1 /* $NetBSD: key.c,v 1.275 2022/05/24 20:50:20 andvar Exp $ */ 2 /* $FreeBSD: key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */ 3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 4 5 /* 6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the project nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.275 2022/05/24 20:50:20 andvar Exp $"); 36 37 /* 38 * This code is referred to RFC 2367 39 */ 40 41 #if defined(_KERNEL_OPT) 42 #include "opt_inet.h" 43 #include "opt_ipsec.h" 44 #include "opt_gateway.h" 45 #include "opt_net_mpsafe.h" 46 #endif 47 48 #include <sys/types.h> 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/callout.h> 52 #include <sys/kernel.h> 53 #include <sys/mbuf.h> 54 #include <sys/domain.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/errno.h> 59 #include <sys/proc.h> 60 #include <sys/queue.h> 61 #include <sys/syslog.h> 62 #include <sys/once.h> 63 #include <sys/cprng.h> 64 #include <sys/psref.h> 65 #include <sys/lwp.h> 66 #include <sys/workqueue.h> 67 #include <sys/kmem.h> 68 #include <sys/cpu.h> 69 #include <sys/atomic.h> 70 #include <sys/pslist.h> 71 #include <sys/mutex.h> 72 #include <sys/condvar.h> 73 #include <sys/localcount.h> 74 #include <sys/pserialize.h> 75 #include <sys/hash.h> 76 #include <sys/xcall.h> 77 78 #include <net/if.h> 79 #include <net/route.h> 80 81 #include <netinet/in.h> 82 #include <netinet/in_systm.h> 83 #include <netinet/ip.h> 84 #include <netinet/in_var.h> 85 #ifdef INET 86 #include <netinet/ip_var.h> 87 #endif 88 89 #ifdef INET6 90 #include <netinet/ip6.h> 91 #include <netinet6/in6_var.h> 92 #include <netinet6/ip6_var.h> 93 #endif /* INET6 */ 94 95 #ifdef INET 96 #include <netinet/in_pcb.h> 97 #endif 98 #ifdef INET6 99 #include <netinet6/in6_pcb.h> 100 #endif /* INET6 */ 101 102 #include <net/pfkeyv2.h> 103 #include <netipsec/keydb.h> 104 #include <netipsec/key.h> 105 #include <netipsec/keysock.h> 106 #include <netipsec/key_debug.h> 107 108 #include <netipsec/ipsec.h> 109 #ifdef INET6 110 #include <netipsec/ipsec6.h> 111 #endif 112 #include <netipsec/ipsec_private.h> 113 114 #include <netipsec/xform.h> 115 #include <netipsec/ipcomp.h> 116 117 #define FULLMASK 0xffu 118 #define _BITS(bytes) ((bytes) << 3) 119 120 #define PORT_NONE 0 121 #define PORT_LOOSE 1 122 #define PORT_STRICT 2 123 124 #ifndef SAHHASH_NHASH 125 #define SAHHASH_NHASH 128 126 #endif 127 128 #ifndef SAVLUT_NHASH 129 #define SAVLUT_NHASH 128 130 #endif 131 132 percpu_t *pfkeystat_percpu; 133 134 /* 135 * Note on SA reference counting: 136 * - SAs that are not in DEAD state will have (total external reference + 1) 137 * following value in reference count field. they cannot be freed and are 138 * referenced from SA header. 139 * - SAs that are in DEAD state will have (total external reference) 140 * in reference count field. they are ready to be freed. reference from 141 * SA header will be removed in key_delsav(), when the reference count 142 * field hits 0 (= no external reference other than from SA header. 143 */ 144 145 u_int32_t key_debug_level = 0; 146 static u_int key_spi_trycnt = 1000; 147 static u_int32_t key_spi_minval = 0x100; 148 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ 149 static u_int32_t policy_id = 0; 150 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ 151 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 152 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 153 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 154 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/ 155 156 static u_int32_t acq_seq = 0; 157 158 /* 159 * Locking order: there is no order for now; it means that any locks aren't 160 * overlapped. 161 */ 162 /* 163 * Locking notes on SPD: 164 * - Modifications to the key_spd.splist must be done with holding key_spd.lock 165 * which is a adaptive mutex 166 * - Read accesses to the key_spd.splist must be in pserialize(9) read sections 167 * - SP's lifetime is managed by localcount(9) 168 * - An SP that has been inserted to the key_spd.splist is initially referenced 169 * by none, i.e., a reference from the key_spd.splist isn't counted 170 * - When an SP is being destroyed, we change its state as DEAD, wait for 171 * references to the SP to be released, and then deallocate the SP 172 * (see key_unlink_sp) 173 * - Getting an SP 174 * - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx) 175 * - Must iterate the list and increment the reference count of a found SP 176 * (by key_sp_ref) in a pserialize read section 177 * - We can gain another reference from a held SP only if we check its state 178 * and take its reference in a pserialize read section 179 * (see esp_output for example) 180 * - We may get an SP from an SP cache. See below 181 * - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref) 182 * - Updating member variables of an SP 183 * - Most member variables of an SP are immutable 184 * - Only sp->state and sp->lastused can be changed 185 * - sp->state of an SP is updated only when destroying it under key_spd.lock 186 * - SP caches 187 * - SPs can be cached in PCBs 188 * - The lifetime of the caches is controlled by the global generation counter 189 * (ipsec_spdgen) 190 * - The global counter value is stored when an SP is cached 191 * - If the stored value is different from the global counter then the cache 192 * is considered invalidated 193 * - The counter is incremented when an SP is being destroyed 194 * - So checking the generation and taking a reference to an SP should be 195 * in a pserialize read section 196 * - Note that caching doesn't increment the reference counter of an SP 197 * - SPs in sockets 198 * - Userland programs can set a policy to a socket by 199 * setsockopt(IP_IPSEC_POLICY) 200 * - Such policies (SPs) are set to a socket (PCB) and also inserted to 201 * the key_spd.socksplist list (not the key_spd.splist) 202 * - Such a policy is destroyed when a corresponding socket is destroed, 203 * however, a socket can be destroyed in softint so we cannot destroy 204 * it directly instead we just mark it DEAD and delay the destruction 205 * until GC by the timer 206 * - SP origin 207 * - SPs can be created by both userland programs and kernel components. 208 * The SPs created in kernel must not be removed by userland programs, 209 * although the SPs can be read by userland programs. 210 */ 211 /* 212 * Locking notes on SAD: 213 * - Data structures 214 * - SAs are managed by the list called key_sad.sahlists and sav lists of 215 * sah entries 216 * - An sav is supposed to be an SA from a viewpoint of users 217 * - A sah has sav lists for each SA state 218 * - Multiple saves with the same saidx can exist 219 * - Only one entry has MATURE state and others should be DEAD 220 * - DEAD entries are just ignored from searching 221 * - All sav whose state is MATURE or DYING are registered to the lookup 222 * table called key_sad.savlut in addition to the savlists. 223 * - The table is used to search an sav without use of saidx. 224 * - Modifications to the key_sad.sahlists, sah.savlist and key_sad.savlut 225 * must be done with holding key_sad.lock which is a adaptive mutex 226 * - Read accesses to the key_sad.sahlists, sah.savlist and key_sad.savlut 227 * must be in pserialize(9) read sections 228 * - sah's lifetime is managed by localcount(9) 229 * - Getting an sah entry 230 * - We get an sah from the key_sad.sahlists 231 * - Must iterate the list and increment the reference count of a found sah 232 * (by key_sah_ref) in a pserialize read section 233 * - A gotten sah must be released after use by key_sah_unref 234 * - An sah is destroyed when its state become DEAD and no sav is 235 * listed to the sah 236 * - The destruction is done only in the timer (see key_timehandler_sad) 237 * - sav's lifetime is managed by localcount(9) 238 * - Getting an sav entry 239 * - First get an sah by saidx and get an sav from either of sah's savlists 240 * - Must iterate the list and increment the reference count of a found sav 241 * (by key_sa_ref) in a pserialize read section 242 * - We can gain another reference from a held SA only if we check its state 243 * and take its reference in a pserialize read section 244 * (see esp_output for example) 245 * - A gotten sav must be released after use by key_sa_unref 246 * - An sav is destroyed when its state become DEAD 247 */ 248 /* 249 * Locking notes on misc data: 250 * - All lists of key_misc are protected by key_misc.lock 251 * - key_misc.lock must be held even for read accesses 252 */ 253 254 /* SPD */ 255 static struct { 256 kmutex_t lock; 257 kcondvar_t cv_lc; 258 struct pslist_head splist[IPSEC_DIR_MAX]; 259 /* 260 * The list has SPs that are set to a socket via 261 * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy. 262 */ 263 struct pslist_head socksplist; 264 265 pserialize_t psz; 266 kcondvar_t cv_psz; 267 bool psz_performing; 268 } key_spd __cacheline_aligned; 269 270 /* SAD */ 271 static struct { 272 kmutex_t lock; 273 kcondvar_t cv_lc; 274 struct pslist_head *sahlists; 275 u_long sahlistmask; 276 struct pslist_head *savlut; 277 u_long savlutmask; 278 279 pserialize_t psz; 280 kcondvar_t cv_psz; 281 bool psz_performing; 282 } key_sad __cacheline_aligned; 283 284 /* Misc data */ 285 static struct { 286 kmutex_t lock; 287 /* registed list */ 288 LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1]; 289 #ifndef IPSEC_NONBLOCK_ACQUIRE 290 /* acquiring list */ 291 LIST_HEAD(_acqlist, secacq) acqlist; 292 #endif 293 #ifdef notyet 294 /* SP acquiring list */ 295 LIST_HEAD(_spacqlist, secspacq) spacqlist; 296 #endif 297 } key_misc __cacheline_aligned; 298 299 /* Macros for key_spd.splist */ 300 #define SPLIST_ENTRY_INIT(sp) \ 301 PSLIST_ENTRY_INIT((sp), pslist_entry) 302 #define SPLIST_ENTRY_DESTROY(sp) \ 303 PSLIST_ENTRY_DESTROY((sp), pslist_entry) 304 #define SPLIST_WRITER_REMOVE(sp) \ 305 PSLIST_WRITER_REMOVE((sp), pslist_entry) 306 #define SPLIST_READER_EMPTY(dir) \ 307 (PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ 308 pslist_entry) == NULL) 309 #define SPLIST_READER_FOREACH(sp, dir) \ 310 PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)], \ 311 struct secpolicy, pslist_entry) 312 #define SPLIST_WRITER_FOREACH(sp, dir) \ 313 PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)], \ 314 struct secpolicy, pslist_entry) 315 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \ 316 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry) 317 #define SPLIST_WRITER_EMPTY(dir) \ 318 (PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ 319 pslist_entry) == NULL) 320 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \ 321 PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp), \ 322 pslist_entry) 323 #define SPLIST_WRITER_NEXT(sp) \ 324 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry) 325 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \ 326 do { \ 327 if (SPLIST_WRITER_EMPTY((dir))) { \ 328 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \ 329 } else { \ 330 struct secpolicy *__sp; \ 331 SPLIST_WRITER_FOREACH(__sp, (dir)) { \ 332 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \ 333 SPLIST_WRITER_INSERT_AFTER(__sp,\ 334 (new)); \ 335 break; \ 336 } \ 337 } \ 338 } \ 339 } while (0) 340 341 /* Macros for key_spd.socksplist */ 342 #define SOCKSPLIST_WRITER_FOREACH(sp) \ 343 PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist, \ 344 struct secpolicy, pslist_entry) 345 #define SOCKSPLIST_READER_EMPTY() \ 346 (PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy, \ 347 pslist_entry) == NULL) 348 349 /* Macros for key_sad.sahlist */ 350 #define SAHLIST_ENTRY_INIT(sah) \ 351 PSLIST_ENTRY_INIT((sah), pslist_entry) 352 #define SAHLIST_ENTRY_DESTROY(sah) \ 353 PSLIST_ENTRY_DESTROY((sah), pslist_entry) 354 #define SAHLIST_WRITER_REMOVE(sah) \ 355 PSLIST_WRITER_REMOVE((sah), pslist_entry) 356 #define SAHLIST_READER_FOREACH(sah) \ 357 for(int _i_sah = 0; _i_sah <= key_sad.sahlistmask; _i_sah++) \ 358 PSLIST_READER_FOREACH((sah), &key_sad.sahlists[_i_sah], \ 359 struct secashead, pslist_entry) 360 #define SAHLIST_READER_FOREACH_SAIDX(sah, saidx) \ 361 PSLIST_READER_FOREACH((sah), \ 362 &key_sad.sahlists[key_saidxhash((saidx), \ 363 key_sad.sahlistmask)], \ 364 struct secashead, pslist_entry) 365 #define SAHLIST_WRITER_FOREACH(sah) \ 366 for(int _i_sah = 0; _i_sah <= key_sad.sahlistmask; _i_sah++) \ 367 PSLIST_WRITER_FOREACH((sah), &key_sad.sahlists[_i_sah], \ 368 struct secashead, pslist_entry) 369 #define SAHLIST_WRITER_INSERT_HEAD(sah) \ 370 PSLIST_WRITER_INSERT_HEAD( \ 371 &key_sad.sahlists[key_saidxhash(&(sah)->saidx, \ 372 key_sad.sahlistmask)], \ 373 (sah), pslist_entry) 374 375 /* Macros for key_sad.sahlist#savlist */ 376 #define SAVLIST_ENTRY_INIT(sav) \ 377 PSLIST_ENTRY_INIT((sav), pslist_entry) 378 #define SAVLIST_ENTRY_DESTROY(sav) \ 379 PSLIST_ENTRY_DESTROY((sav), pslist_entry) 380 #define SAVLIST_READER_FIRST(sah, state) \ 381 PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ 382 pslist_entry) 383 #define SAVLIST_WRITER_REMOVE(sav) \ 384 PSLIST_WRITER_REMOVE((sav), pslist_entry) 385 #define SAVLIST_READER_FOREACH(sav, sah, state) \ 386 PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)], \ 387 struct secasvar, pslist_entry) 388 #define SAVLIST_WRITER_FOREACH(sav, sah, state) \ 389 PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)], \ 390 struct secasvar, pslist_entry) 391 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \ 392 PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry) 393 #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \ 394 PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry) 395 #define SAVLIST_WRITER_EMPTY(sah, state) \ 396 (PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ 397 pslist_entry) == NULL) 398 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \ 399 PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav), \ 400 pslist_entry) 401 #define SAVLIST_WRITER_NEXT(sav) \ 402 PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry) 403 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \ 404 do { \ 405 if (SAVLIST_WRITER_EMPTY((sah), (state))) { \ 406 SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\ 407 } else { \ 408 struct secasvar *__sav; \ 409 SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \ 410 if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\ 411 SAVLIST_WRITER_INSERT_AFTER(__sav,\ 412 (new)); \ 413 break; \ 414 } \ 415 } \ 416 } \ 417 } while (0) 418 #define SAVLIST_READER_NEXT(sav) \ 419 PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry) 420 421 /* Macros for key_sad.savlut */ 422 #define SAVLUT_ENTRY_INIT(sav) \ 423 PSLIST_ENTRY_INIT((sav), pslist_entry_savlut) 424 #define SAVLUT_READER_FOREACH(sav, dst, proto, hash_key) \ 425 PSLIST_READER_FOREACH((sav), \ 426 &key_sad.savlut[key_savluthash(dst, proto, hash_key, \ 427 key_sad.savlutmask)], \ 428 struct secasvar, pslist_entry_savlut) 429 #define SAVLUT_WRITER_INSERT_HEAD(sav) \ 430 key_savlut_writer_insert_head((sav)) 431 #define SAVLUT_WRITER_REMOVE(sav) \ 432 do { \ 433 if (!(sav)->savlut_added) \ 434 break; \ 435 PSLIST_WRITER_REMOVE((sav), pslist_entry_savlut); \ 436 (sav)->savlut_added = false; \ 437 } while(0) 438 439 /* search order for SAs */ 440 /* 441 * This order is important because we must select the oldest SA 442 * for outbound processing. For inbound, This is not important. 443 */ 444 static const u_int saorder_state_valid_prefer_old[] = { 445 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 446 }; 447 static const u_int saorder_state_valid_prefer_new[] = { 448 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 449 }; 450 451 static const u_int saorder_state_alive[] = { 452 /* except DEAD */ 453 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 454 }; 455 static const u_int saorder_state_any[] = { 456 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 457 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 458 }; 459 460 #define SASTATE_ALIVE_FOREACH(s) \ 461 for (int _i = 0; \ 462 _i < __arraycount(saorder_state_alive) ? \ 463 (s) = saorder_state_alive[_i], true : false; \ 464 _i++) 465 #define SASTATE_ANY_FOREACH(s) \ 466 for (int _i = 0; \ 467 _i < __arraycount(saorder_state_any) ? \ 468 (s) = saorder_state_any[_i], true : false; \ 469 _i++) 470 #define SASTATE_USABLE_FOREACH(s) \ 471 for (int _i = 0; \ 472 _i < __arraycount(saorder_state_valid_prefer_new) ? \ 473 (s) = saorder_state_valid_prefer_new[_i], \ 474 true : false; \ 475 _i++) 476 477 static const int minsize[] = { 478 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 479 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 480 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 481 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 482 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 483 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 484 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 485 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 486 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 487 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 488 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 489 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 490 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 491 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 492 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 493 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 494 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 495 0, /* SADB_X_EXT_KMPRIVATE */ 496 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 497 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 498 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 499 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 500 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 501 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 502 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 503 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 504 }; 505 static const int maxsize[] = { 506 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 507 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 508 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 509 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 510 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 511 0, /* SADB_EXT_ADDRESS_SRC */ 512 0, /* SADB_EXT_ADDRESS_DST */ 513 0, /* SADB_EXT_ADDRESS_PROXY */ 514 0, /* SADB_EXT_KEY_AUTH */ 515 0, /* SADB_EXT_KEY_ENCRYPT */ 516 0, /* SADB_EXT_IDENTITY_SRC */ 517 0, /* SADB_EXT_IDENTITY_DST */ 518 0, /* SADB_EXT_SENSITIVITY */ 519 0, /* SADB_EXT_PROPOSAL */ 520 0, /* SADB_EXT_SUPPORTED_AUTH */ 521 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 522 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 523 0, /* SADB_X_EXT_KMPRIVATE */ 524 0, /* SADB_X_EXT_POLICY */ 525 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 526 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 527 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 528 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 529 0, /* SADB_X_EXT_NAT_T_OAI */ 530 0, /* SADB_X_EXT_NAT_T_OAR */ 531 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 532 }; 533 534 static int ipsec_esp_keymin = 256; 535 static int ipsec_esp_auth = 0; 536 static int ipsec_ah_keymin = 128; 537 538 #ifdef SYSCTL_DECL 539 SYSCTL_DECL(_net_key); 540 #endif 541 542 #ifdef SYSCTL_INT 543 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \ 544 &key_debug_level, 0, ""); 545 546 /* max count of trial for the decision of spi value */ 547 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \ 548 &key_spi_trycnt, 0, ""); 549 550 /* minimum spi value to allocate automatically. */ 551 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \ 552 &key_spi_minval, 0, ""); 553 554 /* maximun spi value to allocate automatically. */ 555 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \ 556 &key_spi_maxval, 0, ""); 557 558 /* interval to initialize randseed */ 559 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \ 560 &key_int_random, 0, ""); 561 562 /* lifetime for larval SA */ 563 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \ 564 &key_larval_lifetime, 0, ""); 565 566 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 567 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \ 568 &key_blockacq_count, 0, ""); 569 570 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 571 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \ 572 &key_blockacq_lifetime, 0, ""); 573 574 /* ESP auth */ 575 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \ 576 &ipsec_esp_auth, 0, ""); 577 578 /* minimum ESP key length */ 579 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \ 580 &ipsec_esp_keymin, 0, ""); 581 582 /* minimum AH key length */ 583 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \ 584 &ipsec_ah_keymin, 0, ""); 585 586 /* perfered old SA rather than new SA */ 587 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\ 588 &key_prefered_oldsa, 0, ""); 589 #endif /* SYSCTL_INT */ 590 591 #define __LIST_CHAINED(elm) \ 592 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 593 #define LIST_INSERT_TAIL(head, elm, type, field) \ 594 do {\ 595 struct type *curelm = LIST_FIRST(head); \ 596 if (curelm == NULL) {\ 597 LIST_INSERT_HEAD(head, elm, field); \ 598 } else { \ 599 while (LIST_NEXT(curelm, field)) \ 600 curelm = LIST_NEXT(curelm, field);\ 601 LIST_INSERT_AFTER(curelm, elm, field);\ 602 }\ 603 } while (0) 604 605 #define KEY_CHKSASTATE(head, sav) \ 606 /* do */ { \ 607 if ((head) != (sav)) { \ 608 IPSECLOG(LOG_DEBUG, \ 609 "state mismatched (TREE=%d SA=%d)\n", \ 610 (head), (sav)); \ 611 continue; \ 612 } \ 613 } /* while (0) */ 614 615 #define KEY_CHKSPDIR(head, sp) \ 616 do { \ 617 if ((head) != (sp)) { \ 618 IPSECLOG(LOG_DEBUG, \ 619 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\ 620 (head), (sp)); \ 621 } \ 622 } while (0) 623 624 /* 625 * set parameters into secasindex buffer. 626 * Must allocate secasindex buffer before calling this function. 627 */ 628 static int 629 key_setsecasidx(int, int, int, const struct sockaddr *, 630 const struct sockaddr *, struct secasindex *); 631 632 /* key statistics */ 633 struct _keystat { 634 u_long getspi_count; /* the avarage of count to try to get new SPI */ 635 } keystat; 636 637 static void 638 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *); 639 640 static const struct sockaddr * 641 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx) 642 { 643 644 return PFKEY_ADDR_SADDR(mhp->ext[idx]); 645 } 646 647 static void 648 key_fill_replymsg(struct mbuf *m, int seq) 649 { 650 struct sadb_msg *msg; 651 652 KASSERT(m->m_len >= sizeof(*msg)); 653 654 msg = mtod(m, struct sadb_msg *); 655 msg->sadb_msg_errno = 0; 656 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 657 if (seq != 0) 658 msg->sadb_msg_seq = seq; 659 } 660 661 #if 0 662 static void key_freeso(struct socket *); 663 static void key_freesp_so(struct secpolicy **); 664 #endif 665 static struct secpolicy *key_getsp (const struct secpolicyindex *); 666 static struct secpolicy *key_getspbyid (u_int32_t); 667 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *, bool); 668 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t, bool); 669 static void key_destroy_sp(struct secpolicy *); 670 static struct mbuf *key_gather_mbuf (struct mbuf *, 671 const struct sadb_msghdr *, int, int, ...); 672 static int key_api_spdadd(struct socket *, struct mbuf *, 673 const struct sadb_msghdr *); 674 static u_int32_t key_getnewspid (void); 675 static int key_api_spddelete(struct socket *, struct mbuf *, 676 const struct sadb_msghdr *); 677 static int key_api_spddelete2(struct socket *, struct mbuf *, 678 const struct sadb_msghdr *); 679 static int key_api_spdget(struct socket *, struct mbuf *, 680 const struct sadb_msghdr *); 681 static int key_api_spdflush(struct socket *, struct mbuf *, 682 const struct sadb_msghdr *); 683 static int key_api_spddump(struct socket *, struct mbuf *, 684 const struct sadb_msghdr *); 685 static struct mbuf * key_setspddump (int *errorp, pid_t); 686 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid); 687 static int key_api_nat_map(struct socket *, struct mbuf *, 688 const struct sadb_msghdr *); 689 static struct mbuf *key_setdumpsp (struct secpolicy *, 690 u_int8_t, u_int32_t, pid_t); 691 static u_int key_getspreqmsglen (const struct secpolicy *); 692 static int key_spdexpire (struct secpolicy *); 693 static struct secashead *key_newsah (const struct secasindex *); 694 static void key_unlink_sah(struct secashead *); 695 static void key_destroy_sah(struct secashead *); 696 static bool key_sah_has_sav(struct secashead *); 697 static void key_sah_ref(struct secashead *); 698 static void key_sah_unref(struct secashead *); 699 static void key_init_sav(struct secasvar *); 700 static void key_wait_sav(struct secasvar *); 701 static void key_destroy_sav(struct secasvar *); 702 static struct secasvar *key_newsav(struct mbuf *, 703 const struct sadb_msghdr *, int *, int, const char*, int); 704 #define KEY_NEWSAV(m, sadb, e, proto) \ 705 key_newsav(m, sadb, e, proto, __func__, __LINE__) 706 static void key_delsav (struct secasvar *); 707 static struct secashead *key_getsah(const struct secasindex *, int); 708 static struct secashead *key_getsah_ref(const struct secasindex *, int); 709 static bool key_checkspidup(const struct secasindex *, u_int32_t); 710 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t); 711 static int key_setsaval (struct secasvar *, struct mbuf *, 712 const struct sadb_msghdr *); 713 static void key_freesaval(struct secasvar *); 714 static int key_init_xform(struct secasvar *); 715 static void key_clear_xform(struct secasvar *); 716 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t, 717 u_int8_t, u_int32_t, u_int32_t); 718 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t); 719 static struct mbuf *key_setsadbxtype (u_int16_t); 720 static struct mbuf *key_setsadbxfrag (u_int16_t); 721 static void key_porttosaddr (union sockaddr_union *, u_int16_t); 722 static int key_checksalen (const union sockaddr_union *); 723 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t, 724 u_int32_t, pid_t, u_int16_t, int); 725 static struct mbuf *key_setsadbsa (struct secasvar *); 726 static struct mbuf *key_setsadbaddr(u_int16_t, 727 const struct sockaddr *, u_int8_t, u_int16_t, int); 728 #if 0 729 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *, 730 int, u_int64_t); 731 #endif 732 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t); 733 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t, 734 u_int32_t, int); 735 static void *key_newbuf (const void *, u_int); 736 #ifdef INET6 737 static int key_ismyaddr6 (const struct sockaddr_in6 *); 738 #endif 739 740 static void sysctl_net_keyv2_setup(struct sysctllog **); 741 static void sysctl_net_key_compat_setup(struct sysctllog **); 742 743 /* flags for key_saidx_match() */ 744 #define CMP_HEAD 1 /* protocol, addresses. */ 745 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 746 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 747 #define CMP_EXACTLY 4 /* all elements. */ 748 static int key_saidx_match(const struct secasindex *, 749 const struct secasindex *, int); 750 751 static int key_sockaddr_match(const struct sockaddr *, 752 const struct sockaddr *, int); 753 static int key_bb_match_withmask(const void *, const void *, u_int); 754 static u_int16_t key_satype2proto (u_int8_t); 755 static u_int8_t key_proto2satype (u_int16_t); 756 757 static int key_spidx_match_exactly(const struct secpolicyindex *, 758 const struct secpolicyindex *); 759 static int key_spidx_match_withmask(const struct secpolicyindex *, 760 const struct secpolicyindex *); 761 762 static int key_api_getspi(struct socket *, struct mbuf *, 763 const struct sadb_msghdr *); 764 static u_int32_t key_do_getnewspi (const struct sadb_spirange *, 765 const struct secasindex *); 766 static int key_handle_natt_info (struct secasvar *, 767 const struct sadb_msghdr *); 768 static int key_set_natt_ports (union sockaddr_union *, 769 union sockaddr_union *, 770 const struct sadb_msghdr *); 771 static int key_api_update(struct socket *, struct mbuf *, 772 const struct sadb_msghdr *); 773 #ifdef IPSEC_DOSEQCHECK 774 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t); 775 #endif 776 static int key_api_add(struct socket *, struct mbuf *, 777 const struct sadb_msghdr *); 778 static int key_setident (struct secashead *, struct mbuf *, 779 const struct sadb_msghdr *); 780 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *, 781 const struct sadb_msghdr *); 782 static int key_api_delete(struct socket *, struct mbuf *, 783 const struct sadb_msghdr *); 784 static int key_api_get(struct socket *, struct mbuf *, 785 const struct sadb_msghdr *); 786 787 static void key_getcomb_setlifetime (struct sadb_comb *); 788 static struct mbuf *key_getcomb_esp(int); 789 static struct mbuf *key_getcomb_ah(int); 790 static struct mbuf *key_getcomb_ipcomp(int); 791 static struct mbuf *key_getprop(const struct secasindex *, int); 792 793 static int key_acquire(const struct secasindex *, const struct secpolicy *, 794 int); 795 static int key_acquire_sendup_mbuf_later(struct mbuf *); 796 static void key_acquire_sendup_pending_mbuf(void); 797 #ifndef IPSEC_NONBLOCK_ACQUIRE 798 static struct secacq *key_newacq (const struct secasindex *); 799 static struct secacq *key_getacq (const struct secasindex *); 800 static struct secacq *key_getacqbyseq (u_int32_t); 801 #endif 802 #ifdef notyet 803 static struct secspacq *key_newspacq (const struct secpolicyindex *); 804 static struct secspacq *key_getspacq (const struct secpolicyindex *); 805 #endif 806 static int key_api_acquire(struct socket *, struct mbuf *, 807 const struct sadb_msghdr *); 808 static int key_api_register(struct socket *, struct mbuf *, 809 const struct sadb_msghdr *); 810 static int key_expire (struct secasvar *); 811 static int key_api_flush(struct socket *, struct mbuf *, 812 const struct sadb_msghdr *); 813 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp, 814 int *lenp, pid_t pid); 815 static int key_api_dump(struct socket *, struct mbuf *, 816 const struct sadb_msghdr *); 817 static int key_api_promisc(struct socket *, struct mbuf *, 818 const struct sadb_msghdr *); 819 static int key_senderror (struct socket *, struct mbuf *, int); 820 static int key_validate_ext (const struct sadb_ext *, int); 821 static int key_align (struct mbuf *, struct sadb_msghdr *); 822 #if 0 823 static const char *key_getfqdn (void); 824 static const char *key_getuserfqdn (void); 825 #endif 826 static void key_sa_chgstate (struct secasvar *, u_int8_t); 827 828 static struct mbuf *key_alloc_mbuf(int, int); 829 static struct mbuf *key_alloc_mbuf_simple(int, int); 830 831 static void key_timehandler(void *); 832 static void key_timehandler_work(struct work *, void *); 833 static struct callout key_timehandler_ch; 834 static struct workqueue *key_timehandler_wq; 835 static struct work key_timehandler_wk; 836 837 static inline void 838 key_savlut_writer_insert_head(struct secasvar *sav); 839 static inline uint32_t 840 key_saidxhash(const struct secasindex *, u_long); 841 static inline uint32_t 842 key_savluthash(const struct sockaddr *, 843 uint32_t, uint32_t, u_long); 844 845 /* 846 * Utilities for percpu counters for sadb_lifetime_allocations and 847 * sadb_lifetime_bytes. 848 */ 849 #define LIFETIME_COUNTER_ALLOCATIONS 0 850 #define LIFETIME_COUNTER_BYTES 1 851 #define LIFETIME_COUNTER_SIZE 2 852 853 typedef uint64_t lifetime_counters_t[LIFETIME_COUNTER_SIZE]; 854 855 static void 856 key_sum_lifetime_counters(void *p, void *arg, struct cpu_info *ci __unused) 857 { 858 lifetime_counters_t *one = p; 859 lifetime_counters_t *sum = arg; 860 861 (*sum)[LIFETIME_COUNTER_ALLOCATIONS] += (*one)[LIFETIME_COUNTER_ALLOCATIONS]; 862 (*sum)[LIFETIME_COUNTER_BYTES] += (*one)[LIFETIME_COUNTER_BYTES]; 863 } 864 865 u_int 866 key_sp_refcnt(const struct secpolicy *sp) 867 { 868 869 /* FIXME */ 870 return 0; 871 } 872 873 static void 874 key_spd_pserialize_perform(void) 875 { 876 877 KASSERT(mutex_owned(&key_spd.lock)); 878 879 while (key_spd.psz_performing) 880 cv_wait(&key_spd.cv_psz, &key_spd.lock); 881 key_spd.psz_performing = true; 882 mutex_exit(&key_spd.lock); 883 884 pserialize_perform(key_spd.psz); 885 886 mutex_enter(&key_spd.lock); 887 key_spd.psz_performing = false; 888 cv_broadcast(&key_spd.cv_psz); 889 } 890 891 /* 892 * Remove the sp from the key_spd.splist and wait for references to the sp 893 * to be released. key_spd.lock must be held. 894 */ 895 static void 896 key_unlink_sp(struct secpolicy *sp) 897 { 898 899 KASSERT(mutex_owned(&key_spd.lock)); 900 901 sp->state = IPSEC_SPSTATE_DEAD; 902 SPLIST_WRITER_REMOVE(sp); 903 904 /* Invalidate all cached SPD pointers in the PCBs. */ 905 ipsec_invalpcbcacheall(); 906 907 KDASSERT(mutex_ownable(softnet_lock)); 908 key_spd_pserialize_perform(); 909 910 localcount_drain(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); 911 } 912 913 /* 914 * Return 0 when there are known to be no SP's for the specified 915 * direction. Otherwise return 1. This is used by IPsec code 916 * to optimize performance. 917 */ 918 int 919 key_havesp(u_int dir) 920 { 921 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 922 !SPLIST_READER_EMPTY(dir) : 1); 923 } 924 925 /* %%% IPsec policy management */ 926 /* 927 * allocating a SP for OUTBOUND or INBOUND packet. 928 * Must call key_freesp() later. 929 * OUT: NULL: not found 930 * others: found and return the pointer. 931 */ 932 struct secpolicy * 933 key_lookup_sp_byspidx(const struct secpolicyindex *spidx, 934 u_int dir, const char* where, int tag) 935 { 936 struct secpolicy *sp; 937 int s; 938 939 KASSERT(spidx != NULL); 940 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir); 941 942 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); 943 944 /* get a SP entry */ 945 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { 946 kdebug_secpolicyindex("objects", spidx); 947 } 948 949 s = pserialize_read_enter(); 950 SPLIST_READER_FOREACH(sp, dir) { 951 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { 952 kdebug_secpolicyindex("in SPD", &sp->spidx); 953 } 954 955 if (sp->state == IPSEC_SPSTATE_DEAD) 956 continue; 957 if (key_spidx_match_withmask(&sp->spidx, spidx)) 958 goto found; 959 } 960 sp = NULL; 961 found: 962 if (sp) { 963 /* sanity check */ 964 KEY_CHKSPDIR(sp->spidx.dir, dir); 965 966 /* found a SPD entry */ 967 sp->lastused = time_uptime; 968 key_sp_ref(sp, where, tag); 969 } 970 pserialize_read_exit(s); 971 972 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 973 "DP return SP:%p (ID=%u) refcnt %u\n", 974 sp, sp ? sp->id : 0, key_sp_refcnt(sp)); 975 return sp; 976 } 977 978 /* 979 * return a policy that matches this particular inbound packet. 980 * XXX slow 981 */ 982 struct secpolicy * 983 key_gettunnel(const struct sockaddr *osrc, 984 const struct sockaddr *odst, 985 const struct sockaddr *isrc, 986 const struct sockaddr *idst, 987 const char* where, int tag) 988 { 989 struct secpolicy *sp; 990 const int dir = IPSEC_DIR_INBOUND; 991 int s; 992 struct ipsecrequest *r1, *r2, *p; 993 struct secpolicyindex spidx; 994 995 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); 996 997 if (isrc->sa_family != idst->sa_family) { 998 IPSECLOG(LOG_ERR, 999 "address family mismatched src %u, dst %u.\n", 1000 isrc->sa_family, idst->sa_family); 1001 sp = NULL; 1002 goto done; 1003 } 1004 1005 s = pserialize_read_enter(); 1006 SPLIST_READER_FOREACH(sp, dir) { 1007 if (sp->state == IPSEC_SPSTATE_DEAD) 1008 continue; 1009 1010 r1 = r2 = NULL; 1011 for (p = sp->req; p; p = p->next) { 1012 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 1013 continue; 1014 1015 r1 = r2; 1016 r2 = p; 1017 1018 if (!r1) { 1019 /* here we look at address matches only */ 1020 spidx = sp->spidx; 1021 if (isrc->sa_len > sizeof(spidx.src) || 1022 idst->sa_len > sizeof(spidx.dst)) 1023 continue; 1024 memcpy(&spidx.src, isrc, isrc->sa_len); 1025 memcpy(&spidx.dst, idst, idst->sa_len); 1026 if (!key_spidx_match_withmask(&sp->spidx, &spidx)) 1027 continue; 1028 } else { 1029 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) || 1030 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE)) 1031 continue; 1032 } 1033 1034 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) || 1035 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE)) 1036 continue; 1037 1038 goto found; 1039 } 1040 } 1041 sp = NULL; 1042 found: 1043 if (sp) { 1044 sp->lastused = time_uptime; 1045 key_sp_ref(sp, where, tag); 1046 } 1047 pserialize_read_exit(s); 1048 done: 1049 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1050 "DP return SP:%p (ID=%u) refcnt %u\n", 1051 sp, sp ? sp->id : 0, key_sp_refcnt(sp)); 1052 return sp; 1053 } 1054 1055 /* 1056 * allocating an SA entry for an *OUTBOUND* packet. 1057 * checking each request entries in SP, and acquire an SA if need. 1058 * OUT: 0: there are valid requests. 1059 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 1060 */ 1061 int 1062 key_checkrequest(const struct ipsecrequest *isr, const struct secasindex *saidx, 1063 struct secasvar **ret) 1064 { 1065 u_int level; 1066 int error; 1067 struct secasvar *sav; 1068 1069 KASSERT(isr != NULL); 1070 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT || 1071 saidx->mode == IPSEC_MODE_TUNNEL, 1072 "unexpected policy %u", saidx->mode); 1073 1074 /* get current level */ 1075 level = ipsec_get_reqlevel(isr); 1076 1077 /* 1078 * XXX guard against protocol callbacks from the crypto 1079 * thread as they reference ipsecrequest.sav which we 1080 * temporarily null out below. Need to rethink how we 1081 * handle bundled SA's in the callback thread. 1082 */ 1083 1084 sav = key_lookup_sa_bysaidx(saidx); 1085 if (sav != NULL) { 1086 *ret = sav; 1087 return 0; 1088 } 1089 1090 /* there is no SA */ 1091 error = key_acquire(saidx, isr->sp, M_NOWAIT); 1092 if (error != 0) { 1093 /* XXX What should I do ? */ 1094 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", 1095 error); 1096 return error; 1097 } 1098 1099 if (level != IPSEC_LEVEL_REQUIRE) { 1100 /* XXX sigh, the interface to this routine is botched */ 1101 *ret = NULL; 1102 return 0; 1103 } else { 1104 return ENOENT; 1105 } 1106 } 1107 1108 /* 1109 * looking up a SA for policy entry from SAD. 1110 * NOTE: searching SAD of aliving state. 1111 * OUT: NULL: not found. 1112 * others: found and return the pointer. 1113 */ 1114 struct secasvar * 1115 key_lookup_sa_bysaidx(const struct secasindex *saidx) 1116 { 1117 struct secashead *sah; 1118 struct secasvar *sav = NULL; 1119 u_int stateidx, state; 1120 const u_int *saorder_state_valid; 1121 int arraysize; 1122 int s; 1123 1124 s = pserialize_read_enter(); 1125 sah = key_getsah(saidx, CMP_MODE_REQID); 1126 if (sah == NULL) 1127 goto out; 1128 1129 /* 1130 * search a valid state list for outbound packet. 1131 * This search order is important. 1132 */ 1133 if (key_prefered_oldsa) { 1134 saorder_state_valid = saorder_state_valid_prefer_old; 1135 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1136 } else { 1137 saorder_state_valid = saorder_state_valid_prefer_new; 1138 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1139 } 1140 1141 /* search valid state */ 1142 for (stateidx = 0; 1143 stateidx < arraysize; 1144 stateidx++) { 1145 1146 state = saorder_state_valid[stateidx]; 1147 1148 if (key_prefered_oldsa) 1149 sav = SAVLIST_READER_FIRST(sah, state); 1150 else { 1151 /* XXX need O(1) lookup */ 1152 struct secasvar *last = NULL; 1153 1154 SAVLIST_READER_FOREACH(sav, sah, state) 1155 last = sav; 1156 sav = last; 1157 } 1158 if (sav != NULL) { 1159 KEY_SA_REF(sav); 1160 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1161 "DP cause refcnt++:%d SA:%p\n", 1162 key_sa_refcnt(sav), sav); 1163 break; 1164 } 1165 } 1166 out: 1167 pserialize_read_exit(s); 1168 1169 return sav; 1170 } 1171 1172 #if 0 1173 static void 1174 key_sendup_message_delete(struct secasvar *sav) 1175 { 1176 struct mbuf *m, *result = 0; 1177 uint8_t satype; 1178 1179 satype = key_proto2satype(sav->sah->saidx.proto); 1180 if (satype == 0) 1181 goto msgfail; 1182 1183 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1); 1184 if (m == NULL) 1185 goto msgfail; 1186 result = m; 1187 1188 /* set sadb_address for saidx's. */ 1189 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, 1190 _BITS(sav->sah->saidx.src.sa.sa_len), IPSEC_ULPROTO_ANY); 1191 if (m == NULL) 1192 goto msgfail; 1193 m_cat(result, m); 1194 1195 /* set sadb_address for saidx's. */ 1196 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa, 1197 _BITS(sav->sah->saidx.src.sa.sa_len), IPSEC_ULPROTO_ANY); 1198 if (m == NULL) 1199 goto msgfail; 1200 m_cat(result, m); 1201 1202 /* create SA extension */ 1203 m = key_setsadbsa(sav); 1204 if (m == NULL) 1205 goto msgfail; 1206 m_cat(result, m); 1207 1208 if (result->m_len < sizeof(struct sadb_msg)) { 1209 result = m_pullup(result, sizeof(struct sadb_msg)); 1210 if (result == NULL) 1211 goto msgfail; 1212 } 1213 1214 result->m_pkthdr.len = 0; 1215 for (m = result; m; m = m->m_next) 1216 result->m_pkthdr.len += m->m_len; 1217 mtod(result, struct sadb_msg *)->sadb_msg_len = 1218 PFKEY_UNIT64(result->m_pkthdr.len); 1219 1220 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 1221 result = NULL; 1222 msgfail: 1223 if (result) 1224 m_freem(result); 1225 } 1226 #endif 1227 1228 /* 1229 * allocating a usable SA entry for a *INBOUND* packet. 1230 * Must call key_freesav() later. 1231 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1232 * NULL: not found, or error occurred. 1233 * 1234 * In the comparison, no source address is used--for RFC2401 conformance. 1235 * To quote, from section 4.1: 1236 * A security association is uniquely identified by a triple consisting 1237 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1238 * security protocol (AH or ESP) identifier. 1239 * Note that, however, we do need to keep source address in IPsec SA. 1240 * IKE specification and PF_KEY specification do assume that we 1241 * keep source address in IPsec SA. We see a tricky situation here. 1242 * 1243 * sport and dport are used for NAT-T. network order is always used. 1244 */ 1245 struct secasvar * 1246 key_lookup_sa( 1247 const union sockaddr_union *dst, 1248 u_int proto, 1249 u_int32_t spi, 1250 u_int16_t sport, 1251 u_int16_t dport, 1252 const char* where, int tag) 1253 { 1254 struct secasvar *sav; 1255 int chkport; 1256 int s; 1257 1258 int must_check_spi = 1; 1259 int must_check_alg = 0; 1260 u_int16_t cpi = 0; 1261 u_int8_t algo = 0; 1262 uint32_t hash_key = spi; 1263 1264 if ((sport != 0) && (dport != 0)) 1265 chkport = PORT_STRICT; 1266 else 1267 chkport = PORT_NONE; 1268 1269 KASSERT(dst != NULL); 1270 1271 /* 1272 * XXX IPCOMP case 1273 * We use cpi to define spi here. In the case where cpi <= 1274 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not 1275 * the real spi. In this case, don't check the spi but check the 1276 * algorithm 1277 */ 1278 1279 if (proto == IPPROTO_IPCOMP) { 1280 u_int32_t tmp; 1281 tmp = ntohl(spi); 1282 cpi = (u_int16_t) tmp; 1283 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) { 1284 algo = (u_int8_t) cpi; 1285 hash_key = algo; 1286 must_check_spi = 0; 1287 must_check_alg = 1; 1288 } 1289 } 1290 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1291 "DP from %s:%u check_spi=%d(%#x), check_alg=%d(%d), proto=%d\n", 1292 where, tag, 1293 must_check_spi, ntohl(spi), 1294 must_check_alg, algo, 1295 proto); 1296 1297 1298 /* 1299 * searching SAD. 1300 * XXX: to be checked internal IP header somewhere. Also when 1301 * IPsec tunnel packet is received. But ESP tunnel mode is 1302 * encrypted so we can't check internal IP header. 1303 */ 1304 s = pserialize_read_enter(); 1305 SAVLUT_READER_FOREACH(sav, &dst->sa, proto, hash_key) { 1306 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1307 "try match spi %#x, %#x\n", 1308 ntohl(spi), ntohl(sav->spi)); 1309 1310 /* do not return entries w/ unusable state */ 1311 if (!SADB_SASTATE_USABLE_P(sav)) { 1312 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1313 "bad state %d\n", sav->state); 1314 continue; 1315 } 1316 if (proto != sav->sah->saidx.proto) { 1317 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1318 "proto fail %d != %d\n", 1319 proto, sav->sah->saidx.proto); 1320 continue; 1321 } 1322 if (must_check_spi && spi != sav->spi) { 1323 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1324 "spi fail %#x != %#x\n", 1325 ntohl(spi), ntohl(sav->spi)); 1326 continue; 1327 } 1328 /* XXX only on the ipcomp case */ 1329 if (must_check_alg && algo != sav->alg_comp) { 1330 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1331 "algo fail %d != %d\n", 1332 algo, sav->alg_comp); 1333 continue; 1334 } 1335 1336 #if 0 /* don't check src */ 1337 /* Fix port in src->sa */ 1338 1339 /* check src address */ 1340 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE)) 1341 continue; 1342 #endif 1343 /* fix port of dst address XXX*/ 1344 key_porttosaddr(__UNCONST(dst), dport); 1345 /* check dst address */ 1346 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport)) 1347 continue; 1348 key_sa_ref(sav, where, tag); 1349 goto done; 1350 } 1351 sav = NULL; 1352 done: 1353 pserialize_read_exit(s); 1354 1355 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1356 "DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav)); 1357 return sav; 1358 } 1359 1360 static void 1361 key_validate_savlist(const struct secashead *sah, const u_int state) 1362 { 1363 #ifdef DEBUG 1364 struct secasvar *sav, *next; 1365 int s; 1366 1367 /* 1368 * The list should be sorted by lft_c->sadb_lifetime_addtime 1369 * in ascending order. 1370 */ 1371 s = pserialize_read_enter(); 1372 SAVLIST_READER_FOREACH(sav, sah, state) { 1373 next = SAVLIST_READER_NEXT(sav); 1374 if (next != NULL && 1375 sav->lft_c != NULL && next->lft_c != NULL) { 1376 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <= 1377 next->lft_c->sadb_lifetime_addtime, 1378 "savlist is not sorted: sah=%p, state=%d, " 1379 "sav=%" PRIu64 ", next=%" PRIu64, sah, state, 1380 sav->lft_c->sadb_lifetime_addtime, 1381 next->lft_c->sadb_lifetime_addtime); 1382 } 1383 } 1384 pserialize_read_exit(s); 1385 #endif 1386 } 1387 1388 void 1389 key_init_sp(struct secpolicy *sp) 1390 { 1391 1392 ASSERT_SLEEPABLE(); 1393 1394 sp->state = IPSEC_SPSTATE_ALIVE; 1395 if (sp->policy == IPSEC_POLICY_IPSEC) 1396 KASSERT(sp->req != NULL); 1397 localcount_init(&sp->localcount); 1398 SPLIST_ENTRY_INIT(sp); 1399 } 1400 1401 /* 1402 * Must be called in a pserialize read section. A held SP 1403 * must be released by key_sp_unref after use. 1404 */ 1405 void 1406 key_sp_ref(struct secpolicy *sp, const char* where, int tag) 1407 { 1408 1409 localcount_acquire(&sp->localcount); 1410 1411 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1412 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n", 1413 sp, sp->id, where, tag, key_sp_refcnt(sp)); 1414 } 1415 1416 /* 1417 * Must be called without holding key_spd.lock because the lock 1418 * would be held in localcount_release. 1419 */ 1420 void 1421 key_sp_unref(struct secpolicy *sp, const char* where, int tag) 1422 { 1423 1424 KDASSERT(mutex_ownable(&key_spd.lock)); 1425 1426 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1427 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n", 1428 sp, sp->id, where, tag, key_sp_refcnt(sp)); 1429 1430 localcount_release(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); 1431 } 1432 1433 static void 1434 key_init_sav(struct secasvar *sav) 1435 { 1436 1437 ASSERT_SLEEPABLE(); 1438 1439 localcount_init(&sav->localcount); 1440 SAVLIST_ENTRY_INIT(sav); 1441 SAVLUT_ENTRY_INIT(sav); 1442 } 1443 1444 u_int 1445 key_sa_refcnt(const struct secasvar *sav) 1446 { 1447 1448 /* FIXME */ 1449 return 0; 1450 } 1451 1452 void 1453 key_sa_ref(struct secasvar *sav, const char* where, int tag) 1454 { 1455 1456 localcount_acquire(&sav->localcount); 1457 1458 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1459 "DP cause refcnt++: SA:%p from %s:%u\n", 1460 sav, where, tag); 1461 } 1462 1463 void 1464 key_sa_unref(struct secasvar *sav, const char* where, int tag) 1465 { 1466 1467 KDASSERT(mutex_ownable(&key_sad.lock)); 1468 1469 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1470 "DP cause refcnt--: SA:%p from %s:%u\n", 1471 sav, where, tag); 1472 1473 localcount_release(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1474 } 1475 1476 #if 0 1477 /* 1478 * Must be called after calling key_lookup_sp*(). 1479 * For the packet with socket. 1480 */ 1481 static void 1482 key_freeso(struct socket *so) 1483 { 1484 /* sanity check */ 1485 KASSERT(so != NULL); 1486 1487 switch (so->so_proto->pr_domain->dom_family) { 1488 #ifdef INET 1489 case PF_INET: 1490 { 1491 struct inpcb *pcb = sotoinpcb(so); 1492 1493 /* Does it have a PCB ? */ 1494 if (pcb == NULL) 1495 return; 1496 1497 struct inpcbpolicy *sp = pcb->inp_sp; 1498 key_freesp_so(&sp->sp_in); 1499 key_freesp_so(&sp->sp_out); 1500 } 1501 break; 1502 #endif 1503 #ifdef INET6 1504 case PF_INET6: 1505 { 1506 #ifdef HAVE_NRL_INPCB 1507 struct inpcb *pcb = sotoinpcb(so); 1508 struct inpcbpolicy *sp = pcb->inp_sp; 1509 1510 /* Does it have a PCB ? */ 1511 if (pcb == NULL) 1512 return; 1513 key_freesp_so(&sp->sp_in); 1514 key_freesp_so(&sp->sp_out); 1515 #else 1516 struct in6pcb *pcb = sotoin6pcb(so); 1517 1518 /* Does it have a PCB ? */ 1519 if (pcb == NULL) 1520 return; 1521 key_freesp_so(&pcb->in6p_sp->sp_in); 1522 key_freesp_so(&pcb->in6p_sp->sp_out); 1523 #endif 1524 } 1525 break; 1526 #endif /* INET6 */ 1527 default: 1528 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n", 1529 so->so_proto->pr_domain->dom_family); 1530 return; 1531 } 1532 } 1533 1534 static void 1535 key_freesp_so(struct secpolicy **sp) 1536 { 1537 1538 KASSERT(sp != NULL); 1539 KASSERT(*sp != NULL); 1540 1541 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1542 (*sp)->policy == IPSEC_POLICY_BYPASS) 1543 return; 1544 1545 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC, 1546 "invalid policy %u", (*sp)->policy); 1547 KEY_SP_UNREF(&sp); 1548 } 1549 #endif 1550 1551 static void 1552 key_sad_pserialize_perform(void) 1553 { 1554 1555 KASSERT(mutex_owned(&key_sad.lock)); 1556 1557 while (key_sad.psz_performing) 1558 cv_wait(&key_sad.cv_psz, &key_sad.lock); 1559 key_sad.psz_performing = true; 1560 mutex_exit(&key_sad.lock); 1561 1562 pserialize_perform(key_sad.psz); 1563 1564 mutex_enter(&key_sad.lock); 1565 key_sad.psz_performing = false; 1566 cv_broadcast(&key_sad.cv_psz); 1567 } 1568 1569 /* 1570 * Remove the sav from the savlist of its sah and wait for references to the sav 1571 * to be released. key_sad.lock must be held. 1572 */ 1573 static void 1574 key_unlink_sav(struct secasvar *sav) 1575 { 1576 1577 KASSERT(mutex_owned(&key_sad.lock)); 1578 1579 SAVLIST_WRITER_REMOVE(sav); 1580 SAVLUT_WRITER_REMOVE(sav); 1581 1582 KDASSERT(mutex_ownable(softnet_lock)); 1583 key_sad_pserialize_perform(); 1584 1585 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1586 } 1587 1588 /* 1589 * Destroy an sav where the sav must be unlinked from an sah 1590 * by say key_unlink_sav. 1591 */ 1592 static void 1593 key_destroy_sav(struct secasvar *sav) 1594 { 1595 1596 ASSERT_SLEEPABLE(); 1597 1598 localcount_fini(&sav->localcount); 1599 SAVLIST_ENTRY_DESTROY(sav); 1600 1601 key_delsav(sav); 1602 } 1603 1604 /* 1605 * Wait for references of a passed sav to go away. 1606 */ 1607 static void 1608 key_wait_sav(struct secasvar *sav) 1609 { 1610 1611 ASSERT_SLEEPABLE(); 1612 1613 mutex_enter(&key_sad.lock); 1614 KASSERT(sav->state == SADB_SASTATE_DEAD); 1615 KDASSERT(mutex_ownable(softnet_lock)); 1616 key_sad_pserialize_perform(); 1617 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1618 mutex_exit(&key_sad.lock); 1619 } 1620 1621 /* %%% SPD management */ 1622 /* 1623 * free security policy entry. 1624 */ 1625 static void 1626 key_destroy_sp(struct secpolicy *sp) 1627 { 1628 1629 SPLIST_ENTRY_DESTROY(sp); 1630 localcount_fini(&sp->localcount); 1631 1632 key_free_sp(sp); 1633 1634 key_update_used(); 1635 } 1636 1637 void 1638 key_free_sp(struct secpolicy *sp) 1639 { 1640 struct ipsecrequest *isr = sp->req, *nextisr; 1641 1642 while (isr != NULL) { 1643 nextisr = isr->next; 1644 kmem_free(isr, sizeof(*isr)); 1645 isr = nextisr; 1646 } 1647 1648 kmem_free(sp, sizeof(*sp)); 1649 } 1650 1651 void 1652 key_socksplist_add(struct secpolicy *sp) 1653 { 1654 1655 mutex_enter(&key_spd.lock); 1656 PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry); 1657 mutex_exit(&key_spd.lock); 1658 1659 key_update_used(); 1660 } 1661 1662 /* 1663 * search SPD 1664 * OUT: NULL : not found 1665 * others : found, pointer to a SP. 1666 */ 1667 static struct secpolicy * 1668 key_getsp(const struct secpolicyindex *spidx) 1669 { 1670 struct secpolicy *sp; 1671 int s; 1672 1673 KASSERT(spidx != NULL); 1674 1675 s = pserialize_read_enter(); 1676 SPLIST_READER_FOREACH(sp, spidx->dir) { 1677 if (sp->state == IPSEC_SPSTATE_DEAD) 1678 continue; 1679 if (key_spidx_match_exactly(spidx, &sp->spidx)) { 1680 KEY_SP_REF(sp); 1681 pserialize_read_exit(s); 1682 return sp; 1683 } 1684 } 1685 pserialize_read_exit(s); 1686 1687 return NULL; 1688 } 1689 1690 /* 1691 * search SPD and remove found SP 1692 * OUT: NULL : not found 1693 * others : found, pointer to a SP. 1694 */ 1695 static struct secpolicy * 1696 key_lookup_and_remove_sp(const struct secpolicyindex *spidx, bool from_kernel) 1697 { 1698 struct secpolicy *sp = NULL; 1699 1700 mutex_enter(&key_spd.lock); 1701 SPLIST_WRITER_FOREACH(sp, spidx->dir) { 1702 KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, "sp->state=%u", 1703 sp->state); 1704 /* 1705 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1706 * removed by userland programs. 1707 */ 1708 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1709 continue; 1710 if (key_spidx_match_exactly(spidx, &sp->spidx)) { 1711 key_unlink_sp(sp); 1712 goto out; 1713 } 1714 } 1715 sp = NULL; 1716 out: 1717 mutex_exit(&key_spd.lock); 1718 1719 return sp; 1720 } 1721 1722 /* 1723 * get SP by index. 1724 * OUT: NULL : not found 1725 * others : found, pointer to a SP. 1726 */ 1727 static struct secpolicy * 1728 key_getspbyid(u_int32_t id) 1729 { 1730 struct secpolicy *sp; 1731 int s; 1732 1733 s = pserialize_read_enter(); 1734 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { 1735 if (sp->state == IPSEC_SPSTATE_DEAD) 1736 continue; 1737 if (sp->id == id) { 1738 KEY_SP_REF(sp); 1739 goto out; 1740 } 1741 } 1742 1743 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { 1744 if (sp->state == IPSEC_SPSTATE_DEAD) 1745 continue; 1746 if (sp->id == id) { 1747 KEY_SP_REF(sp); 1748 goto out; 1749 } 1750 } 1751 out: 1752 pserialize_read_exit(s); 1753 return sp; 1754 } 1755 1756 /* 1757 * get SP by index, remove and return it. 1758 * OUT: NULL : not found 1759 * others : found, pointer to a SP. 1760 */ 1761 static struct secpolicy * 1762 key_lookupbyid_and_remove_sp(u_int32_t id, bool from_kernel) 1763 { 1764 struct secpolicy *sp; 1765 1766 mutex_enter(&key_spd.lock); 1767 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { 1768 KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, "sp->state=%u", 1769 sp->state); 1770 /* 1771 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1772 * removed by userland programs. 1773 */ 1774 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1775 continue; 1776 if (sp->id == id) 1777 goto out; 1778 } 1779 1780 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { 1781 KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, "sp->state=%u", 1782 sp->state); 1783 /* 1784 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1785 * removed by userland programs. 1786 */ 1787 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1788 continue; 1789 if (sp->id == id) 1790 goto out; 1791 } 1792 out: 1793 if (sp != NULL) 1794 key_unlink_sp(sp); 1795 mutex_exit(&key_spd.lock); 1796 return sp; 1797 } 1798 1799 struct secpolicy * 1800 key_newsp(const char* where, int tag) 1801 { 1802 struct secpolicy *newsp = NULL; 1803 1804 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP); 1805 1806 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1807 "DP from %s:%u return SP:%p\n", where, tag, newsp); 1808 return newsp; 1809 } 1810 1811 /* 1812 * create secpolicy structure from sadb_x_policy structure. 1813 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1814 * so must be set properly later. 1815 */ 1816 static struct secpolicy * 1817 _key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error, 1818 bool from_kernel) 1819 { 1820 struct secpolicy *newsp; 1821 1822 KASSERT(!cpu_softintr_p()); 1823 KASSERT(xpl0 != NULL); 1824 KASSERT(len >= sizeof(*xpl0)); 1825 1826 if (len != PFKEY_EXTLEN(xpl0)) { 1827 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); 1828 *error = EINVAL; 1829 return NULL; 1830 } 1831 1832 newsp = KEY_NEWSP(); 1833 if (newsp == NULL) { 1834 *error = ENOBUFS; 1835 return NULL; 1836 } 1837 1838 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1839 newsp->policy = xpl0->sadb_x_policy_type; 1840 1841 /* check policy */ 1842 switch (xpl0->sadb_x_policy_type) { 1843 case IPSEC_POLICY_DISCARD: 1844 case IPSEC_POLICY_NONE: 1845 case IPSEC_POLICY_ENTRUST: 1846 case IPSEC_POLICY_BYPASS: 1847 newsp->req = NULL; 1848 *error = 0; 1849 return newsp; 1850 1851 case IPSEC_POLICY_IPSEC: 1852 /* Continued */ 1853 break; 1854 default: 1855 IPSECLOG(LOG_DEBUG, "invalid policy type.\n"); 1856 key_free_sp(newsp); 1857 *error = EINVAL; 1858 return NULL; 1859 } 1860 1861 /* IPSEC_POLICY_IPSEC */ 1862 { 1863 int tlen; 1864 const struct sadb_x_ipsecrequest *xisr; 1865 uint16_t xisr_reqid; 1866 struct ipsecrequest **p_isr = &newsp->req; 1867 1868 /* validity check */ 1869 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1870 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); 1871 *error = EINVAL; 1872 goto free_exit; 1873 } 1874 1875 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1876 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1); 1877 1878 while (tlen > 0) { 1879 /* length check */ 1880 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1881 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n"); 1882 *error = EINVAL; 1883 goto free_exit; 1884 } 1885 1886 /* allocate request buffer */ 1887 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP); 1888 1889 /* set values */ 1890 (*p_isr)->next = NULL; 1891 1892 switch (xisr->sadb_x_ipsecrequest_proto) { 1893 case IPPROTO_ESP: 1894 case IPPROTO_AH: 1895 case IPPROTO_IPCOMP: 1896 break; 1897 default: 1898 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n", 1899 xisr->sadb_x_ipsecrequest_proto); 1900 *error = EPROTONOSUPPORT; 1901 goto free_exit; 1902 } 1903 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1904 1905 switch (xisr->sadb_x_ipsecrequest_mode) { 1906 case IPSEC_MODE_TRANSPORT: 1907 case IPSEC_MODE_TUNNEL: 1908 break; 1909 case IPSEC_MODE_ANY: 1910 default: 1911 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n", 1912 xisr->sadb_x_ipsecrequest_mode); 1913 *error = EINVAL; 1914 goto free_exit; 1915 } 1916 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1917 1918 switch (xisr->sadb_x_ipsecrequest_level) { 1919 case IPSEC_LEVEL_DEFAULT: 1920 case IPSEC_LEVEL_USE: 1921 case IPSEC_LEVEL_REQUIRE: 1922 break; 1923 case IPSEC_LEVEL_UNIQUE: 1924 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid; 1925 /* validity check */ 1926 /* 1927 * case 1) from_kernel == false 1928 * That means the request comes from userland. 1929 * If range violation of reqid, kernel will 1930 * update it, don't refuse it. 1931 * 1932 * case 2) from_kernel == true 1933 * That means the request comes from kernel 1934 * (e.g. ipsec(4) I/F). 1935 * Use thre requested reqid to avoid inconsistency 1936 * between kernel's reqid and the reqid in pf_key 1937 * message sent to userland. The pf_key message is 1938 * built by diverting request mbuf. 1939 */ 1940 if (!from_kernel && 1941 xisr_reqid > IPSEC_MANUAL_REQID_MAX) { 1942 IPSECLOG(LOG_DEBUG, 1943 "reqid=%d range " 1944 "violation, updated by kernel.\n", 1945 xisr_reqid); 1946 xisr_reqid = 0; 1947 } 1948 1949 /* allocate new reqid id if reqid is zero. */ 1950 if (xisr_reqid == 0) { 1951 u_int16_t reqid = key_newreqid(); 1952 if (reqid == 0) { 1953 *error = ENOBUFS; 1954 goto free_exit; 1955 } 1956 (*p_isr)->saidx.reqid = reqid; 1957 } else { 1958 /* set it for manual keying. */ 1959 (*p_isr)->saidx.reqid = xisr_reqid; 1960 } 1961 break; 1962 1963 default: 1964 IPSECLOG(LOG_DEBUG, "invalid level=%u\n", 1965 xisr->sadb_x_ipsecrequest_level); 1966 *error = EINVAL; 1967 goto free_exit; 1968 } 1969 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1970 1971 /* set IP addresses if there */ 1972 /* 1973 * NOTE: 1974 * MOBIKE Extensions for PF_KEY draft says: 1975 * If tunnel mode is specified, the sadb_x_ipsecrequest 1976 * structure is followed by two sockaddr structures that 1977 * define the tunnel endpoint addresses. In the case that 1978 * transport mode is used, no additional addresses are 1979 * specified. 1980 * see: https://tools.ietf.org/html/draft-schilcher-mobike-pfkey-extension-01 1981 * 1982 * And then, the IP addresses will be set by 1983 * ipsec_fill_saidx_bymbuf() from packet in transport mode. 1984 * This behavior is used by NAT-T enabled ipsecif(4). 1985 */ 1986 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1987 const struct sockaddr *paddr; 1988 1989 paddr = (const struct sockaddr *)(xisr + 1); 1990 1991 /* validity check */ 1992 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) { 1993 IPSECLOG(LOG_DEBUG, "invalid request " 1994 "address length.\n"); 1995 *error = EINVAL; 1996 goto free_exit; 1997 } 1998 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len); 1999 2000 paddr = (const struct sockaddr *)((const char *)paddr 2001 + paddr->sa_len); 2002 2003 /* validity check */ 2004 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) { 2005 IPSECLOG(LOG_DEBUG, "invalid request " 2006 "address length.\n"); 2007 *error = EINVAL; 2008 goto free_exit; 2009 } 2010 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len); 2011 } 2012 2013 (*p_isr)->sp = newsp; 2014 2015 /* initialization for the next. */ 2016 p_isr = &(*p_isr)->next; 2017 tlen -= xisr->sadb_x_ipsecrequest_len; 2018 2019 /* validity check */ 2020 if (tlen < 0) { 2021 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n"); 2022 *error = EINVAL; 2023 goto free_exit; 2024 } 2025 2026 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr + 2027 xisr->sadb_x_ipsecrequest_len); 2028 } 2029 } 2030 2031 *error = 0; 2032 return newsp; 2033 2034 free_exit: 2035 key_free_sp(newsp); 2036 return NULL; 2037 } 2038 2039 struct secpolicy * 2040 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error) 2041 { 2042 2043 return _key_msg2sp(xpl0, len, error, false); 2044 } 2045 2046 u_int16_t 2047 key_newreqid(void) 2048 { 2049 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 2050 2051 auto_reqid = (auto_reqid == 0xffff ? 2052 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 2053 2054 /* XXX should be unique check */ 2055 2056 return auto_reqid; 2057 } 2058 2059 /* 2060 * copy secpolicy struct to sadb_x_policy structure indicated. 2061 */ 2062 struct mbuf * 2063 key_sp2msg(const struct secpolicy *sp, int mflag) 2064 { 2065 struct sadb_x_policy *xpl; 2066 int tlen; 2067 char *p; 2068 struct mbuf *m; 2069 2070 KASSERT(sp != NULL); 2071 2072 tlen = key_getspreqmsglen(sp); 2073 2074 m = key_alloc_mbuf(tlen, mflag); 2075 if (!m || m->m_next) { /*XXX*/ 2076 if (m) 2077 m_freem(m); 2078 return NULL; 2079 } 2080 2081 m->m_len = tlen; 2082 m->m_next = NULL; 2083 xpl = mtod(m, struct sadb_x_policy *); 2084 memset(xpl, 0, tlen); 2085 2086 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 2087 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 2088 xpl->sadb_x_policy_type = sp->policy; 2089 xpl->sadb_x_policy_dir = sp->spidx.dir; 2090 xpl->sadb_x_policy_id = sp->id; 2091 p = (char *)xpl + sizeof(*xpl); 2092 2093 /* if is the policy for ipsec ? */ 2094 if (sp->policy == IPSEC_POLICY_IPSEC) { 2095 struct sadb_x_ipsecrequest *xisr; 2096 struct ipsecrequest *isr; 2097 2098 for (isr = sp->req; isr != NULL; isr = isr->next) { 2099 2100 xisr = (struct sadb_x_ipsecrequest *)p; 2101 2102 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 2103 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 2104 xisr->sadb_x_ipsecrequest_level = isr->level; 2105 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 2106 2107 p += sizeof(*xisr); 2108 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len); 2109 p += isr->saidx.src.sa.sa_len; 2110 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len); 2111 p += isr->saidx.src.sa.sa_len; 2112 2113 xisr->sadb_x_ipsecrequest_len = 2114 PFKEY_ALIGN8(sizeof(*xisr) 2115 + isr->saidx.src.sa.sa_len 2116 + isr->saidx.dst.sa.sa_len); 2117 } 2118 } 2119 2120 return m; 2121 } 2122 2123 /* 2124 * m will not be freed nor modified. It never return NULL. 2125 * If it returns a mbuf of M_PKTHDR, the mbuf ensures to have 2126 * contiguous length at least sizeof(struct sadb_msg). 2127 */ 2128 static struct mbuf * 2129 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 2130 int ndeep, int nitem, ...) 2131 { 2132 va_list ap; 2133 int idx; 2134 int i; 2135 struct mbuf *result = NULL, *n; 2136 int len; 2137 2138 KASSERT(m != NULL); 2139 KASSERT(mhp != NULL); 2140 KASSERT(!cpu_softintr_p()); 2141 2142 va_start(ap, nitem); 2143 for (i = 0; i < nitem; i++) { 2144 idx = va_arg(ap, int); 2145 KASSERT(idx >= 0); 2146 KASSERT(idx <= SADB_EXT_MAX); 2147 /* don't attempt to pull empty extension */ 2148 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 2149 continue; 2150 if (idx != SADB_EXT_RESERVED && 2151 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 2152 continue; 2153 2154 if (idx == SADB_EXT_RESERVED) { 2155 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN); 2156 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2157 MGETHDR(n, M_WAITOK, MT_DATA); 2158 n->m_len = len; 2159 n->m_next = NULL; 2160 m_copydata(m, 0, sizeof(struct sadb_msg), 2161 mtod(n, void *)); 2162 } else if (i < ndeep) { 2163 len = mhp->extlen[idx]; 2164 n = key_alloc_mbuf(len, M_WAITOK); 2165 KASSERT(n->m_next == NULL); 2166 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 2167 mtod(n, void *)); 2168 } else { 2169 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 2170 M_WAITOK); 2171 } 2172 KASSERT(n != NULL); 2173 2174 if (result) 2175 m_cat(result, n); 2176 else 2177 result = n; 2178 } 2179 va_end(ap); 2180 2181 KASSERT(result != NULL); 2182 if ((result->m_flags & M_PKTHDR) != 0) { 2183 result->m_pkthdr.len = 0; 2184 for (n = result; n; n = n->m_next) 2185 result->m_pkthdr.len += n->m_len; 2186 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 2187 } 2188 2189 return result; 2190 } 2191 2192 /* 2193 * The argument _sp must not overwrite until SP is created and registered 2194 * successfully. 2195 */ 2196 static int 2197 key_spdadd(struct socket *so, struct mbuf *m, 2198 const struct sadb_msghdr *mhp, struct secpolicy **_sp, 2199 bool from_kernel) 2200 { 2201 const struct sockaddr *src, *dst; 2202 const struct sadb_x_policy *xpl0; 2203 struct sadb_x_policy *xpl; 2204 const struct sadb_lifetime *lft = NULL; 2205 struct secpolicyindex spidx; 2206 struct secpolicy *newsp; 2207 int error; 2208 uint32_t sadb_x_policy_id; 2209 2210 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2211 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2212 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2213 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2214 return key_senderror(so, m, EINVAL); 2215 } 2216 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2217 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2218 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2219 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2220 return key_senderror(so, m, EINVAL); 2221 } 2222 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 2223 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < 2224 sizeof(struct sadb_lifetime)) { 2225 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2226 return key_senderror(so, m, EINVAL); 2227 } 2228 lft = mhp->ext[SADB_EXT_LIFETIME_HARD]; 2229 } 2230 2231 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 2232 2233 /* checking the direciton. */ 2234 switch (xpl0->sadb_x_policy_dir) { 2235 case IPSEC_DIR_INBOUND: 2236 case IPSEC_DIR_OUTBOUND: 2237 break; 2238 default: 2239 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); 2240 return key_senderror(so, m, EINVAL); 2241 } 2242 2243 /* check policy */ 2244 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */ 2245 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST || 2246 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 2247 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n"); 2248 return key_senderror(so, m, EINVAL); 2249 } 2250 2251 /* policy requests are mandatory when action is ipsec. */ 2252 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX && 2253 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 2254 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 2255 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n"); 2256 return key_senderror(so, m, EINVAL); 2257 } 2258 2259 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 2260 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 2261 2262 /* sanity check on addr pair */ 2263 if (src->sa_family != dst->sa_family) 2264 return key_senderror(so, m, EINVAL); 2265 if (src->sa_len != dst->sa_len) 2266 return key_senderror(so, m, EINVAL); 2267 2268 key_init_spidx_bymsghdr(&spidx, mhp); 2269 2270 /* 2271 * checking there is SP already or not. 2272 * SPDUPDATE doesn't depend on whether there is a SP or not. 2273 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 2274 * then error. 2275 */ 2276 { 2277 struct secpolicy *sp; 2278 2279 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2280 sp = key_lookup_and_remove_sp(&spidx, from_kernel); 2281 if (sp != NULL) 2282 key_destroy_sp(sp); 2283 } else { 2284 sp = key_getsp(&spidx); 2285 if (sp != NULL) { 2286 KEY_SP_UNREF(&sp); 2287 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n"); 2288 return key_senderror(so, m, EEXIST); 2289 } 2290 } 2291 } 2292 2293 /* allocation new SP entry */ 2294 newsp = _key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error, from_kernel); 2295 if (newsp == NULL) { 2296 return key_senderror(so, m, error); 2297 } 2298 2299 newsp->id = key_getnewspid(); 2300 if (newsp->id == 0) { 2301 kmem_free(newsp, sizeof(*newsp)); 2302 return key_senderror(so, m, ENOBUFS); 2303 } 2304 2305 newsp->spidx = spidx; 2306 newsp->created = time_uptime; 2307 newsp->lastused = newsp->created; 2308 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 2309 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 2310 if (from_kernel) 2311 newsp->origin = IPSEC_SPORIGIN_KERNEL; 2312 else 2313 newsp->origin = IPSEC_SPORIGIN_USER; 2314 2315 key_init_sp(newsp); 2316 if (from_kernel) 2317 KEY_SP_REF(newsp); 2318 2319 sadb_x_policy_id = newsp->id; 2320 2321 if (_sp != NULL) 2322 *_sp = newsp; 2323 2324 mutex_enter(&key_spd.lock); 2325 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp); 2326 mutex_exit(&key_spd.lock); 2327 /* 2328 * We don't have a reference to newsp, so we must not touch newsp from 2329 * now on. If you want to do, you must take a reference beforehand. 2330 */ 2331 newsp = NULL; 2332 2333 #ifdef notyet 2334 /* delete the entry in key_misc.spacqlist */ 2335 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2336 struct secspacq *spacq = key_getspacq(&spidx); 2337 if (spacq != NULL) { 2338 /* reset counter in order to deletion by timehandler. */ 2339 spacq->created = time_uptime; 2340 spacq->count = 0; 2341 } 2342 } 2343 #endif 2344 2345 /* Invalidate all cached SPD pointers in the PCBs. */ 2346 ipsec_invalpcbcacheall(); 2347 2348 #if defined(GATEWAY) 2349 /* Invalidate the ipflow cache, as well. */ 2350 ipflow_invalidate_all(0); 2351 #ifdef INET6 2352 if (in6_present) 2353 ip6flow_invalidate_all(0); 2354 #endif /* INET6 */ 2355 #endif /* GATEWAY */ 2356 2357 key_update_used(); 2358 2359 { 2360 struct mbuf *n, *mpolicy; 2361 int off; 2362 2363 /* create new sadb_msg to reply. */ 2364 if (lft) { 2365 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 2366 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 2367 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2368 } else { 2369 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 2370 SADB_X_EXT_POLICY, 2371 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2372 } 2373 2374 key_fill_replymsg(n, 0); 2375 off = 0; 2376 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 2377 sizeof(*xpl), &off); 2378 if (mpolicy == NULL) { 2379 /* n is already freed */ 2380 /* 2381 * valid sp has been created, so we does not overwrite _sp 2382 * NULL here. let caller decide to use the sp or not. 2383 */ 2384 return key_senderror(so, m, ENOBUFS); 2385 } 2386 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off); 2387 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 2388 m_freem(n); 2389 /* ditto */ 2390 return key_senderror(so, m, EINVAL); 2391 } 2392 2393 xpl->sadb_x_policy_id = sadb_x_policy_id; 2394 2395 m_freem(m); 2396 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2397 } 2398 } 2399 2400 /* 2401 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 2402 * add an entry to SP database, when received 2403 * <base, address(SD), (lifetime(H),) policy> 2404 * from the user(?). 2405 * Adding to SP database, 2406 * and send 2407 * <base, address(SD), (lifetime(H),) policy> 2408 * to the socket which was send. 2409 * 2410 * SPDADD set a unique policy entry. 2411 * SPDSETIDX like SPDADD without a part of policy requests. 2412 * SPDUPDATE replace a unique policy entry. 2413 * 2414 * m will always be freed. 2415 */ 2416 static int 2417 key_api_spdadd(struct socket *so, struct mbuf *m, 2418 const struct sadb_msghdr *mhp) 2419 { 2420 2421 return key_spdadd(so, m, mhp, NULL, false); 2422 } 2423 2424 struct secpolicy * 2425 key_kpi_spdadd(struct mbuf *m) 2426 { 2427 struct sadb_msghdr mh; 2428 int error; 2429 struct secpolicy *sp = NULL; 2430 2431 error = key_align(m, &mh); 2432 if (error) 2433 return NULL; 2434 2435 error = key_spdadd(NULL, m, &mh, &sp, true); 2436 if (error) { 2437 /* 2438 * Currently, when key_spdadd() cannot send a PFKEY message 2439 * which means SP has been created, key_spdadd() returns error 2440 * although SP is created successfully. 2441 * Kernel components would not care PFKEY messages, so return 2442 * the "sp" regardless of error code. key_spdadd() overwrites 2443 * the argument only if SP is created successfully. 2444 */ 2445 } 2446 return sp; 2447 } 2448 2449 /* 2450 * get new policy id. 2451 * OUT: 2452 * 0: failure. 2453 * others: success. 2454 */ 2455 static u_int32_t 2456 key_getnewspid(void) 2457 { 2458 u_int32_t newid = 0; 2459 int count = key_spi_trycnt; /* XXX */ 2460 struct secpolicy *sp; 2461 2462 /* when requesting to allocate spi ranged */ 2463 while (count--) { 2464 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); 2465 2466 sp = key_getspbyid(newid); 2467 if (sp == NULL) 2468 break; 2469 2470 KEY_SP_UNREF(&sp); 2471 } 2472 2473 if (count == 0 || newid == 0) { 2474 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n"); 2475 return 0; 2476 } 2477 2478 return newid; 2479 } 2480 2481 /* 2482 * SADB_SPDDELETE processing 2483 * receive 2484 * <base, address(SD), policy(*)> 2485 * from the user(?), and set SADB_SASTATE_DEAD, 2486 * and send, 2487 * <base, address(SD), policy(*)> 2488 * to the ikmpd. 2489 * policy(*) including direction of policy. 2490 * 2491 * m will always be freed. 2492 */ 2493 static int 2494 key_api_spddelete(struct socket *so, struct mbuf *m, 2495 const struct sadb_msghdr *mhp) 2496 { 2497 struct sadb_x_policy *xpl0; 2498 struct secpolicyindex spidx; 2499 struct secpolicy *sp; 2500 2501 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2502 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2503 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2504 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2505 return key_senderror(so, m, EINVAL); 2506 } 2507 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2508 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2509 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2510 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2511 return key_senderror(so, m, EINVAL); 2512 } 2513 2514 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 2515 2516 /* checking the direction. */ 2517 switch (xpl0->sadb_x_policy_dir) { 2518 case IPSEC_DIR_INBOUND: 2519 case IPSEC_DIR_OUTBOUND: 2520 break; 2521 default: 2522 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); 2523 return key_senderror(so, m, EINVAL); 2524 } 2525 2526 /* make secindex */ 2527 key_init_spidx_bymsghdr(&spidx, mhp); 2528 2529 /* Is there SP in SPD ? */ 2530 sp = key_lookup_and_remove_sp(&spidx, false); 2531 if (sp == NULL) { 2532 IPSECLOG(LOG_DEBUG, "no SP found.\n"); 2533 return key_senderror(so, m, EINVAL); 2534 } 2535 2536 /* save policy id to buffer to be returned. */ 2537 xpl0->sadb_x_policy_id = sp->id; 2538 2539 key_destroy_sp(sp); 2540 2541 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2542 2543 { 2544 struct mbuf *n; 2545 2546 /* create new sadb_msg to reply. */ 2547 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2548 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2549 key_fill_replymsg(n, 0); 2550 m_freem(m); 2551 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2552 } 2553 } 2554 2555 static struct mbuf * 2556 key_alloc_mbuf_simple(int len, int mflag) 2557 { 2558 struct mbuf *n; 2559 2560 KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p())); 2561 2562 MGETHDR(n, mflag, MT_DATA); 2563 if (n && len > MHLEN) { 2564 MCLGET(n, mflag); 2565 if ((n->m_flags & M_EXT) == 0) { 2566 m_freem(n); 2567 n = NULL; 2568 } 2569 } 2570 return n; 2571 } 2572 2573 /* 2574 * SADB_SPDDELETE2 processing 2575 * receive 2576 * <base, policy(*)> 2577 * from the user(?), and set SADB_SASTATE_DEAD, 2578 * and send, 2579 * <base, policy(*)> 2580 * to the ikmpd. 2581 * policy(*) including direction of policy. 2582 * 2583 * m will always be freed. 2584 */ 2585 static int 2586 key_spddelete2(struct socket *so, struct mbuf *m, 2587 const struct sadb_msghdr *mhp, bool from_kernel) 2588 { 2589 u_int32_t id; 2590 struct secpolicy *sp; 2591 const struct sadb_x_policy *xpl; 2592 2593 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2594 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2595 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2596 return key_senderror(so, m, EINVAL); 2597 } 2598 2599 xpl = mhp->ext[SADB_X_EXT_POLICY]; 2600 id = xpl->sadb_x_policy_id; 2601 2602 /* Is there SP in SPD ? */ 2603 sp = key_lookupbyid_and_remove_sp(id, from_kernel); 2604 if (sp == NULL) { 2605 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); 2606 return key_senderror(so, m, EINVAL); 2607 } 2608 2609 key_destroy_sp(sp); 2610 2611 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2612 2613 { 2614 struct mbuf *n, *nn; 2615 int off, len; 2616 2617 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); 2618 2619 /* create new sadb_msg to reply. */ 2620 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2621 2622 n = key_alloc_mbuf_simple(len, M_WAITOK); 2623 n->m_len = len; 2624 n->m_next = NULL; 2625 off = 0; 2626 2627 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 2628 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2629 2630 KASSERTMSG(off == len, "length inconsistency"); 2631 2632 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2633 mhp->extlen[SADB_X_EXT_POLICY], M_WAITOK); 2634 2635 n->m_pkthdr.len = 0; 2636 for (nn = n; nn; nn = nn->m_next) 2637 n->m_pkthdr.len += nn->m_len; 2638 2639 key_fill_replymsg(n, 0); 2640 m_freem(m); 2641 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2642 } 2643 } 2644 2645 /* 2646 * SADB_SPDDELETE2 processing 2647 * receive 2648 * <base, policy(*)> 2649 * from the user(?), and set SADB_SASTATE_DEAD, 2650 * and send, 2651 * <base, policy(*)> 2652 * to the ikmpd. 2653 * policy(*) including direction of policy. 2654 * 2655 * m will always be freed. 2656 */ 2657 static int 2658 key_api_spddelete2(struct socket *so, struct mbuf *m, 2659 const struct sadb_msghdr *mhp) 2660 { 2661 2662 return key_spddelete2(so, m, mhp, false); 2663 } 2664 2665 int 2666 key_kpi_spddelete2(struct mbuf *m) 2667 { 2668 struct sadb_msghdr mh; 2669 int error; 2670 2671 error = key_align(m, &mh); 2672 if (error) 2673 return EINVAL; 2674 2675 return key_spddelete2(NULL, m, &mh, true); 2676 } 2677 2678 /* 2679 * SADB_X_GET processing 2680 * receive 2681 * <base, policy(*)> 2682 * from the user(?), 2683 * and send, 2684 * <base, address(SD), policy> 2685 * to the ikmpd. 2686 * policy(*) including direction of policy. 2687 * 2688 * m will always be freed. 2689 */ 2690 static int 2691 key_api_spdget(struct socket *so, struct mbuf *m, 2692 const struct sadb_msghdr *mhp) 2693 { 2694 u_int32_t id; 2695 struct secpolicy *sp; 2696 struct mbuf *n; 2697 const struct sadb_x_policy *xpl; 2698 2699 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2700 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2701 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2702 return key_senderror(so, m, EINVAL); 2703 } 2704 2705 xpl = mhp->ext[SADB_X_EXT_POLICY]; 2706 id = xpl->sadb_x_policy_id; 2707 2708 /* Is there SP in SPD ? */ 2709 sp = key_getspbyid(id); 2710 if (sp == NULL) { 2711 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); 2712 return key_senderror(so, m, ENOENT); 2713 } 2714 2715 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, 2716 mhp->msg->sadb_msg_pid); 2717 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */ 2718 m_freem(m); 2719 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2720 } 2721 2722 #ifdef notyet 2723 /* 2724 * SADB_X_SPDACQUIRE processing. 2725 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2726 * send 2727 * <base, policy(*)> 2728 * to KMD, and expect to receive 2729 * <base> with SADB_X_SPDACQUIRE if error occurred, 2730 * or 2731 * <base, policy> 2732 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2733 * policy(*) is without policy requests. 2734 * 2735 * 0 : succeed 2736 * others: error number 2737 */ 2738 int 2739 key_spdacquire(const struct secpolicy *sp) 2740 { 2741 struct mbuf *result = NULL, *m; 2742 struct secspacq *newspacq; 2743 int error; 2744 2745 KASSERT(sp != NULL); 2746 KASSERTMSG(sp->req == NULL, "called but there is request"); 2747 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC, 2748 "policy mismathed. IPsec is expected"); 2749 2750 /* Get an entry to check whether sent message or not. */ 2751 newspacq = key_getspacq(&sp->spidx); 2752 if (newspacq != NULL) { 2753 if (key_blockacq_count < newspacq->count) { 2754 /* reset counter and do send message. */ 2755 newspacq->count = 0; 2756 } else { 2757 /* increment counter and do nothing. */ 2758 newspacq->count++; 2759 return 0; 2760 } 2761 } else { 2762 /* make new entry for blocking to send SADB_ACQUIRE. */ 2763 newspacq = key_newspacq(&sp->spidx); 2764 if (newspacq == NULL) 2765 return ENOBUFS; 2766 2767 /* add to key_misc.acqlist */ 2768 LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain); 2769 } 2770 2771 /* create new sadb_msg to reply. */ 2772 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2773 if (!m) { 2774 error = ENOBUFS; 2775 goto fail; 2776 } 2777 result = m; 2778 2779 result->m_pkthdr.len = 0; 2780 for (m = result; m; m = m->m_next) 2781 result->m_pkthdr.len += m->m_len; 2782 2783 mtod(result, struct sadb_msg *)->sadb_msg_len = 2784 PFKEY_UNIT64(result->m_pkthdr.len); 2785 2786 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2787 2788 fail: 2789 if (result) 2790 m_freem(result); 2791 return error; 2792 } 2793 #endif /* notyet */ 2794 2795 /* 2796 * SADB_SPDFLUSH processing 2797 * receive 2798 * <base> 2799 * from the user, and free all entries in secpctree. 2800 * and send, 2801 * <base> 2802 * to the user. 2803 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2804 * 2805 * m will always be freed. 2806 */ 2807 static int 2808 key_api_spdflush(struct socket *so, struct mbuf *m, 2809 const struct sadb_msghdr *mhp) 2810 { 2811 struct sadb_msg *newmsg; 2812 struct secpolicy *sp; 2813 u_int dir; 2814 2815 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2816 return key_senderror(so, m, EINVAL); 2817 2818 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2819 retry: 2820 mutex_enter(&key_spd.lock); 2821 SPLIST_WRITER_FOREACH(sp, dir) { 2822 KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, 2823 "sp->state=%u", sp->state); 2824 /* 2825 * Userlang programs can remove SPs created by userland 2826 * probrams only, that is, they cannot remove SPs 2827 * created in kernel(e.g. ipsec(4) I/F). 2828 */ 2829 if (sp->origin == IPSEC_SPORIGIN_USER) { 2830 key_unlink_sp(sp); 2831 mutex_exit(&key_spd.lock); 2832 key_destroy_sp(sp); 2833 goto retry; 2834 } 2835 } 2836 mutex_exit(&key_spd.lock); 2837 } 2838 2839 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2840 2841 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2842 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 2843 return key_senderror(so, m, ENOBUFS); 2844 } 2845 2846 if (m->m_next) 2847 m_freem(m->m_next); 2848 m->m_next = NULL; 2849 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2850 newmsg = mtod(m, struct sadb_msg *); 2851 newmsg->sadb_msg_errno = 0; 2852 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2853 2854 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2855 } 2856 2857 static struct sockaddr key_src = { 2858 .sa_len = 2, 2859 .sa_family = PF_KEY, 2860 }; 2861 2862 static struct mbuf * 2863 key_setspddump_chain(int *errorp, int *lenp, pid_t pid) 2864 { 2865 struct secpolicy *sp; 2866 int cnt; 2867 u_int dir; 2868 struct mbuf *m, *n, *prev; 2869 int totlen; 2870 2871 KASSERT(mutex_owned(&key_spd.lock)); 2872 2873 *lenp = 0; 2874 2875 /* search SPD entry and get buffer size. */ 2876 cnt = 0; 2877 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2878 SPLIST_WRITER_FOREACH(sp, dir) { 2879 cnt++; 2880 } 2881 } 2882 2883 if (cnt == 0) { 2884 *errorp = ENOENT; 2885 return (NULL); 2886 } 2887 2888 m = NULL; 2889 prev = m; 2890 totlen = 0; 2891 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2892 SPLIST_WRITER_FOREACH(sp, dir) { 2893 --cnt; 2894 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 2895 2896 totlen += n->m_pkthdr.len; 2897 if (!m) { 2898 m = n; 2899 } else { 2900 prev->m_nextpkt = n; 2901 } 2902 prev = n; 2903 } 2904 } 2905 2906 *lenp = totlen; 2907 *errorp = 0; 2908 return (m); 2909 } 2910 2911 /* 2912 * SADB_SPDDUMP processing 2913 * receive 2914 * <base> 2915 * from the user, and dump all SP leaves 2916 * and send, 2917 * <base> ..... 2918 * to the ikmpd. 2919 * 2920 * m will always be freed. 2921 */ 2922 static int 2923 key_api_spddump(struct socket *so, struct mbuf *m0, 2924 const struct sadb_msghdr *mhp) 2925 { 2926 struct mbuf *n; 2927 int error, len; 2928 int ok; 2929 pid_t pid; 2930 2931 pid = mhp->msg->sadb_msg_pid; 2932 /* 2933 * If the requestor has insufficient socket-buffer space 2934 * for the entire chain, nobody gets any response to the DUMP. 2935 * XXX For now, only the requestor ever gets anything. 2936 * Moreover, if the requestor has any space at all, they receive 2937 * the entire chain, otherwise the request is refused with ENOBUFS. 2938 */ 2939 if (sbspace(&so->so_rcv) <= 0) { 2940 return key_senderror(so, m0, ENOBUFS); 2941 } 2942 2943 mutex_enter(&key_spd.lock); 2944 n = key_setspddump_chain(&error, &len, pid); 2945 mutex_exit(&key_spd.lock); 2946 2947 if (n == NULL) { 2948 return key_senderror(so, m0, ENOENT); 2949 } 2950 { 2951 uint64_t *ps = PFKEY_STAT_GETREF(); 2952 ps[PFKEY_STAT_IN_TOTAL]++; 2953 ps[PFKEY_STAT_IN_BYTES] += len; 2954 PFKEY_STAT_PUTREF(); 2955 } 2956 2957 /* 2958 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 2959 * The requestor receives either the entire chain, or an 2960 * error message with ENOBUFS. 2961 */ 2962 2963 /* 2964 * sbappendchainwith record takes the chain of entries, one 2965 * packet-record per SPD entry, prepends the key_src sockaddr 2966 * to each packet-record, links the sockaddr mbufs into a new 2967 * list of records, then appends the entire resulting 2968 * list to the requesting socket. 2969 */ 2970 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, 2971 SB_PRIO_ONESHOT_OVERFLOW); 2972 2973 if (!ok) { 2974 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 2975 m_freem(n); 2976 return key_senderror(so, m0, ENOBUFS); 2977 } 2978 2979 m_freem(m0); 2980 return error; 2981 } 2982 2983 /* 2984 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23 2985 */ 2986 static int 2987 key_api_nat_map(struct socket *so, struct mbuf *m, 2988 const struct sadb_msghdr *mhp) 2989 { 2990 struct sadb_x_nat_t_type *type; 2991 struct sadb_x_nat_t_port *sport; 2992 struct sadb_x_nat_t_port *dport; 2993 struct sadb_address *iaddr, *raddr; 2994 struct sadb_x_nat_t_frag *frag; 2995 2996 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 2997 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 2998 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) { 2999 IPSECLOG(LOG_DEBUG, "invalid message.\n"); 3000 return key_senderror(so, m, EINVAL); 3001 } 3002 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 3003 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 3004 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 3005 IPSECLOG(LOG_DEBUG, "invalid message.\n"); 3006 return key_senderror(so, m, EINVAL); 3007 } 3008 3009 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) && 3010 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) { 3011 IPSECLOG(LOG_DEBUG, "invalid message\n"); 3012 return key_senderror(so, m, EINVAL); 3013 } 3014 3015 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) && 3016 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) { 3017 IPSECLOG(LOG_DEBUG, "invalid message\n"); 3018 return key_senderror(so, m, EINVAL); 3019 } 3020 3021 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) && 3022 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) { 3023 IPSECLOG(LOG_DEBUG, "invalid message\n"); 3024 return key_senderror(so, m, EINVAL); 3025 } 3026 3027 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 3028 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 3029 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 3030 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; 3031 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; 3032 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 3033 3034 /* 3035 * XXX handle that, it should also contain a SA, or anything 3036 * that enable to update the SA information. 3037 */ 3038 3039 return 0; 3040 } 3041 3042 /* 3043 * Never return NULL. 3044 */ 3045 static struct mbuf * 3046 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid) 3047 { 3048 struct mbuf *result = NULL, *m; 3049 3050 KASSERT(!cpu_softintr_p()); 3051 3052 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, 3053 key_sp_refcnt(sp), M_WAITOK); 3054 result = m; 3055 3056 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3057 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK); 3058 m_cat(result, m); 3059 3060 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3061 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK); 3062 m_cat(result, m); 3063 3064 m = key_sp2msg(sp, M_WAITOK); 3065 m_cat(result, m); 3066 3067 KASSERT(result->m_flags & M_PKTHDR); 3068 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 3069 3070 result->m_pkthdr.len = 0; 3071 for (m = result; m; m = m->m_next) 3072 result->m_pkthdr.len += m->m_len; 3073 3074 mtod(result, struct sadb_msg *)->sadb_msg_len = 3075 PFKEY_UNIT64(result->m_pkthdr.len); 3076 3077 return result; 3078 } 3079 3080 /* 3081 * get PFKEY message length for security policy and request. 3082 */ 3083 static u_int 3084 key_getspreqmsglen(const struct secpolicy *sp) 3085 { 3086 u_int tlen; 3087 3088 tlen = sizeof(struct sadb_x_policy); 3089 3090 /* if is the policy for ipsec ? */ 3091 if (sp->policy != IPSEC_POLICY_IPSEC) 3092 return tlen; 3093 3094 /* get length of ipsec requests */ 3095 { 3096 const struct ipsecrequest *isr; 3097 int len; 3098 3099 for (isr = sp->req; isr != NULL; isr = isr->next) { 3100 len = sizeof(struct sadb_x_ipsecrequest) 3101 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len; 3102 3103 tlen += PFKEY_ALIGN8(len); 3104 } 3105 } 3106 3107 return tlen; 3108 } 3109 3110 /* 3111 * SADB_SPDEXPIRE processing 3112 * send 3113 * <base, address(SD), lifetime(CH), policy> 3114 * to KMD by PF_KEY. 3115 * 3116 * OUT: 0 : succeed 3117 * others : error number 3118 */ 3119 static int 3120 key_spdexpire(struct secpolicy *sp) 3121 { 3122 int s; 3123 struct mbuf *result = NULL, *m; 3124 int len; 3125 int error = -1; 3126 struct sadb_lifetime *lt; 3127 3128 /* XXX: Why do we lock ? */ 3129 s = splsoftnet(); /*called from softclock()*/ 3130 3131 KASSERT(sp != NULL); 3132 3133 /* set msg header */ 3134 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0, M_WAITOK); 3135 result = m; 3136 3137 /* create lifetime extension (current and hard) */ 3138 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 3139 m = key_alloc_mbuf(len, M_WAITOK); 3140 KASSERT(m->m_next == NULL); 3141 3142 memset(mtod(m, void *), 0, len); 3143 lt = mtod(m, struct sadb_lifetime *); 3144 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3145 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3146 lt->sadb_lifetime_allocations = 0; 3147 lt->sadb_lifetime_bytes = 0; 3148 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created); 3149 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused); 3150 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 3151 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3152 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 3153 lt->sadb_lifetime_allocations = 0; 3154 lt->sadb_lifetime_bytes = 0; 3155 lt->sadb_lifetime_addtime = sp->lifetime; 3156 lt->sadb_lifetime_usetime = sp->validtime; 3157 m_cat(result, m); 3158 3159 /* set sadb_address for source */ 3160 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa, 3161 sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK); 3162 m_cat(result, m); 3163 3164 /* set sadb_address for destination */ 3165 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa, 3166 sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK); 3167 m_cat(result, m); 3168 3169 /* set secpolicy */ 3170 m = key_sp2msg(sp, M_WAITOK); 3171 m_cat(result, m); 3172 3173 KASSERT(result->m_flags & M_PKTHDR); 3174 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 3175 3176 result->m_pkthdr.len = 0; 3177 for (m = result; m; m = m->m_next) 3178 result->m_pkthdr.len += m->m_len; 3179 3180 mtod(result, struct sadb_msg *)->sadb_msg_len = 3181 PFKEY_UNIT64(result->m_pkthdr.len); 3182 3183 error = key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 3184 splx(s); 3185 return error; 3186 } 3187 3188 /* %%% SAD management */ 3189 /* 3190 * allocating a memory for new SA head, and copy from the values of mhp. 3191 * OUT: NULL : failure due to the lack of memory. 3192 * others : pointer to new SA head. 3193 */ 3194 static struct secashead * 3195 key_newsah(const struct secasindex *saidx) 3196 { 3197 struct secashead *newsah; 3198 int i; 3199 3200 KASSERT(saidx != NULL); 3201 3202 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP); 3203 for (i = 0; i < __arraycount(newsah->savlist); i++) 3204 PSLIST_INIT(&newsah->savlist[i]); 3205 newsah->saidx = *saidx; 3206 3207 localcount_init(&newsah->localcount); 3208 /* Take a reference for the caller */ 3209 localcount_acquire(&newsah->localcount); 3210 3211 /* Add to the sah list */ 3212 SAHLIST_ENTRY_INIT(newsah); 3213 newsah->state = SADB_SASTATE_MATURE; 3214 mutex_enter(&key_sad.lock); 3215 SAHLIST_WRITER_INSERT_HEAD(newsah); 3216 mutex_exit(&key_sad.lock); 3217 3218 return newsah; 3219 } 3220 3221 static bool 3222 key_sah_has_sav(struct secashead *sah) 3223 { 3224 u_int state; 3225 3226 KASSERT(mutex_owned(&key_sad.lock)); 3227 3228 SASTATE_ANY_FOREACH(state) { 3229 if (!SAVLIST_WRITER_EMPTY(sah, state)) 3230 return true; 3231 } 3232 3233 return false; 3234 } 3235 3236 static void 3237 key_unlink_sah(struct secashead *sah) 3238 { 3239 3240 KASSERT(!cpu_softintr_p()); 3241 KASSERT(mutex_owned(&key_sad.lock)); 3242 KASSERTMSG(sah->state == SADB_SASTATE_DEAD, "sah->state=%u", sah->state); 3243 3244 /* Remove from the sah list */ 3245 SAHLIST_WRITER_REMOVE(sah); 3246 3247 KDASSERT(mutex_ownable(softnet_lock)); 3248 key_sad_pserialize_perform(); 3249 3250 localcount_drain(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); 3251 } 3252 3253 static void 3254 key_destroy_sah(struct secashead *sah) 3255 { 3256 3257 rtcache_free(&sah->sa_route); 3258 3259 SAHLIST_ENTRY_DESTROY(sah); 3260 localcount_fini(&sah->localcount); 3261 3262 if (sah->idents != NULL) 3263 kmem_free(sah->idents, sah->idents_len); 3264 if (sah->identd != NULL) 3265 kmem_free(sah->identd, sah->identd_len); 3266 3267 kmem_free(sah, sizeof(*sah)); 3268 } 3269 3270 /* 3271 * allocating a new SA with LARVAL state. 3272 * key_api_add() and key_api_getspi() call, 3273 * and copy the values of mhp into new buffer. 3274 * When SAD message type is GETSPI: 3275 * to set sequence number from acq_seq++, 3276 * to set zero to SPI. 3277 * not to call key_setsaval(). 3278 * OUT: NULL : fail 3279 * others : pointer to new secasvar. 3280 * 3281 * does not modify mbuf. does not free mbuf on error. 3282 */ 3283 static struct secasvar * 3284 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp, 3285 int *errp, int proto, const char* where, int tag) 3286 { 3287 struct secasvar *newsav; 3288 const struct sadb_sa *xsa; 3289 3290 KASSERT(!cpu_softintr_p()); 3291 KASSERT(m != NULL); 3292 KASSERT(mhp != NULL); 3293 KASSERT(mhp->msg != NULL); 3294 3295 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); 3296 3297 switch (mhp->msg->sadb_msg_type) { 3298 case SADB_GETSPI: 3299 newsav->spi = 0; 3300 3301 #ifdef IPSEC_DOSEQCHECK 3302 /* sync sequence number */ 3303 if (mhp->msg->sadb_msg_seq == 0) 3304 newsav->seq = 3305 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 3306 else 3307 #endif 3308 newsav->seq = mhp->msg->sadb_msg_seq; 3309 break; 3310 3311 case SADB_ADD: 3312 /* sanity check */ 3313 if (mhp->ext[SADB_EXT_SA] == NULL) { 3314 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 3315 *errp = EINVAL; 3316 goto error; 3317 } 3318 xsa = mhp->ext[SADB_EXT_SA]; 3319 newsav->spi = xsa->sadb_sa_spi; 3320 newsav->seq = mhp->msg->sadb_msg_seq; 3321 break; 3322 default: 3323 *errp = EINVAL; 3324 goto error; 3325 } 3326 3327 /* copy sav values */ 3328 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 3329 *errp = key_setsaval(newsav, m, mhp); 3330 if (*errp) 3331 goto error; 3332 } else { 3333 /* We don't allow lft_c to be NULL */ 3334 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime), 3335 KM_SLEEP); 3336 newsav->lft_c_counters_percpu = 3337 percpu_alloc(sizeof(lifetime_counters_t)); 3338 } 3339 3340 /* reset created */ 3341 newsav->created = time_uptime; 3342 newsav->pid = mhp->msg->sadb_msg_pid; 3343 3344 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 3345 "DP from %s:%u return SA:%p spi=%#x proto=%d\n", 3346 where, tag, newsav, ntohl(newsav->spi), proto); 3347 return newsav; 3348 3349 error: 3350 KASSERT(*errp != 0); 3351 kmem_free(newsav, sizeof(*newsav)); 3352 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 3353 "DP from %s:%u return SA:NULL\n", where, tag); 3354 return NULL; 3355 } 3356 3357 3358 static void 3359 key_clear_xform(struct secasvar *sav) 3360 { 3361 3362 /* 3363 * Cleanup xform state. Note that zeroize'ing causes the 3364 * keys to be cleared; otherwise we must do it ourself. 3365 */ 3366 if (sav->tdb_xform != NULL) { 3367 sav->tdb_xform->xf_zeroize(sav); 3368 sav->tdb_xform = NULL; 3369 } else { 3370 if (sav->key_auth != NULL) 3371 explicit_memset(_KEYBUF(sav->key_auth), 0, 3372 _KEYLEN(sav->key_auth)); 3373 if (sav->key_enc != NULL) 3374 explicit_memset(_KEYBUF(sav->key_enc), 0, 3375 _KEYLEN(sav->key_enc)); 3376 } 3377 } 3378 3379 /* 3380 * free() SA variable entry. 3381 */ 3382 static void 3383 key_delsav(struct secasvar *sav) 3384 { 3385 3386 key_clear_xform(sav); 3387 key_freesaval(sav); 3388 kmem_free(sav, sizeof(*sav)); 3389 } 3390 3391 /* 3392 * Must be called in a pserialize read section. A held sah 3393 * must be released by key_sah_unref after use. 3394 */ 3395 static void 3396 key_sah_ref(struct secashead *sah) 3397 { 3398 3399 localcount_acquire(&sah->localcount); 3400 } 3401 3402 /* 3403 * Must be called without holding key_sad.lock because the lock 3404 * would be held in localcount_release. 3405 */ 3406 static void 3407 key_sah_unref(struct secashead *sah) 3408 { 3409 3410 KDASSERT(mutex_ownable(&key_sad.lock)); 3411 3412 localcount_release(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); 3413 } 3414 3415 /* 3416 * Search SAD and return sah. Must be called in a pserialize 3417 * read section. 3418 * OUT: 3419 * NULL : not found 3420 * others : found, pointer to a SA. 3421 */ 3422 static struct secashead * 3423 key_getsah(const struct secasindex *saidx, int flag) 3424 { 3425 struct secashead *sah; 3426 3427 SAHLIST_READER_FOREACH_SAIDX(sah, saidx) { 3428 if (sah->state == SADB_SASTATE_DEAD) 3429 continue; 3430 if (key_saidx_match(&sah->saidx, saidx, flag)) 3431 return sah; 3432 } 3433 3434 return NULL; 3435 } 3436 3437 /* 3438 * Search SAD and return sah. If sah is returned, the caller must call 3439 * key_sah_unref to releaset a reference. 3440 * OUT: 3441 * NULL : not found 3442 * others : found, pointer to a SA. 3443 */ 3444 static struct secashead * 3445 key_getsah_ref(const struct secasindex *saidx, int flag) 3446 { 3447 struct secashead *sah; 3448 int s; 3449 3450 s = pserialize_read_enter(); 3451 sah = key_getsah(saidx, flag); 3452 if (sah != NULL) 3453 key_sah_ref(sah); 3454 pserialize_read_exit(s); 3455 3456 return sah; 3457 } 3458 3459 /* 3460 * check not to be duplicated SPI. 3461 * NOTE: this function is too slow due to searching all SAD. 3462 * OUT: 3463 * NULL : not found 3464 * others : found, pointer to a SA. 3465 */ 3466 static bool 3467 key_checkspidup(const struct secasindex *saidx, u_int32_t spi) 3468 { 3469 struct secashead *sah; 3470 struct secasvar *sav; 3471 3472 /* check address family */ 3473 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 3474 IPSECLOG(LOG_DEBUG, 3475 "address family mismatched src %u, dst %u.\n", 3476 saidx->src.sa.sa_family, saidx->dst.sa.sa_family); 3477 return false; 3478 } 3479 3480 /* check all SAD */ 3481 /* key_ismyaddr may sleep, so use mutex, not pserialize, here. */ 3482 mutex_enter(&key_sad.lock); 3483 SAHLIST_WRITER_FOREACH(sah) { 3484 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 3485 continue; 3486 sav = key_getsavbyspi(sah, spi); 3487 if (sav != NULL) { 3488 KEY_SA_UNREF(&sav); 3489 mutex_exit(&key_sad.lock); 3490 return true; 3491 } 3492 } 3493 mutex_exit(&key_sad.lock); 3494 3495 return false; 3496 } 3497 3498 /* 3499 * search SAD litmited alive SA, protocol, SPI. 3500 * OUT: 3501 * NULL : not found 3502 * others : found, pointer to a SA. 3503 */ 3504 static struct secasvar * 3505 key_getsavbyspi(struct secashead *sah, u_int32_t spi) 3506 { 3507 struct secasvar *sav = NULL; 3508 u_int state; 3509 int s; 3510 3511 /* search all status */ 3512 s = pserialize_read_enter(); 3513 SASTATE_ALIVE_FOREACH(state) { 3514 SAVLIST_READER_FOREACH(sav, sah, state) { 3515 /* sanity check */ 3516 if (sav->state != state) { 3517 IPSECLOG(LOG_DEBUG, 3518 "invalid sav->state (queue: %d SA: %d)\n", 3519 state, sav->state); 3520 continue; 3521 } 3522 3523 if (sav->spi == spi) { 3524 KEY_SA_REF(sav); 3525 goto out; 3526 } 3527 } 3528 } 3529 out: 3530 pserialize_read_exit(s); 3531 3532 return sav; 3533 } 3534 3535 /* 3536 * Search SAD litmited alive SA by an SPI and remove it from a list. 3537 * OUT: 3538 * NULL : not found 3539 * others : found, pointer to a SA. 3540 */ 3541 static struct secasvar * 3542 key_lookup_and_remove_sav(struct secashead *sah, u_int32_t spi, 3543 const struct secasvar *hint) 3544 { 3545 struct secasvar *sav = NULL; 3546 u_int state; 3547 3548 /* search all status */ 3549 mutex_enter(&key_sad.lock); 3550 SASTATE_ALIVE_FOREACH(state) { 3551 SAVLIST_WRITER_FOREACH(sav, sah, state) { 3552 KASSERT(sav->state == state); 3553 3554 if (sav->spi == spi) { 3555 if (hint != NULL && hint != sav) 3556 continue; 3557 sav->state = SADB_SASTATE_DEAD; 3558 SAVLIST_WRITER_REMOVE(sav); 3559 SAVLUT_WRITER_REMOVE(sav); 3560 goto out; 3561 } 3562 } 3563 } 3564 out: 3565 mutex_exit(&key_sad.lock); 3566 3567 return sav; 3568 } 3569 3570 /* 3571 * Free allocated data to member variables of sav: 3572 * sav->replay, sav->key_* and sav->lft_*. 3573 */ 3574 static void 3575 key_freesaval(struct secasvar *sav) 3576 { 3577 3578 KASSERTMSG(key_sa_refcnt(sav) == 0, "key_sa_refcnt(sav)=%u", 3579 key_sa_refcnt(sav)); 3580 3581 if (sav->replay != NULL) 3582 kmem_intr_free(sav->replay, sav->replay_len); 3583 if (sav->key_auth != NULL) 3584 kmem_intr_free(sav->key_auth, sav->key_auth_len); 3585 if (sav->key_enc != NULL) 3586 kmem_intr_free(sav->key_enc, sav->key_enc_len); 3587 if (sav->lft_c_counters_percpu != NULL) { 3588 percpu_free(sav->lft_c_counters_percpu, 3589 sizeof(lifetime_counters_t)); 3590 } 3591 if (sav->lft_c != NULL) 3592 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c))); 3593 if (sav->lft_h != NULL) 3594 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h))); 3595 if (sav->lft_s != NULL) 3596 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s))); 3597 } 3598 3599 /* 3600 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3601 * You must update these if need. 3602 * OUT: 0: success. 3603 * !0: failure. 3604 * 3605 * does not modify mbuf. does not free mbuf on error. 3606 */ 3607 static int 3608 key_setsaval(struct secasvar *sav, struct mbuf *m, 3609 const struct sadb_msghdr *mhp) 3610 { 3611 int error = 0; 3612 3613 KASSERT(!cpu_softintr_p()); 3614 KASSERT(m != NULL); 3615 KASSERT(mhp != NULL); 3616 KASSERT(mhp->msg != NULL); 3617 3618 /* We shouldn't initialize sav variables while someone uses it. */ 3619 KASSERTMSG(key_sa_refcnt(sav) == 0, "key_sa_refcnt(sav)=%u", 3620 key_sa_refcnt(sav)); 3621 3622 /* SA */ 3623 if (mhp->ext[SADB_EXT_SA] != NULL) { 3624 const struct sadb_sa *sa0; 3625 3626 sa0 = mhp->ext[SADB_EXT_SA]; 3627 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3628 error = EINVAL; 3629 goto fail; 3630 } 3631 3632 sav->alg_auth = sa0->sadb_sa_auth; 3633 sav->alg_enc = sa0->sadb_sa_encrypt; 3634 sav->flags = sa0->sadb_sa_flags; 3635 3636 /* replay window */ 3637 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3638 size_t len = sizeof(struct secreplay) + 3639 sa0->sadb_sa_replay; 3640 sav->replay = kmem_zalloc(len, KM_SLEEP); 3641 sav->replay_len = len; 3642 if (sa0->sadb_sa_replay != 0) 3643 sav->replay->bitmap = (char*)(sav->replay+1); 3644 sav->replay->wsize = sa0->sadb_sa_replay; 3645 } 3646 } 3647 3648 /* Authentication keys */ 3649 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3650 const struct sadb_key *key0; 3651 int len; 3652 3653 key0 = mhp->ext[SADB_EXT_KEY_AUTH]; 3654 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3655 3656 error = 0; 3657 if (len < sizeof(*key0)) { 3658 error = EINVAL; 3659 goto fail; 3660 } 3661 switch (mhp->msg->sadb_msg_satype) { 3662 case SADB_SATYPE_AH: 3663 case SADB_SATYPE_ESP: 3664 case SADB_X_SATYPE_TCPSIGNATURE: 3665 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3666 sav->alg_auth != SADB_X_AALG_NULL) 3667 error = EINVAL; 3668 break; 3669 case SADB_X_SATYPE_IPCOMP: 3670 default: 3671 error = EINVAL; 3672 break; 3673 } 3674 if (error) { 3675 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n"); 3676 goto fail; 3677 } 3678 3679 sav->key_auth = key_newbuf(key0, len); 3680 sav->key_auth_len = len; 3681 } 3682 3683 /* Encryption key */ 3684 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3685 const struct sadb_key *key0; 3686 int len; 3687 3688 key0 = mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3689 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3690 3691 error = 0; 3692 if (len < sizeof(*key0)) { 3693 error = EINVAL; 3694 goto fail; 3695 } 3696 switch (mhp->msg->sadb_msg_satype) { 3697 case SADB_SATYPE_ESP: 3698 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3699 sav->alg_enc != SADB_EALG_NULL) { 3700 error = EINVAL; 3701 break; 3702 } 3703 sav->key_enc = key_newbuf(key0, len); 3704 sav->key_enc_len = len; 3705 break; 3706 case SADB_X_SATYPE_IPCOMP: 3707 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3708 error = EINVAL; 3709 sav->key_enc = NULL; /*just in case*/ 3710 break; 3711 case SADB_SATYPE_AH: 3712 case SADB_X_SATYPE_TCPSIGNATURE: 3713 default: 3714 error = EINVAL; 3715 break; 3716 } 3717 if (error) { 3718 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n"); 3719 goto fail; 3720 } 3721 } 3722 3723 /* set iv */ 3724 sav->ivlen = 0; 3725 3726 switch (mhp->msg->sadb_msg_satype) { 3727 case SADB_SATYPE_AH: 3728 error = xform_init(sav, XF_AH); 3729 break; 3730 case SADB_SATYPE_ESP: 3731 error = xform_init(sav, XF_ESP); 3732 break; 3733 case SADB_X_SATYPE_IPCOMP: 3734 error = xform_init(sav, XF_IPCOMP); 3735 break; 3736 case SADB_X_SATYPE_TCPSIGNATURE: 3737 error = xform_init(sav, XF_TCPSIGNATURE); 3738 break; 3739 default: 3740 error = EOPNOTSUPP; 3741 break; 3742 } 3743 if (error) { 3744 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u (%d)\n", 3745 mhp->msg->sadb_msg_satype, error); 3746 goto fail; 3747 } 3748 3749 /* reset created */ 3750 sav->created = time_uptime; 3751 3752 /* make lifetime for CURRENT */ 3753 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP); 3754 3755 sav->lft_c->sadb_lifetime_len = 3756 PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3757 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3758 sav->lft_c->sadb_lifetime_allocations = 0; 3759 sav->lft_c->sadb_lifetime_bytes = 0; 3760 sav->lft_c->sadb_lifetime_addtime = time_uptime; 3761 sav->lft_c->sadb_lifetime_usetime = 0; 3762 3763 sav->lft_c_counters_percpu = percpu_alloc(sizeof(lifetime_counters_t)); 3764 3765 /* lifetimes for HARD and SOFT */ 3766 { 3767 const struct sadb_lifetime *lft0; 3768 3769 lft0 = mhp->ext[SADB_EXT_LIFETIME_HARD]; 3770 if (lft0 != NULL) { 3771 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3772 error = EINVAL; 3773 goto fail; 3774 } 3775 sav->lft_h = key_newbuf(lft0, sizeof(*lft0)); 3776 } 3777 3778 lft0 = mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3779 if (lft0 != NULL) { 3780 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3781 error = EINVAL; 3782 goto fail; 3783 } 3784 sav->lft_s = key_newbuf(lft0, sizeof(*lft0)); 3785 /* to be initialize ? */ 3786 } 3787 } 3788 3789 return 0; 3790 3791 fail: 3792 key_clear_xform(sav); 3793 key_freesaval(sav); 3794 3795 return error; 3796 } 3797 3798 /* 3799 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3800 * OUT: 0: valid 3801 * other: errno 3802 */ 3803 static int 3804 key_init_xform(struct secasvar *sav) 3805 { 3806 int error; 3807 3808 /* We shouldn't initialize sav variables while someone uses it. */ 3809 KASSERTMSG(key_sa_refcnt(sav) == 0, "key_sa_refcnt(sav)=%u", 3810 key_sa_refcnt(sav)); 3811 3812 /* check SPI value */ 3813 switch (sav->sah->saidx.proto) { 3814 case IPPROTO_ESP: 3815 case IPPROTO_AH: 3816 if (ntohl(sav->spi) <= 255) { 3817 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n", 3818 (u_int32_t)ntohl(sav->spi)); 3819 return EINVAL; 3820 } 3821 break; 3822 } 3823 3824 /* check algo */ 3825 switch (sav->sah->saidx.proto) { 3826 case IPPROTO_AH: 3827 case IPPROTO_TCP: 3828 if (sav->alg_enc != SADB_EALG_NONE) { 3829 IPSECLOG(LOG_DEBUG, 3830 "protocol %u and algorithm mismatched %u != %u.\n", 3831 sav->sah->saidx.proto, 3832 sav->alg_enc, SADB_EALG_NONE); 3833 return EINVAL; 3834 } 3835 break; 3836 case IPPROTO_IPCOMP: 3837 if (sav->alg_auth != SADB_AALG_NONE) { 3838 IPSECLOG(LOG_DEBUG, 3839 "protocol %u and algorithm mismatched %d != %d.\n", 3840 sav->sah->saidx.proto, 3841 sav->alg_auth, SADB_AALG_NONE); 3842 return(EINVAL); 3843 } 3844 break; 3845 default: 3846 break; 3847 } 3848 3849 /* check satype */ 3850 switch (sav->sah->saidx.proto) { 3851 case IPPROTO_ESP: 3852 /* check flags */ 3853 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3854 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3855 IPSECLOG(LOG_DEBUG, 3856 "invalid flag (derived) given to old-esp.\n"); 3857 return EINVAL; 3858 } 3859 error = xform_init(sav, XF_ESP); 3860 break; 3861 case IPPROTO_AH: 3862 /* check flags */ 3863 if (sav->flags & SADB_X_EXT_DERIV) { 3864 IPSECLOG(LOG_DEBUG, 3865 "invalid flag (derived) given to AH SA.\n"); 3866 return EINVAL; 3867 } 3868 error = xform_init(sav, XF_AH); 3869 break; 3870 case IPPROTO_IPCOMP: 3871 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3872 && ntohl(sav->spi) >= 0x10000) { 3873 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n"); 3874 return(EINVAL); 3875 } 3876 error = xform_init(sav, XF_IPCOMP); 3877 break; 3878 case IPPROTO_TCP: 3879 error = xform_init(sav, XF_TCPSIGNATURE); 3880 break; 3881 default: 3882 IPSECLOG(LOG_DEBUG, "Invalid satype.\n"); 3883 error = EPROTONOSUPPORT; 3884 break; 3885 } 3886 3887 return error; 3888 } 3889 3890 /* 3891 * subroutine for SADB_GET and SADB_DUMP. It never return NULL. 3892 */ 3893 static struct mbuf * 3894 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3895 u_int32_t seq, u_int32_t pid) 3896 { 3897 struct mbuf *result = NULL, *tres = NULL, *m; 3898 int l = 0; 3899 int i; 3900 void *p; 3901 struct sadb_lifetime lt; 3902 int dumporder[] = { 3903 SADB_EXT_SA, SADB_X_EXT_SA2, 3904 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3905 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3906 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3907 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3908 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3909 SADB_X_EXT_NAT_T_TYPE, 3910 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3911 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3912 SADB_X_EXT_NAT_T_FRAG, 3913 3914 }; 3915 3916 m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav), M_WAITOK); 3917 result = m; 3918 3919 for (i = __arraycount(dumporder) - 1; i >= 0; i--) { 3920 m = NULL; 3921 p = NULL; 3922 switch (dumporder[i]) { 3923 case SADB_EXT_SA: 3924 m = key_setsadbsa(sav); 3925 break; 3926 3927 case SADB_X_EXT_SA2: 3928 m = key_setsadbxsa2(sav->sah->saidx.mode, 3929 sav->replay ? sav->replay->count : 0, 3930 sav->sah->saidx.reqid); 3931 break; 3932 3933 case SADB_EXT_ADDRESS_SRC: 3934 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3935 &sav->sah->saidx.src.sa, 3936 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 3937 break; 3938 3939 case SADB_EXT_ADDRESS_DST: 3940 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3941 &sav->sah->saidx.dst.sa, 3942 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 3943 break; 3944 3945 case SADB_EXT_KEY_AUTH: 3946 if (!sav->key_auth) 3947 continue; 3948 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len); 3949 p = sav->key_auth; 3950 break; 3951 3952 case SADB_EXT_KEY_ENCRYPT: 3953 if (!sav->key_enc) 3954 continue; 3955 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len); 3956 p = sav->key_enc; 3957 break; 3958 3959 case SADB_EXT_LIFETIME_CURRENT: { 3960 lifetime_counters_t sum = {0}; 3961 3962 KASSERT(sav->lft_c != NULL); 3963 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len); 3964 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime)); 3965 lt.sadb_lifetime_addtime = 3966 time_mono_to_wall(lt.sadb_lifetime_addtime); 3967 lt.sadb_lifetime_usetime = 3968 time_mono_to_wall(lt.sadb_lifetime_usetime); 3969 percpu_foreach_xcall(sav->lft_c_counters_percpu, 3970 XC_HIGHPRI_IPL(IPL_SOFTNET), 3971 key_sum_lifetime_counters, sum); 3972 lt.sadb_lifetime_allocations = 3973 sum[LIFETIME_COUNTER_ALLOCATIONS]; 3974 lt.sadb_lifetime_bytes = 3975 sum[LIFETIME_COUNTER_BYTES]; 3976 p = < 3977 break; 3978 } 3979 3980 case SADB_EXT_LIFETIME_HARD: 3981 if (!sav->lft_h) 3982 continue; 3983 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len); 3984 p = sav->lft_h; 3985 break; 3986 3987 case SADB_EXT_LIFETIME_SOFT: 3988 if (!sav->lft_s) 3989 continue; 3990 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len); 3991 p = sav->lft_s; 3992 break; 3993 3994 case SADB_X_EXT_NAT_T_TYPE: 3995 m = key_setsadbxtype(sav->natt_type); 3996 break; 3997 3998 case SADB_X_EXT_NAT_T_DPORT: 3999 if (sav->natt_type == 0) 4000 continue; 4001 m = key_setsadbxport( 4002 key_portfromsaddr(&sav->sah->saidx.dst), 4003 SADB_X_EXT_NAT_T_DPORT); 4004 break; 4005 4006 case SADB_X_EXT_NAT_T_SPORT: 4007 if (sav->natt_type == 0) 4008 continue; 4009 m = key_setsadbxport( 4010 key_portfromsaddr(&sav->sah->saidx.src), 4011 SADB_X_EXT_NAT_T_SPORT); 4012 break; 4013 4014 case SADB_X_EXT_NAT_T_FRAG: 4015 /* don't send frag info if not set */ 4016 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET) 4017 continue; 4018 m = key_setsadbxfrag(sav->esp_frag); 4019 break; 4020 4021 case SADB_X_EXT_NAT_T_OAI: 4022 case SADB_X_EXT_NAT_T_OAR: 4023 continue; 4024 4025 case SADB_EXT_ADDRESS_PROXY: 4026 case SADB_EXT_IDENTITY_SRC: 4027 case SADB_EXT_IDENTITY_DST: 4028 /* XXX: should we brought from SPD ? */ 4029 case SADB_EXT_SENSITIVITY: 4030 default: 4031 continue; 4032 } 4033 4034 KASSERT(!(m && p)); 4035 KASSERT(m != NULL || p != NULL); 4036 if (p && tres) { 4037 M_PREPEND(tres, l, M_WAITOK); 4038 memcpy(mtod(tres, void *), p, l); 4039 continue; 4040 } 4041 if (p) { 4042 m = key_alloc_mbuf(l, M_WAITOK); 4043 m_copyback(m, 0, l, p); 4044 } 4045 4046 if (tres) 4047 m_cat(m, tres); 4048 tres = m; 4049 } 4050 4051 m_cat(result, tres); 4052 tres = NULL; /* avoid free on error below */ 4053 4054 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 4055 4056 result->m_pkthdr.len = 0; 4057 for (m = result; m; m = m->m_next) 4058 result->m_pkthdr.len += m->m_len; 4059 4060 mtod(result, struct sadb_msg *)->sadb_msg_len = 4061 PFKEY_UNIT64(result->m_pkthdr.len); 4062 4063 return result; 4064 } 4065 4066 4067 /* 4068 * set a type in sadb_x_nat_t_type 4069 */ 4070 static struct mbuf * 4071 key_setsadbxtype(u_int16_t type) 4072 { 4073 struct mbuf *m; 4074 size_t len; 4075 struct sadb_x_nat_t_type *p; 4076 4077 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 4078 4079 m = key_alloc_mbuf(len, M_WAITOK); 4080 KASSERT(m->m_next == NULL); 4081 4082 p = mtod(m, struct sadb_x_nat_t_type *); 4083 4084 memset(p, 0, len); 4085 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 4086 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 4087 p->sadb_x_nat_t_type_type = type; 4088 4089 return m; 4090 } 4091 /* 4092 * set a port in sadb_x_nat_t_port. port is in network order 4093 */ 4094 static struct mbuf * 4095 key_setsadbxport(u_int16_t port, u_int16_t type) 4096 { 4097 struct mbuf *m; 4098 size_t len; 4099 struct sadb_x_nat_t_port *p; 4100 4101 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 4102 4103 m = key_alloc_mbuf(len, M_WAITOK); 4104 KASSERT(m->m_next == NULL); 4105 4106 p = mtod(m, struct sadb_x_nat_t_port *); 4107 4108 memset(p, 0, len); 4109 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 4110 p->sadb_x_nat_t_port_exttype = type; 4111 p->sadb_x_nat_t_port_port = port; 4112 4113 return m; 4114 } 4115 4116 /* 4117 * set fragmentation info in sadb_x_nat_t_frag 4118 */ 4119 static struct mbuf * 4120 key_setsadbxfrag(u_int16_t flen) 4121 { 4122 struct mbuf *m; 4123 size_t len; 4124 struct sadb_x_nat_t_frag *p; 4125 4126 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag)); 4127 4128 m = key_alloc_mbuf(len, M_WAITOK); 4129 KASSERT(m->m_next == NULL); 4130 4131 p = mtod(m, struct sadb_x_nat_t_frag *); 4132 4133 memset(p, 0, len); 4134 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len); 4135 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG; 4136 p->sadb_x_nat_t_frag_fraglen = flen; 4137 4138 return m; 4139 } 4140 4141 /* 4142 * Get port from sockaddr, port is in network order 4143 */ 4144 u_int16_t 4145 key_portfromsaddr(const union sockaddr_union *saddr) 4146 { 4147 u_int16_t port; 4148 4149 switch (saddr->sa.sa_family) { 4150 case AF_INET: { 4151 port = saddr->sin.sin_port; 4152 break; 4153 } 4154 #ifdef INET6 4155 case AF_INET6: { 4156 port = saddr->sin6.sin6_port; 4157 break; 4158 } 4159 #endif 4160 default: 4161 printf("%s: unexpected address family\n", __func__); 4162 port = 0; 4163 break; 4164 } 4165 4166 return port; 4167 } 4168 4169 4170 /* 4171 * Set port is struct sockaddr. port is in network order 4172 */ 4173 static void 4174 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port) 4175 { 4176 switch (saddr->sa.sa_family) { 4177 case AF_INET: { 4178 saddr->sin.sin_port = port; 4179 break; 4180 } 4181 #ifdef INET6 4182 case AF_INET6: { 4183 saddr->sin6.sin6_port = port; 4184 break; 4185 } 4186 #endif 4187 default: 4188 printf("%s: unexpected address family %d\n", __func__, 4189 saddr->sa.sa_family); 4190 break; 4191 } 4192 4193 return; 4194 } 4195 4196 /* 4197 * Safety check sa_len 4198 */ 4199 static int 4200 key_checksalen(const union sockaddr_union *saddr) 4201 { 4202 switch (saddr->sa.sa_family) { 4203 case AF_INET: 4204 if (saddr->sa.sa_len != sizeof(struct sockaddr_in)) 4205 return -1; 4206 break; 4207 #ifdef INET6 4208 case AF_INET6: 4209 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6)) 4210 return -1; 4211 break; 4212 #endif 4213 default: 4214 printf("%s: unexpected sa_family %d\n", __func__, 4215 saddr->sa.sa_family); 4216 return -1; 4217 break; 4218 } 4219 return 0; 4220 } 4221 4222 4223 /* 4224 * set data into sadb_msg. 4225 */ 4226 static struct mbuf * 4227 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, 4228 u_int32_t seq, pid_t pid, u_int16_t reserved, int mflag) 4229 { 4230 struct mbuf *m; 4231 struct sadb_msg *p; 4232 int len; 4233 4234 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); 4235 4236 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4237 4238 m = key_alloc_mbuf_simple(len, mflag); 4239 if (!m) 4240 return NULL; 4241 m->m_pkthdr.len = m->m_len = len; 4242 m->m_next = NULL; 4243 4244 p = mtod(m, struct sadb_msg *); 4245 4246 memset(p, 0, len); 4247 p->sadb_msg_version = PF_KEY_V2; 4248 p->sadb_msg_type = type; 4249 p->sadb_msg_errno = 0; 4250 p->sadb_msg_satype = satype; 4251 p->sadb_msg_len = PFKEY_UNIT64(tlen); 4252 p->sadb_msg_reserved = reserved; 4253 p->sadb_msg_seq = seq; 4254 p->sadb_msg_pid = (u_int32_t)pid; 4255 4256 return m; 4257 } 4258 4259 /* 4260 * copy secasvar data into sadb_address. 4261 */ 4262 static struct mbuf * 4263 key_setsadbsa(struct secasvar *sav) 4264 { 4265 struct mbuf *m; 4266 struct sadb_sa *p; 4267 int len; 4268 4269 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4270 m = key_alloc_mbuf(len, M_WAITOK); 4271 KASSERT(m->m_next == NULL); 4272 4273 p = mtod(m, struct sadb_sa *); 4274 4275 memset(p, 0, len); 4276 p->sadb_sa_len = PFKEY_UNIT64(len); 4277 p->sadb_sa_exttype = SADB_EXT_SA; 4278 p->sadb_sa_spi = sav->spi; 4279 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 4280 p->sadb_sa_state = sav->state; 4281 p->sadb_sa_auth = sav->alg_auth; 4282 p->sadb_sa_encrypt = sav->alg_enc; 4283 p->sadb_sa_flags = sav->flags; 4284 4285 return m; 4286 } 4287 4288 static uint8_t 4289 key_sabits(const struct sockaddr *saddr) 4290 { 4291 switch (saddr->sa_family) { 4292 case AF_INET: 4293 return _BITS(sizeof(struct in_addr)); 4294 case AF_INET6: 4295 return _BITS(sizeof(struct in6_addr)); 4296 default: 4297 return FULLMASK; 4298 } 4299 } 4300 4301 /* 4302 * set data into sadb_address. 4303 */ 4304 static struct mbuf * 4305 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 4306 u_int8_t prefixlen, u_int16_t ul_proto, int mflag) 4307 { 4308 struct mbuf *m; 4309 struct sadb_address *p; 4310 size_t len; 4311 4312 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 4313 PFKEY_ALIGN8(saddr->sa_len); 4314 m = key_alloc_mbuf(len, mflag); 4315 if (!m || m->m_next) { /*XXX*/ 4316 if (m) 4317 m_freem(m); 4318 return NULL; 4319 } 4320 4321 p = mtod(m, struct sadb_address *); 4322 4323 memset(p, 0, len); 4324 p->sadb_address_len = PFKEY_UNIT64(len); 4325 p->sadb_address_exttype = exttype; 4326 p->sadb_address_proto = ul_proto; 4327 if (prefixlen == FULLMASK) { 4328 prefixlen = key_sabits(saddr); 4329 } 4330 p->sadb_address_prefixlen = prefixlen; 4331 p->sadb_address_reserved = 0; 4332 4333 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 4334 saddr, saddr->sa_len); 4335 4336 return m; 4337 } 4338 4339 #if 0 4340 /* 4341 * set data into sadb_ident. 4342 */ 4343 static struct mbuf * 4344 key_setsadbident(u_int16_t exttype, u_int16_t idtype, 4345 void *string, int stringlen, u_int64_t id) 4346 { 4347 struct mbuf *m; 4348 struct sadb_ident *p; 4349 size_t len; 4350 4351 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen); 4352 m = key_alloc_mbuf(len); 4353 if (!m || m->m_next) { /*XXX*/ 4354 if (m) 4355 m_freem(m); 4356 return NULL; 4357 } 4358 4359 p = mtod(m, struct sadb_ident *); 4360 4361 memset(p, 0, len); 4362 p->sadb_ident_len = PFKEY_UNIT64(len); 4363 p->sadb_ident_exttype = exttype; 4364 p->sadb_ident_type = idtype; 4365 p->sadb_ident_reserved = 0; 4366 p->sadb_ident_id = id; 4367 4368 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)), 4369 string, stringlen); 4370 4371 return m; 4372 } 4373 #endif 4374 4375 /* 4376 * set data into sadb_x_sa2. 4377 */ 4378 static struct mbuf * 4379 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid) 4380 { 4381 struct mbuf *m; 4382 struct sadb_x_sa2 *p; 4383 size_t len; 4384 4385 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 4386 m = key_alloc_mbuf(len, M_WAITOK); 4387 KASSERT(m->m_next == NULL); 4388 4389 p = mtod(m, struct sadb_x_sa2 *); 4390 4391 memset(p, 0, len); 4392 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 4393 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 4394 p->sadb_x_sa2_mode = mode; 4395 p->sadb_x_sa2_reserved1 = 0; 4396 p->sadb_x_sa2_reserved2 = 0; 4397 p->sadb_x_sa2_sequence = seq; 4398 p->sadb_x_sa2_reqid = reqid; 4399 4400 return m; 4401 } 4402 4403 /* 4404 * set data into sadb_x_policy 4405 */ 4406 static struct mbuf * 4407 key_setsadbxpolicy(const u_int16_t type, const u_int8_t dir, const u_int32_t id, 4408 int mflag) 4409 { 4410 struct mbuf *m; 4411 struct sadb_x_policy *p; 4412 size_t len; 4413 4414 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 4415 m = key_alloc_mbuf(len, mflag); 4416 if (!m || m->m_next) { /*XXX*/ 4417 if (m) 4418 m_freem(m); 4419 return NULL; 4420 } 4421 4422 p = mtod(m, struct sadb_x_policy *); 4423 4424 memset(p, 0, len); 4425 p->sadb_x_policy_len = PFKEY_UNIT64(len); 4426 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 4427 p->sadb_x_policy_type = type; 4428 p->sadb_x_policy_dir = dir; 4429 p->sadb_x_policy_id = id; 4430 4431 return m; 4432 } 4433 4434 /* %%% utilities */ 4435 /* 4436 * copy a buffer into the new buffer allocated. 4437 */ 4438 static void * 4439 key_newbuf(const void *src, u_int len) 4440 { 4441 void *new; 4442 4443 new = kmem_alloc(len, KM_SLEEP); 4444 memcpy(new, src, len); 4445 4446 return new; 4447 } 4448 4449 /* compare my own address 4450 * OUT: 1: true, i.e. my address. 4451 * 0: false 4452 */ 4453 int 4454 key_ismyaddr(const struct sockaddr *sa) 4455 { 4456 #ifdef INET 4457 const struct sockaddr_in *sin; 4458 const struct in_ifaddr *ia; 4459 int s; 4460 #endif 4461 4462 KASSERT(sa != NULL); 4463 4464 switch (sa->sa_family) { 4465 #ifdef INET 4466 case AF_INET: 4467 sin = (const struct sockaddr_in *)sa; 4468 s = pserialize_read_enter(); 4469 IN_ADDRLIST_READER_FOREACH(ia) { 4470 if (sin->sin_family == ia->ia_addr.sin_family && 4471 sin->sin_len == ia->ia_addr.sin_len && 4472 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 4473 { 4474 pserialize_read_exit(s); 4475 return 1; 4476 } 4477 } 4478 pserialize_read_exit(s); 4479 break; 4480 #endif 4481 #ifdef INET6 4482 case AF_INET6: 4483 return key_ismyaddr6((const struct sockaddr_in6 *)sa); 4484 #endif 4485 } 4486 4487 return 0; 4488 } 4489 4490 #ifdef INET6 4491 /* 4492 * compare my own address for IPv6. 4493 * 1: ours 4494 * 0: other 4495 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 4496 */ 4497 #include <netinet6/in6_var.h> 4498 4499 static int 4500 key_ismyaddr6(const struct sockaddr_in6 *sin6) 4501 { 4502 struct in6_ifaddr *ia; 4503 int s; 4504 struct psref psref; 4505 int bound; 4506 int ours = 1; 4507 4508 bound = curlwp_bind(); 4509 s = pserialize_read_enter(); 4510 IN6_ADDRLIST_READER_FOREACH(ia) { 4511 if (key_sockaddr_match((const struct sockaddr *)&sin6, 4512 (const struct sockaddr *)&ia->ia_addr, 0)) { 4513 pserialize_read_exit(s); 4514 goto ours; 4515 } 4516 4517 if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { 4518 bool ingroup; 4519 4520 ia6_acquire(ia, &psref); 4521 pserialize_read_exit(s); 4522 4523 /* 4524 * XXX Multicast 4525 * XXX why do we care about multlicast here while we don't care 4526 * about IPv4 multicast?? 4527 * XXX scope 4528 */ 4529 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp); 4530 if (ingroup) { 4531 ia6_release(ia, &psref); 4532 goto ours; 4533 } 4534 4535 s = pserialize_read_enter(); 4536 ia6_release(ia, &psref); 4537 } 4538 4539 } 4540 pserialize_read_exit(s); 4541 4542 /* loopback, just for safety */ 4543 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 4544 goto ours; 4545 4546 ours = 0; 4547 ours: 4548 curlwp_bindx(bound); 4549 4550 return ours; 4551 } 4552 #endif /*INET6*/ 4553 4554 /* 4555 * compare two secasindex structure. 4556 * flag can specify to compare 2 saidxes. 4557 * compare two secasindex structure without both mode and reqid. 4558 * don't compare port. 4559 * IN: 4560 * saidx0: source, it can be in SAD. 4561 * saidx1: object. 4562 * OUT: 4563 * 1 : equal 4564 * 0 : not equal 4565 */ 4566 static int 4567 key_saidx_match( 4568 const struct secasindex *saidx0, 4569 const struct secasindex *saidx1, 4570 int flag) 4571 { 4572 int chkport; 4573 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst; 4574 4575 KASSERT(saidx0 != NULL); 4576 KASSERT(saidx1 != NULL); 4577 4578 /* sanity */ 4579 if (saidx0->proto != saidx1->proto) 4580 return 0; 4581 4582 if (flag == CMP_EXACTLY) { 4583 if (saidx0->mode != saidx1->mode) 4584 return 0; 4585 if (saidx0->reqid != saidx1->reqid) 4586 return 0; 4587 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4588 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4589 return 0; 4590 } else { 4591 4592 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4593 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) { 4594 /* 4595 * If reqid of SPD is non-zero, unique SA is required. 4596 * The result must be of same reqid in this case. 4597 */ 4598 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4599 return 0; 4600 } 4601 4602 if (flag == CMP_MODE_REQID) { 4603 if (saidx0->mode != IPSEC_MODE_ANY && 4604 saidx0->mode != saidx1->mode) 4605 return 0; 4606 } 4607 4608 4609 sa0src = &saidx0->src.sa; 4610 sa0dst = &saidx0->dst.sa; 4611 sa1src = &saidx1->src.sa; 4612 sa1dst = &saidx1->dst.sa; 4613 /* 4614 * If NAT-T is enabled, check ports for tunnel mode. 4615 * For ipsecif(4), check ports for transport mode, too. 4616 * Don't check ports if they are set to zero 4617 * in the SPD: This means we have a non-generated 4618 * SPD which can't know UDP ports. 4619 */ 4620 if (saidx1->mode == IPSEC_MODE_TUNNEL || 4621 saidx1->mode == IPSEC_MODE_TRANSPORT) 4622 chkport = PORT_LOOSE; 4623 else 4624 chkport = PORT_NONE; 4625 4626 if (!key_sockaddr_match(sa0src, sa1src, chkport)) { 4627 return 0; 4628 } 4629 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) { 4630 return 0; 4631 } 4632 } 4633 4634 return 1; 4635 } 4636 4637 /* 4638 * compare two secindex structure exactly. 4639 * IN: 4640 * spidx0: source, it is often in SPD. 4641 * spidx1: object, it is often from PFKEY message. 4642 * OUT: 4643 * 1 : equal 4644 * 0 : not equal 4645 */ 4646 static int 4647 key_spidx_match_exactly( 4648 const struct secpolicyindex *spidx0, 4649 const struct secpolicyindex *spidx1) 4650 { 4651 4652 KASSERT(spidx0 != NULL); 4653 KASSERT(spidx1 != NULL); 4654 4655 /* sanity */ 4656 if (spidx0->prefs != spidx1->prefs || 4657 spidx0->prefd != spidx1->prefd || 4658 spidx0->ul_proto != spidx1->ul_proto) 4659 return 0; 4660 4661 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) && 4662 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT); 4663 } 4664 4665 /* 4666 * compare two secindex structure with mask. 4667 * IN: 4668 * spidx0: source, it is often in SPD. 4669 * spidx1: object, it is often from IP header. 4670 * OUT: 4671 * 1 : equal 4672 * 0 : not equal 4673 */ 4674 static int 4675 key_spidx_match_withmask( 4676 const struct secpolicyindex *spidx0, 4677 const struct secpolicyindex *spidx1) 4678 { 4679 4680 KASSERT(spidx0 != NULL); 4681 KASSERT(spidx1 != NULL); 4682 4683 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4684 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4685 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4686 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) { 4687 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, ".sa wrong\n"); 4688 return 0; 4689 } 4690 4691 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4692 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY && 4693 spidx0->ul_proto != spidx1->ul_proto) { 4694 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "proto wrong\n"); 4695 return 0; 4696 } 4697 4698 switch (spidx0->src.sa.sa_family) { 4699 case AF_INET: 4700 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY && 4701 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) { 4702 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v4 src port wrong\n"); 4703 return 0; 4704 } 4705 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr, 4706 &spidx1->src.sin.sin_addr, spidx0->prefs)) { 4707 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v4 src addr wrong\n"); 4708 return 0; 4709 } 4710 break; 4711 case AF_INET6: 4712 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY && 4713 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) { 4714 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 src port wrong\n"); 4715 return 0; 4716 } 4717 /* 4718 * scope_id check. if sin6_scope_id is 0, we regard it 4719 * as a wildcard scope, which matches any scope zone ID. 4720 */ 4721 if (spidx0->src.sin6.sin6_scope_id && 4722 spidx1->src.sin6.sin6_scope_id && 4723 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) { 4724 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 src scope wrong\n"); 4725 return 0; 4726 } 4727 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr, 4728 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) { 4729 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 src addr wrong\n"); 4730 return 0; 4731 } 4732 break; 4733 default: 4734 /* XXX */ 4735 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) { 4736 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "src memcmp wrong\n"); 4737 return 0; 4738 } 4739 break; 4740 } 4741 4742 switch (spidx0->dst.sa.sa_family) { 4743 case AF_INET: 4744 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY && 4745 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) { 4746 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v4 dst port wrong\n"); 4747 return 0; 4748 } 4749 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr, 4750 &spidx1->dst.sin.sin_addr, spidx0->prefd)) { 4751 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v4 dst addr wrong\n"); 4752 return 0; 4753 } 4754 break; 4755 case AF_INET6: 4756 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY && 4757 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) { 4758 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 dst port wrong\n"); 4759 return 0; 4760 } 4761 /* 4762 * scope_id check. if sin6_scope_id is 0, we regard it 4763 * as a wildcard scope, which matches any scope zone ID. 4764 */ 4765 if (spidx0->src.sin6.sin6_scope_id && 4766 spidx1->src.sin6.sin6_scope_id && 4767 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) { 4768 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "DP v6 dst scope wrong\n"); 4769 return 0; 4770 } 4771 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr, 4772 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) { 4773 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 dst addr wrong\n"); 4774 return 0; 4775 } 4776 break; 4777 default: 4778 /* XXX */ 4779 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) { 4780 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "dst memcmp wrong\n"); 4781 return 0; 4782 } 4783 break; 4784 } 4785 4786 /* XXX Do we check other field ? e.g. flowinfo */ 4787 4788 return 1; 4789 } 4790 4791 /* returns 0 on match */ 4792 static int 4793 key_portcomp(in_port_t port1, in_port_t port2, int howport) 4794 { 4795 switch (howport) { 4796 case PORT_NONE: 4797 return 0; 4798 case PORT_LOOSE: 4799 if (port1 == 0 || port2 == 0) 4800 return 0; 4801 /*FALLTHROUGH*/ 4802 case PORT_STRICT: 4803 if (port1 != port2) { 4804 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4805 "port fail %d != %d\n", ntohs(port1), ntohs(port2)); 4806 return 1; 4807 } 4808 return 0; 4809 default: 4810 KASSERT(0); 4811 return 1; 4812 } 4813 } 4814 4815 /* returns 1 on match */ 4816 static int 4817 key_sockaddr_match( 4818 const struct sockaddr *sa1, 4819 const struct sockaddr *sa2, 4820 int howport) 4821 { 4822 const struct sockaddr_in *sin1, *sin2; 4823 const struct sockaddr_in6 *sin61, *sin62; 4824 char s1[IPSEC_ADDRSTRLEN], s2[IPSEC_ADDRSTRLEN]; 4825 4826 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) { 4827 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4828 "fam/len fail %d != %d || %d != %d\n", 4829 sa1->sa_family, sa2->sa_family, sa1->sa_len, 4830 sa2->sa_len); 4831 return 0; 4832 } 4833 4834 switch (sa1->sa_family) { 4835 case AF_INET: 4836 if (sa1->sa_len != sizeof(struct sockaddr_in)) { 4837 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4838 "len fail %d != %zu\n", 4839 sa1->sa_len, sizeof(struct sockaddr_in)); 4840 return 0; 4841 } 4842 sin1 = (const struct sockaddr_in *)sa1; 4843 sin2 = (const struct sockaddr_in *)sa2; 4844 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) { 4845 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4846 "addr fail %s != %s\n", 4847 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), 4848 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2)); 4849 return 0; 4850 } 4851 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) { 4852 return 0; 4853 } 4854 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4855 "addr success %s[%d] == %s[%d]\n", 4856 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), 4857 ntohs(sin1->sin_port), 4858 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2), 4859 ntohs(sin2->sin_port)); 4860 break; 4861 case AF_INET6: 4862 sin61 = (const struct sockaddr_in6 *)sa1; 4863 sin62 = (const struct sockaddr_in6 *)sa2; 4864 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4865 return 0; /*EINVAL*/ 4866 4867 if (sin61->sin6_scope_id != sin62->sin6_scope_id) { 4868 return 0; 4869 } 4870 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) { 4871 return 0; 4872 } 4873 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) { 4874 return 0; 4875 } 4876 break; 4877 default: 4878 if (memcmp(sa1, sa2, sa1->sa_len) != 0) 4879 return 0; 4880 break; 4881 } 4882 4883 return 1; 4884 } 4885 4886 /* 4887 * compare two buffers with mask. 4888 * IN: 4889 * addr1: source 4890 * addr2: object 4891 * bits: Number of bits to compare 4892 * OUT: 4893 * 1 : equal 4894 * 0 : not equal 4895 */ 4896 static int 4897 key_bb_match_withmask(const void *a1, const void *a2, u_int bits) 4898 { 4899 const unsigned char *p1 = a1; 4900 const unsigned char *p2 = a2; 4901 4902 /* XXX: This could be considerably faster if we compare a word 4903 * at a time, but it is complicated on LSB Endian machines */ 4904 4905 /* Handle null pointers */ 4906 if (p1 == NULL || p2 == NULL) 4907 return (p1 == p2); 4908 4909 while (bits >= 8) { 4910 if (*p1++ != *p2++) 4911 return 0; 4912 bits -= 8; 4913 } 4914 4915 if (bits > 0) { 4916 u_int8_t mask = ~((1<<(8-bits))-1); 4917 if ((*p1 & mask) != (*p2 & mask)) 4918 return 0; 4919 } 4920 return 1; /* Match! */ 4921 } 4922 4923 static void 4924 key_timehandler_spd(void) 4925 { 4926 u_int dir; 4927 struct secpolicy *sp; 4928 volatile time_t now; 4929 4930 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4931 retry: 4932 mutex_enter(&key_spd.lock); 4933 /* 4934 * To avoid for sp->created to overtake "now" because of 4935 * waiting mutex, set time_uptime here. 4936 */ 4937 now = time_uptime; 4938 SPLIST_WRITER_FOREACH(sp, dir) { 4939 KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, 4940 "sp->state=%u", sp->state); 4941 4942 if (sp->lifetime == 0 && sp->validtime == 0) 4943 continue; 4944 4945 if ((sp->lifetime && now - sp->created > sp->lifetime) || 4946 (sp->validtime && now - sp->lastused > sp->validtime)) { 4947 key_unlink_sp(sp); 4948 mutex_exit(&key_spd.lock); 4949 key_spdexpire(sp); 4950 key_destroy_sp(sp); 4951 goto retry; 4952 } 4953 } 4954 mutex_exit(&key_spd.lock); 4955 } 4956 4957 retry_socksplist: 4958 mutex_enter(&key_spd.lock); 4959 SOCKSPLIST_WRITER_FOREACH(sp) { 4960 if (sp->state != IPSEC_SPSTATE_DEAD) 4961 continue; 4962 4963 key_unlink_sp(sp); 4964 mutex_exit(&key_spd.lock); 4965 key_destroy_sp(sp); 4966 goto retry_socksplist; 4967 } 4968 mutex_exit(&key_spd.lock); 4969 } 4970 4971 static void 4972 key_timehandler_sad(void) 4973 { 4974 struct secashead *sah; 4975 int s; 4976 volatile time_t now; 4977 4978 restart: 4979 mutex_enter(&key_sad.lock); 4980 SAHLIST_WRITER_FOREACH(sah) { 4981 /* If sah has been dead and has no sav, then delete it */ 4982 if (sah->state == SADB_SASTATE_DEAD && 4983 !key_sah_has_sav(sah)) { 4984 key_unlink_sah(sah); 4985 mutex_exit(&key_sad.lock); 4986 key_destroy_sah(sah); 4987 goto restart; 4988 } 4989 } 4990 mutex_exit(&key_sad.lock); 4991 4992 s = pserialize_read_enter(); 4993 SAHLIST_READER_FOREACH(sah) { 4994 struct secasvar *sav; 4995 4996 key_sah_ref(sah); 4997 pserialize_read_exit(s); 4998 4999 /* if LARVAL entry doesn't become MATURE, delete it. */ 5000 mutex_enter(&key_sad.lock); 5001 restart_sav_LARVAL: 5002 /* 5003 * Same as key_timehandler_spd(), set time_uptime here. 5004 */ 5005 now = time_uptime; 5006 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) { 5007 if (now - sav->created > key_larval_lifetime) { 5008 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5009 goto restart_sav_LARVAL; 5010 } 5011 } 5012 mutex_exit(&key_sad.lock); 5013 5014 /* 5015 * check MATURE entry to start to send expire message 5016 * whether or not. 5017 */ 5018 restart_sav_MATURE: 5019 mutex_enter(&key_sad.lock); 5020 /* 5021 * ditto 5022 */ 5023 now = time_uptime; 5024 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_MATURE) { 5025 /* we don't need to check. */ 5026 if (sav->lft_s == NULL) 5027 continue; 5028 5029 /* sanity check */ 5030 KASSERT(sav->lft_c != NULL); 5031 5032 /* check SOFT lifetime */ 5033 if (sav->lft_s->sadb_lifetime_addtime != 0 && 5034 now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 5035 /* 5036 * check SA to be used whether or not. 5037 * when SA hasn't been used, delete it. 5038 */ 5039 if (sav->lft_c->sadb_lifetime_usetime == 0) { 5040 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5041 mutex_exit(&key_sad.lock); 5042 } else { 5043 key_sa_chgstate(sav, SADB_SASTATE_DYING); 5044 mutex_exit(&key_sad.lock); 5045 /* 5046 * XXX If we keep to send expire 5047 * message in the status of 5048 * DYING. Do remove below code. 5049 */ 5050 key_expire(sav); 5051 } 5052 goto restart_sav_MATURE; 5053 } 5054 /* check SOFT lifetime by bytes */ 5055 /* 5056 * XXX I don't know the way to delete this SA 5057 * when new SA is installed. Caution when it's 5058 * installed too big lifetime by time. 5059 */ 5060 else { 5061 uint64_t lft_c_bytes = 0; 5062 lifetime_counters_t sum = {0}; 5063 5064 percpu_foreach_xcall(sav->lft_c_counters_percpu, 5065 XC_HIGHPRI_IPL(IPL_SOFTNET), 5066 key_sum_lifetime_counters, sum); 5067 lft_c_bytes = sum[LIFETIME_COUNTER_BYTES]; 5068 5069 if (sav->lft_s->sadb_lifetime_bytes == 0 || 5070 sav->lft_s->sadb_lifetime_bytes >= lft_c_bytes) 5071 continue; 5072 5073 key_sa_chgstate(sav, SADB_SASTATE_DYING); 5074 mutex_exit(&key_sad.lock); 5075 /* 5076 * XXX If we keep to send expire 5077 * message in the status of 5078 * DYING. Do remove below code. 5079 */ 5080 key_expire(sav); 5081 goto restart_sav_MATURE; 5082 } 5083 } 5084 mutex_exit(&key_sad.lock); 5085 5086 /* check DYING entry to change status to DEAD. */ 5087 mutex_enter(&key_sad.lock); 5088 restart_sav_DYING: 5089 /* 5090 * ditto 5091 */ 5092 now = time_uptime; 5093 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DYING) { 5094 /* we don't need to check. */ 5095 if (sav->lft_h == NULL) 5096 continue; 5097 5098 /* sanity check */ 5099 KASSERT(sav->lft_c != NULL); 5100 5101 if (sav->lft_h->sadb_lifetime_addtime != 0 && 5102 now - sav->created > sav->lft_h->sadb_lifetime_addtime) { 5103 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5104 goto restart_sav_DYING; 5105 } 5106 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 5107 else if (sav->lft_s != NULL 5108 && sav->lft_s->sadb_lifetime_addtime != 0 5109 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 5110 /* 5111 * XXX: should be checked to be 5112 * installed the valid SA. 5113 */ 5114 5115 /* 5116 * If there is no SA then sending 5117 * expire message. 5118 */ 5119 key_expire(sav); 5120 } 5121 #endif 5122 /* check HARD lifetime by bytes */ 5123 else { 5124 uint64_t lft_c_bytes = 0; 5125 lifetime_counters_t sum = {0}; 5126 5127 percpu_foreach_xcall(sav->lft_c_counters_percpu, 5128 XC_HIGHPRI_IPL(IPL_SOFTNET), 5129 key_sum_lifetime_counters, sum); 5130 lft_c_bytes = sum[LIFETIME_COUNTER_BYTES]; 5131 5132 if (sav->lft_h->sadb_lifetime_bytes == 0 || 5133 sav->lft_h->sadb_lifetime_bytes >= lft_c_bytes) 5134 continue; 5135 5136 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5137 goto restart_sav_DYING; 5138 } 5139 } 5140 mutex_exit(&key_sad.lock); 5141 5142 /* delete entry in DEAD */ 5143 restart_sav_DEAD: 5144 mutex_enter(&key_sad.lock); 5145 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DEAD) { 5146 key_unlink_sav(sav); 5147 mutex_exit(&key_sad.lock); 5148 key_destroy_sav(sav); 5149 goto restart_sav_DEAD; 5150 } 5151 mutex_exit(&key_sad.lock); 5152 5153 s = pserialize_read_enter(); 5154 key_sah_unref(sah); 5155 } 5156 pserialize_read_exit(s); 5157 } 5158 5159 static void 5160 key_timehandler_acq(void) 5161 { 5162 #ifndef IPSEC_NONBLOCK_ACQUIRE 5163 struct secacq *acq, *nextacq; 5164 volatile time_t now; 5165 5166 restart: 5167 mutex_enter(&key_misc.lock); 5168 /* 5169 * Same as key_timehandler_spd(), set time_uptime here. 5170 */ 5171 now = time_uptime; 5172 LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) { 5173 if (now - acq->created > key_blockacq_lifetime) { 5174 LIST_REMOVE(acq, chain); 5175 mutex_exit(&key_misc.lock); 5176 kmem_free(acq, sizeof(*acq)); 5177 goto restart; 5178 } 5179 } 5180 mutex_exit(&key_misc.lock); 5181 #endif 5182 } 5183 5184 static void 5185 key_timehandler_spacq(void) 5186 { 5187 #ifdef notyet 5188 struct secspacq *acq, *nextacq; 5189 time_t now = time_uptime; 5190 5191 LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) { 5192 if (now - acq->created > key_blockacq_lifetime) { 5193 KASSERT(__LIST_CHAINED(acq)); 5194 LIST_REMOVE(acq, chain); 5195 kmem_free(acq, sizeof(*acq)); 5196 } 5197 } 5198 #endif 5199 } 5200 5201 static unsigned int key_timehandler_work_enqueued = 0; 5202 5203 /* 5204 * time handler. 5205 * scanning SPD and SAD to check status for each entries, 5206 * and do to remove or to expire. 5207 */ 5208 static void 5209 key_timehandler_work(struct work *wk, void *arg) 5210 { 5211 5212 /* We can allow enqueuing another work at this point */ 5213 atomic_swap_uint(&key_timehandler_work_enqueued, 0); 5214 5215 key_timehandler_spd(); 5216 key_timehandler_sad(); 5217 key_timehandler_acq(); 5218 key_timehandler_spacq(); 5219 5220 key_acquire_sendup_pending_mbuf(); 5221 5222 /* do exchange to tick time !! */ 5223 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 5224 5225 return; 5226 } 5227 5228 static void 5229 key_timehandler(void *arg) 5230 { 5231 5232 /* Avoid enqueuing another work when one is already enqueued */ 5233 if (atomic_swap_uint(&key_timehandler_work_enqueued, 1) == 1) 5234 return; 5235 5236 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL); 5237 } 5238 5239 u_long 5240 key_random(void) 5241 { 5242 u_long value; 5243 5244 key_randomfill(&value, sizeof(value)); 5245 return value; 5246 } 5247 5248 void 5249 key_randomfill(void *p, size_t l) 5250 { 5251 5252 cprng_fast(p, l); 5253 } 5254 5255 /* 5256 * map SADB_SATYPE_* to IPPROTO_*. 5257 * if satype == SADB_SATYPE then satype is mapped to ~0. 5258 * OUT: 5259 * 0: invalid satype. 5260 */ 5261 static u_int16_t 5262 key_satype2proto(u_int8_t satype) 5263 { 5264 switch (satype) { 5265 case SADB_SATYPE_UNSPEC: 5266 return IPSEC_PROTO_ANY; 5267 case SADB_SATYPE_AH: 5268 return IPPROTO_AH; 5269 case SADB_SATYPE_ESP: 5270 return IPPROTO_ESP; 5271 case SADB_X_SATYPE_IPCOMP: 5272 return IPPROTO_IPCOMP; 5273 case SADB_X_SATYPE_TCPSIGNATURE: 5274 return IPPROTO_TCP; 5275 default: 5276 return 0; 5277 } 5278 /* NOTREACHED */ 5279 } 5280 5281 /* 5282 * map IPPROTO_* to SADB_SATYPE_* 5283 * OUT: 5284 * 0: invalid protocol type. 5285 */ 5286 static u_int8_t 5287 key_proto2satype(u_int16_t proto) 5288 { 5289 switch (proto) { 5290 case IPPROTO_AH: 5291 return SADB_SATYPE_AH; 5292 case IPPROTO_ESP: 5293 return SADB_SATYPE_ESP; 5294 case IPPROTO_IPCOMP: 5295 return SADB_X_SATYPE_IPCOMP; 5296 case IPPROTO_TCP: 5297 return SADB_X_SATYPE_TCPSIGNATURE; 5298 default: 5299 return 0; 5300 } 5301 /* NOTREACHED */ 5302 } 5303 5304 static int 5305 key_setsecasidx(int proto, int mode, int reqid, 5306 const struct sockaddr *src, const struct sockaddr *dst, 5307 struct secasindex * saidx) 5308 { 5309 const union sockaddr_union *src_u = (const union sockaddr_union *)src; 5310 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst; 5311 5312 /* sa len safety check */ 5313 if (key_checksalen(src_u) != 0) 5314 return -1; 5315 if (key_checksalen(dst_u) != 0) 5316 return -1; 5317 5318 memset(saidx, 0, sizeof(*saidx)); 5319 saidx->proto = proto; 5320 saidx->mode = mode; 5321 saidx->reqid = reqid; 5322 memcpy(&saidx->src, src_u, src_u->sa.sa_len); 5323 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len); 5324 5325 key_porttosaddr(&((saidx)->src), 0); 5326 key_porttosaddr(&((saidx)->dst), 0); 5327 return 0; 5328 } 5329 5330 static void 5331 key_init_spidx_bymsghdr(struct secpolicyindex *spidx, 5332 const struct sadb_msghdr *mhp) 5333 { 5334 const struct sadb_address *src0, *dst0; 5335 const struct sockaddr *src, *dst; 5336 const struct sadb_x_policy *xpl0; 5337 5338 src0 = mhp->ext[SADB_EXT_ADDRESS_SRC]; 5339 dst0 = mhp->ext[SADB_EXT_ADDRESS_DST]; 5340 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5341 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5342 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 5343 5344 memset(spidx, 0, sizeof(*spidx)); 5345 spidx->dir = xpl0->sadb_x_policy_dir; 5346 spidx->prefs = src0->sadb_address_prefixlen; 5347 spidx->prefd = dst0->sadb_address_prefixlen; 5348 spidx->ul_proto = src0->sadb_address_proto; 5349 /* XXX boundary check against sa_len */ 5350 memcpy(&spidx->src, src, src->sa_len); 5351 memcpy(&spidx->dst, dst, dst->sa_len); 5352 } 5353 5354 /* %%% PF_KEY */ 5355 /* 5356 * SADB_GETSPI processing is to receive 5357 * <base, (SA2), src address, dst address, (SPI range)> 5358 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 5359 * tree with the status of LARVAL, and send 5360 * <base, SA(*), address(SD)> 5361 * to the IKMPd. 5362 * 5363 * IN: mhp: pointer to the pointer to each header. 5364 * OUT: NULL if fail. 5365 * other if success, return pointer to the message to send. 5366 */ 5367 static int 5368 key_api_getspi(struct socket *so, struct mbuf *m, 5369 const struct sadb_msghdr *mhp) 5370 { 5371 const struct sockaddr *src, *dst; 5372 struct secasindex saidx; 5373 struct secashead *sah; 5374 struct secasvar *newsav; 5375 u_int8_t proto; 5376 u_int32_t spi; 5377 u_int8_t mode; 5378 u_int16_t reqid; 5379 int error; 5380 5381 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5382 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5383 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5384 return key_senderror(so, m, EINVAL); 5385 } 5386 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5387 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5388 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5389 return key_senderror(so, m, EINVAL); 5390 } 5391 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5392 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5393 mode = sa2->sadb_x_sa2_mode; 5394 reqid = sa2->sadb_x_sa2_reqid; 5395 } else { 5396 mode = IPSEC_MODE_ANY; 5397 reqid = 0; 5398 } 5399 5400 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5401 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5402 5403 /* map satype to proto */ 5404 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5405 if (proto == 0) { 5406 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5407 return key_senderror(so, m, EINVAL); 5408 } 5409 5410 5411 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5412 if (error != 0) 5413 return key_senderror(so, m, EINVAL); 5414 5415 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5416 if (error != 0) 5417 return key_senderror(so, m, EINVAL); 5418 5419 /* SPI allocation */ 5420 spi = key_do_getnewspi(mhp->ext[SADB_EXT_SPIRANGE], &saidx); 5421 if (spi == 0) 5422 return key_senderror(so, m, EINVAL); 5423 5424 /* get a SA index */ 5425 sah = key_getsah_ref(&saidx, CMP_REQID); 5426 if (sah == NULL) { 5427 /* create a new SA index */ 5428 sah = key_newsah(&saidx); 5429 if (sah == NULL) { 5430 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5431 return key_senderror(so, m, ENOBUFS); 5432 } 5433 } 5434 5435 /* get a new SA */ 5436 /* XXX rewrite */ 5437 newsav = KEY_NEWSAV(m, mhp, &error, proto); 5438 if (newsav == NULL) { 5439 key_sah_unref(sah); 5440 /* XXX don't free new SA index allocated in above. */ 5441 return key_senderror(so, m, error); 5442 } 5443 5444 /* set spi */ 5445 newsav->spi = htonl(spi); 5446 5447 /* Add to sah#savlist */ 5448 key_init_sav(newsav); 5449 newsav->sah = sah; 5450 newsav->state = SADB_SASTATE_LARVAL; 5451 mutex_enter(&key_sad.lock); 5452 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav); 5453 mutex_exit(&key_sad.lock); 5454 key_validate_savlist(sah, SADB_SASTATE_LARVAL); 5455 5456 key_sah_unref(sah); 5457 5458 #ifndef IPSEC_NONBLOCK_ACQUIRE 5459 /* delete the entry in key_misc.acqlist */ 5460 if (mhp->msg->sadb_msg_seq != 0) { 5461 struct secacq *acq; 5462 mutex_enter(&key_misc.lock); 5463 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); 5464 if (acq != NULL) { 5465 /* reset counter in order to deletion by timehandler. */ 5466 acq->created = time_uptime; 5467 acq->count = 0; 5468 } 5469 mutex_exit(&key_misc.lock); 5470 } 5471 #endif 5472 5473 { 5474 struct mbuf *n, *nn; 5475 struct sadb_sa *m_sa; 5476 int off, len; 5477 5478 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 5479 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES); 5480 5481 /* create new sadb_msg to reply. */ 5482 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 5483 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5484 5485 n = key_alloc_mbuf_simple(len, M_WAITOK); 5486 n->m_len = len; 5487 n->m_next = NULL; 5488 off = 0; 5489 5490 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 5491 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 5492 5493 m_sa = (struct sadb_sa *)(mtod(n, char *) + off); 5494 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 5495 m_sa->sadb_sa_exttype = SADB_EXT_SA; 5496 m_sa->sadb_sa_spi = htonl(spi); 5497 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5498 5499 KASSERTMSG(off == len, "length inconsistency"); 5500 5501 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 5502 SADB_EXT_ADDRESS_DST); 5503 5504 KASSERT(n->m_len >= sizeof(struct sadb_msg)); 5505 5506 n->m_pkthdr.len = 0; 5507 for (nn = n; nn; nn = nn->m_next) 5508 n->m_pkthdr.len += nn->m_len; 5509 5510 key_fill_replymsg(n, newsav->seq); 5511 m_freem(m); 5512 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5513 } 5514 } 5515 5516 /* 5517 * allocating new SPI 5518 * called by key_api_getspi(). 5519 * OUT: 5520 * 0: failure. 5521 * others: success. 5522 */ 5523 static u_int32_t 5524 key_do_getnewspi(const struct sadb_spirange *spirange, 5525 const struct secasindex *saidx) 5526 { 5527 u_int32_t newspi; 5528 u_int32_t spmin, spmax; 5529 int count = key_spi_trycnt; 5530 5531 /* set spi range to allocate */ 5532 if (spirange != NULL) { 5533 spmin = spirange->sadb_spirange_min; 5534 spmax = spirange->sadb_spirange_max; 5535 } else { 5536 spmin = key_spi_minval; 5537 spmax = key_spi_maxval; 5538 } 5539 /* IPCOMP needs 2-byte SPI */ 5540 if (saidx->proto == IPPROTO_IPCOMP) { 5541 u_int32_t t; 5542 if (spmin >= 0x10000) 5543 spmin = 0xffff; 5544 if (spmax >= 0x10000) 5545 spmax = 0xffff; 5546 if (spmin > spmax) { 5547 t = spmin; spmin = spmax; spmax = t; 5548 } 5549 } 5550 5551 if (spmin == spmax) { 5552 if (key_checkspidup(saidx, htonl(spmin))) { 5553 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin); 5554 return 0; 5555 } 5556 5557 count--; /* taking one cost. */ 5558 newspi = spmin; 5559 5560 } else { 5561 5562 /* init SPI */ 5563 newspi = 0; 5564 5565 /* when requesting to allocate spi ranged */ 5566 while (count--) { 5567 /* generate pseudo-random SPI value ranged. */ 5568 newspi = spmin + (key_random() % (spmax - spmin + 1)); 5569 5570 if (!key_checkspidup(saidx, htonl(newspi))) 5571 break; 5572 } 5573 5574 if (count == 0 || newspi == 0) { 5575 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n"); 5576 return 0; 5577 } 5578 } 5579 5580 /* statistics */ 5581 keystat.getspi_count = 5582 (keystat.getspi_count + key_spi_trycnt - count) / 2; 5583 5584 return newspi; 5585 } 5586 5587 static int 5588 key_handle_natt_info(struct secasvar *sav, 5589 const struct sadb_msghdr *mhp) 5590 { 5591 const char *msg = "?" ; 5592 struct sadb_x_nat_t_type *type; 5593 struct sadb_x_nat_t_port *sport, *dport; 5594 struct sadb_address *iaddr, *raddr; 5595 struct sadb_x_nat_t_frag *frag; 5596 5597 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 5598 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 5599 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) 5600 return 0; 5601 5602 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) { 5603 msg = "TYPE"; 5604 goto bad; 5605 } 5606 5607 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) { 5608 msg = "SPORT"; 5609 goto bad; 5610 } 5611 5612 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5613 msg = "DPORT"; 5614 goto bad; 5615 } 5616 5617 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) { 5618 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); 5619 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) { 5620 msg = "OAI"; 5621 goto bad; 5622 } 5623 } 5624 5625 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5626 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); 5627 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5628 msg = "OAR"; 5629 goto bad; 5630 } 5631 } 5632 5633 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5634 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5635 msg = "FRAG"; 5636 goto bad; 5637 } 5638 } 5639 5640 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5641 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5642 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5643 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5644 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5645 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5646 5647 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", 5648 type->sadb_x_nat_t_type_type, 5649 ntohs(sport->sadb_x_nat_t_port_port), 5650 ntohs(dport->sadb_x_nat_t_port_port)); 5651 5652 sav->natt_type = type->sadb_x_nat_t_type_type; 5653 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port); 5654 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port); 5655 if (frag) 5656 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen; 5657 else 5658 sav->esp_frag = IP_MAXPACKET; 5659 5660 return 0; 5661 bad: 5662 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg); 5663 __USE(msg); 5664 return -1; 5665 } 5666 5667 /* Just update the IPSEC_NAT_T ports if present */ 5668 static int 5669 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst, 5670 const struct sadb_msghdr *mhp) 5671 { 5672 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 5673 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); 5674 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 5675 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); 5676 5677 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) && 5678 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) && 5679 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) { 5680 struct sadb_x_nat_t_type *type; 5681 struct sadb_x_nat_t_port *sport; 5682 struct sadb_x_nat_t_port *dport; 5683 5684 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 5685 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 5686 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 5687 IPSECLOG(LOG_DEBUG, "invalid message\n"); 5688 return -1; 5689 } 5690 5691 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5692 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5693 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5694 5695 key_porttosaddr(src, sport->sadb_x_nat_t_port_port); 5696 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port); 5697 5698 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", 5699 type->sadb_x_nat_t_type_type, 5700 ntohs(sport->sadb_x_nat_t_port_port), 5701 ntohs(dport->sadb_x_nat_t_port_port)); 5702 } 5703 5704 return 0; 5705 } 5706 5707 5708 /* 5709 * SADB_UPDATE processing 5710 * receive 5711 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5712 * key(AE), (identity(SD),) (sensitivity)> 5713 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 5714 * and send 5715 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5716 * (identity(SD),) (sensitivity)> 5717 * to the ikmpd. 5718 * 5719 * m will always be freed. 5720 */ 5721 static int 5722 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5723 { 5724 struct sadb_sa *sa0; 5725 const struct sockaddr *src, *dst; 5726 struct secasindex saidx; 5727 struct secashead *sah; 5728 struct secasvar *sav, *newsav, *oldsav; 5729 u_int16_t proto; 5730 u_int8_t mode; 5731 u_int16_t reqid; 5732 int error; 5733 5734 /* map satype to proto */ 5735 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5736 if (proto == 0) { 5737 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5738 return key_senderror(so, m, EINVAL); 5739 } 5740 5741 if (mhp->ext[SADB_EXT_SA] == NULL || 5742 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5743 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5744 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5745 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5746 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5747 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5748 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5749 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5750 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5751 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5752 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5753 return key_senderror(so, m, EINVAL); 5754 } 5755 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5756 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5757 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5758 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5759 return key_senderror(so, m, EINVAL); 5760 } 5761 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5762 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5763 mode = sa2->sadb_x_sa2_mode; 5764 reqid = sa2->sadb_x_sa2_reqid; 5765 } else { 5766 mode = IPSEC_MODE_ANY; 5767 reqid = 0; 5768 } 5769 /* XXX boundary checking for other extensions */ 5770 5771 sa0 = mhp->ext[SADB_EXT_SA]; 5772 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5773 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5774 5775 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5776 if (error != 0) 5777 return key_senderror(so, m, EINVAL); 5778 5779 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5780 if (error != 0) 5781 return key_senderror(so, m, EINVAL); 5782 5783 /* get a SA header */ 5784 sah = key_getsah_ref(&saidx, CMP_REQID); 5785 if (sah == NULL) { 5786 IPSECLOG(LOG_DEBUG, "no SA index found.\n"); 5787 return key_senderror(so, m, ENOENT); 5788 } 5789 5790 /* set spidx if there */ 5791 /* XXX rewrite */ 5792 error = key_setident(sah, m, mhp); 5793 if (error) 5794 goto error_sah; 5795 5796 /* find a SA with sequence number. */ 5797 #ifdef IPSEC_DOSEQCHECK 5798 if (mhp->msg->sadb_msg_seq != 0) { 5799 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq); 5800 if (sav == NULL) { 5801 IPSECLOG(LOG_DEBUG, 5802 "no larval SA with sequence %u exists.\n", 5803 mhp->msg->sadb_msg_seq); 5804 error = ENOENT; 5805 goto error_sah; 5806 } 5807 } 5808 #else 5809 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5810 if (sav == NULL) { 5811 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n", 5812 (u_int32_t)ntohl(sa0->sadb_sa_spi)); 5813 error = EINVAL; 5814 goto error_sah; 5815 } 5816 #endif 5817 5818 /* validity check */ 5819 if (sav->sah->saidx.proto != proto) { 5820 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n", 5821 sav->sah->saidx.proto, proto); 5822 error = EINVAL; 5823 goto error; 5824 } 5825 #ifdef IPSEC_DOSEQCHECK 5826 if (sav->spi != sa0->sadb_sa_spi) { 5827 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n", 5828 (u_int32_t)ntohl(sav->spi), 5829 (u_int32_t)ntohl(sa0->sadb_sa_spi)); 5830 error = EINVAL; 5831 goto error; 5832 } 5833 #endif 5834 if (sav->pid != mhp->msg->sadb_msg_pid) { 5835 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n", 5836 sav->pid, mhp->msg->sadb_msg_pid); 5837 error = EINVAL; 5838 goto error; 5839 } 5840 5841 /* 5842 * Allocate a new SA instead of modifying the existing SA directly 5843 * to avoid race conditions. 5844 */ 5845 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); 5846 5847 /* copy sav values */ 5848 newsav->spi = sav->spi; 5849 newsav->seq = sav->seq; 5850 newsav->created = sav->created; 5851 newsav->pid = sav->pid; 5852 newsav->sah = sav->sah; 5853 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 5854 "DP from %s:%u update SA:%p to SA:%p spi=%#x proto=%d\n", 5855 __func__, __LINE__, sav, newsav, 5856 ntohl(newsav->spi), proto); 5857 5858 error = key_setsaval(newsav, m, mhp); 5859 if (error) { 5860 kmem_free(newsav, sizeof(*newsav)); 5861 goto error; 5862 } 5863 5864 error = key_handle_natt_info(newsav, mhp); 5865 if (error != 0) { 5866 key_delsav(newsav); 5867 goto error; 5868 } 5869 5870 error = key_init_xform(newsav); 5871 if (error != 0) { 5872 key_delsav(newsav); 5873 goto error; 5874 } 5875 5876 /* Add to sah#savlist */ 5877 key_init_sav(newsav); 5878 newsav->state = SADB_SASTATE_MATURE; 5879 mutex_enter(&key_sad.lock); 5880 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); 5881 SAVLUT_WRITER_INSERT_HEAD(newsav); 5882 mutex_exit(&key_sad.lock); 5883 key_validate_savlist(sah, SADB_SASTATE_MATURE); 5884 5885 /* 5886 * We need to lookup and remove the sav atomically, so get it again 5887 * here by a special API while we have a reference to it. 5888 */ 5889 oldsav = key_lookup_and_remove_sav(sah, sa0->sadb_sa_spi, sav); 5890 KASSERT(oldsav == NULL || oldsav == sav); 5891 /* We can release the reference because of oldsav */ 5892 KEY_SA_UNREF(&sav); 5893 if (oldsav == NULL) { 5894 /* Someone has already removed the sav. Nothing to do. */ 5895 } else { 5896 key_wait_sav(oldsav); 5897 key_destroy_sav(oldsav); 5898 oldsav = NULL; 5899 } 5900 sav = NULL; 5901 5902 key_sah_unref(sah); 5903 sah = NULL; 5904 5905 { 5906 struct mbuf *n; 5907 5908 /* set msg buf from mhp */ 5909 n = key_getmsgbuf_x1(m, mhp); 5910 if (n == NULL) { 5911 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5912 return key_senderror(so, m, ENOBUFS); 5913 } 5914 5915 m_freem(m); 5916 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5917 } 5918 error: 5919 KEY_SA_UNREF(&sav); 5920 error_sah: 5921 key_sah_unref(sah); 5922 return key_senderror(so, m, error); 5923 } 5924 5925 /* 5926 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5927 * only called by key_api_update(). 5928 * OUT: 5929 * NULL : not found 5930 * others : found, pointer to a SA. 5931 */ 5932 #ifdef IPSEC_DOSEQCHECK 5933 static struct secasvar * 5934 key_getsavbyseq(struct secashead *sah, u_int32_t seq) 5935 { 5936 struct secasvar *sav; 5937 u_int state; 5938 int s; 5939 5940 state = SADB_SASTATE_LARVAL; 5941 5942 /* search SAD with sequence number ? */ 5943 s = pserialize_read_enter(); 5944 SAVLIST_READER_FOREACH(sav, sah, state) { 5945 KEY_CHKSASTATE(state, sav->state); 5946 5947 if (sav->seq == seq) { 5948 SA_ADDREF(sav); 5949 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 5950 "DP cause refcnt++:%d SA:%p\n", 5951 key_sa_refcnt(sav), sav); 5952 break; 5953 } 5954 } 5955 pserialize_read_exit(s); 5956 5957 return sav; 5958 } 5959 #endif 5960 5961 /* 5962 * SADB_ADD processing 5963 * add an entry to SA database, when received 5964 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5965 * key(AE), (identity(SD),) (sensitivity)> 5966 * from the ikmpd, 5967 * and send 5968 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5969 * (identity(SD),) (sensitivity)> 5970 * to the ikmpd. 5971 * 5972 * IGNORE identity and sensitivity messages. 5973 * 5974 * m will always be freed. 5975 */ 5976 static int 5977 key_api_add(struct socket *so, struct mbuf *m, 5978 const struct sadb_msghdr *mhp) 5979 { 5980 struct sadb_sa *sa0; 5981 const struct sockaddr *src, *dst; 5982 struct secasindex saidx; 5983 struct secashead *sah; 5984 struct secasvar *newsav; 5985 u_int16_t proto; 5986 u_int8_t mode; 5987 u_int16_t reqid; 5988 int error; 5989 5990 /* map satype to proto */ 5991 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5992 if (proto == 0) { 5993 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5994 return key_senderror(so, m, EINVAL); 5995 } 5996 5997 if (mhp->ext[SADB_EXT_SA] == NULL || 5998 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5999 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6000 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 6001 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 6002 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 6003 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 6004 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 6005 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 6006 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 6007 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 6008 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6009 return key_senderror(so, m, EINVAL); 6010 } 6011 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 6012 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6013 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6014 /* XXX need more */ 6015 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6016 return key_senderror(so, m, EINVAL); 6017 } 6018 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 6019 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 6020 mode = sa2->sadb_x_sa2_mode; 6021 reqid = sa2->sadb_x_sa2_reqid; 6022 } else { 6023 mode = IPSEC_MODE_ANY; 6024 reqid = 0; 6025 } 6026 6027 sa0 = mhp->ext[SADB_EXT_SA]; 6028 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6029 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6030 6031 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 6032 if (error != 0) 6033 return key_senderror(so, m, EINVAL); 6034 6035 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6036 if (error != 0) 6037 return key_senderror(so, m, EINVAL); 6038 6039 /* get a SA header */ 6040 sah = key_getsah_ref(&saidx, CMP_REQID); 6041 if (sah == NULL) { 6042 /* create a new SA header */ 6043 sah = key_newsah(&saidx); 6044 if (sah == NULL) { 6045 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 6046 return key_senderror(so, m, ENOBUFS); 6047 } 6048 } 6049 6050 /* set spidx if there */ 6051 /* XXX rewrite */ 6052 error = key_setident(sah, m, mhp); 6053 if (error) 6054 goto error; 6055 6056 { 6057 struct secasvar *sav; 6058 6059 /* We can create new SA only if SPI is differenct. */ 6060 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 6061 if (sav != NULL) { 6062 KEY_SA_UNREF(&sav); 6063 IPSECLOG(LOG_DEBUG, "SA already exists.\n"); 6064 error = EEXIST; 6065 goto error; 6066 } 6067 } 6068 6069 /* create new SA entry. */ 6070 newsav = KEY_NEWSAV(m, mhp, &error, proto); 6071 if (newsav == NULL) 6072 goto error; 6073 newsav->sah = sah; 6074 6075 error = key_handle_natt_info(newsav, mhp); 6076 if (error != 0) { 6077 key_delsav(newsav); 6078 error = EINVAL; 6079 goto error; 6080 } 6081 6082 error = key_init_xform(newsav); 6083 if (error != 0) { 6084 key_delsav(newsav); 6085 goto error; 6086 } 6087 6088 /* Add to sah#savlist */ 6089 key_init_sav(newsav); 6090 newsav->state = SADB_SASTATE_MATURE; 6091 mutex_enter(&key_sad.lock); 6092 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); 6093 SAVLUT_WRITER_INSERT_HEAD(newsav); 6094 mutex_exit(&key_sad.lock); 6095 key_validate_savlist(sah, SADB_SASTATE_MATURE); 6096 6097 key_sah_unref(sah); 6098 sah = NULL; 6099 6100 /* 6101 * don't call key_freesav() here, as we would like to keep the SA 6102 * in the database on success. 6103 */ 6104 6105 { 6106 struct mbuf *n; 6107 6108 /* set msg buf from mhp */ 6109 n = key_getmsgbuf_x1(m, mhp); 6110 if (n == NULL) { 6111 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 6112 return key_senderror(so, m, ENOBUFS); 6113 } 6114 6115 m_freem(m); 6116 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6117 } 6118 error: 6119 key_sah_unref(sah); 6120 return key_senderror(so, m, error); 6121 } 6122 6123 /* m is retained */ 6124 static int 6125 key_setident(struct secashead *sah, struct mbuf *m, 6126 const struct sadb_msghdr *mhp) 6127 { 6128 const struct sadb_ident *idsrc, *iddst; 6129 int idsrclen, iddstlen; 6130 6131 KASSERT(!cpu_softintr_p()); 6132 KASSERT(sah != NULL); 6133 KASSERT(m != NULL); 6134 KASSERT(mhp != NULL); 6135 KASSERT(mhp->msg != NULL); 6136 6137 /* 6138 * Can be called with an existing sah from key_api_update(). 6139 */ 6140 if (sah->idents != NULL) { 6141 kmem_free(sah->idents, sah->idents_len); 6142 sah->idents = NULL; 6143 sah->idents_len = 0; 6144 } 6145 if (sah->identd != NULL) { 6146 kmem_free(sah->identd, sah->identd_len); 6147 sah->identd = NULL; 6148 sah->identd_len = 0; 6149 } 6150 6151 /* don't make buffer if not there */ 6152 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 6153 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 6154 sah->idents = NULL; 6155 sah->identd = NULL; 6156 return 0; 6157 } 6158 6159 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 6160 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 6161 IPSECLOG(LOG_DEBUG, "invalid identity.\n"); 6162 return EINVAL; 6163 } 6164 6165 idsrc = mhp->ext[SADB_EXT_IDENTITY_SRC]; 6166 iddst = mhp->ext[SADB_EXT_IDENTITY_DST]; 6167 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 6168 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 6169 6170 /* validity check */ 6171 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 6172 IPSECLOG(LOG_DEBUG, "ident type mismatched src %u, dst %u.\n", 6173 idsrc->sadb_ident_type, iddst->sadb_ident_type); 6174 return EINVAL; 6175 } 6176 6177 switch (idsrc->sadb_ident_type) { 6178 case SADB_IDENTTYPE_PREFIX: 6179 case SADB_IDENTTYPE_FQDN: 6180 case SADB_IDENTTYPE_USERFQDN: 6181 default: 6182 /* XXX do nothing */ 6183 sah->idents = NULL; 6184 sah->identd = NULL; 6185 return 0; 6186 } 6187 6188 /* make structure */ 6189 sah->idents = kmem_alloc(idsrclen, KM_SLEEP); 6190 sah->idents_len = idsrclen; 6191 sah->identd = kmem_alloc(iddstlen, KM_SLEEP); 6192 sah->identd_len = iddstlen; 6193 memcpy(sah->idents, idsrc, idsrclen); 6194 memcpy(sah->identd, iddst, iddstlen); 6195 6196 return 0; 6197 } 6198 6199 /* 6200 * m will not be freed on return. It never return NULL. 6201 * it is caller's responsibility to free the result. 6202 */ 6203 static struct mbuf * 6204 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 6205 { 6206 struct mbuf *n; 6207 6208 KASSERT(m != NULL); 6209 KASSERT(mhp != NULL); 6210 KASSERT(mhp->msg != NULL); 6211 6212 /* create new sadb_msg to reply. */ 6213 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED, 6214 SADB_EXT_SA, SADB_X_EXT_SA2, 6215 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 6216 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 6217 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, 6218 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, 6219 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, 6220 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG); 6221 6222 KASSERT(n->m_len >= sizeof(struct sadb_msg)); 6223 6224 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 6225 mtod(n, struct sadb_msg *)->sadb_msg_len = 6226 PFKEY_UNIT64(n->m_pkthdr.len); 6227 6228 return n; 6229 } 6230 6231 static int key_delete_all (struct socket *, struct mbuf *, 6232 const struct sadb_msghdr *, u_int16_t); 6233 6234 /* 6235 * SADB_DELETE processing 6236 * receive 6237 * <base, SA(*), address(SD)> 6238 * from the ikmpd, and set SADB_SASTATE_DEAD, 6239 * and send, 6240 * <base, SA(*), address(SD)> 6241 * to the ikmpd. 6242 * 6243 * m will always be freed. 6244 */ 6245 static int 6246 key_api_delete(struct socket *so, struct mbuf *m, 6247 const struct sadb_msghdr *mhp) 6248 { 6249 struct sadb_sa *sa0; 6250 const struct sockaddr *src, *dst; 6251 struct secasindex saidx; 6252 struct secashead *sah; 6253 struct secasvar *sav = NULL; 6254 u_int16_t proto; 6255 int error; 6256 6257 /* map satype to proto */ 6258 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 6259 if (proto == 0) { 6260 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6261 return key_senderror(so, m, EINVAL); 6262 } 6263 6264 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6265 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 6266 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6267 return key_senderror(so, m, EINVAL); 6268 } 6269 6270 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6271 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6272 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6273 return key_senderror(so, m, EINVAL); 6274 } 6275 6276 if (mhp->ext[SADB_EXT_SA] == NULL) { 6277 /* 6278 * Caller wants us to delete all non-LARVAL SAs 6279 * that match the src/dst. This is used during 6280 * IKE INITIAL-CONTACT. 6281 */ 6282 IPSECLOG(LOG_DEBUG, "doing delete all.\n"); 6283 return key_delete_all(so, m, mhp, proto); 6284 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 6285 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6286 return key_senderror(so, m, EINVAL); 6287 } 6288 6289 sa0 = mhp->ext[SADB_EXT_SA]; 6290 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6291 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6292 6293 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6294 if (error != 0) 6295 return key_senderror(so, m, EINVAL); 6296 6297 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6298 if (error != 0) 6299 return key_senderror(so, m, EINVAL); 6300 6301 /* get a SA header */ 6302 sah = key_getsah_ref(&saidx, CMP_HEAD); 6303 if (sah != NULL) { 6304 /* get a SA with SPI. */ 6305 sav = key_lookup_and_remove_sav(sah, sa0->sadb_sa_spi, NULL); 6306 key_sah_unref(sah); 6307 } 6308 6309 if (sav == NULL) { 6310 IPSECLOG(LOG_DEBUG, "no SA found.\n"); 6311 return key_senderror(so, m, ENOENT); 6312 } 6313 6314 key_wait_sav(sav); 6315 key_destroy_sav(sav); 6316 sav = NULL; 6317 6318 { 6319 struct mbuf *n; 6320 6321 /* create new sadb_msg to reply. */ 6322 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 6323 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6324 6325 key_fill_replymsg(n, 0); 6326 m_freem(m); 6327 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6328 } 6329 } 6330 6331 /* 6332 * delete all SAs for src/dst. Called from key_api_delete(). 6333 */ 6334 static int 6335 key_delete_all(struct socket *so, struct mbuf *m, 6336 const struct sadb_msghdr *mhp, u_int16_t proto) 6337 { 6338 const struct sockaddr *src, *dst; 6339 struct secasindex saidx; 6340 struct secashead *sah; 6341 struct secasvar *sav; 6342 u_int state; 6343 int error; 6344 6345 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6346 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6347 6348 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6349 if (error != 0) 6350 return key_senderror(so, m, EINVAL); 6351 6352 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6353 if (error != 0) 6354 return key_senderror(so, m, EINVAL); 6355 6356 sah = key_getsah_ref(&saidx, CMP_HEAD); 6357 if (sah != NULL) { 6358 /* Delete all non-LARVAL SAs. */ 6359 SASTATE_ALIVE_FOREACH(state) { 6360 if (state == SADB_SASTATE_LARVAL) 6361 continue; 6362 restart: 6363 mutex_enter(&key_sad.lock); 6364 SAVLIST_WRITER_FOREACH(sav, sah, state) { 6365 sav->state = SADB_SASTATE_DEAD; 6366 key_unlink_sav(sav); 6367 mutex_exit(&key_sad.lock); 6368 key_destroy_sav(sav); 6369 goto restart; 6370 } 6371 mutex_exit(&key_sad.lock); 6372 } 6373 key_sah_unref(sah); 6374 } 6375 { 6376 struct mbuf *n; 6377 6378 /* create new sadb_msg to reply. */ 6379 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 6380 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6381 6382 key_fill_replymsg(n, 0); 6383 m_freem(m); 6384 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6385 } 6386 } 6387 6388 /* 6389 * SADB_GET processing 6390 * receive 6391 * <base, SA(*), address(SD)> 6392 * from the ikmpd, and get a SP and a SA to respond, 6393 * and send, 6394 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 6395 * (identity(SD),) (sensitivity)> 6396 * to the ikmpd. 6397 * 6398 * m will always be freed. 6399 */ 6400 static int 6401 key_api_get(struct socket *so, struct mbuf *m, 6402 const struct sadb_msghdr *mhp) 6403 { 6404 struct sadb_sa *sa0; 6405 const struct sockaddr *src, *dst; 6406 struct secasindex saidx; 6407 struct secasvar *sav = NULL; 6408 u_int16_t proto; 6409 int error; 6410 6411 /* map satype to proto */ 6412 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6413 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6414 return key_senderror(so, m, EINVAL); 6415 } 6416 6417 if (mhp->ext[SADB_EXT_SA] == NULL || 6418 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6419 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 6420 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6421 return key_senderror(so, m, EINVAL); 6422 } 6423 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 6424 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6425 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6426 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6427 return key_senderror(so, m, EINVAL); 6428 } 6429 6430 sa0 = mhp->ext[SADB_EXT_SA]; 6431 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6432 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6433 6434 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6435 if (error != 0) 6436 return key_senderror(so, m, EINVAL); 6437 6438 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6439 if (error != 0) 6440 return key_senderror(so, m, EINVAL); 6441 6442 /* get a SA header */ 6443 { 6444 struct secashead *sah; 6445 int s = pserialize_read_enter(); 6446 6447 sah = key_getsah(&saidx, CMP_HEAD); 6448 if (sah != NULL) { 6449 /* get a SA with SPI. */ 6450 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 6451 } 6452 pserialize_read_exit(s); 6453 } 6454 if (sav == NULL) { 6455 IPSECLOG(LOG_DEBUG, "no SA found.\n"); 6456 return key_senderror(so, m, ENOENT); 6457 } 6458 6459 { 6460 struct mbuf *n; 6461 u_int8_t satype; 6462 6463 /* map proto to satype */ 6464 satype = key_proto2satype(sav->sah->saidx.proto); 6465 if (satype == 0) { 6466 KEY_SA_UNREF(&sav); 6467 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n"); 6468 return key_senderror(so, m, EINVAL); 6469 } 6470 6471 /* create new sadb_msg to reply. */ 6472 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 6473 mhp->msg->sadb_msg_pid); 6474 KEY_SA_UNREF(&sav); 6475 m_freem(m); 6476 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6477 } 6478 } 6479 6480 /* XXX make it sysctl-configurable? */ 6481 static void 6482 key_getcomb_setlifetime(struct sadb_comb *comb) 6483 { 6484 6485 comb->sadb_comb_soft_allocations = 1; 6486 comb->sadb_comb_hard_allocations = 1; 6487 comb->sadb_comb_soft_bytes = 0; 6488 comb->sadb_comb_hard_bytes = 0; 6489 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 6490 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100; 6491 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */ 6492 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 6493 } 6494 6495 /* 6496 * XXX reorder combinations by preference 6497 * XXX no idea if the user wants ESP authentication or not 6498 */ 6499 static struct mbuf * 6500 key_getcomb_esp(int mflag) 6501 { 6502 struct sadb_comb *comb; 6503 const struct enc_xform *algo; 6504 struct mbuf *result = NULL, *m, *n; 6505 int encmin; 6506 int i, off, o; 6507 int totlen; 6508 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6509 6510 m = NULL; 6511 for (i = 1; i <= SADB_EALG_MAX; i++) { 6512 algo = esp_algorithm_lookup(i); 6513 if (algo == NULL) 6514 continue; 6515 6516 /* discard algorithms with key size smaller than system min */ 6517 if (_BITS(algo->maxkey) < ipsec_esp_keymin) 6518 continue; 6519 if (_BITS(algo->minkey) < ipsec_esp_keymin) 6520 encmin = ipsec_esp_keymin; 6521 else 6522 encmin = _BITS(algo->minkey); 6523 6524 if (ipsec_esp_auth) 6525 m = key_getcomb_ah(mflag); 6526 else { 6527 KASSERTMSG(l <= MLEN, 6528 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6529 MGET(m, mflag, MT_DATA); 6530 if (m) { 6531 m_align(m, l); 6532 m->m_len = l; 6533 m->m_next = NULL; 6534 memset(mtod(m, void *), 0, m->m_len); 6535 } 6536 } 6537 if (!m) 6538 goto fail; 6539 6540 totlen = 0; 6541 for (n = m; n; n = n->m_next) 6542 totlen += n->m_len; 6543 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l); 6544 6545 for (off = 0; off < totlen; off += l) { 6546 n = m_pulldown(m, off, l, &o); 6547 if (!n) { 6548 /* m is already freed */ 6549 goto fail; 6550 } 6551 comb = (struct sadb_comb *)(mtod(n, char *) + o); 6552 memset(comb, 0, sizeof(*comb)); 6553 key_getcomb_setlifetime(comb); 6554 comb->sadb_comb_encrypt = i; 6555 comb->sadb_comb_encrypt_minbits = encmin; 6556 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6557 } 6558 6559 if (!result) 6560 result = m; 6561 else 6562 m_cat(result, m); 6563 } 6564 6565 return result; 6566 6567 fail: 6568 if (result) 6569 m_freem(result); 6570 return NULL; 6571 } 6572 6573 static void 6574 key_getsizes_ah(const struct auth_hash *ah, int alg, 6575 u_int16_t* ksmin, u_int16_t* ksmax) 6576 { 6577 *ksmin = *ksmax = ah->keysize; 6578 if (ah->keysize == 0) { 6579 /* 6580 * Transform takes arbitrary key size but algorithm 6581 * key size is restricted. Enforce this here. 6582 */ 6583 switch (alg) { 6584 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break; 6585 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break; 6586 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break; 6587 default: 6588 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg); 6589 break; 6590 } 6591 } 6592 } 6593 6594 /* 6595 * XXX reorder combinations by preference 6596 */ 6597 static struct mbuf * 6598 key_getcomb_ah(int mflag) 6599 { 6600 struct sadb_comb *comb; 6601 const struct auth_hash *algo; 6602 struct mbuf *m; 6603 u_int16_t minkeysize, maxkeysize; 6604 int i; 6605 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6606 6607 m = NULL; 6608 for (i = 1; i <= SADB_AALG_MAX; i++) { 6609 #if 1 6610 /* we prefer HMAC algorithms, not old algorithms */ 6611 if (i != SADB_AALG_SHA1HMAC && 6612 i != SADB_AALG_MD5HMAC && 6613 i != SADB_X_AALG_SHA2_256 && 6614 i != SADB_X_AALG_SHA2_384 && 6615 i != SADB_X_AALG_SHA2_512) 6616 continue; 6617 #endif 6618 algo = ah_algorithm_lookup(i); 6619 if (!algo) 6620 continue; 6621 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6622 /* discard algorithms with key size smaller than system min */ 6623 if (_BITS(minkeysize) < ipsec_ah_keymin) 6624 continue; 6625 6626 if (!m) { 6627 KASSERTMSG(l <= MLEN, 6628 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6629 MGET(m, mflag, MT_DATA); 6630 if (m) { 6631 m_align(m, l); 6632 m->m_len = l; 6633 m->m_next = NULL; 6634 } 6635 } else 6636 M_PREPEND(m, l, mflag); 6637 if (!m) 6638 return NULL; 6639 6640 if (m->m_len < sizeof(struct sadb_comb)) { 6641 m = m_pullup(m, sizeof(struct sadb_comb)); 6642 if (m == NULL) 6643 return NULL; 6644 } 6645 6646 comb = mtod(m, struct sadb_comb *); 6647 memset(comb, 0, sizeof(*comb)); 6648 key_getcomb_setlifetime(comb); 6649 comb->sadb_comb_auth = i; 6650 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6651 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6652 } 6653 6654 return m; 6655 } 6656 6657 /* 6658 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6659 * XXX reorder combinations by preference 6660 */ 6661 static struct mbuf * 6662 key_getcomb_ipcomp(int mflag) 6663 { 6664 struct sadb_comb *comb; 6665 const struct comp_algo *algo; 6666 struct mbuf *m; 6667 int i; 6668 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6669 6670 m = NULL; 6671 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6672 algo = ipcomp_algorithm_lookup(i); 6673 if (!algo) 6674 continue; 6675 6676 if (!m) { 6677 KASSERTMSG(l <= MLEN, 6678 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6679 MGET(m, mflag, MT_DATA); 6680 if (m) { 6681 m_align(m, l); 6682 m->m_len = l; 6683 m->m_next = NULL; 6684 } 6685 } else 6686 M_PREPEND(m, l, mflag); 6687 if (!m) 6688 return NULL; 6689 6690 if (m->m_len < sizeof(struct sadb_comb)) { 6691 m = m_pullup(m, sizeof(struct sadb_comb)); 6692 if (m == NULL) 6693 return NULL; 6694 } 6695 6696 comb = mtod(m, struct sadb_comb *); 6697 memset(comb, 0, sizeof(*comb)); 6698 key_getcomb_setlifetime(comb); 6699 comb->sadb_comb_encrypt = i; 6700 /* what should we set into sadb_comb_*_{min,max}bits? */ 6701 } 6702 6703 return m; 6704 } 6705 6706 /* 6707 * XXX no way to pass mode (transport/tunnel) to userland 6708 * XXX replay checking? 6709 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6710 */ 6711 static struct mbuf * 6712 key_getprop(const struct secasindex *saidx, int mflag) 6713 { 6714 struct sadb_prop *prop; 6715 struct mbuf *m, *n; 6716 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6717 int totlen; 6718 6719 switch (saidx->proto) { 6720 case IPPROTO_ESP: 6721 m = key_getcomb_esp(mflag); 6722 break; 6723 case IPPROTO_AH: 6724 m = key_getcomb_ah(mflag); 6725 break; 6726 case IPPROTO_IPCOMP: 6727 m = key_getcomb_ipcomp(mflag); 6728 break; 6729 default: 6730 return NULL; 6731 } 6732 6733 if (!m) 6734 return NULL; 6735 M_PREPEND(m, l, mflag); 6736 if (!m) 6737 return NULL; 6738 6739 totlen = 0; 6740 for (n = m; n; n = n->m_next) 6741 totlen += n->m_len; 6742 6743 prop = mtod(m, struct sadb_prop *); 6744 memset(prop, 0, sizeof(*prop)); 6745 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6746 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6747 prop->sadb_prop_replay = 32; /* XXX */ 6748 6749 return m; 6750 } 6751 6752 /* 6753 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire(). 6754 * send 6755 * <base, SA, address(SD), (address(P)), x_policy, 6756 * (identity(SD),) (sensitivity,) proposal> 6757 * to KMD, and expect to receive 6758 * <base> with SADB_ACQUIRE if error occurred, 6759 * or 6760 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6761 * from KMD by PF_KEY. 6762 * 6763 * XXX x_policy is outside of RFC2367 (KAME extension). 6764 * XXX sensitivity is not supported. 6765 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6766 * see comment for key_getcomb_ipcomp(). 6767 * 6768 * OUT: 6769 * 0 : succeed 6770 * others: error number 6771 */ 6772 static int 6773 key_acquire(const struct secasindex *saidx, const struct secpolicy *sp, int mflag) 6774 { 6775 struct mbuf *result = NULL, *m; 6776 #ifndef IPSEC_NONBLOCK_ACQUIRE 6777 struct secacq *newacq; 6778 #endif 6779 u_int8_t satype; 6780 int error = -1; 6781 u_int32_t seq; 6782 6783 /* sanity check */ 6784 KASSERT(saidx != NULL); 6785 satype = key_proto2satype(saidx->proto); 6786 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto); 6787 6788 #ifndef IPSEC_NONBLOCK_ACQUIRE 6789 /* 6790 * We never do anything about acquiring SA. There is another 6791 * solution that kernel blocks to send SADB_ACQUIRE message until 6792 * getting something message from IKEd. In later case, to be 6793 * managed with ACQUIRING list. 6794 */ 6795 /* Get an entry to check whether sending message or not. */ 6796 mutex_enter(&key_misc.lock); 6797 newacq = key_getacq(saidx); 6798 if (newacq != NULL) { 6799 if (key_blockacq_count < newacq->count) { 6800 /* reset counter and do send message. */ 6801 newacq->count = 0; 6802 } else { 6803 /* increment counter and do nothing. */ 6804 newacq->count++; 6805 mutex_exit(&key_misc.lock); 6806 return 0; 6807 } 6808 } else { 6809 /* make new entry for blocking to send SADB_ACQUIRE. */ 6810 newacq = key_newacq(saidx); 6811 if (newacq == NULL) { 6812 mutex_exit(&key_misc.lock); 6813 return ENOBUFS; 6814 } 6815 6816 /* add to key_misc.acqlist */ 6817 LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain); 6818 } 6819 6820 seq = newacq->seq; 6821 mutex_exit(&key_misc.lock); 6822 #else 6823 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 6824 #endif 6825 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0, mflag); 6826 if (!m) { 6827 error = ENOBUFS; 6828 goto fail; 6829 } 6830 result = m; 6831 6832 /* set sadb_address for saidx's. */ 6833 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK, 6834 IPSEC_ULPROTO_ANY, mflag); 6835 if (!m) { 6836 error = ENOBUFS; 6837 goto fail; 6838 } 6839 m_cat(result, m); 6840 6841 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK, 6842 IPSEC_ULPROTO_ANY, mflag); 6843 if (!m) { 6844 error = ENOBUFS; 6845 goto fail; 6846 } 6847 m_cat(result, m); 6848 6849 /* XXX proxy address (optional) */ 6850 6851 /* set sadb_x_policy */ 6852 if (sp) { 6853 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id, 6854 mflag); 6855 if (!m) { 6856 error = ENOBUFS; 6857 goto fail; 6858 } 6859 m_cat(result, m); 6860 } 6861 6862 /* XXX identity (optional) */ 6863 #if 0 6864 if (idexttype && fqdn) { 6865 /* create identity extension (FQDN) */ 6866 struct sadb_ident *id; 6867 int fqdnlen; 6868 6869 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6870 id = (struct sadb_ident *)p; 6871 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6872 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6873 id->sadb_ident_exttype = idexttype; 6874 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6875 memcpy(id + 1, fqdn, fqdnlen); 6876 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6877 } 6878 6879 if (idexttype) { 6880 /* create identity extension (USERFQDN) */ 6881 struct sadb_ident *id; 6882 int userfqdnlen; 6883 6884 if (userfqdn) { 6885 /* +1 for terminating-NUL */ 6886 userfqdnlen = strlen(userfqdn) + 1; 6887 } else 6888 userfqdnlen = 0; 6889 id = (struct sadb_ident *)p; 6890 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6891 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6892 id->sadb_ident_exttype = idexttype; 6893 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6894 /* XXX is it correct? */ 6895 if (curlwp) 6896 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred); 6897 if (userfqdn && userfqdnlen) 6898 memcpy(id + 1, userfqdn, userfqdnlen); 6899 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6900 } 6901 #endif 6902 6903 /* XXX sensitivity (optional) */ 6904 6905 /* create proposal/combination extension */ 6906 m = key_getprop(saidx, mflag); 6907 #if 0 6908 /* 6909 * spec conformant: always attach proposal/combination extension, 6910 * the problem is that we have no way to attach it for ipcomp, 6911 * due to the way sadb_comb is declared in RFC2367. 6912 */ 6913 if (!m) { 6914 error = ENOBUFS; 6915 goto fail; 6916 } 6917 m_cat(result, m); 6918 #else 6919 /* 6920 * outside of spec; make proposal/combination extension optional. 6921 */ 6922 if (m) 6923 m_cat(result, m); 6924 #endif 6925 6926 KASSERT(result->m_flags & M_PKTHDR); 6927 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 6928 6929 result->m_pkthdr.len = 0; 6930 for (m = result; m; m = m->m_next) 6931 result->m_pkthdr.len += m->m_len; 6932 6933 mtod(result, struct sadb_msg *)->sadb_msg_len = 6934 PFKEY_UNIT64(result->m_pkthdr.len); 6935 6936 /* 6937 * Called from key_api_acquire that must come from userland, so 6938 * we can call key_sendup_mbuf immediately. 6939 */ 6940 if (mflag == M_WAITOK) 6941 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6942 /* 6943 * XXX we cannot call key_sendup_mbuf directly here because 6944 * it can cause a deadlock: 6945 * - We have a reference to an SP (and an SA) here 6946 * - key_sendup_mbuf will try to take key_so_mtx 6947 * - Some other thread may try to localcount_drain to the SP with 6948 * holding key_so_mtx in say key_api_spdflush 6949 * - In this case localcount_drain never return because key_sendup_mbuf 6950 * that has stuck on key_so_mtx never release a reference to the SP 6951 * 6952 * So defer key_sendup_mbuf to the timer. 6953 */ 6954 return key_acquire_sendup_mbuf_later(result); 6955 6956 fail: 6957 if (result) 6958 m_freem(result); 6959 return error; 6960 } 6961 6962 static struct mbuf *key_acquire_mbuf_head = NULL; 6963 static unsigned key_acquire_mbuf_count = 0; 6964 #define KEY_ACQUIRE_MBUF_MAX 10 6965 6966 static void 6967 key_acquire_sendup_pending_mbuf(void) 6968 { 6969 struct mbuf *m, *prev; 6970 int error; 6971 6972 again: 6973 prev = NULL; 6974 mutex_enter(&key_misc.lock); 6975 m = key_acquire_mbuf_head; 6976 /* Get an earliest mbuf (one at the tail of the list) */ 6977 while (m != NULL) { 6978 if (m->m_nextpkt == NULL) { 6979 if (prev != NULL) 6980 prev->m_nextpkt = NULL; 6981 if (m == key_acquire_mbuf_head) 6982 key_acquire_mbuf_head = NULL; 6983 key_acquire_mbuf_count--; 6984 break; 6985 } 6986 prev = m; 6987 m = m->m_nextpkt; 6988 } 6989 mutex_exit(&key_misc.lock); 6990 6991 if (m == NULL) 6992 return; 6993 6994 m->m_nextpkt = NULL; 6995 error = key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 6996 if (error != 0) 6997 IPSECLOG(LOG_WARNING, "key_sendup_mbuf failed (error=%d)\n", 6998 error); 6999 7000 if (prev != NULL) 7001 goto again; 7002 } 7003 7004 static int 7005 key_acquire_sendup_mbuf_later(struct mbuf *m) 7006 { 7007 7008 mutex_enter(&key_misc.lock); 7009 /* Avoid queuing too much mbufs */ 7010 if (key_acquire_mbuf_count >= KEY_ACQUIRE_MBUF_MAX) { 7011 mutex_exit(&key_misc.lock); 7012 m_freem(m); 7013 return ENOBUFS; /* XXX */ 7014 } 7015 /* Enqueue mbuf at the head of the list */ 7016 m->m_nextpkt = key_acquire_mbuf_head; 7017 key_acquire_mbuf_head = m; 7018 key_acquire_mbuf_count++; 7019 mutex_exit(&key_misc.lock); 7020 7021 /* Kick the timer */ 7022 key_timehandler(NULL); 7023 7024 return 0; 7025 } 7026 7027 #ifndef IPSEC_NONBLOCK_ACQUIRE 7028 static struct secacq * 7029 key_newacq(const struct secasindex *saidx) 7030 { 7031 struct secacq *newacq; 7032 7033 /* get new entry */ 7034 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP); 7035 if (newacq == NULL) { 7036 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 7037 return NULL; 7038 } 7039 7040 /* copy secindex */ 7041 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx)); 7042 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); 7043 newacq->created = time_uptime; 7044 newacq->count = 0; 7045 7046 return newacq; 7047 } 7048 7049 static struct secacq * 7050 key_getacq(const struct secasindex *saidx) 7051 { 7052 struct secacq *acq; 7053 7054 KASSERT(mutex_owned(&key_misc.lock)); 7055 7056 LIST_FOREACH(acq, &key_misc.acqlist, chain) { 7057 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY)) 7058 return acq; 7059 } 7060 7061 return NULL; 7062 } 7063 7064 static struct secacq * 7065 key_getacqbyseq(u_int32_t seq) 7066 { 7067 struct secacq *acq; 7068 7069 KASSERT(mutex_owned(&key_misc.lock)); 7070 7071 LIST_FOREACH(acq, &key_misc.acqlist, chain) { 7072 if (acq->seq == seq) 7073 return acq; 7074 } 7075 7076 return NULL; 7077 } 7078 #endif 7079 7080 #ifdef notyet 7081 static struct secspacq * 7082 key_newspacq(const struct secpolicyindex *spidx) 7083 { 7084 struct secspacq *acq; 7085 7086 /* get new entry */ 7087 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP); 7088 if (acq == NULL) { 7089 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 7090 return NULL; 7091 } 7092 7093 /* copy secindex */ 7094 memcpy(&acq->spidx, spidx, sizeof(acq->spidx)); 7095 acq->created = time_uptime; 7096 acq->count = 0; 7097 7098 return acq; 7099 } 7100 7101 static struct secspacq * 7102 key_getspacq(const struct secpolicyindex *spidx) 7103 { 7104 struct secspacq *acq; 7105 7106 LIST_FOREACH(acq, &key_misc.spacqlist, chain) { 7107 if (key_spidx_match_exactly(spidx, &acq->spidx)) 7108 return acq; 7109 } 7110 7111 return NULL; 7112 } 7113 #endif /* notyet */ 7114 7115 /* 7116 * SADB_ACQUIRE processing, 7117 * in first situation, is receiving 7118 * <base> 7119 * from the ikmpd, and clear sequence of its secasvar entry. 7120 * 7121 * In second situation, is receiving 7122 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 7123 * from a user land process, and return 7124 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 7125 * to the socket. 7126 * 7127 * m will always be freed. 7128 */ 7129 static int 7130 key_api_acquire(struct socket *so, struct mbuf *m, 7131 const struct sadb_msghdr *mhp) 7132 { 7133 const struct sockaddr *src, *dst; 7134 struct secasindex saidx; 7135 u_int16_t proto; 7136 int error; 7137 7138 /* 7139 * Error message from KMd. 7140 * We assume that if error was occurred in IKEd, the length of PFKEY 7141 * message is equal to the size of sadb_msg structure. 7142 * We do not raise error even if error occurred in this function. 7143 */ 7144 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 7145 #ifndef IPSEC_NONBLOCK_ACQUIRE 7146 struct secacq *acq; 7147 7148 /* check sequence number */ 7149 if (mhp->msg->sadb_msg_seq == 0) { 7150 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n"); 7151 m_freem(m); 7152 return 0; 7153 } 7154 7155 mutex_enter(&key_misc.lock); 7156 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); 7157 if (acq == NULL) { 7158 mutex_exit(&key_misc.lock); 7159 /* 7160 * the specified larval SA is already gone, or we got 7161 * a bogus sequence number. we can silently ignore it. 7162 */ 7163 m_freem(m); 7164 return 0; 7165 } 7166 7167 /* reset acq counter in order to deletion by timehander. */ 7168 acq->created = time_uptime; 7169 acq->count = 0; 7170 mutex_exit(&key_misc.lock); 7171 #endif 7172 m_freem(m); 7173 return 0; 7174 } 7175 7176 /* 7177 * This message is from user land. 7178 */ 7179 7180 /* map satype to proto */ 7181 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 7182 if (proto == 0) { 7183 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7184 return key_senderror(so, m, EINVAL); 7185 } 7186 7187 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 7188 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 7189 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 7190 /* error */ 7191 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 7192 return key_senderror(so, m, EINVAL); 7193 } 7194 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 7195 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 7196 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 7197 /* error */ 7198 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 7199 return key_senderror(so, m, EINVAL); 7200 } 7201 7202 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 7203 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 7204 7205 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 7206 if (error != 0) 7207 return key_senderror(so, m, EINVAL); 7208 7209 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 7210 if (error != 0) 7211 return key_senderror(so, m, EINVAL); 7212 7213 /* get a SA index */ 7214 { 7215 struct secashead *sah; 7216 int s = pserialize_read_enter(); 7217 7218 sah = key_getsah(&saidx, CMP_MODE_REQID); 7219 if (sah != NULL) { 7220 pserialize_read_exit(s); 7221 IPSECLOG(LOG_DEBUG, "a SA exists already.\n"); 7222 return key_senderror(so, m, EEXIST); 7223 } 7224 pserialize_read_exit(s); 7225 } 7226 7227 error = key_acquire(&saidx, NULL, M_WAITOK); 7228 if (error != 0) { 7229 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", 7230 error); 7231 return key_senderror(so, m, error); 7232 } 7233 7234 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 7235 } 7236 7237 /* 7238 * SADB_REGISTER processing. 7239 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 7240 * receive 7241 * <base> 7242 * from the ikmpd, and register a socket to send PF_KEY messages, 7243 * and send 7244 * <base, supported> 7245 * to KMD by PF_KEY. 7246 * If socket is detached, must free from regnode. 7247 * 7248 * m will always be freed. 7249 */ 7250 static int 7251 key_api_register(struct socket *so, struct mbuf *m, 7252 const struct sadb_msghdr *mhp) 7253 { 7254 struct secreg *reg, *newreg = 0; 7255 7256 /* check for invalid register message */ 7257 if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist)) 7258 return key_senderror(so, m, EINVAL); 7259 7260 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 7261 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 7262 goto setmsg; 7263 7264 /* Allocate regnode in advance, out of mutex */ 7265 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP); 7266 7267 /* check whether existing or not */ 7268 mutex_enter(&key_misc.lock); 7269 LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) { 7270 if (reg->so == so) { 7271 IPSECLOG(LOG_DEBUG, "socket exists already.\n"); 7272 mutex_exit(&key_misc.lock); 7273 kmem_free(newreg, sizeof(*newreg)); 7274 return key_senderror(so, m, EEXIST); 7275 } 7276 } 7277 7278 newreg->so = so; 7279 ((struct keycb *)sotorawcb(so))->kp_registered++; 7280 7281 /* add regnode to key_misc.reglist. */ 7282 LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain); 7283 mutex_exit(&key_misc.lock); 7284 7285 setmsg: 7286 { 7287 struct mbuf *n; 7288 struct sadb_supported *sup; 7289 u_int len, alen, elen; 7290 int off; 7291 int i; 7292 struct sadb_alg *alg; 7293 7294 /* create new sadb_msg to reply. */ 7295 alen = 0; 7296 for (i = 1; i <= SADB_AALG_MAX; i++) { 7297 if (ah_algorithm_lookup(i)) 7298 alen += sizeof(struct sadb_alg); 7299 } 7300 if (alen) 7301 alen += sizeof(struct sadb_supported); 7302 elen = 0; 7303 for (i = 1; i <= SADB_EALG_MAX; i++) { 7304 if (esp_algorithm_lookup(i)) 7305 elen += sizeof(struct sadb_alg); 7306 } 7307 if (elen) 7308 elen += sizeof(struct sadb_supported); 7309 7310 len = sizeof(struct sadb_msg) + alen + elen; 7311 7312 if (len > MCLBYTES) 7313 return key_senderror(so, m, ENOBUFS); 7314 7315 n = key_alloc_mbuf_simple(len, M_WAITOK); 7316 n->m_pkthdr.len = n->m_len = len; 7317 n->m_next = NULL; 7318 off = 0; 7319 7320 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 7321 key_fill_replymsg(n, 0); 7322 7323 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 7324 7325 /* for authentication algorithm */ 7326 if (alen) { 7327 sup = (struct sadb_supported *)(mtod(n, char *) + off); 7328 sup->sadb_supported_len = PFKEY_UNIT64(alen); 7329 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 7330 sup->sadb_supported_reserved = 0; 7331 off += PFKEY_ALIGN8(sizeof(*sup)); 7332 7333 for (i = 1; i <= SADB_AALG_MAX; i++) { 7334 const struct auth_hash *aalgo; 7335 u_int16_t minkeysize, maxkeysize; 7336 7337 aalgo = ah_algorithm_lookup(i); 7338 if (!aalgo) 7339 continue; 7340 alg = (struct sadb_alg *)(mtod(n, char *) + off); 7341 alg->sadb_alg_id = i; 7342 alg->sadb_alg_ivlen = 0; 7343 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 7344 alg->sadb_alg_minbits = _BITS(minkeysize); 7345 alg->sadb_alg_maxbits = _BITS(maxkeysize); 7346 alg->sadb_alg_reserved = 0; 7347 off += PFKEY_ALIGN8(sizeof(*alg)); 7348 } 7349 } 7350 7351 /* for encryption algorithm */ 7352 if (elen) { 7353 sup = (struct sadb_supported *)(mtod(n, char *) + off); 7354 sup->sadb_supported_len = PFKEY_UNIT64(elen); 7355 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 7356 sup->sadb_supported_reserved = 0; 7357 off += PFKEY_ALIGN8(sizeof(*sup)); 7358 7359 for (i = 1; i <= SADB_EALG_MAX; i++) { 7360 const struct enc_xform *ealgo; 7361 7362 ealgo = esp_algorithm_lookup(i); 7363 if (!ealgo) 7364 continue; 7365 alg = (struct sadb_alg *)(mtod(n, char *) + off); 7366 alg->sadb_alg_id = i; 7367 alg->sadb_alg_ivlen = ealgo->blocksize; 7368 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 7369 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 7370 alg->sadb_alg_reserved = 0; 7371 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 7372 } 7373 } 7374 7375 KASSERTMSG(off == len, "length inconsistency"); 7376 7377 m_freem(m); 7378 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 7379 } 7380 } 7381 7382 /* 7383 * free secreg entry registered. 7384 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 7385 */ 7386 void 7387 key_freereg(struct socket *so) 7388 { 7389 struct secreg *reg; 7390 int i; 7391 7392 KASSERT(!cpu_softintr_p()); 7393 KASSERT(so != NULL); 7394 7395 /* 7396 * check whether existing or not. 7397 * check all type of SA, because there is a potential that 7398 * one socket is registered to multiple type of SA. 7399 */ 7400 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7401 mutex_enter(&key_misc.lock); 7402 LIST_FOREACH(reg, &key_misc.reglist[i], chain) { 7403 if (reg->so == so) { 7404 LIST_REMOVE(reg, chain); 7405 break; 7406 } 7407 } 7408 mutex_exit(&key_misc.lock); 7409 if (reg != NULL) 7410 kmem_free(reg, sizeof(*reg)); 7411 } 7412 7413 return; 7414 } 7415 7416 /* 7417 * SADB_EXPIRE processing 7418 * send 7419 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 7420 * to KMD by PF_KEY. 7421 * NOTE: We send only soft lifetime extension. 7422 * 7423 * OUT: 0 : succeed 7424 * others : error number 7425 */ 7426 static int 7427 key_expire(struct secasvar *sav) 7428 { 7429 int s; 7430 int satype; 7431 struct mbuf *result = NULL, *m; 7432 int len; 7433 int error = -1; 7434 struct sadb_lifetime *lt; 7435 lifetime_counters_t sum = {0}; 7436 7437 /* XXX: Why do we lock ? */ 7438 s = splsoftnet(); /*called from softclock()*/ 7439 7440 KASSERT(sav != NULL); 7441 7442 satype = key_proto2satype(sav->sah->saidx.proto); 7443 KASSERTMSG(satype != 0, "invalid proto is passed"); 7444 7445 /* set msg header */ 7446 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav), 7447 M_WAITOK); 7448 result = m; 7449 7450 /* create SA extension */ 7451 m = key_setsadbsa(sav); 7452 m_cat(result, m); 7453 7454 /* create SA extension */ 7455 m = key_setsadbxsa2(sav->sah->saidx.mode, 7456 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid); 7457 m_cat(result, m); 7458 7459 /* create lifetime extension (current and soft) */ 7460 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 7461 m = key_alloc_mbuf(len, M_WAITOK); 7462 KASSERT(m->m_next == NULL); 7463 7464 memset(mtod(m, void *), 0, len); 7465 lt = mtod(m, struct sadb_lifetime *); 7466 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7467 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 7468 percpu_foreach_xcall(sav->lft_c_counters_percpu, 7469 XC_HIGHPRI_IPL(IPL_SOFTNET), key_sum_lifetime_counters, sum); 7470 lt->sadb_lifetime_allocations = sum[LIFETIME_COUNTER_ALLOCATIONS]; 7471 lt->sadb_lifetime_bytes = sum[LIFETIME_COUNTER_BYTES]; 7472 lt->sadb_lifetime_addtime = 7473 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime); 7474 lt->sadb_lifetime_usetime = 7475 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime); 7476 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 7477 memcpy(lt, sav->lft_s, sizeof(*lt)); 7478 m_cat(result, m); 7479 7480 /* set sadb_address for source */ 7481 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, 7482 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 7483 m_cat(result, m); 7484 7485 /* set sadb_address for destination */ 7486 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa, 7487 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 7488 m_cat(result, m); 7489 7490 if ((result->m_flags & M_PKTHDR) == 0) { 7491 error = EINVAL; 7492 goto fail; 7493 } 7494 7495 if (result->m_len < sizeof(struct sadb_msg)) { 7496 result = m_pullup(result, sizeof(struct sadb_msg)); 7497 if (result == NULL) { 7498 error = ENOBUFS; 7499 goto fail; 7500 } 7501 } 7502 7503 result->m_pkthdr.len = 0; 7504 for (m = result; m; m = m->m_next) 7505 result->m_pkthdr.len += m->m_len; 7506 7507 mtod(result, struct sadb_msg *)->sadb_msg_len = 7508 PFKEY_UNIT64(result->m_pkthdr.len); 7509 7510 splx(s); 7511 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7512 7513 fail: 7514 if (result) 7515 m_freem(result); 7516 splx(s); 7517 return error; 7518 } 7519 7520 /* 7521 * SADB_FLUSH processing 7522 * receive 7523 * <base> 7524 * from the ikmpd, and free all entries in secastree. 7525 * and send, 7526 * <base> 7527 * to the ikmpd. 7528 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7529 * 7530 * m will always be freed. 7531 */ 7532 static int 7533 key_api_flush(struct socket *so, struct mbuf *m, 7534 const struct sadb_msghdr *mhp) 7535 { 7536 struct sadb_msg *newmsg; 7537 struct secashead *sah; 7538 struct secasvar *sav; 7539 u_int16_t proto; 7540 u_int8_t state; 7541 int s; 7542 7543 /* map satype to proto */ 7544 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 7545 if (proto == 0) { 7546 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7547 return key_senderror(so, m, EINVAL); 7548 } 7549 7550 /* no SATYPE specified, i.e. flushing all SA. */ 7551 s = pserialize_read_enter(); 7552 SAHLIST_READER_FOREACH(sah) { 7553 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && 7554 proto != sah->saidx.proto) 7555 continue; 7556 7557 key_sah_ref(sah); 7558 pserialize_read_exit(s); 7559 7560 SASTATE_ALIVE_FOREACH(state) { 7561 restart: 7562 mutex_enter(&key_sad.lock); 7563 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7564 sav->state = SADB_SASTATE_DEAD; 7565 key_unlink_sav(sav); 7566 mutex_exit(&key_sad.lock); 7567 key_destroy_sav(sav); 7568 goto restart; 7569 } 7570 mutex_exit(&key_sad.lock); 7571 } 7572 7573 s = pserialize_read_enter(); 7574 sah->state = SADB_SASTATE_DEAD; 7575 key_sah_unref(sah); 7576 } 7577 pserialize_read_exit(s); 7578 7579 if (m->m_len < sizeof(struct sadb_msg) || 7580 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7581 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 7582 return key_senderror(so, m, ENOBUFS); 7583 } 7584 7585 if (m->m_next) 7586 m_freem(m->m_next); 7587 m->m_next = NULL; 7588 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7589 newmsg = mtod(m, struct sadb_msg *); 7590 newmsg->sadb_msg_errno = 0; 7591 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7592 7593 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7594 } 7595 7596 7597 static struct mbuf * 7598 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid) 7599 { 7600 struct secashead *sah; 7601 struct secasvar *sav; 7602 u_int16_t proto; 7603 u_int8_t satype; 7604 u_int8_t state; 7605 int cnt; 7606 struct mbuf *m, *n, *prev; 7607 7608 KASSERT(mutex_owned(&key_sad.lock)); 7609 7610 *lenp = 0; 7611 7612 /* map satype to proto */ 7613 proto = key_satype2proto(req_satype); 7614 if (proto == 0) { 7615 *errorp = EINVAL; 7616 return (NULL); 7617 } 7618 7619 /* count sav entries to be sent to userland. */ 7620 cnt = 0; 7621 SAHLIST_WRITER_FOREACH(sah) { 7622 if (req_satype != SADB_SATYPE_UNSPEC && 7623 proto != sah->saidx.proto) 7624 continue; 7625 7626 SASTATE_ANY_FOREACH(state) { 7627 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7628 cnt++; 7629 } 7630 } 7631 } 7632 7633 if (cnt == 0) { 7634 *errorp = ENOENT; 7635 return (NULL); 7636 } 7637 7638 /* send this to the userland, one at a time. */ 7639 m = NULL; 7640 prev = m; 7641 SAHLIST_WRITER_FOREACH(sah) { 7642 if (req_satype != SADB_SATYPE_UNSPEC && 7643 proto != sah->saidx.proto) 7644 continue; 7645 7646 /* map proto to satype */ 7647 satype = key_proto2satype(sah->saidx.proto); 7648 if (satype == 0) { 7649 m_freem(m); 7650 *errorp = EINVAL; 7651 return (NULL); 7652 } 7653 7654 SASTATE_ANY_FOREACH(state) { 7655 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7656 n = key_setdumpsa(sav, SADB_DUMP, satype, 7657 --cnt, pid); 7658 if (!m) 7659 m = n; 7660 else 7661 prev->m_nextpkt = n; 7662 prev = n; 7663 } 7664 } 7665 } 7666 7667 if (!m) { 7668 *errorp = EINVAL; 7669 return (NULL); 7670 } 7671 7672 if ((m->m_flags & M_PKTHDR) != 0) { 7673 m->m_pkthdr.len = 0; 7674 for (n = m; n; n = n->m_next) 7675 m->m_pkthdr.len += n->m_len; 7676 } 7677 7678 *errorp = 0; 7679 return (m); 7680 } 7681 7682 /* 7683 * SADB_DUMP processing 7684 * dump all entries including status of DEAD in SAD. 7685 * receive 7686 * <base> 7687 * from the ikmpd, and dump all secasvar leaves 7688 * and send, 7689 * <base> ..... 7690 * to the ikmpd. 7691 * 7692 * m will always be freed. 7693 */ 7694 static int 7695 key_api_dump(struct socket *so, struct mbuf *m0, 7696 const struct sadb_msghdr *mhp) 7697 { 7698 u_int16_t proto; 7699 u_int8_t satype; 7700 struct mbuf *n; 7701 int error, len, ok; 7702 7703 /* map satype to proto */ 7704 satype = mhp->msg->sadb_msg_satype; 7705 proto = key_satype2proto(satype); 7706 if (proto == 0) { 7707 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7708 return key_senderror(so, m0, EINVAL); 7709 } 7710 7711 /* 7712 * If the requestor has insufficient socket-buffer space 7713 * for the entire chain, nobody gets any response to the DUMP. 7714 * XXX For now, only the requestor ever gets anything. 7715 * Moreover, if the requestor has any space at all, they receive 7716 * the entire chain, otherwise the request is refused with ENOBUFS. 7717 */ 7718 if (sbspace(&so->so_rcv) <= 0) { 7719 return key_senderror(so, m0, ENOBUFS); 7720 } 7721 7722 mutex_enter(&key_sad.lock); 7723 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid); 7724 mutex_exit(&key_sad.lock); 7725 7726 if (n == NULL) { 7727 return key_senderror(so, m0, ENOENT); 7728 } 7729 { 7730 uint64_t *ps = PFKEY_STAT_GETREF(); 7731 ps[PFKEY_STAT_IN_TOTAL]++; 7732 ps[PFKEY_STAT_IN_BYTES] += len; 7733 PFKEY_STAT_PUTREF(); 7734 } 7735 7736 /* 7737 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 7738 * The requestor receives either the entire chain, or an 7739 * error message with ENOBUFS. 7740 * 7741 * sbappendaddrchain() takes the chain of entries, one 7742 * packet-record per SPD entry, prepends the key_src sockaddr 7743 * to each packet-record, links the sockaddr mbufs into a new 7744 * list of records, then appends the entire resulting 7745 * list to the requesting socket. 7746 */ 7747 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, 7748 SB_PRIO_ONESHOT_OVERFLOW); 7749 7750 if (!ok) { 7751 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 7752 m_freem(n); 7753 return key_senderror(so, m0, ENOBUFS); 7754 } 7755 7756 m_freem(m0); 7757 return 0; 7758 } 7759 7760 /* 7761 * SADB_X_PROMISC processing 7762 * 7763 * m will always be freed. 7764 */ 7765 static int 7766 key_api_promisc(struct socket *so, struct mbuf *m, 7767 const struct sadb_msghdr *mhp) 7768 { 7769 int olen; 7770 7771 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7772 7773 if (olen < sizeof(struct sadb_msg)) { 7774 #if 1 7775 return key_senderror(so, m, EINVAL); 7776 #else 7777 m_freem(m); 7778 return 0; 7779 #endif 7780 } else if (olen == sizeof(struct sadb_msg)) { 7781 /* enable/disable promisc mode */ 7782 struct keycb *kp = (struct keycb *)sotorawcb(so); 7783 if (kp == NULL) 7784 return key_senderror(so, m, EINVAL); 7785 mhp->msg->sadb_msg_errno = 0; 7786 switch (mhp->msg->sadb_msg_satype) { 7787 case 0: 7788 case 1: 7789 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7790 break; 7791 default: 7792 return key_senderror(so, m, EINVAL); 7793 } 7794 7795 /* send the original message back to everyone */ 7796 mhp->msg->sadb_msg_errno = 0; 7797 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7798 } else { 7799 /* send packet as is */ 7800 7801 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7802 7803 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7804 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7805 } 7806 } 7807 7808 static int (*key_api_typesw[]) (struct socket *, struct mbuf *, 7809 const struct sadb_msghdr *) = { 7810 NULL, /* SADB_RESERVED */ 7811 key_api_getspi, /* SADB_GETSPI */ 7812 key_api_update, /* SADB_UPDATE */ 7813 key_api_add, /* SADB_ADD */ 7814 key_api_delete, /* SADB_DELETE */ 7815 key_api_get, /* SADB_GET */ 7816 key_api_acquire, /* SADB_ACQUIRE */ 7817 key_api_register, /* SADB_REGISTER */ 7818 NULL, /* SADB_EXPIRE */ 7819 key_api_flush, /* SADB_FLUSH */ 7820 key_api_dump, /* SADB_DUMP */ 7821 key_api_promisc, /* SADB_X_PROMISC */ 7822 NULL, /* SADB_X_PCHANGE */ 7823 key_api_spdadd, /* SADB_X_SPDUPDATE */ 7824 key_api_spdadd, /* SADB_X_SPDADD */ 7825 key_api_spddelete, /* SADB_X_SPDDELETE */ 7826 key_api_spdget, /* SADB_X_SPDGET */ 7827 NULL, /* SADB_X_SPDACQUIRE */ 7828 key_api_spddump, /* SADB_X_SPDDUMP */ 7829 key_api_spdflush, /* SADB_X_SPDFLUSH */ 7830 key_api_spdadd, /* SADB_X_SPDSETIDX */ 7831 NULL, /* SADB_X_SPDEXPIRE */ 7832 key_api_spddelete2, /* SADB_X_SPDDELETE2 */ 7833 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */ 7834 }; 7835 7836 /* 7837 * parse sadb_msg buffer to process PFKEYv2, 7838 * and create a data to response if needed. 7839 * I think to be dealed with mbuf directly. 7840 * IN: 7841 * msgp : pointer to pointer to a received buffer pulluped. 7842 * This is rewrited to response. 7843 * so : pointer to socket. 7844 * OUT: 7845 * length for buffer to send to user process. 7846 */ 7847 int 7848 key_parse(struct mbuf *m, struct socket *so) 7849 { 7850 struct sadb_msg *msg; 7851 struct sadb_msghdr mh; 7852 u_int orglen; 7853 int error; 7854 7855 KASSERT(m != NULL); 7856 KASSERT(so != NULL); 7857 7858 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7859 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) { 7860 kdebug_sadb("passed sadb_msg", msg); 7861 } 7862 #endif 7863 7864 if (m->m_len < sizeof(struct sadb_msg)) { 7865 m = m_pullup(m, sizeof(struct sadb_msg)); 7866 if (!m) 7867 return ENOBUFS; 7868 } 7869 msg = mtod(m, struct sadb_msg *); 7870 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7871 7872 if ((m->m_flags & M_PKTHDR) == 0 || 7873 m->m_pkthdr.len != orglen) { 7874 IPSECLOG(LOG_DEBUG, "invalid message length.\n"); 7875 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7876 error = EINVAL; 7877 goto senderror; 7878 } 7879 7880 if (msg->sadb_msg_version != PF_KEY_V2) { 7881 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n", 7882 msg->sadb_msg_version); 7883 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER); 7884 error = EINVAL; 7885 goto senderror; 7886 } 7887 7888 if (msg->sadb_msg_type > SADB_MAX) { 7889 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", 7890 msg->sadb_msg_type); 7891 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 7892 error = EINVAL; 7893 goto senderror; 7894 } 7895 7896 /* for old-fashioned code - should be nuked */ 7897 if (m->m_pkthdr.len > MCLBYTES) { 7898 m_freem(m); 7899 return ENOBUFS; 7900 } 7901 if (m->m_next) { 7902 struct mbuf *n; 7903 7904 n = key_alloc_mbuf_simple(m->m_pkthdr.len, M_WAITOK); 7905 7906 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *)); 7907 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7908 n->m_next = NULL; 7909 m_freem(m); 7910 m = n; 7911 } 7912 7913 /* align the mbuf chain so that extensions are in contiguous region. */ 7914 error = key_align(m, &mh); 7915 if (error) 7916 return error; 7917 7918 if (m->m_next) { /*XXX*/ 7919 m_freem(m); 7920 return ENOBUFS; 7921 } 7922 7923 msg = mh.msg; 7924 7925 /* check SA type */ 7926 switch (msg->sadb_msg_satype) { 7927 case SADB_SATYPE_UNSPEC: 7928 switch (msg->sadb_msg_type) { 7929 case SADB_GETSPI: 7930 case SADB_UPDATE: 7931 case SADB_ADD: 7932 case SADB_DELETE: 7933 case SADB_GET: 7934 case SADB_ACQUIRE: 7935 case SADB_EXPIRE: 7936 IPSECLOG(LOG_DEBUG, 7937 "must specify satype when msg type=%u.\n", 7938 msg->sadb_msg_type); 7939 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7940 error = EINVAL; 7941 goto senderror; 7942 } 7943 break; 7944 case SADB_SATYPE_AH: 7945 case SADB_SATYPE_ESP: 7946 case SADB_X_SATYPE_IPCOMP: 7947 case SADB_X_SATYPE_TCPSIGNATURE: 7948 switch (msg->sadb_msg_type) { 7949 case SADB_X_SPDADD: 7950 case SADB_X_SPDDELETE: 7951 case SADB_X_SPDGET: 7952 case SADB_X_SPDDUMP: 7953 case SADB_X_SPDFLUSH: 7954 case SADB_X_SPDSETIDX: 7955 case SADB_X_SPDUPDATE: 7956 case SADB_X_SPDDELETE2: 7957 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n", 7958 msg->sadb_msg_type); 7959 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7960 error = EINVAL; 7961 goto senderror; 7962 } 7963 break; 7964 case SADB_SATYPE_RSVP: 7965 case SADB_SATYPE_OSPFV2: 7966 case SADB_SATYPE_RIPV2: 7967 case SADB_SATYPE_MIP: 7968 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n", 7969 msg->sadb_msg_satype); 7970 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7971 error = EOPNOTSUPP; 7972 goto senderror; 7973 case 1: /* XXX: What does it do? */ 7974 if (msg->sadb_msg_type == SADB_X_PROMISC) 7975 break; 7976 /*FALLTHROUGH*/ 7977 default: 7978 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", 7979 msg->sadb_msg_satype); 7980 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7981 error = EINVAL; 7982 goto senderror; 7983 } 7984 7985 /* check field of upper layer protocol and address family */ 7986 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL && 7987 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7988 const struct sadb_address *src0, *dst0; 7989 const struct sockaddr *sa0, *da0; 7990 u_int plen; 7991 7992 src0 = mh.ext[SADB_EXT_ADDRESS_SRC]; 7993 dst0 = mh.ext[SADB_EXT_ADDRESS_DST]; 7994 sa0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_SRC); 7995 da0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_DST); 7996 7997 /* check upper layer protocol */ 7998 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7999 IPSECLOG(LOG_DEBUG, 8000 "upper layer protocol mismatched src %u, dst %u.\n", 8001 src0->sadb_address_proto, dst0->sadb_address_proto); 8002 8003 goto invaddr; 8004 } 8005 8006 /* check family */ 8007 if (sa0->sa_family != da0->sa_family) { 8008 IPSECLOG(LOG_DEBUG, 8009 "address family mismatched src %u, dst %u.\n", 8010 sa0->sa_family, da0->sa_family); 8011 goto invaddr; 8012 } 8013 if (sa0->sa_len != da0->sa_len) { 8014 IPSECLOG(LOG_DEBUG, 8015 "address size mismatched src %u, dst %u.\n", 8016 sa0->sa_len, da0->sa_len); 8017 goto invaddr; 8018 } 8019 8020 switch (sa0->sa_family) { 8021 case AF_INET: 8022 if (sa0->sa_len != sizeof(struct sockaddr_in)) { 8023 IPSECLOG(LOG_DEBUG, 8024 "address size mismatched %u != %zu.\n", 8025 sa0->sa_len, sizeof(struct sockaddr_in)); 8026 goto invaddr; 8027 } 8028 break; 8029 case AF_INET6: 8030 if (sa0->sa_len != sizeof(struct sockaddr_in6)) { 8031 IPSECLOG(LOG_DEBUG, 8032 "address size mismatched %u != %zu.\n", 8033 sa0->sa_len, sizeof(struct sockaddr_in6)); 8034 goto invaddr; 8035 } 8036 break; 8037 default: 8038 IPSECLOG(LOG_DEBUG, "unsupported address family %u.\n", 8039 sa0->sa_family); 8040 error = EAFNOSUPPORT; 8041 goto senderror; 8042 } 8043 plen = key_sabits(sa0); 8044 8045 /* check max prefix length */ 8046 if (src0->sadb_address_prefixlen > plen || 8047 dst0->sadb_address_prefixlen > plen) { 8048 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n"); 8049 goto invaddr; 8050 } 8051 8052 /* 8053 * prefixlen == 0 is valid because there can be a case when 8054 * all addresses are matched. 8055 */ 8056 } 8057 8058 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) || 8059 key_api_typesw[msg->sadb_msg_type] == NULL) { 8060 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 8061 error = EINVAL; 8062 goto senderror; 8063 } 8064 8065 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh); 8066 8067 invaddr: 8068 error = EINVAL; 8069 senderror: 8070 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 8071 return key_senderror(so, m, error); 8072 } 8073 8074 static int 8075 key_senderror(struct socket *so, struct mbuf *m, int code) 8076 { 8077 struct sadb_msg *msg; 8078 8079 KASSERT(m->m_len >= sizeof(struct sadb_msg)); 8080 8081 if (so == NULL) { 8082 /* 8083 * This means the request comes from kernel. 8084 * As the request comes from kernel, it is unnecessary to 8085 * send message to userland. Just return errcode directly. 8086 */ 8087 m_freem(m); 8088 return code; 8089 } 8090 8091 msg = mtod(m, struct sadb_msg *); 8092 msg->sadb_msg_errno = code; 8093 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 8094 } 8095 8096 /* 8097 * set the pointer to each header into message buffer. 8098 * m will be freed on error. 8099 * XXX larger-than-MCLBYTES extension? 8100 */ 8101 static int 8102 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 8103 { 8104 struct mbuf *n; 8105 struct sadb_ext *ext; 8106 size_t off, end; 8107 int extlen; 8108 int toff; 8109 8110 KASSERT(m != NULL); 8111 KASSERT(mhp != NULL); 8112 KASSERT(m->m_len >= sizeof(struct sadb_msg)); 8113 8114 /* initialize */ 8115 memset(mhp, 0, sizeof(*mhp)); 8116 8117 mhp->msg = mtod(m, struct sadb_msg *); 8118 mhp->ext[0] = mhp->msg; /*XXX backward compat */ 8119 8120 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 8121 extlen = end; /*just in case extlen is not updated*/ 8122 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 8123 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 8124 if (!n) { 8125 /* m is already freed */ 8126 return ENOBUFS; 8127 } 8128 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 8129 8130 /* set pointer */ 8131 switch (ext->sadb_ext_type) { 8132 case SADB_EXT_SA: 8133 case SADB_EXT_ADDRESS_SRC: 8134 case SADB_EXT_ADDRESS_DST: 8135 case SADB_EXT_ADDRESS_PROXY: 8136 case SADB_EXT_LIFETIME_CURRENT: 8137 case SADB_EXT_LIFETIME_HARD: 8138 case SADB_EXT_LIFETIME_SOFT: 8139 case SADB_EXT_KEY_AUTH: 8140 case SADB_EXT_KEY_ENCRYPT: 8141 case SADB_EXT_IDENTITY_SRC: 8142 case SADB_EXT_IDENTITY_DST: 8143 case SADB_EXT_SENSITIVITY: 8144 case SADB_EXT_PROPOSAL: 8145 case SADB_EXT_SUPPORTED_AUTH: 8146 case SADB_EXT_SUPPORTED_ENCRYPT: 8147 case SADB_EXT_SPIRANGE: 8148 case SADB_X_EXT_POLICY: 8149 case SADB_X_EXT_SA2: 8150 case SADB_X_EXT_NAT_T_TYPE: 8151 case SADB_X_EXT_NAT_T_SPORT: 8152 case SADB_X_EXT_NAT_T_DPORT: 8153 case SADB_X_EXT_NAT_T_OAI: 8154 case SADB_X_EXT_NAT_T_OAR: 8155 case SADB_X_EXT_NAT_T_FRAG: 8156 /* duplicate check */ 8157 /* 8158 * XXX Are there duplication payloads of either 8159 * KEY_AUTH or KEY_ENCRYPT ? 8160 */ 8161 if (mhp->ext[ext->sadb_ext_type] != NULL) { 8162 IPSECLOG(LOG_DEBUG, 8163 "duplicate ext_type %u is passed.\n", 8164 ext->sadb_ext_type); 8165 m_freem(m); 8166 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT); 8167 return EINVAL; 8168 } 8169 break; 8170 default: 8171 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n", 8172 ext->sadb_ext_type); 8173 m_freem(m); 8174 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE); 8175 return EINVAL; 8176 } 8177 8178 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 8179 8180 if (key_validate_ext(ext, extlen)) { 8181 m_freem(m); 8182 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 8183 return EINVAL; 8184 } 8185 8186 n = m_pulldown(m, off, extlen, &toff); 8187 if (!n) { 8188 /* m is already freed */ 8189 return ENOBUFS; 8190 } 8191 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 8192 8193 mhp->ext[ext->sadb_ext_type] = ext; 8194 mhp->extoff[ext->sadb_ext_type] = off; 8195 mhp->extlen[ext->sadb_ext_type] = extlen; 8196 } 8197 8198 if (off != end) { 8199 m_freem(m); 8200 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 8201 return EINVAL; 8202 } 8203 8204 return 0; 8205 } 8206 8207 static int 8208 key_validate_ext(const struct sadb_ext *ext, int len) 8209 { 8210 const struct sockaddr *sa; 8211 enum { NONE, ADDR } checktype = NONE; 8212 int baselen = 0; 8213 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 8214 8215 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 8216 return EINVAL; 8217 8218 /* if it does not match minimum/maximum length, bail */ 8219 if (ext->sadb_ext_type >= __arraycount(minsize) || 8220 ext->sadb_ext_type >= __arraycount(maxsize)) 8221 return EINVAL; 8222 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 8223 return EINVAL; 8224 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 8225 return EINVAL; 8226 8227 /* more checks based on sadb_ext_type XXX need more */ 8228 switch (ext->sadb_ext_type) { 8229 case SADB_EXT_ADDRESS_SRC: 8230 case SADB_EXT_ADDRESS_DST: 8231 case SADB_EXT_ADDRESS_PROXY: 8232 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 8233 checktype = ADDR; 8234 break; 8235 case SADB_EXT_IDENTITY_SRC: 8236 case SADB_EXT_IDENTITY_DST: 8237 if (((const struct sadb_ident *)ext)->sadb_ident_type == 8238 SADB_X_IDENTTYPE_ADDR) { 8239 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 8240 checktype = ADDR; 8241 } else 8242 checktype = NONE; 8243 break; 8244 default: 8245 checktype = NONE; 8246 break; 8247 } 8248 8249 switch (checktype) { 8250 case NONE: 8251 break; 8252 case ADDR: 8253 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 8254 if (len < baselen + sal) 8255 return EINVAL; 8256 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 8257 return EINVAL; 8258 break; 8259 } 8260 8261 return 0; 8262 } 8263 8264 static int 8265 key_do_init(void) 8266 { 8267 int i, error; 8268 8269 mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE); 8270 8271 mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE); 8272 cv_init(&key_spd.cv_lc, "key_sp_lc"); 8273 key_spd.psz = pserialize_create(); 8274 cv_init(&key_spd.cv_psz, "key_sp_psz"); 8275 key_spd.psz_performing = false; 8276 8277 mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE); 8278 cv_init(&key_sad.cv_lc, "key_sa_lc"); 8279 key_sad.psz = pserialize_create(); 8280 cv_init(&key_sad.cv_psz, "key_sa_psz"); 8281 key_sad.psz_performing = false; 8282 8283 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS); 8284 8285 callout_init(&key_timehandler_ch, CALLOUT_MPSAFE); 8286 error = workqueue_create(&key_timehandler_wq, "key_timehandler", 8287 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE); 8288 if (error != 0) 8289 panic("%s: workqueue_create failed (%d)\n", __func__, error); 8290 8291 for (i = 0; i < IPSEC_DIR_MAX; i++) { 8292 PSLIST_INIT(&key_spd.splist[i]); 8293 } 8294 8295 PSLIST_INIT(&key_spd.socksplist); 8296 8297 key_sad.sahlists = hashinit(SAHHASH_NHASH, HASH_PSLIST, true, 8298 &key_sad.sahlistmask); 8299 key_sad.savlut = hashinit(SAVLUT_NHASH, HASH_PSLIST, true, 8300 &key_sad.savlutmask); 8301 8302 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 8303 LIST_INIT(&key_misc.reglist[i]); 8304 } 8305 8306 #ifndef IPSEC_NONBLOCK_ACQUIRE 8307 LIST_INIT(&key_misc.acqlist); 8308 #endif 8309 #ifdef notyet 8310 LIST_INIT(&key_misc.spacqlist); 8311 #endif 8312 8313 /* system default */ 8314 ip4_def_policy.policy = IPSEC_POLICY_NONE; 8315 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE; 8316 localcount_init(&ip4_def_policy.localcount); 8317 8318 #ifdef INET6 8319 ip6_def_policy.policy = IPSEC_POLICY_NONE; 8320 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE; 8321 localcount_init(&ip6_def_policy.localcount); 8322 #endif 8323 8324 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 8325 8326 /* initialize key statistics */ 8327 keystat.getspi_count = 1; 8328 8329 aprint_verbose("IPsec: Initialized Security Association Processing.\n"); 8330 8331 return (0); 8332 } 8333 8334 void 8335 key_init(void) 8336 { 8337 static ONCE_DECL(key_init_once); 8338 8339 sysctl_net_keyv2_setup(NULL); 8340 sysctl_net_key_compat_setup(NULL); 8341 8342 RUN_ONCE(&key_init_once, key_do_init); 8343 8344 key_init_so(); 8345 } 8346 8347 /* 8348 * XXX: maybe This function is called after INBOUND IPsec processing. 8349 * 8350 * Special check for tunnel-mode packets. 8351 * We must make some checks for consistency between inner and outer IP header. 8352 * 8353 * xxx more checks to be provided 8354 */ 8355 int 8356 key_checktunnelsanity( 8357 struct secasvar *sav, 8358 u_int family, 8359 void *src, 8360 void *dst 8361 ) 8362 { 8363 8364 /* XXX: check inner IP header */ 8365 8366 return 1; 8367 } 8368 8369 #if 0 8370 #define hostnamelen strlen(hostname) 8371 8372 /* 8373 * Get FQDN for the host. 8374 * If the administrator configured hostname (by hostname(1)) without 8375 * domain name, returns nothing. 8376 */ 8377 static const char * 8378 key_getfqdn(void) 8379 { 8380 int i; 8381 int hasdot; 8382 static char fqdn[MAXHOSTNAMELEN + 1]; 8383 8384 if (!hostnamelen) 8385 return NULL; 8386 8387 /* check if it comes with domain name. */ 8388 hasdot = 0; 8389 for (i = 0; i < hostnamelen; i++) { 8390 if (hostname[i] == '.') 8391 hasdot++; 8392 } 8393 if (!hasdot) 8394 return NULL; 8395 8396 /* NOTE: hostname may not be NUL-terminated. */ 8397 memset(fqdn, 0, sizeof(fqdn)); 8398 memcpy(fqdn, hostname, hostnamelen); 8399 fqdn[hostnamelen] = '\0'; 8400 return fqdn; 8401 } 8402 8403 /* 8404 * get username@FQDN for the host/user. 8405 */ 8406 static const char * 8407 key_getuserfqdn(void) 8408 { 8409 const char *host; 8410 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2]; 8411 struct proc *p = curproc; 8412 char *q; 8413 8414 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session) 8415 return NULL; 8416 if (!(host = key_getfqdn())) 8417 return NULL; 8418 8419 /* NOTE: s_login may not be-NUL terminated. */ 8420 memset(userfqdn, 0, sizeof(userfqdn)); 8421 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME); 8422 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */ 8423 q = userfqdn + strlen(userfqdn); 8424 *q++ = '@'; 8425 memcpy(q, host, strlen(host)); 8426 q += strlen(host); 8427 *q++ = '\0'; 8428 8429 return userfqdn; 8430 } 8431 #endif 8432 8433 /* record data transfer on SA, and update timestamps */ 8434 void 8435 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 8436 { 8437 lifetime_counters_t *counters; 8438 8439 KASSERT(sav != NULL); 8440 KASSERT(sav->lft_c != NULL); 8441 KASSERT(m != NULL); 8442 8443 counters = percpu_getref(sav->lft_c_counters_percpu); 8444 8445 /* 8446 * XXX Currently, there is a difference of bytes size 8447 * between inbound and outbound processing. 8448 */ 8449 (*counters)[LIFETIME_COUNTER_BYTES] += m->m_pkthdr.len; 8450 /* to check bytes lifetime is done in key_timehandler(). */ 8451 8452 /* 8453 * We use the number of packets as the unit of 8454 * sadb_lifetime_allocations. We increment the variable 8455 * whenever {esp,ah}_{in,out}put is called. 8456 */ 8457 (*counters)[LIFETIME_COUNTER_ALLOCATIONS]++; 8458 /* XXX check for expires? */ 8459 8460 percpu_putref(sav->lft_c_counters_percpu); 8461 8462 /* 8463 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock, 8464 * in seconds. HARD and SOFT lifetime are measured by the time 8465 * difference (again in seconds) from sadb_lifetime_usetime. 8466 * 8467 * usetime 8468 * v expire expire 8469 * -----+-----+--------+---> t 8470 * <--------------> HARD 8471 * <-----> SOFT 8472 */ 8473 sav->lft_c->sadb_lifetime_usetime = time_uptime; 8474 /* XXX check for expires? */ 8475 8476 return; 8477 } 8478 8479 /* dumb version */ 8480 void 8481 key_sa_routechange(struct sockaddr *dst) 8482 { 8483 struct secashead *sah; 8484 int s; 8485 8486 s = pserialize_read_enter(); 8487 SAHLIST_READER_FOREACH(sah) { 8488 struct route *ro; 8489 const struct sockaddr *sa; 8490 8491 key_sah_ref(sah); 8492 pserialize_read_exit(s); 8493 8494 ro = &sah->sa_route; 8495 sa = rtcache_getdst(ro); 8496 if (sa != NULL && dst->sa_len == sa->sa_len && 8497 memcmp(dst, sa, dst->sa_len) == 0) 8498 rtcache_free(ro); 8499 8500 s = pserialize_read_enter(); 8501 key_sah_unref(sah); 8502 } 8503 pserialize_read_exit(s); 8504 8505 return; 8506 } 8507 8508 static void 8509 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 8510 { 8511 struct secasvar *_sav; 8512 8513 ASSERT_SLEEPABLE(); 8514 KASSERT(mutex_owned(&key_sad.lock)); 8515 8516 if (sav->state == state) 8517 return; 8518 8519 key_unlink_sav(sav); 8520 localcount_fini(&sav->localcount); 8521 SAVLIST_ENTRY_DESTROY(sav); 8522 key_init_sav(sav); 8523 8524 sav->state = state; 8525 if (!SADB_SASTATE_USABLE_P(sav)) { 8526 /* We don't need to care about the order */ 8527 SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav); 8528 return; 8529 } 8530 /* 8531 * Sort the list by lft_c->sadb_lifetime_addtime 8532 * in ascending order. 8533 */ 8534 SAVLIST_WRITER_FOREACH(_sav, sav->sah, state) { 8535 if (_sav->lft_c->sadb_lifetime_addtime > 8536 sav->lft_c->sadb_lifetime_addtime) { 8537 SAVLIST_WRITER_INSERT_BEFORE(_sav, sav); 8538 break; 8539 } 8540 } 8541 if (_sav == NULL) { 8542 SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav); 8543 } 8544 8545 SAVLUT_WRITER_INSERT_HEAD(sav); 8546 8547 key_validate_savlist(sav->sah, state); 8548 } 8549 8550 /* XXX too much? */ 8551 static struct mbuf * 8552 key_alloc_mbuf(int l, int mflag) 8553 { 8554 struct mbuf *m = NULL, *n; 8555 int len, t; 8556 8557 KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p())); 8558 8559 len = l; 8560 while (len > 0) { 8561 MGET(n, mflag, MT_DATA); 8562 if (n && len > MLEN) { 8563 MCLGET(n, mflag); 8564 if ((n->m_flags & M_EXT) == 0) { 8565 m_freem(n); 8566 n = NULL; 8567 } 8568 } 8569 if (!n) { 8570 m_freem(m); 8571 return NULL; 8572 } 8573 8574 n->m_next = NULL; 8575 n->m_len = 0; 8576 n->m_len = M_TRAILINGSPACE(n); 8577 /* use the bottom of mbuf, hoping we can prepend afterwards */ 8578 if (n->m_len > len) { 8579 t = (n->m_len - len) & ~(sizeof(long) - 1); 8580 n->m_data += t; 8581 n->m_len = len; 8582 } 8583 8584 len -= n->m_len; 8585 8586 if (m) 8587 m_cat(m, n); 8588 else 8589 m = n; 8590 } 8591 8592 return m; 8593 } 8594 8595 static struct mbuf * 8596 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid) 8597 { 8598 struct secashead *sah; 8599 struct secasvar *sav; 8600 u_int16_t proto; 8601 u_int8_t satype; 8602 u_int8_t state; 8603 int cnt; 8604 struct mbuf *m, *n; 8605 8606 KASSERT(mutex_owned(&key_sad.lock)); 8607 8608 /* map satype to proto */ 8609 proto = key_satype2proto(req_satype); 8610 if (proto == 0) { 8611 *errorp = EINVAL; 8612 return (NULL); 8613 } 8614 8615 /* count sav entries to be sent to the userland. */ 8616 cnt = 0; 8617 SAHLIST_WRITER_FOREACH(sah) { 8618 if (req_satype != SADB_SATYPE_UNSPEC && 8619 proto != sah->saidx.proto) 8620 continue; 8621 8622 SASTATE_ANY_FOREACH(state) { 8623 SAVLIST_WRITER_FOREACH(sav, sah, state) { 8624 cnt++; 8625 } 8626 } 8627 } 8628 8629 if (cnt == 0) { 8630 *errorp = ENOENT; 8631 return (NULL); 8632 } 8633 8634 /* send this to the userland, one at a time. */ 8635 m = NULL; 8636 SAHLIST_WRITER_FOREACH(sah) { 8637 if (req_satype != SADB_SATYPE_UNSPEC && 8638 proto != sah->saidx.proto) 8639 continue; 8640 8641 /* map proto to satype */ 8642 satype = key_proto2satype(sah->saidx.proto); 8643 if (satype == 0) { 8644 m_freem(m); 8645 *errorp = EINVAL; 8646 return (NULL); 8647 } 8648 8649 SASTATE_ANY_FOREACH(state) { 8650 SAVLIST_WRITER_FOREACH(sav, sah, state) { 8651 n = key_setdumpsa(sav, SADB_DUMP, satype, 8652 --cnt, pid); 8653 if (!m) 8654 m = n; 8655 else 8656 m_cat(m, n); 8657 } 8658 } 8659 } 8660 8661 if (!m) { 8662 *errorp = EINVAL; 8663 return (NULL); 8664 } 8665 8666 if ((m->m_flags & M_PKTHDR) != 0) { 8667 m->m_pkthdr.len = 0; 8668 for (n = m; n; n = n->m_next) 8669 m->m_pkthdr.len += n->m_len; 8670 } 8671 8672 *errorp = 0; 8673 return (m); 8674 } 8675 8676 static struct mbuf * 8677 key_setspddump(int *errorp, pid_t pid) 8678 { 8679 struct secpolicy *sp; 8680 int cnt; 8681 u_int dir; 8682 struct mbuf *m, *n; 8683 8684 KASSERT(mutex_owned(&key_spd.lock)); 8685 8686 /* search SPD entry and get buffer size. */ 8687 cnt = 0; 8688 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8689 SPLIST_WRITER_FOREACH(sp, dir) { 8690 cnt++; 8691 } 8692 } 8693 8694 if (cnt == 0) { 8695 *errorp = ENOENT; 8696 return (NULL); 8697 } 8698 8699 m = NULL; 8700 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8701 SPLIST_WRITER_FOREACH(sp, dir) { 8702 --cnt; 8703 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 8704 8705 if (!m) 8706 m = n; 8707 else { 8708 m->m_pkthdr.len += n->m_pkthdr.len; 8709 m_cat(m, n); 8710 } 8711 } 8712 } 8713 8714 *errorp = 0; 8715 return (m); 8716 } 8717 8718 int 8719 key_get_used(void) { 8720 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) || 8721 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) || 8722 !SOCKSPLIST_READER_EMPTY(); 8723 } 8724 8725 void 8726 key_update_used(void) 8727 { 8728 switch (ipsec_enabled) { 8729 default: 8730 case 0: 8731 #ifdef notyet 8732 /* XXX: racy */ 8733 ipsec_used = 0; 8734 #endif 8735 break; 8736 case 1: 8737 #ifndef notyet 8738 /* XXX: racy */ 8739 if (!ipsec_used) 8740 #endif 8741 ipsec_used = key_get_used(); 8742 break; 8743 case 2: 8744 ipsec_used = 1; 8745 break; 8746 } 8747 } 8748 8749 static inline void 8750 key_savlut_writer_insert_head(struct secasvar *sav) 8751 { 8752 uint32_t hash_key; 8753 uint32_t hash; 8754 8755 KASSERT(mutex_owned(&key_sad.lock)); 8756 KASSERT(!sav->savlut_added); 8757 8758 if (sav->sah->saidx.proto == IPPROTO_IPCOMP) 8759 hash_key = sav->alg_comp; 8760 else 8761 hash_key = sav->spi; 8762 8763 hash = key_savluthash(&sav->sah->saidx.dst.sa, 8764 sav->sah->saidx.proto, hash_key, key_sad.savlutmask); 8765 8766 PSLIST_WRITER_INSERT_HEAD(&key_sad.savlut[hash], sav, 8767 pslist_entry_savlut); 8768 sav->savlut_added = true; 8769 } 8770 8771 /* 8772 * Calculate hash using protocol, source address, 8773 * and destination address included in saidx. 8774 */ 8775 static inline uint32_t 8776 key_saidxhash(const struct secasindex *saidx, u_long mask) 8777 { 8778 uint32_t hash32; 8779 const struct sockaddr_in *sin; 8780 const struct sockaddr_in6 *sin6; 8781 8782 hash32 = saidx->proto; 8783 8784 switch (saidx->src.sa.sa_family) { 8785 case AF_INET: 8786 sin = &saidx->src.sin; 8787 hash32 = hash32_buf(&sin->sin_addr, 8788 sizeof(sin->sin_addr), hash32); 8789 sin = &saidx->dst.sin; 8790 hash32 = hash32_buf(&sin->sin_addr, 8791 sizeof(sin->sin_addr), hash32 << 1); 8792 break; 8793 case AF_INET6: 8794 sin6 = &saidx->src.sin6; 8795 hash32 = hash32_buf(&sin6->sin6_addr, 8796 sizeof(sin6->sin6_addr), hash32); 8797 sin6 = &saidx->dst.sin6; 8798 hash32 = hash32_buf(&sin6->sin6_addr, 8799 sizeof(sin6->sin6_addr), hash32 << 1); 8800 break; 8801 default: 8802 hash32 = 0; 8803 break; 8804 } 8805 8806 return hash32 & mask; 8807 } 8808 8809 /* 8810 * Calculate hash using destination address, protocol, 8811 * and spi. Those parameter depend on the search of 8812 * key_lookup_sa(). 8813 */ 8814 static uint32_t 8815 key_savluthash(const struct sockaddr *dst, uint32_t proto, 8816 uint32_t spi, u_long mask) 8817 { 8818 uint32_t hash32; 8819 const struct sockaddr_in *sin; 8820 const struct sockaddr_in6 *sin6; 8821 8822 hash32 = hash32_buf(&proto, sizeof(proto), spi); 8823 8824 switch(dst->sa_family) { 8825 case AF_INET: 8826 sin = satocsin(dst); 8827 hash32 = hash32_buf(&sin->sin_addr, 8828 sizeof(sin->sin_addr), hash32); 8829 break; 8830 case AF_INET6: 8831 sin6 = satocsin6(dst); 8832 hash32 = hash32_buf(&sin6->sin6_addr, 8833 sizeof(sin6->sin6_addr), hash32); 8834 break; 8835 default: 8836 hash32 = 0; 8837 } 8838 8839 return hash32 & mask; 8840 } 8841 8842 static int 8843 sysctl_net_key_dumpsa(SYSCTLFN_ARGS) 8844 { 8845 struct mbuf *m, *n; 8846 int err2 = 0; 8847 char *p, *ep; 8848 size_t len; 8849 int error; 8850 8851 if (newp) 8852 return (EPERM); 8853 if (namelen != 1) 8854 return (EINVAL); 8855 8856 mutex_enter(&key_sad.lock); 8857 m = key_setdump(name[0], &error, l->l_proc->p_pid); 8858 mutex_exit(&key_sad.lock); 8859 if (!m) 8860 return (error); 8861 if (!oldp) 8862 *oldlenp = m->m_pkthdr.len; 8863 else { 8864 p = oldp; 8865 if (*oldlenp < m->m_pkthdr.len) { 8866 err2 = ENOMEM; 8867 ep = p + *oldlenp; 8868 } else { 8869 *oldlenp = m->m_pkthdr.len; 8870 ep = p + m->m_pkthdr.len; 8871 } 8872 for (n = m; n; n = n->m_next) { 8873 len = (ep - p < n->m_len) ? 8874 ep - p : n->m_len; 8875 error = copyout(mtod(n, const void *), p, len); 8876 p += len; 8877 if (error) 8878 break; 8879 } 8880 if (error == 0) 8881 error = err2; 8882 } 8883 m_freem(m); 8884 8885 return (error); 8886 } 8887 8888 static int 8889 sysctl_net_key_dumpsp(SYSCTLFN_ARGS) 8890 { 8891 struct mbuf *m, *n; 8892 int err2 = 0; 8893 char *p, *ep; 8894 size_t len; 8895 int error; 8896 8897 if (newp) 8898 return (EPERM); 8899 if (namelen != 0) 8900 return (EINVAL); 8901 8902 mutex_enter(&key_spd.lock); 8903 m = key_setspddump(&error, l->l_proc->p_pid); 8904 mutex_exit(&key_spd.lock); 8905 if (!m) 8906 return (error); 8907 if (!oldp) 8908 *oldlenp = m->m_pkthdr.len; 8909 else { 8910 p = oldp; 8911 if (*oldlenp < m->m_pkthdr.len) { 8912 err2 = ENOMEM; 8913 ep = p + *oldlenp; 8914 } else { 8915 *oldlenp = m->m_pkthdr.len; 8916 ep = p + m->m_pkthdr.len; 8917 } 8918 for (n = m; n; n = n->m_next) { 8919 len = (ep - p < n->m_len) ? ep - p : n->m_len; 8920 error = copyout(mtod(n, const void *), p, len); 8921 p += len; 8922 if (error) 8923 break; 8924 } 8925 if (error == 0) 8926 error = err2; 8927 } 8928 m_freem(m); 8929 8930 return (error); 8931 } 8932 8933 /* 8934 * Create sysctl tree for native IPSEC key knobs, originally 8935 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }. 8936 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 }; 8937 * and in any case the part of our sysctl namespace used for dumping the 8938 * SPD and SA database *HAS* to be compatible with the KAME sysctl 8939 * namespace, for API reasons. 8940 * 8941 * Pending a consensus on the right way to fix this, add a level of 8942 * indirection in how we number the `native' IPSEC key nodes; 8943 * and (as requested by Andrew Brown) move registration of the 8944 * KAME-compatible names to a separate function. 8945 */ 8946 #if 0 8947 # define IPSEC_PFKEY PF_KEY_V2 8948 # define IPSEC_PFKEY_NAME "keyv2" 8949 #else 8950 # define IPSEC_PFKEY PF_KEY 8951 # define IPSEC_PFKEY_NAME "key" 8952 #endif 8953 8954 static int 8955 sysctl_net_key_stats(SYSCTLFN_ARGS) 8956 { 8957 8958 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS)); 8959 } 8960 8961 static void 8962 sysctl_net_keyv2_setup(struct sysctllog **clog) 8963 { 8964 8965 sysctl_createv(clog, 0, NULL, NULL, 8966 CTLFLAG_PERMANENT, 8967 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL, 8968 NULL, 0, NULL, 0, 8969 CTL_NET, IPSEC_PFKEY, CTL_EOL); 8970 8971 sysctl_createv(clog, 0, NULL, NULL, 8972 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8973 CTLTYPE_INT, "debug", NULL, 8974 NULL, 0, &key_debug_level, 0, 8975 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL); 8976 sysctl_createv(clog, 0, NULL, NULL, 8977 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8978 CTLTYPE_INT, "spi_try", NULL, 8979 NULL, 0, &key_spi_trycnt, 0, 8980 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL); 8981 sysctl_createv(clog, 0, NULL, NULL, 8982 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8983 CTLTYPE_INT, "spi_min_value", NULL, 8984 NULL, 0, &key_spi_minval, 0, 8985 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL); 8986 sysctl_createv(clog, 0, NULL, NULL, 8987 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8988 CTLTYPE_INT, "spi_max_value", NULL, 8989 NULL, 0, &key_spi_maxval, 0, 8990 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL); 8991 sysctl_createv(clog, 0, NULL, NULL, 8992 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8993 CTLTYPE_INT, "random_int", NULL, 8994 NULL, 0, &key_int_random, 0, 8995 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL); 8996 sysctl_createv(clog, 0, NULL, NULL, 8997 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8998 CTLTYPE_INT, "larval_lifetime", NULL, 8999 NULL, 0, &key_larval_lifetime, 0, 9000 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL); 9001 sysctl_createv(clog, 0, NULL, NULL, 9002 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9003 CTLTYPE_INT, "blockacq_count", NULL, 9004 NULL, 0, &key_blockacq_count, 0, 9005 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL); 9006 sysctl_createv(clog, 0, NULL, NULL, 9007 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9008 CTLTYPE_INT, "blockacq_lifetime", NULL, 9009 NULL, 0, &key_blockacq_lifetime, 0, 9010 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL); 9011 sysctl_createv(clog, 0, NULL, NULL, 9012 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9013 CTLTYPE_INT, "esp_keymin", NULL, 9014 NULL, 0, &ipsec_esp_keymin, 0, 9015 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL); 9016 sysctl_createv(clog, 0, NULL, NULL, 9017 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9018 CTLTYPE_INT, "prefered_oldsa", NULL, 9019 NULL, 0, &key_prefered_oldsa, 0, 9020 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL); 9021 sysctl_createv(clog, 0, NULL, NULL, 9022 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9023 CTLTYPE_INT, "esp_auth", NULL, 9024 NULL, 0, &ipsec_esp_auth, 0, 9025 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL); 9026 sysctl_createv(clog, 0, NULL, NULL, 9027 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9028 CTLTYPE_INT, "ah_keymin", NULL, 9029 NULL, 0, &ipsec_ah_keymin, 0, 9030 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL); 9031 sysctl_createv(clog, 0, NULL, NULL, 9032 CTLFLAG_PERMANENT, 9033 CTLTYPE_STRUCT, "stats", 9034 SYSCTL_DESCR("PF_KEY statistics"), 9035 sysctl_net_key_stats, 0, NULL, 0, 9036 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL); 9037 } 9038 9039 /* 9040 * Register sysctl names used by setkey(8). For historical reasons, 9041 * and to share a single API, these names appear under { CTL_NET, PF_KEY } 9042 * for both IPSEC and KAME IPSEC. 9043 */ 9044 static void 9045 sysctl_net_key_compat_setup(struct sysctllog **clog) 9046 { 9047 9048 sysctl_createv(clog, 0, NULL, NULL, 9049 CTLFLAG_PERMANENT, 9050 CTLTYPE_NODE, "key", NULL, 9051 NULL, 0, NULL, 0, 9052 CTL_NET, PF_KEY, CTL_EOL); 9053 9054 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */ 9055 sysctl_createv(clog, 0, NULL, NULL, 9056 CTLFLAG_PERMANENT, 9057 CTLTYPE_STRUCT, "dumpsa", NULL, 9058 sysctl_net_key_dumpsa, 0, NULL, 0, 9059 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL); 9060 sysctl_createv(clog, 0, NULL, NULL, 9061 CTLFLAG_PERMANENT, 9062 CTLTYPE_STRUCT, "dumpsp", NULL, 9063 sysctl_net_key_dumpsp, 0, NULL, 0, 9064 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL); 9065 } 9066