1 /* $NetBSD: key.c,v 1.256 2018/07/04 19:20:25 christos Exp $ */ 2 /* $FreeBSD: key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */ 3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 4 5 /* 6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the project nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.256 2018/07/04 19:20:25 christos Exp $"); 36 37 /* 38 * This code is referred to RFC 2367 39 */ 40 41 #if defined(_KERNEL_OPT) 42 #include "opt_inet.h" 43 #include "opt_ipsec.h" 44 #include "opt_gateway.h" 45 #include "opt_net_mpsafe.h" 46 #endif 47 48 #include <sys/types.h> 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/callout.h> 52 #include <sys/kernel.h> 53 #include <sys/mbuf.h> 54 #include <sys/domain.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/errno.h> 59 #include <sys/proc.h> 60 #include <sys/queue.h> 61 #include <sys/syslog.h> 62 #include <sys/once.h> 63 #include <sys/cprng.h> 64 #include <sys/psref.h> 65 #include <sys/lwp.h> 66 #include <sys/workqueue.h> 67 #include <sys/kmem.h> 68 #include <sys/cpu.h> 69 #include <sys/atomic.h> 70 #include <sys/pslist.h> 71 #include <sys/mutex.h> 72 #include <sys/condvar.h> 73 #include <sys/localcount.h> 74 #include <sys/pserialize.h> 75 #include <sys/hash.h> 76 77 #include <net/if.h> 78 #include <net/route.h> 79 80 #include <netinet/in.h> 81 #include <netinet/in_systm.h> 82 #include <netinet/ip.h> 83 #include <netinet/in_var.h> 84 #ifdef INET 85 #include <netinet/ip_var.h> 86 #endif 87 88 #ifdef INET6 89 #include <netinet/ip6.h> 90 #include <netinet6/in6_var.h> 91 #include <netinet6/ip6_var.h> 92 #endif /* INET6 */ 93 94 #ifdef INET 95 #include <netinet/in_pcb.h> 96 #endif 97 #ifdef INET6 98 #include <netinet6/in6_pcb.h> 99 #endif /* INET6 */ 100 101 #include <net/pfkeyv2.h> 102 #include <netipsec/keydb.h> 103 #include <netipsec/key.h> 104 #include <netipsec/keysock.h> 105 #include <netipsec/key_debug.h> 106 107 #include <netipsec/ipsec.h> 108 #ifdef INET6 109 #include <netipsec/ipsec6.h> 110 #endif 111 #include <netipsec/ipsec_private.h> 112 113 #include <netipsec/xform.h> 114 #include <netipsec/ipcomp.h> 115 116 #define FULLMASK 0xffu 117 #define _BITS(bytes) ((bytes) << 3) 118 119 #define PORT_NONE 0 120 #define PORT_LOOSE 1 121 #define PORT_STRICT 2 122 123 #ifndef SAHHASH_NHASH 124 #define SAHHASH_NHASH 128 125 #endif 126 127 #ifndef SAVLUT_NHASH 128 #define SAVLUT_NHASH 128 129 #endif 130 131 percpu_t *pfkeystat_percpu; 132 133 /* 134 * Note on SA reference counting: 135 * - SAs that are not in DEAD state will have (total external reference + 1) 136 * following value in reference count field. they cannot be freed and are 137 * referenced from SA header. 138 * - SAs that are in DEAD state will have (total external reference) 139 * in reference count field. they are ready to be freed. reference from 140 * SA header will be removed in key_delsav(), when the reference count 141 * field hits 0 (= no external reference other than from SA header. 142 */ 143 144 u_int32_t key_debug_level = 0; 145 static u_int key_spi_trycnt = 1000; 146 static u_int32_t key_spi_minval = 0x100; 147 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ 148 static u_int32_t policy_id = 0; 149 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ 150 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 151 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 152 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 153 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/ 154 155 static u_int32_t acq_seq = 0; 156 157 /* 158 * Locking order: there is no order for now; it means that any locks aren't 159 * overlapped. 160 */ 161 /* 162 * Locking notes on SPD: 163 * - Modifications to the key_spd.splist must be done with holding key_spd.lock 164 * which is a adaptive mutex 165 * - Read accesses to the key_spd.splist must be in pserialize(9) read sections 166 * - SP's lifetime is managed by localcount(9) 167 * - An SP that has been inserted to the key_spd.splist is initially referenced 168 * by none, i.e., a reference from the key_spd.splist isn't counted 169 * - When an SP is being destroyed, we change its state as DEAD, wait for 170 * references to the SP to be released, and then deallocate the SP 171 * (see key_unlink_sp) 172 * - Getting an SP 173 * - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx) 174 * - Must iterate the list and increment the reference count of a found SP 175 * (by key_sp_ref) in a pserialize read section 176 * - We can gain another reference from a held SP only if we check its state 177 * and take its reference in a pserialize read section 178 * (see esp_output for example) 179 * - We may get an SP from an SP cache. See below 180 * - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref) 181 * - Updating member variables of an SP 182 * - Most member variables of an SP are immutable 183 * - Only sp->state and sp->lastused can be changed 184 * - sp->state of an SP is updated only when destroying it under key_spd.lock 185 * - SP caches 186 * - SPs can be cached in PCBs 187 * - The lifetime of the caches is controlled by the global generation counter 188 * (ipsec_spdgen) 189 * - The global counter value is stored when an SP is cached 190 * - If the stored value is different from the global counter then the cache 191 * is considered invalidated 192 * - The counter is incremented when an SP is being destroyed 193 * - So checking the generation and taking a reference to an SP should be 194 * in a pserialize read section 195 * - Note that caching doesn't increment the reference counter of an SP 196 * - SPs in sockets 197 * - Userland programs can set a policy to a socket by 198 * setsockopt(IP_IPSEC_POLICY) 199 * - Such policies (SPs) are set to a socket (PCB) and also inserted to 200 * the key_spd.socksplist list (not the key_spd.splist) 201 * - Such a policy is destroyed when a corresponding socket is destroed, 202 * however, a socket can be destroyed in softint so we cannot destroy 203 * it directly instead we just mark it DEAD and delay the destruction 204 * until GC by the timer 205 * - SP origin 206 * - SPs can be created by both userland programs and kernel components. 207 * The SPs created in kernel must not be removed by userland programs, 208 * although the SPs can be read by userland programs. 209 */ 210 /* 211 * Locking notes on SAD: 212 * - Data structures 213 * - SAs are managed by the list called key_sad.sahlists and sav lists of 214 * sah entries 215 * - An sav is supposed to be an SA from a viewpoint of users 216 * - A sah has sav lists for each SA state 217 * - Multiple saves with the same saidx can exist 218 * - Only one entry has MATURE state and others should be DEAD 219 * - DEAD entries are just ignored from searching 220 * - All sav whose state is MATURE or DYING are registered to the lookup 221 * table called key_sad.savlut in addition to the savlists. 222 * - The table is used to search an sav without use of saidx. 223 * - Modifications to the key_sad.sahlists, sah.savlist and key_sad.savlut 224 * must be done with holding key_sad.lock which is a adaptive mutex 225 * - Read accesses to the key_sad.sahlists, sah.savlist and key_sad.savlut 226 * must be in pserialize(9) read sections 227 * - sah's lifetime is managed by localcount(9) 228 * - Getting an sah entry 229 * - We get an sah from the key_sad.sahlists 230 * - Must iterate the list and increment the reference count of a found sah 231 * (by key_sah_ref) in a pserialize read section 232 * - A gotten sah must be released after use by key_sah_unref 233 * - An sah is destroyed when its state become DEAD and no sav is 234 * listed to the sah 235 * - The destruction is done only in the timer (see key_timehandler_sad) 236 * - sav's lifetime is managed by localcount(9) 237 * - Getting an sav entry 238 * - First get an sah by saidx and get an sav from either of sah's savlists 239 * - Must iterate the list and increment the reference count of a found sav 240 * (by key_sa_ref) in a pserialize read section 241 * - We can gain another reference from a held SA only if we check its state 242 * and take its reference in a pserialize read section 243 * (see esp_output for example) 244 * - A gotten sav must be released after use by key_sa_unref 245 * - An sav is destroyed when its state become DEAD 246 */ 247 /* 248 * Locking notes on misc data: 249 * - All lists of key_misc are protected by key_misc.lock 250 * - key_misc.lock must be held even for read accesses 251 */ 252 253 /* SPD */ 254 static struct { 255 kmutex_t lock; 256 kcondvar_t cv_lc; 257 struct pslist_head splist[IPSEC_DIR_MAX]; 258 /* 259 * The list has SPs that are set to a socket via 260 * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy. 261 */ 262 struct pslist_head socksplist; 263 264 pserialize_t psz; 265 kcondvar_t cv_psz; 266 bool psz_performing; 267 } key_spd __cacheline_aligned; 268 269 /* SAD */ 270 static struct { 271 kmutex_t lock; 272 kcondvar_t cv_lc; 273 struct pslist_head *sahlists; 274 u_long sahlistmask; 275 struct pslist_head *savlut; 276 u_long savlutmask; 277 278 pserialize_t psz; 279 kcondvar_t cv_psz; 280 bool psz_performing; 281 } key_sad __cacheline_aligned; 282 283 /* Misc data */ 284 static struct { 285 kmutex_t lock; 286 /* registed list */ 287 LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1]; 288 #ifndef IPSEC_NONBLOCK_ACQUIRE 289 /* acquiring list */ 290 LIST_HEAD(_acqlist, secacq) acqlist; 291 #endif 292 #ifdef notyet 293 /* SP acquiring list */ 294 LIST_HEAD(_spacqlist, secspacq) spacqlist; 295 #endif 296 } key_misc __cacheline_aligned; 297 298 /* Macros for key_spd.splist */ 299 #define SPLIST_ENTRY_INIT(sp) \ 300 PSLIST_ENTRY_INIT((sp), pslist_entry) 301 #define SPLIST_ENTRY_DESTROY(sp) \ 302 PSLIST_ENTRY_DESTROY((sp), pslist_entry) 303 #define SPLIST_WRITER_REMOVE(sp) \ 304 PSLIST_WRITER_REMOVE((sp), pslist_entry) 305 #define SPLIST_READER_EMPTY(dir) \ 306 (PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ 307 pslist_entry) == NULL) 308 #define SPLIST_READER_FOREACH(sp, dir) \ 309 PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)], \ 310 struct secpolicy, pslist_entry) 311 #define SPLIST_WRITER_FOREACH(sp, dir) \ 312 PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)], \ 313 struct secpolicy, pslist_entry) 314 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \ 315 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry) 316 #define SPLIST_WRITER_EMPTY(dir) \ 317 (PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ 318 pslist_entry) == NULL) 319 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \ 320 PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp), \ 321 pslist_entry) 322 #define SPLIST_WRITER_NEXT(sp) \ 323 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry) 324 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \ 325 do { \ 326 if (SPLIST_WRITER_EMPTY((dir))) { \ 327 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \ 328 } else { \ 329 struct secpolicy *__sp; \ 330 SPLIST_WRITER_FOREACH(__sp, (dir)) { \ 331 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \ 332 SPLIST_WRITER_INSERT_AFTER(__sp,\ 333 (new)); \ 334 break; \ 335 } \ 336 } \ 337 } \ 338 } while (0) 339 340 /* Macros for key_spd.socksplist */ 341 #define SOCKSPLIST_WRITER_FOREACH(sp) \ 342 PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist, \ 343 struct secpolicy, pslist_entry) 344 #define SOCKSPLIST_READER_EMPTY() \ 345 (PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy, \ 346 pslist_entry) == NULL) 347 348 /* Macros for key_sad.sahlist */ 349 #define SAHLIST_ENTRY_INIT(sah) \ 350 PSLIST_ENTRY_INIT((sah), pslist_entry) 351 #define SAHLIST_ENTRY_DESTROY(sah) \ 352 PSLIST_ENTRY_DESTROY((sah), pslist_entry) 353 #define SAHLIST_WRITER_REMOVE(sah) \ 354 PSLIST_WRITER_REMOVE((sah), pslist_entry) 355 #define SAHLIST_READER_FOREACH(sah) \ 356 for(int _i_sah = 0; _i_sah <= key_sad.sahlistmask; _i_sah++) \ 357 PSLIST_READER_FOREACH((sah), &key_sad.sahlists[_i_sah], \ 358 struct secashead, pslist_entry) 359 #define SAHLIST_READER_FOREACH_SAIDX(sah, saidx) \ 360 PSLIST_READER_FOREACH((sah), \ 361 &key_sad.sahlists[key_saidxhash((saidx), \ 362 key_sad.sahlistmask)], \ 363 struct secashead, pslist_entry) 364 #define SAHLIST_WRITER_FOREACH(sah) \ 365 for(int _i_sah = 0; _i_sah <= key_sad.sahlistmask; _i_sah++) \ 366 PSLIST_WRITER_FOREACH((sah), &key_sad.sahlists[_i_sah], \ 367 struct secashead, pslist_entry) 368 #define SAHLIST_WRITER_INSERT_HEAD(sah) \ 369 PSLIST_WRITER_INSERT_HEAD( \ 370 &key_sad.sahlists[key_saidxhash(&(sah)->saidx, \ 371 key_sad.sahlistmask)], \ 372 (sah), pslist_entry) 373 374 /* Macros for key_sad.sahlist#savlist */ 375 #define SAVLIST_ENTRY_INIT(sav) \ 376 PSLIST_ENTRY_INIT((sav), pslist_entry) 377 #define SAVLIST_ENTRY_DESTROY(sav) \ 378 PSLIST_ENTRY_DESTROY((sav), pslist_entry) 379 #define SAVLIST_READER_FIRST(sah, state) \ 380 PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ 381 pslist_entry) 382 #define SAVLIST_WRITER_REMOVE(sav) \ 383 PSLIST_WRITER_REMOVE((sav), pslist_entry) 384 #define SAVLIST_READER_FOREACH(sav, sah, state) \ 385 PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)], \ 386 struct secasvar, pslist_entry) 387 #define SAVLIST_WRITER_FOREACH(sav, sah, state) \ 388 PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)], \ 389 struct secasvar, pslist_entry) 390 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \ 391 PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry) 392 #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \ 393 PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry) 394 #define SAVLIST_WRITER_EMPTY(sah, state) \ 395 (PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ 396 pslist_entry) == NULL) 397 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \ 398 PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav), \ 399 pslist_entry) 400 #define SAVLIST_WRITER_NEXT(sav) \ 401 PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry) 402 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \ 403 do { \ 404 if (SAVLIST_WRITER_EMPTY((sah), (state))) { \ 405 SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\ 406 } else { \ 407 struct secasvar *__sav; \ 408 SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \ 409 if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\ 410 SAVLIST_WRITER_INSERT_AFTER(__sav,\ 411 (new)); \ 412 break; \ 413 } \ 414 } \ 415 } \ 416 } while (0) 417 #define SAVLIST_READER_NEXT(sav) \ 418 PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry) 419 420 /* Macros for key_sad.savlut */ 421 #define SAVLUT_ENTRY_INIT(sav) \ 422 PSLIST_ENTRY_INIT((sav), pslist_entry_savlut) 423 #define SAVLUT_READER_FOREACH(sav, dst, proto, hash_key) \ 424 PSLIST_READER_FOREACH((sav), \ 425 &key_sad.savlut[key_savluthash(dst, proto, hash_key, \ 426 key_sad.savlutmask)], \ 427 struct secasvar, pslist_entry_savlut) 428 #define SAVLUT_WRITER_INSERT_HEAD(sav) \ 429 key_savlut_writer_insert_head((sav)) 430 #define SAVLUT_WRITER_REMOVE(sav) \ 431 do { \ 432 if (!(sav)->savlut_added) \ 433 break; \ 434 PSLIST_WRITER_REMOVE((sav), pslist_entry_savlut); \ 435 (sav)->savlut_added = false; \ 436 } while(0) 437 438 /* search order for SAs */ 439 /* 440 * This order is important because we must select the oldest SA 441 * for outbound processing. For inbound, This is not important. 442 */ 443 static const u_int saorder_state_valid_prefer_old[] = { 444 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 445 }; 446 static const u_int saorder_state_valid_prefer_new[] = { 447 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 448 }; 449 450 static const u_int saorder_state_alive[] = { 451 /* except DEAD */ 452 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 453 }; 454 static const u_int saorder_state_any[] = { 455 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 456 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 457 }; 458 459 #define SASTATE_ALIVE_FOREACH(s) \ 460 for (int _i = 0; \ 461 _i < __arraycount(saorder_state_alive) ? \ 462 (s) = saorder_state_alive[_i], true : false; \ 463 _i++) 464 #define SASTATE_ANY_FOREACH(s) \ 465 for (int _i = 0; \ 466 _i < __arraycount(saorder_state_any) ? \ 467 (s) = saorder_state_any[_i], true : false; \ 468 _i++) 469 #define SASTATE_USABLE_FOREACH(s) \ 470 for (int _i = 0; \ 471 _i < __arraycount(saorder_state_valid_prefer_new) ? \ 472 (s) = saorder_state_valid_prefer_new[_i], \ 473 true : false; \ 474 _i++) 475 476 static const int minsize[] = { 477 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 478 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 479 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 480 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 481 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 482 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 483 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 484 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 485 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 486 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 487 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 488 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 489 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 490 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 491 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 492 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 493 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 494 0, /* SADB_X_EXT_KMPRIVATE */ 495 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 496 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 497 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 498 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 499 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 500 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 501 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 502 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 503 }; 504 static const int maxsize[] = { 505 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 506 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 507 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 508 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 509 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 510 0, /* SADB_EXT_ADDRESS_SRC */ 511 0, /* SADB_EXT_ADDRESS_DST */ 512 0, /* SADB_EXT_ADDRESS_PROXY */ 513 0, /* SADB_EXT_KEY_AUTH */ 514 0, /* SADB_EXT_KEY_ENCRYPT */ 515 0, /* SADB_EXT_IDENTITY_SRC */ 516 0, /* SADB_EXT_IDENTITY_DST */ 517 0, /* SADB_EXT_SENSITIVITY */ 518 0, /* SADB_EXT_PROPOSAL */ 519 0, /* SADB_EXT_SUPPORTED_AUTH */ 520 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 521 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 522 0, /* SADB_X_EXT_KMPRIVATE */ 523 0, /* SADB_X_EXT_POLICY */ 524 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 525 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 526 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 527 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 528 0, /* SADB_X_EXT_NAT_T_OAI */ 529 0, /* SADB_X_EXT_NAT_T_OAR */ 530 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 531 }; 532 533 static int ipsec_esp_keymin = 256; 534 static int ipsec_esp_auth = 0; 535 static int ipsec_ah_keymin = 128; 536 537 #ifdef SYSCTL_DECL 538 SYSCTL_DECL(_net_key); 539 #endif 540 541 #ifdef SYSCTL_INT 542 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \ 543 &key_debug_level, 0, ""); 544 545 /* max count of trial for the decision of spi value */ 546 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \ 547 &key_spi_trycnt, 0, ""); 548 549 /* minimum spi value to allocate automatically. */ 550 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \ 551 &key_spi_minval, 0, ""); 552 553 /* maximun spi value to allocate automatically. */ 554 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \ 555 &key_spi_maxval, 0, ""); 556 557 /* interval to initialize randseed */ 558 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \ 559 &key_int_random, 0, ""); 560 561 /* lifetime for larval SA */ 562 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \ 563 &key_larval_lifetime, 0, ""); 564 565 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 566 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \ 567 &key_blockacq_count, 0, ""); 568 569 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 570 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \ 571 &key_blockacq_lifetime, 0, ""); 572 573 /* ESP auth */ 574 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \ 575 &ipsec_esp_auth, 0, ""); 576 577 /* minimum ESP key length */ 578 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \ 579 &ipsec_esp_keymin, 0, ""); 580 581 /* minimum AH key length */ 582 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \ 583 &ipsec_ah_keymin, 0, ""); 584 585 /* perfered old SA rather than new SA */ 586 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\ 587 &key_prefered_oldsa, 0, ""); 588 #endif /* SYSCTL_INT */ 589 590 #define __LIST_CHAINED(elm) \ 591 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 592 #define LIST_INSERT_TAIL(head, elm, type, field) \ 593 do {\ 594 struct type *curelm = LIST_FIRST(head); \ 595 if (curelm == NULL) {\ 596 LIST_INSERT_HEAD(head, elm, field); \ 597 } else { \ 598 while (LIST_NEXT(curelm, field)) \ 599 curelm = LIST_NEXT(curelm, field);\ 600 LIST_INSERT_AFTER(curelm, elm, field);\ 601 }\ 602 } while (0) 603 604 #define KEY_CHKSASTATE(head, sav) \ 605 /* do */ { \ 606 if ((head) != (sav)) { \ 607 IPSECLOG(LOG_DEBUG, \ 608 "state mismatched (TREE=%d SA=%d)\n", \ 609 (head), (sav)); \ 610 continue; \ 611 } \ 612 } /* while (0) */ 613 614 #define KEY_CHKSPDIR(head, sp) \ 615 do { \ 616 if ((head) != (sp)) { \ 617 IPSECLOG(LOG_DEBUG, \ 618 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\ 619 (head), (sp)); \ 620 } \ 621 } while (0) 622 623 /* 624 * set parameters into secasindex buffer. 625 * Must allocate secasindex buffer before calling this function. 626 */ 627 static int 628 key_setsecasidx(int, int, int, const struct sockaddr *, 629 const struct sockaddr *, struct secasindex *); 630 631 /* key statistics */ 632 struct _keystat { 633 u_long getspi_count; /* the avarage of count to try to get new SPI */ 634 } keystat; 635 636 static void 637 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *); 638 639 static const struct sockaddr * 640 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx) 641 { 642 643 return PFKEY_ADDR_SADDR(mhp->ext[idx]); 644 } 645 646 static void 647 key_fill_replymsg(struct mbuf *m, int seq) 648 { 649 struct sadb_msg *msg; 650 651 KASSERT(m->m_len >= sizeof(*msg)); 652 653 msg = mtod(m, struct sadb_msg *); 654 msg->sadb_msg_errno = 0; 655 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 656 if (seq != 0) 657 msg->sadb_msg_seq = seq; 658 } 659 660 #if 0 661 static void key_freeso(struct socket *); 662 static void key_freesp_so(struct secpolicy **); 663 #endif 664 static struct secpolicy *key_getsp (const struct secpolicyindex *); 665 static struct secpolicy *key_getspbyid (u_int32_t); 666 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *, bool); 667 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t, bool); 668 static void key_destroy_sp(struct secpolicy *); 669 static struct mbuf *key_gather_mbuf (struct mbuf *, 670 const struct sadb_msghdr *, int, int, ...); 671 static int key_api_spdadd(struct socket *, struct mbuf *, 672 const struct sadb_msghdr *); 673 static u_int32_t key_getnewspid (void); 674 static int key_api_spddelete(struct socket *, struct mbuf *, 675 const struct sadb_msghdr *); 676 static int key_api_spddelete2(struct socket *, struct mbuf *, 677 const struct sadb_msghdr *); 678 static int key_api_spdget(struct socket *, struct mbuf *, 679 const struct sadb_msghdr *); 680 static int key_api_spdflush(struct socket *, struct mbuf *, 681 const struct sadb_msghdr *); 682 static int key_api_spddump(struct socket *, struct mbuf *, 683 const struct sadb_msghdr *); 684 static struct mbuf * key_setspddump (int *errorp, pid_t); 685 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid); 686 static int key_api_nat_map(struct socket *, struct mbuf *, 687 const struct sadb_msghdr *); 688 static struct mbuf *key_setdumpsp (struct secpolicy *, 689 u_int8_t, u_int32_t, pid_t); 690 static u_int key_getspreqmsglen (const struct secpolicy *); 691 static int key_spdexpire (struct secpolicy *); 692 static struct secashead *key_newsah (const struct secasindex *); 693 static void key_unlink_sah(struct secashead *); 694 static void key_destroy_sah(struct secashead *); 695 static bool key_sah_has_sav(struct secashead *); 696 static void key_sah_ref(struct secashead *); 697 static void key_sah_unref(struct secashead *); 698 static void key_init_sav(struct secasvar *); 699 static void key_destroy_sav(struct secasvar *); 700 static void key_destroy_sav_with_ref(struct secasvar *); 701 static struct secasvar *key_newsav(struct mbuf *, 702 const struct sadb_msghdr *, int *, const char*, int); 703 #define KEY_NEWSAV(m, sadb, e) \ 704 key_newsav(m, sadb, e, __func__, __LINE__) 705 static void key_delsav (struct secasvar *); 706 static struct secashead *key_getsah(const struct secasindex *, int); 707 static struct secashead *key_getsah_ref(const struct secasindex *, int); 708 static bool key_checkspidup(const struct secasindex *, u_int32_t); 709 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t); 710 static int key_setsaval (struct secasvar *, struct mbuf *, 711 const struct sadb_msghdr *); 712 static void key_freesaval(struct secasvar *); 713 static int key_init_xform(struct secasvar *); 714 static void key_clear_xform(struct secasvar *); 715 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t, 716 u_int8_t, u_int32_t, u_int32_t); 717 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t); 718 static struct mbuf *key_setsadbxtype (u_int16_t); 719 static struct mbuf *key_setsadbxfrag (u_int16_t); 720 static void key_porttosaddr (union sockaddr_union *, u_int16_t); 721 static int key_checksalen (const union sockaddr_union *); 722 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t, 723 u_int32_t, pid_t, u_int16_t, int); 724 static struct mbuf *key_setsadbsa (struct secasvar *); 725 static struct mbuf *key_setsadbaddr(u_int16_t, 726 const struct sockaddr *, u_int8_t, u_int16_t, int); 727 #if 0 728 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *, 729 int, u_int64_t); 730 #endif 731 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t); 732 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t, 733 u_int32_t, int); 734 static void *key_newbuf (const void *, u_int); 735 #ifdef INET6 736 static int key_ismyaddr6 (const struct sockaddr_in6 *); 737 #endif 738 739 static void sysctl_net_keyv2_setup(struct sysctllog **); 740 static void sysctl_net_key_compat_setup(struct sysctllog **); 741 742 /* flags for key_saidx_match() */ 743 #define CMP_HEAD 1 /* protocol, addresses. */ 744 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 745 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 746 #define CMP_EXACTLY 4 /* all elements. */ 747 static int key_saidx_match(const struct secasindex *, 748 const struct secasindex *, int); 749 750 static int key_sockaddr_match(const struct sockaddr *, 751 const struct sockaddr *, int); 752 static int key_bb_match_withmask(const void *, const void *, u_int); 753 static u_int16_t key_satype2proto (u_int8_t); 754 static u_int8_t key_proto2satype (u_int16_t); 755 756 static int key_spidx_match_exactly(const struct secpolicyindex *, 757 const struct secpolicyindex *); 758 static int key_spidx_match_withmask(const struct secpolicyindex *, 759 const struct secpolicyindex *); 760 761 static int key_api_getspi(struct socket *, struct mbuf *, 762 const struct sadb_msghdr *); 763 static u_int32_t key_do_getnewspi (const struct sadb_spirange *, 764 const struct secasindex *); 765 static int key_handle_natt_info (struct secasvar *, 766 const struct sadb_msghdr *); 767 static int key_set_natt_ports (union sockaddr_union *, 768 union sockaddr_union *, 769 const struct sadb_msghdr *); 770 static int key_api_update(struct socket *, struct mbuf *, 771 const struct sadb_msghdr *); 772 #ifdef IPSEC_DOSEQCHECK 773 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t); 774 #endif 775 static int key_api_add(struct socket *, struct mbuf *, 776 const struct sadb_msghdr *); 777 static int key_setident (struct secashead *, struct mbuf *, 778 const struct sadb_msghdr *); 779 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *, 780 const struct sadb_msghdr *); 781 static int key_api_delete(struct socket *, struct mbuf *, 782 const struct sadb_msghdr *); 783 static int key_api_get(struct socket *, struct mbuf *, 784 const struct sadb_msghdr *); 785 786 static void key_getcomb_setlifetime (struct sadb_comb *); 787 static struct mbuf *key_getcomb_esp(int); 788 static struct mbuf *key_getcomb_ah(int); 789 static struct mbuf *key_getcomb_ipcomp(int); 790 static struct mbuf *key_getprop(const struct secasindex *, int); 791 792 static int key_acquire(const struct secasindex *, const struct secpolicy *, 793 int); 794 static int key_acquire_sendup_mbuf_later(struct mbuf *); 795 static void key_acquire_sendup_pending_mbuf(void); 796 #ifndef IPSEC_NONBLOCK_ACQUIRE 797 static struct secacq *key_newacq (const struct secasindex *); 798 static struct secacq *key_getacq (const struct secasindex *); 799 static struct secacq *key_getacqbyseq (u_int32_t); 800 #endif 801 #ifdef notyet 802 static struct secspacq *key_newspacq (const struct secpolicyindex *); 803 static struct secspacq *key_getspacq (const struct secpolicyindex *); 804 #endif 805 static int key_api_acquire(struct socket *, struct mbuf *, 806 const struct sadb_msghdr *); 807 static int key_api_register(struct socket *, struct mbuf *, 808 const struct sadb_msghdr *); 809 static int key_expire (struct secasvar *); 810 static int key_api_flush(struct socket *, struct mbuf *, 811 const struct sadb_msghdr *); 812 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp, 813 int *lenp, pid_t pid); 814 static int key_api_dump(struct socket *, struct mbuf *, 815 const struct sadb_msghdr *); 816 static int key_api_promisc(struct socket *, struct mbuf *, 817 const struct sadb_msghdr *); 818 static int key_senderror (struct socket *, struct mbuf *, int); 819 static int key_validate_ext (const struct sadb_ext *, int); 820 static int key_align (struct mbuf *, struct sadb_msghdr *); 821 #if 0 822 static const char *key_getfqdn (void); 823 static const char *key_getuserfqdn (void); 824 #endif 825 static void key_sa_chgstate (struct secasvar *, u_int8_t); 826 827 static struct mbuf *key_alloc_mbuf(int, int); 828 static struct mbuf *key_alloc_mbuf_simple(int, int); 829 830 static void key_timehandler(void *); 831 static void key_timehandler_work(struct work *, void *); 832 static struct callout key_timehandler_ch; 833 static struct workqueue *key_timehandler_wq; 834 static struct work key_timehandler_wk; 835 836 static inline void 837 key_savlut_writer_insert_head(struct secasvar *sav); 838 static inline uint32_t 839 key_saidxhash(const struct secasindex *, u_long); 840 static inline uint32_t 841 key_savluthash(const struct sockaddr *, 842 uint32_t, uint32_t, u_long); 843 844 /* 845 * Utilities for percpu counters for sadb_lifetime_allocations and 846 * sadb_lifetime_bytes. 847 */ 848 #define LIFETIME_COUNTER_ALLOCATIONS 0 849 #define LIFETIME_COUNTER_BYTES 1 850 #define LIFETIME_COUNTER_SIZE 2 851 852 typedef uint64_t lifetime_counters_t[LIFETIME_COUNTER_SIZE]; 853 854 static void 855 key_sum_lifetime_counters(void *p, void *arg, struct cpu_info *ci __unused) 856 { 857 lifetime_counters_t *one = p; 858 lifetime_counters_t *sum = arg; 859 860 (*sum)[LIFETIME_COUNTER_ALLOCATIONS] += (*one)[LIFETIME_COUNTER_ALLOCATIONS]; 861 (*sum)[LIFETIME_COUNTER_BYTES] += (*one)[LIFETIME_COUNTER_BYTES]; 862 } 863 864 u_int 865 key_sp_refcnt(const struct secpolicy *sp) 866 { 867 868 /* FIXME */ 869 return 0; 870 } 871 872 static void 873 key_spd_pserialize_perform(void) 874 { 875 876 KASSERT(mutex_owned(&key_spd.lock)); 877 878 while (key_spd.psz_performing) 879 cv_wait(&key_spd.cv_psz, &key_spd.lock); 880 key_spd.psz_performing = true; 881 mutex_exit(&key_spd.lock); 882 883 pserialize_perform(key_spd.psz); 884 885 mutex_enter(&key_spd.lock); 886 key_spd.psz_performing = false; 887 cv_broadcast(&key_spd.cv_psz); 888 } 889 890 /* 891 * Remove the sp from the key_spd.splist and wait for references to the sp 892 * to be released. key_spd.lock must be held. 893 */ 894 static void 895 key_unlink_sp(struct secpolicy *sp) 896 { 897 898 KASSERT(mutex_owned(&key_spd.lock)); 899 900 sp->state = IPSEC_SPSTATE_DEAD; 901 SPLIST_WRITER_REMOVE(sp); 902 903 /* Invalidate all cached SPD pointers in the PCBs. */ 904 ipsec_invalpcbcacheall(); 905 906 KDASSERT(mutex_ownable(softnet_lock)); 907 key_spd_pserialize_perform(); 908 909 localcount_drain(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); 910 } 911 912 /* 913 * Return 0 when there are known to be no SP's for the specified 914 * direction. Otherwise return 1. This is used by IPsec code 915 * to optimize performance. 916 */ 917 int 918 key_havesp(u_int dir) 919 { 920 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 921 !SPLIST_READER_EMPTY(dir) : 1); 922 } 923 924 /* %%% IPsec policy management */ 925 /* 926 * allocating a SP for OUTBOUND or INBOUND packet. 927 * Must call key_freesp() later. 928 * OUT: NULL: not found 929 * others: found and return the pointer. 930 */ 931 struct secpolicy * 932 key_lookup_sp_byspidx(const struct secpolicyindex *spidx, 933 u_int dir, const char* where, int tag) 934 { 935 struct secpolicy *sp; 936 int s; 937 938 KASSERT(spidx != NULL); 939 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir); 940 941 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); 942 943 /* get a SP entry */ 944 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { 945 kdebug_secpolicyindex("objects", spidx); 946 } 947 948 s = pserialize_read_enter(); 949 SPLIST_READER_FOREACH(sp, dir) { 950 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { 951 kdebug_secpolicyindex("in SPD", &sp->spidx); 952 } 953 954 if (sp->state == IPSEC_SPSTATE_DEAD) 955 continue; 956 if (key_spidx_match_withmask(&sp->spidx, spidx)) 957 goto found; 958 } 959 sp = NULL; 960 found: 961 if (sp) { 962 /* sanity check */ 963 KEY_CHKSPDIR(sp->spidx.dir, dir); 964 965 /* found a SPD entry */ 966 sp->lastused = time_uptime; 967 key_sp_ref(sp, where, tag); 968 } 969 pserialize_read_exit(s); 970 971 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 972 "DP return SP:%p (ID=%u) refcnt %u\n", 973 sp, sp ? sp->id : 0, key_sp_refcnt(sp)); 974 return sp; 975 } 976 977 /* 978 * return a policy that matches this particular inbound packet. 979 * XXX slow 980 */ 981 struct secpolicy * 982 key_gettunnel(const struct sockaddr *osrc, 983 const struct sockaddr *odst, 984 const struct sockaddr *isrc, 985 const struct sockaddr *idst, 986 const char* where, int tag) 987 { 988 struct secpolicy *sp; 989 const int dir = IPSEC_DIR_INBOUND; 990 int s; 991 struct ipsecrequest *r1, *r2, *p; 992 struct secpolicyindex spidx; 993 994 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); 995 996 if (isrc->sa_family != idst->sa_family) { 997 IPSECLOG(LOG_ERR, 998 "address family mismatched src %u, dst %u.\n", 999 isrc->sa_family, idst->sa_family); 1000 sp = NULL; 1001 goto done; 1002 } 1003 1004 s = pserialize_read_enter(); 1005 SPLIST_READER_FOREACH(sp, dir) { 1006 if (sp->state == IPSEC_SPSTATE_DEAD) 1007 continue; 1008 1009 r1 = r2 = NULL; 1010 for (p = sp->req; p; p = p->next) { 1011 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 1012 continue; 1013 1014 r1 = r2; 1015 r2 = p; 1016 1017 if (!r1) { 1018 /* here we look at address matches only */ 1019 spidx = sp->spidx; 1020 if (isrc->sa_len > sizeof(spidx.src) || 1021 idst->sa_len > sizeof(spidx.dst)) 1022 continue; 1023 memcpy(&spidx.src, isrc, isrc->sa_len); 1024 memcpy(&spidx.dst, idst, idst->sa_len); 1025 if (!key_spidx_match_withmask(&sp->spidx, &spidx)) 1026 continue; 1027 } else { 1028 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) || 1029 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE)) 1030 continue; 1031 } 1032 1033 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) || 1034 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE)) 1035 continue; 1036 1037 goto found; 1038 } 1039 } 1040 sp = NULL; 1041 found: 1042 if (sp) { 1043 sp->lastused = time_uptime; 1044 key_sp_ref(sp, where, tag); 1045 } 1046 pserialize_read_exit(s); 1047 done: 1048 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1049 "DP return SP:%p (ID=%u) refcnt %u\n", 1050 sp, sp ? sp->id : 0, key_sp_refcnt(sp)); 1051 return sp; 1052 } 1053 1054 /* 1055 * allocating an SA entry for an *OUTBOUND* packet. 1056 * checking each request entries in SP, and acquire an SA if need. 1057 * OUT: 0: there are valid requests. 1058 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 1059 */ 1060 int 1061 key_checkrequest(const struct ipsecrequest *isr, const struct secasindex *saidx, 1062 struct secasvar **ret) 1063 { 1064 u_int level; 1065 int error; 1066 struct secasvar *sav; 1067 1068 KASSERT(isr != NULL); 1069 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT || 1070 saidx->mode == IPSEC_MODE_TUNNEL, 1071 "unexpected policy %u", saidx->mode); 1072 1073 /* get current level */ 1074 level = ipsec_get_reqlevel(isr); 1075 1076 /* 1077 * XXX guard against protocol callbacks from the crypto 1078 * thread as they reference ipsecrequest.sav which we 1079 * temporarily null out below. Need to rethink how we 1080 * handle bundled SA's in the callback thread. 1081 */ 1082 1083 sav = key_lookup_sa_bysaidx(saidx); 1084 if (sav != NULL) { 1085 *ret = sav; 1086 return 0; 1087 } 1088 1089 /* there is no SA */ 1090 error = key_acquire(saidx, isr->sp, M_NOWAIT); 1091 if (error != 0) { 1092 /* XXX What should I do ? */ 1093 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", 1094 error); 1095 return error; 1096 } 1097 1098 if (level != IPSEC_LEVEL_REQUIRE) { 1099 /* XXX sigh, the interface to this routine is botched */ 1100 *ret = NULL; 1101 return 0; 1102 } else { 1103 return ENOENT; 1104 } 1105 } 1106 1107 /* 1108 * looking up a SA for policy entry from SAD. 1109 * NOTE: searching SAD of aliving state. 1110 * OUT: NULL: not found. 1111 * others: found and return the pointer. 1112 */ 1113 struct secasvar * 1114 key_lookup_sa_bysaidx(const struct secasindex *saidx) 1115 { 1116 struct secashead *sah; 1117 struct secasvar *sav = NULL; 1118 u_int stateidx, state; 1119 const u_int *saorder_state_valid; 1120 int arraysize; 1121 int s; 1122 1123 s = pserialize_read_enter(); 1124 sah = key_getsah(saidx, CMP_MODE_REQID); 1125 if (sah == NULL) 1126 goto out; 1127 1128 /* 1129 * search a valid state list for outbound packet. 1130 * This search order is important. 1131 */ 1132 if (key_prefered_oldsa) { 1133 saorder_state_valid = saorder_state_valid_prefer_old; 1134 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1135 } else { 1136 saorder_state_valid = saorder_state_valid_prefer_new; 1137 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1138 } 1139 1140 /* search valid state */ 1141 for (stateidx = 0; 1142 stateidx < arraysize; 1143 stateidx++) { 1144 1145 state = saorder_state_valid[stateidx]; 1146 1147 if (key_prefered_oldsa) 1148 sav = SAVLIST_READER_FIRST(sah, state); 1149 else { 1150 /* XXX need O(1) lookup */ 1151 struct secasvar *last = NULL; 1152 1153 SAVLIST_READER_FOREACH(sav, sah, state) 1154 last = sav; 1155 sav = last; 1156 } 1157 if (sav != NULL) { 1158 KEY_SA_REF(sav); 1159 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1160 "DP cause refcnt++:%d SA:%p\n", 1161 key_sa_refcnt(sav), sav); 1162 break; 1163 } 1164 } 1165 out: 1166 pserialize_read_exit(s); 1167 1168 return sav; 1169 } 1170 1171 #if 0 1172 static void 1173 key_sendup_message_delete(struct secasvar *sav) 1174 { 1175 struct mbuf *m, *result = 0; 1176 uint8_t satype; 1177 1178 satype = key_proto2satype(sav->sah->saidx.proto); 1179 if (satype == 0) 1180 goto msgfail; 1181 1182 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1); 1183 if (m == NULL) 1184 goto msgfail; 1185 result = m; 1186 1187 /* set sadb_address for saidx's. */ 1188 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, 1189 _BITS(sav->sah->saidx.src.sa.sa_len), IPSEC_ULPROTO_ANY); 1190 if (m == NULL) 1191 goto msgfail; 1192 m_cat(result, m); 1193 1194 /* set sadb_address for saidx's. */ 1195 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa, 1196 _BITS(sav->sah->saidx.src.sa.sa_len), IPSEC_ULPROTO_ANY); 1197 if (m == NULL) 1198 goto msgfail; 1199 m_cat(result, m); 1200 1201 /* create SA extension */ 1202 m = key_setsadbsa(sav); 1203 if (m == NULL) 1204 goto msgfail; 1205 m_cat(result, m); 1206 1207 if (result->m_len < sizeof(struct sadb_msg)) { 1208 result = m_pullup(result, sizeof(struct sadb_msg)); 1209 if (result == NULL) 1210 goto msgfail; 1211 } 1212 1213 result->m_pkthdr.len = 0; 1214 for (m = result; m; m = m->m_next) 1215 result->m_pkthdr.len += m->m_len; 1216 mtod(result, struct sadb_msg *)->sadb_msg_len = 1217 PFKEY_UNIT64(result->m_pkthdr.len); 1218 1219 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 1220 result = NULL; 1221 msgfail: 1222 if (result) 1223 m_freem(result); 1224 } 1225 #endif 1226 1227 /* 1228 * allocating a usable SA entry for a *INBOUND* packet. 1229 * Must call key_freesav() later. 1230 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1231 * NULL: not found, or error occurred. 1232 * 1233 * In the comparison, no source address is used--for RFC2401 conformance. 1234 * To quote, from section 4.1: 1235 * A security association is uniquely identified by a triple consisting 1236 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1237 * security protocol (AH or ESP) identifier. 1238 * Note that, however, we do need to keep source address in IPsec SA. 1239 * IKE specification and PF_KEY specification do assume that we 1240 * keep source address in IPsec SA. We see a tricky situation here. 1241 * 1242 * sport and dport are used for NAT-T. network order is always used. 1243 */ 1244 struct secasvar * 1245 key_lookup_sa( 1246 const union sockaddr_union *dst, 1247 u_int proto, 1248 u_int32_t spi, 1249 u_int16_t sport, 1250 u_int16_t dport, 1251 const char* where, int tag) 1252 { 1253 struct secasvar *sav; 1254 int chkport; 1255 int s; 1256 1257 int must_check_spi = 1; 1258 int must_check_alg = 0; 1259 u_int16_t cpi = 0; 1260 u_int8_t algo = 0; 1261 uint32_t hash_key = spi; 1262 1263 if ((sport != 0) && (dport != 0)) 1264 chkport = PORT_STRICT; 1265 else 1266 chkport = PORT_NONE; 1267 1268 KASSERT(dst != NULL); 1269 1270 /* 1271 * XXX IPCOMP case 1272 * We use cpi to define spi here. In the case where cpi <= 1273 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not 1274 * the real spi. In this case, don't check the spi but check the 1275 * algorithm 1276 */ 1277 1278 if (proto == IPPROTO_IPCOMP) { 1279 u_int32_t tmp; 1280 tmp = ntohl(spi); 1281 cpi = (u_int16_t) tmp; 1282 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) { 1283 algo = (u_int8_t) cpi; 1284 hash_key = algo; 1285 must_check_spi = 0; 1286 must_check_alg = 1; 1287 } 1288 } 1289 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1290 "DP from %s:%u check_spi=%d, check_alg=%d\n", 1291 where, tag, must_check_spi, must_check_alg); 1292 1293 1294 /* 1295 * searching SAD. 1296 * XXX: to be checked internal IP header somewhere. Also when 1297 * IPsec tunnel packet is received. But ESP tunnel mode is 1298 * encrypted so we can't check internal IP header. 1299 */ 1300 s = pserialize_read_enter(); 1301 SAVLUT_READER_FOREACH(sav, &dst->sa, proto, hash_key) { 1302 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1303 "try match spi %#x, %#x\n", 1304 ntohl(spi), ntohl(sav->spi)); 1305 1306 /* do not return entries w/ unusable state */ 1307 if (!SADB_SASTATE_USABLE_P(sav)) { 1308 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1309 "bad state %d\n", sav->state); 1310 continue; 1311 } 1312 if (proto != sav->sah->saidx.proto) { 1313 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1314 "proto fail %d != %d\n", 1315 proto, sav->sah->saidx.proto); 1316 continue; 1317 } 1318 if (must_check_spi && spi != sav->spi) { 1319 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1320 "spi fail %#x != %#x\n", 1321 ntohl(spi), ntohl(sav->spi)); 1322 continue; 1323 } 1324 /* XXX only on the ipcomp case */ 1325 if (must_check_alg && algo != sav->alg_comp) { 1326 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1327 "algo fail %d != %d\n", 1328 algo, sav->alg_comp); 1329 continue; 1330 } 1331 1332 #if 0 /* don't check src */ 1333 /* Fix port in src->sa */ 1334 1335 /* check src address */ 1336 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE)) 1337 continue; 1338 #endif 1339 /* fix port of dst address XXX*/ 1340 key_porttosaddr(__UNCONST(dst), dport); 1341 /* check dst address */ 1342 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport)) 1343 continue; 1344 key_sa_ref(sav, where, tag); 1345 goto done; 1346 } 1347 sav = NULL; 1348 done: 1349 pserialize_read_exit(s); 1350 1351 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1352 "DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav)); 1353 return sav; 1354 } 1355 1356 static void 1357 key_validate_savlist(const struct secashead *sah, const u_int state) 1358 { 1359 #ifdef DEBUG 1360 struct secasvar *sav, *next; 1361 int s; 1362 1363 /* 1364 * The list should be sorted by lft_c->sadb_lifetime_addtime 1365 * in ascending order. 1366 */ 1367 s = pserialize_read_enter(); 1368 SAVLIST_READER_FOREACH(sav, sah, state) { 1369 next = SAVLIST_READER_NEXT(sav); 1370 if (next != NULL && 1371 sav->lft_c != NULL && next->lft_c != NULL) { 1372 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <= 1373 next->lft_c->sadb_lifetime_addtime, 1374 "savlist is not sorted: sah=%p, state=%d, " 1375 "sav=%" PRIu64 ", next=%" PRIu64, sah, state, 1376 sav->lft_c->sadb_lifetime_addtime, 1377 next->lft_c->sadb_lifetime_addtime); 1378 } 1379 } 1380 pserialize_read_exit(s); 1381 #endif 1382 } 1383 1384 void 1385 key_init_sp(struct secpolicy *sp) 1386 { 1387 1388 ASSERT_SLEEPABLE(); 1389 1390 sp->state = IPSEC_SPSTATE_ALIVE; 1391 if (sp->policy == IPSEC_POLICY_IPSEC) 1392 KASSERT(sp->req != NULL); 1393 localcount_init(&sp->localcount); 1394 SPLIST_ENTRY_INIT(sp); 1395 } 1396 1397 /* 1398 * Must be called in a pserialize read section. A held SP 1399 * must be released by key_sp_unref after use. 1400 */ 1401 void 1402 key_sp_ref(struct secpolicy *sp, const char* where, int tag) 1403 { 1404 1405 localcount_acquire(&sp->localcount); 1406 1407 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1408 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n", 1409 sp, sp->id, where, tag, key_sp_refcnt(sp)); 1410 } 1411 1412 /* 1413 * Must be called without holding key_spd.lock because the lock 1414 * would be held in localcount_release. 1415 */ 1416 void 1417 key_sp_unref(struct secpolicy *sp, const char* where, int tag) 1418 { 1419 1420 KDASSERT(mutex_ownable(&key_spd.lock)); 1421 1422 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1423 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n", 1424 sp, sp->id, where, tag, key_sp_refcnt(sp)); 1425 1426 localcount_release(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); 1427 } 1428 1429 static void 1430 key_init_sav(struct secasvar *sav) 1431 { 1432 1433 ASSERT_SLEEPABLE(); 1434 1435 localcount_init(&sav->localcount); 1436 SAVLIST_ENTRY_INIT(sav); 1437 SAVLUT_ENTRY_INIT(sav); 1438 } 1439 1440 u_int 1441 key_sa_refcnt(const struct secasvar *sav) 1442 { 1443 1444 /* FIXME */ 1445 return 0; 1446 } 1447 1448 void 1449 key_sa_ref(struct secasvar *sav, const char* where, int tag) 1450 { 1451 1452 localcount_acquire(&sav->localcount); 1453 1454 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1455 "DP cause refcnt++: SA:%p from %s:%u\n", 1456 sav, where, tag); 1457 } 1458 1459 void 1460 key_sa_unref(struct secasvar *sav, const char* where, int tag) 1461 { 1462 1463 KDASSERT(mutex_ownable(&key_sad.lock)); 1464 1465 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1466 "DP cause refcnt--: SA:%p from %s:%u\n", 1467 sav, where, tag); 1468 1469 localcount_release(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1470 } 1471 1472 #if 0 1473 /* 1474 * Must be called after calling key_lookup_sp*(). 1475 * For the packet with socket. 1476 */ 1477 static void 1478 key_freeso(struct socket *so) 1479 { 1480 /* sanity check */ 1481 KASSERT(so != NULL); 1482 1483 switch (so->so_proto->pr_domain->dom_family) { 1484 #ifdef INET 1485 case PF_INET: 1486 { 1487 struct inpcb *pcb = sotoinpcb(so); 1488 1489 /* Does it have a PCB ? */ 1490 if (pcb == NULL) 1491 return; 1492 1493 struct inpcbpolicy *sp = pcb->inp_sp; 1494 key_freesp_so(&sp->sp_in); 1495 key_freesp_so(&sp->sp_out); 1496 } 1497 break; 1498 #endif 1499 #ifdef INET6 1500 case PF_INET6: 1501 { 1502 #ifdef HAVE_NRL_INPCB 1503 struct inpcb *pcb = sotoinpcb(so); 1504 struct inpcbpolicy *sp = pcb->inp_sp; 1505 1506 /* Does it have a PCB ? */ 1507 if (pcb == NULL) 1508 return; 1509 key_freesp_so(&sp->sp_in); 1510 key_freesp_so(&sp->sp_out); 1511 #else 1512 struct in6pcb *pcb = sotoin6pcb(so); 1513 1514 /* Does it have a PCB ? */ 1515 if (pcb == NULL) 1516 return; 1517 key_freesp_so(&pcb->in6p_sp->sp_in); 1518 key_freesp_so(&pcb->in6p_sp->sp_out); 1519 #endif 1520 } 1521 break; 1522 #endif /* INET6 */ 1523 default: 1524 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n", 1525 so->so_proto->pr_domain->dom_family); 1526 return; 1527 } 1528 } 1529 1530 static void 1531 key_freesp_so(struct secpolicy **sp) 1532 { 1533 1534 KASSERT(sp != NULL); 1535 KASSERT(*sp != NULL); 1536 1537 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1538 (*sp)->policy == IPSEC_POLICY_BYPASS) 1539 return; 1540 1541 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC, 1542 "invalid policy %u", (*sp)->policy); 1543 KEY_SP_UNREF(&sp); 1544 } 1545 #endif 1546 1547 static void 1548 key_sad_pserialize_perform(void) 1549 { 1550 1551 KASSERT(mutex_owned(&key_sad.lock)); 1552 1553 while (key_sad.psz_performing) 1554 cv_wait(&key_sad.cv_psz, &key_sad.lock); 1555 key_sad.psz_performing = true; 1556 mutex_exit(&key_sad.lock); 1557 1558 pserialize_perform(key_sad.psz); 1559 1560 mutex_enter(&key_sad.lock); 1561 key_sad.psz_performing = false; 1562 cv_broadcast(&key_sad.cv_psz); 1563 } 1564 1565 /* 1566 * Remove the sav from the savlist of its sah and wait for references to the sav 1567 * to be released. key_sad.lock must be held. 1568 */ 1569 static void 1570 key_unlink_sav(struct secasvar *sav) 1571 { 1572 1573 KASSERT(mutex_owned(&key_sad.lock)); 1574 1575 SAVLIST_WRITER_REMOVE(sav); 1576 SAVLUT_WRITER_REMOVE(sav); 1577 1578 KDASSERT(mutex_ownable(softnet_lock)); 1579 key_sad_pserialize_perform(); 1580 1581 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1582 } 1583 1584 /* 1585 * Destroy an sav where the sav must be unlinked from an sah 1586 * by say key_unlink_sav. 1587 */ 1588 static void 1589 key_destroy_sav(struct secasvar *sav) 1590 { 1591 1592 ASSERT_SLEEPABLE(); 1593 1594 localcount_fini(&sav->localcount); 1595 SAVLIST_ENTRY_DESTROY(sav); 1596 1597 key_delsav(sav); 1598 } 1599 1600 /* 1601 * Destroy sav with holding its reference. 1602 */ 1603 static void 1604 key_destroy_sav_with_ref(struct secasvar *sav) 1605 { 1606 1607 ASSERT_SLEEPABLE(); 1608 1609 mutex_enter(&key_sad.lock); 1610 sav->state = SADB_SASTATE_DEAD; 1611 SAVLIST_WRITER_REMOVE(sav); 1612 SAVLUT_WRITER_REMOVE(sav); 1613 mutex_exit(&key_sad.lock); 1614 1615 /* We cannot unref with holding key_sad.lock */ 1616 KEY_SA_UNREF(&sav); 1617 1618 mutex_enter(&key_sad.lock); 1619 KDASSERT(mutex_ownable(softnet_lock)); 1620 key_sad_pserialize_perform(); 1621 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1622 mutex_exit(&key_sad.lock); 1623 1624 key_destroy_sav(sav); 1625 } 1626 1627 /* %%% SPD management */ 1628 /* 1629 * free security policy entry. 1630 */ 1631 static void 1632 key_destroy_sp(struct secpolicy *sp) 1633 { 1634 1635 SPLIST_ENTRY_DESTROY(sp); 1636 localcount_fini(&sp->localcount); 1637 1638 key_free_sp(sp); 1639 1640 key_update_used(); 1641 } 1642 1643 void 1644 key_free_sp(struct secpolicy *sp) 1645 { 1646 struct ipsecrequest *isr = sp->req, *nextisr; 1647 1648 while (isr != NULL) { 1649 nextisr = isr->next; 1650 kmem_free(isr, sizeof(*isr)); 1651 isr = nextisr; 1652 } 1653 1654 kmem_free(sp, sizeof(*sp)); 1655 } 1656 1657 void 1658 key_socksplist_add(struct secpolicy *sp) 1659 { 1660 1661 mutex_enter(&key_spd.lock); 1662 PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry); 1663 mutex_exit(&key_spd.lock); 1664 1665 key_update_used(); 1666 } 1667 1668 /* 1669 * search SPD 1670 * OUT: NULL : not found 1671 * others : found, pointer to a SP. 1672 */ 1673 static struct secpolicy * 1674 key_getsp(const struct secpolicyindex *spidx) 1675 { 1676 struct secpolicy *sp; 1677 int s; 1678 1679 KASSERT(spidx != NULL); 1680 1681 s = pserialize_read_enter(); 1682 SPLIST_READER_FOREACH(sp, spidx->dir) { 1683 if (sp->state == IPSEC_SPSTATE_DEAD) 1684 continue; 1685 if (key_spidx_match_exactly(spidx, &sp->spidx)) { 1686 KEY_SP_REF(sp); 1687 pserialize_read_exit(s); 1688 return sp; 1689 } 1690 } 1691 pserialize_read_exit(s); 1692 1693 return NULL; 1694 } 1695 1696 /* 1697 * search SPD and remove found SP 1698 * OUT: NULL : not found 1699 * others : found, pointer to a SP. 1700 */ 1701 static struct secpolicy * 1702 key_lookup_and_remove_sp(const struct secpolicyindex *spidx, bool from_kernel) 1703 { 1704 struct secpolicy *sp = NULL; 1705 1706 mutex_enter(&key_spd.lock); 1707 SPLIST_WRITER_FOREACH(sp, spidx->dir) { 1708 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 1709 /* 1710 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1711 * removed by userland programs. 1712 */ 1713 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1714 continue; 1715 if (key_spidx_match_exactly(spidx, &sp->spidx)) { 1716 key_unlink_sp(sp); 1717 goto out; 1718 } 1719 } 1720 sp = NULL; 1721 out: 1722 mutex_exit(&key_spd.lock); 1723 1724 return sp; 1725 } 1726 1727 /* 1728 * get SP by index. 1729 * OUT: NULL : not found 1730 * others : found, pointer to a SP. 1731 */ 1732 static struct secpolicy * 1733 key_getspbyid(u_int32_t id) 1734 { 1735 struct secpolicy *sp; 1736 int s; 1737 1738 s = pserialize_read_enter(); 1739 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { 1740 if (sp->state == IPSEC_SPSTATE_DEAD) 1741 continue; 1742 if (sp->id == id) { 1743 KEY_SP_REF(sp); 1744 goto out; 1745 } 1746 } 1747 1748 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { 1749 if (sp->state == IPSEC_SPSTATE_DEAD) 1750 continue; 1751 if (sp->id == id) { 1752 KEY_SP_REF(sp); 1753 goto out; 1754 } 1755 } 1756 out: 1757 pserialize_read_exit(s); 1758 return sp; 1759 } 1760 1761 /* 1762 * get SP by index, remove and return it. 1763 * OUT: NULL : not found 1764 * others : found, pointer to a SP. 1765 */ 1766 static struct secpolicy * 1767 key_lookupbyid_and_remove_sp(u_int32_t id, bool from_kernel) 1768 { 1769 struct secpolicy *sp; 1770 1771 mutex_enter(&key_spd.lock); 1772 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { 1773 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 1774 /* 1775 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1776 * removed by userland programs. 1777 */ 1778 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1779 continue; 1780 if (sp->id == id) 1781 goto out; 1782 } 1783 1784 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { 1785 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 1786 /* 1787 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1788 * removed by userland programs. 1789 */ 1790 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1791 continue; 1792 if (sp->id == id) 1793 goto out; 1794 } 1795 out: 1796 if (sp != NULL) 1797 key_unlink_sp(sp); 1798 mutex_exit(&key_spd.lock); 1799 return sp; 1800 } 1801 1802 struct secpolicy * 1803 key_newsp(const char* where, int tag) 1804 { 1805 struct secpolicy *newsp = NULL; 1806 1807 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP); 1808 1809 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1810 "DP from %s:%u return SP:%p\n", where, tag, newsp); 1811 return newsp; 1812 } 1813 1814 /* 1815 * create secpolicy structure from sadb_x_policy structure. 1816 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1817 * so must be set properly later. 1818 */ 1819 static struct secpolicy * 1820 _key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error, 1821 bool from_kernel) 1822 { 1823 struct secpolicy *newsp; 1824 1825 KASSERT(!cpu_softintr_p()); 1826 KASSERT(xpl0 != NULL); 1827 KASSERT(len >= sizeof(*xpl0)); 1828 1829 if (len != PFKEY_EXTLEN(xpl0)) { 1830 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); 1831 *error = EINVAL; 1832 return NULL; 1833 } 1834 1835 newsp = KEY_NEWSP(); 1836 if (newsp == NULL) { 1837 *error = ENOBUFS; 1838 return NULL; 1839 } 1840 1841 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1842 newsp->policy = xpl0->sadb_x_policy_type; 1843 1844 /* check policy */ 1845 switch (xpl0->sadb_x_policy_type) { 1846 case IPSEC_POLICY_DISCARD: 1847 case IPSEC_POLICY_NONE: 1848 case IPSEC_POLICY_ENTRUST: 1849 case IPSEC_POLICY_BYPASS: 1850 newsp->req = NULL; 1851 *error = 0; 1852 return newsp; 1853 1854 case IPSEC_POLICY_IPSEC: 1855 /* Continued */ 1856 break; 1857 default: 1858 IPSECLOG(LOG_DEBUG, "invalid policy type.\n"); 1859 key_free_sp(newsp); 1860 *error = EINVAL; 1861 return NULL; 1862 } 1863 1864 /* IPSEC_POLICY_IPSEC */ 1865 { 1866 int tlen; 1867 const struct sadb_x_ipsecrequest *xisr; 1868 uint16_t xisr_reqid; 1869 struct ipsecrequest **p_isr = &newsp->req; 1870 1871 /* validity check */ 1872 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1873 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); 1874 *error = EINVAL; 1875 goto free_exit; 1876 } 1877 1878 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1879 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1); 1880 1881 while (tlen > 0) { 1882 /* length check */ 1883 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1884 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n"); 1885 *error = EINVAL; 1886 goto free_exit; 1887 } 1888 1889 /* allocate request buffer */ 1890 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP); 1891 1892 /* set values */ 1893 (*p_isr)->next = NULL; 1894 1895 switch (xisr->sadb_x_ipsecrequest_proto) { 1896 case IPPROTO_ESP: 1897 case IPPROTO_AH: 1898 case IPPROTO_IPCOMP: 1899 break; 1900 default: 1901 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n", 1902 xisr->sadb_x_ipsecrequest_proto); 1903 *error = EPROTONOSUPPORT; 1904 goto free_exit; 1905 } 1906 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1907 1908 switch (xisr->sadb_x_ipsecrequest_mode) { 1909 case IPSEC_MODE_TRANSPORT: 1910 case IPSEC_MODE_TUNNEL: 1911 break; 1912 case IPSEC_MODE_ANY: 1913 default: 1914 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n", 1915 xisr->sadb_x_ipsecrequest_mode); 1916 *error = EINVAL; 1917 goto free_exit; 1918 } 1919 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1920 1921 switch (xisr->sadb_x_ipsecrequest_level) { 1922 case IPSEC_LEVEL_DEFAULT: 1923 case IPSEC_LEVEL_USE: 1924 case IPSEC_LEVEL_REQUIRE: 1925 break; 1926 case IPSEC_LEVEL_UNIQUE: 1927 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid; 1928 /* validity check */ 1929 /* 1930 * case 1) from_kernel == false 1931 * That means the request comes from userland. 1932 * If range violation of reqid, kernel will 1933 * update it, don't refuse it. 1934 * 1935 * case 2) from_kernel == true 1936 * That means the request comes from kernel 1937 * (e.g. ipsec(4) I/F). 1938 * Use thre requested reqid to avoid inconsistency 1939 * between kernel's reqid and the reqid in pf_key 1940 * message sent to userland. The pf_key message is 1941 * built by diverting request mbuf. 1942 */ 1943 if (!from_kernel && 1944 xisr_reqid > IPSEC_MANUAL_REQID_MAX) { 1945 IPSECLOG(LOG_DEBUG, 1946 "reqid=%d range " 1947 "violation, updated by kernel.\n", 1948 xisr_reqid); 1949 xisr_reqid = 0; 1950 } 1951 1952 /* allocate new reqid id if reqid is zero. */ 1953 if (xisr_reqid == 0) { 1954 u_int16_t reqid = key_newreqid(); 1955 if (reqid == 0) { 1956 *error = ENOBUFS; 1957 goto free_exit; 1958 } 1959 (*p_isr)->saidx.reqid = reqid; 1960 } else { 1961 /* set it for manual keying. */ 1962 (*p_isr)->saidx.reqid = xisr_reqid; 1963 } 1964 break; 1965 1966 default: 1967 IPSECLOG(LOG_DEBUG, "invalid level=%u\n", 1968 xisr->sadb_x_ipsecrequest_level); 1969 *error = EINVAL; 1970 goto free_exit; 1971 } 1972 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1973 1974 /* set IP addresses if there */ 1975 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1976 const struct sockaddr *paddr; 1977 1978 paddr = (const struct sockaddr *)(xisr + 1); 1979 1980 /* validity check */ 1981 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) { 1982 IPSECLOG(LOG_DEBUG, "invalid request " 1983 "address length.\n"); 1984 *error = EINVAL; 1985 goto free_exit; 1986 } 1987 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len); 1988 1989 paddr = (const struct sockaddr *)((const char *)paddr 1990 + paddr->sa_len); 1991 1992 /* validity check */ 1993 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) { 1994 IPSECLOG(LOG_DEBUG, "invalid request " 1995 "address length.\n"); 1996 *error = EINVAL; 1997 goto free_exit; 1998 } 1999 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len); 2000 } 2001 2002 (*p_isr)->sp = newsp; 2003 2004 /* initialization for the next. */ 2005 p_isr = &(*p_isr)->next; 2006 tlen -= xisr->sadb_x_ipsecrequest_len; 2007 2008 /* validity check */ 2009 if (tlen < 0) { 2010 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n"); 2011 *error = EINVAL; 2012 goto free_exit; 2013 } 2014 2015 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr + 2016 xisr->sadb_x_ipsecrequest_len); 2017 } 2018 } 2019 2020 *error = 0; 2021 return newsp; 2022 2023 free_exit: 2024 key_free_sp(newsp); 2025 return NULL; 2026 } 2027 2028 struct secpolicy * 2029 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error) 2030 { 2031 2032 return _key_msg2sp(xpl0, len, error, false); 2033 } 2034 2035 u_int16_t 2036 key_newreqid(void) 2037 { 2038 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 2039 2040 auto_reqid = (auto_reqid == 0xffff ? 2041 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 2042 2043 /* XXX should be unique check */ 2044 2045 return auto_reqid; 2046 } 2047 2048 /* 2049 * copy secpolicy struct to sadb_x_policy structure indicated. 2050 */ 2051 struct mbuf * 2052 key_sp2msg(const struct secpolicy *sp, int mflag) 2053 { 2054 struct sadb_x_policy *xpl; 2055 int tlen; 2056 char *p; 2057 struct mbuf *m; 2058 2059 KASSERT(sp != NULL); 2060 2061 tlen = key_getspreqmsglen(sp); 2062 2063 m = key_alloc_mbuf(tlen, mflag); 2064 if (!m || m->m_next) { /*XXX*/ 2065 if (m) 2066 m_freem(m); 2067 return NULL; 2068 } 2069 2070 m->m_len = tlen; 2071 m->m_next = NULL; 2072 xpl = mtod(m, struct sadb_x_policy *); 2073 memset(xpl, 0, tlen); 2074 2075 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 2076 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 2077 xpl->sadb_x_policy_type = sp->policy; 2078 xpl->sadb_x_policy_dir = sp->spidx.dir; 2079 xpl->sadb_x_policy_id = sp->id; 2080 p = (char *)xpl + sizeof(*xpl); 2081 2082 /* if is the policy for ipsec ? */ 2083 if (sp->policy == IPSEC_POLICY_IPSEC) { 2084 struct sadb_x_ipsecrequest *xisr; 2085 struct ipsecrequest *isr; 2086 2087 for (isr = sp->req; isr != NULL; isr = isr->next) { 2088 2089 xisr = (struct sadb_x_ipsecrequest *)p; 2090 2091 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 2092 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 2093 xisr->sadb_x_ipsecrequest_level = isr->level; 2094 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 2095 2096 p += sizeof(*xisr); 2097 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len); 2098 p += isr->saidx.src.sa.sa_len; 2099 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len); 2100 p += isr->saidx.src.sa.sa_len; 2101 2102 xisr->sadb_x_ipsecrequest_len = 2103 PFKEY_ALIGN8(sizeof(*xisr) 2104 + isr->saidx.src.sa.sa_len 2105 + isr->saidx.dst.sa.sa_len); 2106 } 2107 } 2108 2109 return m; 2110 } 2111 2112 /* 2113 * m will not be freed nor modified. It never return NULL. 2114 * If it returns a mbuf of M_PKTHDR, the mbuf ensures to have 2115 * contiguous length at least sizeof(struct sadb_msg). 2116 */ 2117 static struct mbuf * 2118 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 2119 int ndeep, int nitem, ...) 2120 { 2121 va_list ap; 2122 int idx; 2123 int i; 2124 struct mbuf *result = NULL, *n; 2125 int len; 2126 2127 KASSERT(m != NULL); 2128 KASSERT(mhp != NULL); 2129 KASSERT(!cpu_softintr_p()); 2130 2131 va_start(ap, nitem); 2132 for (i = 0; i < nitem; i++) { 2133 idx = va_arg(ap, int); 2134 KASSERT(idx >= 0); 2135 KASSERT(idx <= SADB_EXT_MAX); 2136 /* don't attempt to pull empty extension */ 2137 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 2138 continue; 2139 if (idx != SADB_EXT_RESERVED && 2140 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 2141 continue; 2142 2143 if (idx == SADB_EXT_RESERVED) { 2144 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN); 2145 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2146 MGETHDR(n, M_WAITOK, MT_DATA); 2147 n->m_len = len; 2148 n->m_next = NULL; 2149 m_copydata(m, 0, sizeof(struct sadb_msg), 2150 mtod(n, void *)); 2151 } else if (i < ndeep) { 2152 len = mhp->extlen[idx]; 2153 n = key_alloc_mbuf(len, M_WAITOK); 2154 KASSERT(n->m_next == NULL); 2155 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 2156 mtod(n, void *)); 2157 } else { 2158 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 2159 M_WAITOK); 2160 } 2161 KASSERT(n != NULL); 2162 2163 if (result) 2164 m_cat(result, n); 2165 else 2166 result = n; 2167 } 2168 va_end(ap); 2169 2170 KASSERT(result != NULL); 2171 if ((result->m_flags & M_PKTHDR) != 0) { 2172 result->m_pkthdr.len = 0; 2173 for (n = result; n; n = n->m_next) 2174 result->m_pkthdr.len += n->m_len; 2175 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 2176 } 2177 2178 return result; 2179 } 2180 2181 /* 2182 * The argument _sp must not overwrite until SP is created and registered 2183 * successfully. 2184 */ 2185 static int 2186 key_spdadd(struct socket *so, struct mbuf *m, 2187 const struct sadb_msghdr *mhp, struct secpolicy **_sp, 2188 bool from_kernel) 2189 { 2190 const struct sockaddr *src, *dst; 2191 const struct sadb_x_policy *xpl0; 2192 struct sadb_x_policy *xpl; 2193 const struct sadb_lifetime *lft = NULL; 2194 struct secpolicyindex spidx; 2195 struct secpolicy *newsp; 2196 int error; 2197 uint32_t sadb_x_policy_id; 2198 2199 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2200 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2201 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2202 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2203 return key_senderror(so, m, EINVAL); 2204 } 2205 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2206 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2207 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2208 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2209 return key_senderror(so, m, EINVAL); 2210 } 2211 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 2212 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < 2213 sizeof(struct sadb_lifetime)) { 2214 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2215 return key_senderror(so, m, EINVAL); 2216 } 2217 lft = mhp->ext[SADB_EXT_LIFETIME_HARD]; 2218 } 2219 2220 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 2221 2222 /* checking the direciton. */ 2223 switch (xpl0->sadb_x_policy_dir) { 2224 case IPSEC_DIR_INBOUND: 2225 case IPSEC_DIR_OUTBOUND: 2226 break; 2227 default: 2228 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); 2229 return key_senderror(so, m, EINVAL); 2230 } 2231 2232 /* check policy */ 2233 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */ 2234 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST || 2235 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 2236 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n"); 2237 return key_senderror(so, m, EINVAL); 2238 } 2239 2240 /* policy requests are mandatory when action is ipsec. */ 2241 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX && 2242 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 2243 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 2244 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n"); 2245 return key_senderror(so, m, EINVAL); 2246 } 2247 2248 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 2249 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 2250 2251 /* sanity check on addr pair */ 2252 if (src->sa_family != dst->sa_family) 2253 return key_senderror(so, m, EINVAL); 2254 if (src->sa_len != dst->sa_len) 2255 return key_senderror(so, m, EINVAL); 2256 2257 key_init_spidx_bymsghdr(&spidx, mhp); 2258 2259 /* 2260 * checking there is SP already or not. 2261 * SPDUPDATE doesn't depend on whether there is a SP or not. 2262 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 2263 * then error. 2264 */ 2265 { 2266 struct secpolicy *sp; 2267 2268 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2269 sp = key_lookup_and_remove_sp(&spidx, from_kernel); 2270 if (sp != NULL) 2271 key_destroy_sp(sp); 2272 } else { 2273 sp = key_getsp(&spidx); 2274 if (sp != NULL) { 2275 KEY_SP_UNREF(&sp); 2276 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n"); 2277 return key_senderror(so, m, EEXIST); 2278 } 2279 } 2280 } 2281 2282 /* allocation new SP entry */ 2283 newsp = _key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error, from_kernel); 2284 if (newsp == NULL) { 2285 return key_senderror(so, m, error); 2286 } 2287 2288 newsp->id = key_getnewspid(); 2289 if (newsp->id == 0) { 2290 kmem_free(newsp, sizeof(*newsp)); 2291 return key_senderror(so, m, ENOBUFS); 2292 } 2293 2294 newsp->spidx = spidx; 2295 newsp->created = time_uptime; 2296 newsp->lastused = newsp->created; 2297 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 2298 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 2299 if (from_kernel) 2300 newsp->origin = IPSEC_SPORIGIN_KERNEL; 2301 else 2302 newsp->origin = IPSEC_SPORIGIN_USER; 2303 2304 key_init_sp(newsp); 2305 if (from_kernel) 2306 KEY_SP_REF(newsp); 2307 2308 sadb_x_policy_id = newsp->id; 2309 2310 if (_sp != NULL) 2311 *_sp = newsp; 2312 2313 mutex_enter(&key_spd.lock); 2314 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp); 2315 mutex_exit(&key_spd.lock); 2316 /* 2317 * We don't have a reference to newsp, so we must not touch newsp from 2318 * now on. If you want to do, you must take a reference beforehand. 2319 */ 2320 newsp = NULL; 2321 2322 #ifdef notyet 2323 /* delete the entry in key_misc.spacqlist */ 2324 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2325 struct secspacq *spacq = key_getspacq(&spidx); 2326 if (spacq != NULL) { 2327 /* reset counter in order to deletion by timehandler. */ 2328 spacq->created = time_uptime; 2329 spacq->count = 0; 2330 } 2331 } 2332 #endif 2333 2334 /* Invalidate all cached SPD pointers in the PCBs. */ 2335 ipsec_invalpcbcacheall(); 2336 2337 #if defined(GATEWAY) 2338 /* Invalidate the ipflow cache, as well. */ 2339 ipflow_invalidate_all(0); 2340 #ifdef INET6 2341 if (in6_present) 2342 ip6flow_invalidate_all(0); 2343 #endif /* INET6 */ 2344 #endif /* GATEWAY */ 2345 2346 key_update_used(); 2347 2348 { 2349 struct mbuf *n, *mpolicy; 2350 int off; 2351 2352 /* create new sadb_msg to reply. */ 2353 if (lft) { 2354 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 2355 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 2356 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2357 } else { 2358 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 2359 SADB_X_EXT_POLICY, 2360 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2361 } 2362 2363 key_fill_replymsg(n, 0); 2364 off = 0; 2365 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 2366 sizeof(*xpl), &off); 2367 if (mpolicy == NULL) { 2368 /* n is already freed */ 2369 /* 2370 * valid sp has been created, so we does not overwrite _sp 2371 * NULL here. let caller decide to use the sp or not. 2372 */ 2373 return key_senderror(so, m, ENOBUFS); 2374 } 2375 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off); 2376 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 2377 m_freem(n); 2378 /* ditto */ 2379 return key_senderror(so, m, EINVAL); 2380 } 2381 2382 xpl->sadb_x_policy_id = sadb_x_policy_id; 2383 2384 m_freem(m); 2385 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2386 } 2387 } 2388 2389 /* 2390 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 2391 * add an entry to SP database, when received 2392 * <base, address(SD), (lifetime(H),) policy> 2393 * from the user(?). 2394 * Adding to SP database, 2395 * and send 2396 * <base, address(SD), (lifetime(H),) policy> 2397 * to the socket which was send. 2398 * 2399 * SPDADD set a unique policy entry. 2400 * SPDSETIDX like SPDADD without a part of policy requests. 2401 * SPDUPDATE replace a unique policy entry. 2402 * 2403 * m will always be freed. 2404 */ 2405 static int 2406 key_api_spdadd(struct socket *so, struct mbuf *m, 2407 const struct sadb_msghdr *mhp) 2408 { 2409 2410 return key_spdadd(so, m, mhp, NULL, false); 2411 } 2412 2413 struct secpolicy * 2414 key_kpi_spdadd(struct mbuf *m) 2415 { 2416 struct sadb_msghdr mh; 2417 int error; 2418 struct secpolicy *sp = NULL; 2419 2420 error = key_align(m, &mh); 2421 if (error) 2422 return NULL; 2423 2424 error = key_spdadd(NULL, m, &mh, &sp, true); 2425 if (error) { 2426 /* 2427 * Currently, when key_spdadd() cannot send a PFKEY message 2428 * which means SP has been created, key_spdadd() returns error 2429 * although SP is created successfully. 2430 * Kernel components would not care PFKEY messages, so return 2431 * the "sp" regardless of error code. key_spdadd() overwrites 2432 * the argument only if SP is created successfully. 2433 */ 2434 } 2435 return sp; 2436 } 2437 2438 /* 2439 * get new policy id. 2440 * OUT: 2441 * 0: failure. 2442 * others: success. 2443 */ 2444 static u_int32_t 2445 key_getnewspid(void) 2446 { 2447 u_int32_t newid = 0; 2448 int count = key_spi_trycnt; /* XXX */ 2449 struct secpolicy *sp; 2450 2451 /* when requesting to allocate spi ranged */ 2452 while (count--) { 2453 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); 2454 2455 sp = key_getspbyid(newid); 2456 if (sp == NULL) 2457 break; 2458 2459 KEY_SP_UNREF(&sp); 2460 } 2461 2462 if (count == 0 || newid == 0) { 2463 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n"); 2464 return 0; 2465 } 2466 2467 return newid; 2468 } 2469 2470 /* 2471 * SADB_SPDDELETE processing 2472 * receive 2473 * <base, address(SD), policy(*)> 2474 * from the user(?), and set SADB_SASTATE_DEAD, 2475 * and send, 2476 * <base, address(SD), policy(*)> 2477 * to the ikmpd. 2478 * policy(*) including direction of policy. 2479 * 2480 * m will always be freed. 2481 */ 2482 static int 2483 key_api_spddelete(struct socket *so, struct mbuf *m, 2484 const struct sadb_msghdr *mhp) 2485 { 2486 struct sadb_x_policy *xpl0; 2487 struct secpolicyindex spidx; 2488 struct secpolicy *sp; 2489 2490 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2491 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2492 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2493 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2494 return key_senderror(so, m, EINVAL); 2495 } 2496 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2497 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2498 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2499 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2500 return key_senderror(so, m, EINVAL); 2501 } 2502 2503 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 2504 2505 /* checking the directon. */ 2506 switch (xpl0->sadb_x_policy_dir) { 2507 case IPSEC_DIR_INBOUND: 2508 case IPSEC_DIR_OUTBOUND: 2509 break; 2510 default: 2511 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); 2512 return key_senderror(so, m, EINVAL); 2513 } 2514 2515 /* make secindex */ 2516 key_init_spidx_bymsghdr(&spidx, mhp); 2517 2518 /* Is there SP in SPD ? */ 2519 sp = key_lookup_and_remove_sp(&spidx, false); 2520 if (sp == NULL) { 2521 IPSECLOG(LOG_DEBUG, "no SP found.\n"); 2522 return key_senderror(so, m, EINVAL); 2523 } 2524 2525 /* save policy id to buffer to be returned. */ 2526 xpl0->sadb_x_policy_id = sp->id; 2527 2528 key_destroy_sp(sp); 2529 2530 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2531 2532 { 2533 struct mbuf *n; 2534 2535 /* create new sadb_msg to reply. */ 2536 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2537 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2538 key_fill_replymsg(n, 0); 2539 m_freem(m); 2540 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2541 } 2542 } 2543 2544 static struct mbuf * 2545 key_alloc_mbuf_simple(int len, int mflag) 2546 { 2547 struct mbuf *n; 2548 2549 KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p())); 2550 2551 MGETHDR(n, mflag, MT_DATA); 2552 if (n && len > MHLEN) { 2553 MCLGET(n, mflag); 2554 if ((n->m_flags & M_EXT) == 0) { 2555 m_freem(n); 2556 n = NULL; 2557 } 2558 } 2559 return n; 2560 } 2561 2562 /* 2563 * SADB_SPDDELETE2 processing 2564 * receive 2565 * <base, policy(*)> 2566 * from the user(?), and set SADB_SASTATE_DEAD, 2567 * and send, 2568 * <base, policy(*)> 2569 * to the ikmpd. 2570 * policy(*) including direction of policy. 2571 * 2572 * m will always be freed. 2573 */ 2574 static int 2575 key_spddelete2(struct socket *so, struct mbuf *m, 2576 const struct sadb_msghdr *mhp, bool from_kernel) 2577 { 2578 u_int32_t id; 2579 struct secpolicy *sp; 2580 const struct sadb_x_policy *xpl; 2581 2582 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2583 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2584 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2585 return key_senderror(so, m, EINVAL); 2586 } 2587 2588 xpl = mhp->ext[SADB_X_EXT_POLICY]; 2589 id = xpl->sadb_x_policy_id; 2590 2591 /* Is there SP in SPD ? */ 2592 sp = key_lookupbyid_and_remove_sp(id, from_kernel); 2593 if (sp == NULL) { 2594 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); 2595 return key_senderror(so, m, EINVAL); 2596 } 2597 2598 key_destroy_sp(sp); 2599 2600 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2601 2602 { 2603 struct mbuf *n, *nn; 2604 int off, len; 2605 2606 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); 2607 2608 /* create new sadb_msg to reply. */ 2609 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2610 2611 n = key_alloc_mbuf_simple(len, M_WAITOK); 2612 n->m_len = len; 2613 n->m_next = NULL; 2614 off = 0; 2615 2616 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 2617 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2618 2619 KASSERTMSG(off == len, "length inconsistency"); 2620 2621 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2622 mhp->extlen[SADB_X_EXT_POLICY], M_WAITOK); 2623 2624 n->m_pkthdr.len = 0; 2625 for (nn = n; nn; nn = nn->m_next) 2626 n->m_pkthdr.len += nn->m_len; 2627 2628 key_fill_replymsg(n, 0); 2629 m_freem(m); 2630 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2631 } 2632 } 2633 2634 /* 2635 * SADB_SPDDELETE2 processing 2636 * receive 2637 * <base, policy(*)> 2638 * from the user(?), and set SADB_SASTATE_DEAD, 2639 * and send, 2640 * <base, policy(*)> 2641 * to the ikmpd. 2642 * policy(*) including direction of policy. 2643 * 2644 * m will always be freed. 2645 */ 2646 static int 2647 key_api_spddelete2(struct socket *so, struct mbuf *m, 2648 const struct sadb_msghdr *mhp) 2649 { 2650 2651 return key_spddelete2(so, m, mhp, false); 2652 } 2653 2654 int 2655 key_kpi_spddelete2(struct mbuf *m) 2656 { 2657 struct sadb_msghdr mh; 2658 int error; 2659 2660 error = key_align(m, &mh); 2661 if (error) 2662 return EINVAL; 2663 2664 return key_spddelete2(NULL, m, &mh, true); 2665 } 2666 2667 /* 2668 * SADB_X_GET processing 2669 * receive 2670 * <base, policy(*)> 2671 * from the user(?), 2672 * and send, 2673 * <base, address(SD), policy> 2674 * to the ikmpd. 2675 * policy(*) including direction of policy. 2676 * 2677 * m will always be freed. 2678 */ 2679 static int 2680 key_api_spdget(struct socket *so, struct mbuf *m, 2681 const struct sadb_msghdr *mhp) 2682 { 2683 u_int32_t id; 2684 struct secpolicy *sp; 2685 struct mbuf *n; 2686 const struct sadb_x_policy *xpl; 2687 2688 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2689 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2690 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2691 return key_senderror(so, m, EINVAL); 2692 } 2693 2694 xpl = mhp->ext[SADB_X_EXT_POLICY]; 2695 id = xpl->sadb_x_policy_id; 2696 2697 /* Is there SP in SPD ? */ 2698 sp = key_getspbyid(id); 2699 if (sp == NULL) { 2700 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); 2701 return key_senderror(so, m, ENOENT); 2702 } 2703 2704 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, 2705 mhp->msg->sadb_msg_pid); 2706 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */ 2707 m_freem(m); 2708 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2709 } 2710 2711 #ifdef notyet 2712 /* 2713 * SADB_X_SPDACQUIRE processing. 2714 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2715 * send 2716 * <base, policy(*)> 2717 * to KMD, and expect to receive 2718 * <base> with SADB_X_SPDACQUIRE if error occurred, 2719 * or 2720 * <base, policy> 2721 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2722 * policy(*) is without policy requests. 2723 * 2724 * 0 : succeed 2725 * others: error number 2726 */ 2727 int 2728 key_spdacquire(const struct secpolicy *sp) 2729 { 2730 struct mbuf *result = NULL, *m; 2731 struct secspacq *newspacq; 2732 int error; 2733 2734 KASSERT(sp != NULL); 2735 KASSERTMSG(sp->req == NULL, "called but there is request"); 2736 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC, 2737 "policy mismathed. IPsec is expected"); 2738 2739 /* Get an entry to check whether sent message or not. */ 2740 newspacq = key_getspacq(&sp->spidx); 2741 if (newspacq != NULL) { 2742 if (key_blockacq_count < newspacq->count) { 2743 /* reset counter and do send message. */ 2744 newspacq->count = 0; 2745 } else { 2746 /* increment counter and do nothing. */ 2747 newspacq->count++; 2748 return 0; 2749 } 2750 } else { 2751 /* make new entry for blocking to send SADB_ACQUIRE. */ 2752 newspacq = key_newspacq(&sp->spidx); 2753 if (newspacq == NULL) 2754 return ENOBUFS; 2755 2756 /* add to key_misc.acqlist */ 2757 LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain); 2758 } 2759 2760 /* create new sadb_msg to reply. */ 2761 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2762 if (!m) { 2763 error = ENOBUFS; 2764 goto fail; 2765 } 2766 result = m; 2767 2768 result->m_pkthdr.len = 0; 2769 for (m = result; m; m = m->m_next) 2770 result->m_pkthdr.len += m->m_len; 2771 2772 mtod(result, struct sadb_msg *)->sadb_msg_len = 2773 PFKEY_UNIT64(result->m_pkthdr.len); 2774 2775 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2776 2777 fail: 2778 if (result) 2779 m_freem(result); 2780 return error; 2781 } 2782 #endif /* notyet */ 2783 2784 /* 2785 * SADB_SPDFLUSH processing 2786 * receive 2787 * <base> 2788 * from the user, and free all entries in secpctree. 2789 * and send, 2790 * <base> 2791 * to the user. 2792 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2793 * 2794 * m will always be freed. 2795 */ 2796 static int 2797 key_api_spdflush(struct socket *so, struct mbuf *m, 2798 const struct sadb_msghdr *mhp) 2799 { 2800 struct sadb_msg *newmsg; 2801 struct secpolicy *sp; 2802 u_int dir; 2803 2804 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2805 return key_senderror(so, m, EINVAL); 2806 2807 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2808 retry: 2809 mutex_enter(&key_spd.lock); 2810 SPLIST_WRITER_FOREACH(sp, dir) { 2811 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 2812 /* 2813 * Userlang programs can remove SPs created by userland 2814 * probrams only, that is, they cannot remove SPs 2815 * created in kernel(e.g. ipsec(4) I/F). 2816 */ 2817 if (sp->origin == IPSEC_SPORIGIN_USER) { 2818 key_unlink_sp(sp); 2819 mutex_exit(&key_spd.lock); 2820 key_destroy_sp(sp); 2821 goto retry; 2822 } 2823 } 2824 mutex_exit(&key_spd.lock); 2825 } 2826 2827 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2828 2829 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2830 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 2831 return key_senderror(so, m, ENOBUFS); 2832 } 2833 2834 if (m->m_next) 2835 m_freem(m->m_next); 2836 m->m_next = NULL; 2837 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2838 newmsg = mtod(m, struct sadb_msg *); 2839 newmsg->sadb_msg_errno = 0; 2840 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2841 2842 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2843 } 2844 2845 static struct sockaddr key_src = { 2846 .sa_len = 2, 2847 .sa_family = PF_KEY, 2848 }; 2849 2850 static struct mbuf * 2851 key_setspddump_chain(int *errorp, int *lenp, pid_t pid) 2852 { 2853 struct secpolicy *sp; 2854 int cnt; 2855 u_int dir; 2856 struct mbuf *m, *n, *prev; 2857 int totlen; 2858 2859 KASSERT(mutex_owned(&key_spd.lock)); 2860 2861 *lenp = 0; 2862 2863 /* search SPD entry and get buffer size. */ 2864 cnt = 0; 2865 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2866 SPLIST_WRITER_FOREACH(sp, dir) { 2867 cnt++; 2868 } 2869 } 2870 2871 if (cnt == 0) { 2872 *errorp = ENOENT; 2873 return (NULL); 2874 } 2875 2876 m = NULL; 2877 prev = m; 2878 totlen = 0; 2879 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2880 SPLIST_WRITER_FOREACH(sp, dir) { 2881 --cnt; 2882 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 2883 2884 totlen += n->m_pkthdr.len; 2885 if (!m) { 2886 m = n; 2887 } else { 2888 prev->m_nextpkt = n; 2889 } 2890 prev = n; 2891 } 2892 } 2893 2894 *lenp = totlen; 2895 *errorp = 0; 2896 return (m); 2897 } 2898 2899 /* 2900 * SADB_SPDDUMP processing 2901 * receive 2902 * <base> 2903 * from the user, and dump all SP leaves 2904 * and send, 2905 * <base> ..... 2906 * to the ikmpd. 2907 * 2908 * m will always be freed. 2909 */ 2910 static int 2911 key_api_spddump(struct socket *so, struct mbuf *m0, 2912 const struct sadb_msghdr *mhp) 2913 { 2914 struct mbuf *n; 2915 int error, len; 2916 int ok; 2917 pid_t pid; 2918 2919 pid = mhp->msg->sadb_msg_pid; 2920 /* 2921 * If the requestor has insufficient socket-buffer space 2922 * for the entire chain, nobody gets any response to the DUMP. 2923 * XXX For now, only the requestor ever gets anything. 2924 * Moreover, if the requestor has any space at all, they receive 2925 * the entire chain, otherwise the request is refused with ENOBUFS. 2926 */ 2927 if (sbspace(&so->so_rcv) <= 0) { 2928 return key_senderror(so, m0, ENOBUFS); 2929 } 2930 2931 mutex_enter(&key_spd.lock); 2932 n = key_setspddump_chain(&error, &len, pid); 2933 mutex_exit(&key_spd.lock); 2934 2935 if (n == NULL) { 2936 return key_senderror(so, m0, ENOENT); 2937 } 2938 { 2939 uint64_t *ps = PFKEY_STAT_GETREF(); 2940 ps[PFKEY_STAT_IN_TOTAL]++; 2941 ps[PFKEY_STAT_IN_BYTES] += len; 2942 PFKEY_STAT_PUTREF(); 2943 } 2944 2945 /* 2946 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 2947 * The requestor receives either the entire chain, or an 2948 * error message with ENOBUFS. 2949 */ 2950 2951 /* 2952 * sbappendchainwith record takes the chain of entries, one 2953 * packet-record per SPD entry, prepends the key_src sockaddr 2954 * to each packet-record, links the sockaddr mbufs into a new 2955 * list of records, then appends the entire resulting 2956 * list to the requesting socket. 2957 */ 2958 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, 2959 SB_PRIO_ONESHOT_OVERFLOW); 2960 2961 if (!ok) { 2962 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 2963 m_freem(n); 2964 return key_senderror(so, m0, ENOBUFS); 2965 } 2966 2967 m_freem(m0); 2968 return error; 2969 } 2970 2971 /* 2972 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23 2973 */ 2974 static int 2975 key_api_nat_map(struct socket *so, struct mbuf *m, 2976 const struct sadb_msghdr *mhp) 2977 { 2978 struct sadb_x_nat_t_type *type; 2979 struct sadb_x_nat_t_port *sport; 2980 struct sadb_x_nat_t_port *dport; 2981 struct sadb_address *iaddr, *raddr; 2982 struct sadb_x_nat_t_frag *frag; 2983 2984 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 2985 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 2986 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) { 2987 IPSECLOG(LOG_DEBUG, "invalid message.\n"); 2988 return key_senderror(so, m, EINVAL); 2989 } 2990 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 2991 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 2992 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 2993 IPSECLOG(LOG_DEBUG, "invalid message.\n"); 2994 return key_senderror(so, m, EINVAL); 2995 } 2996 2997 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) && 2998 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) { 2999 IPSECLOG(LOG_DEBUG, "invalid message\n"); 3000 return key_senderror(so, m, EINVAL); 3001 } 3002 3003 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) && 3004 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) { 3005 IPSECLOG(LOG_DEBUG, "invalid message\n"); 3006 return key_senderror(so, m, EINVAL); 3007 } 3008 3009 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) && 3010 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) { 3011 IPSECLOG(LOG_DEBUG, "invalid message\n"); 3012 return key_senderror(so, m, EINVAL); 3013 } 3014 3015 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 3016 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 3017 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 3018 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; 3019 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; 3020 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 3021 3022 /* 3023 * XXX handle that, it should also contain a SA, or anything 3024 * that enable to update the SA information. 3025 */ 3026 3027 return 0; 3028 } 3029 3030 /* 3031 * Never return NULL. 3032 */ 3033 static struct mbuf * 3034 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid) 3035 { 3036 struct mbuf *result = NULL, *m; 3037 3038 KASSERT(!cpu_softintr_p()); 3039 3040 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, 3041 key_sp_refcnt(sp), M_WAITOK); 3042 result = m; 3043 3044 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3045 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK); 3046 m_cat(result, m); 3047 3048 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3049 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK); 3050 m_cat(result, m); 3051 3052 m = key_sp2msg(sp, M_WAITOK); 3053 m_cat(result, m); 3054 3055 KASSERT(result->m_flags & M_PKTHDR); 3056 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 3057 3058 result->m_pkthdr.len = 0; 3059 for (m = result; m; m = m->m_next) 3060 result->m_pkthdr.len += m->m_len; 3061 3062 mtod(result, struct sadb_msg *)->sadb_msg_len = 3063 PFKEY_UNIT64(result->m_pkthdr.len); 3064 3065 return result; 3066 } 3067 3068 /* 3069 * get PFKEY message length for security policy and request. 3070 */ 3071 static u_int 3072 key_getspreqmsglen(const struct secpolicy *sp) 3073 { 3074 u_int tlen; 3075 3076 tlen = sizeof(struct sadb_x_policy); 3077 3078 /* if is the policy for ipsec ? */ 3079 if (sp->policy != IPSEC_POLICY_IPSEC) 3080 return tlen; 3081 3082 /* get length of ipsec requests */ 3083 { 3084 const struct ipsecrequest *isr; 3085 int len; 3086 3087 for (isr = sp->req; isr != NULL; isr = isr->next) { 3088 len = sizeof(struct sadb_x_ipsecrequest) 3089 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len; 3090 3091 tlen += PFKEY_ALIGN8(len); 3092 } 3093 } 3094 3095 return tlen; 3096 } 3097 3098 /* 3099 * SADB_SPDEXPIRE processing 3100 * send 3101 * <base, address(SD), lifetime(CH), policy> 3102 * to KMD by PF_KEY. 3103 * 3104 * OUT: 0 : succeed 3105 * others : error number 3106 */ 3107 static int 3108 key_spdexpire(struct secpolicy *sp) 3109 { 3110 int s; 3111 struct mbuf *result = NULL, *m; 3112 int len; 3113 int error = -1; 3114 struct sadb_lifetime *lt; 3115 3116 /* XXX: Why do we lock ? */ 3117 s = splsoftnet(); /*called from softclock()*/ 3118 3119 KASSERT(sp != NULL); 3120 3121 /* set msg header */ 3122 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0, M_WAITOK); 3123 result = m; 3124 3125 /* create lifetime extension (current and hard) */ 3126 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 3127 m = key_alloc_mbuf(len, M_WAITOK); 3128 KASSERT(m->m_next == NULL); 3129 3130 memset(mtod(m, void *), 0, len); 3131 lt = mtod(m, struct sadb_lifetime *); 3132 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3133 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3134 lt->sadb_lifetime_allocations = 0; 3135 lt->sadb_lifetime_bytes = 0; 3136 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created); 3137 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused); 3138 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 3139 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3140 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 3141 lt->sadb_lifetime_allocations = 0; 3142 lt->sadb_lifetime_bytes = 0; 3143 lt->sadb_lifetime_addtime = sp->lifetime; 3144 lt->sadb_lifetime_usetime = sp->validtime; 3145 m_cat(result, m); 3146 3147 /* set sadb_address for source */ 3148 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa, 3149 sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK); 3150 m_cat(result, m); 3151 3152 /* set sadb_address for destination */ 3153 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa, 3154 sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK); 3155 m_cat(result, m); 3156 3157 /* set secpolicy */ 3158 m = key_sp2msg(sp, M_WAITOK); 3159 m_cat(result, m); 3160 3161 KASSERT(result->m_flags & M_PKTHDR); 3162 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 3163 3164 result->m_pkthdr.len = 0; 3165 for (m = result; m; m = m->m_next) 3166 result->m_pkthdr.len += m->m_len; 3167 3168 mtod(result, struct sadb_msg *)->sadb_msg_len = 3169 PFKEY_UNIT64(result->m_pkthdr.len); 3170 3171 error = key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 3172 splx(s); 3173 return error; 3174 } 3175 3176 /* %%% SAD management */ 3177 /* 3178 * allocating a memory for new SA head, and copy from the values of mhp. 3179 * OUT: NULL : failure due to the lack of memory. 3180 * others : pointer to new SA head. 3181 */ 3182 static struct secashead * 3183 key_newsah(const struct secasindex *saidx) 3184 { 3185 struct secashead *newsah; 3186 int i; 3187 3188 KASSERT(saidx != NULL); 3189 3190 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP); 3191 for (i = 0; i < __arraycount(newsah->savlist); i++) 3192 PSLIST_INIT(&newsah->savlist[i]); 3193 newsah->saidx = *saidx; 3194 3195 localcount_init(&newsah->localcount); 3196 /* Take a reference for the caller */ 3197 localcount_acquire(&newsah->localcount); 3198 3199 /* Add to the sah list */ 3200 SAHLIST_ENTRY_INIT(newsah); 3201 newsah->state = SADB_SASTATE_MATURE; 3202 mutex_enter(&key_sad.lock); 3203 SAHLIST_WRITER_INSERT_HEAD(newsah); 3204 mutex_exit(&key_sad.lock); 3205 3206 return newsah; 3207 } 3208 3209 static bool 3210 key_sah_has_sav(struct secashead *sah) 3211 { 3212 u_int state; 3213 3214 KASSERT(mutex_owned(&key_sad.lock)); 3215 3216 SASTATE_ANY_FOREACH(state) { 3217 if (!SAVLIST_WRITER_EMPTY(sah, state)) 3218 return true; 3219 } 3220 3221 return false; 3222 } 3223 3224 static void 3225 key_unlink_sah(struct secashead *sah) 3226 { 3227 3228 KASSERT(!cpu_softintr_p()); 3229 KASSERT(mutex_owned(&key_sad.lock)); 3230 KASSERT(sah->state == SADB_SASTATE_DEAD); 3231 3232 /* Remove from the sah list */ 3233 SAHLIST_WRITER_REMOVE(sah); 3234 3235 KDASSERT(mutex_ownable(softnet_lock)); 3236 key_sad_pserialize_perform(); 3237 3238 localcount_drain(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); 3239 } 3240 3241 static void 3242 key_destroy_sah(struct secashead *sah) 3243 { 3244 3245 rtcache_free(&sah->sa_route); 3246 3247 SAHLIST_ENTRY_DESTROY(sah); 3248 localcount_fini(&sah->localcount); 3249 3250 if (sah->idents != NULL) 3251 kmem_free(sah->idents, sah->idents_len); 3252 if (sah->identd != NULL) 3253 kmem_free(sah->identd, sah->identd_len); 3254 3255 kmem_free(sah, sizeof(*sah)); 3256 } 3257 3258 /* 3259 * allocating a new SA with LARVAL state. 3260 * key_api_add() and key_api_getspi() call, 3261 * and copy the values of mhp into new buffer. 3262 * When SAD message type is GETSPI: 3263 * to set sequence number from acq_seq++, 3264 * to set zero to SPI. 3265 * not to call key_setsava(). 3266 * OUT: NULL : fail 3267 * others : pointer to new secasvar. 3268 * 3269 * does not modify mbuf. does not free mbuf on error. 3270 */ 3271 static struct secasvar * 3272 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp, 3273 int *errp, const char* where, int tag) 3274 { 3275 struct secasvar *newsav; 3276 const struct sadb_sa *xsa; 3277 3278 KASSERT(!cpu_softintr_p()); 3279 KASSERT(m != NULL); 3280 KASSERT(mhp != NULL); 3281 KASSERT(mhp->msg != NULL); 3282 3283 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); 3284 3285 switch (mhp->msg->sadb_msg_type) { 3286 case SADB_GETSPI: 3287 newsav->spi = 0; 3288 3289 #ifdef IPSEC_DOSEQCHECK 3290 /* sync sequence number */ 3291 if (mhp->msg->sadb_msg_seq == 0) 3292 newsav->seq = 3293 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 3294 else 3295 #endif 3296 newsav->seq = mhp->msg->sadb_msg_seq; 3297 break; 3298 3299 case SADB_ADD: 3300 /* sanity check */ 3301 if (mhp->ext[SADB_EXT_SA] == NULL) { 3302 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 3303 *errp = EINVAL; 3304 goto error; 3305 } 3306 xsa = mhp->ext[SADB_EXT_SA]; 3307 newsav->spi = xsa->sadb_sa_spi; 3308 newsav->seq = mhp->msg->sadb_msg_seq; 3309 break; 3310 default: 3311 *errp = EINVAL; 3312 goto error; 3313 } 3314 3315 /* copy sav values */ 3316 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 3317 *errp = key_setsaval(newsav, m, mhp); 3318 if (*errp) 3319 goto error; 3320 } else { 3321 /* We don't allow lft_c to be NULL */ 3322 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime), 3323 KM_SLEEP); 3324 newsav->lft_c_counters_percpu = 3325 percpu_alloc(sizeof(lifetime_counters_t)); 3326 } 3327 3328 /* reset created */ 3329 newsav->created = time_uptime; 3330 newsav->pid = mhp->msg->sadb_msg_pid; 3331 3332 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 3333 "DP from %s:%u return SA:%p\n", where, tag, newsav); 3334 return newsav; 3335 3336 error: 3337 KASSERT(*errp != 0); 3338 kmem_free(newsav, sizeof(*newsav)); 3339 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 3340 "DP from %s:%u return SA:NULL\n", where, tag); 3341 return NULL; 3342 } 3343 3344 3345 static void 3346 key_clear_xform(struct secasvar *sav) 3347 { 3348 3349 /* 3350 * Cleanup xform state. Note that zeroize'ing causes the 3351 * keys to be cleared; otherwise we must do it ourself. 3352 */ 3353 if (sav->tdb_xform != NULL) { 3354 sav->tdb_xform->xf_zeroize(sav); 3355 sav->tdb_xform = NULL; 3356 } else { 3357 if (sav->key_auth != NULL) 3358 explicit_memset(_KEYBUF(sav->key_auth), 0, 3359 _KEYLEN(sav->key_auth)); 3360 if (sav->key_enc != NULL) 3361 explicit_memset(_KEYBUF(sav->key_enc), 0, 3362 _KEYLEN(sav->key_enc)); 3363 } 3364 } 3365 3366 /* 3367 * free() SA variable entry. 3368 */ 3369 static void 3370 key_delsav(struct secasvar *sav) 3371 { 3372 3373 key_clear_xform(sav); 3374 key_freesaval(sav); 3375 kmem_free(sav, sizeof(*sav)); 3376 } 3377 3378 /* 3379 * Must be called in a pserialize read section. A held sah 3380 * must be released by key_sah_unref after use. 3381 */ 3382 static void 3383 key_sah_ref(struct secashead *sah) 3384 { 3385 3386 localcount_acquire(&sah->localcount); 3387 } 3388 3389 /* 3390 * Must be called without holding key_sad.lock because the lock 3391 * would be held in localcount_release. 3392 */ 3393 static void 3394 key_sah_unref(struct secashead *sah) 3395 { 3396 3397 KDASSERT(mutex_ownable(&key_sad.lock)); 3398 3399 localcount_release(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); 3400 } 3401 3402 /* 3403 * Search SAD and return sah. Must be called in a pserialize 3404 * read section. 3405 * OUT: 3406 * NULL : not found 3407 * others : found, pointer to a SA. 3408 */ 3409 static struct secashead * 3410 key_getsah(const struct secasindex *saidx, int flag) 3411 { 3412 struct secashead *sah; 3413 3414 SAHLIST_READER_FOREACH_SAIDX(sah, saidx) { 3415 if (sah->state == SADB_SASTATE_DEAD) 3416 continue; 3417 if (key_saidx_match(&sah->saidx, saidx, flag)) 3418 return sah; 3419 } 3420 3421 return NULL; 3422 } 3423 3424 /* 3425 * Search SAD and return sah. If sah is returned, the caller must call 3426 * key_sah_unref to releaset a reference. 3427 * OUT: 3428 * NULL : not found 3429 * others : found, pointer to a SA. 3430 */ 3431 static struct secashead * 3432 key_getsah_ref(const struct secasindex *saidx, int flag) 3433 { 3434 struct secashead *sah; 3435 int s; 3436 3437 s = pserialize_read_enter(); 3438 sah = key_getsah(saidx, flag); 3439 if (sah != NULL) 3440 key_sah_ref(sah); 3441 pserialize_read_exit(s); 3442 3443 return sah; 3444 } 3445 3446 /* 3447 * check not to be duplicated SPI. 3448 * NOTE: this function is too slow due to searching all SAD. 3449 * OUT: 3450 * NULL : not found 3451 * others : found, pointer to a SA. 3452 */ 3453 static bool 3454 key_checkspidup(const struct secasindex *saidx, u_int32_t spi) 3455 { 3456 struct secashead *sah; 3457 struct secasvar *sav; 3458 int s; 3459 3460 /* check address family */ 3461 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 3462 IPSECLOG(LOG_DEBUG, 3463 "address family mismatched src %u, dst %u.\n", 3464 saidx->src.sa.sa_family, saidx->dst.sa.sa_family); 3465 return false; 3466 } 3467 3468 /* check all SAD */ 3469 s = pserialize_read_enter(); 3470 SAHLIST_READER_FOREACH(sah) { 3471 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 3472 continue; 3473 sav = key_getsavbyspi(sah, spi); 3474 if (sav != NULL) { 3475 pserialize_read_exit(s); 3476 KEY_SA_UNREF(&sav); 3477 return true; 3478 } 3479 } 3480 pserialize_read_exit(s); 3481 3482 return false; 3483 } 3484 3485 /* 3486 * search SAD litmited alive SA, protocol, SPI. 3487 * OUT: 3488 * NULL : not found 3489 * others : found, pointer to a SA. 3490 */ 3491 static struct secasvar * 3492 key_getsavbyspi(struct secashead *sah, u_int32_t spi) 3493 { 3494 struct secasvar *sav = NULL; 3495 u_int state; 3496 int s; 3497 3498 /* search all status */ 3499 s = pserialize_read_enter(); 3500 SASTATE_ALIVE_FOREACH(state) { 3501 SAVLIST_READER_FOREACH(sav, sah, state) { 3502 /* sanity check */ 3503 if (sav->state != state) { 3504 IPSECLOG(LOG_DEBUG, 3505 "invalid sav->state (queue: %d SA: %d)\n", 3506 state, sav->state); 3507 continue; 3508 } 3509 3510 if (sav->spi == spi) { 3511 KEY_SA_REF(sav); 3512 goto out; 3513 } 3514 } 3515 } 3516 out: 3517 pserialize_read_exit(s); 3518 3519 return sav; 3520 } 3521 3522 /* 3523 * Free allocated data to member variables of sav: 3524 * sav->replay, sav->key_* and sav->lft_*. 3525 */ 3526 static void 3527 key_freesaval(struct secasvar *sav) 3528 { 3529 3530 KASSERT(key_sa_refcnt(sav) == 0); 3531 3532 if (sav->replay != NULL) 3533 kmem_intr_free(sav->replay, sav->replay_len); 3534 if (sav->key_auth != NULL) 3535 kmem_intr_free(sav->key_auth, sav->key_auth_len); 3536 if (sav->key_enc != NULL) 3537 kmem_intr_free(sav->key_enc, sav->key_enc_len); 3538 if (sav->lft_c_counters_percpu != NULL) { 3539 percpu_free(sav->lft_c_counters_percpu, 3540 sizeof(lifetime_counters_t)); 3541 } 3542 if (sav->lft_c != NULL) 3543 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c))); 3544 if (sav->lft_h != NULL) 3545 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h))); 3546 if (sav->lft_s != NULL) 3547 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s))); 3548 } 3549 3550 /* 3551 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3552 * You must update these if need. 3553 * OUT: 0: success. 3554 * !0: failure. 3555 * 3556 * does not modify mbuf. does not free mbuf on error. 3557 */ 3558 static int 3559 key_setsaval(struct secasvar *sav, struct mbuf *m, 3560 const struct sadb_msghdr *mhp) 3561 { 3562 int error = 0; 3563 3564 KASSERT(!cpu_softintr_p()); 3565 KASSERT(m != NULL); 3566 KASSERT(mhp != NULL); 3567 KASSERT(mhp->msg != NULL); 3568 3569 /* We shouldn't initialize sav variables while someone uses it. */ 3570 KASSERT(key_sa_refcnt(sav) == 0); 3571 3572 /* SA */ 3573 if (mhp->ext[SADB_EXT_SA] != NULL) { 3574 const struct sadb_sa *sa0; 3575 3576 sa0 = mhp->ext[SADB_EXT_SA]; 3577 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3578 error = EINVAL; 3579 goto fail; 3580 } 3581 3582 sav->alg_auth = sa0->sadb_sa_auth; 3583 sav->alg_enc = sa0->sadb_sa_encrypt; 3584 sav->flags = sa0->sadb_sa_flags; 3585 3586 /* replay window */ 3587 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3588 size_t len = sizeof(struct secreplay) + 3589 sa0->sadb_sa_replay; 3590 sav->replay = kmem_zalloc(len, KM_SLEEP); 3591 sav->replay_len = len; 3592 if (sa0->sadb_sa_replay != 0) 3593 sav->replay->bitmap = (char*)(sav->replay+1); 3594 sav->replay->wsize = sa0->sadb_sa_replay; 3595 } 3596 } 3597 3598 /* Authentication keys */ 3599 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3600 const struct sadb_key *key0; 3601 int len; 3602 3603 key0 = mhp->ext[SADB_EXT_KEY_AUTH]; 3604 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3605 3606 error = 0; 3607 if (len < sizeof(*key0)) { 3608 error = EINVAL; 3609 goto fail; 3610 } 3611 switch (mhp->msg->sadb_msg_satype) { 3612 case SADB_SATYPE_AH: 3613 case SADB_SATYPE_ESP: 3614 case SADB_X_SATYPE_TCPSIGNATURE: 3615 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3616 sav->alg_auth != SADB_X_AALG_NULL) 3617 error = EINVAL; 3618 break; 3619 case SADB_X_SATYPE_IPCOMP: 3620 default: 3621 error = EINVAL; 3622 break; 3623 } 3624 if (error) { 3625 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n"); 3626 goto fail; 3627 } 3628 3629 sav->key_auth = key_newbuf(key0, len); 3630 sav->key_auth_len = len; 3631 } 3632 3633 /* Encryption key */ 3634 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3635 const struct sadb_key *key0; 3636 int len; 3637 3638 key0 = mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3639 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3640 3641 error = 0; 3642 if (len < sizeof(*key0)) { 3643 error = EINVAL; 3644 goto fail; 3645 } 3646 switch (mhp->msg->sadb_msg_satype) { 3647 case SADB_SATYPE_ESP: 3648 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3649 sav->alg_enc != SADB_EALG_NULL) { 3650 error = EINVAL; 3651 break; 3652 } 3653 sav->key_enc = key_newbuf(key0, len); 3654 sav->key_enc_len = len; 3655 break; 3656 case SADB_X_SATYPE_IPCOMP: 3657 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3658 error = EINVAL; 3659 sav->key_enc = NULL; /*just in case*/ 3660 break; 3661 case SADB_SATYPE_AH: 3662 case SADB_X_SATYPE_TCPSIGNATURE: 3663 default: 3664 error = EINVAL; 3665 break; 3666 } 3667 if (error) { 3668 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n"); 3669 goto fail; 3670 } 3671 } 3672 3673 /* set iv */ 3674 sav->ivlen = 0; 3675 3676 switch (mhp->msg->sadb_msg_satype) { 3677 case SADB_SATYPE_AH: 3678 error = xform_init(sav, XF_AH); 3679 break; 3680 case SADB_SATYPE_ESP: 3681 error = xform_init(sav, XF_ESP); 3682 break; 3683 case SADB_X_SATYPE_IPCOMP: 3684 error = xform_init(sav, XF_IPCOMP); 3685 break; 3686 case SADB_X_SATYPE_TCPSIGNATURE: 3687 error = xform_init(sav, XF_TCPSIGNATURE); 3688 break; 3689 } 3690 if (error) { 3691 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n", 3692 mhp->msg->sadb_msg_satype); 3693 goto fail; 3694 } 3695 3696 /* reset created */ 3697 sav->created = time_uptime; 3698 3699 /* make lifetime for CURRENT */ 3700 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP); 3701 3702 sav->lft_c->sadb_lifetime_len = 3703 PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3704 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3705 sav->lft_c->sadb_lifetime_allocations = 0; 3706 sav->lft_c->sadb_lifetime_bytes = 0; 3707 sav->lft_c->sadb_lifetime_addtime = time_uptime; 3708 sav->lft_c->sadb_lifetime_usetime = 0; 3709 3710 sav->lft_c_counters_percpu = percpu_alloc(sizeof(lifetime_counters_t)); 3711 3712 /* lifetimes for HARD and SOFT */ 3713 { 3714 const struct sadb_lifetime *lft0; 3715 3716 lft0 = mhp->ext[SADB_EXT_LIFETIME_HARD]; 3717 if (lft0 != NULL) { 3718 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3719 error = EINVAL; 3720 goto fail; 3721 } 3722 sav->lft_h = key_newbuf(lft0, sizeof(*lft0)); 3723 } 3724 3725 lft0 = mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3726 if (lft0 != NULL) { 3727 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3728 error = EINVAL; 3729 goto fail; 3730 } 3731 sav->lft_s = key_newbuf(lft0, sizeof(*lft0)); 3732 /* to be initialize ? */ 3733 } 3734 } 3735 3736 return 0; 3737 3738 fail: 3739 key_clear_xform(sav); 3740 key_freesaval(sav); 3741 3742 return error; 3743 } 3744 3745 /* 3746 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3747 * OUT: 0: valid 3748 * other: errno 3749 */ 3750 static int 3751 key_init_xform(struct secasvar *sav) 3752 { 3753 int error; 3754 3755 /* We shouldn't initialize sav variables while someone uses it. */ 3756 KASSERT(key_sa_refcnt(sav) == 0); 3757 3758 /* check SPI value */ 3759 switch (sav->sah->saidx.proto) { 3760 case IPPROTO_ESP: 3761 case IPPROTO_AH: 3762 if (ntohl(sav->spi) <= 255) { 3763 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n", 3764 (u_int32_t)ntohl(sav->spi)); 3765 return EINVAL; 3766 } 3767 break; 3768 } 3769 3770 /* check algo */ 3771 switch (sav->sah->saidx.proto) { 3772 case IPPROTO_AH: 3773 case IPPROTO_TCP: 3774 if (sav->alg_enc != SADB_EALG_NONE) { 3775 IPSECLOG(LOG_DEBUG, 3776 "protocol %u and algorithm mismatched %u != %u.\n", 3777 sav->sah->saidx.proto, 3778 sav->alg_enc, SADB_EALG_NONE); 3779 return EINVAL; 3780 } 3781 break; 3782 case IPPROTO_IPCOMP: 3783 if (sav->alg_auth != SADB_AALG_NONE) { 3784 IPSECLOG(LOG_DEBUG, 3785 "protocol %u and algorithm mismatched %d != %d.\n", 3786 sav->sah->saidx.proto, 3787 sav->alg_auth, SADB_AALG_NONE); 3788 return(EINVAL); 3789 } 3790 break; 3791 default: 3792 break; 3793 } 3794 3795 /* check satype */ 3796 switch (sav->sah->saidx.proto) { 3797 case IPPROTO_ESP: 3798 /* check flags */ 3799 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3800 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3801 IPSECLOG(LOG_DEBUG, 3802 "invalid flag (derived) given to old-esp.\n"); 3803 return EINVAL; 3804 } 3805 error = xform_init(sav, XF_ESP); 3806 break; 3807 case IPPROTO_AH: 3808 /* check flags */ 3809 if (sav->flags & SADB_X_EXT_DERIV) { 3810 IPSECLOG(LOG_DEBUG, 3811 "invalid flag (derived) given to AH SA.\n"); 3812 return EINVAL; 3813 } 3814 error = xform_init(sav, XF_AH); 3815 break; 3816 case IPPROTO_IPCOMP: 3817 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3818 && ntohl(sav->spi) >= 0x10000) { 3819 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n"); 3820 return(EINVAL); 3821 } 3822 error = xform_init(sav, XF_IPCOMP); 3823 break; 3824 case IPPROTO_TCP: 3825 error = xform_init(sav, XF_TCPSIGNATURE); 3826 break; 3827 default: 3828 IPSECLOG(LOG_DEBUG, "Invalid satype.\n"); 3829 error = EPROTONOSUPPORT; 3830 break; 3831 } 3832 3833 return error; 3834 } 3835 3836 /* 3837 * subroutine for SADB_GET and SADB_DUMP. It never return NULL. 3838 */ 3839 static struct mbuf * 3840 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3841 u_int32_t seq, u_int32_t pid) 3842 { 3843 struct mbuf *result = NULL, *tres = NULL, *m; 3844 int l = 0; 3845 int i; 3846 void *p; 3847 struct sadb_lifetime lt; 3848 int dumporder[] = { 3849 SADB_EXT_SA, SADB_X_EXT_SA2, 3850 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3851 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3852 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3853 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3854 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3855 SADB_X_EXT_NAT_T_TYPE, 3856 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3857 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3858 SADB_X_EXT_NAT_T_FRAG, 3859 3860 }; 3861 3862 m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav), M_WAITOK); 3863 result = m; 3864 3865 for (i = __arraycount(dumporder) - 1; i >= 0; i--) { 3866 m = NULL; 3867 p = NULL; 3868 switch (dumporder[i]) { 3869 case SADB_EXT_SA: 3870 m = key_setsadbsa(sav); 3871 break; 3872 3873 case SADB_X_EXT_SA2: 3874 m = key_setsadbxsa2(sav->sah->saidx.mode, 3875 sav->replay ? sav->replay->count : 0, 3876 sav->sah->saidx.reqid); 3877 break; 3878 3879 case SADB_EXT_ADDRESS_SRC: 3880 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3881 &sav->sah->saidx.src.sa, 3882 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 3883 break; 3884 3885 case SADB_EXT_ADDRESS_DST: 3886 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3887 &sav->sah->saidx.dst.sa, 3888 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 3889 break; 3890 3891 case SADB_EXT_KEY_AUTH: 3892 if (!sav->key_auth) 3893 continue; 3894 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len); 3895 p = sav->key_auth; 3896 break; 3897 3898 case SADB_EXT_KEY_ENCRYPT: 3899 if (!sav->key_enc) 3900 continue; 3901 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len); 3902 p = sav->key_enc; 3903 break; 3904 3905 case SADB_EXT_LIFETIME_CURRENT: { 3906 lifetime_counters_t sum = {0}; 3907 3908 KASSERT(sav->lft_c != NULL); 3909 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len); 3910 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime)); 3911 lt.sadb_lifetime_addtime = 3912 time_mono_to_wall(lt.sadb_lifetime_addtime); 3913 lt.sadb_lifetime_usetime = 3914 time_mono_to_wall(lt.sadb_lifetime_usetime); 3915 percpu_foreach(sav->lft_c_counters_percpu, 3916 key_sum_lifetime_counters, sum); 3917 lt.sadb_lifetime_allocations = 3918 sum[LIFETIME_COUNTER_ALLOCATIONS]; 3919 lt.sadb_lifetime_bytes = 3920 sum[LIFETIME_COUNTER_BYTES]; 3921 p = < 3922 break; 3923 } 3924 3925 case SADB_EXT_LIFETIME_HARD: 3926 if (!sav->lft_h) 3927 continue; 3928 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len); 3929 p = sav->lft_h; 3930 break; 3931 3932 case SADB_EXT_LIFETIME_SOFT: 3933 if (!sav->lft_s) 3934 continue; 3935 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len); 3936 p = sav->lft_s; 3937 break; 3938 3939 case SADB_X_EXT_NAT_T_TYPE: 3940 m = key_setsadbxtype(sav->natt_type); 3941 break; 3942 3943 case SADB_X_EXT_NAT_T_DPORT: 3944 if (sav->natt_type == 0) 3945 continue; 3946 m = key_setsadbxport( 3947 key_portfromsaddr(&sav->sah->saidx.dst), 3948 SADB_X_EXT_NAT_T_DPORT); 3949 break; 3950 3951 case SADB_X_EXT_NAT_T_SPORT: 3952 if (sav->natt_type == 0) 3953 continue; 3954 m = key_setsadbxport( 3955 key_portfromsaddr(&sav->sah->saidx.src), 3956 SADB_X_EXT_NAT_T_SPORT); 3957 break; 3958 3959 case SADB_X_EXT_NAT_T_FRAG: 3960 /* don't send frag info if not set */ 3961 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET) 3962 continue; 3963 m = key_setsadbxfrag(sav->esp_frag); 3964 break; 3965 3966 case SADB_X_EXT_NAT_T_OAI: 3967 case SADB_X_EXT_NAT_T_OAR: 3968 continue; 3969 3970 case SADB_EXT_ADDRESS_PROXY: 3971 case SADB_EXT_IDENTITY_SRC: 3972 case SADB_EXT_IDENTITY_DST: 3973 /* XXX: should we brought from SPD ? */ 3974 case SADB_EXT_SENSITIVITY: 3975 default: 3976 continue; 3977 } 3978 3979 KASSERT(!(m && p)); 3980 KASSERT(m != NULL || p != NULL); 3981 if (p && tres) { 3982 M_PREPEND(tres, l, M_WAITOK); 3983 memcpy(mtod(tres, void *), p, l); 3984 continue; 3985 } 3986 if (p) { 3987 m = key_alloc_mbuf(l, M_WAITOK); 3988 m_copyback(m, 0, l, p); 3989 } 3990 3991 if (tres) 3992 m_cat(m, tres); 3993 tres = m; 3994 } 3995 3996 m_cat(result, tres); 3997 tres = NULL; /* avoid free on error below */ 3998 3999 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 4000 4001 result->m_pkthdr.len = 0; 4002 for (m = result; m; m = m->m_next) 4003 result->m_pkthdr.len += m->m_len; 4004 4005 mtod(result, struct sadb_msg *)->sadb_msg_len = 4006 PFKEY_UNIT64(result->m_pkthdr.len); 4007 4008 return result; 4009 } 4010 4011 4012 /* 4013 * set a type in sadb_x_nat_t_type 4014 */ 4015 static struct mbuf * 4016 key_setsadbxtype(u_int16_t type) 4017 { 4018 struct mbuf *m; 4019 size_t len; 4020 struct sadb_x_nat_t_type *p; 4021 4022 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 4023 4024 m = key_alloc_mbuf(len, M_WAITOK); 4025 KASSERT(m->m_next == NULL); 4026 4027 p = mtod(m, struct sadb_x_nat_t_type *); 4028 4029 memset(p, 0, len); 4030 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 4031 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 4032 p->sadb_x_nat_t_type_type = type; 4033 4034 return m; 4035 } 4036 /* 4037 * set a port in sadb_x_nat_t_port. port is in network order 4038 */ 4039 static struct mbuf * 4040 key_setsadbxport(u_int16_t port, u_int16_t type) 4041 { 4042 struct mbuf *m; 4043 size_t len; 4044 struct sadb_x_nat_t_port *p; 4045 4046 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 4047 4048 m = key_alloc_mbuf(len, M_WAITOK); 4049 KASSERT(m->m_next == NULL); 4050 4051 p = mtod(m, struct sadb_x_nat_t_port *); 4052 4053 memset(p, 0, len); 4054 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 4055 p->sadb_x_nat_t_port_exttype = type; 4056 p->sadb_x_nat_t_port_port = port; 4057 4058 return m; 4059 } 4060 4061 /* 4062 * set fragmentation info in sadb_x_nat_t_frag 4063 */ 4064 static struct mbuf * 4065 key_setsadbxfrag(u_int16_t flen) 4066 { 4067 struct mbuf *m; 4068 size_t len; 4069 struct sadb_x_nat_t_frag *p; 4070 4071 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag)); 4072 4073 m = key_alloc_mbuf(len, M_WAITOK); 4074 KASSERT(m->m_next == NULL); 4075 4076 p = mtod(m, struct sadb_x_nat_t_frag *); 4077 4078 memset(p, 0, len); 4079 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len); 4080 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG; 4081 p->sadb_x_nat_t_frag_fraglen = flen; 4082 4083 return m; 4084 } 4085 4086 /* 4087 * Get port from sockaddr, port is in network order 4088 */ 4089 u_int16_t 4090 key_portfromsaddr(const union sockaddr_union *saddr) 4091 { 4092 u_int16_t port; 4093 4094 switch (saddr->sa.sa_family) { 4095 case AF_INET: { 4096 port = saddr->sin.sin_port; 4097 break; 4098 } 4099 #ifdef INET6 4100 case AF_INET6: { 4101 port = saddr->sin6.sin6_port; 4102 break; 4103 } 4104 #endif 4105 default: 4106 printf("%s: unexpected address family\n", __func__); 4107 port = 0; 4108 break; 4109 } 4110 4111 return port; 4112 } 4113 4114 4115 /* 4116 * Set port is struct sockaddr. port is in network order 4117 */ 4118 static void 4119 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port) 4120 { 4121 switch (saddr->sa.sa_family) { 4122 case AF_INET: { 4123 saddr->sin.sin_port = port; 4124 break; 4125 } 4126 #ifdef INET6 4127 case AF_INET6: { 4128 saddr->sin6.sin6_port = port; 4129 break; 4130 } 4131 #endif 4132 default: 4133 printf("%s: unexpected address family %d\n", __func__, 4134 saddr->sa.sa_family); 4135 break; 4136 } 4137 4138 return; 4139 } 4140 4141 /* 4142 * Safety check sa_len 4143 */ 4144 static int 4145 key_checksalen(const union sockaddr_union *saddr) 4146 { 4147 switch (saddr->sa.sa_family) { 4148 case AF_INET: 4149 if (saddr->sa.sa_len != sizeof(struct sockaddr_in)) 4150 return -1; 4151 break; 4152 #ifdef INET6 4153 case AF_INET6: 4154 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6)) 4155 return -1; 4156 break; 4157 #endif 4158 default: 4159 printf("%s: unexpected sa_family %d\n", __func__, 4160 saddr->sa.sa_family); 4161 return -1; 4162 break; 4163 } 4164 return 0; 4165 } 4166 4167 4168 /* 4169 * set data into sadb_msg. 4170 */ 4171 static struct mbuf * 4172 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, 4173 u_int32_t seq, pid_t pid, u_int16_t reserved, int mflag) 4174 { 4175 struct mbuf *m; 4176 struct sadb_msg *p; 4177 int len; 4178 4179 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); 4180 4181 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4182 4183 m = key_alloc_mbuf_simple(len, mflag); 4184 if (!m) 4185 return NULL; 4186 m->m_pkthdr.len = m->m_len = len; 4187 m->m_next = NULL; 4188 4189 p = mtod(m, struct sadb_msg *); 4190 4191 memset(p, 0, len); 4192 p->sadb_msg_version = PF_KEY_V2; 4193 p->sadb_msg_type = type; 4194 p->sadb_msg_errno = 0; 4195 p->sadb_msg_satype = satype; 4196 p->sadb_msg_len = PFKEY_UNIT64(tlen); 4197 p->sadb_msg_reserved = reserved; 4198 p->sadb_msg_seq = seq; 4199 p->sadb_msg_pid = (u_int32_t)pid; 4200 4201 return m; 4202 } 4203 4204 /* 4205 * copy secasvar data into sadb_address. 4206 */ 4207 static struct mbuf * 4208 key_setsadbsa(struct secasvar *sav) 4209 { 4210 struct mbuf *m; 4211 struct sadb_sa *p; 4212 int len; 4213 4214 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4215 m = key_alloc_mbuf(len, M_WAITOK); 4216 KASSERT(m->m_next == NULL); 4217 4218 p = mtod(m, struct sadb_sa *); 4219 4220 memset(p, 0, len); 4221 p->sadb_sa_len = PFKEY_UNIT64(len); 4222 p->sadb_sa_exttype = SADB_EXT_SA; 4223 p->sadb_sa_spi = sav->spi; 4224 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 4225 p->sadb_sa_state = sav->state; 4226 p->sadb_sa_auth = sav->alg_auth; 4227 p->sadb_sa_encrypt = sav->alg_enc; 4228 p->sadb_sa_flags = sav->flags; 4229 4230 return m; 4231 } 4232 4233 static uint8_t 4234 key_sabits(const struct sockaddr *saddr) 4235 { 4236 switch (saddr->sa_family) { 4237 case AF_INET: 4238 return _BITS(sizeof(struct in_addr)); 4239 case AF_INET6: 4240 return _BITS(sizeof(struct in6_addr)); 4241 default: 4242 return FULLMASK; 4243 } 4244 } 4245 4246 /* 4247 * set data into sadb_address. 4248 */ 4249 static struct mbuf * 4250 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 4251 u_int8_t prefixlen, u_int16_t ul_proto, int mflag) 4252 { 4253 struct mbuf *m; 4254 struct sadb_address *p; 4255 size_t len; 4256 4257 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 4258 PFKEY_ALIGN8(saddr->sa_len); 4259 m = key_alloc_mbuf(len, mflag); 4260 if (!m || m->m_next) { /*XXX*/ 4261 if (m) 4262 m_freem(m); 4263 return NULL; 4264 } 4265 4266 p = mtod(m, struct sadb_address *); 4267 4268 memset(p, 0, len); 4269 p->sadb_address_len = PFKEY_UNIT64(len); 4270 p->sadb_address_exttype = exttype; 4271 p->sadb_address_proto = ul_proto; 4272 if (prefixlen == FULLMASK) { 4273 prefixlen = key_sabits(saddr); 4274 } 4275 p->sadb_address_prefixlen = prefixlen; 4276 p->sadb_address_reserved = 0; 4277 4278 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 4279 saddr, saddr->sa_len); 4280 4281 return m; 4282 } 4283 4284 #if 0 4285 /* 4286 * set data into sadb_ident. 4287 */ 4288 static struct mbuf * 4289 key_setsadbident(u_int16_t exttype, u_int16_t idtype, 4290 void *string, int stringlen, u_int64_t id) 4291 { 4292 struct mbuf *m; 4293 struct sadb_ident *p; 4294 size_t len; 4295 4296 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen); 4297 m = key_alloc_mbuf(len); 4298 if (!m || m->m_next) { /*XXX*/ 4299 if (m) 4300 m_freem(m); 4301 return NULL; 4302 } 4303 4304 p = mtod(m, struct sadb_ident *); 4305 4306 memset(p, 0, len); 4307 p->sadb_ident_len = PFKEY_UNIT64(len); 4308 p->sadb_ident_exttype = exttype; 4309 p->sadb_ident_type = idtype; 4310 p->sadb_ident_reserved = 0; 4311 p->sadb_ident_id = id; 4312 4313 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)), 4314 string, stringlen); 4315 4316 return m; 4317 } 4318 #endif 4319 4320 /* 4321 * set data into sadb_x_sa2. 4322 */ 4323 static struct mbuf * 4324 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid) 4325 { 4326 struct mbuf *m; 4327 struct sadb_x_sa2 *p; 4328 size_t len; 4329 4330 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 4331 m = key_alloc_mbuf(len, M_WAITOK); 4332 KASSERT(m->m_next == NULL); 4333 4334 p = mtod(m, struct sadb_x_sa2 *); 4335 4336 memset(p, 0, len); 4337 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 4338 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 4339 p->sadb_x_sa2_mode = mode; 4340 p->sadb_x_sa2_reserved1 = 0; 4341 p->sadb_x_sa2_reserved2 = 0; 4342 p->sadb_x_sa2_sequence = seq; 4343 p->sadb_x_sa2_reqid = reqid; 4344 4345 return m; 4346 } 4347 4348 /* 4349 * set data into sadb_x_policy 4350 */ 4351 static struct mbuf * 4352 key_setsadbxpolicy(const u_int16_t type, const u_int8_t dir, const u_int32_t id, 4353 int mflag) 4354 { 4355 struct mbuf *m; 4356 struct sadb_x_policy *p; 4357 size_t len; 4358 4359 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 4360 m = key_alloc_mbuf(len, mflag); 4361 if (!m || m->m_next) { /*XXX*/ 4362 if (m) 4363 m_freem(m); 4364 return NULL; 4365 } 4366 4367 p = mtod(m, struct sadb_x_policy *); 4368 4369 memset(p, 0, len); 4370 p->sadb_x_policy_len = PFKEY_UNIT64(len); 4371 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 4372 p->sadb_x_policy_type = type; 4373 p->sadb_x_policy_dir = dir; 4374 p->sadb_x_policy_id = id; 4375 4376 return m; 4377 } 4378 4379 /* %%% utilities */ 4380 /* 4381 * copy a buffer into the new buffer allocated. 4382 */ 4383 static void * 4384 key_newbuf(const void *src, u_int len) 4385 { 4386 void *new; 4387 4388 new = kmem_alloc(len, KM_SLEEP); 4389 memcpy(new, src, len); 4390 4391 return new; 4392 } 4393 4394 /* compare my own address 4395 * OUT: 1: true, i.e. my address. 4396 * 0: false 4397 */ 4398 int 4399 key_ismyaddr(const struct sockaddr *sa) 4400 { 4401 #ifdef INET 4402 const struct sockaddr_in *sin; 4403 const struct in_ifaddr *ia; 4404 int s; 4405 #endif 4406 4407 KASSERT(sa != NULL); 4408 4409 switch (sa->sa_family) { 4410 #ifdef INET 4411 case AF_INET: 4412 sin = (const struct sockaddr_in *)sa; 4413 s = pserialize_read_enter(); 4414 IN_ADDRLIST_READER_FOREACH(ia) { 4415 if (sin->sin_family == ia->ia_addr.sin_family && 4416 sin->sin_len == ia->ia_addr.sin_len && 4417 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 4418 { 4419 pserialize_read_exit(s); 4420 return 1; 4421 } 4422 } 4423 pserialize_read_exit(s); 4424 break; 4425 #endif 4426 #ifdef INET6 4427 case AF_INET6: 4428 return key_ismyaddr6((const struct sockaddr_in6 *)sa); 4429 #endif 4430 } 4431 4432 return 0; 4433 } 4434 4435 #ifdef INET6 4436 /* 4437 * compare my own address for IPv6. 4438 * 1: ours 4439 * 0: other 4440 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 4441 */ 4442 #include <netinet6/in6_var.h> 4443 4444 static int 4445 key_ismyaddr6(const struct sockaddr_in6 *sin6) 4446 { 4447 struct in6_ifaddr *ia; 4448 int s; 4449 struct psref psref; 4450 int bound; 4451 int ours = 1; 4452 4453 bound = curlwp_bind(); 4454 s = pserialize_read_enter(); 4455 IN6_ADDRLIST_READER_FOREACH(ia) { 4456 bool ingroup; 4457 4458 if (key_sockaddr_match((const struct sockaddr *)&sin6, 4459 (const struct sockaddr *)&ia->ia_addr, 0)) { 4460 pserialize_read_exit(s); 4461 goto ours; 4462 } 4463 ia6_acquire(ia, &psref); 4464 pserialize_read_exit(s); 4465 4466 /* 4467 * XXX Multicast 4468 * XXX why do we care about multlicast here while we don't care 4469 * about IPv4 multicast?? 4470 * XXX scope 4471 */ 4472 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp); 4473 if (ingroup) { 4474 ia6_release(ia, &psref); 4475 goto ours; 4476 } 4477 4478 s = pserialize_read_enter(); 4479 ia6_release(ia, &psref); 4480 } 4481 pserialize_read_exit(s); 4482 4483 /* loopback, just for safety */ 4484 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 4485 goto ours; 4486 4487 ours = 0; 4488 ours: 4489 curlwp_bindx(bound); 4490 4491 return ours; 4492 } 4493 #endif /*INET6*/ 4494 4495 /* 4496 * compare two secasindex structure. 4497 * flag can specify to compare 2 saidxes. 4498 * compare two secasindex structure without both mode and reqid. 4499 * don't compare port. 4500 * IN: 4501 * saidx0: source, it can be in SAD. 4502 * saidx1: object. 4503 * OUT: 4504 * 1 : equal 4505 * 0 : not equal 4506 */ 4507 static int 4508 key_saidx_match( 4509 const struct secasindex *saidx0, 4510 const struct secasindex *saidx1, 4511 int flag) 4512 { 4513 int chkport; 4514 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst; 4515 4516 KASSERT(saidx0 != NULL); 4517 KASSERT(saidx1 != NULL); 4518 4519 /* sanity */ 4520 if (saidx0->proto != saidx1->proto) 4521 return 0; 4522 4523 if (flag == CMP_EXACTLY) { 4524 if (saidx0->mode != saidx1->mode) 4525 return 0; 4526 if (saidx0->reqid != saidx1->reqid) 4527 return 0; 4528 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4529 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4530 return 0; 4531 } else { 4532 4533 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4534 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) { 4535 /* 4536 * If reqid of SPD is non-zero, unique SA is required. 4537 * The result must be of same reqid in this case. 4538 */ 4539 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4540 return 0; 4541 } 4542 4543 if (flag == CMP_MODE_REQID) { 4544 if (saidx0->mode != IPSEC_MODE_ANY && 4545 saidx0->mode != saidx1->mode) 4546 return 0; 4547 } 4548 4549 4550 sa0src = &saidx0->src.sa; 4551 sa0dst = &saidx0->dst.sa; 4552 sa1src = &saidx1->src.sa; 4553 sa1dst = &saidx1->dst.sa; 4554 /* 4555 * If NAT-T is enabled, check ports for tunnel mode. 4556 * Don't do it for transport mode, as there is no 4557 * port information available in the SP. 4558 * Also don't check ports if they are set to zero 4559 * in the SPD: This means we have a non-generated 4560 * SPD which can't know UDP ports. 4561 */ 4562 if (saidx1->mode == IPSEC_MODE_TUNNEL) 4563 chkport = PORT_LOOSE; 4564 else 4565 chkport = PORT_NONE; 4566 4567 if (!key_sockaddr_match(sa0src, sa1src, chkport)) { 4568 return 0; 4569 } 4570 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) { 4571 return 0; 4572 } 4573 } 4574 4575 return 1; 4576 } 4577 4578 /* 4579 * compare two secindex structure exactly. 4580 * IN: 4581 * spidx0: source, it is often in SPD. 4582 * spidx1: object, it is often from PFKEY message. 4583 * OUT: 4584 * 1 : equal 4585 * 0 : not equal 4586 */ 4587 static int 4588 key_spidx_match_exactly( 4589 const struct secpolicyindex *spidx0, 4590 const struct secpolicyindex *spidx1) 4591 { 4592 4593 KASSERT(spidx0 != NULL); 4594 KASSERT(spidx1 != NULL); 4595 4596 /* sanity */ 4597 if (spidx0->prefs != spidx1->prefs || 4598 spidx0->prefd != spidx1->prefd || 4599 spidx0->ul_proto != spidx1->ul_proto) 4600 return 0; 4601 4602 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) && 4603 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT); 4604 } 4605 4606 /* 4607 * compare two secindex structure with mask. 4608 * IN: 4609 * spidx0: source, it is often in SPD. 4610 * spidx1: object, it is often from IP header. 4611 * OUT: 4612 * 1 : equal 4613 * 0 : not equal 4614 */ 4615 static int 4616 key_spidx_match_withmask( 4617 const struct secpolicyindex *spidx0, 4618 const struct secpolicyindex *spidx1) 4619 { 4620 4621 KASSERT(spidx0 != NULL); 4622 KASSERT(spidx1 != NULL); 4623 4624 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4625 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4626 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4627 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4628 return 0; 4629 4630 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4631 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY && 4632 spidx0->ul_proto != spidx1->ul_proto) 4633 return 0; 4634 4635 switch (spidx0->src.sa.sa_family) { 4636 case AF_INET: 4637 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY && 4638 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4639 return 0; 4640 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr, 4641 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4642 return 0; 4643 break; 4644 case AF_INET6: 4645 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY && 4646 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4647 return 0; 4648 /* 4649 * scope_id check. if sin6_scope_id is 0, we regard it 4650 * as a wildcard scope, which matches any scope zone ID. 4651 */ 4652 if (spidx0->src.sin6.sin6_scope_id && 4653 spidx1->src.sin6.sin6_scope_id && 4654 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4655 return 0; 4656 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr, 4657 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4658 return 0; 4659 break; 4660 default: 4661 /* XXX */ 4662 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4663 return 0; 4664 break; 4665 } 4666 4667 switch (spidx0->dst.sa.sa_family) { 4668 case AF_INET: 4669 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY && 4670 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4671 return 0; 4672 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr, 4673 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4674 return 0; 4675 break; 4676 case AF_INET6: 4677 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY && 4678 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4679 return 0; 4680 /* 4681 * scope_id check. if sin6_scope_id is 0, we regard it 4682 * as a wildcard scope, which matches any scope zone ID. 4683 */ 4684 if (spidx0->src.sin6.sin6_scope_id && 4685 spidx1->src.sin6.sin6_scope_id && 4686 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4687 return 0; 4688 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr, 4689 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4690 return 0; 4691 break; 4692 default: 4693 /* XXX */ 4694 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4695 return 0; 4696 break; 4697 } 4698 4699 /* XXX Do we check other field ? e.g. flowinfo */ 4700 4701 return 1; 4702 } 4703 4704 /* returns 0 on match */ 4705 static int 4706 key_portcomp(in_port_t port1, in_port_t port2, int howport) 4707 { 4708 switch (howport) { 4709 case PORT_NONE: 4710 return 0; 4711 case PORT_LOOSE: 4712 if (port1 == 0 || port2 == 0) 4713 return 0; 4714 /*FALLTHROUGH*/ 4715 case PORT_STRICT: 4716 if (port1 != port2) { 4717 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4718 "port fail %d != %d\n", port1, port2); 4719 return 1; 4720 } 4721 return 0; 4722 default: 4723 KASSERT(0); 4724 return 1; 4725 } 4726 } 4727 4728 /* returns 1 on match */ 4729 static int 4730 key_sockaddr_match( 4731 const struct sockaddr *sa1, 4732 const struct sockaddr *sa2, 4733 int howport) 4734 { 4735 const struct sockaddr_in *sin1, *sin2; 4736 const struct sockaddr_in6 *sin61, *sin62; 4737 char s1[IPSEC_ADDRSTRLEN], s2[IPSEC_ADDRSTRLEN]; 4738 4739 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) { 4740 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4741 "fam/len fail %d != %d || %d != %d\n", 4742 sa1->sa_family, sa2->sa_family, sa1->sa_len, 4743 sa2->sa_len); 4744 return 0; 4745 } 4746 4747 switch (sa1->sa_family) { 4748 case AF_INET: 4749 if (sa1->sa_len != sizeof(struct sockaddr_in)) { 4750 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4751 "len fail %d != %zu\n", 4752 sa1->sa_len, sizeof(struct sockaddr_in)); 4753 return 0; 4754 } 4755 sin1 = (const struct sockaddr_in *)sa1; 4756 sin2 = (const struct sockaddr_in *)sa2; 4757 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) { 4758 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4759 "addr fail %s != %s\n", 4760 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), 4761 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2)); 4762 return 0; 4763 } 4764 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) { 4765 return 0; 4766 } 4767 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4768 "addr success %s[%d] == %s[%d]\n", 4769 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), 4770 sin1->sin_port, 4771 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2), 4772 sin2->sin_port); 4773 break; 4774 case AF_INET6: 4775 sin61 = (const struct sockaddr_in6 *)sa1; 4776 sin62 = (const struct sockaddr_in6 *)sa2; 4777 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4778 return 0; /*EINVAL*/ 4779 4780 if (sin61->sin6_scope_id != sin62->sin6_scope_id) { 4781 return 0; 4782 } 4783 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) { 4784 return 0; 4785 } 4786 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) { 4787 return 0; 4788 } 4789 break; 4790 default: 4791 if (memcmp(sa1, sa2, sa1->sa_len) != 0) 4792 return 0; 4793 break; 4794 } 4795 4796 return 1; 4797 } 4798 4799 /* 4800 * compare two buffers with mask. 4801 * IN: 4802 * addr1: source 4803 * addr2: object 4804 * bits: Number of bits to compare 4805 * OUT: 4806 * 1 : equal 4807 * 0 : not equal 4808 */ 4809 static int 4810 key_bb_match_withmask(const void *a1, const void *a2, u_int bits) 4811 { 4812 const unsigned char *p1 = a1; 4813 const unsigned char *p2 = a2; 4814 4815 /* XXX: This could be considerably faster if we compare a word 4816 * at a time, but it is complicated on LSB Endian machines */ 4817 4818 /* Handle null pointers */ 4819 if (p1 == NULL || p2 == NULL) 4820 return (p1 == p2); 4821 4822 while (bits >= 8) { 4823 if (*p1++ != *p2++) 4824 return 0; 4825 bits -= 8; 4826 } 4827 4828 if (bits > 0) { 4829 u_int8_t mask = ~((1<<(8-bits))-1); 4830 if ((*p1 & mask) != (*p2 & mask)) 4831 return 0; 4832 } 4833 return 1; /* Match! */ 4834 } 4835 4836 static void 4837 key_timehandler_spd(time_t now) 4838 { 4839 u_int dir; 4840 struct secpolicy *sp; 4841 4842 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4843 retry: 4844 mutex_enter(&key_spd.lock); 4845 SPLIST_WRITER_FOREACH(sp, dir) { 4846 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 4847 4848 if (sp->lifetime == 0 && sp->validtime == 0) 4849 continue; 4850 4851 if ((sp->lifetime && now - sp->created > sp->lifetime) || 4852 (sp->validtime && now - sp->lastused > sp->validtime)) { 4853 key_unlink_sp(sp); 4854 mutex_exit(&key_spd.lock); 4855 key_spdexpire(sp); 4856 key_destroy_sp(sp); 4857 goto retry; 4858 } 4859 } 4860 mutex_exit(&key_spd.lock); 4861 } 4862 4863 retry_socksplist: 4864 mutex_enter(&key_spd.lock); 4865 SOCKSPLIST_WRITER_FOREACH(sp) { 4866 if (sp->state != IPSEC_SPSTATE_DEAD) 4867 continue; 4868 4869 key_unlink_sp(sp); 4870 mutex_exit(&key_spd.lock); 4871 key_destroy_sp(sp); 4872 goto retry_socksplist; 4873 } 4874 mutex_exit(&key_spd.lock); 4875 } 4876 4877 static void 4878 key_timehandler_sad(time_t now) 4879 { 4880 struct secashead *sah; 4881 int s; 4882 4883 restart: 4884 mutex_enter(&key_sad.lock); 4885 SAHLIST_WRITER_FOREACH(sah) { 4886 /* If sah has been dead and has no sav, then delete it */ 4887 if (sah->state == SADB_SASTATE_DEAD && 4888 !key_sah_has_sav(sah)) { 4889 key_unlink_sah(sah); 4890 mutex_exit(&key_sad.lock); 4891 key_destroy_sah(sah); 4892 goto restart; 4893 } 4894 } 4895 mutex_exit(&key_sad.lock); 4896 4897 s = pserialize_read_enter(); 4898 SAHLIST_READER_FOREACH(sah) { 4899 struct secasvar *sav; 4900 4901 key_sah_ref(sah); 4902 pserialize_read_exit(s); 4903 4904 /* if LARVAL entry doesn't become MATURE, delete it. */ 4905 mutex_enter(&key_sad.lock); 4906 restart_sav_LARVAL: 4907 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) { 4908 if (now - sav->created > key_larval_lifetime) { 4909 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4910 goto restart_sav_LARVAL; 4911 } 4912 } 4913 mutex_exit(&key_sad.lock); 4914 4915 /* 4916 * check MATURE entry to start to send expire message 4917 * whether or not. 4918 */ 4919 restart_sav_MATURE: 4920 mutex_enter(&key_sad.lock); 4921 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_MATURE) { 4922 /* we don't need to check. */ 4923 if (sav->lft_s == NULL) 4924 continue; 4925 4926 /* sanity check */ 4927 KASSERT(sav->lft_c != NULL); 4928 4929 /* check SOFT lifetime */ 4930 if (sav->lft_s->sadb_lifetime_addtime != 0 && 4931 now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 4932 /* 4933 * check SA to be used whether or not. 4934 * when SA hasn't been used, delete it. 4935 */ 4936 if (sav->lft_c->sadb_lifetime_usetime == 0) { 4937 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4938 mutex_exit(&key_sad.lock); 4939 } else { 4940 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4941 mutex_exit(&key_sad.lock); 4942 /* 4943 * XXX If we keep to send expire 4944 * message in the status of 4945 * DYING. Do remove below code. 4946 */ 4947 key_expire(sav); 4948 } 4949 goto restart_sav_MATURE; 4950 } 4951 /* check SOFT lifetime by bytes */ 4952 /* 4953 * XXX I don't know the way to delete this SA 4954 * when new SA is installed. Caution when it's 4955 * installed too big lifetime by time. 4956 */ 4957 else { 4958 uint64_t lft_c_bytes = 0; 4959 lifetime_counters_t sum = {0}; 4960 4961 percpu_foreach(sav->lft_c_counters_percpu, 4962 key_sum_lifetime_counters, sum); 4963 lft_c_bytes = sum[LIFETIME_COUNTER_BYTES]; 4964 4965 if (sav->lft_s->sadb_lifetime_bytes == 0 || 4966 sav->lft_s->sadb_lifetime_bytes >= lft_c_bytes) 4967 continue; 4968 4969 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4970 mutex_exit(&key_sad.lock); 4971 /* 4972 * XXX If we keep to send expire 4973 * message in the status of 4974 * DYING. Do remove below code. 4975 */ 4976 key_expire(sav); 4977 goto restart_sav_MATURE; 4978 } 4979 } 4980 mutex_exit(&key_sad.lock); 4981 4982 /* check DYING entry to change status to DEAD. */ 4983 mutex_enter(&key_sad.lock); 4984 restart_sav_DYING: 4985 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DYING) { 4986 /* we don't need to check. */ 4987 if (sav->lft_h == NULL) 4988 continue; 4989 4990 /* sanity check */ 4991 KASSERT(sav->lft_c != NULL); 4992 4993 if (sav->lft_h->sadb_lifetime_addtime != 0 && 4994 now - sav->created > sav->lft_h->sadb_lifetime_addtime) { 4995 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4996 goto restart_sav_DYING; 4997 } 4998 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4999 else if (sav->lft_s != NULL 5000 && sav->lft_s->sadb_lifetime_addtime != 0 5001 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 5002 /* 5003 * XXX: should be checked to be 5004 * installed the valid SA. 5005 */ 5006 5007 /* 5008 * If there is no SA then sending 5009 * expire message. 5010 */ 5011 key_expire(sav); 5012 } 5013 #endif 5014 /* check HARD lifetime by bytes */ 5015 else { 5016 uint64_t lft_c_bytes = 0; 5017 lifetime_counters_t sum = {0}; 5018 5019 percpu_foreach(sav->lft_c_counters_percpu, 5020 key_sum_lifetime_counters, sum); 5021 lft_c_bytes = sum[LIFETIME_COUNTER_BYTES]; 5022 5023 if (sav->lft_h->sadb_lifetime_bytes == 0 || 5024 sav->lft_h->sadb_lifetime_bytes >= lft_c_bytes) 5025 continue; 5026 5027 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5028 goto restart_sav_DYING; 5029 } 5030 } 5031 mutex_exit(&key_sad.lock); 5032 5033 /* delete entry in DEAD */ 5034 restart_sav_DEAD: 5035 mutex_enter(&key_sad.lock); 5036 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DEAD) { 5037 key_unlink_sav(sav); 5038 mutex_exit(&key_sad.lock); 5039 key_destroy_sav(sav); 5040 goto restart_sav_DEAD; 5041 } 5042 mutex_exit(&key_sad.lock); 5043 5044 s = pserialize_read_enter(); 5045 key_sah_unref(sah); 5046 } 5047 pserialize_read_exit(s); 5048 } 5049 5050 static void 5051 key_timehandler_acq(time_t now) 5052 { 5053 #ifndef IPSEC_NONBLOCK_ACQUIRE 5054 struct secacq *acq, *nextacq; 5055 5056 restart: 5057 mutex_enter(&key_misc.lock); 5058 LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) { 5059 if (now - acq->created > key_blockacq_lifetime) { 5060 LIST_REMOVE(acq, chain); 5061 mutex_exit(&key_misc.lock); 5062 kmem_free(acq, sizeof(*acq)); 5063 goto restart; 5064 } 5065 } 5066 mutex_exit(&key_misc.lock); 5067 #endif 5068 } 5069 5070 static void 5071 key_timehandler_spacq(time_t now) 5072 { 5073 #ifdef notyet 5074 struct secspacq *acq, *nextacq; 5075 5076 LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) { 5077 if (now - acq->created > key_blockacq_lifetime) { 5078 KASSERT(__LIST_CHAINED(acq)); 5079 LIST_REMOVE(acq, chain); 5080 kmem_free(acq, sizeof(*acq)); 5081 } 5082 } 5083 #endif 5084 } 5085 5086 static unsigned int key_timehandler_work_enqueued = 0; 5087 5088 /* 5089 * time handler. 5090 * scanning SPD and SAD to check status for each entries, 5091 * and do to remove or to expire. 5092 */ 5093 static void 5094 key_timehandler_work(struct work *wk, void *arg) 5095 { 5096 time_t now = time_uptime; 5097 5098 /* We can allow enqueuing another work at this point */ 5099 atomic_swap_uint(&key_timehandler_work_enqueued, 0); 5100 5101 key_timehandler_spd(now); 5102 key_timehandler_sad(now); 5103 key_timehandler_acq(now); 5104 key_timehandler_spacq(now); 5105 5106 key_acquire_sendup_pending_mbuf(); 5107 5108 /* do exchange to tick time !! */ 5109 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 5110 5111 return; 5112 } 5113 5114 static void 5115 key_timehandler(void *arg) 5116 { 5117 5118 /* Avoid enqueuing another work when one is already enqueued */ 5119 if (atomic_swap_uint(&key_timehandler_work_enqueued, 1) == 1) 5120 return; 5121 5122 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL); 5123 } 5124 5125 u_long 5126 key_random(void) 5127 { 5128 u_long value; 5129 5130 key_randomfill(&value, sizeof(value)); 5131 return value; 5132 } 5133 5134 void 5135 key_randomfill(void *p, size_t l) 5136 { 5137 5138 cprng_fast(p, l); 5139 } 5140 5141 /* 5142 * map SADB_SATYPE_* to IPPROTO_*. 5143 * if satype == SADB_SATYPE then satype is mapped to ~0. 5144 * OUT: 5145 * 0: invalid satype. 5146 */ 5147 static u_int16_t 5148 key_satype2proto(u_int8_t satype) 5149 { 5150 switch (satype) { 5151 case SADB_SATYPE_UNSPEC: 5152 return IPSEC_PROTO_ANY; 5153 case SADB_SATYPE_AH: 5154 return IPPROTO_AH; 5155 case SADB_SATYPE_ESP: 5156 return IPPROTO_ESP; 5157 case SADB_X_SATYPE_IPCOMP: 5158 return IPPROTO_IPCOMP; 5159 case SADB_X_SATYPE_TCPSIGNATURE: 5160 return IPPROTO_TCP; 5161 default: 5162 return 0; 5163 } 5164 /* NOTREACHED */ 5165 } 5166 5167 /* 5168 * map IPPROTO_* to SADB_SATYPE_* 5169 * OUT: 5170 * 0: invalid protocol type. 5171 */ 5172 static u_int8_t 5173 key_proto2satype(u_int16_t proto) 5174 { 5175 switch (proto) { 5176 case IPPROTO_AH: 5177 return SADB_SATYPE_AH; 5178 case IPPROTO_ESP: 5179 return SADB_SATYPE_ESP; 5180 case IPPROTO_IPCOMP: 5181 return SADB_X_SATYPE_IPCOMP; 5182 case IPPROTO_TCP: 5183 return SADB_X_SATYPE_TCPSIGNATURE; 5184 default: 5185 return 0; 5186 } 5187 /* NOTREACHED */ 5188 } 5189 5190 static int 5191 key_setsecasidx(int proto, int mode, int reqid, 5192 const struct sockaddr *src, const struct sockaddr *dst, 5193 struct secasindex * saidx) 5194 { 5195 const union sockaddr_union *src_u = (const union sockaddr_union *)src; 5196 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst; 5197 5198 /* sa len safety check */ 5199 if (key_checksalen(src_u) != 0) 5200 return -1; 5201 if (key_checksalen(dst_u) != 0) 5202 return -1; 5203 5204 memset(saidx, 0, sizeof(*saidx)); 5205 saidx->proto = proto; 5206 saidx->mode = mode; 5207 saidx->reqid = reqid; 5208 memcpy(&saidx->src, src_u, src_u->sa.sa_len); 5209 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len); 5210 5211 key_porttosaddr(&((saidx)->src), 0); 5212 key_porttosaddr(&((saidx)->dst), 0); 5213 return 0; 5214 } 5215 5216 static void 5217 key_init_spidx_bymsghdr(struct secpolicyindex *spidx, 5218 const struct sadb_msghdr *mhp) 5219 { 5220 const struct sadb_address *src0, *dst0; 5221 const struct sockaddr *src, *dst; 5222 const struct sadb_x_policy *xpl0; 5223 5224 src0 = mhp->ext[SADB_EXT_ADDRESS_SRC]; 5225 dst0 = mhp->ext[SADB_EXT_ADDRESS_DST]; 5226 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5227 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5228 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 5229 5230 memset(spidx, 0, sizeof(*spidx)); 5231 spidx->dir = xpl0->sadb_x_policy_dir; 5232 spidx->prefs = src0->sadb_address_prefixlen; 5233 spidx->prefd = dst0->sadb_address_prefixlen; 5234 spidx->ul_proto = src0->sadb_address_proto; 5235 /* XXX boundary check against sa_len */ 5236 memcpy(&spidx->src, src, src->sa_len); 5237 memcpy(&spidx->dst, dst, dst->sa_len); 5238 } 5239 5240 /* %%% PF_KEY */ 5241 /* 5242 * SADB_GETSPI processing is to receive 5243 * <base, (SA2), src address, dst address, (SPI range)> 5244 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 5245 * tree with the status of LARVAL, and send 5246 * <base, SA(*), address(SD)> 5247 * to the IKMPd. 5248 * 5249 * IN: mhp: pointer to the pointer to each header. 5250 * OUT: NULL if fail. 5251 * other if success, return pointer to the message to send. 5252 */ 5253 static int 5254 key_api_getspi(struct socket *so, struct mbuf *m, 5255 const struct sadb_msghdr *mhp) 5256 { 5257 const struct sockaddr *src, *dst; 5258 struct secasindex saidx; 5259 struct secashead *sah; 5260 struct secasvar *newsav; 5261 u_int8_t proto; 5262 u_int32_t spi; 5263 u_int8_t mode; 5264 u_int16_t reqid; 5265 int error; 5266 5267 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5268 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5269 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5270 return key_senderror(so, m, EINVAL); 5271 } 5272 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5273 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5274 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5275 return key_senderror(so, m, EINVAL); 5276 } 5277 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5278 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5279 mode = sa2->sadb_x_sa2_mode; 5280 reqid = sa2->sadb_x_sa2_reqid; 5281 } else { 5282 mode = IPSEC_MODE_ANY; 5283 reqid = 0; 5284 } 5285 5286 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5287 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5288 5289 /* map satype to proto */ 5290 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5291 if (proto == 0) { 5292 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5293 return key_senderror(so, m, EINVAL); 5294 } 5295 5296 5297 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5298 if (error != 0) 5299 return key_senderror(so, m, EINVAL); 5300 5301 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5302 if (error != 0) 5303 return key_senderror(so, m, EINVAL); 5304 5305 /* SPI allocation */ 5306 spi = key_do_getnewspi(mhp->ext[SADB_EXT_SPIRANGE], &saidx); 5307 if (spi == 0) 5308 return key_senderror(so, m, EINVAL); 5309 5310 /* get a SA index */ 5311 sah = key_getsah_ref(&saidx, CMP_REQID); 5312 if (sah == NULL) { 5313 /* create a new SA index */ 5314 sah = key_newsah(&saidx); 5315 if (sah == NULL) { 5316 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5317 return key_senderror(so, m, ENOBUFS); 5318 } 5319 } 5320 5321 /* get a new SA */ 5322 /* XXX rewrite */ 5323 newsav = KEY_NEWSAV(m, mhp, &error); 5324 if (newsav == NULL) { 5325 key_sah_unref(sah); 5326 /* XXX don't free new SA index allocated in above. */ 5327 return key_senderror(so, m, error); 5328 } 5329 5330 /* set spi */ 5331 newsav->spi = htonl(spi); 5332 5333 /* Add to sah#savlist */ 5334 key_init_sav(newsav); 5335 newsav->sah = sah; 5336 newsav->state = SADB_SASTATE_LARVAL; 5337 mutex_enter(&key_sad.lock); 5338 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav); 5339 mutex_exit(&key_sad.lock); 5340 key_validate_savlist(sah, SADB_SASTATE_LARVAL); 5341 5342 key_sah_unref(sah); 5343 5344 #ifndef IPSEC_NONBLOCK_ACQUIRE 5345 /* delete the entry in key_misc.acqlist */ 5346 if (mhp->msg->sadb_msg_seq != 0) { 5347 struct secacq *acq; 5348 mutex_enter(&key_misc.lock); 5349 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); 5350 if (acq != NULL) { 5351 /* reset counter in order to deletion by timehandler. */ 5352 acq->created = time_uptime; 5353 acq->count = 0; 5354 } 5355 mutex_exit(&key_misc.lock); 5356 } 5357 #endif 5358 5359 { 5360 struct mbuf *n, *nn; 5361 struct sadb_sa *m_sa; 5362 int off, len; 5363 5364 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 5365 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES); 5366 5367 /* create new sadb_msg to reply. */ 5368 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 5369 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5370 5371 n = key_alloc_mbuf_simple(len, M_WAITOK); 5372 n->m_len = len; 5373 n->m_next = NULL; 5374 off = 0; 5375 5376 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 5377 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 5378 5379 m_sa = (struct sadb_sa *)(mtod(n, char *) + off); 5380 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 5381 m_sa->sadb_sa_exttype = SADB_EXT_SA; 5382 m_sa->sadb_sa_spi = htonl(spi); 5383 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5384 5385 KASSERTMSG(off == len, "length inconsistency"); 5386 5387 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 5388 SADB_EXT_ADDRESS_DST); 5389 5390 KASSERT(n->m_len >= sizeof(struct sadb_msg)); 5391 5392 n->m_pkthdr.len = 0; 5393 for (nn = n; nn; nn = nn->m_next) 5394 n->m_pkthdr.len += nn->m_len; 5395 5396 key_fill_replymsg(n, newsav->seq); 5397 m_freem(m); 5398 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5399 } 5400 } 5401 5402 /* 5403 * allocating new SPI 5404 * called by key_api_getspi(). 5405 * OUT: 5406 * 0: failure. 5407 * others: success. 5408 */ 5409 static u_int32_t 5410 key_do_getnewspi(const struct sadb_spirange *spirange, 5411 const struct secasindex *saidx) 5412 { 5413 u_int32_t newspi; 5414 u_int32_t spmin, spmax; 5415 int count = key_spi_trycnt; 5416 5417 /* set spi range to allocate */ 5418 if (spirange != NULL) { 5419 spmin = spirange->sadb_spirange_min; 5420 spmax = spirange->sadb_spirange_max; 5421 } else { 5422 spmin = key_spi_minval; 5423 spmax = key_spi_maxval; 5424 } 5425 /* IPCOMP needs 2-byte SPI */ 5426 if (saidx->proto == IPPROTO_IPCOMP) { 5427 u_int32_t t; 5428 if (spmin >= 0x10000) 5429 spmin = 0xffff; 5430 if (spmax >= 0x10000) 5431 spmax = 0xffff; 5432 if (spmin > spmax) { 5433 t = spmin; spmin = spmax; spmax = t; 5434 } 5435 } 5436 5437 if (spmin == spmax) { 5438 if (key_checkspidup(saidx, htonl(spmin))) { 5439 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin); 5440 return 0; 5441 } 5442 5443 count--; /* taking one cost. */ 5444 newspi = spmin; 5445 5446 } else { 5447 5448 /* init SPI */ 5449 newspi = 0; 5450 5451 /* when requesting to allocate spi ranged */ 5452 while (count--) { 5453 /* generate pseudo-random SPI value ranged. */ 5454 newspi = spmin + (key_random() % (spmax - spmin + 1)); 5455 5456 if (!key_checkspidup(saidx, htonl(newspi))) 5457 break; 5458 } 5459 5460 if (count == 0 || newspi == 0) { 5461 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n"); 5462 return 0; 5463 } 5464 } 5465 5466 /* statistics */ 5467 keystat.getspi_count = 5468 (keystat.getspi_count + key_spi_trycnt - count) / 2; 5469 5470 return newspi; 5471 } 5472 5473 static int 5474 key_handle_natt_info(struct secasvar *sav, 5475 const struct sadb_msghdr *mhp) 5476 { 5477 const char *msg = "?" ; 5478 struct sadb_x_nat_t_type *type; 5479 struct sadb_x_nat_t_port *sport, *dport; 5480 struct sadb_address *iaddr, *raddr; 5481 struct sadb_x_nat_t_frag *frag; 5482 5483 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 5484 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 5485 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) 5486 return 0; 5487 5488 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) { 5489 msg = "TYPE"; 5490 goto bad; 5491 } 5492 5493 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) { 5494 msg = "SPORT"; 5495 goto bad; 5496 } 5497 5498 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5499 msg = "DPORT"; 5500 goto bad; 5501 } 5502 5503 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) { 5504 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); 5505 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) { 5506 msg = "OAI"; 5507 goto bad; 5508 } 5509 } 5510 5511 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5512 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); 5513 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5514 msg = "OAR"; 5515 goto bad; 5516 } 5517 } 5518 5519 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5520 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5521 msg = "FRAG"; 5522 goto bad; 5523 } 5524 } 5525 5526 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5527 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5528 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5529 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5530 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5531 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5532 5533 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", 5534 type->sadb_x_nat_t_type_type, 5535 ntohs(sport->sadb_x_nat_t_port_port), 5536 ntohs(dport->sadb_x_nat_t_port_port)); 5537 5538 sav->natt_type = type->sadb_x_nat_t_type_type; 5539 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port); 5540 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port); 5541 if (frag) 5542 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen; 5543 else 5544 sav->esp_frag = IP_MAXPACKET; 5545 5546 return 0; 5547 bad: 5548 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg); 5549 __USE(msg); 5550 return -1; 5551 } 5552 5553 /* Just update the IPSEC_NAT_T ports if present */ 5554 static int 5555 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst, 5556 const struct sadb_msghdr *mhp) 5557 { 5558 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 5559 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); 5560 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 5561 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); 5562 5563 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) && 5564 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) && 5565 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) { 5566 struct sadb_x_nat_t_type *type; 5567 struct sadb_x_nat_t_port *sport; 5568 struct sadb_x_nat_t_port *dport; 5569 5570 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 5571 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 5572 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 5573 IPSECLOG(LOG_DEBUG, "invalid message\n"); 5574 return -1; 5575 } 5576 5577 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5578 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5579 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5580 5581 key_porttosaddr(src, sport->sadb_x_nat_t_port_port); 5582 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port); 5583 5584 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", 5585 type->sadb_x_nat_t_type_type, 5586 ntohs(sport->sadb_x_nat_t_port_port), 5587 ntohs(dport->sadb_x_nat_t_port_port)); 5588 } 5589 5590 return 0; 5591 } 5592 5593 5594 /* 5595 * SADB_UPDATE processing 5596 * receive 5597 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5598 * key(AE), (identity(SD),) (sensitivity)> 5599 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 5600 * and send 5601 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5602 * (identity(SD),) (sensitivity)> 5603 * to the ikmpd. 5604 * 5605 * m will always be freed. 5606 */ 5607 static int 5608 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5609 { 5610 struct sadb_sa *sa0; 5611 const struct sockaddr *src, *dst; 5612 struct secasindex saidx; 5613 struct secashead *sah; 5614 struct secasvar *sav, *newsav; 5615 u_int16_t proto; 5616 u_int8_t mode; 5617 u_int16_t reqid; 5618 int error; 5619 5620 /* map satype to proto */ 5621 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5622 if (proto == 0) { 5623 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5624 return key_senderror(so, m, EINVAL); 5625 } 5626 5627 if (mhp->ext[SADB_EXT_SA] == NULL || 5628 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5629 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5630 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5631 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5632 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5633 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5634 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5635 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5636 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5637 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5638 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5639 return key_senderror(so, m, EINVAL); 5640 } 5641 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5642 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5643 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5644 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5645 return key_senderror(so, m, EINVAL); 5646 } 5647 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5648 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5649 mode = sa2->sadb_x_sa2_mode; 5650 reqid = sa2->sadb_x_sa2_reqid; 5651 } else { 5652 mode = IPSEC_MODE_ANY; 5653 reqid = 0; 5654 } 5655 /* XXX boundary checking for other extensions */ 5656 5657 sa0 = mhp->ext[SADB_EXT_SA]; 5658 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5659 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5660 5661 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5662 if (error != 0) 5663 return key_senderror(so, m, EINVAL); 5664 5665 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5666 if (error != 0) 5667 return key_senderror(so, m, EINVAL); 5668 5669 /* get a SA header */ 5670 sah = key_getsah_ref(&saidx, CMP_REQID); 5671 if (sah == NULL) { 5672 IPSECLOG(LOG_DEBUG, "no SA index found.\n"); 5673 return key_senderror(so, m, ENOENT); 5674 } 5675 5676 /* set spidx if there */ 5677 /* XXX rewrite */ 5678 error = key_setident(sah, m, mhp); 5679 if (error) 5680 goto error_sah; 5681 5682 /* find a SA with sequence number. */ 5683 #ifdef IPSEC_DOSEQCHECK 5684 if (mhp->msg->sadb_msg_seq != 0) { 5685 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq); 5686 if (sav == NULL) { 5687 IPSECLOG(LOG_DEBUG, 5688 "no larval SA with sequence %u exists.\n", 5689 mhp->msg->sadb_msg_seq); 5690 error = ENOENT; 5691 goto error_sah; 5692 } 5693 } 5694 #else 5695 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5696 if (sav == NULL) { 5697 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n", 5698 (u_int32_t)ntohl(sa0->sadb_sa_spi)); 5699 error = EINVAL; 5700 goto error_sah; 5701 } 5702 #endif 5703 5704 /* validity check */ 5705 if (sav->sah->saidx.proto != proto) { 5706 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n", 5707 sav->sah->saidx.proto, proto); 5708 error = EINVAL; 5709 goto error; 5710 } 5711 #ifdef IPSEC_DOSEQCHECK 5712 if (sav->spi != sa0->sadb_sa_spi) { 5713 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n", 5714 (u_int32_t)ntohl(sav->spi), 5715 (u_int32_t)ntohl(sa0->sadb_sa_spi)); 5716 error = EINVAL; 5717 goto error; 5718 } 5719 #endif 5720 if (sav->pid != mhp->msg->sadb_msg_pid) { 5721 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n", 5722 sav->pid, mhp->msg->sadb_msg_pid); 5723 error = EINVAL; 5724 goto error; 5725 } 5726 5727 /* 5728 * Allocate a new SA instead of modifying the existing SA directly 5729 * to avoid race conditions. 5730 */ 5731 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); 5732 5733 /* copy sav values */ 5734 newsav->spi = sav->spi; 5735 newsav->seq = sav->seq; 5736 newsav->created = sav->created; 5737 newsav->pid = sav->pid; 5738 newsav->sah = sav->sah; 5739 5740 error = key_setsaval(newsav, m, mhp); 5741 if (error) { 5742 key_delsav(newsav); 5743 goto error; 5744 } 5745 5746 error = key_handle_natt_info(newsav, mhp); 5747 if (error != 0) { 5748 key_delsav(newsav); 5749 goto error; 5750 } 5751 5752 error = key_init_xform(newsav); 5753 if (error != 0) { 5754 key_delsav(newsav); 5755 goto error; 5756 } 5757 5758 /* Add to sah#savlist */ 5759 key_init_sav(newsav); 5760 newsav->state = SADB_SASTATE_MATURE; 5761 mutex_enter(&key_sad.lock); 5762 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); 5763 SAVLUT_WRITER_INSERT_HEAD(newsav); 5764 mutex_exit(&key_sad.lock); 5765 key_validate_savlist(sah, SADB_SASTATE_MATURE); 5766 5767 key_sah_unref(sah); 5768 sah = NULL; 5769 5770 key_destroy_sav_with_ref(sav); 5771 sav = NULL; 5772 5773 { 5774 struct mbuf *n; 5775 5776 /* set msg buf from mhp */ 5777 n = key_getmsgbuf_x1(m, mhp); 5778 if (n == NULL) { 5779 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5780 return key_senderror(so, m, ENOBUFS); 5781 } 5782 5783 m_freem(m); 5784 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5785 } 5786 error: 5787 KEY_SA_UNREF(&sav); 5788 error_sah: 5789 key_sah_unref(sah); 5790 return key_senderror(so, m, error); 5791 } 5792 5793 /* 5794 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5795 * only called by key_api_update(). 5796 * OUT: 5797 * NULL : not found 5798 * others : found, pointer to a SA. 5799 */ 5800 #ifdef IPSEC_DOSEQCHECK 5801 static struct secasvar * 5802 key_getsavbyseq(struct secashead *sah, u_int32_t seq) 5803 { 5804 struct secasvar *sav; 5805 u_int state; 5806 int s; 5807 5808 state = SADB_SASTATE_LARVAL; 5809 5810 /* search SAD with sequence number ? */ 5811 s = pserialize_read_enter(); 5812 SAVLIST_READER_FOREACH(sav, sah, state) { 5813 KEY_CHKSASTATE(state, sav->state); 5814 5815 if (sav->seq == seq) { 5816 SA_ADDREF(sav); 5817 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 5818 "DP cause refcnt++:%d SA:%p\n", 5819 key_sa_refcnt(sav), sav); 5820 break; 5821 } 5822 } 5823 pserialize_read_exit(s); 5824 5825 return sav; 5826 } 5827 #endif 5828 5829 /* 5830 * SADB_ADD processing 5831 * add an entry to SA database, when received 5832 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5833 * key(AE), (identity(SD),) (sensitivity)> 5834 * from the ikmpd, 5835 * and send 5836 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5837 * (identity(SD),) (sensitivity)> 5838 * to the ikmpd. 5839 * 5840 * IGNORE identity and sensitivity messages. 5841 * 5842 * m will always be freed. 5843 */ 5844 static int 5845 key_api_add(struct socket *so, struct mbuf *m, 5846 const struct sadb_msghdr *mhp) 5847 { 5848 struct sadb_sa *sa0; 5849 const struct sockaddr *src, *dst; 5850 struct secasindex saidx; 5851 struct secashead *sah; 5852 struct secasvar *newsav; 5853 u_int16_t proto; 5854 u_int8_t mode; 5855 u_int16_t reqid; 5856 int error; 5857 5858 /* map satype to proto */ 5859 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5860 if (proto == 0) { 5861 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5862 return key_senderror(so, m, EINVAL); 5863 } 5864 5865 if (mhp->ext[SADB_EXT_SA] == NULL || 5866 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5867 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5868 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5869 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5870 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5871 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5872 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5873 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5874 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5875 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5876 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5877 return key_senderror(so, m, EINVAL); 5878 } 5879 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5880 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5881 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5882 /* XXX need more */ 5883 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5884 return key_senderror(so, m, EINVAL); 5885 } 5886 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5887 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5888 mode = sa2->sadb_x_sa2_mode; 5889 reqid = sa2->sadb_x_sa2_reqid; 5890 } else { 5891 mode = IPSEC_MODE_ANY; 5892 reqid = 0; 5893 } 5894 5895 sa0 = mhp->ext[SADB_EXT_SA]; 5896 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5897 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5898 5899 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5900 if (error != 0) 5901 return key_senderror(so, m, EINVAL); 5902 5903 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5904 if (error != 0) 5905 return key_senderror(so, m, EINVAL); 5906 5907 /* get a SA header */ 5908 sah = key_getsah_ref(&saidx, CMP_REQID); 5909 if (sah == NULL) { 5910 /* create a new SA header */ 5911 sah = key_newsah(&saidx); 5912 if (sah == NULL) { 5913 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5914 return key_senderror(so, m, ENOBUFS); 5915 } 5916 } 5917 5918 /* set spidx if there */ 5919 /* XXX rewrite */ 5920 error = key_setident(sah, m, mhp); 5921 if (error) 5922 goto error; 5923 5924 { 5925 struct secasvar *sav; 5926 5927 /* We can create new SA only if SPI is differenct. */ 5928 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5929 if (sav != NULL) { 5930 KEY_SA_UNREF(&sav); 5931 IPSECLOG(LOG_DEBUG, "SA already exists.\n"); 5932 error = EEXIST; 5933 goto error; 5934 } 5935 } 5936 5937 /* create new SA entry. */ 5938 newsav = KEY_NEWSAV(m, mhp, &error); 5939 if (newsav == NULL) 5940 goto error; 5941 newsav->sah = sah; 5942 5943 error = key_handle_natt_info(newsav, mhp); 5944 if (error != 0) { 5945 key_delsav(newsav); 5946 error = EINVAL; 5947 goto error; 5948 } 5949 5950 error = key_init_xform(newsav); 5951 if (error != 0) { 5952 key_delsav(newsav); 5953 goto error; 5954 } 5955 5956 /* Add to sah#savlist */ 5957 key_init_sav(newsav); 5958 newsav->state = SADB_SASTATE_MATURE; 5959 mutex_enter(&key_sad.lock); 5960 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); 5961 SAVLUT_WRITER_INSERT_HEAD(newsav); 5962 mutex_exit(&key_sad.lock); 5963 key_validate_savlist(sah, SADB_SASTATE_MATURE); 5964 5965 key_sah_unref(sah); 5966 sah = NULL; 5967 5968 /* 5969 * don't call key_freesav() here, as we would like to keep the SA 5970 * in the database on success. 5971 */ 5972 5973 { 5974 struct mbuf *n; 5975 5976 /* set msg buf from mhp */ 5977 n = key_getmsgbuf_x1(m, mhp); 5978 if (n == NULL) { 5979 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5980 return key_senderror(so, m, ENOBUFS); 5981 } 5982 5983 m_freem(m); 5984 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5985 } 5986 error: 5987 key_sah_unref(sah); 5988 return key_senderror(so, m, error); 5989 } 5990 5991 /* m is retained */ 5992 static int 5993 key_setident(struct secashead *sah, struct mbuf *m, 5994 const struct sadb_msghdr *mhp) 5995 { 5996 const struct sadb_ident *idsrc, *iddst; 5997 int idsrclen, iddstlen; 5998 5999 KASSERT(!cpu_softintr_p()); 6000 KASSERT(sah != NULL); 6001 KASSERT(m != NULL); 6002 KASSERT(mhp != NULL); 6003 KASSERT(mhp->msg != NULL); 6004 6005 /* 6006 * Can be called with an existing sah from key_api_update(). 6007 */ 6008 if (sah->idents != NULL) { 6009 kmem_free(sah->idents, sah->idents_len); 6010 sah->idents = NULL; 6011 sah->idents_len = 0; 6012 } 6013 if (sah->identd != NULL) { 6014 kmem_free(sah->identd, sah->identd_len); 6015 sah->identd = NULL; 6016 sah->identd_len = 0; 6017 } 6018 6019 /* don't make buffer if not there */ 6020 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 6021 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 6022 sah->idents = NULL; 6023 sah->identd = NULL; 6024 return 0; 6025 } 6026 6027 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 6028 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 6029 IPSECLOG(LOG_DEBUG, "invalid identity.\n"); 6030 return EINVAL; 6031 } 6032 6033 idsrc = mhp->ext[SADB_EXT_IDENTITY_SRC]; 6034 iddst = mhp->ext[SADB_EXT_IDENTITY_DST]; 6035 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 6036 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 6037 6038 /* validity check */ 6039 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 6040 IPSECLOG(LOG_DEBUG, "ident type mismatched src %u, dst %u.\n", 6041 idsrc->sadb_ident_type, iddst->sadb_ident_type); 6042 return EINVAL; 6043 } 6044 6045 switch (idsrc->sadb_ident_type) { 6046 case SADB_IDENTTYPE_PREFIX: 6047 case SADB_IDENTTYPE_FQDN: 6048 case SADB_IDENTTYPE_USERFQDN: 6049 default: 6050 /* XXX do nothing */ 6051 sah->idents = NULL; 6052 sah->identd = NULL; 6053 return 0; 6054 } 6055 6056 /* make structure */ 6057 sah->idents = kmem_alloc(idsrclen, KM_SLEEP); 6058 sah->idents_len = idsrclen; 6059 sah->identd = kmem_alloc(iddstlen, KM_SLEEP); 6060 sah->identd_len = iddstlen; 6061 memcpy(sah->idents, idsrc, idsrclen); 6062 memcpy(sah->identd, iddst, iddstlen); 6063 6064 return 0; 6065 } 6066 6067 /* 6068 * m will not be freed on return. It never return NULL. 6069 * it is caller's responsibility to free the result. 6070 */ 6071 static struct mbuf * 6072 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 6073 { 6074 struct mbuf *n; 6075 6076 KASSERT(m != NULL); 6077 KASSERT(mhp != NULL); 6078 KASSERT(mhp->msg != NULL); 6079 6080 /* create new sadb_msg to reply. */ 6081 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED, 6082 SADB_EXT_SA, SADB_X_EXT_SA2, 6083 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 6084 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 6085 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, 6086 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, 6087 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, 6088 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG); 6089 6090 KASSERT(n->m_len >= sizeof(struct sadb_msg)); 6091 6092 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 6093 mtod(n, struct sadb_msg *)->sadb_msg_len = 6094 PFKEY_UNIT64(n->m_pkthdr.len); 6095 6096 return n; 6097 } 6098 6099 static int key_delete_all (struct socket *, struct mbuf *, 6100 const struct sadb_msghdr *, u_int16_t); 6101 6102 /* 6103 * SADB_DELETE processing 6104 * receive 6105 * <base, SA(*), address(SD)> 6106 * from the ikmpd, and set SADB_SASTATE_DEAD, 6107 * and send, 6108 * <base, SA(*), address(SD)> 6109 * to the ikmpd. 6110 * 6111 * m will always be freed. 6112 */ 6113 static int 6114 key_api_delete(struct socket *so, struct mbuf *m, 6115 const struct sadb_msghdr *mhp) 6116 { 6117 struct sadb_sa *sa0; 6118 const struct sockaddr *src, *dst; 6119 struct secasindex saidx; 6120 struct secashead *sah; 6121 struct secasvar *sav = NULL; 6122 u_int16_t proto; 6123 int error; 6124 6125 /* map satype to proto */ 6126 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 6127 if (proto == 0) { 6128 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6129 return key_senderror(so, m, EINVAL); 6130 } 6131 6132 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6133 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 6134 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6135 return key_senderror(so, m, EINVAL); 6136 } 6137 6138 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6139 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6140 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6141 return key_senderror(so, m, EINVAL); 6142 } 6143 6144 if (mhp->ext[SADB_EXT_SA] == NULL) { 6145 /* 6146 * Caller wants us to delete all non-LARVAL SAs 6147 * that match the src/dst. This is used during 6148 * IKE INITIAL-CONTACT. 6149 */ 6150 IPSECLOG(LOG_DEBUG, "doing delete all.\n"); 6151 return key_delete_all(so, m, mhp, proto); 6152 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 6153 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6154 return key_senderror(so, m, EINVAL); 6155 } 6156 6157 sa0 = mhp->ext[SADB_EXT_SA]; 6158 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6159 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6160 6161 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6162 if (error != 0) 6163 return key_senderror(so, m, EINVAL); 6164 6165 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6166 if (error != 0) 6167 return key_senderror(so, m, EINVAL); 6168 6169 /* get a SA header */ 6170 sah = key_getsah_ref(&saidx, CMP_HEAD); 6171 if (sah != NULL) { 6172 /* get a SA with SPI. */ 6173 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 6174 key_sah_unref(sah); 6175 } 6176 6177 if (sav == NULL) { 6178 IPSECLOG(LOG_DEBUG, "no SA found.\n"); 6179 return key_senderror(so, m, ENOENT); 6180 } 6181 6182 key_destroy_sav_with_ref(sav); 6183 sav = NULL; 6184 6185 { 6186 struct mbuf *n; 6187 6188 /* create new sadb_msg to reply. */ 6189 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 6190 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6191 6192 key_fill_replymsg(n, 0); 6193 m_freem(m); 6194 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6195 } 6196 } 6197 6198 /* 6199 * delete all SAs for src/dst. Called from key_api_delete(). 6200 */ 6201 static int 6202 key_delete_all(struct socket *so, struct mbuf *m, 6203 const struct sadb_msghdr *mhp, u_int16_t proto) 6204 { 6205 const struct sockaddr *src, *dst; 6206 struct secasindex saidx; 6207 struct secashead *sah; 6208 struct secasvar *sav; 6209 u_int state; 6210 int error; 6211 6212 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6213 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6214 6215 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6216 if (error != 0) 6217 return key_senderror(so, m, EINVAL); 6218 6219 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6220 if (error != 0) 6221 return key_senderror(so, m, EINVAL); 6222 6223 sah = key_getsah_ref(&saidx, CMP_HEAD); 6224 if (sah != NULL) { 6225 /* Delete all non-LARVAL SAs. */ 6226 SASTATE_ALIVE_FOREACH(state) { 6227 if (state == SADB_SASTATE_LARVAL) 6228 continue; 6229 restart: 6230 mutex_enter(&key_sad.lock); 6231 SAVLIST_WRITER_FOREACH(sav, sah, state) { 6232 sav->state = SADB_SASTATE_DEAD; 6233 key_unlink_sav(sav); 6234 mutex_exit(&key_sad.lock); 6235 key_destroy_sav(sav); 6236 goto restart; 6237 } 6238 mutex_exit(&key_sad.lock); 6239 } 6240 key_sah_unref(sah); 6241 } 6242 { 6243 struct mbuf *n; 6244 6245 /* create new sadb_msg to reply. */ 6246 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 6247 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6248 6249 key_fill_replymsg(n, 0); 6250 m_freem(m); 6251 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6252 } 6253 } 6254 6255 /* 6256 * SADB_GET processing 6257 * receive 6258 * <base, SA(*), address(SD)> 6259 * from the ikmpd, and get a SP and a SA to respond, 6260 * and send, 6261 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 6262 * (identity(SD),) (sensitivity)> 6263 * to the ikmpd. 6264 * 6265 * m will always be freed. 6266 */ 6267 static int 6268 key_api_get(struct socket *so, struct mbuf *m, 6269 const struct sadb_msghdr *mhp) 6270 { 6271 struct sadb_sa *sa0; 6272 const struct sockaddr *src, *dst; 6273 struct secasindex saidx; 6274 struct secasvar *sav = NULL; 6275 u_int16_t proto; 6276 int error; 6277 6278 /* map satype to proto */ 6279 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6280 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6281 return key_senderror(so, m, EINVAL); 6282 } 6283 6284 if (mhp->ext[SADB_EXT_SA] == NULL || 6285 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6286 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 6287 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6288 return key_senderror(so, m, EINVAL); 6289 } 6290 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 6291 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6292 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6293 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6294 return key_senderror(so, m, EINVAL); 6295 } 6296 6297 sa0 = mhp->ext[SADB_EXT_SA]; 6298 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6299 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6300 6301 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6302 if (error != 0) 6303 return key_senderror(so, m, EINVAL); 6304 6305 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6306 if (error != 0) 6307 return key_senderror(so, m, EINVAL); 6308 6309 /* get a SA header */ 6310 { 6311 struct secashead *sah; 6312 int s = pserialize_read_enter(); 6313 6314 sah = key_getsah(&saidx, CMP_HEAD); 6315 if (sah != NULL) { 6316 /* get a SA with SPI. */ 6317 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 6318 } 6319 pserialize_read_exit(s); 6320 } 6321 if (sav == NULL) { 6322 IPSECLOG(LOG_DEBUG, "no SA found.\n"); 6323 return key_senderror(so, m, ENOENT); 6324 } 6325 6326 { 6327 struct mbuf *n; 6328 u_int8_t satype; 6329 6330 /* map proto to satype */ 6331 satype = key_proto2satype(sav->sah->saidx.proto); 6332 if (satype == 0) { 6333 KEY_SA_UNREF(&sav); 6334 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n"); 6335 return key_senderror(so, m, EINVAL); 6336 } 6337 6338 /* create new sadb_msg to reply. */ 6339 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 6340 mhp->msg->sadb_msg_pid); 6341 KEY_SA_UNREF(&sav); 6342 m_freem(m); 6343 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6344 } 6345 } 6346 6347 /* XXX make it sysctl-configurable? */ 6348 static void 6349 key_getcomb_setlifetime(struct sadb_comb *comb) 6350 { 6351 6352 comb->sadb_comb_soft_allocations = 1; 6353 comb->sadb_comb_hard_allocations = 1; 6354 comb->sadb_comb_soft_bytes = 0; 6355 comb->sadb_comb_hard_bytes = 0; 6356 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 6357 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100; 6358 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */ 6359 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 6360 } 6361 6362 /* 6363 * XXX reorder combinations by preference 6364 * XXX no idea if the user wants ESP authentication or not 6365 */ 6366 static struct mbuf * 6367 key_getcomb_esp(int mflag) 6368 { 6369 struct sadb_comb *comb; 6370 const struct enc_xform *algo; 6371 struct mbuf *result = NULL, *m, *n; 6372 int encmin; 6373 int i, off, o; 6374 int totlen; 6375 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6376 6377 m = NULL; 6378 for (i = 1; i <= SADB_EALG_MAX; i++) { 6379 algo = esp_algorithm_lookup(i); 6380 if (algo == NULL) 6381 continue; 6382 6383 /* discard algorithms with key size smaller than system min */ 6384 if (_BITS(algo->maxkey) < ipsec_esp_keymin) 6385 continue; 6386 if (_BITS(algo->minkey) < ipsec_esp_keymin) 6387 encmin = ipsec_esp_keymin; 6388 else 6389 encmin = _BITS(algo->minkey); 6390 6391 if (ipsec_esp_auth) 6392 m = key_getcomb_ah(mflag); 6393 else { 6394 KASSERTMSG(l <= MLEN, 6395 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6396 MGET(m, mflag, MT_DATA); 6397 if (m) { 6398 M_ALIGN(m, l); 6399 m->m_len = l; 6400 m->m_next = NULL; 6401 memset(mtod(m, void *), 0, m->m_len); 6402 } 6403 } 6404 if (!m) 6405 goto fail; 6406 6407 totlen = 0; 6408 for (n = m; n; n = n->m_next) 6409 totlen += n->m_len; 6410 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l); 6411 6412 for (off = 0; off < totlen; off += l) { 6413 n = m_pulldown(m, off, l, &o); 6414 if (!n) { 6415 /* m is already freed */ 6416 goto fail; 6417 } 6418 comb = (struct sadb_comb *)(mtod(n, char *) + o); 6419 memset(comb, 0, sizeof(*comb)); 6420 key_getcomb_setlifetime(comb); 6421 comb->sadb_comb_encrypt = i; 6422 comb->sadb_comb_encrypt_minbits = encmin; 6423 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6424 } 6425 6426 if (!result) 6427 result = m; 6428 else 6429 m_cat(result, m); 6430 } 6431 6432 return result; 6433 6434 fail: 6435 if (result) 6436 m_freem(result); 6437 return NULL; 6438 } 6439 6440 static void 6441 key_getsizes_ah(const struct auth_hash *ah, int alg, 6442 u_int16_t* ksmin, u_int16_t* ksmax) 6443 { 6444 *ksmin = *ksmax = ah->keysize; 6445 if (ah->keysize == 0) { 6446 /* 6447 * Transform takes arbitrary key size but algorithm 6448 * key size is restricted. Enforce this here. 6449 */ 6450 switch (alg) { 6451 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break; 6452 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break; 6453 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break; 6454 default: 6455 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg); 6456 break; 6457 } 6458 } 6459 } 6460 6461 /* 6462 * XXX reorder combinations by preference 6463 */ 6464 static struct mbuf * 6465 key_getcomb_ah(int mflag) 6466 { 6467 struct sadb_comb *comb; 6468 const struct auth_hash *algo; 6469 struct mbuf *m; 6470 u_int16_t minkeysize, maxkeysize; 6471 int i; 6472 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6473 6474 m = NULL; 6475 for (i = 1; i <= SADB_AALG_MAX; i++) { 6476 #if 1 6477 /* we prefer HMAC algorithms, not old algorithms */ 6478 if (i != SADB_AALG_SHA1HMAC && 6479 i != SADB_AALG_MD5HMAC && 6480 i != SADB_X_AALG_SHA2_256 && 6481 i != SADB_X_AALG_SHA2_384 && 6482 i != SADB_X_AALG_SHA2_512) 6483 continue; 6484 #endif 6485 algo = ah_algorithm_lookup(i); 6486 if (!algo) 6487 continue; 6488 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6489 /* discard algorithms with key size smaller than system min */ 6490 if (_BITS(minkeysize) < ipsec_ah_keymin) 6491 continue; 6492 6493 if (!m) { 6494 KASSERTMSG(l <= MLEN, 6495 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6496 MGET(m, mflag, MT_DATA); 6497 if (m) { 6498 M_ALIGN(m, l); 6499 m->m_len = l; 6500 m->m_next = NULL; 6501 } 6502 } else 6503 M_PREPEND(m, l, mflag); 6504 if (!m) 6505 return NULL; 6506 6507 if (m->m_len < sizeof(struct sadb_comb)) { 6508 m = m_pullup(m, sizeof(struct sadb_comb)); 6509 if (m == NULL) 6510 return NULL; 6511 } 6512 6513 comb = mtod(m, struct sadb_comb *); 6514 memset(comb, 0, sizeof(*comb)); 6515 key_getcomb_setlifetime(comb); 6516 comb->sadb_comb_auth = i; 6517 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6518 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6519 } 6520 6521 return m; 6522 } 6523 6524 /* 6525 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6526 * XXX reorder combinations by preference 6527 */ 6528 static struct mbuf * 6529 key_getcomb_ipcomp(int mflag) 6530 { 6531 struct sadb_comb *comb; 6532 const struct comp_algo *algo; 6533 struct mbuf *m; 6534 int i; 6535 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6536 6537 m = NULL; 6538 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6539 algo = ipcomp_algorithm_lookup(i); 6540 if (!algo) 6541 continue; 6542 6543 if (!m) { 6544 KASSERTMSG(l <= MLEN, 6545 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6546 MGET(m, mflag, MT_DATA); 6547 if (m) { 6548 M_ALIGN(m, l); 6549 m->m_len = l; 6550 m->m_next = NULL; 6551 } 6552 } else 6553 M_PREPEND(m, l, mflag); 6554 if (!m) 6555 return NULL; 6556 6557 if (m->m_len < sizeof(struct sadb_comb)) { 6558 m = m_pullup(m, sizeof(struct sadb_comb)); 6559 if (m == NULL) 6560 return NULL; 6561 } 6562 6563 comb = mtod(m, struct sadb_comb *); 6564 memset(comb, 0, sizeof(*comb)); 6565 key_getcomb_setlifetime(comb); 6566 comb->sadb_comb_encrypt = i; 6567 /* what should we set into sadb_comb_*_{min,max}bits? */ 6568 } 6569 6570 return m; 6571 } 6572 6573 /* 6574 * XXX no way to pass mode (transport/tunnel) to userland 6575 * XXX replay checking? 6576 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6577 */ 6578 static struct mbuf * 6579 key_getprop(const struct secasindex *saidx, int mflag) 6580 { 6581 struct sadb_prop *prop; 6582 struct mbuf *m, *n; 6583 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6584 int totlen; 6585 6586 switch (saidx->proto) { 6587 case IPPROTO_ESP: 6588 m = key_getcomb_esp(mflag); 6589 break; 6590 case IPPROTO_AH: 6591 m = key_getcomb_ah(mflag); 6592 break; 6593 case IPPROTO_IPCOMP: 6594 m = key_getcomb_ipcomp(mflag); 6595 break; 6596 default: 6597 return NULL; 6598 } 6599 6600 if (!m) 6601 return NULL; 6602 M_PREPEND(m, l, mflag); 6603 if (!m) 6604 return NULL; 6605 6606 totlen = 0; 6607 for (n = m; n; n = n->m_next) 6608 totlen += n->m_len; 6609 6610 prop = mtod(m, struct sadb_prop *); 6611 memset(prop, 0, sizeof(*prop)); 6612 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6613 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6614 prop->sadb_prop_replay = 32; /* XXX */ 6615 6616 return m; 6617 } 6618 6619 /* 6620 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire(). 6621 * send 6622 * <base, SA, address(SD), (address(P)), x_policy, 6623 * (identity(SD),) (sensitivity,) proposal> 6624 * to KMD, and expect to receive 6625 * <base> with SADB_ACQUIRE if error occurred, 6626 * or 6627 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6628 * from KMD by PF_KEY. 6629 * 6630 * XXX x_policy is outside of RFC2367 (KAME extension). 6631 * XXX sensitivity is not supported. 6632 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6633 * see comment for key_getcomb_ipcomp(). 6634 * 6635 * OUT: 6636 * 0 : succeed 6637 * others: error number 6638 */ 6639 static int 6640 key_acquire(const struct secasindex *saidx, const struct secpolicy *sp, int mflag) 6641 { 6642 struct mbuf *result = NULL, *m; 6643 #ifndef IPSEC_NONBLOCK_ACQUIRE 6644 struct secacq *newacq; 6645 #endif 6646 u_int8_t satype; 6647 int error = -1; 6648 u_int32_t seq; 6649 6650 /* sanity check */ 6651 KASSERT(saidx != NULL); 6652 satype = key_proto2satype(saidx->proto); 6653 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto); 6654 6655 #ifndef IPSEC_NONBLOCK_ACQUIRE 6656 /* 6657 * We never do anything about acquirng SA. There is anather 6658 * solution that kernel blocks to send SADB_ACQUIRE message until 6659 * getting something message from IKEd. In later case, to be 6660 * managed with ACQUIRING list. 6661 */ 6662 /* Get an entry to check whether sending message or not. */ 6663 mutex_enter(&key_misc.lock); 6664 newacq = key_getacq(saidx); 6665 if (newacq != NULL) { 6666 if (key_blockacq_count < newacq->count) { 6667 /* reset counter and do send message. */ 6668 newacq->count = 0; 6669 } else { 6670 /* increment counter and do nothing. */ 6671 newacq->count++; 6672 mutex_exit(&key_misc.lock); 6673 return 0; 6674 } 6675 } else { 6676 /* make new entry for blocking to send SADB_ACQUIRE. */ 6677 newacq = key_newacq(saidx); 6678 if (newacq == NULL) { 6679 mutex_exit(&key_misc.lock); 6680 return ENOBUFS; 6681 } 6682 6683 /* add to key_misc.acqlist */ 6684 LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain); 6685 } 6686 6687 seq = newacq->seq; 6688 mutex_exit(&key_misc.lock); 6689 #else 6690 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 6691 #endif 6692 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0, mflag); 6693 if (!m) { 6694 error = ENOBUFS; 6695 goto fail; 6696 } 6697 result = m; 6698 6699 /* set sadb_address for saidx's. */ 6700 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK, 6701 IPSEC_ULPROTO_ANY, mflag); 6702 if (!m) { 6703 error = ENOBUFS; 6704 goto fail; 6705 } 6706 m_cat(result, m); 6707 6708 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK, 6709 IPSEC_ULPROTO_ANY, mflag); 6710 if (!m) { 6711 error = ENOBUFS; 6712 goto fail; 6713 } 6714 m_cat(result, m); 6715 6716 /* XXX proxy address (optional) */ 6717 6718 /* set sadb_x_policy */ 6719 if (sp) { 6720 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id, 6721 mflag); 6722 if (!m) { 6723 error = ENOBUFS; 6724 goto fail; 6725 } 6726 m_cat(result, m); 6727 } 6728 6729 /* XXX identity (optional) */ 6730 #if 0 6731 if (idexttype && fqdn) { 6732 /* create identity extension (FQDN) */ 6733 struct sadb_ident *id; 6734 int fqdnlen; 6735 6736 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6737 id = (struct sadb_ident *)p; 6738 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6739 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6740 id->sadb_ident_exttype = idexttype; 6741 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6742 memcpy(id + 1, fqdn, fqdnlen); 6743 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6744 } 6745 6746 if (idexttype) { 6747 /* create identity extension (USERFQDN) */ 6748 struct sadb_ident *id; 6749 int userfqdnlen; 6750 6751 if (userfqdn) { 6752 /* +1 for terminating-NUL */ 6753 userfqdnlen = strlen(userfqdn) + 1; 6754 } else 6755 userfqdnlen = 0; 6756 id = (struct sadb_ident *)p; 6757 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6758 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6759 id->sadb_ident_exttype = idexttype; 6760 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6761 /* XXX is it correct? */ 6762 if (curlwp) 6763 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred); 6764 if (userfqdn && userfqdnlen) 6765 memcpy(id + 1, userfqdn, userfqdnlen); 6766 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6767 } 6768 #endif 6769 6770 /* XXX sensitivity (optional) */ 6771 6772 /* create proposal/combination extension */ 6773 m = key_getprop(saidx, mflag); 6774 #if 0 6775 /* 6776 * spec conformant: always attach proposal/combination extension, 6777 * the problem is that we have no way to attach it for ipcomp, 6778 * due to the way sadb_comb is declared in RFC2367. 6779 */ 6780 if (!m) { 6781 error = ENOBUFS; 6782 goto fail; 6783 } 6784 m_cat(result, m); 6785 #else 6786 /* 6787 * outside of spec; make proposal/combination extension optional. 6788 */ 6789 if (m) 6790 m_cat(result, m); 6791 #endif 6792 6793 KASSERT(result->m_flags & M_PKTHDR); 6794 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 6795 6796 result->m_pkthdr.len = 0; 6797 for (m = result; m; m = m->m_next) 6798 result->m_pkthdr.len += m->m_len; 6799 6800 mtod(result, struct sadb_msg *)->sadb_msg_len = 6801 PFKEY_UNIT64(result->m_pkthdr.len); 6802 6803 /* 6804 * Called from key_api_acquire that must come from userland, so 6805 * we can call key_sendup_mbuf immediately. 6806 */ 6807 if (mflag == M_WAITOK) 6808 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6809 /* 6810 * XXX we cannot call key_sendup_mbuf directly here because 6811 * it can cause a deadlock: 6812 * - We have a reference to an SP (and an SA) here 6813 * - key_sendup_mbuf will try to take key_so_mtx 6814 * - Some other thread may try to localcount_drain to the SP with 6815 * holding key_so_mtx in say key_api_spdflush 6816 * - In this case localcount_drain never return because key_sendup_mbuf 6817 * that has stuck on key_so_mtx never release a reference to the SP 6818 * 6819 * So defer key_sendup_mbuf to the timer. 6820 */ 6821 return key_acquire_sendup_mbuf_later(result); 6822 6823 fail: 6824 if (result) 6825 m_freem(result); 6826 return error; 6827 } 6828 6829 static struct mbuf *key_acquire_mbuf_head = NULL; 6830 static unsigned key_acquire_mbuf_count = 0; 6831 #define KEY_ACQUIRE_MBUF_MAX 10 6832 6833 static void 6834 key_acquire_sendup_pending_mbuf(void) 6835 { 6836 struct mbuf *m, *prev; 6837 int error; 6838 6839 again: 6840 prev = NULL; 6841 mutex_enter(&key_misc.lock); 6842 m = key_acquire_mbuf_head; 6843 /* Get an earliest mbuf (one at the tail of the list) */ 6844 while (m != NULL) { 6845 if (m->m_nextpkt == NULL) { 6846 if (prev != NULL) 6847 prev->m_nextpkt = NULL; 6848 if (m == key_acquire_mbuf_head) 6849 key_acquire_mbuf_head = NULL; 6850 key_acquire_mbuf_count--; 6851 break; 6852 } 6853 prev = m; 6854 m = m->m_nextpkt; 6855 } 6856 mutex_exit(&key_misc.lock); 6857 6858 if (m == NULL) 6859 return; 6860 6861 m->m_nextpkt = NULL; 6862 error = key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 6863 if (error != 0) 6864 IPSECLOG(LOG_WARNING, "key_sendup_mbuf failed (error=%d)\n", 6865 error); 6866 6867 if (prev != NULL) 6868 goto again; 6869 } 6870 6871 static int 6872 key_acquire_sendup_mbuf_later(struct mbuf *m) 6873 { 6874 6875 mutex_enter(&key_misc.lock); 6876 /* Avoid queuing too much mbufs */ 6877 if (key_acquire_mbuf_count >= KEY_ACQUIRE_MBUF_MAX) { 6878 mutex_exit(&key_misc.lock); 6879 m_freem(m); 6880 return ENOBUFS; /* XXX */ 6881 } 6882 /* Enqueue mbuf at the head of the list */ 6883 m->m_nextpkt = key_acquire_mbuf_head; 6884 key_acquire_mbuf_head = m; 6885 key_acquire_mbuf_count++; 6886 mutex_exit(&key_misc.lock); 6887 6888 /* Kick the timer */ 6889 key_timehandler(NULL); 6890 6891 return 0; 6892 } 6893 6894 #ifndef IPSEC_NONBLOCK_ACQUIRE 6895 static struct secacq * 6896 key_newacq(const struct secasindex *saidx) 6897 { 6898 struct secacq *newacq; 6899 6900 /* get new entry */ 6901 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP); 6902 if (newacq == NULL) { 6903 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 6904 return NULL; 6905 } 6906 6907 /* copy secindex */ 6908 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx)); 6909 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); 6910 newacq->created = time_uptime; 6911 newacq->count = 0; 6912 6913 return newacq; 6914 } 6915 6916 static struct secacq * 6917 key_getacq(const struct secasindex *saidx) 6918 { 6919 struct secacq *acq; 6920 6921 KASSERT(mutex_owned(&key_misc.lock)); 6922 6923 LIST_FOREACH(acq, &key_misc.acqlist, chain) { 6924 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY)) 6925 return acq; 6926 } 6927 6928 return NULL; 6929 } 6930 6931 static struct secacq * 6932 key_getacqbyseq(u_int32_t seq) 6933 { 6934 struct secacq *acq; 6935 6936 KASSERT(mutex_owned(&key_misc.lock)); 6937 6938 LIST_FOREACH(acq, &key_misc.acqlist, chain) { 6939 if (acq->seq == seq) 6940 return acq; 6941 } 6942 6943 return NULL; 6944 } 6945 #endif 6946 6947 #ifdef notyet 6948 static struct secspacq * 6949 key_newspacq(const struct secpolicyindex *spidx) 6950 { 6951 struct secspacq *acq; 6952 6953 /* get new entry */ 6954 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP); 6955 if (acq == NULL) { 6956 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 6957 return NULL; 6958 } 6959 6960 /* copy secindex */ 6961 memcpy(&acq->spidx, spidx, sizeof(acq->spidx)); 6962 acq->created = time_uptime; 6963 acq->count = 0; 6964 6965 return acq; 6966 } 6967 6968 static struct secspacq * 6969 key_getspacq(const struct secpolicyindex *spidx) 6970 { 6971 struct secspacq *acq; 6972 6973 LIST_FOREACH(acq, &key_misc.spacqlist, chain) { 6974 if (key_spidx_match_exactly(spidx, &acq->spidx)) 6975 return acq; 6976 } 6977 6978 return NULL; 6979 } 6980 #endif /* notyet */ 6981 6982 /* 6983 * SADB_ACQUIRE processing, 6984 * in first situation, is receiving 6985 * <base> 6986 * from the ikmpd, and clear sequence of its secasvar entry. 6987 * 6988 * In second situation, is receiving 6989 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6990 * from a user land process, and return 6991 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6992 * to the socket. 6993 * 6994 * m will always be freed. 6995 */ 6996 static int 6997 key_api_acquire(struct socket *so, struct mbuf *m, 6998 const struct sadb_msghdr *mhp) 6999 { 7000 const struct sockaddr *src, *dst; 7001 struct secasindex saidx; 7002 u_int16_t proto; 7003 int error; 7004 7005 /* 7006 * Error message from KMd. 7007 * We assume that if error was occurred in IKEd, the length of PFKEY 7008 * message is equal to the size of sadb_msg structure. 7009 * We do not raise error even if error occurred in this function. 7010 */ 7011 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 7012 #ifndef IPSEC_NONBLOCK_ACQUIRE 7013 struct secacq *acq; 7014 7015 /* check sequence number */ 7016 if (mhp->msg->sadb_msg_seq == 0) { 7017 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n"); 7018 m_freem(m); 7019 return 0; 7020 } 7021 7022 mutex_enter(&key_misc.lock); 7023 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); 7024 if (acq == NULL) { 7025 mutex_exit(&key_misc.lock); 7026 /* 7027 * the specified larval SA is already gone, or we got 7028 * a bogus sequence number. we can silently ignore it. 7029 */ 7030 m_freem(m); 7031 return 0; 7032 } 7033 7034 /* reset acq counter in order to deletion by timehander. */ 7035 acq->created = time_uptime; 7036 acq->count = 0; 7037 mutex_exit(&key_misc.lock); 7038 #endif 7039 m_freem(m); 7040 return 0; 7041 } 7042 7043 /* 7044 * This message is from user land. 7045 */ 7046 7047 /* map satype to proto */ 7048 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 7049 if (proto == 0) { 7050 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7051 return key_senderror(so, m, EINVAL); 7052 } 7053 7054 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 7055 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 7056 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 7057 /* error */ 7058 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 7059 return key_senderror(so, m, EINVAL); 7060 } 7061 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 7062 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 7063 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 7064 /* error */ 7065 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 7066 return key_senderror(so, m, EINVAL); 7067 } 7068 7069 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 7070 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 7071 7072 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 7073 if (error != 0) 7074 return key_senderror(so, m, EINVAL); 7075 7076 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 7077 if (error != 0) 7078 return key_senderror(so, m, EINVAL); 7079 7080 /* get a SA index */ 7081 { 7082 struct secashead *sah; 7083 int s = pserialize_read_enter(); 7084 7085 sah = key_getsah(&saidx, CMP_MODE_REQID); 7086 if (sah != NULL) { 7087 pserialize_read_exit(s); 7088 IPSECLOG(LOG_DEBUG, "a SA exists already.\n"); 7089 return key_senderror(so, m, EEXIST); 7090 } 7091 pserialize_read_exit(s); 7092 } 7093 7094 error = key_acquire(&saidx, NULL, M_WAITOK); 7095 if (error != 0) { 7096 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", 7097 error); 7098 return key_senderror(so, m, error); 7099 } 7100 7101 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 7102 } 7103 7104 /* 7105 * SADB_REGISTER processing. 7106 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 7107 * receive 7108 * <base> 7109 * from the ikmpd, and register a socket to send PF_KEY messages, 7110 * and send 7111 * <base, supported> 7112 * to KMD by PF_KEY. 7113 * If socket is detached, must free from regnode. 7114 * 7115 * m will always be freed. 7116 */ 7117 static int 7118 key_api_register(struct socket *so, struct mbuf *m, 7119 const struct sadb_msghdr *mhp) 7120 { 7121 struct secreg *reg, *newreg = 0; 7122 7123 /* check for invalid register message */ 7124 if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist)) 7125 return key_senderror(so, m, EINVAL); 7126 7127 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 7128 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 7129 goto setmsg; 7130 7131 /* Allocate regnode in advance, out of mutex */ 7132 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP); 7133 7134 /* check whether existing or not */ 7135 mutex_enter(&key_misc.lock); 7136 LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) { 7137 if (reg->so == so) { 7138 IPSECLOG(LOG_DEBUG, "socket exists already.\n"); 7139 mutex_exit(&key_misc.lock); 7140 kmem_free(newreg, sizeof(*newreg)); 7141 return key_senderror(so, m, EEXIST); 7142 } 7143 } 7144 7145 newreg->so = so; 7146 ((struct keycb *)sotorawcb(so))->kp_registered++; 7147 7148 /* add regnode to key_misc.reglist. */ 7149 LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain); 7150 mutex_exit(&key_misc.lock); 7151 7152 setmsg: 7153 { 7154 struct mbuf *n; 7155 struct sadb_supported *sup; 7156 u_int len, alen, elen; 7157 int off; 7158 int i; 7159 struct sadb_alg *alg; 7160 7161 /* create new sadb_msg to reply. */ 7162 alen = 0; 7163 for (i = 1; i <= SADB_AALG_MAX; i++) { 7164 if (ah_algorithm_lookup(i)) 7165 alen += sizeof(struct sadb_alg); 7166 } 7167 if (alen) 7168 alen += sizeof(struct sadb_supported); 7169 elen = 0; 7170 for (i = 1; i <= SADB_EALG_MAX; i++) { 7171 if (esp_algorithm_lookup(i)) 7172 elen += sizeof(struct sadb_alg); 7173 } 7174 if (elen) 7175 elen += sizeof(struct sadb_supported); 7176 7177 len = sizeof(struct sadb_msg) + alen + elen; 7178 7179 if (len > MCLBYTES) 7180 return key_senderror(so, m, ENOBUFS); 7181 7182 n = key_alloc_mbuf_simple(len, M_WAITOK); 7183 n->m_pkthdr.len = n->m_len = len; 7184 n->m_next = NULL; 7185 off = 0; 7186 7187 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 7188 key_fill_replymsg(n, 0); 7189 7190 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 7191 7192 /* for authentication algorithm */ 7193 if (alen) { 7194 sup = (struct sadb_supported *)(mtod(n, char *) + off); 7195 sup->sadb_supported_len = PFKEY_UNIT64(alen); 7196 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 7197 off += PFKEY_ALIGN8(sizeof(*sup)); 7198 7199 for (i = 1; i <= SADB_AALG_MAX; i++) { 7200 const struct auth_hash *aalgo; 7201 u_int16_t minkeysize, maxkeysize; 7202 7203 aalgo = ah_algorithm_lookup(i); 7204 if (!aalgo) 7205 continue; 7206 alg = (struct sadb_alg *)(mtod(n, char *) + off); 7207 alg->sadb_alg_id = i; 7208 alg->sadb_alg_ivlen = 0; 7209 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 7210 alg->sadb_alg_minbits = _BITS(minkeysize); 7211 alg->sadb_alg_maxbits = _BITS(maxkeysize); 7212 off += PFKEY_ALIGN8(sizeof(*alg)); 7213 } 7214 } 7215 7216 /* for encryption algorithm */ 7217 if (elen) { 7218 sup = (struct sadb_supported *)(mtod(n, char *) + off); 7219 sup->sadb_supported_len = PFKEY_UNIT64(elen); 7220 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 7221 off += PFKEY_ALIGN8(sizeof(*sup)); 7222 7223 for (i = 1; i <= SADB_EALG_MAX; i++) { 7224 const struct enc_xform *ealgo; 7225 7226 ealgo = esp_algorithm_lookup(i); 7227 if (!ealgo) 7228 continue; 7229 alg = (struct sadb_alg *)(mtod(n, char *) + off); 7230 alg->sadb_alg_id = i; 7231 alg->sadb_alg_ivlen = ealgo->blocksize; 7232 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 7233 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 7234 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 7235 } 7236 } 7237 7238 KASSERTMSG(off == len, "length inconsistency"); 7239 7240 m_freem(m); 7241 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 7242 } 7243 } 7244 7245 /* 7246 * free secreg entry registered. 7247 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 7248 */ 7249 void 7250 key_freereg(struct socket *so) 7251 { 7252 struct secreg *reg; 7253 int i; 7254 7255 KASSERT(!cpu_softintr_p()); 7256 KASSERT(so != NULL); 7257 7258 /* 7259 * check whether existing or not. 7260 * check all type of SA, because there is a potential that 7261 * one socket is registered to multiple type of SA. 7262 */ 7263 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7264 mutex_enter(&key_misc.lock); 7265 LIST_FOREACH(reg, &key_misc.reglist[i], chain) { 7266 if (reg->so == so) { 7267 LIST_REMOVE(reg, chain); 7268 break; 7269 } 7270 } 7271 mutex_exit(&key_misc.lock); 7272 if (reg != NULL) 7273 kmem_free(reg, sizeof(*reg)); 7274 } 7275 7276 return; 7277 } 7278 7279 /* 7280 * SADB_EXPIRE processing 7281 * send 7282 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 7283 * to KMD by PF_KEY. 7284 * NOTE: We send only soft lifetime extension. 7285 * 7286 * OUT: 0 : succeed 7287 * others : error number 7288 */ 7289 static int 7290 key_expire(struct secasvar *sav) 7291 { 7292 int s; 7293 int satype; 7294 struct mbuf *result = NULL, *m; 7295 int len; 7296 int error = -1; 7297 struct sadb_lifetime *lt; 7298 lifetime_counters_t sum = {0}; 7299 7300 /* XXX: Why do we lock ? */ 7301 s = splsoftnet(); /*called from softclock()*/ 7302 7303 KASSERT(sav != NULL); 7304 7305 satype = key_proto2satype(sav->sah->saidx.proto); 7306 KASSERTMSG(satype != 0, "invalid proto is passed"); 7307 7308 /* set msg header */ 7309 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav), 7310 M_WAITOK); 7311 result = m; 7312 7313 /* create SA extension */ 7314 m = key_setsadbsa(sav); 7315 m_cat(result, m); 7316 7317 /* create SA extension */ 7318 m = key_setsadbxsa2(sav->sah->saidx.mode, 7319 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid); 7320 m_cat(result, m); 7321 7322 /* create lifetime extension (current and soft) */ 7323 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 7324 m = key_alloc_mbuf(len, M_WAITOK); 7325 KASSERT(m->m_next == NULL); 7326 7327 memset(mtod(m, void *), 0, len); 7328 lt = mtod(m, struct sadb_lifetime *); 7329 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7330 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 7331 percpu_foreach(sav->lft_c_counters_percpu, 7332 key_sum_lifetime_counters, sum); 7333 lt->sadb_lifetime_allocations = sum[LIFETIME_COUNTER_ALLOCATIONS]; 7334 lt->sadb_lifetime_bytes = sum[LIFETIME_COUNTER_BYTES]; 7335 lt->sadb_lifetime_addtime = 7336 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime); 7337 lt->sadb_lifetime_usetime = 7338 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime); 7339 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 7340 memcpy(lt, sav->lft_s, sizeof(*lt)); 7341 m_cat(result, m); 7342 7343 /* set sadb_address for source */ 7344 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, 7345 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 7346 m_cat(result, m); 7347 7348 /* set sadb_address for destination */ 7349 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa, 7350 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 7351 m_cat(result, m); 7352 7353 if ((result->m_flags & M_PKTHDR) == 0) { 7354 error = EINVAL; 7355 goto fail; 7356 } 7357 7358 if (result->m_len < sizeof(struct sadb_msg)) { 7359 result = m_pullup(result, sizeof(struct sadb_msg)); 7360 if (result == NULL) { 7361 error = ENOBUFS; 7362 goto fail; 7363 } 7364 } 7365 7366 result->m_pkthdr.len = 0; 7367 for (m = result; m; m = m->m_next) 7368 result->m_pkthdr.len += m->m_len; 7369 7370 mtod(result, struct sadb_msg *)->sadb_msg_len = 7371 PFKEY_UNIT64(result->m_pkthdr.len); 7372 7373 splx(s); 7374 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7375 7376 fail: 7377 if (result) 7378 m_freem(result); 7379 splx(s); 7380 return error; 7381 } 7382 7383 /* 7384 * SADB_FLUSH processing 7385 * receive 7386 * <base> 7387 * from the ikmpd, and free all entries in secastree. 7388 * and send, 7389 * <base> 7390 * to the ikmpd. 7391 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7392 * 7393 * m will always be freed. 7394 */ 7395 static int 7396 key_api_flush(struct socket *so, struct mbuf *m, 7397 const struct sadb_msghdr *mhp) 7398 { 7399 struct sadb_msg *newmsg; 7400 struct secashead *sah; 7401 struct secasvar *sav; 7402 u_int16_t proto; 7403 u_int8_t state; 7404 int s; 7405 7406 /* map satype to proto */ 7407 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 7408 if (proto == 0) { 7409 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7410 return key_senderror(so, m, EINVAL); 7411 } 7412 7413 /* no SATYPE specified, i.e. flushing all SA. */ 7414 s = pserialize_read_enter(); 7415 SAHLIST_READER_FOREACH(sah) { 7416 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && 7417 proto != sah->saidx.proto) 7418 continue; 7419 7420 key_sah_ref(sah); 7421 pserialize_read_exit(s); 7422 7423 SASTATE_ALIVE_FOREACH(state) { 7424 restart: 7425 mutex_enter(&key_sad.lock); 7426 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7427 sav->state = SADB_SASTATE_DEAD; 7428 key_unlink_sav(sav); 7429 mutex_exit(&key_sad.lock); 7430 key_destroy_sav(sav); 7431 goto restart; 7432 } 7433 mutex_exit(&key_sad.lock); 7434 } 7435 7436 s = pserialize_read_enter(); 7437 sah->state = SADB_SASTATE_DEAD; 7438 key_sah_unref(sah); 7439 } 7440 pserialize_read_exit(s); 7441 7442 if (m->m_len < sizeof(struct sadb_msg) || 7443 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7444 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 7445 return key_senderror(so, m, ENOBUFS); 7446 } 7447 7448 if (m->m_next) 7449 m_freem(m->m_next); 7450 m->m_next = NULL; 7451 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7452 newmsg = mtod(m, struct sadb_msg *); 7453 newmsg->sadb_msg_errno = 0; 7454 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7455 7456 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7457 } 7458 7459 7460 static struct mbuf * 7461 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid) 7462 { 7463 struct secashead *sah; 7464 struct secasvar *sav; 7465 u_int16_t proto; 7466 u_int8_t satype; 7467 u_int8_t state; 7468 int cnt; 7469 struct mbuf *m, *n, *prev; 7470 7471 KASSERT(mutex_owned(&key_sad.lock)); 7472 7473 *lenp = 0; 7474 7475 /* map satype to proto */ 7476 proto = key_satype2proto(req_satype); 7477 if (proto == 0) { 7478 *errorp = EINVAL; 7479 return (NULL); 7480 } 7481 7482 /* count sav entries to be sent to userland. */ 7483 cnt = 0; 7484 SAHLIST_WRITER_FOREACH(sah) { 7485 if (req_satype != SADB_SATYPE_UNSPEC && 7486 proto != sah->saidx.proto) 7487 continue; 7488 7489 SASTATE_ANY_FOREACH(state) { 7490 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7491 cnt++; 7492 } 7493 } 7494 } 7495 7496 if (cnt == 0) { 7497 *errorp = ENOENT; 7498 return (NULL); 7499 } 7500 7501 /* send this to the userland, one at a time. */ 7502 m = NULL; 7503 prev = m; 7504 SAHLIST_WRITER_FOREACH(sah) { 7505 if (req_satype != SADB_SATYPE_UNSPEC && 7506 proto != sah->saidx.proto) 7507 continue; 7508 7509 /* map proto to satype */ 7510 satype = key_proto2satype(sah->saidx.proto); 7511 if (satype == 0) { 7512 m_freem(m); 7513 *errorp = EINVAL; 7514 return (NULL); 7515 } 7516 7517 SASTATE_ANY_FOREACH(state) { 7518 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7519 n = key_setdumpsa(sav, SADB_DUMP, satype, 7520 --cnt, pid); 7521 if (!m) 7522 m = n; 7523 else 7524 prev->m_nextpkt = n; 7525 prev = n; 7526 } 7527 } 7528 } 7529 7530 if (!m) { 7531 *errorp = EINVAL; 7532 return (NULL); 7533 } 7534 7535 if ((m->m_flags & M_PKTHDR) != 0) { 7536 m->m_pkthdr.len = 0; 7537 for (n = m; n; n = n->m_next) 7538 m->m_pkthdr.len += n->m_len; 7539 } 7540 7541 *errorp = 0; 7542 return (m); 7543 } 7544 7545 /* 7546 * SADB_DUMP processing 7547 * dump all entries including status of DEAD in SAD. 7548 * receive 7549 * <base> 7550 * from the ikmpd, and dump all secasvar leaves 7551 * and send, 7552 * <base> ..... 7553 * to the ikmpd. 7554 * 7555 * m will always be freed. 7556 */ 7557 static int 7558 key_api_dump(struct socket *so, struct mbuf *m0, 7559 const struct sadb_msghdr *mhp) 7560 { 7561 u_int16_t proto; 7562 u_int8_t satype; 7563 struct mbuf *n; 7564 int error, len, ok; 7565 7566 /* map satype to proto */ 7567 satype = mhp->msg->sadb_msg_satype; 7568 proto = key_satype2proto(satype); 7569 if (proto == 0) { 7570 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7571 return key_senderror(so, m0, EINVAL); 7572 } 7573 7574 /* 7575 * If the requestor has insufficient socket-buffer space 7576 * for the entire chain, nobody gets any response to the DUMP. 7577 * XXX For now, only the requestor ever gets anything. 7578 * Moreover, if the requestor has any space at all, they receive 7579 * the entire chain, otherwise the request is refused with ENOBUFS. 7580 */ 7581 if (sbspace(&so->so_rcv) <= 0) { 7582 return key_senderror(so, m0, ENOBUFS); 7583 } 7584 7585 mutex_enter(&key_sad.lock); 7586 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid); 7587 mutex_exit(&key_sad.lock); 7588 7589 if (n == NULL) { 7590 return key_senderror(so, m0, ENOENT); 7591 } 7592 { 7593 uint64_t *ps = PFKEY_STAT_GETREF(); 7594 ps[PFKEY_STAT_IN_TOTAL]++; 7595 ps[PFKEY_STAT_IN_BYTES] += len; 7596 PFKEY_STAT_PUTREF(); 7597 } 7598 7599 /* 7600 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 7601 * The requestor receives either the entire chain, or an 7602 * error message with ENOBUFS. 7603 * 7604 * sbappendaddrchain() takes the chain of entries, one 7605 * packet-record per SPD entry, prepends the key_src sockaddr 7606 * to each packet-record, links the sockaddr mbufs into a new 7607 * list of records, then appends the entire resulting 7608 * list to the requesting socket. 7609 */ 7610 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, 7611 SB_PRIO_ONESHOT_OVERFLOW); 7612 7613 if (!ok) { 7614 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 7615 m_freem(n); 7616 return key_senderror(so, m0, ENOBUFS); 7617 } 7618 7619 m_freem(m0); 7620 return 0; 7621 } 7622 7623 /* 7624 * SADB_X_PROMISC processing 7625 * 7626 * m will always be freed. 7627 */ 7628 static int 7629 key_api_promisc(struct socket *so, struct mbuf *m, 7630 const struct sadb_msghdr *mhp) 7631 { 7632 int olen; 7633 7634 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7635 7636 if (olen < sizeof(struct sadb_msg)) { 7637 #if 1 7638 return key_senderror(so, m, EINVAL); 7639 #else 7640 m_freem(m); 7641 return 0; 7642 #endif 7643 } else if (olen == sizeof(struct sadb_msg)) { 7644 /* enable/disable promisc mode */ 7645 struct keycb *kp = (struct keycb *)sotorawcb(so); 7646 if (kp == NULL) 7647 return key_senderror(so, m, EINVAL); 7648 mhp->msg->sadb_msg_errno = 0; 7649 switch (mhp->msg->sadb_msg_satype) { 7650 case 0: 7651 case 1: 7652 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7653 break; 7654 default: 7655 return key_senderror(so, m, EINVAL); 7656 } 7657 7658 /* send the original message back to everyone */ 7659 mhp->msg->sadb_msg_errno = 0; 7660 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7661 } else { 7662 /* send packet as is */ 7663 7664 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7665 7666 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7667 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7668 } 7669 } 7670 7671 static int (*key_api_typesw[]) (struct socket *, struct mbuf *, 7672 const struct sadb_msghdr *) = { 7673 NULL, /* SADB_RESERVED */ 7674 key_api_getspi, /* SADB_GETSPI */ 7675 key_api_update, /* SADB_UPDATE */ 7676 key_api_add, /* SADB_ADD */ 7677 key_api_delete, /* SADB_DELETE */ 7678 key_api_get, /* SADB_GET */ 7679 key_api_acquire, /* SADB_ACQUIRE */ 7680 key_api_register, /* SADB_REGISTER */ 7681 NULL, /* SADB_EXPIRE */ 7682 key_api_flush, /* SADB_FLUSH */ 7683 key_api_dump, /* SADB_DUMP */ 7684 key_api_promisc, /* SADB_X_PROMISC */ 7685 NULL, /* SADB_X_PCHANGE */ 7686 key_api_spdadd, /* SADB_X_SPDUPDATE */ 7687 key_api_spdadd, /* SADB_X_SPDADD */ 7688 key_api_spddelete, /* SADB_X_SPDDELETE */ 7689 key_api_spdget, /* SADB_X_SPDGET */ 7690 NULL, /* SADB_X_SPDACQUIRE */ 7691 key_api_spddump, /* SADB_X_SPDDUMP */ 7692 key_api_spdflush, /* SADB_X_SPDFLUSH */ 7693 key_api_spdadd, /* SADB_X_SPDSETIDX */ 7694 NULL, /* SADB_X_SPDEXPIRE */ 7695 key_api_spddelete2, /* SADB_X_SPDDELETE2 */ 7696 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */ 7697 }; 7698 7699 /* 7700 * parse sadb_msg buffer to process PFKEYv2, 7701 * and create a data to response if needed. 7702 * I think to be dealed with mbuf directly. 7703 * IN: 7704 * msgp : pointer to pointer to a received buffer pulluped. 7705 * This is rewrited to response. 7706 * so : pointer to socket. 7707 * OUT: 7708 * length for buffer to send to user process. 7709 */ 7710 int 7711 key_parse(struct mbuf *m, struct socket *so) 7712 { 7713 struct sadb_msg *msg; 7714 struct sadb_msghdr mh; 7715 u_int orglen; 7716 int error; 7717 7718 KASSERT(m != NULL); 7719 KASSERT(so != NULL); 7720 7721 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7722 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) { 7723 kdebug_sadb("passed sadb_msg", msg); 7724 } 7725 #endif 7726 7727 if (m->m_len < sizeof(struct sadb_msg)) { 7728 m = m_pullup(m, sizeof(struct sadb_msg)); 7729 if (!m) 7730 return ENOBUFS; 7731 } 7732 msg = mtod(m, struct sadb_msg *); 7733 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7734 7735 if ((m->m_flags & M_PKTHDR) == 0 || 7736 m->m_pkthdr.len != orglen) { 7737 IPSECLOG(LOG_DEBUG, "invalid message length.\n"); 7738 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7739 error = EINVAL; 7740 goto senderror; 7741 } 7742 7743 if (msg->sadb_msg_version != PF_KEY_V2) { 7744 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n", 7745 msg->sadb_msg_version); 7746 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER); 7747 error = EINVAL; 7748 goto senderror; 7749 } 7750 7751 if (msg->sadb_msg_type > SADB_MAX) { 7752 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", 7753 msg->sadb_msg_type); 7754 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 7755 error = EINVAL; 7756 goto senderror; 7757 } 7758 7759 /* for old-fashioned code - should be nuked */ 7760 if (m->m_pkthdr.len > MCLBYTES) { 7761 m_freem(m); 7762 return ENOBUFS; 7763 } 7764 if (m->m_next) { 7765 struct mbuf *n; 7766 7767 n = key_alloc_mbuf_simple(m->m_pkthdr.len, M_WAITOK); 7768 7769 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *)); 7770 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7771 n->m_next = NULL; 7772 m_freem(m); 7773 m = n; 7774 } 7775 7776 /* align the mbuf chain so that extensions are in contiguous region. */ 7777 error = key_align(m, &mh); 7778 if (error) 7779 return error; 7780 7781 if (m->m_next) { /*XXX*/ 7782 m_freem(m); 7783 return ENOBUFS; 7784 } 7785 7786 msg = mh.msg; 7787 7788 /* check SA type */ 7789 switch (msg->sadb_msg_satype) { 7790 case SADB_SATYPE_UNSPEC: 7791 switch (msg->sadb_msg_type) { 7792 case SADB_GETSPI: 7793 case SADB_UPDATE: 7794 case SADB_ADD: 7795 case SADB_DELETE: 7796 case SADB_GET: 7797 case SADB_ACQUIRE: 7798 case SADB_EXPIRE: 7799 IPSECLOG(LOG_DEBUG, 7800 "must specify satype when msg type=%u.\n", 7801 msg->sadb_msg_type); 7802 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7803 error = EINVAL; 7804 goto senderror; 7805 } 7806 break; 7807 case SADB_SATYPE_AH: 7808 case SADB_SATYPE_ESP: 7809 case SADB_X_SATYPE_IPCOMP: 7810 case SADB_X_SATYPE_TCPSIGNATURE: 7811 switch (msg->sadb_msg_type) { 7812 case SADB_X_SPDADD: 7813 case SADB_X_SPDDELETE: 7814 case SADB_X_SPDGET: 7815 case SADB_X_SPDDUMP: 7816 case SADB_X_SPDFLUSH: 7817 case SADB_X_SPDSETIDX: 7818 case SADB_X_SPDUPDATE: 7819 case SADB_X_SPDDELETE2: 7820 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n", 7821 msg->sadb_msg_type); 7822 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7823 error = EINVAL; 7824 goto senderror; 7825 } 7826 break; 7827 case SADB_SATYPE_RSVP: 7828 case SADB_SATYPE_OSPFV2: 7829 case SADB_SATYPE_RIPV2: 7830 case SADB_SATYPE_MIP: 7831 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n", 7832 msg->sadb_msg_satype); 7833 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7834 error = EOPNOTSUPP; 7835 goto senderror; 7836 case 1: /* XXX: What does it do? */ 7837 if (msg->sadb_msg_type == SADB_X_PROMISC) 7838 break; 7839 /*FALLTHROUGH*/ 7840 default: 7841 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", 7842 msg->sadb_msg_satype); 7843 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7844 error = EINVAL; 7845 goto senderror; 7846 } 7847 7848 /* check field of upper layer protocol and address family */ 7849 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL && 7850 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7851 const struct sadb_address *src0, *dst0; 7852 const struct sockaddr *sa0, *da0; 7853 u_int plen; 7854 7855 src0 = mh.ext[SADB_EXT_ADDRESS_SRC]; 7856 dst0 = mh.ext[SADB_EXT_ADDRESS_DST]; 7857 sa0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_SRC); 7858 da0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_DST); 7859 7860 /* check upper layer protocol */ 7861 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7862 IPSECLOG(LOG_DEBUG, 7863 "upper layer protocol mismatched src %u, dst %u.\n", 7864 src0->sadb_address_proto, dst0->sadb_address_proto); 7865 7866 goto invaddr; 7867 } 7868 7869 /* check family */ 7870 if (sa0->sa_family != da0->sa_family) { 7871 IPSECLOG(LOG_DEBUG, 7872 "address family mismatched src %u, dst %u.\n", 7873 sa0->sa_family, da0->sa_family); 7874 goto invaddr; 7875 } 7876 if (sa0->sa_len != da0->sa_len) { 7877 IPSECLOG(LOG_DEBUG, 7878 "address size mismatched src %u, dst %u.\n", 7879 sa0->sa_len, da0->sa_len); 7880 goto invaddr; 7881 } 7882 7883 switch (sa0->sa_family) { 7884 case AF_INET: 7885 if (sa0->sa_len != sizeof(struct sockaddr_in)) { 7886 IPSECLOG(LOG_DEBUG, 7887 "address size mismatched %u != %zu.\n", 7888 sa0->sa_len, sizeof(struct sockaddr_in)); 7889 goto invaddr; 7890 } 7891 break; 7892 case AF_INET6: 7893 if (sa0->sa_len != sizeof(struct sockaddr_in6)) { 7894 IPSECLOG(LOG_DEBUG, 7895 "address size mismatched %u != %zu.\n", 7896 sa0->sa_len, sizeof(struct sockaddr_in6)); 7897 goto invaddr; 7898 } 7899 break; 7900 default: 7901 IPSECLOG(LOG_DEBUG, "unsupported address family %u.\n", 7902 sa0->sa_family); 7903 error = EAFNOSUPPORT; 7904 goto senderror; 7905 } 7906 plen = key_sabits(sa0); 7907 7908 /* check max prefix length */ 7909 if (src0->sadb_address_prefixlen > plen || 7910 dst0->sadb_address_prefixlen > plen) { 7911 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n"); 7912 goto invaddr; 7913 } 7914 7915 /* 7916 * prefixlen == 0 is valid because there can be a case when 7917 * all addresses are matched. 7918 */ 7919 } 7920 7921 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) || 7922 key_api_typesw[msg->sadb_msg_type] == NULL) { 7923 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 7924 error = EINVAL; 7925 goto senderror; 7926 } 7927 7928 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh); 7929 7930 invaddr: 7931 error = EINVAL; 7932 senderror: 7933 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 7934 return key_senderror(so, m, error); 7935 } 7936 7937 static int 7938 key_senderror(struct socket *so, struct mbuf *m, int code) 7939 { 7940 struct sadb_msg *msg; 7941 7942 KASSERT(m->m_len >= sizeof(struct sadb_msg)); 7943 7944 if (so == NULL) { 7945 /* 7946 * This means the request comes from kernel. 7947 * As the request comes from kernel, it is unnecessary to 7948 * send message to userland. Just return errcode directly. 7949 */ 7950 m_freem(m); 7951 return code; 7952 } 7953 7954 msg = mtod(m, struct sadb_msg *); 7955 msg->sadb_msg_errno = code; 7956 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7957 } 7958 7959 /* 7960 * set the pointer to each header into message buffer. 7961 * m will be freed on error. 7962 * XXX larger-than-MCLBYTES extension? 7963 */ 7964 static int 7965 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 7966 { 7967 struct mbuf *n; 7968 struct sadb_ext *ext; 7969 size_t off, end; 7970 int extlen; 7971 int toff; 7972 7973 KASSERT(m != NULL); 7974 KASSERT(mhp != NULL); 7975 KASSERT(m->m_len >= sizeof(struct sadb_msg)); 7976 7977 /* initialize */ 7978 memset(mhp, 0, sizeof(*mhp)); 7979 7980 mhp->msg = mtod(m, struct sadb_msg *); 7981 mhp->ext[0] = mhp->msg; /*XXX backward compat */ 7982 7983 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7984 extlen = end; /*just in case extlen is not updated*/ 7985 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7986 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7987 if (!n) { 7988 /* m is already freed */ 7989 return ENOBUFS; 7990 } 7991 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 7992 7993 /* set pointer */ 7994 switch (ext->sadb_ext_type) { 7995 case SADB_EXT_SA: 7996 case SADB_EXT_ADDRESS_SRC: 7997 case SADB_EXT_ADDRESS_DST: 7998 case SADB_EXT_ADDRESS_PROXY: 7999 case SADB_EXT_LIFETIME_CURRENT: 8000 case SADB_EXT_LIFETIME_HARD: 8001 case SADB_EXT_LIFETIME_SOFT: 8002 case SADB_EXT_KEY_AUTH: 8003 case SADB_EXT_KEY_ENCRYPT: 8004 case SADB_EXT_IDENTITY_SRC: 8005 case SADB_EXT_IDENTITY_DST: 8006 case SADB_EXT_SENSITIVITY: 8007 case SADB_EXT_PROPOSAL: 8008 case SADB_EXT_SUPPORTED_AUTH: 8009 case SADB_EXT_SUPPORTED_ENCRYPT: 8010 case SADB_EXT_SPIRANGE: 8011 case SADB_X_EXT_POLICY: 8012 case SADB_X_EXT_SA2: 8013 case SADB_X_EXT_NAT_T_TYPE: 8014 case SADB_X_EXT_NAT_T_SPORT: 8015 case SADB_X_EXT_NAT_T_DPORT: 8016 case SADB_X_EXT_NAT_T_OAI: 8017 case SADB_X_EXT_NAT_T_OAR: 8018 case SADB_X_EXT_NAT_T_FRAG: 8019 /* duplicate check */ 8020 /* 8021 * XXX Are there duplication payloads of either 8022 * KEY_AUTH or KEY_ENCRYPT ? 8023 */ 8024 if (mhp->ext[ext->sadb_ext_type] != NULL) { 8025 IPSECLOG(LOG_DEBUG, 8026 "duplicate ext_type %u is passed.\n", 8027 ext->sadb_ext_type); 8028 m_freem(m); 8029 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT); 8030 return EINVAL; 8031 } 8032 break; 8033 default: 8034 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n", 8035 ext->sadb_ext_type); 8036 m_freem(m); 8037 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE); 8038 return EINVAL; 8039 } 8040 8041 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 8042 8043 if (key_validate_ext(ext, extlen)) { 8044 m_freem(m); 8045 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 8046 return EINVAL; 8047 } 8048 8049 n = m_pulldown(m, off, extlen, &toff); 8050 if (!n) { 8051 /* m is already freed */ 8052 return ENOBUFS; 8053 } 8054 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 8055 8056 mhp->ext[ext->sadb_ext_type] = ext; 8057 mhp->extoff[ext->sadb_ext_type] = off; 8058 mhp->extlen[ext->sadb_ext_type] = extlen; 8059 } 8060 8061 if (off != end) { 8062 m_freem(m); 8063 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 8064 return EINVAL; 8065 } 8066 8067 return 0; 8068 } 8069 8070 static int 8071 key_validate_ext(const struct sadb_ext *ext, int len) 8072 { 8073 const struct sockaddr *sa; 8074 enum { NONE, ADDR } checktype = NONE; 8075 int baselen = 0; 8076 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 8077 8078 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 8079 return EINVAL; 8080 8081 /* if it does not match minimum/maximum length, bail */ 8082 if (ext->sadb_ext_type >= __arraycount(minsize) || 8083 ext->sadb_ext_type >= __arraycount(maxsize)) 8084 return EINVAL; 8085 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 8086 return EINVAL; 8087 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 8088 return EINVAL; 8089 8090 /* more checks based on sadb_ext_type XXX need more */ 8091 switch (ext->sadb_ext_type) { 8092 case SADB_EXT_ADDRESS_SRC: 8093 case SADB_EXT_ADDRESS_DST: 8094 case SADB_EXT_ADDRESS_PROXY: 8095 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 8096 checktype = ADDR; 8097 break; 8098 case SADB_EXT_IDENTITY_SRC: 8099 case SADB_EXT_IDENTITY_DST: 8100 if (((const struct sadb_ident *)ext)->sadb_ident_type == 8101 SADB_X_IDENTTYPE_ADDR) { 8102 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 8103 checktype = ADDR; 8104 } else 8105 checktype = NONE; 8106 break; 8107 default: 8108 checktype = NONE; 8109 break; 8110 } 8111 8112 switch (checktype) { 8113 case NONE: 8114 break; 8115 case ADDR: 8116 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 8117 if (len < baselen + sal) 8118 return EINVAL; 8119 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 8120 return EINVAL; 8121 break; 8122 } 8123 8124 return 0; 8125 } 8126 8127 static int 8128 key_do_init(void) 8129 { 8130 int i, error; 8131 8132 mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE); 8133 8134 mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE); 8135 cv_init(&key_spd.cv_lc, "key_sp_lc"); 8136 key_spd.psz = pserialize_create(); 8137 cv_init(&key_spd.cv_psz, "key_sp_psz"); 8138 key_spd.psz_performing = false; 8139 8140 mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE); 8141 cv_init(&key_sad.cv_lc, "key_sa_lc"); 8142 key_sad.psz = pserialize_create(); 8143 cv_init(&key_sad.cv_psz, "key_sa_psz"); 8144 key_sad.psz_performing = false; 8145 8146 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS); 8147 8148 callout_init(&key_timehandler_ch, CALLOUT_MPSAFE); 8149 error = workqueue_create(&key_timehandler_wq, "key_timehandler", 8150 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE); 8151 if (error != 0) 8152 panic("%s: workqueue_create failed (%d)\n", __func__, error); 8153 8154 for (i = 0; i < IPSEC_DIR_MAX; i++) { 8155 PSLIST_INIT(&key_spd.splist[i]); 8156 } 8157 8158 PSLIST_INIT(&key_spd.socksplist); 8159 8160 key_sad.sahlists = hashinit(SAHHASH_NHASH, HASH_PSLIST, true, 8161 &key_sad.sahlistmask); 8162 key_sad.savlut = hashinit(SAVLUT_NHASH, HASH_PSLIST, true, 8163 &key_sad.savlutmask); 8164 8165 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 8166 LIST_INIT(&key_misc.reglist[i]); 8167 } 8168 8169 #ifndef IPSEC_NONBLOCK_ACQUIRE 8170 LIST_INIT(&key_misc.acqlist); 8171 #endif 8172 #ifdef notyet 8173 LIST_INIT(&key_misc.spacqlist); 8174 #endif 8175 8176 /* system default */ 8177 ip4_def_policy.policy = IPSEC_POLICY_NONE; 8178 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE; 8179 localcount_init(&ip4_def_policy.localcount); 8180 8181 #ifdef INET6 8182 ip6_def_policy.policy = IPSEC_POLICY_NONE; 8183 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE; 8184 localcount_init(&ip6_def_policy.localcount); 8185 #endif 8186 8187 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 8188 8189 /* initialize key statistics */ 8190 keystat.getspi_count = 1; 8191 8192 aprint_verbose("IPsec: Initialized Security Association Processing.\n"); 8193 8194 return (0); 8195 } 8196 8197 void 8198 key_init(void) 8199 { 8200 static ONCE_DECL(key_init_once); 8201 8202 sysctl_net_keyv2_setup(NULL); 8203 sysctl_net_key_compat_setup(NULL); 8204 8205 RUN_ONCE(&key_init_once, key_do_init); 8206 8207 key_init_so(); 8208 } 8209 8210 /* 8211 * XXX: maybe This function is called after INBOUND IPsec processing. 8212 * 8213 * Special check for tunnel-mode packets. 8214 * We must make some checks for consistency between inner and outer IP header. 8215 * 8216 * xxx more checks to be provided 8217 */ 8218 int 8219 key_checktunnelsanity( 8220 struct secasvar *sav, 8221 u_int family, 8222 void *src, 8223 void *dst 8224 ) 8225 { 8226 8227 /* XXX: check inner IP header */ 8228 8229 return 1; 8230 } 8231 8232 #if 0 8233 #define hostnamelen strlen(hostname) 8234 8235 /* 8236 * Get FQDN for the host. 8237 * If the administrator configured hostname (by hostname(1)) without 8238 * domain name, returns nothing. 8239 */ 8240 static const char * 8241 key_getfqdn(void) 8242 { 8243 int i; 8244 int hasdot; 8245 static char fqdn[MAXHOSTNAMELEN + 1]; 8246 8247 if (!hostnamelen) 8248 return NULL; 8249 8250 /* check if it comes with domain name. */ 8251 hasdot = 0; 8252 for (i = 0; i < hostnamelen; i++) { 8253 if (hostname[i] == '.') 8254 hasdot++; 8255 } 8256 if (!hasdot) 8257 return NULL; 8258 8259 /* NOTE: hostname may not be NUL-terminated. */ 8260 memset(fqdn, 0, sizeof(fqdn)); 8261 memcpy(fqdn, hostname, hostnamelen); 8262 fqdn[hostnamelen] = '\0'; 8263 return fqdn; 8264 } 8265 8266 /* 8267 * get username@FQDN for the host/user. 8268 */ 8269 static const char * 8270 key_getuserfqdn(void) 8271 { 8272 const char *host; 8273 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2]; 8274 struct proc *p = curproc; 8275 char *q; 8276 8277 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session) 8278 return NULL; 8279 if (!(host = key_getfqdn())) 8280 return NULL; 8281 8282 /* NOTE: s_login may not be-NUL terminated. */ 8283 memset(userfqdn, 0, sizeof(userfqdn)); 8284 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME); 8285 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */ 8286 q = userfqdn + strlen(userfqdn); 8287 *q++ = '@'; 8288 memcpy(q, host, strlen(host)); 8289 q += strlen(host); 8290 *q++ = '\0'; 8291 8292 return userfqdn; 8293 } 8294 #endif 8295 8296 /* record data transfer on SA, and update timestamps */ 8297 void 8298 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 8299 { 8300 lifetime_counters_t *counters; 8301 8302 KASSERT(sav != NULL); 8303 KASSERT(sav->lft_c != NULL); 8304 KASSERT(m != NULL); 8305 8306 counters = percpu_getref(sav->lft_c_counters_percpu); 8307 8308 /* 8309 * XXX Currently, there is a difference of bytes size 8310 * between inbound and outbound processing. 8311 */ 8312 (*counters)[LIFETIME_COUNTER_BYTES] += m->m_pkthdr.len; 8313 /* to check bytes lifetime is done in key_timehandler(). */ 8314 8315 /* 8316 * We use the number of packets as the unit of 8317 * sadb_lifetime_allocations. We increment the variable 8318 * whenever {esp,ah}_{in,out}put is called. 8319 */ 8320 (*counters)[LIFETIME_COUNTER_ALLOCATIONS]++; 8321 /* XXX check for expires? */ 8322 8323 percpu_putref(sav->lft_c_counters_percpu); 8324 8325 /* 8326 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock, 8327 * in seconds. HARD and SOFT lifetime are measured by the time 8328 * difference (again in seconds) from sadb_lifetime_usetime. 8329 * 8330 * usetime 8331 * v expire expire 8332 * -----+-----+--------+---> t 8333 * <--------------> HARD 8334 * <-----> SOFT 8335 */ 8336 sav->lft_c->sadb_lifetime_usetime = time_uptime; 8337 /* XXX check for expires? */ 8338 8339 return; 8340 } 8341 8342 /* dumb version */ 8343 void 8344 key_sa_routechange(struct sockaddr *dst) 8345 { 8346 struct secashead *sah; 8347 int s; 8348 8349 s = pserialize_read_enter(); 8350 SAHLIST_READER_FOREACH(sah) { 8351 struct route *ro; 8352 const struct sockaddr *sa; 8353 8354 key_sah_ref(sah); 8355 pserialize_read_exit(s); 8356 8357 ro = &sah->sa_route; 8358 sa = rtcache_getdst(ro); 8359 if (sa != NULL && dst->sa_len == sa->sa_len && 8360 memcmp(dst, sa, dst->sa_len) == 0) 8361 rtcache_free(ro); 8362 8363 s = pserialize_read_enter(); 8364 key_sah_unref(sah); 8365 } 8366 pserialize_read_exit(s); 8367 8368 return; 8369 } 8370 8371 static void 8372 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 8373 { 8374 struct secasvar *_sav; 8375 8376 ASSERT_SLEEPABLE(); 8377 KASSERT(mutex_owned(&key_sad.lock)); 8378 8379 if (sav->state == state) 8380 return; 8381 8382 key_unlink_sav(sav); 8383 localcount_fini(&sav->localcount); 8384 SAVLIST_ENTRY_DESTROY(sav); 8385 key_init_sav(sav); 8386 8387 sav->state = state; 8388 if (!SADB_SASTATE_USABLE_P(sav)) { 8389 /* We don't need to care about the order */ 8390 SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav); 8391 return; 8392 } 8393 /* 8394 * Sort the list by lft_c->sadb_lifetime_addtime 8395 * in ascending order. 8396 */ 8397 SAVLIST_WRITER_FOREACH(_sav, sav->sah, state) { 8398 if (_sav->lft_c->sadb_lifetime_addtime > 8399 sav->lft_c->sadb_lifetime_addtime) { 8400 SAVLIST_WRITER_INSERT_BEFORE(_sav, sav); 8401 break; 8402 } 8403 } 8404 if (_sav == NULL) { 8405 SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav); 8406 } 8407 8408 SAVLUT_WRITER_INSERT_HEAD(sav); 8409 8410 key_validate_savlist(sav->sah, state); 8411 } 8412 8413 /* XXX too much? */ 8414 static struct mbuf * 8415 key_alloc_mbuf(int l, int mflag) 8416 { 8417 struct mbuf *m = NULL, *n; 8418 int len, t; 8419 8420 KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p())); 8421 8422 len = l; 8423 while (len > 0) { 8424 MGET(n, mflag, MT_DATA); 8425 if (n && len > MLEN) { 8426 MCLGET(n, mflag); 8427 if ((n->m_flags & M_EXT) == 0) { 8428 m_freem(n); 8429 n = NULL; 8430 } 8431 } 8432 if (!n) { 8433 m_freem(m); 8434 return NULL; 8435 } 8436 8437 n->m_next = NULL; 8438 n->m_len = 0; 8439 n->m_len = M_TRAILINGSPACE(n); 8440 /* use the bottom of mbuf, hoping we can prepend afterwards */ 8441 if (n->m_len > len) { 8442 t = (n->m_len - len) & ~(sizeof(long) - 1); 8443 n->m_data += t; 8444 n->m_len = len; 8445 } 8446 8447 len -= n->m_len; 8448 8449 if (m) 8450 m_cat(m, n); 8451 else 8452 m = n; 8453 } 8454 8455 return m; 8456 } 8457 8458 static struct mbuf * 8459 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid) 8460 { 8461 struct secashead *sah; 8462 struct secasvar *sav; 8463 u_int16_t proto; 8464 u_int8_t satype; 8465 u_int8_t state; 8466 int cnt; 8467 struct mbuf *m, *n; 8468 8469 KASSERT(mutex_owned(&key_sad.lock)); 8470 8471 /* map satype to proto */ 8472 proto = key_satype2proto(req_satype); 8473 if (proto == 0) { 8474 *errorp = EINVAL; 8475 return (NULL); 8476 } 8477 8478 /* count sav entries to be sent to the userland. */ 8479 cnt = 0; 8480 SAHLIST_WRITER_FOREACH(sah) { 8481 if (req_satype != SADB_SATYPE_UNSPEC && 8482 proto != sah->saidx.proto) 8483 continue; 8484 8485 SASTATE_ANY_FOREACH(state) { 8486 SAVLIST_WRITER_FOREACH(sav, sah, state) { 8487 cnt++; 8488 } 8489 } 8490 } 8491 8492 if (cnt == 0) { 8493 *errorp = ENOENT; 8494 return (NULL); 8495 } 8496 8497 /* send this to the userland, one at a time. */ 8498 m = NULL; 8499 SAHLIST_WRITER_FOREACH(sah) { 8500 if (req_satype != SADB_SATYPE_UNSPEC && 8501 proto != sah->saidx.proto) 8502 continue; 8503 8504 /* map proto to satype */ 8505 satype = key_proto2satype(sah->saidx.proto); 8506 if (satype == 0) { 8507 m_freem(m); 8508 *errorp = EINVAL; 8509 return (NULL); 8510 } 8511 8512 SASTATE_ANY_FOREACH(state) { 8513 SAVLIST_WRITER_FOREACH(sav, sah, state) { 8514 n = key_setdumpsa(sav, SADB_DUMP, satype, 8515 --cnt, pid); 8516 if (!m) 8517 m = n; 8518 else 8519 m_cat(m, n); 8520 } 8521 } 8522 } 8523 8524 if (!m) { 8525 *errorp = EINVAL; 8526 return (NULL); 8527 } 8528 8529 if ((m->m_flags & M_PKTHDR) != 0) { 8530 m->m_pkthdr.len = 0; 8531 for (n = m; n; n = n->m_next) 8532 m->m_pkthdr.len += n->m_len; 8533 } 8534 8535 *errorp = 0; 8536 return (m); 8537 } 8538 8539 static struct mbuf * 8540 key_setspddump(int *errorp, pid_t pid) 8541 { 8542 struct secpolicy *sp; 8543 int cnt; 8544 u_int dir; 8545 struct mbuf *m, *n; 8546 8547 KASSERT(mutex_owned(&key_spd.lock)); 8548 8549 /* search SPD entry and get buffer size. */ 8550 cnt = 0; 8551 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8552 SPLIST_WRITER_FOREACH(sp, dir) { 8553 cnt++; 8554 } 8555 } 8556 8557 if (cnt == 0) { 8558 *errorp = ENOENT; 8559 return (NULL); 8560 } 8561 8562 m = NULL; 8563 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8564 SPLIST_WRITER_FOREACH(sp, dir) { 8565 --cnt; 8566 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 8567 8568 if (!m) 8569 m = n; 8570 else { 8571 m->m_pkthdr.len += n->m_pkthdr.len; 8572 m_cat(m, n); 8573 } 8574 } 8575 } 8576 8577 *errorp = 0; 8578 return (m); 8579 } 8580 8581 int 8582 key_get_used(void) { 8583 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) || 8584 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) || 8585 !SOCKSPLIST_READER_EMPTY(); 8586 } 8587 8588 void 8589 key_update_used(void) 8590 { 8591 switch (ipsec_enabled) { 8592 default: 8593 case 0: 8594 #ifdef notyet 8595 /* XXX: racy */ 8596 ipsec_used = 0; 8597 #endif 8598 break; 8599 case 1: 8600 #ifndef notyet 8601 /* XXX: racy */ 8602 if (!ipsec_used) 8603 #endif 8604 ipsec_used = key_get_used(); 8605 break; 8606 case 2: 8607 ipsec_used = 1; 8608 break; 8609 } 8610 } 8611 8612 static inline void 8613 key_savlut_writer_insert_head(struct secasvar *sav) 8614 { 8615 uint32_t hash_key; 8616 uint32_t hash; 8617 8618 KASSERT(mutex_owned(&key_sad.lock)); 8619 KASSERT(!sav->savlut_added); 8620 8621 if (sav->sah->saidx.proto == IPPROTO_IPCOMP) 8622 hash_key = sav->alg_comp; 8623 else 8624 hash_key = sav->spi; 8625 8626 hash = key_savluthash(&sav->sah->saidx.dst.sa, 8627 sav->sah->saidx.proto, hash_key, key_sad.savlutmask); 8628 8629 PSLIST_WRITER_INSERT_HEAD(&key_sad.savlut[hash], sav, 8630 pslist_entry_savlut); 8631 sav->savlut_added = true; 8632 } 8633 8634 /* 8635 * Calculate hash using protocol, source address, 8636 * and destination address included in saidx. 8637 */ 8638 static inline uint32_t 8639 key_saidxhash(const struct secasindex *saidx, u_long mask) 8640 { 8641 uint32_t hash32; 8642 const struct sockaddr_in *sin; 8643 const struct sockaddr_in6 *sin6; 8644 8645 hash32 = saidx->proto; 8646 8647 switch (saidx->src.sa.sa_family) { 8648 case AF_INET: 8649 sin = &saidx->src.sin; 8650 hash32 = hash32_buf(&sin->sin_addr, 8651 sizeof(sin->sin_addr), hash32); 8652 sin = &saidx->dst.sin; 8653 hash32 = hash32_buf(&sin->sin_addr, 8654 sizeof(sin->sin_addr), hash32 << 1); 8655 break; 8656 case AF_INET6: 8657 sin6 = &saidx->src.sin6; 8658 hash32 = hash32_buf(&sin6->sin6_addr, 8659 sizeof(sin6->sin6_addr), hash32); 8660 sin6 = &saidx->dst.sin6; 8661 hash32 = hash32_buf(&sin6->sin6_addr, 8662 sizeof(sin6->sin6_addr), hash32 << 1); 8663 break; 8664 default: 8665 hash32 = 0; 8666 break; 8667 } 8668 8669 return hash32 & mask; 8670 } 8671 8672 /* 8673 * Calculate hash using destination address, protocol, 8674 * and spi. Those parameter depend on the search of 8675 * key_lookup_sa(). 8676 */ 8677 static uint32_t 8678 key_savluthash(const struct sockaddr *dst, uint32_t proto, 8679 uint32_t spi, u_long mask) 8680 { 8681 uint32_t hash32; 8682 const struct sockaddr_in *sin; 8683 const struct sockaddr_in6 *sin6; 8684 8685 hash32 = hash32_buf(&proto, sizeof(proto), spi); 8686 8687 switch(dst->sa_family) { 8688 case AF_INET: 8689 sin = satocsin(dst); 8690 hash32 = hash32_buf(&sin->sin_addr, 8691 sizeof(sin->sin_addr), hash32); 8692 break; 8693 case AF_INET6: 8694 sin6 = satocsin6(dst); 8695 hash32 = hash32_buf(&sin6->sin6_addr, 8696 sizeof(sin6->sin6_addr), hash32); 8697 break; 8698 default: 8699 hash32 = 0; 8700 } 8701 8702 return hash32 & mask; 8703 } 8704 8705 static int 8706 sysctl_net_key_dumpsa(SYSCTLFN_ARGS) 8707 { 8708 struct mbuf *m, *n; 8709 int err2 = 0; 8710 char *p, *ep; 8711 size_t len; 8712 int error; 8713 8714 if (newp) 8715 return (EPERM); 8716 if (namelen != 1) 8717 return (EINVAL); 8718 8719 mutex_enter(&key_sad.lock); 8720 m = key_setdump(name[0], &error, l->l_proc->p_pid); 8721 mutex_exit(&key_sad.lock); 8722 if (!m) 8723 return (error); 8724 if (!oldp) 8725 *oldlenp = m->m_pkthdr.len; 8726 else { 8727 p = oldp; 8728 if (*oldlenp < m->m_pkthdr.len) { 8729 err2 = ENOMEM; 8730 ep = p + *oldlenp; 8731 } else { 8732 *oldlenp = m->m_pkthdr.len; 8733 ep = p + m->m_pkthdr.len; 8734 } 8735 for (n = m; n; n = n->m_next) { 8736 len = (ep - p < n->m_len) ? 8737 ep - p : n->m_len; 8738 error = copyout(mtod(n, const void *), p, len); 8739 p += len; 8740 if (error) 8741 break; 8742 } 8743 if (error == 0) 8744 error = err2; 8745 } 8746 m_freem(m); 8747 8748 return (error); 8749 } 8750 8751 static int 8752 sysctl_net_key_dumpsp(SYSCTLFN_ARGS) 8753 { 8754 struct mbuf *m, *n; 8755 int err2 = 0; 8756 char *p, *ep; 8757 size_t len; 8758 int error; 8759 8760 if (newp) 8761 return (EPERM); 8762 if (namelen != 0) 8763 return (EINVAL); 8764 8765 mutex_enter(&key_spd.lock); 8766 m = key_setspddump(&error, l->l_proc->p_pid); 8767 mutex_exit(&key_spd.lock); 8768 if (!m) 8769 return (error); 8770 if (!oldp) 8771 *oldlenp = m->m_pkthdr.len; 8772 else { 8773 p = oldp; 8774 if (*oldlenp < m->m_pkthdr.len) { 8775 err2 = ENOMEM; 8776 ep = p + *oldlenp; 8777 } else { 8778 *oldlenp = m->m_pkthdr.len; 8779 ep = p + m->m_pkthdr.len; 8780 } 8781 for (n = m; n; n = n->m_next) { 8782 len = (ep - p < n->m_len) ? ep - p : n->m_len; 8783 error = copyout(mtod(n, const void *), p, len); 8784 p += len; 8785 if (error) 8786 break; 8787 } 8788 if (error == 0) 8789 error = err2; 8790 } 8791 m_freem(m); 8792 8793 return (error); 8794 } 8795 8796 /* 8797 * Create sysctl tree for native IPSEC key knobs, originally 8798 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }. 8799 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 }; 8800 * and in any case the part of our sysctl namespace used for dumping the 8801 * SPD and SA database *HAS* to be compatible with the KAME sysctl 8802 * namespace, for API reasons. 8803 * 8804 * Pending a consensus on the right way to fix this, add a level of 8805 * indirection in how we number the `native' IPSEC key nodes; 8806 * and (as requested by Andrew Brown) move registration of the 8807 * KAME-compatible names to a separate function. 8808 */ 8809 #if 0 8810 # define IPSEC_PFKEY PF_KEY_V2 8811 # define IPSEC_PFKEY_NAME "keyv2" 8812 #else 8813 # define IPSEC_PFKEY PF_KEY 8814 # define IPSEC_PFKEY_NAME "key" 8815 #endif 8816 8817 static int 8818 sysctl_net_key_stats(SYSCTLFN_ARGS) 8819 { 8820 8821 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS)); 8822 } 8823 8824 static void 8825 sysctl_net_keyv2_setup(struct sysctllog **clog) 8826 { 8827 8828 sysctl_createv(clog, 0, NULL, NULL, 8829 CTLFLAG_PERMANENT, 8830 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL, 8831 NULL, 0, NULL, 0, 8832 CTL_NET, IPSEC_PFKEY, CTL_EOL); 8833 8834 sysctl_createv(clog, 0, NULL, NULL, 8835 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8836 CTLTYPE_INT, "debug", NULL, 8837 NULL, 0, &key_debug_level, 0, 8838 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL); 8839 sysctl_createv(clog, 0, NULL, NULL, 8840 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8841 CTLTYPE_INT, "spi_try", NULL, 8842 NULL, 0, &key_spi_trycnt, 0, 8843 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL); 8844 sysctl_createv(clog, 0, NULL, NULL, 8845 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8846 CTLTYPE_INT, "spi_min_value", NULL, 8847 NULL, 0, &key_spi_minval, 0, 8848 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL); 8849 sysctl_createv(clog, 0, NULL, NULL, 8850 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8851 CTLTYPE_INT, "spi_max_value", NULL, 8852 NULL, 0, &key_spi_maxval, 0, 8853 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL); 8854 sysctl_createv(clog, 0, NULL, NULL, 8855 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8856 CTLTYPE_INT, "random_int", NULL, 8857 NULL, 0, &key_int_random, 0, 8858 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL); 8859 sysctl_createv(clog, 0, NULL, NULL, 8860 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8861 CTLTYPE_INT, "larval_lifetime", NULL, 8862 NULL, 0, &key_larval_lifetime, 0, 8863 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL); 8864 sysctl_createv(clog, 0, NULL, NULL, 8865 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8866 CTLTYPE_INT, "blockacq_count", NULL, 8867 NULL, 0, &key_blockacq_count, 0, 8868 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL); 8869 sysctl_createv(clog, 0, NULL, NULL, 8870 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8871 CTLTYPE_INT, "blockacq_lifetime", NULL, 8872 NULL, 0, &key_blockacq_lifetime, 0, 8873 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL); 8874 sysctl_createv(clog, 0, NULL, NULL, 8875 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8876 CTLTYPE_INT, "esp_keymin", NULL, 8877 NULL, 0, &ipsec_esp_keymin, 0, 8878 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL); 8879 sysctl_createv(clog, 0, NULL, NULL, 8880 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8881 CTLTYPE_INT, "prefered_oldsa", NULL, 8882 NULL, 0, &key_prefered_oldsa, 0, 8883 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL); 8884 sysctl_createv(clog, 0, NULL, NULL, 8885 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8886 CTLTYPE_INT, "esp_auth", NULL, 8887 NULL, 0, &ipsec_esp_auth, 0, 8888 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL); 8889 sysctl_createv(clog, 0, NULL, NULL, 8890 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8891 CTLTYPE_INT, "ah_keymin", NULL, 8892 NULL, 0, &ipsec_ah_keymin, 0, 8893 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL); 8894 sysctl_createv(clog, 0, NULL, NULL, 8895 CTLFLAG_PERMANENT, 8896 CTLTYPE_STRUCT, "stats", 8897 SYSCTL_DESCR("PF_KEY statistics"), 8898 sysctl_net_key_stats, 0, NULL, 0, 8899 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL); 8900 } 8901 8902 /* 8903 * Register sysctl names used by setkey(8). For historical reasons, 8904 * and to share a single API, these names appear under { CTL_NET, PF_KEY } 8905 * for both IPSEC and KAME IPSEC. 8906 */ 8907 static void 8908 sysctl_net_key_compat_setup(struct sysctllog **clog) 8909 { 8910 8911 sysctl_createv(clog, 0, NULL, NULL, 8912 CTLFLAG_PERMANENT, 8913 CTLTYPE_NODE, "key", NULL, 8914 NULL, 0, NULL, 0, 8915 CTL_NET, PF_KEY, CTL_EOL); 8916 8917 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */ 8918 sysctl_createv(clog, 0, NULL, NULL, 8919 CTLFLAG_PERMANENT, 8920 CTLTYPE_STRUCT, "dumpsa", NULL, 8921 sysctl_net_key_dumpsa, 0, NULL, 0, 8922 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL); 8923 sysctl_createv(clog, 0, NULL, NULL, 8924 CTLFLAG_PERMANENT, 8925 CTLTYPE_STRUCT, "dumpsp", NULL, 8926 sysctl_net_key_dumpsp, 0, NULL, 0, 8927 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL); 8928 } 8929