4979 if (sav->lft_s->sadb_lifetime_bytes == 0 || 4980 sav->lft_s->sadb_lifetime_bytes >= lft_c_bytes) 4981 continue; 4982 4983 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4984 mutex_exit(&key_sad.lock); 4985 /* 4986 * XXX If we keep to send expire 4987 * message in the status of 4988 * DYING. Do remove below code. 4989 */ 4990 key_expire(sav); 4991 goto restart_sav_MATURE; 4992 } 4993 } 4994 mutex_exit(&key_sad.lock); 4995 4996 /* check DYING entry to change status to DEAD. */ 4997 mutex_enter(&key_sad.lock); 4998 restart_sav_DYING: 4999 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DYING) { 5000 /* we don't need to check. */ 5001 if (sav->lft_h == NULL) 5002 continue; 5003 5004 /* sanity check */ 5005 KASSERT(sav->lft_c != NULL); 5006 5007 if (sav->lft_h->sadb_lifetime_addtime != 0 && 5008 now - sav->created > sav->lft_h->sadb_lifetime_addtime) { 5009 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5010 goto restart_sav_DYING; 5011 } 5012 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 5013 else if (sav->lft_s != NULL 5014 && sav->lft_s->sadb_lifetime_addtime != 0 5015 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 5016 /* 5017 * XXX: should be checked to be 5018 * installed the valid SA. 5019 */ 5020 5021 /* 5022 * If there is no SA then sending 5023 * expire message. 5024 */ 5025 key_expire(sav); 5026 } 5027 #endif 5028 /* check HARD lifetime by bytes */ 5029 else { 5030 uint64_t lft_c_bytes = 0; 5031 lifetime_counters_t sum = {0}; 5032 5033 percpu_foreach(sav->lft_c_counters_percpu, 5034 key_sum_lifetime_counters, sum); 5035 lft_c_bytes = sum[LIFETIME_COUNTER_BYTES]; 5036 5037 if (sav->lft_h->sadb_lifetime_bytes == 0 || 5038 sav->lft_h->sadb_lifetime_bytes >= lft_c_bytes) 5039 continue; 5040 5041 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5042 goto restart_sav_DYING; 5043 } 5044 } 5045 mutex_exit(&key_sad.lock); 5046 5047 /* delete entry in DEAD */ 5048 restart_sav_DEAD: 5049 mutex_enter(&key_sad.lock); 5050 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DEAD) { 5051 key_unlink_sav(sav); 5052 mutex_exit(&key_sad.lock); 5053 key_destroy_sav(sav); 5054 goto restart_sav_DEAD; 5055 } 5056 mutex_exit(&key_sad.lock); 5057 5058 s = pserialize_read_enter(); 5059 key_sah_unref(sah); 5060 } 5061 pserialize_read_exit(s); 5062 } 5063 5064 static void 5065 key_timehandler_acq(time_t now) 5066 { 5067 #ifndef IPSEC_NONBLOCK_ACQUIRE 5068 struct secacq *acq, *nextacq; 5069 5070 restart: 5071 mutex_enter(&key_misc.lock); 5072 LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) { 5073 if (now - acq->created > key_blockacq_lifetime) { 5074 LIST_REMOVE(acq, chain); 5075 mutex_exit(&key_misc.lock); 5076 kmem_free(acq, sizeof(*acq)); 5077 goto restart; 5078 } 5079 } 5080 mutex_exit(&key_misc.lock); 5081 #endif 5082 } 5083 5084 static void 5085 key_timehandler_spacq(time_t now) 5086 { 5087 #ifdef notyet 5088 struct secspacq *acq, *nextacq; 5089 5090 LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) { 5091 if (now - acq->created > key_blockacq_lifetime) { 5092 KASSERT(__LIST_CHAINED(acq)); 5093 LIST_REMOVE(acq, chain); 5094 kmem_free(acq, sizeof(*acq)); 5095 } 5096 } 5097 #endif 5098 } 5099 5100 static unsigned int key_timehandler_work_enqueued = 0; 5101 5102 /* 5103 * time handler. 5104 * scanning SPD and SAD to check status for each entries, 5105 * and do to remove or to expire. 5106 */ 5107 static void 5108 key_timehandler_work(struct work *wk, void *arg) 5109 { 5110 time_t now = time_uptime; 5111 5112 /* We can allow enqueuing another work at this point */ 5113 atomic_swap_uint(&key_timehandler_work_enqueued, 0); 5114 5115 key_timehandler_spd(now); 5116 key_timehandler_sad(now); 5117 key_timehandler_acq(now); 5118 key_timehandler_spacq(now); 5119 5120 key_acquire_sendup_pending_mbuf(); 5121 5122 /* do exchange to tick time !! */ 5123 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 5124 5125 return; 5126 } 5127 5128 static void 5129 key_timehandler(void *arg) 5130 { 5131 5132 /* Avoid enqueuing another work when one is already enqueued */ 5133 if (atomic_swap_uint(&key_timehandler_work_enqueued, 1) == 1) 5134 return; 5135 5136 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL); 5137 } 5138 5139 u_long 5140 key_random(void) 5141 { 5142 u_long value; 5143 5144 key_randomfill(&value, sizeof(value)); 5145 return value; 5146 } 5147 5148 void 5149 key_randomfill(void *p, size_t l) 5150 { 5151 5152 cprng_fast(p, l); 5153 } 5154 5155 /* 5156 * map SADB_SATYPE_* to IPPROTO_*. 5157 * if satype == SADB_SATYPE then satype is mapped to ~0. 5158 * OUT: 5159 * 0: invalid satype. 5160 */ 5161 static u_int16_t 5162 key_satype2proto(u_int8_t satype) 5163 { 5164 switch (satype) { 5165 case SADB_SATYPE_UNSPEC: 5166 return IPSEC_PROTO_ANY; 5167 case SADB_SATYPE_AH: 5168 return IPPROTO_AH; 5169 case SADB_SATYPE_ESP: 5170 return IPPROTO_ESP; 5171 case SADB_X_SATYPE_IPCOMP: 5172 return IPPROTO_IPCOMP; 5173 case SADB_X_SATYPE_TCPSIGNATURE: 5174 return IPPROTO_TCP; 5175 default: 5176 return 0; 5177 } 5178 /* NOTREACHED */ 5179 } 5180 5181 /* 5182 * map IPPROTO_* to SADB_SATYPE_* 5183 * OUT: 5184 * 0: invalid protocol type. 5185 */ 5186 static u_int8_t 5187 key_proto2satype(u_int16_t proto) 5188 { 5189 switch (proto) { 5190 case IPPROTO_AH: 5191 return SADB_SATYPE_AH; 5192 case IPPROTO_ESP: 5193 return SADB_SATYPE_ESP; 5194 case IPPROTO_IPCOMP: 5195 return SADB_X_SATYPE_IPCOMP; 5196 case IPPROTO_TCP: 5197 return SADB_X_SATYPE_TCPSIGNATURE; 5198 default: 5199 return 0; 5200 } 5201 /* NOTREACHED */ 5202 } 5203 5204 static int 5205 key_setsecasidx(int proto, int mode, int reqid, 5206 const struct sockaddr *src, const struct sockaddr *dst, 5207 struct secasindex * saidx) 5208 { 5209 const union sockaddr_union *src_u = (const union sockaddr_union *)src; 5210 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst; 5211 5212 /* sa len safety check */ 5213 if (key_checksalen(src_u) != 0) 5214 return -1; 5215 if (key_checksalen(dst_u) != 0) 5216 return -1; 5217 5218 memset(saidx, 0, sizeof(*saidx)); 5219 saidx->proto = proto; 5220 saidx->mode = mode; 5221 saidx->reqid = reqid; 5222 memcpy(&saidx->src, src_u, src_u->sa.sa_len); 5223 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len); 5224 5225 key_porttosaddr(&((saidx)->src), 0); 5226 key_porttosaddr(&((saidx)->dst), 0); 5227 return 0; 5228 } 5229 5230 static void 5231 key_init_spidx_bymsghdr(struct secpolicyindex *spidx, 5232 const struct sadb_msghdr *mhp) 5233 { 5234 const struct sadb_address *src0, *dst0; 5235 const struct sockaddr *src, *dst; 5236 const struct sadb_x_policy *xpl0; 5237 5238 src0 = mhp->ext[SADB_EXT_ADDRESS_SRC]; 5239 dst0 = mhp->ext[SADB_EXT_ADDRESS_DST]; 5240 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5241 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5242 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 5243 5244 memset(spidx, 0, sizeof(*spidx)); 5245 spidx->dir = xpl0->sadb_x_policy_dir; 5246 spidx->prefs = src0->sadb_address_prefixlen; 5247 spidx->prefd = dst0->sadb_address_prefixlen; 5248 spidx->ul_proto = src0->sadb_address_proto; 5249 /* XXX boundary check against sa_len */ 5250 memcpy(&spidx->src, src, src->sa_len); 5251 memcpy(&spidx->dst, dst, dst->sa_len); 5252 } 5253 5254 /* %%% PF_KEY */ 5255 /* 5256 * SADB_GETSPI processing is to receive 5257 * <base, (SA2), src address, dst address, (SPI range)> 5258 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 5259 * tree with the status of LARVAL, and send 5260 * <base, SA(*), address(SD)> 5261 * to the IKMPd. 5262 * 5263 * IN: mhp: pointer to the pointer to each header. 5264 * OUT: NULL if fail. 5265 * other if success, return pointer to the message to send. 5266 */ 5267 static int 5268 key_api_getspi(struct socket *so, struct mbuf *m, 5269 const struct sadb_msghdr *mhp) 5270 { 5271 const struct sockaddr *src, *dst; 5272 struct secasindex saidx; 5273 struct secashead *sah; 5274 struct secasvar *newsav; 5275 u_int8_t proto; 5276 u_int32_t spi; 5277 u_int8_t mode; 5278 u_int16_t reqid; 5279 int error; 5280 5281 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5282 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5283 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5284 return key_senderror(so, m, EINVAL); 5285 } 5286 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5287 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5288 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5289 return key_senderror(so, m, EINVAL); 5290 } 5291 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5292 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5293 mode = sa2->sadb_x_sa2_mode; 5294 reqid = sa2->sadb_x_sa2_reqid; 5295 } else { 5296 mode = IPSEC_MODE_ANY; 5297 reqid = 0; 5298 } 5299 5300 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5301 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5302 5303 /* map satype to proto */ 5304 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5305 if (proto == 0) { 5306 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5307 return key_senderror(so, m, EINVAL); 5308 } 5309 5310 5311 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5312 if (error != 0) 5313 return key_senderror(so, m, EINVAL); 5314 5315 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5316 if (error != 0) 5317 return key_senderror(so, m, EINVAL); 5318 5319 /* SPI allocation */ 5320 spi = key_do_getnewspi(mhp->ext[SADB_EXT_SPIRANGE], &saidx); 5321 if (spi == 0) 5322 return key_senderror(so, m, EINVAL); 5323 5324 /* get a SA index */ 5325 sah = key_getsah_ref(&saidx, CMP_REQID); 5326 if (sah == NULL) { 5327 /* create a new SA index */ 5328 sah = key_newsah(&saidx); 5329 if (sah == NULL) { 5330 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5331 return key_senderror(so, m, ENOBUFS); 5332 } 5333 } 5334 5335 /* get a new SA */ 5336 /* XXX rewrite */ 5337 newsav = KEY_NEWSAV(m, mhp, &error); 5338 if (newsav == NULL) { 5339 key_sah_unref(sah); 5340 /* XXX don't free new SA index allocated in above. */ 5341 return key_senderror(so, m, error); 5342 } 5343 5344 /* set spi */ 5345 newsav->spi = htonl(spi); 5346 5347 /* Add to sah#savlist */ 5348 key_init_sav(newsav); 5349 newsav->sah = sah; 5350 newsav->state = SADB_SASTATE_LARVAL; 5351 mutex_enter(&key_sad.lock); 5352 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav); 5353 mutex_exit(&key_sad.lock); 5354 key_validate_savlist(sah, SADB_SASTATE_LARVAL); 5355 5356 key_sah_unref(sah); 5357 5358 #ifndef IPSEC_NONBLOCK_ACQUIRE 5359 /* delete the entry in key_misc.acqlist */ 5360 if (mhp->msg->sadb_msg_seq != 0) { 5361 struct secacq *acq; 5362 mutex_enter(&key_misc.lock); 5363 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); 5364 if (acq != NULL) { 5365 /* reset counter in order to deletion by timehandler. */ 5366 acq->created = time_uptime; 5367 acq->count = 0; 5368 } 5369 mutex_exit(&key_misc.lock); 5370 } 5371 #endif 5372 5373 { 5374 struct mbuf *n, *nn; 5375 struct sadb_sa *m_sa; 5376 int off, len; 5377 5378 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 5379 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES); 5380 5381 /* create new sadb_msg to reply. */ 5382 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 5383 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5384 5385 n = key_alloc_mbuf_simple(len, M_WAITOK); 5386 n->m_len = len; 5387 n->m_next = NULL; 5388 off = 0; 5389 5390 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 5391 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 5392 5393 m_sa = (struct sadb_sa *)(mtod(n, char *) + off); 5394 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 5395 m_sa->sadb_sa_exttype = SADB_EXT_SA; 5396 m_sa->sadb_sa_spi = htonl(spi); 5397 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5398 5399 KASSERTMSG(off == len, "length inconsistency"); 5400 5401 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 5402 SADB_EXT_ADDRESS_DST); 5403 5404 KASSERT(n->m_len >= sizeof(struct sadb_msg)); 5405 5406 n->m_pkthdr.len = 0; 5407 for (nn = n; nn; nn = nn->m_next) 5408 n->m_pkthdr.len += nn->m_len; 5409 5410 key_fill_replymsg(n, newsav->seq); 5411 m_freem(m); 5412 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5413 } 5414 } 5415 5416 /* 5417 * allocating new SPI 5418 * called by key_api_getspi(). 5419 * OUT: 5420 * 0: failure. 5421 * others: success. 5422 */ 5423 static u_int32_t 5424 key_do_getnewspi(const struct sadb_spirange *spirange, 5425 const struct secasindex *saidx) 5426 { 5427 u_int32_t newspi; 5428 u_int32_t spmin, spmax; 5429 int count = key_spi_trycnt; 5430 5431 /* set spi range to allocate */ 5432 if (spirange != NULL) { 5433 spmin = spirange->sadb_spirange_min; 5434 spmax = spirange->sadb_spirange_max; 5435 } else { 5436 spmin = key_spi_minval; 5437 spmax = key_spi_maxval; 5438 } 5439 /* IPCOMP needs 2-byte SPI */ 5440 if (saidx->proto == IPPROTO_IPCOMP) { 5441 u_int32_t t; 5442 if (spmin >= 0x10000) 5443 spmin = 0xffff; 5444 if (spmax >= 0x10000) 5445 spmax = 0xffff; 5446 if (spmin > spmax) { 5447 t = spmin; spmin = spmax; spmax = t; 5448 } 5449 } 5450 5451 if (spmin == spmax) { 5452 if (key_checkspidup(saidx, htonl(spmin))) { 5453 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin); 5454 return 0; 5455 } 5456 5457 count--; /* taking one cost. */ 5458 newspi = spmin; 5459 5460 } else { 5461 5462 /* init SPI */ 5463 newspi = 0; 5464 5465 /* when requesting to allocate spi ranged */ 5466 while (count--) { 5467 /* generate pseudo-random SPI value ranged. */ 5468 newspi = spmin + (key_random() % (spmax - spmin + 1)); 5469 5470 if (!key_checkspidup(saidx, htonl(newspi))) 5471 break; 5472 } 5473 5474 if (count == 0 || newspi == 0) { 5475 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n"); 5476 return 0; 5477 } 5478 } 5479 5480 /* statistics */ 5481 keystat.getspi_count = 5482 (keystat.getspi_count + key_spi_trycnt - count) / 2; 5483 5484 return newspi; 5485 } 5486 5487 static int 5488 key_handle_natt_info(struct secasvar *sav, 5489 const struct sadb_msghdr *mhp) 5490 { 5491 const char *msg = "?" ; 5492 struct sadb_x_nat_t_type *type; 5493 struct sadb_x_nat_t_port *sport, *dport; 5494 struct sadb_address *iaddr, *raddr; 5495 struct sadb_x_nat_t_frag *frag; 5496 5497 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 5498 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 5499 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) 5500 return 0; 5501 5502 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) { 5503 msg = "TYPE"; 5504 goto bad; 5505 } 5506 5507 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) { 5508 msg = "SPORT"; 5509 goto bad; 5510 } 5511 5512 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5513 msg = "DPORT"; 5514 goto bad; 5515 } 5516 5517 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) { 5518 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); 5519 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) { 5520 msg = "OAI"; 5521 goto bad; 5522 } 5523 } 5524 5525 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5526 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); 5527 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5528 msg = "OAR"; 5529 goto bad; 5530 } 5531 } 5532 5533 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5534 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5535 msg = "FRAG"; 5536 goto bad; 5537 } 5538 } 5539 5540 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5541 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5542 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5543 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5544 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5545 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5546 5547 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", 5548 type->sadb_x_nat_t_type_type, 5549 ntohs(sport->sadb_x_nat_t_port_port), 5550 ntohs(dport->sadb_x_nat_t_port_port)); 5551 5552 sav->natt_type = type->sadb_x_nat_t_type_type; 5553 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port); 5554 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port); 5555 if (frag) 5556 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen; 5557 else 5558 sav->esp_frag = IP_MAXPACKET; 5559 5560 return 0; 5561 bad: 5562 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg); 5563 __USE(msg); 5564 return -1; 5565 } 5566 5567 /* Just update the IPSEC_NAT_T ports if present */ 5568 static int 5569 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst, 5570 const struct sadb_msghdr *mhp) 5571 { 5572 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 5573 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); 5574 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 5575 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); 5576 5577 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) && 5578 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) && 5579 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) { 5580 struct sadb_x_nat_t_type *type; 5581 struct sadb_x_nat_t_port *sport; 5582 struct sadb_x_nat_t_port *dport; 5583 5584 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 5585 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 5586 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 5587 IPSECLOG(LOG_DEBUG, "invalid message\n"); 5588 return -1; 5589 } 5590 5591 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5592 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5593 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5594 5595 key_porttosaddr(src, sport->sadb_x_nat_t_port_port); 5596 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port); 5597 5598 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", 5599 type->sadb_x_nat_t_type_type, 5600 ntohs(sport->sadb_x_nat_t_port_port), 5601 ntohs(dport->sadb_x_nat_t_port_port)); 5602 } 5603 5604 return 0; 5605 } 5606 5607 5608 /* 5609 * SADB_UPDATE processing 5610 * receive 5611 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5612 * key(AE), (identity(SD),) (sensitivity)> 5613 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 5614 * and send 5615 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5616 * (identity(SD),) (sensitivity)> 5617 * to the ikmpd. 5618 * 5619 * m will always be freed. 5620 */ 5621 static int 5622 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5623 { 5624 struct sadb_sa *sa0; 5625 const struct sockaddr *src, *dst; 5626 struct secasindex saidx; 5627 struct secashead *sah; 5628 struct secasvar *sav, *newsav; 5629 u_int16_t proto; 5630 u_int8_t mode; 5631 u_int16_t reqid; 5632 int error; 5633 5634 /* map satype to proto */ 5635 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5636 if (proto == 0) { 5637 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5638 return key_senderror(so, m, EINVAL); 5639 } 5640 5641 if (mhp->ext[SADB_EXT_SA] == NULL || 5642 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5643 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5644 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5645 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5646 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5647 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5648 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5649 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5650 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5651 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5652 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5653 return key_senderror(so, m, EINVAL); 5654 } 5655 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5656 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5657 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5658 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5659 return key_senderror(so, m, EINVAL); 5660 } 5661 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5662 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5663 mode = sa2->sadb_x_sa2_mode; 5664 reqid = sa2->sadb_x_sa2_reqid; 5665 } else { 5666 mode = IPSEC_MODE_ANY; 5667 reqid = 0; 5668 } 5669 /* XXX boundary checking for other extensions */ 5670 5671 sa0 = mhp->ext[SADB_EXT_SA]; 5672 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5673 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5674 5675 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5676 if (error != 0) 5677 return key_senderror(so, m, EINVAL); 5678 5679 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5680 if (error != 0) 5681 return key_senderror(so, m, EINVAL); 5682 5683 /* get a SA header */ 5684 sah = key_getsah_ref(&saidx, CMP_REQID); 5685 if (sah == NULL) { 5686 IPSECLOG(LOG_DEBUG, "no SA index found.\n"); 5687 return key_senderror(so, m, ENOENT); 5688 } 5689 5690 /* set spidx if there */ 5691 /* XXX rewrite */ 5692 error = key_setident(sah, m, mhp); 5693 if (error) 5694 goto error_sah; 5695 5696 /* find a SA with sequence number. */ 5697 #ifdef IPSEC_DOSEQCHECK 5698 if (mhp->msg->sadb_msg_seq != 0) { 5699 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq); 5700 if (sav == NULL) { 5701 IPSECLOG(LOG_DEBUG, 5702 "no larval SA with sequence %u exists.\n", 5703 mhp->msg->sadb_msg_seq); 5704 error = ENOENT; 5705 goto error_sah; 5706 } 5707 } 5708 #else 5709 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5710 if (sav == NULL) { 5711 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n", 5712 (u_int32_t)ntohl(sa0->sadb_sa_spi)); 5713 error = EINVAL; 5714 goto error_sah; 5715 } 5716 #endif 5717 5718 /* validity check */ 5719 if (sav->sah->saidx.proto != proto) { 5720 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n", 5721 sav->sah->saidx.proto, proto); 5722 error = EINVAL; 5723 goto error; 5724 } 5725 #ifdef IPSEC_DOSEQCHECK 5726 if (sav->spi != sa0->sadb_sa_spi) { 5727 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n", 5728 (u_int32_t)ntohl(sav->spi), 5729 (u_int32_t)ntohl(sa0->sadb_sa_spi)); 5730 error = EINVAL; 5731 goto error; 5732 } 5733 #endif 5734 if (sav->pid != mhp->msg->sadb_msg_pid) { 5735 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n", 5736 sav->pid, mhp->msg->sadb_msg_pid); 5737 error = EINVAL; 5738 goto error; 5739 } 5740 5741 /* 5742 * Allocate a new SA instead of modifying the existing SA directly 5743 * to avoid race conditions. 5744 */ 5745 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); 5746 5747 /* copy sav values */ 5748 newsav->spi = sav->spi; 5749 newsav->seq = sav->seq; 5750 newsav->created = sav->created; 5751 newsav->pid = sav->pid; 5752 newsav->sah = sav->sah; 5753 5754 error = key_setsaval(newsav, m, mhp); 5755 if (error) { 5756 key_delsav(newsav); 5757 goto error; 5758 } 5759 5760 error = key_handle_natt_info(newsav, mhp); 5761 if (error != 0) { 5762 key_delsav(newsav); 5763 goto error; 5764 } 5765 5766 error = key_init_xform(newsav); 5767 if (error != 0) { 5768 key_delsav(newsav); 5769 goto error; 5770 } 5771 5772 /* Add to sah#savlist */ 5773 key_init_sav(newsav); 5774 newsav->state = SADB_SASTATE_MATURE; 5775 mutex_enter(&key_sad.lock); 5776 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); 5777 SAVLUT_WRITER_INSERT_HEAD(newsav); 5778 mutex_exit(&key_sad.lock); 5779 key_validate_savlist(sah, SADB_SASTATE_MATURE); 5780 5781 key_sah_unref(sah); 5782 sah = NULL; 5783 5784 key_destroy_sav_with_ref(sav); 5785 sav = NULL; 5786 5787 { 5788 struct mbuf *n; 5789 5790 /* set msg buf from mhp */ 5791 n = key_getmsgbuf_x1(m, mhp); 5792 if (n == NULL) { 5793 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5794 return key_senderror(so, m, ENOBUFS); 5795 } 5796 5797 m_freem(m); 5798 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5799 } 5800 error: 5801 KEY_SA_UNREF(&sav); 5802 error_sah: 5803 key_sah_unref(sah); 5804 return key_senderror(so, m, error); 5805 } 5806 5807 /* 5808 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5809 * only called by key_api_update(). 5810 * OUT: 5811 * NULL : not found 5812 * others : found, pointer to a SA. 5813 */ 5814 #ifdef IPSEC_DOSEQCHECK 5815 static struct secasvar * 5816 key_getsavbyseq(struct secashead *sah, u_int32_t seq) 5817 { 5818 struct secasvar *sav; 5819 u_int state; 5820 int s; 5821 5822 state = SADB_SASTATE_LARVAL; 5823 5824 /* search SAD with sequence number ? */ 5825 s = pserialize_read_enter(); 5826 SAVLIST_READER_FOREACH(sav, sah, state) { 5827 KEY_CHKSASTATE(state, sav->state); 5828 5829 if (sav->seq == seq) { 5830 SA_ADDREF(sav); 5831 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 5832 "DP cause refcnt++:%d SA:%p\n", 5833 key_sa_refcnt(sav), sav); 5834 break; 5835 } 5836 } 5837 pserialize_read_exit(s); 5838 5839 return sav; 5840 } 5841 #endif 5842 5843 /* 5844 * SADB_ADD processing 5845 * add an entry to SA database, when received 5846 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5847 * key(AE), (identity(SD),) (sensitivity)> 5848 * from the ikmpd, 5849 * and send 5850 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5851 * (identity(SD),) (sensitivity)> 5852 * to the ikmpd. 5853 * 5854 * IGNORE identity and sensitivity messages. 5855 * 5856 * m will always be freed. 5857 */ 5858 static int 5859 key_api_add(struct socket *so, struct mbuf *m, 5860 const struct sadb_msghdr *mhp) 5861 { 5862 struct sadb_sa *sa0; 5863 const struct sockaddr *src, *dst; 5864 struct secasindex saidx; 5865 struct secashead *sah; 5866 struct secasvar *newsav; 5867 u_int16_t proto; 5868 u_int8_t mode; 5869 u_int16_t reqid; 5870 int error; 5871 5872 /* map satype to proto */ 5873 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5874 if (proto == 0) { 5875 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5876 return key_senderror(so, m, EINVAL); 5877 } 5878 5879 if (mhp->ext[SADB_EXT_SA] == NULL || 5880 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5881 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5882 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5883 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5884 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5885 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5886 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5887 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5888 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5889 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5890 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5891 return key_senderror(so, m, EINVAL); 5892 } 5893 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5894 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5895 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5896 /* XXX need more */ 5897 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5898 return key_senderror(so, m, EINVAL); 5899 } 5900 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5901 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5902 mode = sa2->sadb_x_sa2_mode; 5903 reqid = sa2->sadb_x_sa2_reqid; 5904 } else { 5905 mode = IPSEC_MODE_ANY; 5906 reqid = 0; 5907 } 5908 5909 sa0 = mhp->ext[SADB_EXT_SA]; 5910 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5911 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5912 5913 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5914 if (error != 0) 5915 return key_senderror(so, m, EINVAL); 5916 5917 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5918 if (error != 0) 5919 return key_senderror(so, m, EINVAL); 5920 5921 /* get a SA header */ 5922 sah = key_getsah_ref(&saidx, CMP_REQID); 5923 if (sah == NULL) { 5924 /* create a new SA header */ 5925 sah = key_newsah(&saidx); 5926 if (sah == NULL) { 5927 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5928 return key_senderror(so, m, ENOBUFS); 5929 } 5930 } 5931 5932 /* set spidx if there */ 5933 /* XXX rewrite */ 5934 error = key_setident(sah, m, mhp); 5935 if (error) 5936 goto error; 5937 5938 { 5939 struct secasvar *sav; 5940 5941 /* We can create new SA only if SPI is differenct. */ 5942 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5943 if (sav != NULL) { 5944 KEY_SA_UNREF(&sav); 5945 IPSECLOG(LOG_DEBUG, "SA already exists.\n"); 5946 error = EEXIST; 5947 goto error; 5948 } 5949 } 5950 5951 /* create new SA entry. */ 5952 newsav = KEY_NEWSAV(m, mhp, &error); 5953 if (newsav == NULL) 5954 goto error; 5955 newsav->sah = sah; 5956 5957 error = key_handle_natt_info(newsav, mhp); 5958 if (error != 0) { 5959 key_delsav(newsav); 5960 error = EINVAL; 5961 goto error; 5962 } 5963 5964 error = key_init_xform(newsav); 5965 if (error != 0) { 5966 key_delsav(newsav); 5967 goto error; 5968 } 5969 5970 /* Add to sah#savlist */ 5971 key_init_sav(newsav); 5972 newsav->state = SADB_SASTATE_MATURE; 5973 mutex_enter(&key_sad.lock); 5974 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); 5975 SAVLUT_WRITER_INSERT_HEAD(newsav); 5976 mutex_exit(&key_sad.lock); 5977 key_validate_savlist(sah, SADB_SASTATE_MATURE); 5978 5979 key_sah_unref(sah); 5980 sah = NULL; 5981 5982 /* 5983 * don't call key_freesav() here, as we would like to keep the SA 5984 * in the database on success. 5985 */ 5986 5987 { 5988 struct mbuf *n; 5989 5990 /* set msg buf from mhp */ 5991 n = key_getmsgbuf_x1(m, mhp); 5992 if (n == NULL) { 5993 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5994 return key_senderror(so, m, ENOBUFS); 5995 } 5996 5997 m_freem(m); 5998 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5999 } 6000 error: 6001 key_sah_unref(sah); 6002 return key_senderror(so, m, error); 6003 } 6004 6005 /* m is retained */ 6006 static int 6007 key_setident(struct secashead *sah, struct mbuf *m, 6008 const struct sadb_msghdr *mhp) 6009 { 6010 const struct sadb_ident *idsrc, *iddst; 6011 int idsrclen, iddstlen; 6012 6013 KASSERT(!cpu_softintr_p()); 6014 KASSERT(sah != NULL); 6015 KASSERT(m != NULL); 6016 KASSERT(mhp != NULL); 6017 KASSERT(mhp->msg != NULL); 6018 6019 /* 6020 * Can be called with an existing sah from key_api_update(). 6021 */ 6022 if (sah->idents != NULL) { 6023 kmem_free(sah->idents, sah->idents_len); 6024 sah->idents = NULL; 6025 sah->idents_len = 0; 6026 } 6027 if (sah->identd != NULL) { 6028 kmem_free(sah->identd, sah->identd_len); 6029 sah->identd = NULL; 6030 sah->identd_len = 0; 6031 } 6032 6033 /* don't make buffer if not there */ 6034 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 6035 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 6036 sah->idents = NULL; 6037 sah->identd = NULL; 6038 return 0; 6039 } 6040 6041 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 6042 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 6043 IPSECLOG(LOG_DEBUG, "invalid identity.\n"); 6044 return EINVAL; 6045 } 6046 6047 idsrc = mhp->ext[SADB_EXT_IDENTITY_SRC]; 6048 iddst = mhp->ext[SADB_EXT_IDENTITY_DST]; 6049 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 6050 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 6051 6052 /* validity check */ 6053 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 6054 IPSECLOG(LOG_DEBUG, "ident type mismatched src %u, dst %u.\n", 6055 idsrc->sadb_ident_type, iddst->sadb_ident_type); 6056 return EINVAL; 6057 } 6058 6059 switch (idsrc->sadb_ident_type) { 6060 case SADB_IDENTTYPE_PREFIX: 6061 case SADB_IDENTTYPE_FQDN: 6062 case SADB_IDENTTYPE_USERFQDN: 6063 default: 6064 /* XXX do nothing */ 6065 sah->idents = NULL; 6066 sah->identd = NULL; 6067 return 0; 6068 } 6069 6070 /* make structure */ 6071 sah->idents = kmem_alloc(idsrclen, KM_SLEEP); 6072 sah->idents_len = idsrclen; 6073 sah->identd = kmem_alloc(iddstlen, KM_SLEEP); 6074 sah->identd_len = iddstlen; 6075 memcpy(sah->idents, idsrc, idsrclen); 6076 memcpy(sah->identd, iddst, iddstlen); 6077 6078 return 0; 6079 } 6080 6081 /* 6082 * m will not be freed on return. It never return NULL. 6083 * it is caller's responsibility to free the result. 6084 */ 6085 static struct mbuf * 6086 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 6087 { 6088 struct mbuf *n; 6089 6090 KASSERT(m != NULL); 6091 KASSERT(mhp != NULL); 6092 KASSERT(mhp->msg != NULL); 6093 6094 /* create new sadb_msg to reply. */ 6095 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED, 6096 SADB_EXT_SA, SADB_X_EXT_SA2, 6097 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 6098 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 6099 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, 6100 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, 6101 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, 6102 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG); 6103 6104 KASSERT(n->m_len >= sizeof(struct sadb_msg)); 6105 6106 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 6107 mtod(n, struct sadb_msg *)->sadb_msg_len = 6108 PFKEY_UNIT64(n->m_pkthdr.len); 6109 6110 return n; 6111 } 6112 6113 static int key_delete_all (struct socket *, struct mbuf *, 6114 const struct sadb_msghdr *, u_int16_t); 6115 6116 /* 6117 * SADB_DELETE processing 6118 * receive 6119 * <base, SA(*), address(SD)> 6120 * from the ikmpd, and set SADB_SASTATE_DEAD, 6121 * and send, 6122 * <base, SA(*), address(SD)> 6123 * to the ikmpd. 6124 * 6125 * m will always be freed. 6126 */ 6127 static int 6128 key_api_delete(struct socket *so, struct mbuf *m, 6129 const struct sadb_msghdr *mhp) 6130 { 6131 struct sadb_sa *sa0; 6132 const struct sockaddr *src, *dst; 6133 struct secasindex saidx; 6134 struct secashead *sah; 6135 struct secasvar *sav = NULL; 6136 u_int16_t proto; 6137 int error; 6138 6139 /* map satype to proto */ 6140 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 6141 if (proto == 0) { 6142 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6143 return key_senderror(so, m, EINVAL); 6144 } 6145 6146 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6147 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 6148 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6149 return key_senderror(so, m, EINVAL); 6150 } 6151 6152 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6153 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6154 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6155 return key_senderror(so, m, EINVAL); 6156 } 6157 6158 if (mhp->ext[SADB_EXT_SA] == NULL) { 6159 /* 6160 * Caller wants us to delete all non-LARVAL SAs 6161 * that match the src/dst. This is used during 6162 * IKE INITIAL-CONTACT. 6163 */ 6164 IPSECLOG(LOG_DEBUG, "doing delete all.\n"); 6165 return key_delete_all(so, m, mhp, proto); 6166 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 6167 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6168 return key_senderror(so, m, EINVAL); 6169 } 6170 6171 sa0 = mhp->ext[SADB_EXT_SA]; 6172 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6173 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6174 6175 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6176 if (error != 0) 6177 return key_senderror(so, m, EINVAL); 6178 6179 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6180 if (error != 0) 6181 return key_senderror(so, m, EINVAL); 6182 6183 /* get a SA header */ 6184 sah = key_getsah_ref(&saidx, CMP_HEAD); 6185 if (sah != NULL) { 6186 /* get a SA with SPI. */ 6187 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 6188 key_sah_unref(sah); 6189 } 6190 6191 if (sav == NULL) { 6192 IPSECLOG(LOG_DEBUG, "no SA found.\n"); 6193 return key_senderror(so, m, ENOENT); 6194 } 6195 6196 key_destroy_sav_with_ref(sav); 6197 sav = NULL; 6198 6199 { 6200 struct mbuf *n; 6201 6202 /* create new sadb_msg to reply. */ 6203 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 6204 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6205 6206 key_fill_replymsg(n, 0); 6207 m_freem(m); 6208 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6209 } 6210 } 6211 6212 /* 6213 * delete all SAs for src/dst. Called from key_api_delete(). 6214 */ 6215 static int 6216 key_delete_all(struct socket *so, struct mbuf *m, 6217 const struct sadb_msghdr *mhp, u_int16_t proto) 6218 { 6219 const struct sockaddr *src, *dst; 6220 struct secasindex saidx; 6221 struct secashead *sah; 6222 struct secasvar *sav; 6223 u_int state; 6224 int error; 6225 6226 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6227 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6228 6229 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6230 if (error != 0) 6231 return key_senderror(so, m, EINVAL); 6232 6233 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6234 if (error != 0) 6235 return key_senderror(so, m, EINVAL); 6236 6237 sah = key_getsah_ref(&saidx, CMP_HEAD); 6238 if (sah != NULL) { 6239 /* Delete all non-LARVAL SAs. */ 6240 SASTATE_ALIVE_FOREACH(state) { 6241 if (state == SADB_SASTATE_LARVAL) 6242 continue; 6243 restart: 6244 mutex_enter(&key_sad.lock); 6245 SAVLIST_WRITER_FOREACH(sav, sah, state) { 6246 sav->state = SADB_SASTATE_DEAD; 6247 key_unlink_sav(sav); 6248 mutex_exit(&key_sad.lock); 6249 key_destroy_sav(sav); 6250 goto restart; 6251 } 6252 mutex_exit(&key_sad.lock); 6253 } 6254 key_sah_unref(sah); 6255 } 6256 { 6257 struct mbuf *n; 6258 6259 /* create new sadb_msg to reply. */ 6260 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 6261 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6262 6263 key_fill_replymsg(n, 0); 6264 m_freem(m); 6265 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6266 } 6267 } 6268 6269 /* 6270 * SADB_GET processing 6271 * receive 6272 * <base, SA(*), address(SD)> 6273 * from the ikmpd, and get a SP and a SA to respond, 6274 * and send, 6275 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 6276 * (identity(SD),) (sensitivity)> 6277 * to the ikmpd. 6278 * 6279 * m will always be freed. 6280 */ 6281 static int 6282 key_api_get(struct socket *so, struct mbuf *m, 6283 const struct sadb_msghdr *mhp) 6284 { 6285 struct sadb_sa *sa0; 6286 const struct sockaddr *src, *dst; 6287 struct secasindex saidx; 6288 struct secasvar *sav = NULL; 6289 u_int16_t proto; 6290 int error; 6291 6292 /* map satype to proto */ 6293 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6294 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6295 return key_senderror(so, m, EINVAL); 6296 } 6297 6298 if (mhp->ext[SADB_EXT_SA] == NULL || 6299 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6300 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 6301 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6302 return key_senderror(so, m, EINVAL); 6303 } 6304 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 6305 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6306 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6307 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6308 return key_senderror(so, m, EINVAL); 6309 } 6310 6311 sa0 = mhp->ext[SADB_EXT_SA]; 6312 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6313 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6314 6315 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6316 if (error != 0) 6317 return key_senderror(so, m, EINVAL); 6318 6319 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6320 if (error != 0) 6321 return key_senderror(so, m, EINVAL); 6322 6323 /* get a SA header */ 6324 { 6325 struct secashead *sah; 6326 int s = pserialize_read_enter(); 6327 6328 sah = key_getsah(&saidx, CMP_HEAD); 6329 if (sah != NULL) { 6330 /* get a SA with SPI. */ 6331 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 6332 } 6333 pserialize_read_exit(s); 6334 } 6335 if (sav == NULL) { 6336 IPSECLOG(LOG_DEBUG, "no SA found.\n"); 6337 return key_senderror(so, m, ENOENT); 6338 } 6339 6340 { 6341 struct mbuf *n; 6342 u_int8_t satype; 6343 6344 /* map proto to satype */ 6345 satype = key_proto2satype(sav->sah->saidx.proto); 6346 if (satype == 0) { 6347 KEY_SA_UNREF(&sav); 6348 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n"); 6349 return key_senderror(so, m, EINVAL); 6350 } 6351 6352 /* create new sadb_msg to reply. */ 6353 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 6354 mhp->msg->sadb_msg_pid); 6355 KEY_SA_UNREF(&sav); 6356 m_freem(m); 6357 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6358 } 6359 } 6360 6361 /* XXX make it sysctl-configurable? */ 6362 static void 6363 key_getcomb_setlifetime(struct sadb_comb *comb) 6364 { 6365 6366 comb->sadb_comb_soft_allocations = 1; 6367 comb->sadb_comb_hard_allocations = 1; 6368 comb->sadb_comb_soft_bytes = 0; 6369 comb->sadb_comb_hard_bytes = 0; 6370 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 6371 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100; 6372 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */ 6373 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 6374 } 6375 6376 /* 6377 * XXX reorder combinations by preference 6378 * XXX no idea if the user wants ESP authentication or not 6379 */ 6380 static struct mbuf * 6381 key_getcomb_esp(int mflag) 6382 { 6383 struct sadb_comb *comb; 6384 const struct enc_xform *algo; 6385 struct mbuf *result = NULL, *m, *n; 6386 int encmin; 6387 int i, off, o; 6388 int totlen; 6389 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6390 6391 m = NULL; 6392 for (i = 1; i <= SADB_EALG_MAX; i++) { 6393 algo = esp_algorithm_lookup(i); 6394 if (algo == NULL) 6395 continue; 6396 6397 /* discard algorithms with key size smaller than system min */ 6398 if (_BITS(algo->maxkey) < ipsec_esp_keymin) 6399 continue; 6400 if (_BITS(algo->minkey) < ipsec_esp_keymin) 6401 encmin = ipsec_esp_keymin; 6402 else 6403 encmin = _BITS(algo->minkey); 6404 6405 if (ipsec_esp_auth) 6406 m = key_getcomb_ah(mflag); 6407 else { 6408 KASSERTMSG(l <= MLEN, 6409 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6410 MGET(m, mflag, MT_DATA); 6411 if (m) { 6412 m_align(m, l); 6413 m->m_len = l; 6414 m->m_next = NULL; 6415 memset(mtod(m, void *), 0, m->m_len); 6416 } 6417 } 6418 if (!m) 6419 goto fail; 6420 6421 totlen = 0; 6422 for (n = m; n; n = n->m_next) 6423 totlen += n->m_len; 6424 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l); 6425 6426 for (off = 0; off < totlen; off += l) { 6427 n = m_pulldown(m, off, l, &o); 6428 if (!n) { 6429 /* m is already freed */ 6430 goto fail; 6431 } 6432 comb = (struct sadb_comb *)(mtod(n, char *) + o); 6433 memset(comb, 0, sizeof(*comb)); 6434 key_getcomb_setlifetime(comb); 6435 comb->sadb_comb_encrypt = i; 6436 comb->sadb_comb_encrypt_minbits = encmin; 6437 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6438 } 6439 6440 if (!result) 6441 result = m; 6442 else 6443 m_cat(result, m); 6444 } 6445 6446 return result; 6447 6448 fail: 6449 if (result) 6450 m_freem(result); 6451 return NULL; 6452 } 6453 6454 static void 6455 key_getsizes_ah(const struct auth_hash *ah, int alg, 6456 u_int16_t* ksmin, u_int16_t* ksmax) 6457 { 6458 *ksmin = *ksmax = ah->keysize; 6459 if (ah->keysize == 0) { 6460 /* 6461 * Transform takes arbitrary key size but algorithm 6462 * key size is restricted. Enforce this here. 6463 */ 6464 switch (alg) { 6465 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break; 6466 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break; 6467 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break; 6468 default: 6469 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg); 6470 break; 6471 } 6472 } 6473 } 6474 6475 /* 6476 * XXX reorder combinations by preference 6477 */ 6478 static struct mbuf * 6479 key_getcomb_ah(int mflag) 6480 { 6481 struct sadb_comb *comb; 6482 const struct auth_hash *algo; 6483 struct mbuf *m; 6484 u_int16_t minkeysize, maxkeysize; 6485 int i; 6486 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6487 6488 m = NULL; 6489 for (i = 1; i <= SADB_AALG_MAX; i++) { 6490 #if 1 6491 /* we prefer HMAC algorithms, not old algorithms */ 6492 if (i != SADB_AALG_SHA1HMAC && 6493 i != SADB_AALG_MD5HMAC && 6494 i != SADB_X_AALG_SHA2_256 && 6495 i != SADB_X_AALG_SHA2_384 && 6496 i != SADB_X_AALG_SHA2_512) 6497 continue; 6498 #endif 6499 algo = ah_algorithm_lookup(i); 6500 if (!algo) 6501 continue; 6502 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6503 /* discard algorithms with key size smaller than system min */ 6504 if (_BITS(minkeysize) < ipsec_ah_keymin) 6505 continue; 6506 6507 if (!m) { 6508 KASSERTMSG(l <= MLEN, 6509 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6510 MGET(m, mflag, MT_DATA); 6511 if (m) { 6512 m_align(m, l); 6513 m->m_len = l; 6514 m->m_next = NULL; 6515 } 6516 } else 6517 M_PREPEND(m, l, mflag); 6518 if (!m) 6519 return NULL; 6520 6521 if (m->m_len < sizeof(struct sadb_comb)) { 6522 m = m_pullup(m, sizeof(struct sadb_comb)); 6523 if (m == NULL) 6524 return NULL; 6525 } 6526 6527 comb = mtod(m, struct sadb_comb *); 6528 memset(comb, 0, sizeof(*comb)); 6529 key_getcomb_setlifetime(comb); 6530 comb->sadb_comb_auth = i; 6531 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6532 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6533 } 6534 6535 return m; 6536 } 6537 6538 /* 6539 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6540 * XXX reorder combinations by preference 6541 */ 6542 static struct mbuf * 6543 key_getcomb_ipcomp(int mflag) 6544 { 6545 struct sadb_comb *comb; 6546 const struct comp_algo *algo; 6547 struct mbuf *m; 6548 int i; 6549 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6550 6551 m = NULL; 6552 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6553 algo = ipcomp_algorithm_lookup(i); 6554 if (!algo) 6555 continue; 6556 6557 if (!m) { 6558 KASSERTMSG(l <= MLEN, 6559 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6560 MGET(m, mflag, MT_DATA); 6561 if (m) { 6562 m_align(m, l); 6563 m->m_len = l; 6564 m->m_next = NULL; 6565 } 6566 } else 6567 M_PREPEND(m, l, mflag); 6568 if (!m) 6569 return NULL; 6570 6571 if (m->m_len < sizeof(struct sadb_comb)) { 6572 m = m_pullup(m, sizeof(struct sadb_comb)); 6573 if (m == NULL) 6574 return NULL; 6575 } 6576 6577 comb = mtod(m, struct sadb_comb *); 6578 memset(comb, 0, sizeof(*comb)); 6579 key_getcomb_setlifetime(comb); 6580 comb->sadb_comb_encrypt = i; 6581 /* what should we set into sadb_comb_*_{min,max}bits? */ 6582 } 6583 6584 return m; 6585 } 6586 6587 /* 6588 * XXX no way to pass mode (transport/tunnel) to userland 6589 * XXX replay checking? 6590 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6591 */ 6592 static struct mbuf * 6593 key_getprop(const struct secasindex *saidx, int mflag) 6594 { 6595 struct sadb_prop *prop; 6596 struct mbuf *m, *n; 6597 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6598 int totlen; 6599 6600 switch (saidx->proto) { 6601 case IPPROTO_ESP: 6602 m = key_getcomb_esp(mflag); 6603 break; 6604 case IPPROTO_AH: 6605 m = key_getcomb_ah(mflag); 6606 break; 6607 case IPPROTO_IPCOMP: 6608 m = key_getcomb_ipcomp(mflag); 6609 break; 6610 default: 6611 return NULL; 6612 } 6613 6614 if (!m) 6615 return NULL; 6616 M_PREPEND(m, l, mflag); 6617 if (!m) 6618 return NULL; 6619 6620 totlen = 0; 6621 for (n = m; n; n = n->m_next) 6622 totlen += n->m_len; 6623 6624 prop = mtod(m, struct sadb_prop *); 6625 memset(prop, 0, sizeof(*prop)); 6626 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6627 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6628 prop->sadb_prop_replay = 32; /* XXX */ 6629 6630 return m; 6631 } 6632 6633 /* 6634 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire(). 6635 * send 6636 * <base, SA, address(SD), (address(P)), x_policy, 6637 * (identity(SD),) (sensitivity,) proposal> 6638 * to KMD, and expect to receive 6639 * <base> with SADB_ACQUIRE if error occurred, 6640 * or 6641 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6642 * from KMD by PF_KEY. 6643 * 6644 * XXX x_policy is outside of RFC2367 (KAME extension). 6645 * XXX sensitivity is not supported. 6646 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6647 * see comment for key_getcomb_ipcomp(). 6648 * 6649 * OUT: 6650 * 0 : succeed 6651 * others: error number 6652 */ 6653 static int 6654 key_acquire(const struct secasindex *saidx, const struct secpolicy *sp, int mflag) 6655 { 6656 struct mbuf *result = NULL, *m; 6657 #ifndef IPSEC_NONBLOCK_ACQUIRE 6658 struct secacq *newacq; 6659 #endif 6660 u_int8_t satype; 6661 int error = -1; 6662 u_int32_t seq; 6663 6664 /* sanity check */ 6665 KASSERT(saidx != NULL); 6666 satype = key_proto2satype(saidx->proto); 6667 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto); 6668 6669 #ifndef IPSEC_NONBLOCK_ACQUIRE 6670 /* 6671 * We never do anything about acquirng SA. There is anather 6672 * solution that kernel blocks to send SADB_ACQUIRE message until 6673 * getting something message from IKEd. In later case, to be 6674 * managed with ACQUIRING list. 6675 */ 6676 /* Get an entry to check whether sending message or not. */ 6677 mutex_enter(&key_misc.lock); 6678 newacq = key_getacq(saidx); 6679 if (newacq != NULL) { 6680 if (key_blockacq_count < newacq->count) { 6681 /* reset counter and do send message. */ 6682 newacq->count = 0; 6683 } else { 6684 /* increment counter and do nothing. */ 6685 newacq->count++; 6686 mutex_exit(&key_misc.lock); 6687 return 0; 6688 } 6689 } else { 6690 /* make new entry for blocking to send SADB_ACQUIRE. */ 6691 newacq = key_newacq(saidx); 6692 if (newacq == NULL) { 6693 mutex_exit(&key_misc.lock); 6694 return ENOBUFS; 6695 } 6696 6697 /* add to key_misc.acqlist */ 6698 LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain); 6699 } 6700 6701 seq = newacq->seq; 6702 mutex_exit(&key_misc.lock); 6703 #else 6704 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 6705 #endif 6706 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0, mflag); 6707 if (!m) { 6708 error = ENOBUFS; 6709 goto fail; 6710 } 6711 result = m; 6712 6713 /* set sadb_address for saidx's. */ 6714 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK, 6715 IPSEC_ULPROTO_ANY, mflag); 6716 if (!m) { 6717 error = ENOBUFS; 6718 goto fail; 6719 } 6720 m_cat(result, m); 6721 6722 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK, 6723 IPSEC_ULPROTO_ANY, mflag); 6724 if (!m) { 6725 error = ENOBUFS; 6726 goto fail; 6727 } 6728 m_cat(result, m); 6729 6730 /* XXX proxy address (optional) */ 6731 6732 /* set sadb_x_policy */ 6733 if (sp) { 6734 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id, 6735 mflag); 6736 if (!m) { 6737 error = ENOBUFS; 6738 goto fail; 6739 } 6740 m_cat(result, m); 6741 } 6742 6743 /* XXX identity (optional) */ 6744 #if 0 6745 if (idexttype && fqdn) { 6746 /* create identity extension (FQDN) */ 6747 struct sadb_ident *id; 6748 int fqdnlen; 6749 6750 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6751 id = (struct sadb_ident *)p; 6752 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6753 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6754 id->sadb_ident_exttype = idexttype; 6755 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6756 memcpy(id + 1, fqdn, fqdnlen); 6757 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6758 } 6759 6760 if (idexttype) { 6761 /* create identity extension (USERFQDN) */ 6762 struct sadb_ident *id; 6763 int userfqdnlen; 6764 6765 if (userfqdn) { 6766 /* +1 for terminating-NUL */ 6767 userfqdnlen = strlen(userfqdn) + 1; 6768 } else 6769 userfqdnlen = 0; 6770 id = (struct sadb_ident *)p; 6771 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6772 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6773 id->sadb_ident_exttype = idexttype; 6774 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6775 /* XXX is it correct? */ 6776 if (curlwp) 6777 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred); 6778 if (userfqdn && userfqdnlen) 6779 memcpy(id + 1, userfqdn, userfqdnlen); 6780 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6781 } 6782 #endif 6783 6784 /* XXX sensitivity (optional) */ 6785 6786 /* create proposal/combination extension */ 6787 m = key_getprop(saidx, mflag); 6788 #if 0 6789 /* 6790 * spec conformant: always attach proposal/combination extension, 6791 * the problem is that we have no way to attach it for ipcomp, 6792 * due to the way sadb_comb is declared in RFC2367. 6793 */ 6794 if (!m) { 6795 error = ENOBUFS; 6796 goto fail; 6797 } 6798 m_cat(result, m); 6799 #else 6800 /* 6801 * outside of spec; make proposal/combination extension optional. 6802 */ 6803 if (m) 6804 m_cat(result, m); 6805 #endif 6806 6807 KASSERT(result->m_flags & M_PKTHDR); 6808 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 6809 6810 result->m_pkthdr.len = 0; 6811 for (m = result; m; m = m->m_next) 6812 result->m_pkthdr.len += m->m_len; 6813 6814 mtod(result, struct sadb_msg *)->sadb_msg_len = 6815 PFKEY_UNIT64(result->m_pkthdr.len); 6816 6817 /* 6818 * Called from key_api_acquire that must come from userland, so 6819 * we can call key_sendup_mbuf immediately. 6820 */ 6821 if (mflag == M_WAITOK) 6822 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6823 /* 6824 * XXX we cannot call key_sendup_mbuf directly here because 6825 * it can cause a deadlock: 6826 * - We have a reference to an SP (and an SA) here 6827 * - key_sendup_mbuf will try to take key_so_mtx 6828 * - Some other thread may try to localcount_drain to the SP with 6829 * holding key_so_mtx in say key_api_spdflush 6830 * - In this case localcount_drain never return because key_sendup_mbuf 6831 * that has stuck on key_so_mtx never release a reference to the SP 6832 * 6833 * So defer key_sendup_mbuf to the timer. 6834 */ 6835 return key_acquire_sendup_mbuf_later(result); 6836 6837 fail: 6838 if (result) 6839 m_freem(result); 6840 return error; 6841 } 6842 6843 static struct mbuf *key_acquire_mbuf_head = NULL; 6844 static unsigned key_acquire_mbuf_count = 0; 6845 #define KEY_ACQUIRE_MBUF_MAX 10 6846 6847 static void 6848 key_acquire_sendup_pending_mbuf(void) 6849 { 6850 struct mbuf *m, *prev; 6851 int error; 6852 6853 again: 6854 prev = NULL; 6855 mutex_enter(&key_misc.lock); 6856 m = key_acquire_mbuf_head; 6857 /* Get an earliest mbuf (one at the tail of the list) */ 6858 while (m != NULL) { 6859 if (m->m_nextpkt == NULL) { 6860 if (prev != NULL) 6861 prev->m_nextpkt = NULL; 6862 if (m == key_acquire_mbuf_head) 6863 key_acquire_mbuf_head = NULL; 6864 key_acquire_mbuf_count--; 6865 break; 6866 } 6867 prev = m; 6868 m = m->m_nextpkt; 6869 } 6870 mutex_exit(&key_misc.lock); 6871 6872 if (m == NULL) 6873 return; 6874 6875 m->m_nextpkt = NULL; 6876 error = key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 6877 if (error != 0) 6878 IPSECLOG(LOG_WARNING, "key_sendup_mbuf failed (error=%d)\n", 6879 error); 6880 6881 if (prev != NULL) 6882 goto again; 6883 } 6884 6885 static int 6886 key_acquire_sendup_mbuf_later(struct mbuf *m) 6887 { 6888 6889 mutex_enter(&key_misc.lock); 6890 /* Avoid queuing too much mbufs */ 6891 if (key_acquire_mbuf_count >= KEY_ACQUIRE_MBUF_MAX) { 6892 mutex_exit(&key_misc.lock); 6893 m_freem(m); 6894 return ENOBUFS; /* XXX */ 6895 } 6896 /* Enqueue mbuf at the head of the list */ 6897 m->m_nextpkt = key_acquire_mbuf_head; 6898 key_acquire_mbuf_head = m; 6899 key_acquire_mbuf_count++; 6900 mutex_exit(&key_misc.lock); 6901 6902 /* Kick the timer */ 6903 key_timehandler(NULL); 6904 6905 return 0; 6906 } 6907 6908 #ifndef IPSEC_NONBLOCK_ACQUIRE 6909 static struct secacq * 6910 key_newacq(const struct secasindex *saidx) 6911 { 6912 struct secacq *newacq; 6913 6914 /* get new entry */ 6915 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP); 6916 if (newacq == NULL) { 6917 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 6918 return NULL; 6919 } 6920 6921 /* copy secindex */ 6922 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx)); 6923 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); 6924 newacq->created = time_uptime; 6925 newacq->count = 0; 6926 6927 return newacq; 6928 } 6929 6930 static struct secacq * 6931 key_getacq(const struct secasindex *saidx) 6932 { 6933 struct secacq *acq; 6934 6935 KASSERT(mutex_owned(&key_misc.lock)); 6936 6937 LIST_FOREACH(acq, &key_misc.acqlist, chain) { 6938 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY)) 6939 return acq; 6940 } 6941 6942 return NULL; 6943 } 6944 6945 static struct secacq * 6946 key_getacqbyseq(u_int32_t seq) 6947 { 6948 struct secacq *acq; 6949 6950 KASSERT(mutex_owned(&key_misc.lock)); 6951 6952 LIST_FOREACH(acq, &key_misc.acqlist, chain) { 6953 if (acq->seq == seq) 6954 return acq; 6955 } 6956 6957 return NULL; 6958 } 6959 #endif 6960 6961 #ifdef notyet 6962 static struct secspacq * 6963 key_newspacq(const struct secpolicyindex *spidx) 6964 { 6965 struct secspacq *acq; 6966 6967 /* get new entry */ 6968 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP); 6969 if (acq == NULL) { 6970 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 6971 return NULL; 6972 } 6973 6974 /* copy secindex */ 6975 memcpy(&acq->spidx, spidx, sizeof(acq->spidx)); 6976 acq->created = time_uptime; 6977 acq->count = 0; 6978 6979 return acq; 6980 } 6981 6982 static struct secspacq * 6983 key_getspacq(const struct secpolicyindex *spidx) 6984 { 6985 struct secspacq *acq; 6986 6987 LIST_FOREACH(acq, &key_misc.spacqlist, chain) { 6988 if (key_spidx_match_exactly(spidx, &acq->spidx)) 6989 return acq; 6990 } 6991 6992 return NULL; 6993 } 6994 #endif /* notyet */ 6995 6996 /* 6997 * SADB_ACQUIRE processing, 6998 * in first situation, is receiving 6999 * <base> 7000 * from the ikmpd, and clear sequence of its secasvar entry. 7001 * 7002 * In second situation, is receiving 7003 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 7004 * from a user land process, and return 7005 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 7006 * to the socket. 7007 * 7008 * m will always be freed. 7009 */ 7010 static int 7011 key_api_acquire(struct socket *so, struct mbuf *m, 7012 const struct sadb_msghdr *mhp) 7013 { 7014 const struct sockaddr *src, *dst; 7015 struct secasindex saidx; 7016 u_int16_t proto; 7017 int error; 7018 7019 /* 7020 * Error message from KMd. 7021 * We assume that if error was occurred in IKEd, the length of PFKEY 7022 * message is equal to the size of sadb_msg structure. 7023 * We do not raise error even if error occurred in this function. 7024 */ 7025 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 7026 #ifndef IPSEC_NONBLOCK_ACQUIRE 7027 struct secacq *acq; 7028 7029 /* check sequence number */ 7030 if (mhp->msg->sadb_msg_seq == 0) { 7031 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n"); 7032 m_freem(m); 7033 return 0; 7034 } 7035 7036 mutex_enter(&key_misc.lock); 7037 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); 7038 if (acq == NULL) { 7039 mutex_exit(&key_misc.lock); 7040 /* 7041 * the specified larval SA is already gone, or we got 7042 * a bogus sequence number. we can silently ignore it. 7043 */ 7044 m_freem(m); 7045 return 0; 7046 } 7047 7048 /* reset acq counter in order to deletion by timehander. */ 7049 acq->created = time_uptime; 7050 acq->count = 0; 7051 mutex_exit(&key_misc.lock); 7052 #endif 7053 m_freem(m); 7054 return 0; 7055 } 7056 7057 /* 7058 * This message is from user land. 7059 */ 7060 7061 /* map satype to proto */ 7062 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 7063 if (proto == 0) { 7064 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7065 return key_senderror(so, m, EINVAL); 7066 } 7067 7068 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 7069 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 7070 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 7071 /* error */ 7072 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 7073 return key_senderror(so, m, EINVAL); 7074 } 7075 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 7076 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 7077 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 7078 /* error */ 7079 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 7080 return key_senderror(so, m, EINVAL); 7081 } 7082 7083 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 7084 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 7085 7086 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 7087 if (error != 0) 7088 return key_senderror(so, m, EINVAL); 7089 7090 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 7091 if (error != 0) 7092 return key_senderror(so, m, EINVAL); 7093 7094 /* get a SA index */ 7095 { 7096 struct secashead *sah; 7097 int s = pserialize_read_enter(); 7098 7099 sah = key_getsah(&saidx, CMP_MODE_REQID); 7100 if (sah != NULL) { 7101 pserialize_read_exit(s); 7102 IPSECLOG(LOG_DEBUG, "a SA exists already.\n"); 7103 return key_senderror(so, m, EEXIST); 7104 } 7105 pserialize_read_exit(s); 7106 } 7107 7108 error = key_acquire(&saidx, NULL, M_WAITOK); 7109 if (error != 0) { 7110 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", 7111 error); 7112 return key_senderror(so, m, error); 7113 } 7114 7115 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 7116 } 7117 7118 /* 7119 * SADB_REGISTER processing. 7120 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 7121 * receive 7122 * <base> 7123 * from the ikmpd, and register a socket to send PF_KEY messages, 7124 * and send 7125 * <base, supported> 7126 * to KMD by PF_KEY. 7127 * If socket is detached, must free from regnode. 7128 * 7129 * m will always be freed. 7130 */ 7131 static int 7132 key_api_register(struct socket *so, struct mbuf *m, 7133 const struct sadb_msghdr *mhp) 7134 { 7135 struct secreg *reg, *newreg = 0; 7136 7137 /* check for invalid register message */ 7138 if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist)) 7139 return key_senderror(so, m, EINVAL); 7140 7141 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 7142 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 7143 goto setmsg; 7144 7145 /* Allocate regnode in advance, out of mutex */ 7146 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP); 7147 7148 /* check whether existing or not */ 7149 mutex_enter(&key_misc.lock); 7150 LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) { 7151 if (reg->so == so) { 7152 IPSECLOG(LOG_DEBUG, "socket exists already.\n"); 7153 mutex_exit(&key_misc.lock); 7154 kmem_free(newreg, sizeof(*newreg)); 7155 return key_senderror(so, m, EEXIST); 7156 } 7157 } 7158 7159 newreg->so = so; 7160 ((struct keycb *)sotorawcb(so))->kp_registered++; 7161 7162 /* add regnode to key_misc.reglist. */ 7163 LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain); 7164 mutex_exit(&key_misc.lock); 7165 7166 setmsg: 7167 { 7168 struct mbuf *n; 7169 struct sadb_supported *sup; 7170 u_int len, alen, elen; 7171 int off; 7172 int i; 7173 struct sadb_alg *alg; 7174 7175 /* create new sadb_msg to reply. */ 7176 alen = 0; 7177 for (i = 1; i <= SADB_AALG_MAX; i++) { 7178 if (ah_algorithm_lookup(i)) 7179 alen += sizeof(struct sadb_alg); 7180 } 7181 if (alen) 7182 alen += sizeof(struct sadb_supported); 7183 elen = 0; 7184 for (i = 1; i <= SADB_EALG_MAX; i++) { 7185 if (esp_algorithm_lookup(i)) 7186 elen += sizeof(struct sadb_alg); 7187 } 7188 if (elen) 7189 elen += sizeof(struct sadb_supported); 7190 7191 len = sizeof(struct sadb_msg) + alen + elen; 7192 7193 if (len > MCLBYTES) 7194 return key_senderror(so, m, ENOBUFS); 7195 7196 n = key_alloc_mbuf_simple(len, M_WAITOK); 7197 n->m_pkthdr.len = n->m_len = len; 7198 n->m_next = NULL; 7199 off = 0; 7200 7201 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 7202 key_fill_replymsg(n, 0); 7203 7204 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 7205 7206 /* for authentication algorithm */ 7207 if (alen) { 7208 sup = (struct sadb_supported *)(mtod(n, char *) + off); 7209 sup->sadb_supported_len = PFKEY_UNIT64(alen); 7210 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 7211 off += PFKEY_ALIGN8(sizeof(*sup)); 7212 7213 for (i = 1; i <= SADB_AALG_MAX; i++) { 7214 const struct auth_hash *aalgo; 7215 u_int16_t minkeysize, maxkeysize; 7216 7217 aalgo = ah_algorithm_lookup(i); 7218 if (!aalgo) 7219 continue; 7220 alg = (struct sadb_alg *)(mtod(n, char *) + off); 7221 alg->sadb_alg_id = i; 7222 alg->sadb_alg_ivlen = 0; 7223 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 7224 alg->sadb_alg_minbits = _BITS(minkeysize); 7225 alg->sadb_alg_maxbits = _BITS(maxkeysize); 7226 off += PFKEY_ALIGN8(sizeof(*alg)); 7227 } 7228 } 7229 7230 /* for encryption algorithm */ 7231 if (elen) { 7232 sup = (struct sadb_supported *)(mtod(n, char *) + off); 7233 sup->sadb_supported_len = PFKEY_UNIT64(elen); 7234 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 7235 off += PFKEY_ALIGN8(sizeof(*sup)); 7236 7237 for (i = 1; i <= SADB_EALG_MAX; i++) { 7238 const struct enc_xform *ealgo; 7239 7240 ealgo = esp_algorithm_lookup(i); 7241 if (!ealgo) 7242 continue; 7243 alg = (struct sadb_alg *)(mtod(n, char *) + off); 7244 alg->sadb_alg_id = i; 7245 alg->sadb_alg_ivlen = ealgo->blocksize; 7246 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 7247 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 7248 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 7249 } 7250 } 7251 7252 KASSERTMSG(off == len, "length inconsistency"); 7253 7254 m_freem(m); 7255 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 7256 } 7257 } 7258 7259 /* 7260 * free secreg entry registered. 7261 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 7262 */ 7263 void 7264 key_freereg(struct socket *so) 7265 { 7266 struct secreg *reg; 7267 int i; 7268 7269 KASSERT(!cpu_softintr_p()); 7270 KASSERT(so != NULL); 7271 7272 /* 7273 * check whether existing or not. 7274 * check all type of SA, because there is a potential that 7275 * one socket is registered to multiple type of SA. 7276 */ 7277 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7278 mutex_enter(&key_misc.lock); 7279 LIST_FOREACH(reg, &key_misc.reglist[i], chain) { 7280 if (reg->so == so) { 7281 LIST_REMOVE(reg, chain); 7282 break; 7283 } 7284 } 7285 mutex_exit(&key_misc.lock); 7286 if (reg != NULL) 7287 kmem_free(reg, sizeof(*reg)); 7288 } 7289 7290 return; 7291 } 7292 7293 /* 7294 * SADB_EXPIRE processing 7295 * send 7296 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 7297 * to KMD by PF_KEY. 7298 * NOTE: We send only soft lifetime extension. 7299 * 7300 * OUT: 0 : succeed 7301 * others : error number 7302 */ 7303 static int 7304 key_expire(struct secasvar *sav) 7305 { 7306 int s; 7307 int satype; 7308 struct mbuf *result = NULL, *m; 7309 int len; 7310 int error = -1; 7311 struct sadb_lifetime *lt; 7312 lifetime_counters_t sum = {0}; 7313 7314 /* XXX: Why do we lock ? */ 7315 s = splsoftnet(); /*called from softclock()*/ 7316 7317 KASSERT(sav != NULL); 7318 7319 satype = key_proto2satype(sav->sah->saidx.proto); 7320 KASSERTMSG(satype != 0, "invalid proto is passed"); 7321 7322 /* set msg header */ 7323 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav), 7324 M_WAITOK); 7325 result = m; 7326 7327 /* create SA extension */ 7328 m = key_setsadbsa(sav); 7329 m_cat(result, m); 7330 7331 /* create SA extension */ 7332 m = key_setsadbxsa2(sav->sah->saidx.mode, 7333 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid); 7334 m_cat(result, m); 7335 7336 /* create lifetime extension (current and soft) */ 7337 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 7338 m = key_alloc_mbuf(len, M_WAITOK); 7339 KASSERT(m->m_next == NULL); 7340 7341 memset(mtod(m, void *), 0, len); 7342 lt = mtod(m, struct sadb_lifetime *); 7343 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7344 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 7345 percpu_foreach(sav->lft_c_counters_percpu, 7346 key_sum_lifetime_counters, sum); 7347 lt->sadb_lifetime_allocations = sum[LIFETIME_COUNTER_ALLOCATIONS]; 7348 lt->sadb_lifetime_bytes = sum[LIFETIME_COUNTER_BYTES]; 7349 lt->sadb_lifetime_addtime = 7350 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime); 7351 lt->sadb_lifetime_usetime = 7352 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime); 7353 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 7354 memcpy(lt, sav->lft_s, sizeof(*lt)); 7355 m_cat(result, m); 7356 7357 /* set sadb_address for source */ 7358 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, 7359 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 7360 m_cat(result, m); 7361 7362 /* set sadb_address for destination */ 7363 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa, 7364 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 7365 m_cat(result, m); 7366 7367 if ((result->m_flags & M_PKTHDR) == 0) { 7368 error = EINVAL; 7369 goto fail; 7370 } 7371 7372 if (result->m_len < sizeof(struct sadb_msg)) { 7373 result = m_pullup(result, sizeof(struct sadb_msg)); 7374 if (result == NULL) { 7375 error = ENOBUFS; 7376 goto fail; 7377 } 7378 } 7379 7380 result->m_pkthdr.len = 0; 7381 for (m = result; m; m = m->m_next) 7382 result->m_pkthdr.len += m->m_len; 7383 7384 mtod(result, struct sadb_msg *)->sadb_msg_len = 7385 PFKEY_UNIT64(result->m_pkthdr.len); 7386 7387 splx(s); 7388 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7389 7390 fail: 7391 if (result) 7392 m_freem(result); 7393 splx(s); 7394 return error; 7395 } 7396 7397 /* 7398 * SADB_FLUSH processing 7399 * receive 7400 * <base> 7401 * from the ikmpd, and free all entries in secastree. 7402 * and send, 7403 * <base> 7404 * to the ikmpd. 7405 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7406 * 7407 * m will always be freed. 7408 */ 7409 static int 7410 key_api_flush(struct socket *so, struct mbuf *m, 7411 const struct sadb_msghdr *mhp) 7412 { 7413 struct sadb_msg *newmsg; 7414 struct secashead *sah; 7415 struct secasvar *sav; 7416 u_int16_t proto; 7417 u_int8_t state; 7418 int s; 7419 7420 /* map satype to proto */ 7421 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 7422 if (proto == 0) { 7423 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7424 return key_senderror(so, m, EINVAL); 7425 } 7426 7427 /* no SATYPE specified, i.e. flushing all SA. */ 7428 s = pserialize_read_enter(); 7429 SAHLIST_READER_FOREACH(sah) { 7430 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && 7431 proto != sah->saidx.proto) 7432 continue; 7433 7434 key_sah_ref(sah); 7435 pserialize_read_exit(s); 7436 7437 SASTATE_ALIVE_FOREACH(state) { 7438 restart: 7439 mutex_enter(&key_sad.lock); 7440 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7441 sav->state = SADB_SASTATE_DEAD; 7442 key_unlink_sav(sav); 7443 mutex_exit(&key_sad.lock); 7444 key_destroy_sav(sav); 7445 goto restart; 7446 } 7447 mutex_exit(&key_sad.lock); 7448 } 7449 7450 s = pserialize_read_enter(); 7451 sah->state = SADB_SASTATE_DEAD; 7452 key_sah_unref(sah); 7453 } 7454 pserialize_read_exit(s); 7455 7456 if (m->m_len < sizeof(struct sadb_msg) || 7457 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7458 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 7459 return key_senderror(so, m, ENOBUFS); 7460 } 7461 7462 if (m->m_next) 7463 m_freem(m->m_next); 7464 m->m_next = NULL; 7465 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7466 newmsg = mtod(m, struct sadb_msg *); 7467 newmsg->sadb_msg_errno = 0; 7468 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7469 7470 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7471 } 7472 7473 7474 static struct mbuf * 7475 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid) 7476 { 7477 struct secashead *sah; 7478 struct secasvar *sav; 7479 u_int16_t proto; 7480 u_int8_t satype; 7481 u_int8_t state; 7482 int cnt; 7483 struct mbuf *m, *n, *prev; 7484 7485 KASSERT(mutex_owned(&key_sad.lock)); 7486 7487 *lenp = 0; 7488 7489 /* map satype to proto */ 7490 proto = key_satype2proto(req_satype); 7491 if (proto == 0) { 7492 *errorp = EINVAL; 7493 return (NULL); 7494 } 7495 7496 /* count sav entries to be sent to userland. */ 7497 cnt = 0; 7498 SAHLIST_WRITER_FOREACH(sah) { 7499 if (req_satype != SADB_SATYPE_UNSPEC && 7500 proto != sah->saidx.proto) 7501 continue; 7502 7503 SASTATE_ANY_FOREACH(state) { 7504 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7505 cnt++; 7506 } 7507 } 7508 } 7509 7510 if (cnt == 0) { 7511 *errorp = ENOENT; 7512 return (NULL); 7513 } 7514 7515 /* send this to the userland, one at a time. */ 7516 m = NULL; 7517 prev = m; 7518 SAHLIST_WRITER_FOREACH(sah) { 7519 if (req_satype != SADB_SATYPE_UNSPEC && 7520 proto != sah->saidx.proto) 7521 continue; 7522 7523 /* map proto to satype */ 7524 satype = key_proto2satype(sah->saidx.proto); 7525 if (satype == 0) { 7526 m_freem(m); 7527 *errorp = EINVAL; 7528 return (NULL); 7529 } 7530 7531 SASTATE_ANY_FOREACH(state) { 7532 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7533 n = key_setdumpsa(sav, SADB_DUMP, satype, 7534 --cnt, pid); 7535 if (!m) 7536 m = n; 7537 else 7538 prev->m_nextpkt = n; 7539 prev = n; 7540 } 7541 } 7542 } 7543 7544 if (!m) { 7545 *errorp = EINVAL; 7546 return (NULL); 7547 } 7548 7549 if ((m->m_flags & M_PKTHDR) != 0) { 7550 m->m_pkthdr.len = 0; 7551 for (n = m; n; n = n->m_next) 7552 m->m_pkthdr.len += n->m_len; 7553 } 7554 7555 *errorp = 0; 7556 return (m); 7557 } 7558 7559 /* 7560 * SADB_DUMP processing 7561 * dump all entries including status of DEAD in SAD. 7562 * receive 7563 * <base> 7564 * from the ikmpd, and dump all secasvar leaves 7565 * and send, 7566 * <base> ..... 7567 * to the ikmpd. 7568 * 7569 * m will always be freed. 7570 */ 7571 static int 7572 key_api_dump(struct socket *so, struct mbuf *m0, 7573 const struct sadb_msghdr *mhp) 7574 { 7575 u_int16_t proto; 7576 u_int8_t satype; 7577 struct mbuf *n; 7578 int error, len, ok; 7579 7580 /* map satype to proto */ 7581 satype = mhp->msg->sadb_msg_satype; 7582 proto = key_satype2proto(satype); 7583 if (proto == 0) { 7584 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7585 return key_senderror(so, m0, EINVAL); 7586 } 7587 7588 /* 7589 * If the requestor has insufficient socket-buffer space 7590 * for the entire chain, nobody gets any response to the DUMP. 7591 * XXX For now, only the requestor ever gets anything. 7592 * Moreover, if the requestor has any space at all, they receive 7593 * the entire chain, otherwise the request is refused with ENOBUFS. 7594 */ 7595 if (sbspace(&so->so_rcv) <= 0) { 7596 return key_senderror(so, m0, ENOBUFS); 7597 } 7598 7599 mutex_enter(&key_sad.lock); 7600 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid); 7601 mutex_exit(&key_sad.lock); 7602 7603 if (n == NULL) { 7604 return key_senderror(so, m0, ENOENT); 7605 } 7606 { 7607 uint64_t *ps = PFKEY_STAT_GETREF(); 7608 ps[PFKEY_STAT_IN_TOTAL]++; 7609 ps[PFKEY_STAT_IN_BYTES] += len; 7610 PFKEY_STAT_PUTREF(); 7611 } 7612 7613 /* 7614 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 7615 * The requestor receives either the entire chain, or an 7616 * error message with ENOBUFS. 7617 * 7618 * sbappendaddrchain() takes the chain of entries, one 7619 * packet-record per SPD entry, prepends the key_src sockaddr 7620 * to each packet-record, links the sockaddr mbufs into a new 7621 * list of records, then appends the entire resulting 7622 * list to the requesting socket. 7623 */ 7624 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, 7625 SB_PRIO_ONESHOT_OVERFLOW); 7626 7627 if (!ok) { 7628 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 7629 m_freem(n); 7630 return key_senderror(so, m0, ENOBUFS); 7631 } 7632 7633 m_freem(m0); 7634 return 0; 7635 } 7636 7637 /* 7638 * SADB_X_PROMISC processing 7639 * 7640 * m will always be freed. 7641 */ 7642 static int 7643 key_api_promisc(struct socket *so, struct mbuf *m, 7644 const struct sadb_msghdr *mhp) 7645 { 7646 int olen; 7647 7648 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7649 7650 if (olen < sizeof(struct sadb_msg)) { 7651 #if 1 7652 return key_senderror(so, m, EINVAL); 7653 #else 7654 m_freem(m); 7655 return 0; 7656 #endif 7657 } else if (olen == sizeof(struct sadb_msg)) { 7658 /* enable/disable promisc mode */ 7659 struct keycb *kp = (struct keycb *)sotorawcb(so); 7660 if (kp == NULL) 7661 return key_senderror(so, m, EINVAL); 7662 mhp->msg->sadb_msg_errno = 0; 7663 switch (mhp->msg->sadb_msg_satype) { 7664 case 0: 7665 case 1: 7666 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7667 break; 7668 default: 7669 return key_senderror(so, m, EINVAL); 7670 } 7671 7672 /* send the original message back to everyone */ 7673 mhp->msg->sadb_msg_errno = 0; 7674 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7675 } else { 7676 /* send packet as is */ 7677 7678 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7679 7680 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7681 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7682 } 7683 } 7684 7685 static int (*key_api_typesw[]) (struct socket *, struct mbuf *, 7686 const struct sadb_msghdr *) = { 7687 NULL, /* SADB_RESERVED */ 7688 key_api_getspi, /* SADB_GETSPI */ 7689 key_api_update, /* SADB_UPDATE */ 7690 key_api_add, /* SADB_ADD */ 7691 key_api_delete, /* SADB_DELETE */ 7692 key_api_get, /* SADB_GET */ 7693 key_api_acquire, /* SADB_ACQUIRE */ 7694 key_api_register, /* SADB_REGISTER */ 7695 NULL, /* SADB_EXPIRE */ 7696 key_api_flush, /* SADB_FLUSH */ 7697 key_api_dump, /* SADB_DUMP */ 7698 key_api_promisc, /* SADB_X_PROMISC */ 7699 NULL, /* SADB_X_PCHANGE */ 7700 key_api_spdadd, /* SADB_X_SPDUPDATE */ 7701 key_api_spdadd, /* SADB_X_SPDADD */ 7702 key_api_spddelete, /* SADB_X_SPDDELETE */ 7703 key_api_spdget, /* SADB_X_SPDGET */ 7704 NULL, /* SADB_X_SPDACQUIRE */ 7705 key_api_spddump, /* SADB_X_SPDDUMP */ 7706 key_api_spdflush, /* SADB_X_SPDFLUSH */ 7707 key_api_spdadd, /* SADB_X_SPDSETIDX */ 7708 NULL, /* SADB_X_SPDEXPIRE */ 7709 key_api_spddelete2, /* SADB_X_SPDDELETE2 */ 7710 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */ 7711 }; 7712 7713 /* 7714 * parse sadb_msg buffer to process PFKEYv2, 7715 * and create a data to response if needed. 7716 * I think to be dealed with mbuf directly. 7717 * IN: 7718 * msgp : pointer to pointer to a received buffer pulluped. 7719 * This is rewrited to response. 7720 * so : pointer to socket. 7721 * OUT: 7722 * length for buffer to send to user process. 7723 */ 7724 int 7725 key_parse(struct mbuf *m, struct socket *so) 7726 { 7727 struct sadb_msg *msg; 7728 struct sadb_msghdr mh; 7729 u_int orglen; 7730 int error; 7731 7732 KASSERT(m != NULL); 7733 KASSERT(so != NULL); 7734 7735 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7736 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) { 7737 kdebug_sadb("passed sadb_msg", msg); 7738 } 7739 #endif 7740 7741 if (m->m_len < sizeof(struct sadb_msg)) { 7742 m = m_pullup(m, sizeof(struct sadb_msg)); 7743 if (!m) 7744 return ENOBUFS; 7745 } 7746 msg = mtod(m, struct sadb_msg *); 7747 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7748 7749 if ((m->m_flags & M_PKTHDR) == 0 || 7750 m->m_pkthdr.len != orglen) { 7751 IPSECLOG(LOG_DEBUG, "invalid message length.\n"); 7752 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7753 error = EINVAL; 7754 goto senderror; 7755 } 7756 7757 if (msg->sadb_msg_version != PF_KEY_V2) { 7758 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n", 7759 msg->sadb_msg_version); 7760 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER); 7761 error = EINVAL; 7762 goto senderror; 7763 } 7764 7765 if (msg->sadb_msg_type > SADB_MAX) { 7766 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", 7767 msg->sadb_msg_type); 7768 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 7769 error = EINVAL; 7770 goto senderror; 7771 } 7772 7773 /* for old-fashioned code - should be nuked */ 7774 if (m->m_pkthdr.len > MCLBYTES) { 7775 m_freem(m); 7776 return ENOBUFS; 7777 } 7778 if (m->m_next) { 7779 struct mbuf *n; 7780 7781 n = key_alloc_mbuf_simple(m->m_pkthdr.len, M_WAITOK); 7782 7783 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *)); 7784 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7785 n->m_next = NULL; 7786 m_freem(m); 7787 m = n; 7788 } 7789 7790 /* align the mbuf chain so that extensions are in contiguous region. */ 7791 error = key_align(m, &mh); 7792 if (error) 7793 return error; 7794 7795 if (m->m_next) { /*XXX*/ 7796 m_freem(m); 7797 return ENOBUFS; 7798 } 7799 7800 msg = mh.msg; 7801 7802 /* check SA type */ 7803 switch (msg->sadb_msg_satype) { 7804 case SADB_SATYPE_UNSPEC: 7805 switch (msg->sadb_msg_type) { 7806 case SADB_GETSPI: 7807 case SADB_UPDATE: 7808 case SADB_ADD: 7809 case SADB_DELETE: 7810 case SADB_GET: 7811 case SADB_ACQUIRE: 7812 case SADB_EXPIRE: 7813 IPSECLOG(LOG_DEBUG, 7814 "must specify satype when msg type=%u.\n", 7815 msg->sadb_msg_type); 7816 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7817 error = EINVAL; 7818 goto senderror; 7819 } 7820 break; 7821 case SADB_SATYPE_AH: 7822 case SADB_SATYPE_ESP: 7823 case SADB_X_SATYPE_IPCOMP: 7824 case SADB_X_SATYPE_TCPSIGNATURE: 7825 switch (msg->sadb_msg_type) { 7826 case SADB_X_SPDADD: 7827 case SADB_X_SPDDELETE: 7828 case SADB_X_SPDGET: 7829 case SADB_X_SPDDUMP: 7830 case SADB_X_SPDFLUSH: 7831 case SADB_X_SPDSETIDX: 7832 case SADB_X_SPDUPDATE: 7833 case SADB_X_SPDDELETE2: 7834 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n", 7835 msg->sadb_msg_type); 7836 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7837 error = EINVAL; 7838 goto senderror; 7839 } 7840 break; 7841 case SADB_SATYPE_RSVP: 7842 case SADB_SATYPE_OSPFV2: 7843 case SADB_SATYPE_RIPV2: 7844 case SADB_SATYPE_MIP: 7845 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n", 7846 msg->sadb_msg_satype); 7847 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7848 error = EOPNOTSUPP; 7849 goto senderror; 7850 case 1: /* XXX: What does it do? */ 7851 if (msg->sadb_msg_type == SADB_X_PROMISC) 7852 break; 7853 /*FALLTHROUGH*/ 7854 default: 7855 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", 7856 msg->sadb_msg_satype); 7857 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7858 error = EINVAL; 7859 goto senderror; 7860 } 7861 7862 /* check field of upper layer protocol and address family */ 7863 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL && 7864 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7865 const struct sadb_address *src0, *dst0; 7866 const struct sockaddr *sa0, *da0; 7867 u_int plen; 7868 7869 src0 = mh.ext[SADB_EXT_ADDRESS_SRC]; 7870 dst0 = mh.ext[SADB_EXT_ADDRESS_DST]; 7871 sa0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_SRC); 7872 da0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_DST); 7873 7874 /* check upper layer protocol */ 7875 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7876 IPSECLOG(LOG_DEBUG, 7877 "upper layer protocol mismatched src %u, dst %u.\n", 7878 src0->sadb_address_proto, dst0->sadb_address_proto); 7879 7880 goto invaddr; 7881 } 7882 7883 /* check family */ 7884 if (sa0->sa_family != da0->sa_family) { 7885 IPSECLOG(LOG_DEBUG, 7886 "address family mismatched src %u, dst %u.\n", 7887 sa0->sa_family, da0->sa_family); 7888 goto invaddr; 7889 } 7890 if (sa0->sa_len != da0->sa_len) { 7891 IPSECLOG(LOG_DEBUG, 7892 "address size mismatched src %u, dst %u.\n", 7893 sa0->sa_len, da0->sa_len); 7894 goto invaddr; 7895 } 7896 7897 switch (sa0->sa_family) { 7898 case AF_INET: 7899 if (sa0->sa_len != sizeof(struct sockaddr_in)) { 7900 IPSECLOG(LOG_DEBUG, 7901 "address size mismatched %u != %zu.\n", 7902 sa0->sa_len, sizeof(struct sockaddr_in)); 7903 goto invaddr; 7904 } 7905 break; 7906 case AF_INET6: 7907 if (sa0->sa_len != sizeof(struct sockaddr_in6)) { 7908 IPSECLOG(LOG_DEBUG, 7909 "address size mismatched %u != %zu.\n", 7910 sa0->sa_len, sizeof(struct sockaddr_in6)); 7911 goto invaddr; 7912 } 7913 break; 7914 default: 7915 IPSECLOG(LOG_DEBUG, "unsupported address family %u.\n", 7916 sa0->sa_family); 7917 error = EAFNOSUPPORT; 7918 goto senderror; 7919 } 7920 plen = key_sabits(sa0); 7921 7922 /* check max prefix length */ 7923 if (src0->sadb_address_prefixlen > plen || 7924 dst0->sadb_address_prefixlen > plen) { 7925 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n"); 7926 goto invaddr; 7927 } 7928 7929 /* 7930 * prefixlen == 0 is valid because there can be a case when 7931 * all addresses are matched. 7932 */ 7933 } 7934 7935 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) || 7936 key_api_typesw[msg->sadb_msg_type] == NULL) { 7937 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 7938 error = EINVAL; 7939 goto senderror; 7940 } 7941 7942 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh); 7943 7944 invaddr: 7945 error = EINVAL; 7946 senderror: 7947 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 7948 return key_senderror(so, m, error); 7949 } 7950 7951 static int 7952 key_senderror(struct socket *so, struct mbuf *m, int code) 7953 { 7954 struct sadb_msg *msg; 7955 7956 KASSERT(m->m_len >= sizeof(struct sadb_msg)); 7957 7958 if (so == NULL) { 7959 /* 7960 * This means the request comes from kernel. 7961 * As the request comes from kernel, it is unnecessary to 7962 * send message to userland. Just return errcode directly. 7963 */ 7964 m_freem(m); 7965 return code; 7966 } 7967 7968 msg = mtod(m, struct sadb_msg *); 7969 msg->sadb_msg_errno = code; 7970 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7971 } 7972 7973 /* 7974 * set the pointer to each header into message buffer. 7975 * m will be freed on error. 7976 * XXX larger-than-MCLBYTES extension? 7977 */ 7978 static int 7979 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 7980 { 7981 struct mbuf *n; 7982 struct sadb_ext *ext; 7983 size_t off, end; 7984 int extlen; 7985 int toff; 7986 7987 KASSERT(m != NULL); 7988 KASSERT(mhp != NULL); 7989 KASSERT(m->m_len >= sizeof(struct sadb_msg)); 7990 7991 /* initialize */ 7992 memset(mhp, 0, sizeof(*mhp)); 7993 7994 mhp->msg = mtod(m, struct sadb_msg *); 7995 mhp->ext[0] = mhp->msg; /*XXX backward compat */ 7996 7997 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7998 extlen = end; /*just in case extlen is not updated*/ 7999 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 8000 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 8001 if (!n) { 8002 /* m is already freed */ 8003 return ENOBUFS; 8004 } 8005 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 8006 8007 /* set pointer */ 8008 switch (ext->sadb_ext_type) { 8009 case SADB_EXT_SA: 8010 case SADB_EXT_ADDRESS_SRC: 8011 case SADB_EXT_ADDRESS_DST: 8012 case SADB_EXT_ADDRESS_PROXY: 8013 case SADB_EXT_LIFETIME_CURRENT: 8014 case SADB_EXT_LIFETIME_HARD: 8015 case SADB_EXT_LIFETIME_SOFT: 8016 case SADB_EXT_KEY_AUTH: 8017 case SADB_EXT_KEY_ENCRYPT: 8018 case SADB_EXT_IDENTITY_SRC: 8019 case SADB_EXT_IDENTITY_DST: 8020 case SADB_EXT_SENSITIVITY: 8021 case SADB_EXT_PROPOSAL: 8022 case SADB_EXT_SUPPORTED_AUTH: 8023 case SADB_EXT_SUPPORTED_ENCRYPT: 8024 case SADB_EXT_SPIRANGE: 8025 case SADB_X_EXT_POLICY: 8026 case SADB_X_EXT_SA2: 8027 case SADB_X_EXT_NAT_T_TYPE: 8028 case SADB_X_EXT_NAT_T_SPORT: 8029 case SADB_X_EXT_NAT_T_DPORT: 8030 case SADB_X_EXT_NAT_T_OAI: 8031 case SADB_X_EXT_NAT_T_OAR: 8032 case SADB_X_EXT_NAT_T_FRAG: 8033 /* duplicate check */ 8034 /* 8035 * XXX Are there duplication payloads of either 8036 * KEY_AUTH or KEY_ENCRYPT ? 8037 */ 8038 if (mhp->ext[ext->sadb_ext_type] != NULL) { 8039 IPSECLOG(LOG_DEBUG, 8040 "duplicate ext_type %u is passed.\n", 8041 ext->sadb_ext_type); 8042 m_freem(m); 8043 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT); 8044 return EINVAL; 8045 } 8046 break; 8047 default: 8048 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n", 8049 ext->sadb_ext_type); 8050 m_freem(m); 8051 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE); 8052 return EINVAL; 8053 } 8054 8055 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 8056 8057 if (key_validate_ext(ext, extlen)) { 8058 m_freem(m); 8059 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 8060 return EINVAL; 8061 } 8062 8063 n = m_pulldown(m, off, extlen, &toff); 8064 if (!n) { 8065 /* m is already freed */ 8066 return ENOBUFS; 8067 } 8068 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 8069 8070 mhp->ext[ext->sadb_ext_type] = ext; 8071 mhp->extoff[ext->sadb_ext_type] = off; 8072 mhp->extlen[ext->sadb_ext_type] = extlen; 8073 } 8074 8075 if (off != end) { 8076 m_freem(m); 8077 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 8078 return EINVAL; 8079 } 8080 8081 return 0; 8082 } 8083 8084 static int 8085 key_validate_ext(const struct sadb_ext *ext, int len) 8086 { 8087 const struct sockaddr *sa; 8088 enum { NONE, ADDR } checktype = NONE; 8089 int baselen = 0; 8090 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 8091 8092 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 8093 return EINVAL; 8094 8095 /* if it does not match minimum/maximum length, bail */ 8096 if (ext->sadb_ext_type >= __arraycount(minsize) || 8097 ext->sadb_ext_type >= __arraycount(maxsize)) 8098 return EINVAL; 8099 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 8100 return EINVAL; 8101 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 8102 return EINVAL; 8103 8104 /* more checks based on sadb_ext_type XXX need more */ 8105 switch (ext->sadb_ext_type) { 8106 case SADB_EXT_ADDRESS_SRC: 8107 case SADB_EXT_ADDRESS_DST: 8108 case SADB_EXT_ADDRESS_PROXY: 8109 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 8110 checktype = ADDR; 8111 break; 8112 case SADB_EXT_IDENTITY_SRC: 8113 case SADB_EXT_IDENTITY_DST: 8114 if (((const struct sadb_ident *)ext)->sadb_ident_type == 8115 SADB_X_IDENTTYPE_ADDR) { 8116 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 8117 checktype = ADDR; 8118 } else 8119 checktype = NONE; 8120 break; 8121 default: 8122 checktype = NONE; 8123 break; 8124 } 8125 8126 switch (checktype) { 8127 case NONE: 8128 break; 8129 case ADDR: 8130 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 8131 if (len < baselen + sal) 8132 return EINVAL; 8133 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 8134 return EINVAL; 8135 break; 8136 } 8137 8138 return 0; 8139 } 8140 8141 static int 8142 key_do_init(void) 8143 { 8144 int i, error; 8145 8146 mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE); 8147 8148 mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE); 8149 cv_init(&key_spd.cv_lc, "key_sp_lc"); 8150 key_spd.psz = pserialize_create(); 8151 cv_init(&key_spd.cv_psz, "key_sp_psz"); 8152 key_spd.psz_performing = false; 8153 8154 mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE); 8155 cv_init(&key_sad.cv_lc, "key_sa_lc"); 8156 key_sad.psz = pserialize_create(); 8157 cv_init(&key_sad.cv_psz, "key_sa_psz"); 8158 key_sad.psz_performing = false; 8159 8160 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS); 8161 8162 callout_init(&key_timehandler_ch, CALLOUT_MPSAFE); 8163 error = workqueue_create(&key_timehandler_wq, "key_timehandler", 8164 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE); 8165 if (error != 0) 8166 panic("%s: workqueue_create failed (%d)\n", __func__, error); 8167 8168 for (i = 0; i < IPSEC_DIR_MAX; i++) { 8169 PSLIST_INIT(&key_spd.splist[i]); 8170 } 8171 8172 PSLIST_INIT(&key_spd.socksplist); 8173 8174 key_sad.sahlists = hashinit(SAHHASH_NHASH, HASH_PSLIST, true, 8175 &key_sad.sahlistmask); 8176 key_sad.savlut = hashinit(SAVLUT_NHASH, HASH_PSLIST, true, 8177 &key_sad.savlutmask); 8178 8179 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 8180 LIST_INIT(&key_misc.reglist[i]); 8181 } 8182 8183 #ifndef IPSEC_NONBLOCK_ACQUIRE 8184 LIST_INIT(&key_misc.acqlist); 8185 #endif 8186 #ifdef notyet 8187 LIST_INIT(&key_misc.spacqlist); 8188 #endif 8189 8190 /* system default */ 8191 ip4_def_policy.policy = IPSEC_POLICY_NONE; 8192 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE; 8193 localcount_init(&ip4_def_policy.localcount); 8194 8195 #ifdef INET6 8196 ip6_def_policy.policy = IPSEC_POLICY_NONE; 8197 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE; 8198 localcount_init(&ip6_def_policy.localcount); 8199 #endif 8200 8201 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 8202 8203 /* initialize key statistics */ 8204 keystat.getspi_count = 1; 8205 8206 aprint_verbose("IPsec: Initialized Security Association Processing.\n"); 8207 8208 return (0); 8209 } 8210 8211 void 8212 key_init(void) 8213 { 8214 static ONCE_DECL(key_init_once); 8215 8216 sysctl_net_keyv2_setup(NULL); 8217 sysctl_net_key_compat_setup(NULL); 8218 8219 RUN_ONCE(&key_init_once, key_do_init); 8220 8221 key_init_so(); 8222 } 8223 8224 /* 8225 * XXX: maybe This function is called after INBOUND IPsec processing. 8226 * 8227 * Special check for tunnel-mode packets. 8228 * We must make some checks for consistency between inner and outer IP header. 8229 * 8230 * xxx more checks to be provided 8231 */ 8232 int 8233 key_checktunnelsanity( 8234 struct secasvar *sav, 8235 u_int family, 8236 void *src, 8237 void *dst 8238 ) 8239 { 8240 8241 /* XXX: check inner IP header */ 8242 8243 return 1; 8244 } 8245 8246 #if 0 8247 #define hostnamelen strlen(hostname) 8248 8249 /* 8250 * Get FQDN for the host. 8251 * If the administrator configured hostname (by hostname(1)) without 8252 * domain name, returns nothing. 8253 */ 8254 static const char * 8255 key_getfqdn(void) 8256 { 8257 int i; 8258 int hasdot; 8259 static char fqdn[MAXHOSTNAMELEN + 1]; 8260 8261 if (!hostnamelen) 8262 return NULL; 8263 8264 /* check if it comes with domain name. */ 8265 hasdot = 0; 8266 for (i = 0; i < hostnamelen; i++) { 8267 if (hostname[i] == '.') 8268 hasdot++; 8269 } 8270 if (!hasdot) 8271 return NULL; 8272 8273 /* NOTE: hostname may not be NUL-terminated. */ 8274 memset(fqdn, 0, sizeof(fqdn)); 8275 memcpy(fqdn, hostname, hostnamelen); 8276 fqdn[hostnamelen] = '\0'; 8277 return fqdn; 8278 } 8279 8280 /* 8281 * get username@FQDN for the host/user. 8282 */ 8283 static const char * 8284 key_getuserfqdn(void) 8285 { 8286 const char *host; 8287 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2]; 8288 struct proc *p = curproc; 8289 char *q; 8290 8291 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session) 8292 return NULL; 8293 if (!(host = key_getfqdn())) 8294 return NULL; 8295 8296 /* NOTE: s_login may not be-NUL terminated. */ 8297 memset(userfqdn, 0, sizeof(userfqdn)); 8298 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME); 8299 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */ 8300 q = userfqdn + strlen(userfqdn); 8301 *q++ = '@'; 8302 memcpy(q, host, strlen(host)); 8303 q += strlen(host); 8304 *q++ = '\0'; 8305 8306 return userfqdn; 8307 } 8308 #endif 8309 8310 /* record data transfer on SA, and update timestamps */ 8311 void 8312 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 8313 { 8314 lifetime_counters_t *counters; 8315 8316 KASSERT(sav != NULL); 8317 KASSERT(sav->lft_c != NULL); 8318 KASSERT(m != NULL); 8319 8320 counters = percpu_getref(sav->lft_c_counters_percpu); 8321 8322 /* 8323 * XXX Currently, there is a difference of bytes size 8324 * between inbound and outbound processing. 8325 */ 8326 (*counters)[LIFETIME_COUNTER_BYTES] += m->m_pkthdr.len; 8327 /* to check bytes lifetime is done in key_timehandler(). */ 8328 8329 /* 8330 * We use the number of packets as the unit of 8331 * sadb_lifetime_allocations. We increment the variable 8332 * whenever {esp,ah}_{in,out}put is called. 8333 */ 8334 (*counters)[LIFETIME_COUNTER_ALLOCATIONS]++; 8335 /* XXX check for expires? */ 8336 8337 percpu_putref(sav->lft_c_counters_percpu); 8338 8339 /* 8340 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock, 8341 * in seconds. HARD and SOFT lifetime are measured by the time 8342 * difference (again in seconds) from sadb_lifetime_usetime. 8343 * 8344 * usetime 8345 * v expire expire 8346 * -----+-----+--------+---> t 8347 * <--------------> HARD 8348 * <-----> SOFT 8349 */ 8350 sav->lft_c->sadb_lifetime_usetime = time_uptime; 8351 /* XXX check for expires? */ 8352 8353 return; 8354 } 8355 8356 /* dumb version */ 8357 void 8358 key_sa_routechange(struct sockaddr *dst) 8359 { 8360 struct secashead *sah; 8361 int s; 8362 8363 s = pserialize_read_enter(); 8364 SAHLIST_READER_FOREACH(sah) { 8365 struct route *ro; 8366 const struct sockaddr *sa; 8367 8368 key_sah_ref(sah); 8369 pserialize_read_exit(s); 8370 8371 ro = &sah->sa_route; 8372 sa = rtcache_getdst(ro); 8373 if (sa != NULL && dst->sa_len == sa->sa_len && 8374 memcmp(dst, sa, dst->sa_len) == 0) 8375 rtcache_free(ro); 8376 8377 s = pserialize_read_enter(); 8378 key_sah_unref(sah); 8379 } 8380 pserialize_read_exit(s); 8381 8382 return; 8383 } 8384 8385 static void 8386 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 8387 { 8388 struct secasvar *_sav; 8389 8390 ASSERT_SLEEPABLE(); 8391 KASSERT(mutex_owned(&key_sad.lock)); 8392 8393 if (sav->state == state) 8394 return; 8395 8396 key_unlink_sav(sav); 8397 localcount_fini(&sav->localcount); 8398 SAVLIST_ENTRY_DESTROY(sav); 8399 key_init_sav(sav); 8400 8401 sav->state = state; 8402 if (!SADB_SASTATE_USABLE_P(sav)) { 8403 /* We don't need to care about the order */ 8404 SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav); 8405 return; 8406 } 8407 /* 8408 * Sort the list by lft_c->sadb_lifetime_addtime 8409 * in ascending order. 8410 */ 8411 SAVLIST_WRITER_FOREACH(_sav, sav->sah, state) { 8412 if (_sav->lft_c->sadb_lifetime_addtime > 8413 sav->lft_c->sadb_lifetime_addtime) { 8414 SAVLIST_WRITER_INSERT_BEFORE(_sav, sav); 8415 break; 8416 } 8417 } 8418 if (_sav == NULL) { 8419 SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav); 8420 } 8421 8422 SAVLUT_WRITER_INSERT_HEAD(sav); 8423 8424 key_validate_savlist(sav->sah, state); 8425 } 8426 8427 /* XXX too much? */ 8428 static struct mbuf * 8429 key_alloc_mbuf(int l, int mflag) 8430 { 8431 struct mbuf *m = NULL, *n; 8432 int len, t; 8433 8434 KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p())); 8435 8436 len = l; 8437 while (len > 0) { 8438 MGET(n, mflag, MT_DATA); 8439 if (n && len > MLEN) { 8440 MCLGET(n, mflag); 8441 if ((n->m_flags & M_EXT) == 0) { 8442 m_freem(n); 8443 n = NULL; 8444 } 8445 } 8446 if (!n) { 8447 m_freem(m); 8448 return NULL; 8449 } 8450 8451 n->m_next = NULL; 8452 n->m_len = 0; 8453 n->m_len = M_TRAILINGSPACE(n); 8454 /* use the bottom of mbuf, hoping we can prepend afterwards */ 8455 if (n->m_len > len) { 8456 t = (n->m_len - len) & ~(sizeof(long) - 1); 8457 n->m_data += t; 8458 n->m_len = len; 8459 } 8460 8461 len -= n->m_len; 8462 8463 if (m) 8464 m_cat(m, n); 8465 else 8466 m = n; 8467 } 8468 8469 return m; 8470 } 8471 8472 static struct mbuf * 8473 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid) 8474 { 8475 struct secashead *sah; 8476 struct secasvar *sav; 8477 u_int16_t proto; 8478 u_int8_t satype; 8479 u_int8_t state; 8480 int cnt; 8481 struct mbuf *m, *n; 8482 8483 KASSERT(mutex_owned(&key_sad.lock)); 8484 8485 /* map satype to proto */ 8486 proto = key_satype2proto(req_satype); 8487 if (proto == 0) { 8488 *errorp = EINVAL; 8489 return (NULL); 8490 } 8491 8492 /* count sav entries to be sent to the userland. */ 8493 cnt = 0; 8494 SAHLIST_WRITER_FOREACH(sah) { 8495 if (req_satype != SADB_SATYPE_UNSPEC && 8496 proto != sah->saidx.proto) 8497 continue; 8498 8499 SASTATE_ANY_FOREACH(state) { 8500 SAVLIST_WRITER_FOREACH(sav, sah, state) { 8501 cnt++; 8502 } 8503 } 8504 } 8505 8506 if (cnt == 0) { 8507 *errorp = ENOENT; 8508 return (NULL); 8509 } 8510 8511 /* send this to the userland, one at a time. */ 8512 m = NULL; 8513 SAHLIST_WRITER_FOREACH(sah) { 8514 if (req_satype != SADB_SATYPE_UNSPEC && 8515 proto != sah->saidx.proto) 8516 continue; 8517 8518 /* map proto to satype */ 8519 satype = key_proto2satype(sah->saidx.proto); 8520 if (satype == 0) { 8521 m_freem(m); 8522 *errorp = EINVAL; 8523 return (NULL); 8524 } 8525 8526 SASTATE_ANY_FOREACH(state) { 8527 SAVLIST_WRITER_FOREACH(sav, sah, state) { 8528 n = key_setdumpsa(sav, SADB_DUMP, satype, 8529 --cnt, pid); 8530 if (!m) 8531 m = n; 8532 else 8533 m_cat(m, n); 8534 } 8535 } 8536 } 8537 8538 if (!m) { 8539 *errorp = EINVAL; 8540 return (NULL); 8541 } 8542 8543 if ((m->m_flags & M_PKTHDR) != 0) { 8544 m->m_pkthdr.len = 0; 8545 for (n = m; n; n = n->m_next) 8546 m->m_pkthdr.len += n->m_len; 8547 } 8548 8549 *errorp = 0; 8550 return (m); 8551 } 8552 8553 static struct mbuf * 8554 key_setspddump(int *errorp, pid_t pid) 8555 { 8556 struct secpolicy *sp; 8557 int cnt; 8558 u_int dir; 8559 struct mbuf *m, *n; 8560 8561 KASSERT(mutex_owned(&key_spd.lock)); 8562 8563 /* search SPD entry and get buffer size. */ 8564 cnt = 0; 8565 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8566 SPLIST_WRITER_FOREACH(sp, dir) { 8567 cnt++; 8568 } 8569 } 8570 8571 if (cnt == 0) { 8572 *errorp = ENOENT; 8573 return (NULL); 8574 } 8575 8576 m = NULL; 8577 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8578 SPLIST_WRITER_FOREACH(sp, dir) { 8579 --cnt; 8580 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 8581 8582 if (!m) 8583 m = n; 8584 else { 8585 m->m_pkthdr.len += n->m_pkthdr.len; 8586 m_cat(m, n); 8587 } 8588 } 8589 } 8590 8591 *errorp = 0; 8592 return (m); 8593 } 8594 8595 int 8596 key_get_used(void) { 8597 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) || 8598 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) || 8599 !SOCKSPLIST_READER_EMPTY(); 8600 } 8601 8602 void 8603 key_update_used(void) 8604 { 8605 switch (ipsec_enabled) { 8606 default: 8607 case 0: 8608 #ifdef notyet 8609 /* XXX: racy */ 8610 ipsec_used = 0; 8611 #endif 8612 break; 8613 case 1: 8614 #ifndef notyet 8615 /* XXX: racy */ 8616 if (!ipsec_used) 8617 #endif 8618 ipsec_used = key_get_used(); 8619 break; 8620 case 2: 8621 ipsec_used = 1; 8622 break; 8623 } 8624 } 8625 8626 static inline void 8627 key_savlut_writer_insert_head(struct secasvar *sav) 8628 { 8629 uint32_t hash_key; 8630 uint32_t hash; 8631 8632 KASSERT(mutex_owned(&key_sad.lock)); 8633 KASSERT(!sav->savlut_added); 8634 8635 if (sav->sah->saidx.proto == IPPROTO_IPCOMP) 8636 hash_key = sav->alg_comp; 8637 else 8638 hash_key = sav->spi; 8639 8640 hash = key_savluthash(&sav->sah->saidx.dst.sa, 8641 sav->sah->saidx.proto, hash_key, key_sad.savlutmask); 8642 8643 PSLIST_WRITER_INSERT_HEAD(&key_sad.savlut[hash], sav, 8644 pslist_entry_savlut); 8645 sav->savlut_added = true; 8646 } 8647 8648 /* 8649 * Calculate hash using protocol, source address, 8650 * and destination address included in saidx. 8651 */ 8652 static inline uint32_t 8653 key_saidxhash(const struct secasindex *saidx, u_long mask) 8654 { 8655 uint32_t hash32; 8656 const struct sockaddr_in *sin; 8657 const struct sockaddr_in6 *sin6; 8658 8659 hash32 = saidx->proto; 8660 8661 switch (saidx->src.sa.sa_family) { 8662 case AF_INET: 8663 sin = &saidx->src.sin; 8664 hash32 = hash32_buf(&sin->sin_addr, 8665 sizeof(sin->sin_addr), hash32); 8666 sin = &saidx->dst.sin; 8667 hash32 = hash32_buf(&sin->sin_addr, 8668 sizeof(sin->sin_addr), hash32 << 1); 8669 break; 8670 case AF_INET6: 8671 sin6 = &saidx->src.sin6; 8672 hash32 = hash32_buf(&sin6->sin6_addr, 8673 sizeof(sin6->sin6_addr), hash32); 8674 sin6 = &saidx->dst.sin6; 8675 hash32 = hash32_buf(&sin6->sin6_addr, 8676 sizeof(sin6->sin6_addr), hash32 << 1); 8677 break; 8678 default: 8679 hash32 = 0; 8680 break; 8681 } 8682 8683 return hash32 & mask; 8684 } 8685 8686 /* 8687 * Calculate hash using destination address, protocol, 8688 * and spi. Those parameter depend on the search of 8689 * key_lookup_sa(). 8690 */ 8691 static uint32_t 8692 key_savluthash(const struct sockaddr *dst, uint32_t proto, 8693 uint32_t spi, u_long mask) 8694 { 8695 uint32_t hash32; 8696 const struct sockaddr_in *sin; 8697 const struct sockaddr_in6 *sin6; 8698 8699 hash32 = hash32_buf(&proto, sizeof(proto), spi); 8700 8701 switch(dst->sa_family) { 8702 case AF_INET: 8703 sin = satocsin(dst); 8704 hash32 = hash32_buf(&sin->sin_addr, 8705 sizeof(sin->sin_addr), hash32); 8706 break; 8707 case AF_INET6: 8708 sin6 = satocsin6(dst); 8709 hash32 = hash32_buf(&sin6->sin6_addr, 8710 sizeof(sin6->sin6_addr), hash32); 8711 break; 8712 default: 8713 hash32 = 0; 8714 } 8715 8716 return hash32 & mask; 8717 } 8718 8719 static int 8720 sysctl_net_key_dumpsa(SYSCTLFN_ARGS) 8721 { 8722 struct mbuf *m, *n; 8723 int err2 = 0; 8724 char *p, *ep; 8725 size_t len; 8726 int error; 8727 8728 if (newp) 8729 return (EPERM); 8730 if (namelen != 1) 8731 return (EINVAL); 8732 8733 mutex_enter(&key_sad.lock); 8734 m = key_setdump(name[0], &error, l->l_proc->p_pid); 8735 mutex_exit(&key_sad.lock); 8736 if (!m) 8737 return (error); 8738 if (!oldp) 8739 *oldlenp = m->m_pkthdr.len; 8740 else { 8741 p = oldp; 8742 if (*oldlenp < m->m_pkthdr.len) { 8743 err2 = ENOMEM; 8744 ep = p + *oldlenp; 8745 } else { 8746 *oldlenp = m->m_pkthdr.len; 8747 ep = p + m->m_pkthdr.len; 8748 } 8749 for (n = m; n; n = n->m_next) { 8750 len = (ep - p < n->m_len) ? 8751 ep - p : n->m_len; 8752 error = copyout(mtod(n, const void *), p, len); 8753 p += len; 8754 if (error) 8755 break; 8756 } 8757 if (error == 0) 8758 error = err2; 8759 } 8760 m_freem(m); 8761 8762 return (error); 8763 } 8764 8765 static int 8766 sysctl_net_key_dumpsp(SYSCTLFN_ARGS) 8767 { 8768 struct mbuf *m, *n; 8769 int err2 = 0; 8770 char *p, *ep; 8771 size_t len; 8772 int error; 8773 8774 if (newp) 8775 return (EPERM); 8776 if (namelen != 0) 8777 return (EINVAL); 8778 8779 mutex_enter(&key_spd.lock); 8780 m = key_setspddump(&error, l->l_proc->p_pid); 8781 mutex_exit(&key_spd.lock); 8782 if (!m) 8783 return (error); 8784 if (!oldp) 8785 *oldlenp = m->m_pkthdr.len; 8786 else { 8787 p = oldp; 8788 if (*oldlenp < m->m_pkthdr.len) { 8789 err2 = ENOMEM; 8790 ep = p + *oldlenp; 8791 } else { 8792 *oldlenp = m->m_pkthdr.len; 8793 ep = p + m->m_pkthdr.len; 8794 } 8795 for (n = m; n; n = n->m_next) { 8796 len = (ep - p < n->m_len) ? ep - p : n->m_len; 8797 error = copyout(mtod(n, const void *), p, len); 8798 p += len; 8799 if (error) 8800 break; 8801 } 8802 if (error == 0) 8803 error = err2; 8804 } 8805 m_freem(m); 8806 8807 return (error); 8808 } 8809 8810 /* 8811 * Create sysctl tree for native IPSEC key knobs, originally 8812 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }. 8813 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 }; 8814 * and in any case the part of our sysctl namespace used for dumping the 8815 * SPD and SA database *HAS* to be compatible with the KAME sysctl 8816 * namespace, for API reasons. 8817 * 8818 * Pending a consensus on the right way to fix this, add a level of 8819 * indirection in how we number the `native' IPSEC key nodes; 8820 * and (as requested by Andrew Brown) move registration of the 8821 * KAME-compatible names to a separate function. 8822 */ 8823 #if 0 8824 # define IPSEC_PFKEY PF_KEY_V2 8825 # define IPSEC_PFKEY_NAME "keyv2" 8826 #else 8827 # define IPSEC_PFKEY PF_KEY 8828 # define IPSEC_PFKEY_NAME "key" 8829 #endif 8830 8831 static int 8832 sysctl_net_key_stats(SYSCTLFN_ARGS) 8833 { 8834 8835 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS)); 8836 } 8837 8838 static void 8839 sysctl_net_keyv2_setup(struct sysctllog **clog) 8840 { 8841 8842 sysctl_createv(clog, 0, NULL, NULL, 8843 CTLFLAG_PERMANENT, 8844 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL, 8845 NULL, 0, NULL, 0, 8846 CTL_NET, IPSEC_PFKEY, CTL_EOL); 8847 8848 sysctl_createv(clog, 0, NULL, NULL, 8849 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8850 CTLTYPE_INT, "debug", NULL, 8851 NULL, 0, &key_debug_level, 0, 8852 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL); 8853 sysctl_createv(clog, 0, NULL, NULL, 8854 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8855 CTLTYPE_INT, "spi_try", NULL, 8856 NULL, 0, &key_spi_trycnt, 0, 8857 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL); 8858 sysctl_createv(clog, 0, NULL, NULL, 8859 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8860 CTLTYPE_INT, "spi_min_value", NULL, 8861 NULL, 0, &key_spi_minval, 0, 8862 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL); 8863 sysctl_createv(clog, 0, NULL, NULL, 8864 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8865 CTLTYPE_INT, "spi_max_value", NULL, 8866 NULL, 0, &key_spi_maxval, 0, 8867 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL); 8868 sysctl_createv(clog, 0, NULL, NULL, 8869 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8870 CTLTYPE_INT, "random_int", NULL, 8871 NULL, 0, &key_int_random, 0, 8872 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL); 8873 sysctl_createv(clog, 0, NULL, NULL, 8874 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8875 CTLTYPE_INT, "larval_lifetime", NULL, 8876 NULL, 0, &key_larval_lifetime, 0, 8877 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL); 8878 sysctl_createv(clog, 0, NULL, NULL, 8879 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8880 CTLTYPE_INT, "blockacq_count", NULL, 8881 NULL, 0, &key_blockacq_count, 0, 8882 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL); 8883 sysctl_createv(clog, 0, NULL, NULL, 8884 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8885 CTLTYPE_INT, "blockacq_lifetime", NULL, 8886 NULL, 0, &key_blockacq_lifetime, 0, 8887 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL); 8888 sysctl_createv(clog, 0, NULL, NULL, 8889 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8890 CTLTYPE_INT, "esp_keymin", NULL, 8891 NULL, 0, &ipsec_esp_keymin, 0, 8892 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL); 8893 sysctl_createv(clog, 0, NULL, NULL, 8894 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8895 CTLTYPE_INT, "prefered_oldsa", NULL, 8896 NULL, 0, &key_prefered_oldsa, 0, 8897 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL); 8898 sysctl_createv(clog, 0, NULL, NULL, 8899 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8900 CTLTYPE_INT, "esp_auth", NULL, 8901 NULL, 0, &ipsec_esp_auth, 0, 8902 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL); 8903 sysctl_createv(clog, 0, NULL, NULL, 8904 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8905 CTLTYPE_INT, "ah_keymin", NULL, 8906 NULL, 0, &ipsec_ah_keymin, 0, 8907 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL); 8908 sysctl_createv(clog, 0, NULL, NULL, 8909 CTLFLAG_PERMANENT, 8910 CTLTYPE_STRUCT, "stats", 8911 SYSCTL_DESCR("PF_KEY statistics"), 8912 sysctl_net_key_stats, 0, NULL, 0, 8913 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL); 8914 } 8915 8916 /* 8917 * Register sysctl names used by setkey(8). For historical reasons, 8918 * and to share a single API, these names appear under { CTL_NET, PF_KEY } 8919 * for both IPSEC and KAME IPSEC. 8920 */ 8921 static void 8922 sysctl_net_key_compat_setup(struct sysctllog **clog) 8923 { 8924 8925 sysctl_createv(clog, 0, NULL, NULL, 8926 CTLFLAG_PERMANENT, 8927 CTLTYPE_NODE, "key", NULL, 8928 NULL, 0, NULL, 0, 8929 CTL_NET, PF_KEY, CTL_EOL); 8930 8931 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */ 8932 sysctl_createv(clog, 0, NULL, NULL, 8933 CTLFLAG_PERMANENT, 8934 CTLTYPE_STRUCT, "dumpsa", NULL, 8935 sysctl_net_key_dumpsa, 0, NULL, 0, 8936 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL); 8937 sysctl_createv(clog, 0, NULL, NULL, 8938 CTLFLAG_PERMANENT, 8939 CTLTYPE_STRUCT, "dumpsp", NULL, 8940 sysctl_net_key_dumpsp, 0, NULL, 0, 8941 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL); 8942 } 8943