1 /* $NetBSD: key.c,v 1.76 2012/01/09 15:42:08 drochner Exp $ */ 2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */ 3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 4 5 /* 6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the project nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.76 2012/01/09 15:42:08 drochner Exp $"); 36 37 /* 38 * This code is referd to RFC 2367 39 */ 40 41 #include "opt_inet.h" 42 #ifdef __FreeBSD__ 43 #include "opt_inet6.h" 44 #endif 45 #include "opt_ipsec.h" 46 #ifdef __NetBSD__ 47 #include "opt_gateway.h" 48 #endif 49 50 #include <sys/types.h> 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/callout.h> 54 #include <sys/kernel.h> 55 #include <sys/mbuf.h> 56 #include <sys/domain.h> 57 #include <sys/protosw.h> 58 #include <sys/malloc.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sysctl.h> 62 #include <sys/errno.h> 63 #include <sys/proc.h> 64 #include <sys/queue.h> 65 #include <sys/syslog.h> 66 #include <sys/once.h> 67 #include <sys/cprng.h> 68 69 #include <net/if.h> 70 #include <net/route.h> 71 #include <net/raw_cb.h> 72 73 #include <netinet/in.h> 74 #include <netinet/in_systm.h> 75 #include <netinet/ip.h> 76 #include <netinet/in_var.h> 77 #ifdef INET 78 #include <netinet/ip_var.h> 79 #endif 80 81 #ifdef INET6 82 #include <netinet/ip6.h> 83 #include <netinet6/in6_var.h> 84 #include <netinet6/ip6_var.h> 85 #endif /* INET6 */ 86 87 #ifdef INET 88 #include <netinet/in_pcb.h> 89 #endif 90 #ifdef INET6 91 #include <netinet6/in6_pcb.h> 92 #endif /* INET6 */ 93 94 #include <net/pfkeyv2.h> 95 #include <netipsec/keydb.h> 96 #include <netipsec/key.h> 97 #include <netipsec/keysock.h> 98 #include <netipsec/key_debug.h> 99 100 #include <netipsec/ipsec.h> 101 #ifdef INET6 102 #include <netipsec/ipsec6.h> 103 #endif 104 #include <netipsec/ipsec_private.h> 105 106 #include <netipsec/xform.h> 107 #include <netipsec/ipsec_osdep.h> 108 #include <netipsec/ipcomp.h> 109 110 111 #include <net/net_osdep.h> 112 113 #define FULLMASK 0xff 114 #define _BITS(bytes) ((bytes) << 3) 115 116 percpu_t *pfkeystat_percpu; 117 118 /* 119 * Note on SA reference counting: 120 * - SAs that are not in DEAD state will have (total external reference + 1) 121 * following value in reference count field. they cannot be freed and are 122 * referenced from SA header. 123 * - SAs that are in DEAD state will have (total external reference) 124 * in reference count field. they are ready to be freed. reference from 125 * SA header will be removed in key_delsav(), when the reference count 126 * field hits 0 (= no external reference other than from SA header. 127 */ 128 129 u_int32_t key_debug_level = 0; 130 static u_int key_spi_trycnt = 1000; 131 static u_int32_t key_spi_minval = 0x100; 132 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ 133 static u_int32_t policy_id = 0; 134 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ 135 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 136 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 137 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 138 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/ 139 140 static u_int32_t acq_seq = 0; 141 142 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */ 143 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */ 144 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1]; 145 /* registed list */ 146 #ifndef IPSEC_NONBLOCK_ACQUIRE 147 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */ 148 #endif 149 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */ 150 151 /* search order for SAs */ 152 /* 153 * This order is important because we must select the oldest SA 154 * for outbound processing. For inbound, This is not important. 155 */ 156 static const u_int saorder_state_valid_prefer_old[] = { 157 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 158 }; 159 static const u_int saorder_state_valid_prefer_new[] = { 160 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 161 }; 162 163 static const u_int saorder_state_alive[] = { 164 /* except DEAD */ 165 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 166 }; 167 static const u_int saorder_state_any[] = { 168 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 169 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 170 }; 171 172 static const int minsize[] = { 173 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 174 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 175 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 176 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 177 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 178 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 179 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 180 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 181 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 182 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 183 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 184 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 185 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 186 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 187 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 188 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 189 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 190 0, /* SADB_X_EXT_KMPRIVATE */ 191 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 192 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 193 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 194 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 195 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 196 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 197 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 198 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 199 }; 200 static const int maxsize[] = { 201 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 202 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 203 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 204 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 205 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 206 0, /* SADB_EXT_ADDRESS_SRC */ 207 0, /* SADB_EXT_ADDRESS_DST */ 208 0, /* SADB_EXT_ADDRESS_PROXY */ 209 0, /* SADB_EXT_KEY_AUTH */ 210 0, /* SADB_EXT_KEY_ENCRYPT */ 211 0, /* SADB_EXT_IDENTITY_SRC */ 212 0, /* SADB_EXT_IDENTITY_DST */ 213 0, /* SADB_EXT_SENSITIVITY */ 214 0, /* SADB_EXT_PROPOSAL */ 215 0, /* SADB_EXT_SUPPORTED_AUTH */ 216 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 217 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 218 0, /* SADB_X_EXT_KMPRIVATE */ 219 0, /* SADB_X_EXT_POLICY */ 220 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 221 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 222 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 223 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 224 0, /* SADB_X_EXT_NAT_T_OAI */ 225 0, /* SADB_X_EXT_NAT_T_OAR */ 226 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 227 }; 228 229 static int ipsec_esp_keymin = 256; 230 static int ipsec_esp_auth = 0; 231 static int ipsec_ah_keymin = 128; 232 233 #ifdef SYSCTL_DECL 234 SYSCTL_DECL(_net_key); 235 #endif 236 237 #ifdef SYSCTL_INT 238 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \ 239 &key_debug_level, 0, ""); 240 241 /* max count of trial for the decision of spi value */ 242 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \ 243 &key_spi_trycnt, 0, ""); 244 245 /* minimum spi value to allocate automatically. */ 246 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \ 247 &key_spi_minval, 0, ""); 248 249 /* maximun spi value to allocate automatically. */ 250 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \ 251 &key_spi_maxval, 0, ""); 252 253 /* interval to initialize randseed */ 254 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \ 255 &key_int_random, 0, ""); 256 257 /* lifetime for larval SA */ 258 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \ 259 &key_larval_lifetime, 0, ""); 260 261 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 262 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \ 263 &key_blockacq_count, 0, ""); 264 265 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 266 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \ 267 &key_blockacq_lifetime, 0, ""); 268 269 /* ESP auth */ 270 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \ 271 &ipsec_esp_auth, 0, ""); 272 273 /* minimum ESP key length */ 274 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \ 275 &ipsec_esp_keymin, 0, ""); 276 277 /* minimum AH key length */ 278 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \ 279 &ipsec_ah_keymin, 0, ""); 280 281 /* perfered old SA rather than new SA */ 282 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\ 283 &key_prefered_oldsa, 0, ""); 284 #endif /* SYSCTL_INT */ 285 286 #ifndef LIST_FOREACH 287 #define LIST_FOREACH(elm, head, field) \ 288 for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field)) 289 #endif 290 #define __LIST_CHAINED(elm) \ 291 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 292 #define LIST_INSERT_TAIL(head, elm, type, field) \ 293 do {\ 294 struct type *curelm = LIST_FIRST(head); \ 295 if (curelm == NULL) {\ 296 LIST_INSERT_HEAD(head, elm, field); \ 297 } else { \ 298 while (LIST_NEXT(curelm, field)) \ 299 curelm = LIST_NEXT(curelm, field);\ 300 LIST_INSERT_AFTER(curelm, elm, field);\ 301 }\ 302 } while (0) 303 304 #define KEY_CHKSASTATE(head, sav, name) \ 305 /* do */ { \ 306 if ((head) != (sav)) { \ 307 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 308 (name), (head), (sav))); \ 309 continue; \ 310 } \ 311 } /* while (0) */ 312 313 #define KEY_CHKSPDIR(head, sp, name) \ 314 do { \ 315 if ((head) != (sp)) { \ 316 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 317 "anyway continue.\n", \ 318 (name), (head), (sp))); \ 319 } \ 320 } while (0) 321 322 MALLOC_DEFINE(M_SECA, "key mgmt", "security associations, key management"); 323 324 #if 1 325 #define KMALLOC(p, t, n) \ 326 ((p) = (t) malloc((unsigned long)(n), M_SECA, M_NOWAIT)) 327 #define KFREE(p) \ 328 free((p), M_SECA) 329 #else 330 #define KMALLOC(p, t, n) \ 331 do { \ 332 ((p) = (t)malloc((unsigned long)(n), M_SECA, M_NOWAIT)); \ 333 printf("%s %d: %p <- KMALLOC(%s, %d)\n", \ 334 __FILE__, __LINE__, (p), #t, n); \ 335 } while (0) 336 337 #define KFREE(p) \ 338 do { \ 339 printf("%s %d: %p -> KFREE()\n", __FILE__, __LINE__, (p)); \ 340 free((p), M_SECA); \ 341 } while (0) 342 #endif 343 344 /* 345 * set parameters into secpolicyindex buffer. 346 * Must allocate secpolicyindex buffer passed to this function. 347 */ 348 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 349 do { \ 350 memset((idx), 0, sizeof(struct secpolicyindex)); \ 351 (idx)->dir = (_dir); \ 352 (idx)->prefs = (ps); \ 353 (idx)->prefd = (pd); \ 354 (idx)->ul_proto = (ulp); \ 355 memcpy(&(idx)->src, (s), ((const struct sockaddr *)(s))->sa_len); \ 356 memcpy(&(idx)->dst, (d), ((const struct sockaddr *)(d))->sa_len); \ 357 } while (0) 358 359 /* 360 * set parameters into secasindex buffer. 361 * Must allocate secasindex buffer before calling this function. 362 */ 363 static int 364 key_setsecasidx (int, int, int, const struct sadb_address *, 365 const struct sadb_address *, struct secasindex *); 366 367 /* key statistics */ 368 struct _keystat { 369 u_long getspi_count; /* the avarage of count to try to get new SPI */ 370 } keystat; 371 372 struct sadb_msghdr { 373 struct sadb_msg *msg; 374 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 375 int extoff[SADB_EXT_MAX + 1]; 376 int extlen[SADB_EXT_MAX + 1]; 377 }; 378 379 static struct secasvar *key_allocsa_policy (const struct secasindex *); 380 static void key_freesp_so (struct secpolicy **); 381 static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int); 382 static void key_delsp (struct secpolicy *); 383 static struct secpolicy *key_getsp (const struct secpolicyindex *); 384 static struct secpolicy *key_getspbyid (u_int32_t); 385 static u_int16_t key_newreqid (void); 386 static struct mbuf *key_gather_mbuf (struct mbuf *, 387 const struct sadb_msghdr *, int, int, ...); 388 static int key_spdadd (struct socket *, struct mbuf *, 389 const struct sadb_msghdr *); 390 static u_int32_t key_getnewspid (void); 391 static int key_spddelete (struct socket *, struct mbuf *, 392 const struct sadb_msghdr *); 393 static int key_spddelete2 (struct socket *, struct mbuf *, 394 const struct sadb_msghdr *); 395 static int key_spdget (struct socket *, struct mbuf *, 396 const struct sadb_msghdr *); 397 static int key_spdflush (struct socket *, struct mbuf *, 398 const struct sadb_msghdr *); 399 static int key_spddump (struct socket *, struct mbuf *, 400 const struct sadb_msghdr *); 401 static struct mbuf * key_setspddump (int *errorp, pid_t); 402 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid); 403 #ifdef IPSEC_NAT_T 404 static int key_nat_map (struct socket *, struct mbuf *, 405 const struct sadb_msghdr *); 406 #endif 407 static struct mbuf *key_setdumpsp (struct secpolicy *, 408 u_int8_t, u_int32_t, pid_t); 409 static u_int key_getspreqmsglen (const struct secpolicy *); 410 static int key_spdexpire (struct secpolicy *); 411 static struct secashead *key_newsah (const struct secasindex *); 412 static void key_delsah (struct secashead *); 413 static struct secasvar *key_newsav (struct mbuf *, 414 const struct sadb_msghdr *, struct secashead *, int *, 415 const char*, int); 416 #define KEY_NEWSAV(m, sadb, sah, e) \ 417 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 418 static void key_delsav (struct secasvar *); 419 static struct secashead *key_getsah (const struct secasindex *); 420 static struct secasvar *key_checkspidup (const struct secasindex *, u_int32_t); 421 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t); 422 static int key_setsaval (struct secasvar *, struct mbuf *, 423 const struct sadb_msghdr *); 424 static int key_mature (struct secasvar *); 425 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t, 426 u_int8_t, u_int32_t, u_int32_t); 427 #ifdef IPSEC_NAT_T 428 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t); 429 static struct mbuf *key_setsadbxtype (u_int16_t); 430 static struct mbuf *key_setsadbxfrag (u_int16_t); 431 #endif 432 static void key_porttosaddr (union sockaddr_union *, u_int16_t); 433 static int key_checksalen (const union sockaddr_union *); 434 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t, 435 u_int32_t, pid_t, u_int16_t); 436 static struct mbuf *key_setsadbsa (struct secasvar *); 437 static struct mbuf *key_setsadbaddr (u_int16_t, 438 const struct sockaddr *, u_int8_t, u_int16_t); 439 #if 0 440 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *, 441 int, u_int64_t); 442 #endif 443 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t); 444 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t, 445 u_int32_t); 446 static void *key_newbuf (const void *, u_int); 447 #ifdef INET6 448 static int key_ismyaddr6 (const struct sockaddr_in6 *); 449 #endif 450 451 /* flags for key_cmpsaidx() */ 452 #define CMP_HEAD 1 /* protocol, addresses. */ 453 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 454 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 455 #define CMP_EXACTLY 4 /* all elements. */ 456 static int key_cmpsaidx 457 (const struct secasindex *, const struct secasindex *, int); 458 459 static int key_sockaddrcmp (const struct sockaddr *, const struct sockaddr *, int); 460 static int key_bbcmp (const void *, const void *, u_int); 461 static u_int16_t key_satype2proto (u_int8_t); 462 static u_int8_t key_proto2satype (u_int16_t); 463 464 static int key_getspi (struct socket *, struct mbuf *, 465 const struct sadb_msghdr *); 466 static u_int32_t key_do_getnewspi (const struct sadb_spirange *, 467 const struct secasindex *); 468 #ifdef IPSEC_NAT_T 469 static int key_handle_natt_info (struct secasvar *, 470 const struct sadb_msghdr *); 471 static int key_set_natt_ports (union sockaddr_union *, 472 union sockaddr_union *, 473 const struct sadb_msghdr *); 474 #endif 475 static int key_update (struct socket *, struct mbuf *, 476 const struct sadb_msghdr *); 477 #ifdef IPSEC_DOSEQCHECK 478 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t); 479 #endif 480 static int key_add (struct socket *, struct mbuf *, 481 const struct sadb_msghdr *); 482 static int key_setident (struct secashead *, struct mbuf *, 483 const struct sadb_msghdr *); 484 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *, 485 const struct sadb_msghdr *); 486 static int key_delete (struct socket *, struct mbuf *, 487 const struct sadb_msghdr *); 488 static int key_get (struct socket *, struct mbuf *, 489 const struct sadb_msghdr *); 490 491 static void key_getcomb_setlifetime (struct sadb_comb *); 492 static struct mbuf *key_getcomb_esp (void); 493 static struct mbuf *key_getcomb_ah (void); 494 static struct mbuf *key_getcomb_ipcomp (void); 495 static struct mbuf *key_getprop (const struct secasindex *); 496 497 static int key_acquire (const struct secasindex *, struct secpolicy *); 498 #ifndef IPSEC_NONBLOCK_ACQUIRE 499 static struct secacq *key_newacq (const struct secasindex *); 500 static struct secacq *key_getacq (const struct secasindex *); 501 static struct secacq *key_getacqbyseq (u_int32_t); 502 #endif 503 static struct secspacq *key_newspacq (const struct secpolicyindex *); 504 static struct secspacq *key_getspacq (const struct secpolicyindex *); 505 static int key_acquire2 (struct socket *, struct mbuf *, 506 const struct sadb_msghdr *); 507 static int key_register (struct socket *, struct mbuf *, 508 const struct sadb_msghdr *); 509 static int key_expire (struct secasvar *); 510 static int key_flush (struct socket *, struct mbuf *, 511 const struct sadb_msghdr *); 512 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp, 513 int *lenp, pid_t pid); 514 static int key_dump (struct socket *, struct mbuf *, 515 const struct sadb_msghdr *); 516 static int key_promisc (struct socket *, struct mbuf *, 517 const struct sadb_msghdr *); 518 static int key_senderror (struct socket *, struct mbuf *, int); 519 static int key_validate_ext (const struct sadb_ext *, int); 520 static int key_align (struct mbuf *, struct sadb_msghdr *); 521 #if 0 522 static const char *key_getfqdn (void); 523 static const char *key_getuserfqdn (void); 524 #endif 525 static void key_sa_chgstate (struct secasvar *, u_int8_t); 526 static inline void key_sp_dead (struct secpolicy *); 527 static void key_sp_unlink (struct secpolicy *sp); 528 529 static struct mbuf *key_alloc_mbuf (int); 530 struct callout key_timehandler_ch; 531 532 #define SA_ADDREF(p) do { \ 533 (p)->refcnt++; \ 534 IPSEC_ASSERT((p)->refcnt != 0, \ 535 ("SA refcnt overflow at %s:%u", __FILE__, __LINE__)); \ 536 } while (0) 537 #define SA_DELREF(p) do { \ 538 IPSEC_ASSERT((p)->refcnt > 0, \ 539 ("SA refcnt underflow at %s:%u", __FILE__, __LINE__)); \ 540 (p)->refcnt--; \ 541 } while (0) 542 543 #define SP_ADDREF(p) do { \ 544 (p)->refcnt++; \ 545 IPSEC_ASSERT((p)->refcnt != 0, \ 546 ("SP refcnt overflow at %s:%u", __FILE__, __LINE__)); \ 547 } while (0) 548 #define SP_DELREF(p) do { \ 549 IPSEC_ASSERT((p)->refcnt > 0, \ 550 ("SP refcnt underflow at %s:%u", __FILE__, __LINE__)); \ 551 (p)->refcnt--; \ 552 } while (0) 553 554 555 static inline void 556 key_sp_dead(struct secpolicy *sp) 557 { 558 559 /* mark the SP dead */ 560 sp->state = IPSEC_SPSTATE_DEAD; 561 } 562 563 static void 564 key_sp_unlink(struct secpolicy *sp) 565 { 566 567 /* remove from SP index */ 568 if (__LIST_CHAINED(sp)) { 569 LIST_REMOVE(sp, chain); 570 /* Release refcount held just for being on chain */ 571 KEY_FREESP(&sp); 572 } 573 } 574 575 576 /* 577 * Return 0 when there are known to be no SP's for the specified 578 * direction. Otherwise return 1. This is used by IPsec code 579 * to optimize performance. 580 */ 581 int 582 key_havesp(u_int dir) 583 { 584 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 585 LIST_FIRST(&sptree[dir]) != NULL : 1); 586 } 587 588 /* %%% IPsec policy management */ 589 /* 590 * allocating a SP for OUTBOUND or INBOUND packet. 591 * Must call key_freesp() later. 592 * OUT: NULL: not found 593 * others: found and return the pointer. 594 */ 595 struct secpolicy * 596 key_allocsp(const struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 597 { 598 struct secpolicy *sp; 599 int s; 600 601 IPSEC_ASSERT(spidx != NULL, ("key_allocsp: null spidx")); 602 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 603 ("key_allocsp: invalid direction %u", dir)); 604 605 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 606 printf("DP key_allocsp from %s:%u\n", where, tag)); 607 608 /* get a SP entry */ 609 s = splsoftnet(); /*called from softclock()*/ 610 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 611 printf("*** objects\n"); 612 kdebug_secpolicyindex(spidx)); 613 614 LIST_FOREACH(sp, &sptree[dir], chain) { 615 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 616 printf("*** in SPD\n"); 617 kdebug_secpolicyindex(&sp->spidx)); 618 619 if (sp->state == IPSEC_SPSTATE_DEAD) 620 continue; 621 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 622 goto found; 623 } 624 sp = NULL; 625 found: 626 if (sp) { 627 /* sanity check */ 628 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp"); 629 630 /* found a SPD entry */ 631 sp->lastused = time_uptime; 632 SP_ADDREF(sp); 633 } 634 splx(s); 635 636 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 637 printf("DP key_allocsp return SP:%p (ID=%u) refcnt %u\n", 638 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 639 return sp; 640 } 641 642 /* 643 * allocating a SP for OUTBOUND or INBOUND packet. 644 * Must call key_freesp() later. 645 * OUT: NULL: not found 646 * others: found and return the pointer. 647 */ 648 struct secpolicy * 649 key_allocsp2(u_int32_t spi, 650 const union sockaddr_union *dst, 651 u_int8_t proto, 652 u_int dir, 653 const char* where, int tag) 654 { 655 struct secpolicy *sp; 656 int s; 657 658 IPSEC_ASSERT(dst != NULL, ("key_allocsp2: null dst")); 659 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 660 ("key_allocsp2: invalid direction %u", dir)); 661 662 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 663 printf("DP key_allocsp2 from %s:%u\n", where, tag)); 664 665 /* get a SP entry */ 666 s = splsoftnet(); /*called from softclock()*/ 667 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 668 printf("*** objects\n"); 669 printf("spi %u proto %u dir %u\n", spi, proto, dir); 670 kdebug_sockaddr(&dst->sa)); 671 672 LIST_FOREACH(sp, &sptree[dir], chain) { 673 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 674 printf("*** in SPD\n"); 675 kdebug_secpolicyindex(&sp->spidx)); 676 677 if (sp->state == IPSEC_SPSTATE_DEAD) 678 continue; 679 /* compare simple values, then dst address */ 680 if (sp->spidx.ul_proto != proto) 681 continue; 682 /* NB: spi's must exist and match */ 683 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 684 continue; 685 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 686 goto found; 687 } 688 sp = NULL; 689 found: 690 if (sp) { 691 /* sanity check */ 692 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp2"); 693 694 /* found a SPD entry */ 695 sp->lastused = time_uptime; 696 SP_ADDREF(sp); 697 } 698 splx(s); 699 700 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 701 printf("DP key_allocsp2 return SP:%p (ID=%u) refcnt %u\n", 702 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 703 return sp; 704 } 705 706 /* 707 * return a policy that matches this particular inbound packet. 708 * XXX slow 709 */ 710 struct secpolicy * 711 key_gettunnel(const struct sockaddr *osrc, 712 const struct sockaddr *odst, 713 const struct sockaddr *isrc, 714 const struct sockaddr *idst, 715 const char* where, int tag) 716 { 717 struct secpolicy *sp; 718 const int dir = IPSEC_DIR_INBOUND; 719 int s; 720 struct ipsecrequest *r1, *r2, *p; 721 struct secpolicyindex spidx; 722 723 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 724 printf("DP key_gettunnel from %s:%u\n", where, tag)); 725 726 if (isrc->sa_family != idst->sa_family) { 727 ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.", 728 isrc->sa_family, idst->sa_family)); 729 sp = NULL; 730 goto done; 731 } 732 733 s = splsoftnet(); /*called from softclock()*/ 734 LIST_FOREACH(sp, &sptree[dir], chain) { 735 if (sp->state == IPSEC_SPSTATE_DEAD) 736 continue; 737 738 r1 = r2 = NULL; 739 for (p = sp->req; p; p = p->next) { 740 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 741 continue; 742 743 r1 = r2; 744 r2 = p; 745 746 if (!r1) { 747 /* here we look at address matches only */ 748 spidx = sp->spidx; 749 if (isrc->sa_len > sizeof(spidx.src) || 750 idst->sa_len > sizeof(spidx.dst)) 751 continue; 752 memcpy(&spidx.src, isrc, isrc->sa_len); 753 memcpy(&spidx.dst, idst, idst->sa_len); 754 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 755 continue; 756 } else { 757 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 758 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 759 continue; 760 } 761 762 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 763 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 764 continue; 765 766 goto found; 767 } 768 } 769 sp = NULL; 770 found: 771 if (sp) { 772 sp->lastused = time_uptime; 773 SP_ADDREF(sp); 774 } 775 splx(s); 776 done: 777 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 778 printf("DP key_gettunnel return SP:%p (ID=%u) refcnt %u\n", 779 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 780 return sp; 781 } 782 783 /* 784 * allocating an SA entry for an *OUTBOUND* packet. 785 * checking each request entries in SP, and acquire an SA if need. 786 * OUT: 0: there are valid requests. 787 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 788 */ 789 int 790 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 791 { 792 u_int level; 793 int error; 794 795 IPSEC_ASSERT(isr != NULL, ("key_checkrequest: null isr")); 796 IPSEC_ASSERT(saidx != NULL, ("key_checkrequest: null saidx")); 797 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 798 saidx->mode == IPSEC_MODE_TUNNEL, 799 ("key_checkrequest: unexpected policy %u", saidx->mode)); 800 801 /* get current level */ 802 level = ipsec_get_reqlevel(isr); 803 804 /* 805 * XXX guard against protocol callbacks from the crypto 806 * thread as they reference ipsecrequest.sav which we 807 * temporarily null out below. Need to rethink how we 808 * handle bundled SA's in the callback thread. 809 */ 810 IPSEC_SPLASSERT_SOFTNET("key_checkrequest"); 811 #if 0 812 /* 813 * We do allocate new SA only if the state of SA in the holder is 814 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest. 815 */ 816 if (isr->sav != NULL) { 817 if (isr->sav->sah == NULL) 818 panic("key_checkrequest: sah is null"); 819 if (isr->sav == (struct secasvar *)LIST_FIRST( 820 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) { 821 KEY_FREESAV(&isr->sav); 822 isr->sav = NULL; 823 } 824 } 825 #else 826 /* 827 * we free any SA stashed in the IPsec request because a different 828 * SA may be involved each time this request is checked, either 829 * because new SAs are being configured, or this request is 830 * associated with an unconnected datagram socket, or this request 831 * is associated with a system default policy. 832 * 833 * The operation may have negative impact to performance. We may 834 * want to check cached SA carefully, rather than picking new SA 835 * every time. 836 */ 837 if (isr->sav != NULL) { 838 KEY_FREESAV(&isr->sav); 839 isr->sav = NULL; 840 } 841 #endif 842 843 /* 844 * new SA allocation if no SA found. 845 * key_allocsa_policy should allocate the oldest SA available. 846 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 847 */ 848 if (isr->sav == NULL) 849 isr->sav = key_allocsa_policy(saidx); 850 851 /* When there is SA. */ 852 if (isr->sav != NULL) { 853 if (isr->sav->state != SADB_SASTATE_MATURE && 854 isr->sav->state != SADB_SASTATE_DYING) 855 return EINVAL; 856 return 0; 857 } 858 859 /* there is no SA */ 860 error = key_acquire(saidx, isr->sp); 861 if (error != 0) { 862 /* XXX What should I do ? */ 863 ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned " 864 "from key_acquire.\n", error)); 865 return error; 866 } 867 868 if (level != IPSEC_LEVEL_REQUIRE) { 869 /* XXX sigh, the interface to this routine is botched */ 870 IPSEC_ASSERT(isr->sav == NULL, ("key_checkrequest: unexpected SA")); 871 return 0; 872 } else { 873 return ENOENT; 874 } 875 } 876 877 /* 878 * allocating a SA for policy entry from SAD. 879 * NOTE: searching SAD of aliving state. 880 * OUT: NULL: not found. 881 * others: found and return the pointer. 882 */ 883 static struct secasvar * 884 key_allocsa_policy(const struct secasindex *saidx) 885 { 886 struct secashead *sah; 887 struct secasvar *sav; 888 u_int stateidx, state; 889 const u_int *saorder_state_valid; 890 int arraysize; 891 892 LIST_FOREACH(sah, &sahtree, chain) { 893 if (sah->state == SADB_SASTATE_DEAD) 894 continue; 895 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) 896 goto found; 897 } 898 899 return NULL; 900 901 found: 902 903 /* 904 * search a valid state list for outbound packet. 905 * This search order is important. 906 */ 907 if (key_prefered_oldsa) { 908 saorder_state_valid = saorder_state_valid_prefer_old; 909 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 910 } else { 911 saorder_state_valid = saorder_state_valid_prefer_new; 912 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 913 } 914 915 /* search valid state */ 916 for (stateidx = 0; 917 stateidx < arraysize; 918 stateidx++) { 919 920 state = saorder_state_valid[stateidx]; 921 922 sav = key_do_allocsa_policy(sah, state); 923 if (sav != NULL) 924 return sav; 925 } 926 927 return NULL; 928 } 929 930 /* 931 * searching SAD with direction, protocol, mode and state. 932 * called by key_allocsa_policy(). 933 * OUT: 934 * NULL : not found 935 * others : found, pointer to a SA. 936 */ 937 static struct secasvar * 938 key_do_allocsa_policy(struct secashead *sah, u_int state) 939 { 940 struct secasvar *sav, *nextsav, *candidate, *d; 941 942 /* initilize */ 943 candidate = NULL; 944 945 for (sav = LIST_FIRST(&sah->savtree[state]); 946 sav != NULL; 947 sav = nextsav) { 948 949 nextsav = LIST_NEXT(sav, chain); 950 951 /* sanity check */ 952 KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy"); 953 954 /* initialize */ 955 if (candidate == NULL) { 956 candidate = sav; 957 continue; 958 } 959 960 /* Which SA is the better ? */ 961 962 /* sanity check 2 */ 963 if (candidate->lft_c == NULL || sav->lft_c == NULL) 964 panic("key_do_allocsa_policy: " 965 "lifetime_current is NULL"); 966 967 /* What the best method is to compare ? */ 968 if (key_prefered_oldsa) { 969 if (candidate->lft_c->sadb_lifetime_addtime > 970 sav->lft_c->sadb_lifetime_addtime) { 971 candidate = sav; 972 } 973 continue; 974 /*NOTREACHED*/ 975 } 976 977 /* prefered new sa rather than old sa */ 978 if (candidate->lft_c->sadb_lifetime_addtime < 979 sav->lft_c->sadb_lifetime_addtime) { 980 d = candidate; 981 candidate = sav; 982 } else 983 d = sav; 984 985 /* 986 * prepared to delete the SA when there is more 987 * suitable candidate and the lifetime of the SA is not 988 * permanent. 989 */ 990 if (d->lft_c->sadb_lifetime_addtime != 0) { 991 struct mbuf *m, *result = 0; 992 uint8_t satype; 993 994 key_sa_chgstate(d, SADB_SASTATE_DEAD); 995 996 IPSEC_ASSERT(d->refcnt > 0, 997 ("key_do_allocsa_policy: bogus ref count")); 998 999 satype = key_proto2satype(d->sah->saidx.proto); 1000 if (satype == 0) 1001 goto msgfail; 1002 1003 m = key_setsadbmsg(SADB_DELETE, 0, 1004 satype, 0, 0, d->refcnt - 1); 1005 if (!m) 1006 goto msgfail; 1007 result = m; 1008 1009 /* set sadb_address for saidx's. */ 1010 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 1011 &d->sah->saidx.src.sa, 1012 d->sah->saidx.src.sa.sa_len << 3, 1013 IPSEC_ULPROTO_ANY); 1014 if (!m) 1015 goto msgfail; 1016 m_cat(result, m); 1017 1018 /* set sadb_address for saidx's. */ 1019 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 1020 &d->sah->saidx.src.sa, 1021 d->sah->saidx.src.sa.sa_len << 3, 1022 IPSEC_ULPROTO_ANY); 1023 if (!m) 1024 goto msgfail; 1025 m_cat(result, m); 1026 1027 /* create SA extension */ 1028 m = key_setsadbsa(d); 1029 if (!m) 1030 goto msgfail; 1031 m_cat(result, m); 1032 1033 if (result->m_len < sizeof(struct sadb_msg)) { 1034 result = m_pullup(result, 1035 sizeof(struct sadb_msg)); 1036 if (result == NULL) 1037 goto msgfail; 1038 } 1039 1040 result->m_pkthdr.len = 0; 1041 for (m = result; m; m = m->m_next) 1042 result->m_pkthdr.len += m->m_len; 1043 mtod(result, struct sadb_msg *)->sadb_msg_len = 1044 PFKEY_UNIT64(result->m_pkthdr.len); 1045 1046 key_sendup_mbuf(NULL, result, 1047 KEY_SENDUP_REGISTERED); 1048 result = 0; 1049 msgfail: 1050 if (result) 1051 m_freem(result); 1052 KEY_FREESAV(&d); 1053 } 1054 } 1055 1056 if (candidate) { 1057 SA_ADDREF(candidate); 1058 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1059 printf("DP allocsa_policy cause " 1060 "refcnt++:%d SA:%p\n", 1061 candidate->refcnt, candidate)); 1062 } 1063 return candidate; 1064 } 1065 1066 /* 1067 * allocating a usable SA entry for a *INBOUND* packet. 1068 * Must call key_freesav() later. 1069 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1070 * NULL: not found, or error occurred. 1071 * 1072 * In the comparison, no source address is used--for RFC2401 conformance. 1073 * To quote, from section 4.1: 1074 * A security association is uniquely identified by a triple consisting 1075 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1076 * security protocol (AH or ESP) identifier. 1077 * Note that, however, we do need to keep source address in IPsec SA. 1078 * IKE specification and PF_KEY specification do assume that we 1079 * keep source address in IPsec SA. We see a tricky situation here. 1080 * 1081 * sport and dport are used for NAT-T. network order is always used. 1082 */ 1083 struct secasvar * 1084 key_allocsa( 1085 const union sockaddr_union *dst, 1086 u_int proto, 1087 u_int32_t spi, 1088 u_int16_t sport, 1089 u_int16_t dport, 1090 const char* where, int tag) 1091 { 1092 struct secashead *sah; 1093 struct secasvar *sav; 1094 u_int stateidx, state; 1095 const u_int *saorder_state_valid; 1096 int arraysize; 1097 int s; 1098 int chkport = 0; 1099 1100 int must_check_spi = 1; 1101 int must_check_alg = 0; 1102 u_int16_t cpi = 0; 1103 u_int8_t algo = 0; 1104 1105 #ifdef IPSEC_NAT_T 1106 if ((sport != 0) && (dport != 0)) 1107 chkport = 1; 1108 #endif 1109 1110 IPSEC_ASSERT(dst != NULL, ("key_allocsa: null dst address")); 1111 1112 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1113 printf("DP key_allocsa from %s:%u\n", where, tag)); 1114 1115 /* 1116 * XXX IPCOMP case 1117 * We use cpi to define spi here. In the case where cpi <= 1118 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not 1119 * the real spi. In this case, don't check the spi but check the 1120 * algorithm 1121 */ 1122 1123 if (proto == IPPROTO_IPCOMP) { 1124 u_int32_t tmp; 1125 tmp = ntohl(spi); 1126 cpi = (u_int16_t) tmp; 1127 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) { 1128 algo = (u_int8_t) cpi; 1129 must_check_spi = 0; 1130 must_check_alg = 1; 1131 } 1132 } 1133 1134 /* 1135 * searching SAD. 1136 * XXX: to be checked internal IP header somewhere. Also when 1137 * IPsec tunnel packet is received. But ESP tunnel mode is 1138 * encrypted so we can't check internal IP header. 1139 */ 1140 s = splsoftnet(); /*called from softclock()*/ 1141 if (key_prefered_oldsa) { 1142 saorder_state_valid = saorder_state_valid_prefer_old; 1143 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1144 } else { 1145 saorder_state_valid = saorder_state_valid_prefer_new; 1146 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1147 } 1148 LIST_FOREACH(sah, &sahtree, chain) { 1149 /* search valid state */ 1150 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1151 state = saorder_state_valid[stateidx]; 1152 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1153 /* sanity check */ 1154 KEY_CHKSASTATE(sav->state, state, "key_allocsav"); 1155 /* do not return entries w/ unusable state */ 1156 if (sav->state != SADB_SASTATE_MATURE && 1157 sav->state != SADB_SASTATE_DYING) 1158 continue; 1159 if (proto != sav->sah->saidx.proto) 1160 continue; 1161 if (must_check_spi && spi != sav->spi) 1162 continue; 1163 /* XXX only on the ipcomp case */ 1164 if (must_check_alg && algo != sav->alg_comp) 1165 continue; 1166 1167 #if 0 /* don't check src */ 1168 /* Fix port in src->sa */ 1169 1170 /* check src address */ 1171 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0) 1172 continue; 1173 #endif 1174 /* fix port of dst address XXX*/ 1175 key_porttosaddr(__UNCONST(dst), dport); 1176 /* check dst address */ 1177 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0) 1178 continue; 1179 SA_ADDREF(sav); 1180 goto done; 1181 } 1182 } 1183 } 1184 sav = NULL; 1185 done: 1186 splx(s); 1187 1188 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1189 printf("DP key_allocsa return SA:%p; refcnt %u\n", 1190 sav, sav ? sav->refcnt : 0)); 1191 return sav; 1192 } 1193 1194 /* 1195 * Must be called after calling key_allocsp(). 1196 * For both the packet without socket and key_freeso(). 1197 */ 1198 void 1199 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1200 { 1201 struct secpolicy *sp = *spp; 1202 1203 IPSEC_ASSERT(sp != NULL, ("key_freesp: null sp")); 1204 1205 SP_DELREF(sp); 1206 1207 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1208 printf("DP key_freesp SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1209 sp, sp->id, where, tag, sp->refcnt)); 1210 1211 if (sp->refcnt == 0) { 1212 *spp = NULL; 1213 key_delsp(sp); 1214 } 1215 } 1216 1217 /* 1218 * Must be called after calling key_allocsp(). 1219 * For the packet with socket. 1220 */ 1221 void 1222 key_freeso(struct socket *so) 1223 { 1224 /* sanity check */ 1225 IPSEC_ASSERT(so != NULL, ("key_freeso: null so")); 1226 1227 switch (so->so_proto->pr_domain->dom_family) { 1228 #ifdef INET 1229 case PF_INET: 1230 { 1231 struct inpcb *pcb = sotoinpcb(so); 1232 1233 /* Does it have a PCB ? */ 1234 if (pcb == NULL) 1235 return; 1236 key_freesp_so(&pcb->inp_sp->sp_in); 1237 key_freesp_so(&pcb->inp_sp->sp_out); 1238 } 1239 break; 1240 #endif 1241 #ifdef INET6 1242 case PF_INET6: 1243 { 1244 #ifdef HAVE_NRL_INPCB 1245 struct inpcb *pcb = sotoinpcb(so); 1246 1247 /* Does it have a PCB ? */ 1248 if (pcb == NULL) 1249 return; 1250 key_freesp_so(&pcb->inp_sp->sp_in); 1251 key_freesp_so(&pcb->inp_sp->sp_out); 1252 #else 1253 struct in6pcb *pcb = sotoin6pcb(so); 1254 1255 /* Does it have a PCB ? */ 1256 if (pcb == NULL) 1257 return; 1258 key_freesp_so(&pcb->in6p_sp->sp_in); 1259 key_freesp_so(&pcb->in6p_sp->sp_out); 1260 #endif 1261 } 1262 break; 1263 #endif /* INET6 */ 1264 default: 1265 ipseclog((LOG_DEBUG, "key_freeso: unknown address family=%d.\n", 1266 so->so_proto->pr_domain->dom_family)); 1267 return; 1268 } 1269 } 1270 1271 static void 1272 key_freesp_so(struct secpolicy **sp) 1273 { 1274 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("key_freesp_so: null sp")); 1275 1276 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1277 (*sp)->policy == IPSEC_POLICY_BYPASS) 1278 return; 1279 1280 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1281 ("key_freesp_so: invalid policy %u", (*sp)->policy)); 1282 KEY_FREESP(sp); 1283 } 1284 1285 /* 1286 * Must be called after calling key_allocsa(). 1287 * This function is called by key_freesp() to free some SA allocated 1288 * for a policy. 1289 */ 1290 void 1291 key_freesav(struct secasvar **psav, const char* where, int tag) 1292 { 1293 struct secasvar *sav = *psav; 1294 1295 IPSEC_ASSERT(sav != NULL, ("key_freesav: null sav")); 1296 1297 SA_DELREF(sav); 1298 1299 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1300 printf("DP key_freesav SA:%p (SPI %lu) from %s:%u; refcnt now %u\n", 1301 sav, (u_long)ntohl(sav->spi), 1302 where, tag, sav->refcnt)); 1303 1304 if (sav->refcnt == 0) { 1305 *psav = NULL; 1306 key_delsav(sav); 1307 } 1308 } 1309 1310 /* %%% SPD management */ 1311 /* 1312 * free security policy entry. 1313 */ 1314 static void 1315 key_delsp(struct secpolicy *sp) 1316 { 1317 int s; 1318 1319 IPSEC_ASSERT(sp != NULL, ("key_delsp: null sp")); 1320 1321 key_sp_dead(sp); 1322 1323 IPSEC_ASSERT(sp->refcnt == 0, 1324 ("key_delsp: SP with references deleted (refcnt %u)", 1325 sp->refcnt)); 1326 1327 s = splsoftnet(); /*called from softclock()*/ 1328 1329 { 1330 struct ipsecrequest *isr = sp->req, *nextisr; 1331 1332 while (isr != NULL) { 1333 if (isr->sav != NULL) { 1334 KEY_FREESAV(&isr->sav); 1335 isr->sav = NULL; 1336 } 1337 1338 nextisr = isr->next; 1339 KFREE(isr); 1340 isr = nextisr; 1341 } 1342 } 1343 1344 KFREE(sp); 1345 1346 splx(s); 1347 } 1348 1349 /* 1350 * search SPD 1351 * OUT: NULL : not found 1352 * others : found, pointer to a SP. 1353 */ 1354 static struct secpolicy * 1355 key_getsp(const struct secpolicyindex *spidx) 1356 { 1357 struct secpolicy *sp; 1358 1359 IPSEC_ASSERT(spidx != NULL, ("key_getsp: null spidx")); 1360 1361 LIST_FOREACH(sp, &sptree[spidx->dir], chain) { 1362 if (sp->state == IPSEC_SPSTATE_DEAD) 1363 continue; 1364 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1365 SP_ADDREF(sp); 1366 return sp; 1367 } 1368 } 1369 1370 return NULL; 1371 } 1372 1373 /* 1374 * get SP by index. 1375 * OUT: NULL : not found 1376 * others : found, pointer to a SP. 1377 */ 1378 static struct secpolicy * 1379 key_getspbyid(u_int32_t id) 1380 { 1381 struct secpolicy *sp; 1382 1383 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) { 1384 if (sp->state == IPSEC_SPSTATE_DEAD) 1385 continue; 1386 if (sp->id == id) { 1387 SP_ADDREF(sp); 1388 return sp; 1389 } 1390 } 1391 1392 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) { 1393 if (sp->state == IPSEC_SPSTATE_DEAD) 1394 continue; 1395 if (sp->id == id) { 1396 SP_ADDREF(sp); 1397 return sp; 1398 } 1399 } 1400 1401 return NULL; 1402 } 1403 1404 struct secpolicy * 1405 key_newsp(const char* where, int tag) 1406 { 1407 struct secpolicy *newsp = NULL; 1408 1409 newsp = (struct secpolicy *) 1410 malloc(sizeof(struct secpolicy), M_SECA, M_NOWAIT|M_ZERO); 1411 if (newsp) { 1412 newsp->refcnt = 1; 1413 newsp->req = NULL; 1414 } 1415 1416 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1417 printf("DP key_newsp from %s:%u return SP:%p\n", 1418 where, tag, newsp)); 1419 return newsp; 1420 } 1421 1422 /* 1423 * create secpolicy structure from sadb_x_policy structure. 1424 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1425 * so must be set properly later. 1426 */ 1427 struct secpolicy * 1428 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error) 1429 { 1430 struct secpolicy *newsp; 1431 1432 /* sanity check */ 1433 if (xpl0 == NULL) 1434 panic("key_msg2sp: NULL pointer was passed"); 1435 if (len < sizeof(*xpl0)) 1436 panic("key_msg2sp: invalid length"); 1437 if (len != PFKEY_EXTLEN(xpl0)) { 1438 ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n")); 1439 *error = EINVAL; 1440 return NULL; 1441 } 1442 1443 if ((newsp = KEY_NEWSP()) == NULL) { 1444 *error = ENOBUFS; 1445 return NULL; 1446 } 1447 1448 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1449 newsp->policy = xpl0->sadb_x_policy_type; 1450 1451 /* check policy */ 1452 switch (xpl0->sadb_x_policy_type) { 1453 case IPSEC_POLICY_DISCARD: 1454 case IPSEC_POLICY_NONE: 1455 case IPSEC_POLICY_ENTRUST: 1456 case IPSEC_POLICY_BYPASS: 1457 newsp->req = NULL; 1458 break; 1459 1460 case IPSEC_POLICY_IPSEC: 1461 { 1462 int tlen; 1463 const struct sadb_x_ipsecrequest *xisr; 1464 uint16_t xisr_reqid; 1465 struct ipsecrequest **p_isr = &newsp->req; 1466 1467 /* validity check */ 1468 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1469 ipseclog((LOG_DEBUG, 1470 "key_msg2sp: Invalid msg length.\n")); 1471 KEY_FREESP(&newsp); 1472 *error = EINVAL; 1473 return NULL; 1474 } 1475 1476 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1477 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1); 1478 1479 while (tlen > 0) { 1480 /* length check */ 1481 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1482 ipseclog((LOG_DEBUG, "key_msg2sp: " 1483 "invalid ipsecrequest length.\n")); 1484 KEY_FREESP(&newsp); 1485 *error = EINVAL; 1486 return NULL; 1487 } 1488 1489 /* allocate request buffer */ 1490 KMALLOC(*p_isr, struct ipsecrequest *, sizeof(**p_isr)); 1491 if ((*p_isr) == NULL) { 1492 ipseclog((LOG_DEBUG, 1493 "key_msg2sp: No more memory.\n")); 1494 KEY_FREESP(&newsp); 1495 *error = ENOBUFS; 1496 return NULL; 1497 } 1498 memset(*p_isr, 0, sizeof(**p_isr)); 1499 1500 /* set values */ 1501 (*p_isr)->next = NULL; 1502 1503 switch (xisr->sadb_x_ipsecrequest_proto) { 1504 case IPPROTO_ESP: 1505 case IPPROTO_AH: 1506 case IPPROTO_IPCOMP: 1507 break; 1508 default: 1509 ipseclog((LOG_DEBUG, 1510 "key_msg2sp: invalid proto type=%u\n", 1511 xisr->sadb_x_ipsecrequest_proto)); 1512 KEY_FREESP(&newsp); 1513 *error = EPROTONOSUPPORT; 1514 return NULL; 1515 } 1516 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1517 1518 switch (xisr->sadb_x_ipsecrequest_mode) { 1519 case IPSEC_MODE_TRANSPORT: 1520 case IPSEC_MODE_TUNNEL: 1521 break; 1522 case IPSEC_MODE_ANY: 1523 default: 1524 ipseclog((LOG_DEBUG, 1525 "key_msg2sp: invalid mode=%u\n", 1526 xisr->sadb_x_ipsecrequest_mode)); 1527 KEY_FREESP(&newsp); 1528 *error = EINVAL; 1529 return NULL; 1530 } 1531 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1532 1533 switch (xisr->sadb_x_ipsecrequest_level) { 1534 case IPSEC_LEVEL_DEFAULT: 1535 case IPSEC_LEVEL_USE: 1536 case IPSEC_LEVEL_REQUIRE: 1537 break; 1538 case IPSEC_LEVEL_UNIQUE: 1539 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid; 1540 /* validity check */ 1541 /* 1542 * If range violation of reqid, kernel will 1543 * update it, don't refuse it. 1544 */ 1545 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) { 1546 ipseclog((LOG_DEBUG, 1547 "key_msg2sp: reqid=%d range " 1548 "violation, updated by kernel.\n", 1549 xisr_reqid)); 1550 xisr_reqid = 0; 1551 } 1552 1553 /* allocate new reqid id if reqid is zero. */ 1554 if (xisr_reqid == 0) { 1555 u_int16_t reqid; 1556 if ((reqid = key_newreqid()) == 0) { 1557 KEY_FREESP(&newsp); 1558 *error = ENOBUFS; 1559 return NULL; 1560 } 1561 (*p_isr)->saidx.reqid = reqid; 1562 } else { 1563 /* set it for manual keying. */ 1564 (*p_isr)->saidx.reqid = xisr_reqid; 1565 } 1566 break; 1567 1568 default: 1569 ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n", 1570 xisr->sadb_x_ipsecrequest_level)); 1571 KEY_FREESP(&newsp); 1572 *error = EINVAL; 1573 return NULL; 1574 } 1575 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1576 1577 /* set IP addresses if there */ 1578 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1579 const struct sockaddr *paddr; 1580 1581 paddr = (const struct sockaddr *)(xisr + 1); 1582 1583 /* validity check */ 1584 if (paddr->sa_len 1585 > sizeof((*p_isr)->saidx.src)) { 1586 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " 1587 "address length.\n")); 1588 KEY_FREESP(&newsp); 1589 *error = EINVAL; 1590 return NULL; 1591 } 1592 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len); 1593 1594 paddr = (const struct sockaddr *)((const char *)paddr 1595 + paddr->sa_len); 1596 1597 /* validity check */ 1598 if (paddr->sa_len 1599 > sizeof((*p_isr)->saidx.dst)) { 1600 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " 1601 "address length.\n")); 1602 KEY_FREESP(&newsp); 1603 *error = EINVAL; 1604 return NULL; 1605 } 1606 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len); 1607 } 1608 1609 (*p_isr)->sav = NULL; 1610 (*p_isr)->sp = newsp; 1611 1612 /* initialization for the next. */ 1613 p_isr = &(*p_isr)->next; 1614 tlen -= xisr->sadb_x_ipsecrequest_len; 1615 1616 /* validity check */ 1617 if (tlen < 0) { 1618 ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n")); 1619 KEY_FREESP(&newsp); 1620 *error = EINVAL; 1621 return NULL; 1622 } 1623 1624 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr 1625 + xisr->sadb_x_ipsecrequest_len); 1626 } 1627 } 1628 break; 1629 default: 1630 ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n")); 1631 KEY_FREESP(&newsp); 1632 *error = EINVAL; 1633 return NULL; 1634 } 1635 1636 *error = 0; 1637 return newsp; 1638 } 1639 1640 static u_int16_t 1641 key_newreqid(void) 1642 { 1643 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1644 1645 auto_reqid = (auto_reqid == 0xffff 1646 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1647 1648 /* XXX should be unique check */ 1649 1650 return auto_reqid; 1651 } 1652 1653 /* 1654 * copy secpolicy struct to sadb_x_policy structure indicated. 1655 */ 1656 struct mbuf * 1657 key_sp2msg(const struct secpolicy *sp) 1658 { 1659 struct sadb_x_policy *xpl; 1660 int tlen; 1661 char *p; 1662 struct mbuf *m; 1663 1664 /* sanity check. */ 1665 if (sp == NULL) 1666 panic("key_sp2msg: NULL pointer was passed"); 1667 1668 tlen = key_getspreqmsglen(sp); 1669 1670 m = key_alloc_mbuf(tlen); 1671 if (!m || m->m_next) { /*XXX*/ 1672 if (m) 1673 m_freem(m); 1674 return NULL; 1675 } 1676 1677 m->m_len = tlen; 1678 m->m_next = NULL; 1679 xpl = mtod(m, struct sadb_x_policy *); 1680 memset(xpl, 0, tlen); 1681 1682 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1683 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1684 xpl->sadb_x_policy_type = sp->policy; 1685 xpl->sadb_x_policy_dir = sp->spidx.dir; 1686 xpl->sadb_x_policy_id = sp->id; 1687 p = (char *)xpl + sizeof(*xpl); 1688 1689 /* if is the policy for ipsec ? */ 1690 if (sp->policy == IPSEC_POLICY_IPSEC) { 1691 struct sadb_x_ipsecrequest *xisr; 1692 struct ipsecrequest *isr; 1693 1694 for (isr = sp->req; isr != NULL; isr = isr->next) { 1695 1696 xisr = (struct sadb_x_ipsecrequest *)p; 1697 1698 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1699 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1700 xisr->sadb_x_ipsecrequest_level = isr->level; 1701 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1702 1703 p += sizeof(*xisr); 1704 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len); 1705 p += isr->saidx.src.sa.sa_len; 1706 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len); 1707 p += isr->saidx.src.sa.sa_len; 1708 1709 xisr->sadb_x_ipsecrequest_len = 1710 PFKEY_ALIGN8(sizeof(*xisr) 1711 + isr->saidx.src.sa.sa_len 1712 + isr->saidx.dst.sa.sa_len); 1713 } 1714 } 1715 1716 return m; 1717 } 1718 1719 /* m will not be freed nor modified */ 1720 static struct mbuf * 1721 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1722 int ndeep, int nitem, ...) 1723 { 1724 va_list ap; 1725 int idx; 1726 int i; 1727 struct mbuf *result = NULL, *n; 1728 int len; 1729 1730 if (m == NULL || mhp == NULL) 1731 panic("null pointer passed to key_gather"); 1732 1733 va_start(ap, nitem); 1734 for (i = 0; i < nitem; i++) { 1735 idx = va_arg(ap, int); 1736 if (idx < 0 || idx > SADB_EXT_MAX) 1737 goto fail; 1738 /* don't attempt to pull empty extension */ 1739 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1740 continue; 1741 if (idx != SADB_EXT_RESERVED && 1742 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1743 continue; 1744 1745 if (idx == SADB_EXT_RESERVED) { 1746 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1747 #ifdef DIAGNOSTIC 1748 if (len > MHLEN) 1749 panic("assumption failed"); 1750 #endif 1751 MGETHDR(n, M_DONTWAIT, MT_DATA); 1752 if (!n) 1753 goto fail; 1754 n->m_len = len; 1755 n->m_next = NULL; 1756 m_copydata(m, 0, sizeof(struct sadb_msg), 1757 mtod(n, void *)); 1758 } else if (i < ndeep) { 1759 len = mhp->extlen[idx]; 1760 n = key_alloc_mbuf(len); 1761 if (!n || n->m_next) { /*XXX*/ 1762 if (n) 1763 m_freem(n); 1764 goto fail; 1765 } 1766 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1767 mtod(n, void *)); 1768 } else { 1769 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1770 M_DONTWAIT); 1771 } 1772 if (n == NULL) 1773 goto fail; 1774 1775 if (result) 1776 m_cat(result, n); 1777 else 1778 result = n; 1779 } 1780 va_end(ap); 1781 1782 if ((result->m_flags & M_PKTHDR) != 0) { 1783 result->m_pkthdr.len = 0; 1784 for (n = result; n; n = n->m_next) 1785 result->m_pkthdr.len += n->m_len; 1786 } 1787 1788 return result; 1789 1790 fail: 1791 va_end(ap); 1792 m_freem(result); 1793 return NULL; 1794 } 1795 1796 /* 1797 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1798 * add an entry to SP database, when received 1799 * <base, address(SD), (lifetime(H),) policy> 1800 * from the user(?). 1801 * Adding to SP database, 1802 * and send 1803 * <base, address(SD), (lifetime(H),) policy> 1804 * to the socket which was send. 1805 * 1806 * SPDADD set a unique policy entry. 1807 * SPDSETIDX like SPDADD without a part of policy requests. 1808 * SPDUPDATE replace a unique policy entry. 1809 * 1810 * m will always be freed. 1811 */ 1812 static int 1813 key_spdadd(struct socket *so, struct mbuf *m, 1814 const struct sadb_msghdr *mhp) 1815 { 1816 const struct sadb_address *src0, *dst0; 1817 const struct sadb_x_policy *xpl0; 1818 struct sadb_x_policy *xpl; 1819 const struct sadb_lifetime *lft = NULL; 1820 struct secpolicyindex spidx; 1821 struct secpolicy *newsp; 1822 int error; 1823 1824 /* sanity check */ 1825 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 1826 panic("key_spdadd: NULL pointer is passed"); 1827 1828 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1829 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1830 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1831 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1832 return key_senderror(so, m, EINVAL); 1833 } 1834 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1835 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1836 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1837 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1838 return key_senderror(so, m, EINVAL); 1839 } 1840 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1841 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1842 < sizeof(struct sadb_lifetime)) { 1843 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1844 return key_senderror(so, m, EINVAL); 1845 } 1846 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1847 } 1848 1849 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1850 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1851 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1852 1853 /* make secindex */ 1854 /* XXX boundary check against sa_len */ 1855 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1856 src0 + 1, 1857 dst0 + 1, 1858 src0->sadb_address_prefixlen, 1859 dst0->sadb_address_prefixlen, 1860 src0->sadb_address_proto, 1861 &spidx); 1862 1863 /* checking the direciton. */ 1864 switch (xpl0->sadb_x_policy_dir) { 1865 case IPSEC_DIR_INBOUND: 1866 case IPSEC_DIR_OUTBOUND: 1867 break; 1868 default: 1869 ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n")); 1870 mhp->msg->sadb_msg_errno = EINVAL; 1871 return 0; 1872 } 1873 1874 /* check policy */ 1875 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1876 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1877 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1878 ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n")); 1879 return key_senderror(so, m, EINVAL); 1880 } 1881 1882 /* policy requests are mandatory when action is ipsec. */ 1883 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1884 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1885 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1886 ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n")); 1887 return key_senderror(so, m, EINVAL); 1888 } 1889 1890 /* 1891 * checking there is SP already or not. 1892 * SPDUPDATE doesn't depend on whether there is a SP or not. 1893 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1894 * then error. 1895 */ 1896 newsp = key_getsp(&spidx); 1897 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1898 if (newsp) { 1899 key_sp_dead(newsp); 1900 key_sp_unlink(newsp); /* XXX jrs ordering */ 1901 KEY_FREESP(&newsp); 1902 newsp = NULL; 1903 } 1904 } else { 1905 if (newsp != NULL) { 1906 KEY_FREESP(&newsp); 1907 ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n")); 1908 return key_senderror(so, m, EEXIST); 1909 } 1910 } 1911 1912 /* allocation new SP entry */ 1913 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1914 return key_senderror(so, m, error); 1915 } 1916 1917 if ((newsp->id = key_getnewspid()) == 0) { 1918 KFREE(newsp); 1919 return key_senderror(so, m, ENOBUFS); 1920 } 1921 1922 /* XXX boundary check against sa_len */ 1923 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1924 src0 + 1, 1925 dst0 + 1, 1926 src0->sadb_address_prefixlen, 1927 dst0->sadb_address_prefixlen, 1928 src0->sadb_address_proto, 1929 &newsp->spidx); 1930 1931 /* sanity check on addr pair */ 1932 if (((const struct sockaddr *)(src0 + 1))->sa_family != 1933 ((const struct sockaddr *)(dst0+ 1))->sa_family) { 1934 KFREE(newsp); 1935 return key_senderror(so, m, EINVAL); 1936 } 1937 if (((const struct sockaddr *)(src0 + 1))->sa_len != 1938 ((const struct sockaddr *)(dst0+ 1))->sa_len) { 1939 KFREE(newsp); 1940 return key_senderror(so, m, EINVAL); 1941 } 1942 1943 newsp->created = time_uptime; 1944 newsp->lastused = newsp->created; 1945 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1946 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1947 1948 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1949 newsp->state = IPSEC_SPSTATE_ALIVE; 1950 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1951 1952 /* delete the entry in spacqtree */ 1953 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1954 struct secspacq *spacq; 1955 if ((spacq = key_getspacq(&spidx)) != NULL) { 1956 /* reset counter in order to deletion by timehandler. */ 1957 spacq->created = time_uptime; 1958 spacq->count = 0; 1959 } 1960 } 1961 1962 #if defined(__NetBSD__) 1963 /* Invalidate all cached SPD pointers in the PCBs. */ 1964 ipsec_invalpcbcacheall(); 1965 1966 #if defined(GATEWAY) 1967 /* Invalidate the ipflow cache, as well. */ 1968 ipflow_invalidate_all(0); 1969 #ifdef INET6 1970 ip6flow_invalidate_all(0); 1971 #endif /* INET6 */ 1972 #endif /* GATEWAY */ 1973 #endif /* __NetBSD__ */ 1974 1975 { 1976 struct mbuf *n, *mpolicy; 1977 struct sadb_msg *newmsg; 1978 int off; 1979 1980 /* create new sadb_msg to reply. */ 1981 if (lft) { 1982 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1983 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1984 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1985 } else { 1986 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1987 SADB_X_EXT_POLICY, 1988 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1989 } 1990 if (!n) 1991 return key_senderror(so, m, ENOBUFS); 1992 1993 if (n->m_len < sizeof(*newmsg)) { 1994 n = m_pullup(n, sizeof(*newmsg)); 1995 if (!n) 1996 return key_senderror(so, m, ENOBUFS); 1997 } 1998 newmsg = mtod(n, struct sadb_msg *); 1999 newmsg->sadb_msg_errno = 0; 2000 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2001 2002 off = 0; 2003 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 2004 sizeof(*xpl), &off); 2005 if (mpolicy == NULL) { 2006 /* n is already freed */ 2007 return key_senderror(so, m, ENOBUFS); 2008 } 2009 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off); 2010 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 2011 m_freem(n); 2012 return key_senderror(so, m, EINVAL); 2013 } 2014 xpl->sadb_x_policy_id = newsp->id; 2015 2016 m_freem(m); 2017 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2018 } 2019 } 2020 2021 /* 2022 * get new policy id. 2023 * OUT: 2024 * 0: failure. 2025 * others: success. 2026 */ 2027 static u_int32_t 2028 key_getnewspid(void) 2029 { 2030 u_int32_t newid = 0; 2031 int count = key_spi_trycnt; /* XXX */ 2032 struct secpolicy *sp; 2033 2034 /* when requesting to allocate spi ranged */ 2035 while (count--) { 2036 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); 2037 2038 if ((sp = key_getspbyid(newid)) == NULL) 2039 break; 2040 2041 KEY_FREESP(&sp); 2042 } 2043 2044 if (count == 0 || newid == 0) { 2045 ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n")); 2046 return 0; 2047 } 2048 2049 return newid; 2050 } 2051 2052 /* 2053 * SADB_SPDDELETE processing 2054 * receive 2055 * <base, address(SD), policy(*)> 2056 * from the user(?), and set SADB_SASTATE_DEAD, 2057 * and send, 2058 * <base, address(SD), policy(*)> 2059 * to the ikmpd. 2060 * policy(*) including direction of policy. 2061 * 2062 * m will always be freed. 2063 */ 2064 static int 2065 key_spddelete(struct socket *so, struct mbuf *m, 2066 const struct sadb_msghdr *mhp) 2067 { 2068 struct sadb_address *src0, *dst0; 2069 struct sadb_x_policy *xpl0; 2070 struct secpolicyindex spidx; 2071 struct secpolicy *sp; 2072 2073 /* sanity check */ 2074 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 2075 panic("key_spddelete: NULL pointer is passed"); 2076 2077 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2078 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2079 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2080 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n")); 2081 return key_senderror(so, m, EINVAL); 2082 } 2083 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2084 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2085 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2086 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n")); 2087 return key_senderror(so, m, EINVAL); 2088 } 2089 2090 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2091 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2092 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2093 2094 /* make secindex */ 2095 /* XXX boundary check against sa_len */ 2096 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2097 src0 + 1, 2098 dst0 + 1, 2099 src0->sadb_address_prefixlen, 2100 dst0->sadb_address_prefixlen, 2101 src0->sadb_address_proto, 2102 &spidx); 2103 2104 /* checking the direciton. */ 2105 switch (xpl0->sadb_x_policy_dir) { 2106 case IPSEC_DIR_INBOUND: 2107 case IPSEC_DIR_OUTBOUND: 2108 break; 2109 default: 2110 ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n")); 2111 return key_senderror(so, m, EINVAL); 2112 } 2113 2114 /* Is there SP in SPD ? */ 2115 if ((sp = key_getsp(&spidx)) == NULL) { 2116 ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n")); 2117 return key_senderror(so, m, EINVAL); 2118 } 2119 2120 /* save policy id to buffer to be returned. */ 2121 xpl0->sadb_x_policy_id = sp->id; 2122 2123 key_sp_dead(sp); 2124 key_sp_unlink(sp); /* XXX jrs ordering */ 2125 KEY_FREESP(&sp); /* ref gained by key_getspbyid */ 2126 2127 #if defined(__NetBSD__) 2128 /* Invalidate all cached SPD pointers in the PCBs. */ 2129 ipsec_invalpcbcacheall(); 2130 2131 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2132 #endif /* __NetBSD__ */ 2133 2134 { 2135 struct mbuf *n; 2136 struct sadb_msg *newmsg; 2137 2138 /* create new sadb_msg to reply. */ 2139 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2140 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2141 if (!n) 2142 return key_senderror(so, m, ENOBUFS); 2143 2144 newmsg = mtod(n, struct sadb_msg *); 2145 newmsg->sadb_msg_errno = 0; 2146 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2147 2148 m_freem(m); 2149 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2150 } 2151 } 2152 2153 /* 2154 * SADB_SPDDELETE2 processing 2155 * receive 2156 * <base, policy(*)> 2157 * from the user(?), and set SADB_SASTATE_DEAD, 2158 * and send, 2159 * <base, policy(*)> 2160 * to the ikmpd. 2161 * policy(*) including direction of policy. 2162 * 2163 * m will always be freed. 2164 */ 2165 static int 2166 key_spddelete2(struct socket *so, struct mbuf *m, 2167 const struct sadb_msghdr *mhp) 2168 { 2169 u_int32_t id; 2170 struct secpolicy *sp; 2171 2172 /* sanity check */ 2173 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 2174 panic("key_spddelete2: NULL pointer is passed"); 2175 2176 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2177 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2178 ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n")); 2179 key_senderror(so, m, EINVAL); 2180 return 0; 2181 } 2182 2183 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2184 2185 /* Is there SP in SPD ? */ 2186 if ((sp = key_getspbyid(id)) == NULL) { 2187 ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id)); 2188 return key_senderror(so, m, EINVAL); 2189 } 2190 2191 key_sp_dead(sp); 2192 key_sp_unlink(sp); /* XXX jrs ordering */ 2193 KEY_FREESP(&sp); /* ref gained by key_getsp */ 2194 sp = NULL; 2195 2196 #if defined(__NetBSD__) 2197 /* Invalidate all cached SPD pointers in the PCBs. */ 2198 ipsec_invalpcbcacheall(); 2199 2200 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2201 #endif /* __NetBSD__ */ 2202 2203 { 2204 struct mbuf *n, *nn; 2205 struct sadb_msg *newmsg; 2206 int off, len; 2207 2208 /* create new sadb_msg to reply. */ 2209 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2210 2211 if (len > MCLBYTES) 2212 return key_senderror(so, m, ENOBUFS); 2213 MGETHDR(n, M_DONTWAIT, MT_DATA); 2214 if (n && len > MHLEN) { 2215 MCLGET(n, M_DONTWAIT); 2216 if ((n->m_flags & M_EXT) == 0) { 2217 m_freem(n); 2218 n = NULL; 2219 } 2220 } 2221 if (!n) 2222 return key_senderror(so, m, ENOBUFS); 2223 2224 n->m_len = len; 2225 n->m_next = NULL; 2226 off = 0; 2227 2228 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 2229 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2230 2231 #ifdef DIAGNOSTIC 2232 if (off != len) 2233 panic("length inconsistency in key_spddelete2"); 2234 #endif 2235 2236 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2237 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT); 2238 if (!n->m_next) { 2239 m_freem(n); 2240 return key_senderror(so, m, ENOBUFS); 2241 } 2242 2243 n->m_pkthdr.len = 0; 2244 for (nn = n; nn; nn = nn->m_next) 2245 n->m_pkthdr.len += nn->m_len; 2246 2247 newmsg = mtod(n, struct sadb_msg *); 2248 newmsg->sadb_msg_errno = 0; 2249 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2250 2251 m_freem(m); 2252 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2253 } 2254 } 2255 2256 /* 2257 * SADB_X_GET processing 2258 * receive 2259 * <base, policy(*)> 2260 * from the user(?), 2261 * and send, 2262 * <base, address(SD), policy> 2263 * to the ikmpd. 2264 * policy(*) including direction of policy. 2265 * 2266 * m will always be freed. 2267 */ 2268 static int 2269 key_spdget(struct socket *so, struct mbuf *m, 2270 const struct sadb_msghdr *mhp) 2271 { 2272 u_int32_t id; 2273 struct secpolicy *sp; 2274 struct mbuf *n; 2275 2276 /* sanity check */ 2277 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 2278 panic("key_spdget: NULL pointer is passed"); 2279 2280 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2281 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2282 ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n")); 2283 return key_senderror(so, m, EINVAL); 2284 } 2285 2286 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2287 2288 /* Is there SP in SPD ? */ 2289 if ((sp = key_getspbyid(id)) == NULL) { 2290 ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id)); 2291 return key_senderror(so, m, ENOENT); 2292 } 2293 2294 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, 2295 mhp->msg->sadb_msg_pid); 2296 KEY_FREESP(&sp); /* ref gained by key_getspbyid */ 2297 if (n != NULL) { 2298 m_freem(m); 2299 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2300 } else 2301 return key_senderror(so, m, ENOBUFS); 2302 } 2303 2304 /* 2305 * SADB_X_SPDACQUIRE processing. 2306 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2307 * send 2308 * <base, policy(*)> 2309 * to KMD, and expect to receive 2310 * <base> with SADB_X_SPDACQUIRE if error occurred, 2311 * or 2312 * <base, policy> 2313 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2314 * policy(*) is without policy requests. 2315 * 2316 * 0 : succeed 2317 * others: error number 2318 */ 2319 int 2320 key_spdacquire(const struct secpolicy *sp) 2321 { 2322 struct mbuf *result = NULL, *m; 2323 struct secspacq *newspacq; 2324 int error; 2325 2326 /* sanity check */ 2327 if (sp == NULL) 2328 panic("key_spdacquire: NULL pointer is passed"); 2329 if (sp->req != NULL) 2330 panic("key_spdacquire: called but there is request"); 2331 if (sp->policy != IPSEC_POLICY_IPSEC) 2332 panic("key_spdacquire: policy mismathed. IPsec is expected"); 2333 2334 /* Get an entry to check whether sent message or not. */ 2335 if ((newspacq = key_getspacq(&sp->spidx)) != NULL) { 2336 if (key_blockacq_count < newspacq->count) { 2337 /* reset counter and do send message. */ 2338 newspacq->count = 0; 2339 } else { 2340 /* increment counter and do nothing. */ 2341 newspacq->count++; 2342 return 0; 2343 } 2344 } else { 2345 /* make new entry for blocking to send SADB_ACQUIRE. */ 2346 if ((newspacq = key_newspacq(&sp->spidx)) == NULL) 2347 return ENOBUFS; 2348 2349 /* add to acqtree */ 2350 LIST_INSERT_HEAD(&spacqtree, newspacq, chain); 2351 } 2352 2353 /* create new sadb_msg to reply. */ 2354 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2355 if (!m) { 2356 error = ENOBUFS; 2357 goto fail; 2358 } 2359 result = m; 2360 2361 result->m_pkthdr.len = 0; 2362 for (m = result; m; m = m->m_next) 2363 result->m_pkthdr.len += m->m_len; 2364 2365 mtod(result, struct sadb_msg *)->sadb_msg_len = 2366 PFKEY_UNIT64(result->m_pkthdr.len); 2367 2368 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2369 2370 fail: 2371 if (result) 2372 m_freem(result); 2373 return error; 2374 } 2375 2376 /* 2377 * SADB_SPDFLUSH processing 2378 * receive 2379 * <base> 2380 * from the user, and free all entries in secpctree. 2381 * and send, 2382 * <base> 2383 * to the user. 2384 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2385 * 2386 * m will always be freed. 2387 */ 2388 static int 2389 key_spdflush(struct socket *so, struct mbuf *m, 2390 const struct sadb_msghdr *mhp) 2391 { 2392 struct sadb_msg *newmsg; 2393 struct secpolicy *sp; 2394 u_int dir; 2395 2396 /* sanity check */ 2397 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 2398 panic("key_spdflush: NULL pointer is passed"); 2399 2400 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2401 return key_senderror(so, m, EINVAL); 2402 2403 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2404 struct secpolicy * nextsp; 2405 for (sp = LIST_FIRST(&sptree[dir]); 2406 sp != NULL; 2407 sp = nextsp) { 2408 2409 nextsp = LIST_NEXT(sp, chain); 2410 if (sp->state == IPSEC_SPSTATE_DEAD) 2411 continue; 2412 key_sp_dead(sp); 2413 key_sp_unlink(sp); 2414 /* 'sp' dead; continue transfers to 'sp = nextsp' */ 2415 continue; 2416 } 2417 } 2418 2419 #if defined(__NetBSD__) 2420 /* Invalidate all cached SPD pointers in the PCBs. */ 2421 ipsec_invalpcbcacheall(); 2422 2423 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2424 #endif /* __NetBSD__ */ 2425 2426 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2427 ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n")); 2428 return key_senderror(so, m, ENOBUFS); 2429 } 2430 2431 if (m->m_next) 2432 m_freem(m->m_next); 2433 m->m_next = NULL; 2434 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2435 newmsg = mtod(m, struct sadb_msg *); 2436 newmsg->sadb_msg_errno = 0; 2437 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2438 2439 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2440 } 2441 2442 static struct sockaddr key_src = { 2443 .sa_len = 2, 2444 .sa_family = PF_KEY, 2445 }; 2446 2447 static struct mbuf * 2448 key_setspddump_chain(int *errorp, int *lenp, pid_t pid) 2449 { 2450 struct secpolicy *sp; 2451 int cnt; 2452 u_int dir; 2453 struct mbuf *m, *n, *prev; 2454 int totlen; 2455 2456 *lenp = 0; 2457 2458 /* search SPD entry and get buffer size. */ 2459 cnt = 0; 2460 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2461 LIST_FOREACH(sp, &sptree[dir], chain) { 2462 cnt++; 2463 } 2464 } 2465 2466 if (cnt == 0) { 2467 *errorp = ENOENT; 2468 return (NULL); 2469 } 2470 2471 m = NULL; 2472 prev = m; 2473 totlen = 0; 2474 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2475 LIST_FOREACH(sp, &sptree[dir], chain) { 2476 --cnt; 2477 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 2478 2479 if (!n) { 2480 *errorp = ENOBUFS; 2481 if (m) m_freem(m); 2482 return (NULL); 2483 } 2484 2485 totlen += n->m_pkthdr.len; 2486 if (!m) { 2487 m = n; 2488 } else { 2489 prev->m_nextpkt = n; 2490 } 2491 prev = n; 2492 } 2493 } 2494 2495 *lenp = totlen; 2496 *errorp = 0; 2497 return (m); 2498 } 2499 2500 /* 2501 * SADB_SPDDUMP processing 2502 * receive 2503 * <base> 2504 * from the user, and dump all SP leaves 2505 * and send, 2506 * <base> ..... 2507 * to the ikmpd. 2508 * 2509 * m will always be freed. 2510 */ 2511 static int 2512 key_spddump(struct socket *so, struct mbuf *m0, 2513 const struct sadb_msghdr *mhp) 2514 { 2515 struct mbuf *n; 2516 int error, len; 2517 int ok, s; 2518 pid_t pid; 2519 2520 /* sanity check */ 2521 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL) 2522 panic("key_spddump: NULL pointer is passed"); 2523 2524 2525 pid = mhp->msg->sadb_msg_pid; 2526 /* 2527 * If the requestor has insufficient socket-buffer space 2528 * for the entire chain, nobody gets any response to the DUMP. 2529 * XXX For now, only the requestor ever gets anything. 2530 * Moreover, if the requestor has any space at all, they receive 2531 * the entire chain, otherwise the request is refused with ENOBUFS. 2532 */ 2533 if (sbspace(&so->so_rcv) <= 0) { 2534 return key_senderror(so, m0, ENOBUFS); 2535 } 2536 2537 s = splsoftnet(); 2538 n = key_setspddump_chain(&error, &len, pid); 2539 splx(s); 2540 2541 if (n == NULL) { 2542 return key_senderror(so, m0, ENOENT); 2543 } 2544 { 2545 uint64_t *ps = PFKEY_STAT_GETREF(); 2546 ps[PFKEY_STAT_IN_TOTAL]++; 2547 ps[PFKEY_STAT_IN_BYTES] += len; 2548 PFKEY_STAT_PUTREF(); 2549 } 2550 2551 /* 2552 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 2553 * The requestor receives either the entire chain, or an 2554 * error message with ENOBUFS. 2555 */ 2556 2557 /* 2558 * sbappendchainwith record takes the chain of entries, one 2559 * packet-record per SPD entry, prepends the key_src sockaddr 2560 * to each packet-record, links the sockaddr mbufs into a new 2561 * list of records, then appends the entire resulting 2562 * list to the requesting socket. 2563 */ 2564 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, 2565 n, SB_PRIO_ONESHOT_OVERFLOW); 2566 2567 if (!ok) { 2568 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 2569 m_freem(n); 2570 return key_senderror(so, m0, ENOBUFS); 2571 } 2572 2573 m_freem(m0); 2574 return error; 2575 } 2576 2577 #ifdef IPSEC_NAT_T 2578 /* 2579 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23 2580 */ 2581 static int 2582 key_nat_map(struct socket *so, struct mbuf *m, 2583 const struct sadb_msghdr *mhp) 2584 { 2585 struct sadb_x_nat_t_type *type; 2586 struct sadb_x_nat_t_port *sport; 2587 struct sadb_x_nat_t_port *dport; 2588 struct sadb_address *iaddr, *raddr; 2589 struct sadb_x_nat_t_frag *frag; 2590 2591 /* sanity check */ 2592 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 2593 panic("key_nat_map: NULL pointer is passed."); 2594 2595 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 2596 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 2597 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) { 2598 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n")); 2599 return key_senderror(so, m, EINVAL); 2600 } 2601 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 2602 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 2603 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 2604 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n")); 2605 return key_senderror(so, m, EINVAL); 2606 } 2607 2608 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) && 2609 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) { 2610 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n")); 2611 return key_senderror(so, m, EINVAL); 2612 } 2613 2614 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) && 2615 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) { 2616 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n")); 2617 return key_senderror(so, m, EINVAL); 2618 } 2619 2620 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) && 2621 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) { 2622 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n")); 2623 return key_senderror(so, m, EINVAL); 2624 } 2625 2626 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 2627 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 2628 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 2629 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 2630 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 2631 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 2632 2633 printf("sadb_nat_map called\n"); 2634 2635 /* 2636 * XXX handle that, it should also contain a SA, or anything 2637 * that enable to update the SA information. 2638 */ 2639 2640 return 0; 2641 } 2642 #endif /* IPSEC_NAT_T */ 2643 2644 static struct mbuf * 2645 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid) 2646 { 2647 struct mbuf *result = NULL, *m; 2648 2649 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2650 if (!m) 2651 goto fail; 2652 result = m; 2653 2654 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2655 &sp->spidx.src.sa, sp->spidx.prefs, 2656 sp->spidx.ul_proto); 2657 if (!m) 2658 goto fail; 2659 m_cat(result, m); 2660 2661 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2662 &sp->spidx.dst.sa, sp->spidx.prefd, 2663 sp->spidx.ul_proto); 2664 if (!m) 2665 goto fail; 2666 m_cat(result, m); 2667 2668 m = key_sp2msg(sp); 2669 if (!m) 2670 goto fail; 2671 m_cat(result, m); 2672 2673 if ((result->m_flags & M_PKTHDR) == 0) 2674 goto fail; 2675 2676 if (result->m_len < sizeof(struct sadb_msg)) { 2677 result = m_pullup(result, sizeof(struct sadb_msg)); 2678 if (result == NULL) 2679 goto fail; 2680 } 2681 2682 result->m_pkthdr.len = 0; 2683 for (m = result; m; m = m->m_next) 2684 result->m_pkthdr.len += m->m_len; 2685 2686 mtod(result, struct sadb_msg *)->sadb_msg_len = 2687 PFKEY_UNIT64(result->m_pkthdr.len); 2688 2689 return result; 2690 2691 fail: 2692 m_freem(result); 2693 return NULL; 2694 } 2695 2696 /* 2697 * get PFKEY message length for security policy and request. 2698 */ 2699 static u_int 2700 key_getspreqmsglen(const struct secpolicy *sp) 2701 { 2702 u_int tlen; 2703 2704 tlen = sizeof(struct sadb_x_policy); 2705 2706 /* if is the policy for ipsec ? */ 2707 if (sp->policy != IPSEC_POLICY_IPSEC) 2708 return tlen; 2709 2710 /* get length of ipsec requests */ 2711 { 2712 const struct ipsecrequest *isr; 2713 int len; 2714 2715 for (isr = sp->req; isr != NULL; isr = isr->next) { 2716 len = sizeof(struct sadb_x_ipsecrequest) 2717 + isr->saidx.src.sa.sa_len 2718 + isr->saidx.dst.sa.sa_len; 2719 2720 tlen += PFKEY_ALIGN8(len); 2721 } 2722 } 2723 2724 return tlen; 2725 } 2726 2727 /* 2728 * SADB_SPDEXPIRE processing 2729 * send 2730 * <base, address(SD), lifetime(CH), policy> 2731 * to KMD by PF_KEY. 2732 * 2733 * OUT: 0 : succeed 2734 * others : error number 2735 */ 2736 static int 2737 key_spdexpire(struct secpolicy *sp) 2738 { 2739 int s; 2740 struct mbuf *result = NULL, *m; 2741 int len; 2742 int error = -1; 2743 struct sadb_lifetime *lt; 2744 2745 /* XXX: Why do we lock ? */ 2746 s = splsoftnet(); /*called from softclock()*/ 2747 2748 /* sanity check */ 2749 if (sp == NULL) 2750 panic("key_spdexpire: NULL pointer is passed"); 2751 2752 /* set msg header */ 2753 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2754 if (!m) { 2755 error = ENOBUFS; 2756 goto fail; 2757 } 2758 result = m; 2759 2760 /* create lifetime extension (current and hard) */ 2761 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2762 m = key_alloc_mbuf(len); 2763 if (!m || m->m_next) { /*XXX*/ 2764 if (m) 2765 m_freem(m); 2766 error = ENOBUFS; 2767 goto fail; 2768 } 2769 memset(mtod(m, void *), 0, len); 2770 lt = mtod(m, struct sadb_lifetime *); 2771 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2772 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2773 lt->sadb_lifetime_allocations = 0; 2774 lt->sadb_lifetime_bytes = 0; 2775 lt->sadb_lifetime_addtime = sp->created + time_second - time_uptime; 2776 lt->sadb_lifetime_usetime = sp->lastused + time_second - time_uptime; 2777 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 2778 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2779 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2780 lt->sadb_lifetime_allocations = 0; 2781 lt->sadb_lifetime_bytes = 0; 2782 lt->sadb_lifetime_addtime = sp->lifetime; 2783 lt->sadb_lifetime_usetime = sp->validtime; 2784 m_cat(result, m); 2785 2786 /* set sadb_address for source */ 2787 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2788 &sp->spidx.src.sa, 2789 sp->spidx.prefs, sp->spidx.ul_proto); 2790 if (!m) { 2791 error = ENOBUFS; 2792 goto fail; 2793 } 2794 m_cat(result, m); 2795 2796 /* set sadb_address for destination */ 2797 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2798 &sp->spidx.dst.sa, 2799 sp->spidx.prefd, sp->spidx.ul_proto); 2800 if (!m) { 2801 error = ENOBUFS; 2802 goto fail; 2803 } 2804 m_cat(result, m); 2805 2806 /* set secpolicy */ 2807 m = key_sp2msg(sp); 2808 if (!m) { 2809 error = ENOBUFS; 2810 goto fail; 2811 } 2812 m_cat(result, m); 2813 2814 if ((result->m_flags & M_PKTHDR) == 0) { 2815 error = EINVAL; 2816 goto fail; 2817 } 2818 2819 if (result->m_len < sizeof(struct sadb_msg)) { 2820 result = m_pullup(result, sizeof(struct sadb_msg)); 2821 if (result == NULL) { 2822 error = ENOBUFS; 2823 goto fail; 2824 } 2825 } 2826 2827 result->m_pkthdr.len = 0; 2828 for (m = result; m; m = m->m_next) 2829 result->m_pkthdr.len += m->m_len; 2830 2831 mtod(result, struct sadb_msg *)->sadb_msg_len = 2832 PFKEY_UNIT64(result->m_pkthdr.len); 2833 2834 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2835 2836 fail: 2837 if (result) 2838 m_freem(result); 2839 splx(s); 2840 return error; 2841 } 2842 2843 /* %%% SAD management */ 2844 /* 2845 * allocating a memory for new SA head, and copy from the values of mhp. 2846 * OUT: NULL : failure due to the lack of memory. 2847 * others : pointer to new SA head. 2848 */ 2849 static struct secashead * 2850 key_newsah(const struct secasindex *saidx) 2851 { 2852 struct secashead *newsah; 2853 2854 IPSEC_ASSERT(saidx != NULL, ("key_newsaidx: null saidx")); 2855 2856 newsah = (struct secashead *) 2857 malloc(sizeof(struct secashead), M_SECA, M_NOWAIT|M_ZERO); 2858 if (newsah != NULL) { 2859 int i; 2860 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2861 LIST_INIT(&newsah->savtree[i]); 2862 newsah->saidx = *saidx; 2863 2864 /* add to saidxtree */ 2865 newsah->state = SADB_SASTATE_MATURE; 2866 LIST_INSERT_HEAD(&sahtree, newsah, chain); 2867 } 2868 return(newsah); 2869 } 2870 2871 /* 2872 * delete SA index and all SA registerd. 2873 */ 2874 static void 2875 key_delsah(struct secashead *sah) 2876 { 2877 struct secasvar *sav, *nextsav; 2878 u_int stateidx, state; 2879 int s; 2880 int zombie = 0; 2881 2882 /* sanity check */ 2883 if (sah == NULL) 2884 panic("key_delsah: NULL pointer is passed"); 2885 2886 s = splsoftnet(); /*called from softclock()*/ 2887 2888 /* searching all SA registerd in the secindex. */ 2889 for (stateidx = 0; 2890 stateidx < _ARRAYLEN(saorder_state_any); 2891 stateidx++) { 2892 2893 state = saorder_state_any[stateidx]; 2894 for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]); 2895 sav != NULL; 2896 sav = nextsav) { 2897 2898 nextsav = LIST_NEXT(sav, chain); 2899 2900 if (sav->refcnt == 0) { 2901 /* sanity check */ 2902 KEY_CHKSASTATE(state, sav->state, "key_delsah"); 2903 KEY_FREESAV(&sav); 2904 } else { 2905 /* give up to delete this sa */ 2906 zombie++; 2907 } 2908 } 2909 } 2910 2911 /* don't delete sah only if there are savs. */ 2912 if (zombie) { 2913 splx(s); 2914 return; 2915 } 2916 2917 rtcache_free(&sah->sa_route); 2918 2919 /* remove from tree of SA index */ 2920 if (__LIST_CHAINED(sah)) 2921 LIST_REMOVE(sah, chain); 2922 2923 KFREE(sah); 2924 2925 splx(s); 2926 return; 2927 } 2928 2929 /* 2930 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2931 * and copy the values of mhp into new buffer. 2932 * When SAD message type is GETSPI: 2933 * to set sequence number from acq_seq++, 2934 * to set zero to SPI. 2935 * not to call key_setsava(). 2936 * OUT: NULL : fail 2937 * others : pointer to new secasvar. 2938 * 2939 * does not modify mbuf. does not free mbuf on error. 2940 */ 2941 static struct secasvar * 2942 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp, 2943 struct secashead *sah, int *errp, 2944 const char* where, int tag) 2945 { 2946 struct secasvar *newsav; 2947 const struct sadb_sa *xsa; 2948 2949 /* sanity check */ 2950 if (m == NULL || mhp == NULL || mhp->msg == NULL || sah == NULL) 2951 panic("key_newsa: NULL pointer is passed"); 2952 2953 KMALLOC(newsav, struct secasvar *, sizeof(struct secasvar)); 2954 if (newsav == NULL) { 2955 ipseclog((LOG_DEBUG, "key_newsa: No more memory.\n")); 2956 *errp = ENOBUFS; 2957 goto done; 2958 } 2959 memset(newsav, 0, sizeof(struct secasvar)); 2960 2961 switch (mhp->msg->sadb_msg_type) { 2962 case SADB_GETSPI: 2963 newsav->spi = 0; 2964 2965 #ifdef IPSEC_DOSEQCHECK 2966 /* sync sequence number */ 2967 if (mhp->msg->sadb_msg_seq == 0) 2968 newsav->seq = 2969 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 2970 else 2971 #endif 2972 newsav->seq = mhp->msg->sadb_msg_seq; 2973 break; 2974 2975 case SADB_ADD: 2976 /* sanity check */ 2977 if (mhp->ext[SADB_EXT_SA] == NULL) { 2978 KFREE(newsav), newsav = NULL; 2979 ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n")); 2980 *errp = EINVAL; 2981 goto done; 2982 } 2983 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2984 newsav->spi = xsa->sadb_sa_spi; 2985 newsav->seq = mhp->msg->sadb_msg_seq; 2986 break; 2987 default: 2988 KFREE(newsav), newsav = NULL; 2989 *errp = EINVAL; 2990 goto done; 2991 } 2992 2993 /* copy sav values */ 2994 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2995 *errp = key_setsaval(newsav, m, mhp); 2996 if (*errp) { 2997 KFREE(newsav), newsav = NULL; 2998 goto done; 2999 } 3000 } 3001 3002 /* reset created */ 3003 newsav->created = time_uptime; 3004 newsav->pid = mhp->msg->sadb_msg_pid; 3005 3006 /* add to satree */ 3007 newsav->sah = sah; 3008 newsav->refcnt = 1; 3009 newsav->state = SADB_SASTATE_LARVAL; 3010 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 3011 secasvar, chain); 3012 done: 3013 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 3014 printf("DP key_newsav from %s:%u return SP:%p\n", 3015 where, tag, newsav)); 3016 3017 return newsav; 3018 } 3019 3020 /* 3021 * free() SA variable entry. 3022 */ 3023 static void 3024 key_delsav(struct secasvar *sav) 3025 { 3026 IPSEC_ASSERT(sav != NULL, ("key_delsav: null sav")); 3027 IPSEC_ASSERT(sav->refcnt == 0, 3028 ("key_delsav: reference count %u > 0", sav->refcnt)); 3029 3030 /* remove from SA header */ 3031 if (__LIST_CHAINED(sav)) 3032 LIST_REMOVE(sav, chain); 3033 3034 /* 3035 * Cleanup xform state. Note that zeroize'ing causes the 3036 * keys to be cleared; otherwise we must do it ourself. 3037 */ 3038 if (sav->tdb_xform != NULL) { 3039 sav->tdb_xform->xf_zeroize(sav); 3040 sav->tdb_xform = NULL; 3041 } else { 3042 if (sav->key_auth != NULL) 3043 memset(_KEYBUF(sav->key_auth), 0, _KEYLEN(sav->key_auth)); 3044 if (sav->key_enc != NULL) 3045 memset(_KEYBUF(sav->key_enc), 0, _KEYLEN(sav->key_enc)); 3046 } 3047 if (sav->key_auth != NULL) { 3048 KFREE(sav->key_auth); 3049 sav->key_auth = NULL; 3050 } 3051 if (sav->key_enc != NULL) { 3052 KFREE(sav->key_enc); 3053 sav->key_enc = NULL; 3054 } 3055 if (sav->sched) { 3056 memset(sav->sched, 0, sav->schedlen); 3057 KFREE(sav->sched); 3058 sav->sched = NULL; 3059 } 3060 if (sav->replay != NULL) { 3061 KFREE(sav->replay); 3062 sav->replay = NULL; 3063 } 3064 if (sav->lft_c != NULL) { 3065 KFREE(sav->lft_c); 3066 sav->lft_c = NULL; 3067 } 3068 if (sav->lft_h != NULL) { 3069 KFREE(sav->lft_h); 3070 sav->lft_h = NULL; 3071 } 3072 if (sav->lft_s != NULL) { 3073 KFREE(sav->lft_s); 3074 sav->lft_s = NULL; 3075 } 3076 3077 KFREE(sav); 3078 3079 return; 3080 } 3081 3082 /* 3083 * search SAD. 3084 * OUT: 3085 * NULL : not found 3086 * others : found, pointer to a SA. 3087 */ 3088 static struct secashead * 3089 key_getsah(const struct secasindex *saidx) 3090 { 3091 struct secashead *sah; 3092 3093 LIST_FOREACH(sah, &sahtree, chain) { 3094 if (sah->state == SADB_SASTATE_DEAD) 3095 continue; 3096 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 3097 return sah; 3098 } 3099 3100 return NULL; 3101 } 3102 3103 /* 3104 * check not to be duplicated SPI. 3105 * NOTE: this function is too slow due to searching all SAD. 3106 * OUT: 3107 * NULL : not found 3108 * others : found, pointer to a SA. 3109 */ 3110 static struct secasvar * 3111 key_checkspidup(const struct secasindex *saidx, u_int32_t spi) 3112 { 3113 struct secashead *sah; 3114 struct secasvar *sav; 3115 3116 /* check address family */ 3117 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 3118 ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n")); 3119 return NULL; 3120 } 3121 3122 /* check all SAD */ 3123 LIST_FOREACH(sah, &sahtree, chain) { 3124 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 3125 continue; 3126 sav = key_getsavbyspi(sah, spi); 3127 if (sav != NULL) 3128 return sav; 3129 } 3130 3131 return NULL; 3132 } 3133 3134 /* 3135 * search SAD litmited alive SA, protocol, SPI. 3136 * OUT: 3137 * NULL : not found 3138 * others : found, pointer to a SA. 3139 */ 3140 static struct secasvar * 3141 key_getsavbyspi(struct secashead *sah, u_int32_t spi) 3142 { 3143 struct secasvar *sav; 3144 u_int stateidx, state; 3145 3146 /* search all status */ 3147 for (stateidx = 0; 3148 stateidx < _ARRAYLEN(saorder_state_alive); 3149 stateidx++) { 3150 3151 state = saorder_state_alive[stateidx]; 3152 LIST_FOREACH(sav, &sah->savtree[state], chain) { 3153 3154 /* sanity check */ 3155 if (sav->state != state) { 3156 ipseclog((LOG_DEBUG, "key_getsavbyspi: " 3157 "invalid sav->state (queue: %d SA: %d)\n", 3158 state, sav->state)); 3159 continue; 3160 } 3161 3162 if (sav->spi == spi) 3163 return sav; 3164 } 3165 } 3166 3167 return NULL; 3168 } 3169 3170 /* 3171 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3172 * You must update these if need. 3173 * OUT: 0: success. 3174 * !0: failure. 3175 * 3176 * does not modify mbuf. does not free mbuf on error. 3177 */ 3178 static int 3179 key_setsaval(struct secasvar *sav, struct mbuf *m, 3180 const struct sadb_msghdr *mhp) 3181 { 3182 int error = 0; 3183 3184 /* sanity check */ 3185 if (m == NULL || mhp == NULL || mhp->msg == NULL) 3186 panic("key_setsaval: NULL pointer is passed"); 3187 3188 /* initialization */ 3189 sav->replay = NULL; 3190 sav->key_auth = NULL; 3191 sav->key_enc = NULL; 3192 sav->sched = NULL; 3193 sav->schedlen = 0; 3194 sav->lft_c = NULL; 3195 sav->lft_h = NULL; 3196 sav->lft_s = NULL; 3197 sav->tdb_xform = NULL; /* transform */ 3198 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3199 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3200 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3201 #ifdef IPSEC_NAT_T 3202 sav->natt_type = 0; 3203 sav->esp_frag = 0; 3204 #endif 3205 3206 /* SA */ 3207 if (mhp->ext[SADB_EXT_SA] != NULL) { 3208 const struct sadb_sa *sa0; 3209 3210 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3211 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3212 error = EINVAL; 3213 goto fail; 3214 } 3215 3216 sav->alg_auth = sa0->sadb_sa_auth; 3217 sav->alg_enc = sa0->sadb_sa_encrypt; 3218 sav->flags = sa0->sadb_sa_flags; 3219 3220 /* replay window */ 3221 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3222 sav->replay = (struct secreplay *) 3223 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_SECA, M_NOWAIT|M_ZERO); 3224 if (sav->replay == NULL) { 3225 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); 3226 error = ENOBUFS; 3227 goto fail; 3228 } 3229 if (sa0->sadb_sa_replay != 0) 3230 sav->replay->bitmap = (char*)(sav->replay+1); 3231 sav->replay->wsize = sa0->sadb_sa_replay; 3232 } 3233 } 3234 3235 /* Authentication keys */ 3236 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3237 const struct sadb_key *key0; 3238 int len; 3239 3240 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3241 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3242 3243 error = 0; 3244 if (len < sizeof(*key0)) { 3245 error = EINVAL; 3246 goto fail; 3247 } 3248 switch (mhp->msg->sadb_msg_satype) { 3249 case SADB_SATYPE_AH: 3250 case SADB_SATYPE_ESP: 3251 case SADB_X_SATYPE_TCPSIGNATURE: 3252 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3253 sav->alg_auth != SADB_X_AALG_NULL) 3254 error = EINVAL; 3255 break; 3256 case SADB_X_SATYPE_IPCOMP: 3257 default: 3258 error = EINVAL; 3259 break; 3260 } 3261 if (error) { 3262 ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n")); 3263 goto fail; 3264 } 3265 3266 sav->key_auth = (struct sadb_key *)key_newbuf(key0, len); 3267 if (sav->key_auth == NULL) { 3268 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); 3269 error = ENOBUFS; 3270 goto fail; 3271 } 3272 } 3273 3274 /* Encryption key */ 3275 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3276 const struct sadb_key *key0; 3277 int len; 3278 3279 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3280 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3281 3282 error = 0; 3283 if (len < sizeof(*key0)) { 3284 error = EINVAL; 3285 goto fail; 3286 } 3287 switch (mhp->msg->sadb_msg_satype) { 3288 case SADB_SATYPE_ESP: 3289 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3290 sav->alg_enc != SADB_EALG_NULL) { 3291 error = EINVAL; 3292 break; 3293 } 3294 sav->key_enc = (struct sadb_key *)key_newbuf(key0, len); 3295 if (sav->key_enc == NULL) { 3296 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); 3297 error = ENOBUFS; 3298 goto fail; 3299 } 3300 break; 3301 case SADB_X_SATYPE_IPCOMP: 3302 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3303 error = EINVAL; 3304 sav->key_enc = NULL; /*just in case*/ 3305 break; 3306 case SADB_SATYPE_AH: 3307 case SADB_X_SATYPE_TCPSIGNATURE: 3308 default: 3309 error = EINVAL; 3310 break; 3311 } 3312 if (error) { 3313 ipseclog((LOG_DEBUG, "key_setsatval: invalid key_enc value.\n")); 3314 goto fail; 3315 } 3316 } 3317 3318 /* set iv */ 3319 sav->ivlen = 0; 3320 3321 switch (mhp->msg->sadb_msg_satype) { 3322 case SADB_SATYPE_AH: 3323 error = xform_init(sav, XF_AH); 3324 break; 3325 case SADB_SATYPE_ESP: 3326 error = xform_init(sav, XF_ESP); 3327 break; 3328 case SADB_X_SATYPE_IPCOMP: 3329 error = xform_init(sav, XF_IPCOMP); 3330 break; 3331 case SADB_X_SATYPE_TCPSIGNATURE: 3332 error = xform_init(sav, XF_TCPSIGNATURE); 3333 break; 3334 } 3335 if (error) { 3336 ipseclog((LOG_DEBUG, 3337 "key_setsaval: unable to initialize SA type %u.\n", 3338 mhp->msg->sadb_msg_satype)); 3339 goto fail; 3340 } 3341 3342 /* reset created */ 3343 sav->created = time_uptime; 3344 3345 /* make lifetime for CURRENT */ 3346 KMALLOC(sav->lft_c, struct sadb_lifetime *, 3347 sizeof(struct sadb_lifetime)); 3348 if (sav->lft_c == NULL) { 3349 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); 3350 error = ENOBUFS; 3351 goto fail; 3352 } 3353 3354 sav->lft_c->sadb_lifetime_len = 3355 PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3356 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3357 sav->lft_c->sadb_lifetime_allocations = 0; 3358 sav->lft_c->sadb_lifetime_bytes = 0; 3359 sav->lft_c->sadb_lifetime_addtime = time_uptime; 3360 sav->lft_c->sadb_lifetime_usetime = 0; 3361 3362 /* lifetimes for HARD and SOFT */ 3363 { 3364 const struct sadb_lifetime *lft0; 3365 3366 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3367 if (lft0 != NULL) { 3368 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3369 error = EINVAL; 3370 goto fail; 3371 } 3372 sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0, 3373 sizeof(*lft0)); 3374 if (sav->lft_h == NULL) { 3375 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); 3376 error = ENOBUFS; 3377 goto fail; 3378 } 3379 /* to be initialize ? */ 3380 } 3381 3382 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3383 if (lft0 != NULL) { 3384 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3385 error = EINVAL; 3386 goto fail; 3387 } 3388 sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0, 3389 sizeof(*lft0)); 3390 if (sav->lft_s == NULL) { 3391 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); 3392 error = ENOBUFS; 3393 goto fail; 3394 } 3395 /* to be initialize ? */ 3396 } 3397 } 3398 3399 return 0; 3400 3401 fail: 3402 /* initialization */ 3403 if (sav->replay != NULL) { 3404 KFREE(sav->replay); 3405 sav->replay = NULL; 3406 } 3407 if (sav->key_auth != NULL) { 3408 KFREE(sav->key_auth); 3409 sav->key_auth = NULL; 3410 } 3411 if (sav->key_enc != NULL) { 3412 KFREE(sav->key_enc); 3413 sav->key_enc = NULL; 3414 } 3415 if (sav->sched) { 3416 KFREE(sav->sched); 3417 sav->sched = NULL; 3418 } 3419 if (sav->lft_c != NULL) { 3420 KFREE(sav->lft_c); 3421 sav->lft_c = NULL; 3422 } 3423 if (sav->lft_h != NULL) { 3424 KFREE(sav->lft_h); 3425 sav->lft_h = NULL; 3426 } 3427 if (sav->lft_s != NULL) { 3428 KFREE(sav->lft_s); 3429 sav->lft_s = NULL; 3430 } 3431 3432 return error; 3433 } 3434 3435 /* 3436 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3437 * OUT: 0: valid 3438 * other: errno 3439 */ 3440 static int 3441 key_mature(struct secasvar *sav) 3442 { 3443 int error; 3444 3445 /* check SPI value */ 3446 switch (sav->sah->saidx.proto) { 3447 case IPPROTO_ESP: 3448 case IPPROTO_AH: 3449 if (ntohl(sav->spi) <= 255) { 3450 ipseclog((LOG_DEBUG, 3451 "key_mature: illegal range of SPI %u.\n", 3452 (u_int32_t)ntohl(sav->spi))); 3453 return EINVAL; 3454 } 3455 break; 3456 } 3457 3458 /* check satype */ 3459 switch (sav->sah->saidx.proto) { 3460 case IPPROTO_ESP: 3461 /* check flags */ 3462 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3463 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3464 ipseclog((LOG_DEBUG, "key_mature: " 3465 "invalid flag (derived) given to old-esp.\n")); 3466 return EINVAL; 3467 } 3468 error = xform_init(sav, XF_ESP); 3469 break; 3470 case IPPROTO_AH: 3471 /* check flags */ 3472 if (sav->flags & SADB_X_EXT_DERIV) { 3473 ipseclog((LOG_DEBUG, "key_mature: " 3474 "invalid flag (derived) given to AH SA.\n")); 3475 return EINVAL; 3476 } 3477 if (sav->alg_enc != SADB_EALG_NONE) { 3478 ipseclog((LOG_DEBUG, "key_mature: " 3479 "protocol and algorithm mismated.\n")); 3480 return(EINVAL); 3481 } 3482 error = xform_init(sav, XF_AH); 3483 break; 3484 case IPPROTO_IPCOMP: 3485 if (sav->alg_auth != SADB_AALG_NONE) { 3486 ipseclog((LOG_DEBUG, "key_mature: " 3487 "protocol and algorithm mismated.\n")); 3488 return(EINVAL); 3489 } 3490 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3491 && ntohl(sav->spi) >= 0x10000) { 3492 ipseclog((LOG_DEBUG, "key_mature: invalid cpi for IPComp.\n")); 3493 return(EINVAL); 3494 } 3495 error = xform_init(sav, XF_IPCOMP); 3496 break; 3497 case IPPROTO_TCP: 3498 if (sav->alg_enc != SADB_EALG_NONE) { 3499 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3500 "mismated.\n", __func__)); 3501 return(EINVAL); 3502 } 3503 error = xform_init(sav, XF_TCPSIGNATURE); 3504 break; 3505 default: 3506 ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n")); 3507 error = EPROTONOSUPPORT; 3508 break; 3509 } 3510 if (error == 0) 3511 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3512 return (error); 3513 } 3514 3515 /* 3516 * subroutine for SADB_GET and SADB_DUMP. 3517 */ 3518 static struct mbuf * 3519 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3520 u_int32_t seq, u_int32_t pid) 3521 { 3522 struct mbuf *result = NULL, *tres = NULL, *m; 3523 int l = 0; 3524 int i; 3525 void *p; 3526 struct sadb_lifetime lt; 3527 int dumporder[] = { 3528 SADB_EXT_SA, SADB_X_EXT_SA2, 3529 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3530 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3531 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3532 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3533 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3534 #ifdef IPSEC_NAT_T 3535 SADB_X_EXT_NAT_T_TYPE, 3536 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3537 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3538 SADB_X_EXT_NAT_T_FRAG, 3539 #endif 3540 3541 }; 3542 3543 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3544 if (m == NULL) 3545 goto fail; 3546 result = m; 3547 3548 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3549 m = NULL; 3550 p = NULL; 3551 switch (dumporder[i]) { 3552 case SADB_EXT_SA: 3553 m = key_setsadbsa(sav); 3554 break; 3555 3556 case SADB_X_EXT_SA2: 3557 m = key_setsadbxsa2(sav->sah->saidx.mode, 3558 sav->replay ? sav->replay->count : 0, 3559 sav->sah->saidx.reqid); 3560 break; 3561 3562 case SADB_EXT_ADDRESS_SRC: 3563 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3564 &sav->sah->saidx.src.sa, 3565 FULLMASK, IPSEC_ULPROTO_ANY); 3566 break; 3567 3568 case SADB_EXT_ADDRESS_DST: 3569 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3570 &sav->sah->saidx.dst.sa, 3571 FULLMASK, IPSEC_ULPROTO_ANY); 3572 break; 3573 3574 case SADB_EXT_KEY_AUTH: 3575 if (!sav->key_auth) 3576 continue; 3577 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len); 3578 p = sav->key_auth; 3579 break; 3580 3581 case SADB_EXT_KEY_ENCRYPT: 3582 if (!sav->key_enc) 3583 continue; 3584 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len); 3585 p = sav->key_enc; 3586 break; 3587 3588 case SADB_EXT_LIFETIME_CURRENT: 3589 if (!sav->lft_c) 3590 continue; 3591 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len); 3592 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime)); 3593 lt.sadb_lifetime_addtime += time_second - time_uptime; 3594 lt.sadb_lifetime_usetime += time_second - time_uptime; 3595 p = < 3596 break; 3597 3598 case SADB_EXT_LIFETIME_HARD: 3599 if (!sav->lft_h) 3600 continue; 3601 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len); 3602 p = sav->lft_h; 3603 break; 3604 3605 case SADB_EXT_LIFETIME_SOFT: 3606 if (!sav->lft_s) 3607 continue; 3608 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len); 3609 p = sav->lft_s; 3610 break; 3611 3612 #ifdef IPSEC_NAT_T 3613 case SADB_X_EXT_NAT_T_TYPE: 3614 m = key_setsadbxtype(sav->natt_type); 3615 break; 3616 3617 case SADB_X_EXT_NAT_T_DPORT: 3618 if (sav->natt_type == 0) 3619 continue; 3620 m = key_setsadbxport( 3621 key_portfromsaddr(&sav->sah->saidx.dst), 3622 SADB_X_EXT_NAT_T_DPORT); 3623 break; 3624 3625 case SADB_X_EXT_NAT_T_SPORT: 3626 if (sav->natt_type == 0) 3627 continue; 3628 m = key_setsadbxport( 3629 key_portfromsaddr(&sav->sah->saidx.src), 3630 SADB_X_EXT_NAT_T_SPORT); 3631 break; 3632 3633 case SADB_X_EXT_NAT_T_FRAG: 3634 /* don't send frag info if not set */ 3635 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET) 3636 continue; 3637 m = key_setsadbxfrag(sav->esp_frag); 3638 break; 3639 3640 case SADB_X_EXT_NAT_T_OAI: 3641 case SADB_X_EXT_NAT_T_OAR: 3642 continue; 3643 #endif 3644 3645 case SADB_EXT_ADDRESS_PROXY: 3646 case SADB_EXT_IDENTITY_SRC: 3647 case SADB_EXT_IDENTITY_DST: 3648 /* XXX: should we brought from SPD ? */ 3649 case SADB_EXT_SENSITIVITY: 3650 default: 3651 continue; 3652 } 3653 3654 KASSERT(!(m && p)); 3655 if (!m && !p) 3656 goto fail; 3657 if (p && tres) { 3658 M_PREPEND(tres, l, M_DONTWAIT); 3659 if (!tres) 3660 goto fail; 3661 memcpy(mtod(tres, void *), p, l); 3662 continue; 3663 } 3664 if (p) { 3665 m = key_alloc_mbuf(l); 3666 if (!m) 3667 goto fail; 3668 m_copyback(m, 0, l, p); 3669 } 3670 3671 if (tres) 3672 m_cat(m, tres); 3673 tres = m; 3674 } 3675 3676 m_cat(result, tres); 3677 tres = NULL; /* avoid free on error below */ 3678 3679 if (result->m_len < sizeof(struct sadb_msg)) { 3680 result = m_pullup(result, sizeof(struct sadb_msg)); 3681 if (result == NULL) 3682 goto fail; 3683 } 3684 3685 result->m_pkthdr.len = 0; 3686 for (m = result; m; m = m->m_next) 3687 result->m_pkthdr.len += m->m_len; 3688 3689 mtod(result, struct sadb_msg *)->sadb_msg_len = 3690 PFKEY_UNIT64(result->m_pkthdr.len); 3691 3692 return result; 3693 3694 fail: 3695 m_freem(result); 3696 m_freem(tres); 3697 return NULL; 3698 } 3699 3700 3701 #ifdef IPSEC_NAT_T 3702 /* 3703 * set a type in sadb_x_nat_t_type 3704 */ 3705 static struct mbuf * 3706 key_setsadbxtype(u_int16_t type) 3707 { 3708 struct mbuf *m; 3709 size_t len; 3710 struct sadb_x_nat_t_type *p; 3711 3712 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3713 3714 m = key_alloc_mbuf(len); 3715 if (!m || m->m_next) { /*XXX*/ 3716 if (m) 3717 m_freem(m); 3718 return NULL; 3719 } 3720 3721 p = mtod(m, struct sadb_x_nat_t_type *); 3722 3723 memset(p, 0, len); 3724 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3725 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3726 p->sadb_x_nat_t_type_type = type; 3727 3728 return m; 3729 } 3730 /* 3731 * set a port in sadb_x_nat_t_port. port is in network order 3732 */ 3733 static struct mbuf * 3734 key_setsadbxport(u_int16_t port, u_int16_t type) 3735 { 3736 struct mbuf *m; 3737 size_t len; 3738 struct sadb_x_nat_t_port *p; 3739 3740 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3741 3742 m = key_alloc_mbuf(len); 3743 if (!m || m->m_next) { /*XXX*/ 3744 if (m) 3745 m_freem(m); 3746 return NULL; 3747 } 3748 3749 p = mtod(m, struct sadb_x_nat_t_port *); 3750 3751 memset(p, 0, len); 3752 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3753 p->sadb_x_nat_t_port_exttype = type; 3754 p->sadb_x_nat_t_port_port = port; 3755 3756 return m; 3757 } 3758 3759 /* 3760 * set fragmentation info in sadb_x_nat_t_frag 3761 */ 3762 static struct mbuf * 3763 key_setsadbxfrag(u_int16_t flen) 3764 { 3765 struct mbuf *m; 3766 size_t len; 3767 struct sadb_x_nat_t_frag *p; 3768 3769 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag)); 3770 3771 m = key_alloc_mbuf(len); 3772 if (!m || m->m_next) { /*XXX*/ 3773 if (m) 3774 m_freem(m); 3775 return NULL; 3776 } 3777 3778 p = mtod(m, struct sadb_x_nat_t_frag *); 3779 3780 memset(p, 0, len); 3781 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len); 3782 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG; 3783 p->sadb_x_nat_t_frag_fraglen = flen; 3784 3785 return m; 3786 } 3787 3788 /* 3789 * Get port from sockaddr, port is in network order 3790 */ 3791 u_int16_t 3792 key_portfromsaddr(const union sockaddr_union *saddr) 3793 { 3794 u_int16_t port; 3795 3796 switch (saddr->sa.sa_family) { 3797 case AF_INET: { 3798 port = saddr->sin.sin_port; 3799 break; 3800 } 3801 #ifdef INET6 3802 case AF_INET6: { 3803 port = saddr->sin6.sin6_port; 3804 break; 3805 } 3806 #endif 3807 default: 3808 printf("key_portfromsaddr: unexpected address family\n"); 3809 port = 0; 3810 break; 3811 } 3812 3813 return port; 3814 } 3815 3816 #endif /* IPSEC_NAT_T */ 3817 3818 /* 3819 * Set port is struct sockaddr. port is in network order 3820 */ 3821 static void 3822 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port) 3823 { 3824 switch (saddr->sa.sa_family) { 3825 case AF_INET: { 3826 saddr->sin.sin_port = port; 3827 break; 3828 } 3829 #ifdef INET6 3830 case AF_INET6: { 3831 saddr->sin6.sin6_port = port; 3832 break; 3833 } 3834 #endif 3835 default: 3836 printf("key_porttosaddr: unexpected address family %d\n", 3837 saddr->sa.sa_family); 3838 break; 3839 } 3840 3841 return; 3842 } 3843 3844 /* 3845 * Safety check sa_len 3846 */ 3847 static int 3848 key_checksalen(const union sockaddr_union *saddr) 3849 { 3850 switch (saddr->sa.sa_family) { 3851 case AF_INET: 3852 if (saddr->sa.sa_len != sizeof(struct sockaddr_in)) 3853 return -1; 3854 break; 3855 #ifdef INET6 3856 case AF_INET6: 3857 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6)) 3858 return -1; 3859 break; 3860 #endif 3861 default: 3862 printf("key_checksalen: unexpected sa_family %d\n", 3863 saddr->sa.sa_family); 3864 return -1; 3865 break; 3866 } 3867 return 0; 3868 } 3869 3870 3871 /* 3872 * set data into sadb_msg. 3873 */ 3874 static struct mbuf * 3875 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, 3876 u_int32_t seq, pid_t pid, u_int16_t reserved) 3877 { 3878 struct mbuf *m; 3879 struct sadb_msg *p; 3880 int len; 3881 3882 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3883 if (len > MCLBYTES) 3884 return NULL; 3885 MGETHDR(m, M_DONTWAIT, MT_DATA); 3886 if (m && len > MHLEN) { 3887 MCLGET(m, M_DONTWAIT); 3888 if ((m->m_flags & M_EXT) == 0) { 3889 m_freem(m); 3890 m = NULL; 3891 } 3892 } 3893 if (!m) 3894 return NULL; 3895 m->m_pkthdr.len = m->m_len = len; 3896 m->m_next = NULL; 3897 3898 p = mtod(m, struct sadb_msg *); 3899 3900 memset(p, 0, len); 3901 p->sadb_msg_version = PF_KEY_V2; 3902 p->sadb_msg_type = type; 3903 p->sadb_msg_errno = 0; 3904 p->sadb_msg_satype = satype; 3905 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3906 p->sadb_msg_reserved = reserved; 3907 p->sadb_msg_seq = seq; 3908 p->sadb_msg_pid = (u_int32_t)pid; 3909 3910 return m; 3911 } 3912 3913 /* 3914 * copy secasvar data into sadb_address. 3915 */ 3916 static struct mbuf * 3917 key_setsadbsa(struct secasvar *sav) 3918 { 3919 struct mbuf *m; 3920 struct sadb_sa *p; 3921 int len; 3922 3923 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3924 m = key_alloc_mbuf(len); 3925 if (!m || m->m_next) { /*XXX*/ 3926 if (m) 3927 m_freem(m); 3928 return NULL; 3929 } 3930 3931 p = mtod(m, struct sadb_sa *); 3932 3933 memset(p, 0, len); 3934 p->sadb_sa_len = PFKEY_UNIT64(len); 3935 p->sadb_sa_exttype = SADB_EXT_SA; 3936 p->sadb_sa_spi = sav->spi; 3937 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3938 p->sadb_sa_state = sav->state; 3939 p->sadb_sa_auth = sav->alg_auth; 3940 p->sadb_sa_encrypt = sav->alg_enc; 3941 p->sadb_sa_flags = sav->flags; 3942 3943 return m; 3944 } 3945 3946 /* 3947 * set data into sadb_address. 3948 */ 3949 static struct mbuf * 3950 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 3951 u_int8_t prefixlen, u_int16_t ul_proto) 3952 { 3953 struct mbuf *m; 3954 struct sadb_address *p; 3955 size_t len; 3956 3957 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3958 PFKEY_ALIGN8(saddr->sa_len); 3959 m = key_alloc_mbuf(len); 3960 if (!m || m->m_next) { /*XXX*/ 3961 if (m) 3962 m_freem(m); 3963 return NULL; 3964 } 3965 3966 p = mtod(m, struct sadb_address *); 3967 3968 memset(p, 0, len); 3969 p->sadb_address_len = PFKEY_UNIT64(len); 3970 p->sadb_address_exttype = exttype; 3971 p->sadb_address_proto = ul_proto; 3972 if (prefixlen == FULLMASK) { 3973 switch (saddr->sa_family) { 3974 case AF_INET: 3975 prefixlen = sizeof(struct in_addr) << 3; 3976 break; 3977 case AF_INET6: 3978 prefixlen = sizeof(struct in6_addr) << 3; 3979 break; 3980 default: 3981 ; /*XXX*/ 3982 } 3983 } 3984 p->sadb_address_prefixlen = prefixlen; 3985 p->sadb_address_reserved = 0; 3986 3987 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3988 saddr, saddr->sa_len); 3989 3990 return m; 3991 } 3992 3993 #if 0 3994 /* 3995 * set data into sadb_ident. 3996 */ 3997 static struct mbuf * 3998 key_setsadbident(u_int16_t exttype, u_int16_t idtype, 3999 void *string, int stringlen, u_int64_t id) 4000 { 4001 struct mbuf *m; 4002 struct sadb_ident *p; 4003 size_t len; 4004 4005 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen); 4006 m = key_alloc_mbuf(len); 4007 if (!m || m->m_next) { /*XXX*/ 4008 if (m) 4009 m_freem(m); 4010 return NULL; 4011 } 4012 4013 p = mtod(m, struct sadb_ident *); 4014 4015 memset(p, 0, len); 4016 p->sadb_ident_len = PFKEY_UNIT64(len); 4017 p->sadb_ident_exttype = exttype; 4018 p->sadb_ident_type = idtype; 4019 p->sadb_ident_reserved = 0; 4020 p->sadb_ident_id = id; 4021 4022 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)), 4023 string, stringlen); 4024 4025 return m; 4026 } 4027 #endif 4028 4029 /* 4030 * set data into sadb_x_sa2. 4031 */ 4032 static struct mbuf * 4033 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid) 4034 { 4035 struct mbuf *m; 4036 struct sadb_x_sa2 *p; 4037 size_t len; 4038 4039 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 4040 m = key_alloc_mbuf(len); 4041 if (!m || m->m_next) { /*XXX*/ 4042 if (m) 4043 m_freem(m); 4044 return NULL; 4045 } 4046 4047 p = mtod(m, struct sadb_x_sa2 *); 4048 4049 memset(p, 0, len); 4050 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 4051 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 4052 p->sadb_x_sa2_mode = mode; 4053 p->sadb_x_sa2_reserved1 = 0; 4054 p->sadb_x_sa2_reserved2 = 0; 4055 p->sadb_x_sa2_sequence = seq; 4056 p->sadb_x_sa2_reqid = reqid; 4057 4058 return m; 4059 } 4060 4061 /* 4062 * set data into sadb_x_policy 4063 */ 4064 static struct mbuf * 4065 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id) 4066 { 4067 struct mbuf *m; 4068 struct sadb_x_policy *p; 4069 size_t len; 4070 4071 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 4072 m = key_alloc_mbuf(len); 4073 if (!m || m->m_next) { /*XXX*/ 4074 if (m) 4075 m_freem(m); 4076 return NULL; 4077 } 4078 4079 p = mtod(m, struct sadb_x_policy *); 4080 4081 memset(p, 0, len); 4082 p->sadb_x_policy_len = PFKEY_UNIT64(len); 4083 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 4084 p->sadb_x_policy_type = type; 4085 p->sadb_x_policy_dir = dir; 4086 p->sadb_x_policy_id = id; 4087 4088 return m; 4089 } 4090 4091 /* %%% utilities */ 4092 /* 4093 * copy a buffer into the new buffer allocated. 4094 */ 4095 static void * 4096 key_newbuf(const void *src, u_int len) 4097 { 4098 void *new; 4099 4100 KMALLOC(new, void *, len); 4101 if (new == NULL) { 4102 ipseclog((LOG_DEBUG, "key_newbuf: No more memory.\n")); 4103 return NULL; 4104 } 4105 memcpy(new, src, len); 4106 4107 return new; 4108 } 4109 4110 /* compare my own address 4111 * OUT: 1: true, i.e. my address. 4112 * 0: false 4113 */ 4114 int 4115 key_ismyaddr(const struct sockaddr *sa) 4116 { 4117 #ifdef INET 4118 const struct sockaddr_in *sin; 4119 const struct in_ifaddr *ia; 4120 #endif 4121 4122 /* sanity check */ 4123 if (sa == NULL) 4124 panic("key_ismyaddr: NULL pointer is passed"); 4125 4126 switch (sa->sa_family) { 4127 #ifdef INET 4128 case AF_INET: 4129 sin = (const struct sockaddr_in *)sa; 4130 for (ia = in_ifaddrhead.tqh_first; ia; 4131 ia = ia->ia_link.tqe_next) 4132 { 4133 if (sin->sin_family == ia->ia_addr.sin_family && 4134 sin->sin_len == ia->ia_addr.sin_len && 4135 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 4136 { 4137 return 1; 4138 } 4139 } 4140 break; 4141 #endif 4142 #ifdef INET6 4143 case AF_INET6: 4144 return key_ismyaddr6((const struct sockaddr_in6 *)sa); 4145 #endif 4146 } 4147 4148 return 0; 4149 } 4150 4151 #ifdef INET6 4152 /* 4153 * compare my own address for IPv6. 4154 * 1: ours 4155 * 0: other 4156 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 4157 */ 4158 #include <netinet6/in6_var.h> 4159 4160 static int 4161 key_ismyaddr6(const struct sockaddr_in6 *sin6) 4162 { 4163 const struct in6_ifaddr *ia; 4164 const struct in6_multi *in6m; 4165 4166 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 4167 if (key_sockaddrcmp((const struct sockaddr *)&sin6, 4168 (const struct sockaddr *)&ia->ia_addr, 0) == 0) 4169 return 1; 4170 4171 /* 4172 * XXX Multicast 4173 * XXX why do we care about multlicast here while we don't care 4174 * about IPv4 multicast?? 4175 * XXX scope 4176 */ 4177 in6m = NULL; 4178 #ifdef __FreeBSD__ 4179 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 4180 #else 4181 for ((in6m) = ia->ia6_multiaddrs.lh_first; 4182 (in6m) != NULL && 4183 !IN6_ARE_ADDR_EQUAL(&(in6m)->in6m_addr, &sin6->sin6_addr); 4184 (in6m) = in6m->in6m_entry.le_next) 4185 continue; 4186 #endif 4187 if (in6m) 4188 return 1; 4189 } 4190 4191 /* loopback, just for safety */ 4192 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 4193 return 1; 4194 4195 return 0; 4196 } 4197 #endif /*INET6*/ 4198 4199 /* 4200 * compare two secasindex structure. 4201 * flag can specify to compare 2 saidxes. 4202 * compare two secasindex structure without both mode and reqid. 4203 * don't compare port. 4204 * IN: 4205 * saidx0: source, it can be in SAD. 4206 * saidx1: object. 4207 * OUT: 4208 * 1 : equal 4209 * 0 : not equal 4210 */ 4211 static int 4212 key_cmpsaidx( 4213 const struct secasindex *saidx0, 4214 const struct secasindex *saidx1, 4215 int flag) 4216 { 4217 int chkport = 0; 4218 4219 /* sanity */ 4220 if (saidx0 == NULL && saidx1 == NULL) 4221 return 1; 4222 4223 if (saidx0 == NULL || saidx1 == NULL) 4224 return 0; 4225 4226 if (saidx0->proto != saidx1->proto) 4227 return 0; 4228 4229 if (flag == CMP_EXACTLY) { 4230 if (saidx0->mode != saidx1->mode) 4231 return 0; 4232 if (saidx0->reqid != saidx1->reqid) 4233 return 0; 4234 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4235 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4236 return 0; 4237 } else { 4238 4239 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4240 if (flag == CMP_MODE_REQID 4241 ||flag == CMP_REQID) { 4242 /* 4243 * If reqid of SPD is non-zero, unique SA is required. 4244 * The result must be of same reqid in this case. 4245 */ 4246 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4247 return 0; 4248 } 4249 4250 if (flag == CMP_MODE_REQID) { 4251 if (saidx0->mode != IPSEC_MODE_ANY 4252 && saidx0->mode != saidx1->mode) 4253 return 0; 4254 } 4255 4256 /* 4257 * If NAT-T is enabled, check ports for tunnel mode. 4258 * Don't do it for transport mode, as there is no 4259 * port information available in the SP. 4260 * Also don't check ports if they are set to zero 4261 * in the SPD: This means we have a non-generated 4262 * SPD which can't know UDP ports. 4263 */ 4264 #ifdef IPSEC_NAT_T 4265 if (saidx1->mode == IPSEC_MODE_TUNNEL && 4266 ((((const struct sockaddr *)(&saidx1->src))->sa_family == AF_INET && 4267 ((const struct sockaddr *)(&saidx1->dst))->sa_family == AF_INET && 4268 ((const struct sockaddr_in *)(&saidx1->src))->sin_port && 4269 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) || 4270 (((const struct sockaddr *)(&saidx1->src))->sa_family == AF_INET6 && 4271 ((const struct sockaddr *)(&saidx1->dst))->sa_family == AF_INET6 && 4272 ((const struct sockaddr_in6 *)(&saidx1->src))->sin6_port && 4273 ((const struct sockaddr_in6 *)(&saidx1->dst))->sin6_port))) 4274 chkport = 1; 4275 #endif 4276 4277 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) { 4278 return 0; 4279 } 4280 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) { 4281 return 0; 4282 } 4283 } 4284 4285 return 1; 4286 } 4287 4288 /* 4289 * compare two secindex structure exactly. 4290 * IN: 4291 * spidx0: source, it is often in SPD. 4292 * spidx1: object, it is often from PFKEY message. 4293 * OUT: 4294 * 1 : equal 4295 * 0 : not equal 4296 */ 4297 int 4298 key_cmpspidx_exactly( 4299 const struct secpolicyindex *spidx0, 4300 const struct secpolicyindex *spidx1) 4301 { 4302 /* sanity */ 4303 if (spidx0 == NULL && spidx1 == NULL) 4304 return 1; 4305 4306 if (spidx0 == NULL || spidx1 == NULL) 4307 return 0; 4308 4309 if (spidx0->prefs != spidx1->prefs 4310 || spidx0->prefd != spidx1->prefd 4311 || spidx0->ul_proto != spidx1->ul_proto) 4312 return 0; 4313 4314 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4315 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4316 } 4317 4318 /* 4319 * compare two secindex structure with mask. 4320 * IN: 4321 * spidx0: source, it is often in SPD. 4322 * spidx1: object, it is often from IP header. 4323 * OUT: 4324 * 1 : equal 4325 * 0 : not equal 4326 */ 4327 int 4328 key_cmpspidx_withmask( 4329 const struct secpolicyindex *spidx0, 4330 const struct secpolicyindex *spidx1) 4331 { 4332 /* sanity */ 4333 if (spidx0 == NULL && spidx1 == NULL) 4334 return 1; 4335 4336 if (spidx0 == NULL || spidx1 == NULL) 4337 return 0; 4338 4339 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4340 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4341 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4342 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4343 return 0; 4344 4345 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4346 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4347 && spidx0->ul_proto != spidx1->ul_proto) 4348 return 0; 4349 4350 switch (spidx0->src.sa.sa_family) { 4351 case AF_INET: 4352 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4353 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4354 return 0; 4355 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4356 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4357 return 0; 4358 break; 4359 case AF_INET6: 4360 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4361 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4362 return 0; 4363 /* 4364 * scope_id check. if sin6_scope_id is 0, we regard it 4365 * as a wildcard scope, which matches any scope zone ID. 4366 */ 4367 if (spidx0->src.sin6.sin6_scope_id && 4368 spidx1->src.sin6.sin6_scope_id && 4369 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4370 return 0; 4371 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4372 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4373 return 0; 4374 break; 4375 default: 4376 /* XXX */ 4377 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4378 return 0; 4379 break; 4380 } 4381 4382 switch (spidx0->dst.sa.sa_family) { 4383 case AF_INET: 4384 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4385 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4386 return 0; 4387 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4388 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4389 return 0; 4390 break; 4391 case AF_INET6: 4392 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4393 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4394 return 0; 4395 /* 4396 * scope_id check. if sin6_scope_id is 0, we regard it 4397 * as a wildcard scope, which matches any scope zone ID. 4398 */ 4399 if (spidx0->src.sin6.sin6_scope_id && 4400 spidx1->src.sin6.sin6_scope_id && 4401 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4402 return 0; 4403 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4404 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4405 return 0; 4406 break; 4407 default: 4408 /* XXX */ 4409 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4410 return 0; 4411 break; 4412 } 4413 4414 /* XXX Do we check other field ? e.g. flowinfo */ 4415 4416 return 1; 4417 } 4418 4419 /* returns 0 on match */ 4420 static int 4421 key_sockaddrcmp( 4422 const struct sockaddr *sa1, 4423 const struct sockaddr *sa2, 4424 int port) 4425 { 4426 #ifdef satosin 4427 #undef satosin 4428 #endif 4429 #define satosin(s) ((const struct sockaddr_in *)s) 4430 #ifdef satosin6 4431 #undef satosin6 4432 #endif 4433 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4434 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4435 return 1; 4436 4437 switch (sa1->sa_family) { 4438 case AF_INET: 4439 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4440 return 1; 4441 if (satosin(sa1)->sin_addr.s_addr != 4442 satosin(sa2)->sin_addr.s_addr) { 4443 return 1; 4444 } 4445 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4446 return 1; 4447 break; 4448 case AF_INET6: 4449 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4450 return 1; /*EINVAL*/ 4451 if (satosin6(sa1)->sin6_scope_id != 4452 satosin6(sa2)->sin6_scope_id) { 4453 return 1; 4454 } 4455 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4456 &satosin6(sa2)->sin6_addr)) { 4457 return 1; 4458 } 4459 if (port && 4460 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4461 return 1; 4462 } 4463 break; 4464 default: 4465 if (memcmp(sa1, sa2, sa1->sa_len) != 0) 4466 return 1; 4467 break; 4468 } 4469 4470 return 0; 4471 #undef satosin 4472 #undef satosin6 4473 } 4474 4475 /* 4476 * compare two buffers with mask. 4477 * IN: 4478 * addr1: source 4479 * addr2: object 4480 * bits: Number of bits to compare 4481 * OUT: 4482 * 1 : equal 4483 * 0 : not equal 4484 */ 4485 static int 4486 key_bbcmp(const void *a1, const void *a2, u_int bits) 4487 { 4488 const unsigned char *p1 = a1; 4489 const unsigned char *p2 = a2; 4490 4491 /* XXX: This could be considerably faster if we compare a word 4492 * at a time, but it is complicated on LSB Endian machines */ 4493 4494 /* Handle null pointers */ 4495 if (p1 == NULL || p2 == NULL) 4496 return (p1 == p2); 4497 4498 while (bits >= 8) { 4499 if (*p1++ != *p2++) 4500 return 0; 4501 bits -= 8; 4502 } 4503 4504 if (bits > 0) { 4505 u_int8_t mask = ~((1<<(8-bits))-1); 4506 if ((*p1 & mask) != (*p2 & mask)) 4507 return 0; 4508 } 4509 return 1; /* Match! */ 4510 } 4511 4512 /* 4513 * time handler. 4514 * scanning SPD and SAD to check status for each entries, 4515 * and do to remove or to expire. 4516 */ 4517 void 4518 key_timehandler(void* arg) 4519 { 4520 u_int dir; 4521 int s; 4522 time_t now = time_uptime; 4523 4524 s = splsoftnet(); /*called from softclock()*/ 4525 mutex_enter(softnet_lock); 4526 4527 /* SPD */ 4528 { 4529 struct secpolicy *sp, *nextsp; 4530 4531 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4532 for (sp = LIST_FIRST(&sptree[dir]); 4533 sp != NULL; 4534 sp = nextsp) { 4535 4536 nextsp = LIST_NEXT(sp, chain); 4537 4538 if (sp->state == IPSEC_SPSTATE_DEAD) { 4539 key_sp_unlink(sp); /*XXX*/ 4540 4541 /* 'sp' dead; continue transfers to 4542 * 'sp = nextsp' 4543 */ 4544 continue; 4545 } 4546 4547 if (sp->lifetime == 0 && sp->validtime == 0) 4548 continue; 4549 4550 /* the deletion will occur next time */ 4551 if ((sp->lifetime && now - sp->created > sp->lifetime) 4552 || (sp->validtime && now - sp->lastused > sp->validtime)) { 4553 key_sp_dead(sp); 4554 key_spdexpire(sp); 4555 continue; 4556 } 4557 } 4558 } 4559 } 4560 4561 /* SAD */ 4562 { 4563 struct secashead *sah, *nextsah; 4564 struct secasvar *sav, *nextsav; 4565 4566 for (sah = LIST_FIRST(&sahtree); 4567 sah != NULL; 4568 sah = nextsah) { 4569 4570 nextsah = LIST_NEXT(sah, chain); 4571 4572 /* if sah has been dead, then delete it and process next sah. */ 4573 if (sah->state == SADB_SASTATE_DEAD) { 4574 key_delsah(sah); 4575 continue; 4576 } 4577 4578 /* if LARVAL entry doesn't become MATURE, delete it. */ 4579 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]); 4580 sav != NULL; 4581 sav = nextsav) { 4582 4583 nextsav = LIST_NEXT(sav, chain); 4584 4585 if (now - sav->created > key_larval_lifetime) { 4586 KEY_FREESAV(&sav); 4587 } 4588 } 4589 4590 /* 4591 * check MATURE entry to start to send expire message 4592 * whether or not. 4593 */ 4594 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]); 4595 sav != NULL; 4596 sav = nextsav) { 4597 4598 nextsav = LIST_NEXT(sav, chain); 4599 4600 /* we don't need to check. */ 4601 if (sav->lft_s == NULL) 4602 continue; 4603 4604 /* sanity check */ 4605 if (sav->lft_c == NULL) { 4606 ipseclog((LOG_DEBUG,"key_timehandler: " 4607 "There is no CURRENT time, why?\n")); 4608 continue; 4609 } 4610 4611 /* check SOFT lifetime */ 4612 if (sav->lft_s->sadb_lifetime_addtime != 0 4613 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 4614 /* 4615 * check SA to be used whether or not. 4616 * when SA hasn't been used, delete it. 4617 */ 4618 if (sav->lft_c->sadb_lifetime_usetime == 0) { 4619 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4620 KEY_FREESAV(&sav); 4621 } else { 4622 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4623 /* 4624 * XXX If we keep to send expire 4625 * message in the status of 4626 * DYING. Do remove below code. 4627 */ 4628 key_expire(sav); 4629 } 4630 } 4631 /* check SOFT lifetime by bytes */ 4632 /* 4633 * XXX I don't know the way to delete this SA 4634 * when new SA is installed. Caution when it's 4635 * installed too big lifetime by time. 4636 */ 4637 else if (sav->lft_s->sadb_lifetime_bytes != 0 4638 && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) { 4639 4640 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4641 /* 4642 * XXX If we keep to send expire 4643 * message in the status of 4644 * DYING. Do remove below code. 4645 */ 4646 key_expire(sav); 4647 } 4648 } 4649 4650 /* check DYING entry to change status to DEAD. */ 4651 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]); 4652 sav != NULL; 4653 sav = nextsav) { 4654 4655 nextsav = LIST_NEXT(sav, chain); 4656 4657 /* we don't need to check. */ 4658 if (sav->lft_h == NULL) 4659 continue; 4660 4661 /* sanity check */ 4662 if (sav->lft_c == NULL) { 4663 ipseclog((LOG_DEBUG, "key_timehandler: " 4664 "There is no CURRENT time, why?\n")); 4665 continue; 4666 } 4667 4668 if (sav->lft_h->sadb_lifetime_addtime != 0 4669 && now - sav->created > sav->lft_h->sadb_lifetime_addtime) { 4670 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4671 KEY_FREESAV(&sav); 4672 } 4673 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4674 else if (sav->lft_s != NULL 4675 && sav->lft_s->sadb_lifetime_addtime != 0 4676 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 4677 /* 4678 * XXX: should be checked to be 4679 * installed the valid SA. 4680 */ 4681 4682 /* 4683 * If there is no SA then sending 4684 * expire message. 4685 */ 4686 key_expire(sav); 4687 } 4688 #endif 4689 /* check HARD lifetime by bytes */ 4690 else if (sav->lft_h->sadb_lifetime_bytes != 0 4691 && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) { 4692 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4693 KEY_FREESAV(&sav); 4694 } 4695 } 4696 4697 /* delete entry in DEAD */ 4698 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]); 4699 sav != NULL; 4700 sav = nextsav) { 4701 4702 nextsav = LIST_NEXT(sav, chain); 4703 4704 /* sanity check */ 4705 if (sav->state != SADB_SASTATE_DEAD) { 4706 ipseclog((LOG_DEBUG, "key_timehandler: " 4707 "invalid sav->state " 4708 "(queue: %d SA: %d): " 4709 "kill it anyway\n", 4710 SADB_SASTATE_DEAD, sav->state)); 4711 } 4712 4713 /* 4714 * do not call key_freesav() here. 4715 * sav should already be freed, and sav->refcnt 4716 * shows other references to sav 4717 * (such as from SPD). 4718 */ 4719 } 4720 } 4721 } 4722 4723 #ifndef IPSEC_NONBLOCK_ACQUIRE 4724 /* ACQ tree */ 4725 { 4726 struct secacq *acq, *nextacq; 4727 4728 for (acq = LIST_FIRST(&acqtree); 4729 acq != NULL; 4730 acq = nextacq) { 4731 4732 nextacq = LIST_NEXT(acq, chain); 4733 4734 if (now - acq->created > key_blockacq_lifetime 4735 && __LIST_CHAINED(acq)) { 4736 LIST_REMOVE(acq, chain); 4737 KFREE(acq); 4738 } 4739 } 4740 } 4741 #endif 4742 4743 /* SP ACQ tree */ 4744 { 4745 struct secspacq *acq, *nextacq; 4746 4747 for (acq = LIST_FIRST(&spacqtree); 4748 acq != NULL; 4749 acq = nextacq) { 4750 4751 nextacq = LIST_NEXT(acq, chain); 4752 4753 if (now - acq->created > key_blockacq_lifetime 4754 && __LIST_CHAINED(acq)) { 4755 LIST_REMOVE(acq, chain); 4756 KFREE(acq); 4757 } 4758 } 4759 } 4760 4761 #ifndef IPSEC_DEBUG2 4762 /* do exchange to tick time !! */ 4763 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 4764 #endif /* IPSEC_DEBUG2 */ 4765 4766 mutex_exit(softnet_lock); 4767 splx(s); 4768 return; 4769 } 4770 4771 u_long 4772 key_random(void) 4773 { 4774 u_long value; 4775 4776 key_randomfill(&value, sizeof(value)); 4777 return value; 4778 } 4779 4780 void 4781 key_randomfill(void *p, size_t l) 4782 { 4783 4784 cprng_fast(p, l); 4785 } 4786 4787 /* 4788 * map SADB_SATYPE_* to IPPROTO_*. 4789 * if satype == SADB_SATYPE then satype is mapped to ~0. 4790 * OUT: 4791 * 0: invalid satype. 4792 */ 4793 static u_int16_t 4794 key_satype2proto(u_int8_t satype) 4795 { 4796 switch (satype) { 4797 case SADB_SATYPE_UNSPEC: 4798 return IPSEC_PROTO_ANY; 4799 case SADB_SATYPE_AH: 4800 return IPPROTO_AH; 4801 case SADB_SATYPE_ESP: 4802 return IPPROTO_ESP; 4803 case SADB_X_SATYPE_IPCOMP: 4804 return IPPROTO_IPCOMP; 4805 case SADB_X_SATYPE_TCPSIGNATURE: 4806 return IPPROTO_TCP; 4807 default: 4808 return 0; 4809 } 4810 /* NOTREACHED */ 4811 } 4812 4813 /* 4814 * map IPPROTO_* to SADB_SATYPE_* 4815 * OUT: 4816 * 0: invalid protocol type. 4817 */ 4818 static u_int8_t 4819 key_proto2satype(u_int16_t proto) 4820 { 4821 switch (proto) { 4822 case IPPROTO_AH: 4823 return SADB_SATYPE_AH; 4824 case IPPROTO_ESP: 4825 return SADB_SATYPE_ESP; 4826 case IPPROTO_IPCOMP: 4827 return SADB_X_SATYPE_IPCOMP; 4828 case IPPROTO_TCP: 4829 return SADB_X_SATYPE_TCPSIGNATURE; 4830 default: 4831 return 0; 4832 } 4833 /* NOTREACHED */ 4834 } 4835 4836 static int 4837 key_setsecasidx(int proto, int mode, int reqid, 4838 const struct sadb_address * src, 4839 const struct sadb_address * dst, 4840 struct secasindex * saidx) 4841 { 4842 const union sockaddr_union * src_u = 4843 (const union sockaddr_union *) src; 4844 const union sockaddr_union * dst_u = 4845 (const union sockaddr_union *) dst; 4846 4847 /* sa len safety check */ 4848 if (key_checksalen(src_u) != 0) 4849 return -1; 4850 if (key_checksalen(dst_u) != 0) 4851 return -1; 4852 4853 memset(saidx, 0, sizeof(*saidx)); 4854 saidx->proto = proto; 4855 saidx->mode = mode; 4856 saidx->reqid = reqid; 4857 memcpy(&saidx->src, src_u, src_u->sa.sa_len); 4858 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len); 4859 4860 #ifndef IPSEC_NAT_T 4861 key_porttosaddr(&((saidx)->src),0); 4862 key_porttosaddr(&((saidx)->dst),0); 4863 #endif 4864 return 0; 4865 } 4866 4867 /* %%% PF_KEY */ 4868 /* 4869 * SADB_GETSPI processing is to receive 4870 * <base, (SA2), src address, dst address, (SPI range)> 4871 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4872 * tree with the status of LARVAL, and send 4873 * <base, SA(*), address(SD)> 4874 * to the IKMPd. 4875 * 4876 * IN: mhp: pointer to the pointer to each header. 4877 * OUT: NULL if fail. 4878 * other if success, return pointer to the message to send. 4879 */ 4880 static int 4881 key_getspi(struct socket *so, struct mbuf *m, 4882 const struct sadb_msghdr *mhp) 4883 { 4884 struct sadb_address *src0, *dst0; 4885 struct secasindex saidx; 4886 struct secashead *newsah; 4887 struct secasvar *newsav; 4888 u_int8_t proto; 4889 u_int32_t spi; 4890 u_int8_t mode; 4891 u_int16_t reqid; 4892 int error; 4893 4894 /* sanity check */ 4895 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 4896 panic("key_getspi: NULL pointer is passed"); 4897 4898 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4899 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4900 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n")); 4901 return key_senderror(so, m, EINVAL); 4902 } 4903 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4904 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4905 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n")); 4906 return key_senderror(so, m, EINVAL); 4907 } 4908 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4909 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4910 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4911 } else { 4912 mode = IPSEC_MODE_ANY; 4913 reqid = 0; 4914 } 4915 4916 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4917 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4918 4919 /* map satype to proto */ 4920 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4921 ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n")); 4922 return key_senderror(so, m, EINVAL); 4923 } 4924 4925 4926 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1, 4927 dst0 + 1, &saidx)) != 0) 4928 return key_senderror(so, m, EINVAL); 4929 4930 #ifdef IPSEC_NAT_T 4931 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0) 4932 return key_senderror(so, m, EINVAL); 4933 #endif 4934 4935 /* SPI allocation */ 4936 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4937 &saidx); 4938 if (spi == 0) 4939 return key_senderror(so, m, EINVAL); 4940 4941 /* get a SA index */ 4942 if ((newsah = key_getsah(&saidx)) == NULL) { 4943 /* create a new SA index */ 4944 if ((newsah = key_newsah(&saidx)) == NULL) { 4945 ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n")); 4946 return key_senderror(so, m, ENOBUFS); 4947 } 4948 } 4949 4950 /* get a new SA */ 4951 /* XXX rewrite */ 4952 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4953 if (newsav == NULL) { 4954 /* XXX don't free new SA index allocated in above. */ 4955 return key_senderror(so, m, error); 4956 } 4957 4958 /* set spi */ 4959 newsav->spi = htonl(spi); 4960 4961 #ifndef IPSEC_NONBLOCK_ACQUIRE 4962 /* delete the entry in acqtree */ 4963 if (mhp->msg->sadb_msg_seq != 0) { 4964 struct secacq *acq; 4965 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4966 /* reset counter in order to deletion by timehandler. */ 4967 acq->created = time_uptime; 4968 acq->count = 0; 4969 } 4970 } 4971 #endif 4972 4973 { 4974 struct mbuf *n, *nn; 4975 struct sadb_sa *m_sa; 4976 struct sadb_msg *newmsg; 4977 int off, len; 4978 4979 /* create new sadb_msg to reply. */ 4980 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4981 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4982 if (len > MCLBYTES) 4983 return key_senderror(so, m, ENOBUFS); 4984 4985 MGETHDR(n, M_DONTWAIT, MT_DATA); 4986 if (len > MHLEN) { 4987 MCLGET(n, M_DONTWAIT); 4988 if ((n->m_flags & M_EXT) == 0) { 4989 m_freem(n); 4990 n = NULL; 4991 } 4992 } 4993 if (!n) 4994 return key_senderror(so, m, ENOBUFS); 4995 4996 n->m_len = len; 4997 n->m_next = NULL; 4998 off = 0; 4999 5000 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 5001 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 5002 5003 m_sa = (struct sadb_sa *)(mtod(n, char *) + off); 5004 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 5005 m_sa->sadb_sa_exttype = SADB_EXT_SA; 5006 m_sa->sadb_sa_spi = htonl(spi); 5007 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5008 5009 #ifdef DIAGNOSTIC 5010 if (off != len) 5011 panic("length inconsistency in key_getspi"); 5012 #endif 5013 5014 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 5015 SADB_EXT_ADDRESS_DST); 5016 if (!n->m_next) { 5017 m_freem(n); 5018 return key_senderror(so, m, ENOBUFS); 5019 } 5020 5021 if (n->m_len < sizeof(struct sadb_msg)) { 5022 n = m_pullup(n, sizeof(struct sadb_msg)); 5023 if (n == NULL) 5024 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 5025 } 5026 5027 n->m_pkthdr.len = 0; 5028 for (nn = n; nn; nn = nn->m_next) 5029 n->m_pkthdr.len += nn->m_len; 5030 5031 newmsg = mtod(n, struct sadb_msg *); 5032 newmsg->sadb_msg_seq = newsav->seq; 5033 newmsg->sadb_msg_errno = 0; 5034 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5035 5036 m_freem(m); 5037 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5038 } 5039 } 5040 5041 /* 5042 * allocating new SPI 5043 * called by key_getspi(). 5044 * OUT: 5045 * 0: failure. 5046 * others: success. 5047 */ 5048 static u_int32_t 5049 key_do_getnewspi(const struct sadb_spirange *spirange, 5050 const struct secasindex *saidx) 5051 { 5052 u_int32_t newspi; 5053 u_int32_t spmin, spmax; 5054 int count = key_spi_trycnt; 5055 5056 /* set spi range to allocate */ 5057 if (spirange != NULL) { 5058 spmin = spirange->sadb_spirange_min; 5059 spmax = spirange->sadb_spirange_max; 5060 } else { 5061 spmin = key_spi_minval; 5062 spmax = key_spi_maxval; 5063 } 5064 /* IPCOMP needs 2-byte SPI */ 5065 if (saidx->proto == IPPROTO_IPCOMP) { 5066 u_int32_t t; 5067 if (spmin >= 0x10000) 5068 spmin = 0xffff; 5069 if (spmax >= 0x10000) 5070 spmax = 0xffff; 5071 if (spmin > spmax) { 5072 t = spmin; spmin = spmax; spmax = t; 5073 } 5074 } 5075 5076 if (spmin == spmax) { 5077 if (key_checkspidup(saidx, htonl(spmin)) != NULL) { 5078 ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n", spmin)); 5079 return 0; 5080 } 5081 5082 count--; /* taking one cost. */ 5083 newspi = spmin; 5084 5085 } else { 5086 5087 /* init SPI */ 5088 newspi = 0; 5089 5090 /* when requesting to allocate spi ranged */ 5091 while (count--) { 5092 /* generate pseudo-random SPI value ranged. */ 5093 newspi = spmin + (key_random() % (spmax - spmin + 1)); 5094 5095 if (key_checkspidup(saidx, htonl(newspi)) == NULL) 5096 break; 5097 } 5098 5099 if (count == 0 || newspi == 0) { 5100 ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n")); 5101 return 0; 5102 } 5103 } 5104 5105 /* statistics */ 5106 keystat.getspi_count = 5107 (keystat.getspi_count + key_spi_trycnt - count) / 2; 5108 5109 return newspi; 5110 } 5111 5112 #ifdef IPSEC_NAT_T 5113 /* Handle IPSEC_NAT_T info if present */ 5114 static int 5115 key_handle_natt_info(struct secasvar *sav, 5116 const struct sadb_msghdr *mhp) 5117 { 5118 5119 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 5120 ipseclog((LOG_DEBUG,"update: NAT-T OAi present\n")); 5121 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 5122 ipseclog((LOG_DEBUG,"update: NAT-T OAr present\n")); 5123 5124 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) && 5125 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) && 5126 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) { 5127 struct sadb_x_nat_t_type *type; 5128 struct sadb_x_nat_t_port *sport; 5129 struct sadb_x_nat_t_port *dport; 5130 struct sadb_address *iaddr, *raddr; 5131 struct sadb_x_nat_t_frag *frag; 5132 5133 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 5134 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 5135 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 5136 ipseclog((LOG_DEBUG, "key_update: " 5137 "invalid message.\n")); 5138 return -1; 5139 } 5140 5141 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) && 5142 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) { 5143 ipseclog((LOG_DEBUG, "key_update: invalid message\n")); 5144 return -1; 5145 } 5146 5147 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) && 5148 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) { 5149 ipseclog((LOG_DEBUG, "key_update: invalid message\n")); 5150 return -1; 5151 } 5152 5153 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) && 5154 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) { 5155 ipseclog((LOG_DEBUG, "key_update: invalid message\n")); 5156 return -1; 5157 } 5158 5159 type = (struct sadb_x_nat_t_type *) 5160 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5161 sport = (struct sadb_x_nat_t_port *) 5162 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5163 dport = (struct sadb_x_nat_t_port *) 5164 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5165 iaddr = (struct sadb_address *) 5166 mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5167 raddr = (struct sadb_address *) 5168 mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5169 frag = (struct sadb_x_nat_t_frag *) 5170 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5171 5172 ipseclog((LOG_DEBUG, 5173 "key_update: type %d, sport = %d, dport = %d\n", 5174 type->sadb_x_nat_t_type_type, 5175 sport->sadb_x_nat_t_port_port, 5176 dport->sadb_x_nat_t_port_port)); 5177 5178 if (type) 5179 sav->natt_type = type->sadb_x_nat_t_type_type; 5180 if (sport) 5181 key_porttosaddr(&sav->sah->saidx.src, 5182 sport->sadb_x_nat_t_port_port); 5183 if (dport) 5184 key_porttosaddr(&sav->sah->saidx.dst, 5185 dport->sadb_x_nat_t_port_port); 5186 if (frag) 5187 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen; 5188 else 5189 sav->esp_frag = IP_MAXPACKET; 5190 } 5191 5192 return 0; 5193 } 5194 5195 /* Just update the IPSEC_NAT_T ports if present */ 5196 static int 5197 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst, 5198 const struct sadb_msghdr *mhp) 5199 { 5200 5201 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 5202 ipseclog((LOG_DEBUG,"update: NAT-T OAi present\n")); 5203 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 5204 ipseclog((LOG_DEBUG,"update: NAT-T OAr present\n")); 5205 5206 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) && 5207 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) && 5208 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) { 5209 struct sadb_x_nat_t_type *type; 5210 struct sadb_x_nat_t_port *sport; 5211 struct sadb_x_nat_t_port *dport; 5212 5213 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 5214 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 5215 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 5216 ipseclog((LOG_DEBUG, "key_update: " 5217 "invalid message.\n")); 5218 return -1; 5219 } 5220 5221 sport = (struct sadb_x_nat_t_port *) 5222 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5223 dport = (struct sadb_x_nat_t_port *) 5224 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5225 5226 if (sport) 5227 key_porttosaddr(src, 5228 sport->sadb_x_nat_t_port_port); 5229 if (dport) 5230 key_porttosaddr(dst, 5231 dport->sadb_x_nat_t_port_port); 5232 } 5233 5234 return 0; 5235 } 5236 #endif 5237 5238 5239 /* 5240 * SADB_UPDATE processing 5241 * receive 5242 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5243 * key(AE), (identity(SD),) (sensitivity)> 5244 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 5245 * and send 5246 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5247 * (identity(SD),) (sensitivity)> 5248 * to the ikmpd. 5249 * 5250 * m will always be freed. 5251 */ 5252 static int 5253 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5254 { 5255 struct sadb_sa *sa0; 5256 struct sadb_address *src0, *dst0; 5257 struct secasindex saidx; 5258 struct secashead *sah; 5259 struct secasvar *sav; 5260 u_int16_t proto; 5261 u_int8_t mode; 5262 u_int16_t reqid; 5263 int error; 5264 5265 /* sanity check */ 5266 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 5267 panic("key_update: NULL pointer is passed"); 5268 5269 /* map satype to proto */ 5270 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5271 ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n")); 5272 return key_senderror(so, m, EINVAL); 5273 } 5274 5275 if (mhp->ext[SADB_EXT_SA] == NULL || 5276 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5277 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5278 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5279 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5280 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5281 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5282 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5283 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5284 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5285 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5286 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n")); 5287 return key_senderror(so, m, EINVAL); 5288 } 5289 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5290 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5291 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5292 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n")); 5293 return key_senderror(so, m, EINVAL); 5294 } 5295 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5296 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5297 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5298 } else { 5299 mode = IPSEC_MODE_ANY; 5300 reqid = 0; 5301 } 5302 /* XXX boundary checking for other extensions */ 5303 5304 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5305 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5306 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5307 5308 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1, 5309 dst0 + 1, &saidx)) != 0) 5310 return key_senderror(so, m, EINVAL); 5311 5312 #ifdef IPSEC_NAT_T 5313 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0) 5314 return key_senderror(so, m, EINVAL); 5315 #endif 5316 5317 /* get a SA header */ 5318 if ((sah = key_getsah(&saidx)) == NULL) { 5319 ipseclog((LOG_DEBUG, "key_update: no SA index found.\n")); 5320 return key_senderror(so, m, ENOENT); 5321 } 5322 5323 /* set spidx if there */ 5324 /* XXX rewrite */ 5325 error = key_setident(sah, m, mhp); 5326 if (error) 5327 return key_senderror(so, m, error); 5328 5329 /* find a SA with sequence number. */ 5330 #ifdef IPSEC_DOSEQCHECK 5331 if (mhp->msg->sadb_msg_seq != 0 5332 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 5333 ipseclog((LOG_DEBUG, 5334 "key_update: no larval SA with sequence %u exists.\n", 5335 mhp->msg->sadb_msg_seq)); 5336 return key_senderror(so, m, ENOENT); 5337 } 5338 #else 5339 if ((sav = key_getsavbyspi(sah, sa0->sadb_sa_spi)) == NULL) { 5340 ipseclog((LOG_DEBUG, 5341 "key_update: no such a SA found (spi:%u)\n", 5342 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5343 return key_senderror(so, m, EINVAL); 5344 } 5345 #endif 5346 5347 /* validity check */ 5348 if (sav->sah->saidx.proto != proto) { 5349 ipseclog((LOG_DEBUG, 5350 "key_update: protocol mismatched (DB=%u param=%u)\n", 5351 sav->sah->saidx.proto, proto)); 5352 return key_senderror(so, m, EINVAL); 5353 } 5354 #ifdef IPSEC_DOSEQCHECK 5355 if (sav->spi != sa0->sadb_sa_spi) { 5356 ipseclog((LOG_DEBUG, 5357 "key_update: SPI mismatched (DB:%u param:%u)\n", 5358 (u_int32_t)ntohl(sav->spi), 5359 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5360 return key_senderror(so, m, EINVAL); 5361 } 5362 #endif 5363 if (sav->pid != mhp->msg->sadb_msg_pid) { 5364 ipseclog((LOG_DEBUG, 5365 "key_update: pid mismatched (DB:%u param:%u)\n", 5366 sav->pid, mhp->msg->sadb_msg_pid)); 5367 return key_senderror(so, m, EINVAL); 5368 } 5369 5370 /* copy sav values */ 5371 error = key_setsaval(sav, m, mhp); 5372 if (error) { 5373 KEY_FREESAV(&sav); 5374 return key_senderror(so, m, error); 5375 } 5376 5377 #ifdef IPSEC_NAT_T 5378 if ((error = key_handle_natt_info(sav,mhp)) != 0) 5379 return key_senderror(so, m, EINVAL); 5380 #endif /* IPSEC_NAT_T */ 5381 5382 /* check SA values to be mature. */ 5383 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 5384 KEY_FREESAV(&sav); 5385 return key_senderror(so, m, 0); 5386 } 5387 5388 { 5389 struct mbuf *n; 5390 5391 /* set msg buf from mhp */ 5392 n = key_getmsgbuf_x1(m, mhp); 5393 if (n == NULL) { 5394 ipseclog((LOG_DEBUG, "key_update: No more memory.\n")); 5395 return key_senderror(so, m, ENOBUFS); 5396 } 5397 5398 m_freem(m); 5399 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5400 } 5401 } 5402 5403 /* 5404 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5405 * only called by key_update(). 5406 * OUT: 5407 * NULL : not found 5408 * others : found, pointer to a SA. 5409 */ 5410 #ifdef IPSEC_DOSEQCHECK 5411 static struct secasvar * 5412 key_getsavbyseq(struct secashead *sah, u_int32_t seq) 5413 { 5414 struct secasvar *sav; 5415 u_int state; 5416 5417 state = SADB_SASTATE_LARVAL; 5418 5419 /* search SAD with sequence number ? */ 5420 LIST_FOREACH(sav, &sah->savtree[state], chain) { 5421 5422 KEY_CHKSASTATE(state, sav->state, "key_getsabyseq"); 5423 5424 if (sav->seq == seq) { 5425 SA_ADDREF(sav); 5426 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 5427 printf("DP key_getsavbyseq cause " 5428 "refcnt++:%d SA:%p\n", 5429 sav->refcnt, sav)); 5430 return sav; 5431 } 5432 } 5433 5434 return NULL; 5435 } 5436 #endif 5437 5438 /* 5439 * SADB_ADD processing 5440 * add an entry to SA database, when received 5441 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5442 * key(AE), (identity(SD),) (sensitivity)> 5443 * from the ikmpd, 5444 * and send 5445 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5446 * (identity(SD),) (sensitivity)> 5447 * to the ikmpd. 5448 * 5449 * IGNORE identity and sensitivity messages. 5450 * 5451 * m will always be freed. 5452 */ 5453 static int 5454 key_add(struct socket *so, struct mbuf *m, 5455 const struct sadb_msghdr *mhp) 5456 { 5457 struct sadb_sa *sa0; 5458 struct sadb_address *src0, *dst0; 5459 struct secasindex saidx; 5460 struct secashead *newsah; 5461 struct secasvar *newsav; 5462 u_int16_t proto; 5463 u_int8_t mode; 5464 u_int16_t reqid; 5465 int error; 5466 5467 /* sanity check */ 5468 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 5469 panic("key_add: NULL pointer is passed"); 5470 5471 /* map satype to proto */ 5472 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5473 ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n")); 5474 return key_senderror(so, m, EINVAL); 5475 } 5476 5477 if (mhp->ext[SADB_EXT_SA] == NULL || 5478 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5479 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5480 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5481 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5482 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5483 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5484 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5485 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5486 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5487 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5488 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n")); 5489 return key_senderror(so, m, EINVAL); 5490 } 5491 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5492 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5493 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5494 /* XXX need more */ 5495 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n")); 5496 return key_senderror(so, m, EINVAL); 5497 } 5498 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5499 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5500 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5501 } else { 5502 mode = IPSEC_MODE_ANY; 5503 reqid = 0; 5504 } 5505 5506 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5507 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5508 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5509 5510 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1, 5511 dst0 + 1, &saidx)) != 0) 5512 return key_senderror(so, m, EINVAL); 5513 5514 #ifdef IPSEC_NAT_T 5515 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0) 5516 return key_senderror(so, m, EINVAL); 5517 #endif 5518 5519 /* get a SA header */ 5520 if ((newsah = key_getsah(&saidx)) == NULL) { 5521 /* create a new SA header */ 5522 if ((newsah = key_newsah(&saidx)) == NULL) { 5523 ipseclog((LOG_DEBUG, "key_add: No more memory.\n")); 5524 return key_senderror(so, m, ENOBUFS); 5525 } 5526 } 5527 5528 /* set spidx if there */ 5529 /* XXX rewrite */ 5530 error = key_setident(newsah, m, mhp); 5531 if (error) { 5532 return key_senderror(so, m, error); 5533 } 5534 5535 /* create new SA entry. */ 5536 /* We can create new SA only if SPI is differenct. */ 5537 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) { 5538 ipseclog((LOG_DEBUG, "key_add: SA already exists.\n")); 5539 return key_senderror(so, m, EEXIST); 5540 } 5541 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5542 if (newsav == NULL) { 5543 return key_senderror(so, m, error); 5544 } 5545 5546 #ifdef IPSEC_NAT_T 5547 if ((error = key_handle_natt_info(newsav, mhp)) != 0) 5548 return key_senderror(so, m, EINVAL); 5549 #endif /* IPSEC_NAT_T */ 5550 5551 /* check SA values to be mature. */ 5552 if ((error = key_mature(newsav)) != 0) { 5553 KEY_FREESAV(&newsav); 5554 return key_senderror(so, m, error); 5555 } 5556 5557 /* 5558 * don't call key_freesav() here, as we would like to keep the SA 5559 * in the database on success. 5560 */ 5561 5562 { 5563 struct mbuf *n; 5564 5565 /* set msg buf from mhp */ 5566 n = key_getmsgbuf_x1(m, mhp); 5567 if (n == NULL) { 5568 ipseclog((LOG_DEBUG, "key_update: No more memory.\n")); 5569 return key_senderror(so, m, ENOBUFS); 5570 } 5571 5572 m_freem(m); 5573 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5574 } 5575 } 5576 5577 /* m is retained */ 5578 static int 5579 key_setident(struct secashead *sah, struct mbuf *m, 5580 const struct sadb_msghdr *mhp) 5581 { 5582 const struct sadb_ident *idsrc, *iddst; 5583 int idsrclen, iddstlen; 5584 5585 /* sanity check */ 5586 if (sah == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 5587 panic("key_setident: NULL pointer is passed"); 5588 5589 /* don't make buffer if not there */ 5590 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5591 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5592 sah->idents = NULL; 5593 sah->identd = NULL; 5594 return 0; 5595 } 5596 5597 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5598 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5599 ipseclog((LOG_DEBUG, "key_setident: invalid identity.\n")); 5600 return EINVAL; 5601 } 5602 5603 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5604 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5605 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5606 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5607 5608 /* validity check */ 5609 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5610 ipseclog((LOG_DEBUG, "key_setident: ident type mismatch.\n")); 5611 return EINVAL; 5612 } 5613 5614 switch (idsrc->sadb_ident_type) { 5615 case SADB_IDENTTYPE_PREFIX: 5616 case SADB_IDENTTYPE_FQDN: 5617 case SADB_IDENTTYPE_USERFQDN: 5618 default: 5619 /* XXX do nothing */ 5620 sah->idents = NULL; 5621 sah->identd = NULL; 5622 return 0; 5623 } 5624 5625 /* make structure */ 5626 KMALLOC(sah->idents, struct sadb_ident *, idsrclen); 5627 if (sah->idents == NULL) { 5628 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n")); 5629 return ENOBUFS; 5630 } 5631 KMALLOC(sah->identd, struct sadb_ident *, iddstlen); 5632 if (sah->identd == NULL) { 5633 KFREE(sah->idents); 5634 sah->idents = NULL; 5635 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n")); 5636 return ENOBUFS; 5637 } 5638 memcpy(sah->idents, idsrc, idsrclen); 5639 memcpy(sah->identd, iddst, iddstlen); 5640 5641 return 0; 5642 } 5643 5644 /* 5645 * m will not be freed on return. 5646 * it is caller's responsibility to free the result. 5647 */ 5648 static struct mbuf * 5649 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 5650 { 5651 struct mbuf *n; 5652 5653 /* sanity check */ 5654 if (m == NULL || mhp == NULL || mhp->msg == NULL) 5655 panic("key_getmsgbuf_x1: NULL pointer is passed"); 5656 5657 /* create new sadb_msg to reply. */ 5658 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5659 SADB_EXT_SA, SADB_X_EXT_SA2, 5660 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5661 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5662 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5663 if (!n) 5664 return NULL; 5665 5666 if (n->m_len < sizeof(struct sadb_msg)) { 5667 n = m_pullup(n, sizeof(struct sadb_msg)); 5668 if (n == NULL) 5669 return NULL; 5670 } 5671 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5672 mtod(n, struct sadb_msg *)->sadb_msg_len = 5673 PFKEY_UNIT64(n->m_pkthdr.len); 5674 5675 return n; 5676 } 5677 5678 static int key_delete_all (struct socket *, struct mbuf *, 5679 const struct sadb_msghdr *, u_int16_t); 5680 5681 /* 5682 * SADB_DELETE processing 5683 * receive 5684 * <base, SA(*), address(SD)> 5685 * from the ikmpd, and set SADB_SASTATE_DEAD, 5686 * and send, 5687 * <base, SA(*), address(SD)> 5688 * to the ikmpd. 5689 * 5690 * m will always be freed. 5691 */ 5692 static int 5693 key_delete(struct socket *so, struct mbuf *m, 5694 const struct sadb_msghdr *mhp) 5695 { 5696 struct sadb_sa *sa0; 5697 struct sadb_address *src0, *dst0; 5698 struct secasindex saidx; 5699 struct secashead *sah; 5700 struct secasvar *sav = NULL; 5701 u_int16_t proto; 5702 int error; 5703 5704 /* sanity check */ 5705 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 5706 panic("key_delete: NULL pointer is passed"); 5707 5708 /* map satype to proto */ 5709 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5710 ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n")); 5711 return key_senderror(so, m, EINVAL); 5712 } 5713 5714 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5715 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5716 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n")); 5717 return key_senderror(so, m, EINVAL); 5718 } 5719 5720 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5721 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5722 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n")); 5723 return key_senderror(so, m, EINVAL); 5724 } 5725 5726 if (mhp->ext[SADB_EXT_SA] == NULL) { 5727 /* 5728 * Caller wants us to delete all non-LARVAL SAs 5729 * that match the src/dst. This is used during 5730 * IKE INITIAL-CONTACT. 5731 */ 5732 ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n")); 5733 return key_delete_all(so, m, mhp, proto); 5734 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5735 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n")); 5736 return key_senderror(so, m, EINVAL); 5737 } 5738 5739 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5740 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5741 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5742 5743 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1, 5744 dst0 + 1, &saidx)) != 0) 5745 return key_senderror(so, m, EINVAL); 5746 5747 #ifdef IPSEC_NAT_T 5748 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0) 5749 return key_senderror(so, m, EINVAL); 5750 #endif 5751 5752 /* get a SA header */ 5753 LIST_FOREACH(sah, &sahtree, chain) { 5754 if (sah->state == SADB_SASTATE_DEAD) 5755 continue; 5756 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5757 continue; 5758 5759 /* get a SA with SPI. */ 5760 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5761 if (sav) 5762 break; 5763 } 5764 if (sah == NULL) { 5765 ipseclog((LOG_DEBUG, "key_delete: no SA found.\n")); 5766 return key_senderror(so, m, ENOENT); 5767 } 5768 5769 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5770 KEY_FREESAV(&sav); 5771 5772 { 5773 struct mbuf *n; 5774 struct sadb_msg *newmsg; 5775 5776 /* create new sadb_msg to reply. */ 5777 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5778 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5779 if (!n) 5780 return key_senderror(so, m, ENOBUFS); 5781 5782 if (n->m_len < sizeof(struct sadb_msg)) { 5783 n = m_pullup(n, sizeof(struct sadb_msg)); 5784 if (n == NULL) 5785 return key_senderror(so, m, ENOBUFS); 5786 } 5787 newmsg = mtod(n, struct sadb_msg *); 5788 newmsg->sadb_msg_errno = 0; 5789 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5790 5791 m_freem(m); 5792 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5793 } 5794 } 5795 5796 /* 5797 * delete all SAs for src/dst. Called from key_delete(). 5798 */ 5799 static int 5800 key_delete_all(struct socket *so, struct mbuf *m, 5801 const struct sadb_msghdr *mhp, u_int16_t proto) 5802 { 5803 struct sadb_address *src0, *dst0; 5804 struct secasindex saidx; 5805 struct secashead *sah; 5806 struct secasvar *sav, *nextsav; 5807 u_int stateidx, state; 5808 int error; 5809 5810 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5811 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5812 5813 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1, 5814 dst0 + 1, &saidx)) != 0) 5815 return key_senderror(so, m, EINVAL); 5816 5817 #ifdef IPSEC_NAT_T 5818 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0) 5819 return key_senderror(so, m, EINVAL); 5820 #endif 5821 5822 LIST_FOREACH(sah, &sahtree, chain) { 5823 if (sah->state == SADB_SASTATE_DEAD) 5824 continue; 5825 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5826 continue; 5827 5828 /* Delete all non-LARVAL SAs. */ 5829 for (stateidx = 0; 5830 stateidx < _ARRAYLEN(saorder_state_alive); 5831 stateidx++) { 5832 state = saorder_state_alive[stateidx]; 5833 if (state == SADB_SASTATE_LARVAL) 5834 continue; 5835 for (sav = LIST_FIRST(&sah->savtree[state]); 5836 sav != NULL; sav = nextsav) { 5837 nextsav = LIST_NEXT(sav, chain); 5838 /* sanity check */ 5839 if (sav->state != state) { 5840 ipseclog((LOG_DEBUG, "key_delete_all: " 5841 "invalid sav->state " 5842 "(queue: %d SA: %d)\n", 5843 state, sav->state)); 5844 continue; 5845 } 5846 5847 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5848 KEY_FREESAV(&sav); 5849 } 5850 } 5851 } 5852 { 5853 struct mbuf *n; 5854 struct sadb_msg *newmsg; 5855 5856 /* create new sadb_msg to reply. */ 5857 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5858 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5859 if (!n) 5860 return key_senderror(so, m, ENOBUFS); 5861 5862 if (n->m_len < sizeof(struct sadb_msg)) { 5863 n = m_pullup(n, sizeof(struct sadb_msg)); 5864 if (n == NULL) 5865 return key_senderror(so, m, ENOBUFS); 5866 } 5867 newmsg = mtod(n, struct sadb_msg *); 5868 newmsg->sadb_msg_errno = 0; 5869 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5870 5871 m_freem(m); 5872 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5873 } 5874 } 5875 5876 /* 5877 * SADB_GET processing 5878 * receive 5879 * <base, SA(*), address(SD)> 5880 * from the ikmpd, and get a SP and a SA to respond, 5881 * and send, 5882 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5883 * (identity(SD),) (sensitivity)> 5884 * to the ikmpd. 5885 * 5886 * m will always be freed. 5887 */ 5888 static int 5889 key_get(struct socket *so, struct mbuf *m, 5890 const struct sadb_msghdr *mhp) 5891 { 5892 struct sadb_sa *sa0; 5893 struct sadb_address *src0, *dst0; 5894 struct secasindex saidx; 5895 struct secashead *sah; 5896 struct secasvar *sav = NULL; 5897 u_int16_t proto; 5898 int error; 5899 5900 /* sanity check */ 5901 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 5902 panic("key_get: NULL pointer is passed"); 5903 5904 /* map satype to proto */ 5905 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5906 ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n")); 5907 return key_senderror(so, m, EINVAL); 5908 } 5909 5910 if (mhp->ext[SADB_EXT_SA] == NULL || 5911 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5912 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5913 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n")); 5914 return key_senderror(so, m, EINVAL); 5915 } 5916 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5917 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5918 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5919 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n")); 5920 return key_senderror(so, m, EINVAL); 5921 } 5922 5923 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5924 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5925 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5926 5927 5928 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1, 5929 dst0 + 1, &saidx)) != 0) 5930 return key_senderror(so, m, EINVAL); 5931 5932 #ifdef IPSEC_NAT_T 5933 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0) 5934 return key_senderror(so, m, EINVAL); 5935 #endif 5936 5937 /* get a SA header */ 5938 LIST_FOREACH(sah, &sahtree, chain) { 5939 if (sah->state == SADB_SASTATE_DEAD) 5940 continue; 5941 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5942 continue; 5943 5944 /* get a SA with SPI. */ 5945 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5946 if (sav) 5947 break; 5948 } 5949 if (sah == NULL) { 5950 ipseclog((LOG_DEBUG, "key_get: no SA found.\n")); 5951 return key_senderror(so, m, ENOENT); 5952 } 5953 5954 { 5955 struct mbuf *n; 5956 u_int8_t satype; 5957 5958 /* map proto to satype */ 5959 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5960 ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n")); 5961 return key_senderror(so, m, EINVAL); 5962 } 5963 5964 /* create new sadb_msg to reply. */ 5965 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5966 mhp->msg->sadb_msg_pid); 5967 if (!n) 5968 return key_senderror(so, m, ENOBUFS); 5969 5970 m_freem(m); 5971 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5972 } 5973 } 5974 5975 /* XXX make it sysctl-configurable? */ 5976 static void 5977 key_getcomb_setlifetime(struct sadb_comb *comb) 5978 { 5979 5980 comb->sadb_comb_soft_allocations = 1; 5981 comb->sadb_comb_hard_allocations = 1; 5982 comb->sadb_comb_soft_bytes = 0; 5983 comb->sadb_comb_hard_bytes = 0; 5984 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5985 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5986 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5987 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5988 } 5989 5990 /* 5991 * XXX reorder combinations by preference 5992 * XXX no idea if the user wants ESP authentication or not 5993 */ 5994 static struct mbuf * 5995 key_getcomb_esp(void) 5996 { 5997 struct sadb_comb *comb; 5998 const struct enc_xform *algo; 5999 struct mbuf *result = NULL, *m, *n; 6000 int encmin; 6001 int i, off, o; 6002 int totlen; 6003 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6004 6005 m = NULL; 6006 for (i = 1; i <= SADB_EALG_MAX; i++) { 6007 algo = esp_algorithm_lookup(i); 6008 if (algo == NULL) 6009 continue; 6010 6011 /* discard algorithms with key size smaller than system min */ 6012 if (_BITS(algo->maxkey) < ipsec_esp_keymin) 6013 continue; 6014 if (_BITS(algo->minkey) < ipsec_esp_keymin) 6015 encmin = ipsec_esp_keymin; 6016 else 6017 encmin = _BITS(algo->minkey); 6018 6019 if (ipsec_esp_auth) 6020 m = key_getcomb_ah(); 6021 else { 6022 IPSEC_ASSERT(l <= MLEN, 6023 ("key_getcomb_esp: l=%u > MLEN=%lu", 6024 l, (u_long) MLEN)); 6025 MGET(m, M_DONTWAIT, MT_DATA); 6026 if (m) { 6027 M_ALIGN(m, l); 6028 m->m_len = l; 6029 m->m_next = NULL; 6030 memset(mtod(m, void *), 0, m->m_len); 6031 } 6032 } 6033 if (!m) 6034 goto fail; 6035 6036 totlen = 0; 6037 for (n = m; n; n = n->m_next) 6038 totlen += n->m_len; 6039 IPSEC_ASSERT((totlen % l) == 0, 6040 ("key_getcomb_esp: totlen=%u, l=%u", totlen, l)); 6041 6042 for (off = 0; off < totlen; off += l) { 6043 n = m_pulldown(m, off, l, &o); 6044 if (!n) { 6045 /* m is already freed */ 6046 goto fail; 6047 } 6048 comb = (struct sadb_comb *)(mtod(n, char *) + o); 6049 memset(comb, 0, sizeof(*comb)); 6050 key_getcomb_setlifetime(comb); 6051 comb->sadb_comb_encrypt = i; 6052 comb->sadb_comb_encrypt_minbits = encmin; 6053 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6054 } 6055 6056 if (!result) 6057 result = m; 6058 else 6059 m_cat(result, m); 6060 } 6061 6062 return result; 6063 6064 fail: 6065 if (result) 6066 m_freem(result); 6067 return NULL; 6068 } 6069 6070 static void 6071 key_getsizes_ah(const struct auth_hash *ah, int alg, 6072 u_int16_t* ksmin, u_int16_t* ksmax) 6073 { 6074 *ksmin = *ksmax = ah->keysize; 6075 if (ah->keysize == 0) { 6076 /* 6077 * Transform takes arbitrary key size but algorithm 6078 * key size is restricted. Enforce this here. 6079 */ 6080 switch (alg) { 6081 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break; 6082 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break; 6083 case SADB_X_AALG_NULL: *ksmin = 1; *ksmax = 256; break; 6084 default: 6085 DPRINTF(("key_getsizes_ah: unknown AH algorithm %u\n", 6086 alg)); 6087 break; 6088 } 6089 } 6090 } 6091 6092 /* 6093 * XXX reorder combinations by preference 6094 */ 6095 static struct mbuf * 6096 key_getcomb_ah(void) 6097 { 6098 struct sadb_comb *comb; 6099 const struct auth_hash *algo; 6100 struct mbuf *m; 6101 u_int16_t minkeysize, maxkeysize; 6102 int i; 6103 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6104 6105 m = NULL; 6106 for (i = 1; i <= SADB_AALG_MAX; i++) { 6107 #if 1 6108 /* we prefer HMAC algorithms, not old algorithms */ 6109 if (i != SADB_AALG_SHA1HMAC && 6110 i != SADB_AALG_MD5HMAC && 6111 i != SADB_X_AALG_SHA2_256 && 6112 i != SADB_X_AALG_SHA2_384 && 6113 i != SADB_X_AALG_SHA2_512) 6114 continue; 6115 #endif 6116 algo = ah_algorithm_lookup(i); 6117 if (!algo) 6118 continue; 6119 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6120 /* discard algorithms with key size smaller than system min */ 6121 if (_BITS(minkeysize) < ipsec_ah_keymin) 6122 continue; 6123 6124 if (!m) { 6125 IPSEC_ASSERT(l <= MLEN, 6126 ("key_getcomb_ah: l=%u > MLEN=%lu", 6127 l, (u_long) MLEN)); 6128 MGET(m, M_DONTWAIT, MT_DATA); 6129 if (m) { 6130 M_ALIGN(m, l); 6131 m->m_len = l; 6132 m->m_next = NULL; 6133 } 6134 } else 6135 M_PREPEND(m, l, M_DONTWAIT); 6136 if (!m) 6137 return NULL; 6138 6139 comb = mtod(m, struct sadb_comb *); 6140 memset(comb, 0, sizeof(*comb)); 6141 key_getcomb_setlifetime(comb); 6142 comb->sadb_comb_auth = i; 6143 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6144 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6145 } 6146 6147 return m; 6148 } 6149 6150 /* 6151 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6152 * XXX reorder combinations by preference 6153 */ 6154 static struct mbuf * 6155 key_getcomb_ipcomp(void) 6156 { 6157 struct sadb_comb *comb; 6158 const struct comp_algo *algo; 6159 struct mbuf *m; 6160 int i; 6161 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6162 6163 m = NULL; 6164 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6165 algo = ipcomp_algorithm_lookup(i); 6166 if (!algo) 6167 continue; 6168 6169 if (!m) { 6170 IPSEC_ASSERT(l <= MLEN, 6171 ("key_getcomb_ipcomp: l=%u > MLEN=%lu", 6172 l, (u_long) MLEN)); 6173 MGET(m, M_DONTWAIT, MT_DATA); 6174 if (m) { 6175 M_ALIGN(m, l); 6176 m->m_len = l; 6177 m->m_next = NULL; 6178 } 6179 } else 6180 M_PREPEND(m, l, M_DONTWAIT); 6181 if (!m) 6182 return NULL; 6183 6184 comb = mtod(m, struct sadb_comb *); 6185 memset(comb, 0, sizeof(*comb)); 6186 key_getcomb_setlifetime(comb); 6187 comb->sadb_comb_encrypt = i; 6188 /* what should we set into sadb_comb_*_{min,max}bits? */ 6189 } 6190 6191 return m; 6192 } 6193 6194 /* 6195 * XXX no way to pass mode (transport/tunnel) to userland 6196 * XXX replay checking? 6197 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6198 */ 6199 static struct mbuf * 6200 key_getprop(const struct secasindex *saidx) 6201 { 6202 struct sadb_prop *prop; 6203 struct mbuf *m, *n; 6204 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6205 int totlen; 6206 6207 switch (saidx->proto) { 6208 case IPPROTO_ESP: 6209 m = key_getcomb_esp(); 6210 break; 6211 case IPPROTO_AH: 6212 m = key_getcomb_ah(); 6213 break; 6214 case IPPROTO_IPCOMP: 6215 m = key_getcomb_ipcomp(); 6216 break; 6217 default: 6218 return NULL; 6219 } 6220 6221 if (!m) 6222 return NULL; 6223 M_PREPEND(m, l, M_DONTWAIT); 6224 if (!m) 6225 return NULL; 6226 6227 totlen = 0; 6228 for (n = m; n; n = n->m_next) 6229 totlen += n->m_len; 6230 6231 prop = mtod(m, struct sadb_prop *); 6232 memset(prop, 0, sizeof(*prop)); 6233 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6234 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6235 prop->sadb_prop_replay = 32; /* XXX */ 6236 6237 return m; 6238 } 6239 6240 /* 6241 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6242 * send 6243 * <base, SA, address(SD), (address(P)), x_policy, 6244 * (identity(SD),) (sensitivity,) proposal> 6245 * to KMD, and expect to receive 6246 * <base> with SADB_ACQUIRE if error occurred, 6247 * or 6248 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6249 * from KMD by PF_KEY. 6250 * 6251 * XXX x_policy is outside of RFC2367 (KAME extension). 6252 * XXX sensitivity is not supported. 6253 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6254 * see comment for key_getcomb_ipcomp(). 6255 * 6256 * OUT: 6257 * 0 : succeed 6258 * others: error number 6259 */ 6260 static int 6261 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6262 { 6263 struct mbuf *result = NULL, *m; 6264 #ifndef IPSEC_NONBLOCK_ACQUIRE 6265 struct secacq *newacq; 6266 #endif 6267 u_int8_t satype; 6268 int error = -1; 6269 u_int32_t seq; 6270 6271 /* sanity check */ 6272 IPSEC_ASSERT(saidx != NULL, ("key_acquire: null saidx")); 6273 satype = key_proto2satype(saidx->proto); 6274 IPSEC_ASSERT(satype != 0, 6275 ("key_acquire: null satype, protocol %u", saidx->proto)); 6276 6277 #ifndef IPSEC_NONBLOCK_ACQUIRE 6278 /* 6279 * We never do anything about acquirng SA. There is anather 6280 * solution that kernel blocks to send SADB_ACQUIRE message until 6281 * getting something message from IKEd. In later case, to be 6282 * managed with ACQUIRING list. 6283 */ 6284 /* Get an entry to check whether sending message or not. */ 6285 if ((newacq = key_getacq(saidx)) != NULL) { 6286 if (key_blockacq_count < newacq->count) { 6287 /* reset counter and do send message. */ 6288 newacq->count = 0; 6289 } else { 6290 /* increment counter and do nothing. */ 6291 newacq->count++; 6292 return 0; 6293 } 6294 } else { 6295 /* make new entry for blocking to send SADB_ACQUIRE. */ 6296 if ((newacq = key_newacq(saidx)) == NULL) 6297 return ENOBUFS; 6298 6299 /* add to acqtree */ 6300 LIST_INSERT_HEAD(&acqtree, newacq, chain); 6301 } 6302 #endif 6303 6304 6305 #ifndef IPSEC_NONBLOCK_ACQUIRE 6306 seq = newacq->seq; 6307 #else 6308 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 6309 #endif 6310 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6311 if (!m) { 6312 error = ENOBUFS; 6313 goto fail; 6314 } 6315 result = m; 6316 6317 /* set sadb_address for saidx's. */ 6318 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6319 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6320 if (!m) { 6321 error = ENOBUFS; 6322 goto fail; 6323 } 6324 m_cat(result, m); 6325 6326 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6327 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6328 if (!m) { 6329 error = ENOBUFS; 6330 goto fail; 6331 } 6332 m_cat(result, m); 6333 6334 /* XXX proxy address (optional) */ 6335 6336 /* set sadb_x_policy */ 6337 if (sp) { 6338 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 6339 if (!m) { 6340 error = ENOBUFS; 6341 goto fail; 6342 } 6343 m_cat(result, m); 6344 } 6345 6346 /* XXX identity (optional) */ 6347 #if 0 6348 if (idexttype && fqdn) { 6349 /* create identity extension (FQDN) */ 6350 struct sadb_ident *id; 6351 int fqdnlen; 6352 6353 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6354 id = (struct sadb_ident *)p; 6355 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6356 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6357 id->sadb_ident_exttype = idexttype; 6358 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6359 memcpy(id + 1, fqdn, fqdnlen); 6360 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6361 } 6362 6363 if (idexttype) { 6364 /* create identity extension (USERFQDN) */ 6365 struct sadb_ident *id; 6366 int userfqdnlen; 6367 6368 if (userfqdn) { 6369 /* +1 for terminating-NUL */ 6370 userfqdnlen = strlen(userfqdn) + 1; 6371 } else 6372 userfqdnlen = 0; 6373 id = (struct sadb_ident *)p; 6374 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6375 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6376 id->sadb_ident_exttype = idexttype; 6377 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6378 /* XXX is it correct? */ 6379 if (curlwp) 6380 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred); 6381 if (userfqdn && userfqdnlen) 6382 memcpy(id + 1, userfqdn, userfqdnlen); 6383 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6384 } 6385 #endif 6386 6387 /* XXX sensitivity (optional) */ 6388 6389 /* create proposal/combination extension */ 6390 m = key_getprop(saidx); 6391 #if 0 6392 /* 6393 * spec conformant: always attach proposal/combination extension, 6394 * the problem is that we have no way to attach it for ipcomp, 6395 * due to the way sadb_comb is declared in RFC2367. 6396 */ 6397 if (!m) { 6398 error = ENOBUFS; 6399 goto fail; 6400 } 6401 m_cat(result, m); 6402 #else 6403 /* 6404 * outside of spec; make proposal/combination extension optional. 6405 */ 6406 if (m) 6407 m_cat(result, m); 6408 #endif 6409 6410 if ((result->m_flags & M_PKTHDR) == 0) { 6411 error = EINVAL; 6412 goto fail; 6413 } 6414 6415 if (result->m_len < sizeof(struct sadb_msg)) { 6416 result = m_pullup(result, sizeof(struct sadb_msg)); 6417 if (result == NULL) { 6418 error = ENOBUFS; 6419 goto fail; 6420 } 6421 } 6422 6423 result->m_pkthdr.len = 0; 6424 for (m = result; m; m = m->m_next) 6425 result->m_pkthdr.len += m->m_len; 6426 6427 mtod(result, struct sadb_msg *)->sadb_msg_len = 6428 PFKEY_UNIT64(result->m_pkthdr.len); 6429 6430 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6431 6432 fail: 6433 if (result) 6434 m_freem(result); 6435 return error; 6436 } 6437 6438 #ifndef IPSEC_NONBLOCK_ACQUIRE 6439 static struct secacq * 6440 key_newacq(const struct secasindex *saidx) 6441 { 6442 struct secacq *newacq; 6443 6444 /* get new entry */ 6445 KMALLOC(newacq, struct secacq *, sizeof(struct secacq)); 6446 if (newacq == NULL) { 6447 ipseclog((LOG_DEBUG, "key_newacq: No more memory.\n")); 6448 return NULL; 6449 } 6450 memset(newacq, 0, sizeof(*newacq)); 6451 6452 /* copy secindex */ 6453 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx)); 6454 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); 6455 newacq->created = time_uptime; 6456 newacq->count = 0; 6457 6458 return newacq; 6459 } 6460 6461 static struct secacq * 6462 key_getacq(const struct secasindex *saidx) 6463 { 6464 struct secacq *acq; 6465 6466 LIST_FOREACH(acq, &acqtree, chain) { 6467 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 6468 return acq; 6469 } 6470 6471 return NULL; 6472 } 6473 6474 static struct secacq * 6475 key_getacqbyseq(u_int32_t seq) 6476 { 6477 struct secacq *acq; 6478 6479 LIST_FOREACH(acq, &acqtree, chain) { 6480 if (acq->seq == seq) 6481 return acq; 6482 } 6483 6484 return NULL; 6485 } 6486 #endif 6487 6488 static struct secspacq * 6489 key_newspacq(const struct secpolicyindex *spidx) 6490 { 6491 struct secspacq *acq; 6492 6493 /* get new entry */ 6494 KMALLOC(acq, struct secspacq *, sizeof(struct secspacq)); 6495 if (acq == NULL) { 6496 ipseclog((LOG_DEBUG, "key_newspacq: No more memory.\n")); 6497 return NULL; 6498 } 6499 memset(acq, 0, sizeof(*acq)); 6500 6501 /* copy secindex */ 6502 memcpy(&acq->spidx, spidx, sizeof(acq->spidx)); 6503 acq->created = time_uptime; 6504 acq->count = 0; 6505 6506 return acq; 6507 } 6508 6509 static struct secspacq * 6510 key_getspacq(const struct secpolicyindex *spidx) 6511 { 6512 struct secspacq *acq; 6513 6514 LIST_FOREACH(acq, &spacqtree, chain) { 6515 if (key_cmpspidx_exactly(spidx, &acq->spidx)) 6516 return acq; 6517 } 6518 6519 return NULL; 6520 } 6521 6522 /* 6523 * SADB_ACQUIRE processing, 6524 * in first situation, is receiving 6525 * <base> 6526 * from the ikmpd, and clear sequence of its secasvar entry. 6527 * 6528 * In second situation, is receiving 6529 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6530 * from a user land process, and return 6531 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6532 * to the socket. 6533 * 6534 * m will always be freed. 6535 */ 6536 static int 6537 key_acquire2(struct socket *so, struct mbuf *m, 6538 const struct sadb_msghdr *mhp) 6539 { 6540 const struct sadb_address *src0, *dst0; 6541 struct secasindex saidx; 6542 struct secashead *sah; 6543 u_int16_t proto; 6544 int error; 6545 6546 /* sanity check */ 6547 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 6548 panic("key_acquire2: NULL pointer is passed"); 6549 6550 /* 6551 * Error message from KMd. 6552 * We assume that if error was occurred in IKEd, the length of PFKEY 6553 * message is equal to the size of sadb_msg structure. 6554 * We do not raise error even if error occurred in this function. 6555 */ 6556 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6557 #ifndef IPSEC_NONBLOCK_ACQUIRE 6558 struct secacq *acq; 6559 6560 /* check sequence number */ 6561 if (mhp->msg->sadb_msg_seq == 0) { 6562 ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n")); 6563 m_freem(m); 6564 return 0; 6565 } 6566 6567 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6568 /* 6569 * the specified larval SA is already gone, or we got 6570 * a bogus sequence number. we can silently ignore it. 6571 */ 6572 m_freem(m); 6573 return 0; 6574 } 6575 6576 /* reset acq counter in order to deletion by timehander. */ 6577 acq->created = time_uptime; 6578 acq->count = 0; 6579 #endif 6580 m_freem(m); 6581 return 0; 6582 } 6583 6584 /* 6585 * This message is from user land. 6586 */ 6587 6588 /* map satype to proto */ 6589 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6590 ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n")); 6591 return key_senderror(so, m, EINVAL); 6592 } 6593 6594 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6595 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6596 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6597 /* error */ 6598 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n")); 6599 return key_senderror(so, m, EINVAL); 6600 } 6601 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6602 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6603 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6604 /* error */ 6605 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n")); 6606 return key_senderror(so, m, EINVAL); 6607 } 6608 6609 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6610 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6611 6612 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1, 6613 dst0 + 1, &saidx)) != 0) 6614 return key_senderror(so, m, EINVAL); 6615 6616 #ifdef IPSEC_NAT_T 6617 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0) 6618 return key_senderror(so, m, EINVAL); 6619 #endif 6620 6621 /* get a SA index */ 6622 LIST_FOREACH(sah, &sahtree, chain) { 6623 if (sah->state == SADB_SASTATE_DEAD) 6624 continue; 6625 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6626 break; 6627 } 6628 if (sah != NULL) { 6629 ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n")); 6630 return key_senderror(so, m, EEXIST); 6631 } 6632 6633 error = key_acquire(&saidx, NULL); 6634 if (error != 0) { 6635 ipseclog((LOG_DEBUG, "key_acquire2: error %d returned " 6636 "from key_acquire.\n", mhp->msg->sadb_msg_errno)); 6637 return key_senderror(so, m, error); 6638 } 6639 6640 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6641 } 6642 6643 /* 6644 * SADB_REGISTER processing. 6645 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6646 * receive 6647 * <base> 6648 * from the ikmpd, and register a socket to send PF_KEY messages, 6649 * and send 6650 * <base, supported> 6651 * to KMD by PF_KEY. 6652 * If socket is detached, must free from regnode. 6653 * 6654 * m will always be freed. 6655 */ 6656 static int 6657 key_register(struct socket *so, struct mbuf *m, 6658 const struct sadb_msghdr *mhp) 6659 { 6660 struct secreg *reg, *newreg = 0; 6661 6662 /* sanity check */ 6663 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 6664 panic("key_register: NULL pointer is passed"); 6665 6666 /* check for invalid register message */ 6667 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0])) 6668 return key_senderror(so, m, EINVAL); 6669 6670 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6671 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6672 goto setmsg; 6673 6674 /* check whether existing or not */ 6675 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) { 6676 if (reg->so == so) { 6677 ipseclog((LOG_DEBUG, "key_register: socket exists already.\n")); 6678 return key_senderror(so, m, EEXIST); 6679 } 6680 } 6681 6682 /* create regnode */ 6683 KMALLOC(newreg, struct secreg *, sizeof(*newreg)); 6684 if (newreg == NULL) { 6685 ipseclog((LOG_DEBUG, "key_register: No more memory.\n")); 6686 return key_senderror(so, m, ENOBUFS); 6687 } 6688 memset(newreg, 0, sizeof(*newreg)); 6689 6690 newreg->so = so; 6691 ((struct keycb *)sotorawcb(so))->kp_registered++; 6692 6693 /* add regnode to regtree. */ 6694 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain); 6695 6696 setmsg: 6697 { 6698 struct mbuf *n; 6699 struct sadb_msg *newmsg; 6700 struct sadb_supported *sup; 6701 u_int len, alen, elen; 6702 int off; 6703 int i; 6704 struct sadb_alg *alg; 6705 6706 /* create new sadb_msg to reply. */ 6707 alen = 0; 6708 for (i = 1; i <= SADB_AALG_MAX; i++) { 6709 if (ah_algorithm_lookup(i)) 6710 alen += sizeof(struct sadb_alg); 6711 } 6712 if (alen) 6713 alen += sizeof(struct sadb_supported); 6714 elen = 0; 6715 for (i = 1; i <= SADB_EALG_MAX; i++) { 6716 if (esp_algorithm_lookup(i)) 6717 elen += sizeof(struct sadb_alg); 6718 } 6719 if (elen) 6720 elen += sizeof(struct sadb_supported); 6721 6722 len = sizeof(struct sadb_msg) + alen + elen; 6723 6724 if (len > MCLBYTES) 6725 return key_senderror(so, m, ENOBUFS); 6726 6727 MGETHDR(n, M_DONTWAIT, MT_DATA); 6728 if (len > MHLEN) { 6729 MCLGET(n, M_DONTWAIT); 6730 if ((n->m_flags & M_EXT) == 0) { 6731 m_freem(n); 6732 n = NULL; 6733 } 6734 } 6735 if (!n) 6736 return key_senderror(so, m, ENOBUFS); 6737 6738 n->m_pkthdr.len = n->m_len = len; 6739 n->m_next = NULL; 6740 off = 0; 6741 6742 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 6743 newmsg = mtod(n, struct sadb_msg *); 6744 newmsg->sadb_msg_errno = 0; 6745 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6746 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6747 6748 /* for authentication algorithm */ 6749 if (alen) { 6750 sup = (struct sadb_supported *)(mtod(n, char *) + off); 6751 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6752 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6753 off += PFKEY_ALIGN8(sizeof(*sup)); 6754 6755 for (i = 1; i <= SADB_AALG_MAX; i++) { 6756 const struct auth_hash *aalgo; 6757 u_int16_t minkeysize, maxkeysize; 6758 6759 aalgo = ah_algorithm_lookup(i); 6760 if (!aalgo) 6761 continue; 6762 alg = (struct sadb_alg *)(mtod(n, char *) + off); 6763 alg->sadb_alg_id = i; 6764 alg->sadb_alg_ivlen = 0; 6765 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6766 alg->sadb_alg_minbits = _BITS(minkeysize); 6767 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6768 off += PFKEY_ALIGN8(sizeof(*alg)); 6769 } 6770 } 6771 6772 /* for encryption algorithm */ 6773 if (elen) { 6774 sup = (struct sadb_supported *)(mtod(n, char *) + off); 6775 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6776 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6777 off += PFKEY_ALIGN8(sizeof(*sup)); 6778 6779 for (i = 1; i <= SADB_EALG_MAX; i++) { 6780 const struct enc_xform *ealgo; 6781 6782 ealgo = esp_algorithm_lookup(i); 6783 if (!ealgo) 6784 continue; 6785 alg = (struct sadb_alg *)(mtod(n, char *) + off); 6786 alg->sadb_alg_id = i; 6787 alg->sadb_alg_ivlen = ealgo->blocksize; 6788 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6789 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6790 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6791 } 6792 } 6793 6794 #ifdef DIAGNOSTIC 6795 if (off != len) 6796 panic("length assumption failed in key_register"); 6797 #endif 6798 6799 m_freem(m); 6800 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6801 } 6802 } 6803 6804 /* 6805 * free secreg entry registered. 6806 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6807 */ 6808 void 6809 key_freereg(struct socket *so) 6810 { 6811 struct secreg *reg; 6812 int i; 6813 6814 /* sanity check */ 6815 if (so == NULL) 6816 panic("key_freereg: NULL pointer is passed"); 6817 6818 /* 6819 * check whether existing or not. 6820 * check all type of SA, because there is a potential that 6821 * one socket is registered to multiple type of SA. 6822 */ 6823 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6824 LIST_FOREACH(reg, ®tree[i], chain) { 6825 if (reg->so == so 6826 && __LIST_CHAINED(reg)) { 6827 LIST_REMOVE(reg, chain); 6828 KFREE(reg); 6829 break; 6830 } 6831 } 6832 } 6833 6834 return; 6835 } 6836 6837 /* 6838 * SADB_EXPIRE processing 6839 * send 6840 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6841 * to KMD by PF_KEY. 6842 * NOTE: We send only soft lifetime extension. 6843 * 6844 * OUT: 0 : succeed 6845 * others : error number 6846 */ 6847 static int 6848 key_expire(struct secasvar *sav) 6849 { 6850 int s; 6851 int satype; 6852 struct mbuf *result = NULL, *m; 6853 int len; 6854 int error = -1; 6855 struct sadb_lifetime *lt; 6856 6857 /* XXX: Why do we lock ? */ 6858 s = splsoftnet(); /*called from softclock()*/ 6859 6860 /* sanity check */ 6861 if (sav == NULL) 6862 panic("key_expire: NULL pointer is passed"); 6863 if (sav->sah == NULL) 6864 panic("key_expire: Why was SA index in SA NULL"); 6865 if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) 6866 panic("key_expire: invalid proto is passed"); 6867 6868 /* set msg header */ 6869 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6870 if (!m) { 6871 error = ENOBUFS; 6872 goto fail; 6873 } 6874 result = m; 6875 6876 /* create SA extension */ 6877 m = key_setsadbsa(sav); 6878 if (!m) { 6879 error = ENOBUFS; 6880 goto fail; 6881 } 6882 m_cat(result, m); 6883 6884 /* create SA extension */ 6885 m = key_setsadbxsa2(sav->sah->saidx.mode, 6886 sav->replay ? sav->replay->count : 0, 6887 sav->sah->saidx.reqid); 6888 if (!m) { 6889 error = ENOBUFS; 6890 goto fail; 6891 } 6892 m_cat(result, m); 6893 6894 /* create lifetime extension (current and soft) */ 6895 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6896 m = key_alloc_mbuf(len); 6897 if (!m || m->m_next) { /*XXX*/ 6898 if (m) 6899 m_freem(m); 6900 error = ENOBUFS; 6901 goto fail; 6902 } 6903 memset(mtod(m, void *), 0, len); 6904 lt = mtod(m, struct sadb_lifetime *); 6905 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6906 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6907 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations; 6908 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes; 6909 lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime 6910 + time_second - time_uptime; 6911 lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime 6912 + time_second - time_uptime; 6913 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 6914 memcpy(lt, sav->lft_s, sizeof(*lt)); 6915 m_cat(result, m); 6916 6917 /* set sadb_address for source */ 6918 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6919 &sav->sah->saidx.src.sa, 6920 FULLMASK, IPSEC_ULPROTO_ANY); 6921 if (!m) { 6922 error = ENOBUFS; 6923 goto fail; 6924 } 6925 m_cat(result, m); 6926 6927 /* set sadb_address for destination */ 6928 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6929 &sav->sah->saidx.dst.sa, 6930 FULLMASK, IPSEC_ULPROTO_ANY); 6931 if (!m) { 6932 error = ENOBUFS; 6933 goto fail; 6934 } 6935 m_cat(result, m); 6936 6937 if ((result->m_flags & M_PKTHDR) == 0) { 6938 error = EINVAL; 6939 goto fail; 6940 } 6941 6942 if (result->m_len < sizeof(struct sadb_msg)) { 6943 result = m_pullup(result, sizeof(struct sadb_msg)); 6944 if (result == NULL) { 6945 error = ENOBUFS; 6946 goto fail; 6947 } 6948 } 6949 6950 result->m_pkthdr.len = 0; 6951 for (m = result; m; m = m->m_next) 6952 result->m_pkthdr.len += m->m_len; 6953 6954 mtod(result, struct sadb_msg *)->sadb_msg_len = 6955 PFKEY_UNIT64(result->m_pkthdr.len); 6956 6957 splx(s); 6958 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6959 6960 fail: 6961 if (result) 6962 m_freem(result); 6963 splx(s); 6964 return error; 6965 } 6966 6967 /* 6968 * SADB_FLUSH processing 6969 * receive 6970 * <base> 6971 * from the ikmpd, and free all entries in secastree. 6972 * and send, 6973 * <base> 6974 * to the ikmpd. 6975 * NOTE: to do is only marking SADB_SASTATE_DEAD. 6976 * 6977 * m will always be freed. 6978 */ 6979 static int 6980 key_flush(struct socket *so, struct mbuf *m, 6981 const struct sadb_msghdr *mhp) 6982 { 6983 struct sadb_msg *newmsg; 6984 struct secashead *sah, *nextsah; 6985 struct secasvar *sav, *nextsav; 6986 u_int16_t proto; 6987 u_int8_t state; 6988 u_int stateidx; 6989 6990 /* sanity check */ 6991 if (so == NULL || mhp == NULL || mhp->msg == NULL) 6992 panic("key_flush: NULL pointer is passed"); 6993 6994 /* map satype to proto */ 6995 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6996 ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n")); 6997 return key_senderror(so, m, EINVAL); 6998 } 6999 7000 /* no SATYPE specified, i.e. flushing all SA. */ 7001 for (sah = LIST_FIRST(&sahtree); 7002 sah != NULL; 7003 sah = nextsah) { 7004 nextsah = LIST_NEXT(sah, chain); 7005 7006 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7007 && proto != sah->saidx.proto) 7008 continue; 7009 7010 for (stateidx = 0; 7011 stateidx < _ARRAYLEN(saorder_state_alive); 7012 stateidx++) { 7013 state = saorder_state_any[stateidx]; 7014 for (sav = LIST_FIRST(&sah->savtree[state]); 7015 sav != NULL; 7016 sav = nextsav) { 7017 7018 nextsav = LIST_NEXT(sav, chain); 7019 7020 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 7021 KEY_FREESAV(&sav); 7022 } 7023 } 7024 7025 sah->state = SADB_SASTATE_DEAD; 7026 } 7027 7028 if (m->m_len < sizeof(struct sadb_msg) || 7029 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7030 ipseclog((LOG_DEBUG, "key_flush: No more memory.\n")); 7031 return key_senderror(so, m, ENOBUFS); 7032 } 7033 7034 if (m->m_next) 7035 m_freem(m->m_next); 7036 m->m_next = NULL; 7037 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7038 newmsg = mtod(m, struct sadb_msg *); 7039 newmsg->sadb_msg_errno = 0; 7040 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7041 7042 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7043 } 7044 7045 7046 static struct mbuf * 7047 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid) 7048 { 7049 struct secashead *sah; 7050 struct secasvar *sav; 7051 u_int16_t proto; 7052 u_int stateidx; 7053 u_int8_t satype; 7054 u_int8_t state; 7055 int cnt; 7056 struct mbuf *m, *n, *prev; 7057 int totlen; 7058 7059 *lenp = 0; 7060 7061 /* map satype to proto */ 7062 if ((proto = key_satype2proto(req_satype)) == 0) { 7063 *errorp = EINVAL; 7064 return (NULL); 7065 } 7066 7067 /* count sav entries to be sent to userland. */ 7068 cnt = 0; 7069 LIST_FOREACH(sah, &sahtree, chain) { 7070 if (req_satype != SADB_SATYPE_UNSPEC && 7071 proto != sah->saidx.proto) 7072 continue; 7073 7074 for (stateidx = 0; 7075 stateidx < _ARRAYLEN(saorder_state_any); 7076 stateidx++) { 7077 state = saorder_state_any[stateidx]; 7078 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7079 cnt++; 7080 } 7081 } 7082 } 7083 7084 if (cnt == 0) { 7085 *errorp = ENOENT; 7086 return (NULL); 7087 } 7088 7089 /* send this to the userland, one at a time. */ 7090 m = NULL; 7091 prev = m; 7092 LIST_FOREACH(sah, &sahtree, chain) { 7093 if (req_satype != SADB_SATYPE_UNSPEC && 7094 proto != sah->saidx.proto) 7095 continue; 7096 7097 /* map proto to satype */ 7098 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7099 m_freem(m); 7100 *errorp = EINVAL; 7101 return (NULL); 7102 } 7103 7104 for (stateidx = 0; 7105 stateidx < _ARRAYLEN(saorder_state_any); 7106 stateidx++) { 7107 state = saorder_state_any[stateidx]; 7108 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7109 n = key_setdumpsa(sav, SADB_DUMP, satype, 7110 --cnt, pid); 7111 if (!n) { 7112 m_freem(m); 7113 *errorp = ENOBUFS; 7114 return (NULL); 7115 } 7116 7117 totlen += n->m_pkthdr.len; 7118 if (!m) 7119 m = n; 7120 else 7121 prev->m_nextpkt = n; 7122 prev = n; 7123 } 7124 } 7125 } 7126 7127 if (!m) { 7128 *errorp = EINVAL; 7129 return (NULL); 7130 } 7131 7132 if ((m->m_flags & M_PKTHDR) != 0) { 7133 m->m_pkthdr.len = 0; 7134 for (n = m; n; n = n->m_next) 7135 m->m_pkthdr.len += n->m_len; 7136 } 7137 7138 *errorp = 0; 7139 return (m); 7140 } 7141 7142 /* 7143 * SADB_DUMP processing 7144 * dump all entries including status of DEAD in SAD. 7145 * receive 7146 * <base> 7147 * from the ikmpd, and dump all secasvar leaves 7148 * and send, 7149 * <base> ..... 7150 * to the ikmpd. 7151 * 7152 * m will always be freed. 7153 */ 7154 static int 7155 key_dump(struct socket *so, struct mbuf *m0, 7156 const struct sadb_msghdr *mhp) 7157 { 7158 u_int16_t proto; 7159 u_int8_t satype; 7160 struct mbuf *n; 7161 int s; 7162 int error, len, ok; 7163 7164 /* sanity check */ 7165 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL) 7166 panic("key_dump: NULL pointer is passed"); 7167 7168 /* map satype to proto */ 7169 satype = mhp->msg->sadb_msg_satype; 7170 if ((proto = key_satype2proto(satype)) == 0) { 7171 ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n")); 7172 return key_senderror(so, m0, EINVAL); 7173 } 7174 7175 /* 7176 * If the requestor has insufficient socket-buffer space 7177 * for the entire chain, nobody gets any response to the DUMP. 7178 * XXX For now, only the requestor ever gets anything. 7179 * Moreover, if the requestor has any space at all, they receive 7180 * the entire chain, otherwise the request is refused with ENOBUFS. 7181 */ 7182 if (sbspace(&so->so_rcv) <= 0) { 7183 return key_senderror(so, m0, ENOBUFS); 7184 } 7185 7186 s = splsoftnet(); 7187 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid); 7188 splx(s); 7189 7190 if (n == NULL) { 7191 return key_senderror(so, m0, ENOENT); 7192 } 7193 { 7194 uint64_t *ps = PFKEY_STAT_GETREF(); 7195 ps[PFKEY_STAT_IN_TOTAL]++; 7196 ps[PFKEY_STAT_IN_BYTES] += len; 7197 PFKEY_STAT_PUTREF(); 7198 } 7199 7200 /* 7201 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 7202 * The requestor receives either the entire chain, or an 7203 * error message with ENOBUFS. 7204 * 7205 * sbappendaddrchain() takes the chain of entries, one 7206 * packet-record per SPD entry, prepends the key_src sockaddr 7207 * to each packet-record, links the sockaddr mbufs into a new 7208 * list of records, then appends the entire resulting 7209 * list to the requesting socket. 7210 */ 7211 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, 7212 n, SB_PRIO_ONESHOT_OVERFLOW); 7213 7214 if (!ok) { 7215 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 7216 m_freem(n); 7217 return key_senderror(so, m0, ENOBUFS); 7218 } 7219 7220 m_freem(m0); 7221 return 0; 7222 } 7223 7224 /* 7225 * SADB_X_PROMISC processing 7226 * 7227 * m will always be freed. 7228 */ 7229 static int 7230 key_promisc(struct socket *so, struct mbuf *m, 7231 const struct sadb_msghdr *mhp) 7232 { 7233 int olen; 7234 7235 /* sanity check */ 7236 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 7237 panic("key_promisc: NULL pointer is passed"); 7238 7239 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7240 7241 if (olen < sizeof(struct sadb_msg)) { 7242 #if 1 7243 return key_senderror(so, m, EINVAL); 7244 #else 7245 m_freem(m); 7246 return 0; 7247 #endif 7248 } else if (olen == sizeof(struct sadb_msg)) { 7249 /* enable/disable promisc mode */ 7250 struct keycb *kp; 7251 7252 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7253 return key_senderror(so, m, EINVAL); 7254 mhp->msg->sadb_msg_errno = 0; 7255 switch (mhp->msg->sadb_msg_satype) { 7256 case 0: 7257 case 1: 7258 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7259 break; 7260 default: 7261 return key_senderror(so, m, EINVAL); 7262 } 7263 7264 /* send the original message back to everyone */ 7265 mhp->msg->sadb_msg_errno = 0; 7266 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7267 } else { 7268 /* send packet as is */ 7269 7270 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7271 7272 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7273 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7274 } 7275 } 7276 7277 static int (*key_typesw[]) (struct socket *, struct mbuf *, 7278 const struct sadb_msghdr *) = { 7279 NULL, /* SADB_RESERVED */ 7280 key_getspi, /* SADB_GETSPI */ 7281 key_update, /* SADB_UPDATE */ 7282 key_add, /* SADB_ADD */ 7283 key_delete, /* SADB_DELETE */ 7284 key_get, /* SADB_GET */ 7285 key_acquire2, /* SADB_ACQUIRE */ 7286 key_register, /* SADB_REGISTER */ 7287 NULL, /* SADB_EXPIRE */ 7288 key_flush, /* SADB_FLUSH */ 7289 key_dump, /* SADB_DUMP */ 7290 key_promisc, /* SADB_X_PROMISC */ 7291 NULL, /* SADB_X_PCHANGE */ 7292 key_spdadd, /* SADB_X_SPDUPDATE */ 7293 key_spdadd, /* SADB_X_SPDADD */ 7294 key_spddelete, /* SADB_X_SPDDELETE */ 7295 key_spdget, /* SADB_X_SPDGET */ 7296 NULL, /* SADB_X_SPDACQUIRE */ 7297 key_spddump, /* SADB_X_SPDDUMP */ 7298 key_spdflush, /* SADB_X_SPDFLUSH */ 7299 key_spdadd, /* SADB_X_SPDSETIDX */ 7300 NULL, /* SADB_X_SPDEXPIRE */ 7301 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7302 #ifdef IPSEC_NAT_T 7303 key_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */ 7304 #endif 7305 }; 7306 7307 /* 7308 * parse sadb_msg buffer to process PFKEYv2, 7309 * and create a data to response if needed. 7310 * I think to be dealed with mbuf directly. 7311 * IN: 7312 * msgp : pointer to pointer to a received buffer pulluped. 7313 * This is rewrited to response. 7314 * so : pointer to socket. 7315 * OUT: 7316 * length for buffer to send to user process. 7317 */ 7318 int 7319 key_parse(struct mbuf *m, struct socket *so) 7320 { 7321 struct sadb_msg *msg; 7322 struct sadb_msghdr mh; 7323 u_int orglen; 7324 int error; 7325 int target; 7326 7327 /* sanity check */ 7328 if (m == NULL || so == NULL) 7329 panic("key_parse: NULL pointer is passed"); 7330 7331 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7332 KEYDEBUG(KEYDEBUG_KEY_DUMP, 7333 ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n")); 7334 kdebug_sadb(msg)); 7335 #endif 7336 7337 if (m->m_len < sizeof(struct sadb_msg)) { 7338 m = m_pullup(m, sizeof(struct sadb_msg)); 7339 if (!m) 7340 return ENOBUFS; 7341 } 7342 msg = mtod(m, struct sadb_msg *); 7343 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7344 target = KEY_SENDUP_ONE; 7345 7346 if ((m->m_flags & M_PKTHDR) == 0 || 7347 m->m_pkthdr.len != m->m_pkthdr.len) { 7348 ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n")); 7349 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7350 error = EINVAL; 7351 goto senderror; 7352 } 7353 7354 if (msg->sadb_msg_version != PF_KEY_V2) { 7355 ipseclog((LOG_DEBUG, 7356 "key_parse: PF_KEY version %u is mismatched.\n", 7357 msg->sadb_msg_version)); 7358 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER); 7359 error = EINVAL; 7360 goto senderror; 7361 } 7362 7363 if (msg->sadb_msg_type > SADB_MAX) { 7364 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n", 7365 msg->sadb_msg_type)); 7366 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 7367 error = EINVAL; 7368 goto senderror; 7369 } 7370 7371 /* for old-fashioned code - should be nuked */ 7372 if (m->m_pkthdr.len > MCLBYTES) { 7373 m_freem(m); 7374 return ENOBUFS; 7375 } 7376 if (m->m_next) { 7377 struct mbuf *n; 7378 7379 MGETHDR(n, M_DONTWAIT, MT_DATA); 7380 if (n && m->m_pkthdr.len > MHLEN) { 7381 MCLGET(n, M_DONTWAIT); 7382 if ((n->m_flags & M_EXT) == 0) { 7383 m_free(n); 7384 n = NULL; 7385 } 7386 } 7387 if (!n) { 7388 m_freem(m); 7389 return ENOBUFS; 7390 } 7391 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *)); 7392 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7393 n->m_next = NULL; 7394 m_freem(m); 7395 m = n; 7396 } 7397 7398 /* align the mbuf chain so that extensions are in contiguous region. */ 7399 error = key_align(m, &mh); 7400 if (error) 7401 return error; 7402 7403 if (m->m_next) { /*XXX*/ 7404 m_freem(m); 7405 return ENOBUFS; 7406 } 7407 7408 msg = mh.msg; 7409 7410 /* check SA type */ 7411 switch (msg->sadb_msg_satype) { 7412 case SADB_SATYPE_UNSPEC: 7413 switch (msg->sadb_msg_type) { 7414 case SADB_GETSPI: 7415 case SADB_UPDATE: 7416 case SADB_ADD: 7417 case SADB_DELETE: 7418 case SADB_GET: 7419 case SADB_ACQUIRE: 7420 case SADB_EXPIRE: 7421 ipseclog((LOG_DEBUG, "key_parse: must specify satype " 7422 "when msg type=%u.\n", msg->sadb_msg_type)); 7423 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7424 error = EINVAL; 7425 goto senderror; 7426 } 7427 break; 7428 case SADB_SATYPE_AH: 7429 case SADB_SATYPE_ESP: 7430 case SADB_X_SATYPE_IPCOMP: 7431 case SADB_X_SATYPE_TCPSIGNATURE: 7432 switch (msg->sadb_msg_type) { 7433 case SADB_X_SPDADD: 7434 case SADB_X_SPDDELETE: 7435 case SADB_X_SPDGET: 7436 case SADB_X_SPDDUMP: 7437 case SADB_X_SPDFLUSH: 7438 case SADB_X_SPDSETIDX: 7439 case SADB_X_SPDUPDATE: 7440 case SADB_X_SPDDELETE2: 7441 ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n", 7442 msg->sadb_msg_type)); 7443 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7444 error = EINVAL; 7445 goto senderror; 7446 } 7447 break; 7448 case SADB_SATYPE_RSVP: 7449 case SADB_SATYPE_OSPFV2: 7450 case SADB_SATYPE_RIPV2: 7451 case SADB_SATYPE_MIP: 7452 ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n", 7453 msg->sadb_msg_satype)); 7454 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7455 error = EOPNOTSUPP; 7456 goto senderror; 7457 case 1: /* XXX: What does it do? */ 7458 if (msg->sadb_msg_type == SADB_X_PROMISC) 7459 break; 7460 /*FALLTHROUGH*/ 7461 default: 7462 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n", 7463 msg->sadb_msg_satype)); 7464 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7465 error = EINVAL; 7466 goto senderror; 7467 } 7468 7469 /* check field of upper layer protocol and address family */ 7470 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7471 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7472 struct sadb_address *src0, *dst0; 7473 u_int plen; 7474 7475 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7476 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7477 7478 /* check upper layer protocol */ 7479 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7480 ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n")); 7481 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 7482 error = EINVAL; 7483 goto senderror; 7484 } 7485 7486 /* check family */ 7487 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7488 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7489 ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n")); 7490 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 7491 error = EINVAL; 7492 goto senderror; 7493 } 7494 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7495 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7496 ipseclog((LOG_DEBUG, 7497 "key_parse: address struct size mismatched.\n")); 7498 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 7499 error = EINVAL; 7500 goto senderror; 7501 } 7502 7503 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7504 case AF_INET: 7505 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7506 sizeof(struct sockaddr_in)) { 7507 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 7508 error = EINVAL; 7509 goto senderror; 7510 } 7511 break; 7512 case AF_INET6: 7513 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7514 sizeof(struct sockaddr_in6)) { 7515 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 7516 error = EINVAL; 7517 goto senderror; 7518 } 7519 break; 7520 default: 7521 ipseclog((LOG_DEBUG, 7522 "key_parse: unsupported address family.\n")); 7523 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 7524 error = EAFNOSUPPORT; 7525 goto senderror; 7526 } 7527 7528 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7529 case AF_INET: 7530 plen = sizeof(struct in_addr) << 3; 7531 break; 7532 case AF_INET6: 7533 plen = sizeof(struct in6_addr) << 3; 7534 break; 7535 default: 7536 plen = 0; /*fool gcc*/ 7537 break; 7538 } 7539 7540 /* check max prefix length */ 7541 if (src0->sadb_address_prefixlen > plen || 7542 dst0->sadb_address_prefixlen > plen) { 7543 ipseclog((LOG_DEBUG, 7544 "key_parse: illegal prefixlen.\n")); 7545 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 7546 error = EINVAL; 7547 goto senderror; 7548 } 7549 7550 /* 7551 * prefixlen == 0 is valid because there can be a case when 7552 * all addresses are matched. 7553 */ 7554 } 7555 7556 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 7557 key_typesw[msg->sadb_msg_type] == NULL) { 7558 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 7559 error = EINVAL; 7560 goto senderror; 7561 } 7562 7563 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 7564 7565 senderror: 7566 msg->sadb_msg_errno = error; 7567 return key_sendup_mbuf(so, m, target); 7568 } 7569 7570 static int 7571 key_senderror(struct socket *so, struct mbuf *m, int code) 7572 { 7573 struct sadb_msg *msg; 7574 7575 if (m->m_len < sizeof(struct sadb_msg)) 7576 panic("invalid mbuf passed to key_senderror"); 7577 7578 msg = mtod(m, struct sadb_msg *); 7579 msg->sadb_msg_errno = code; 7580 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7581 } 7582 7583 /* 7584 * set the pointer to each header into message buffer. 7585 * m will be freed on error. 7586 * XXX larger-than-MCLBYTES extension? 7587 */ 7588 static int 7589 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 7590 { 7591 struct mbuf *n; 7592 struct sadb_ext *ext; 7593 size_t off, end; 7594 int extlen; 7595 int toff; 7596 7597 /* sanity check */ 7598 if (m == NULL || mhp == NULL) 7599 panic("key_align: NULL pointer is passed"); 7600 if (m->m_len < sizeof(struct sadb_msg)) 7601 panic("invalid mbuf passed to key_align"); 7602 7603 /* initialize */ 7604 memset(mhp, 0, sizeof(*mhp)); 7605 7606 mhp->msg = mtod(m, struct sadb_msg *); 7607 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7608 7609 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7610 extlen = end; /*just in case extlen is not updated*/ 7611 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7612 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7613 if (!n) { 7614 /* m is already freed */ 7615 return ENOBUFS; 7616 } 7617 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 7618 7619 /* set pointer */ 7620 switch (ext->sadb_ext_type) { 7621 case SADB_EXT_SA: 7622 case SADB_EXT_ADDRESS_SRC: 7623 case SADB_EXT_ADDRESS_DST: 7624 case SADB_EXT_ADDRESS_PROXY: 7625 case SADB_EXT_LIFETIME_CURRENT: 7626 case SADB_EXT_LIFETIME_HARD: 7627 case SADB_EXT_LIFETIME_SOFT: 7628 case SADB_EXT_KEY_AUTH: 7629 case SADB_EXT_KEY_ENCRYPT: 7630 case SADB_EXT_IDENTITY_SRC: 7631 case SADB_EXT_IDENTITY_DST: 7632 case SADB_EXT_SENSITIVITY: 7633 case SADB_EXT_PROPOSAL: 7634 case SADB_EXT_SUPPORTED_AUTH: 7635 case SADB_EXT_SUPPORTED_ENCRYPT: 7636 case SADB_EXT_SPIRANGE: 7637 case SADB_X_EXT_POLICY: 7638 case SADB_X_EXT_SA2: 7639 #ifdef IPSEC_NAT_T 7640 case SADB_X_EXT_NAT_T_TYPE: 7641 case SADB_X_EXT_NAT_T_SPORT: 7642 case SADB_X_EXT_NAT_T_DPORT: 7643 case SADB_X_EXT_NAT_T_OAI: 7644 case SADB_X_EXT_NAT_T_OAR: 7645 case SADB_X_EXT_NAT_T_FRAG: 7646 #endif 7647 /* duplicate check */ 7648 /* 7649 * XXX Are there duplication payloads of either 7650 * KEY_AUTH or KEY_ENCRYPT ? 7651 */ 7652 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7653 ipseclog((LOG_DEBUG, 7654 "key_align: duplicate ext_type %u " 7655 "is passed.\n", ext->sadb_ext_type)); 7656 m_freem(m); 7657 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT); 7658 return EINVAL; 7659 } 7660 break; 7661 default: 7662 ipseclog((LOG_DEBUG, 7663 "key_align: invalid ext_type %u is passed.\n", 7664 ext->sadb_ext_type)); 7665 m_freem(m); 7666 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE); 7667 return EINVAL; 7668 } 7669 7670 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7671 7672 if (key_validate_ext(ext, extlen)) { 7673 m_freem(m); 7674 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7675 return EINVAL; 7676 } 7677 7678 n = m_pulldown(m, off, extlen, &toff); 7679 if (!n) { 7680 /* m is already freed */ 7681 return ENOBUFS; 7682 } 7683 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 7684 7685 mhp->ext[ext->sadb_ext_type] = ext; 7686 mhp->extoff[ext->sadb_ext_type] = off; 7687 mhp->extlen[ext->sadb_ext_type] = extlen; 7688 } 7689 7690 if (off != end) { 7691 m_freem(m); 7692 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7693 return EINVAL; 7694 } 7695 7696 return 0; 7697 } 7698 7699 static int 7700 key_validate_ext(const struct sadb_ext *ext, int len) 7701 { 7702 const struct sockaddr *sa; 7703 enum { NONE, ADDR } checktype = NONE; 7704 int baselen = 0; 7705 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7706 7707 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7708 return EINVAL; 7709 7710 /* if it does not match minimum/maximum length, bail */ 7711 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7712 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7713 return EINVAL; 7714 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7715 return EINVAL; 7716 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7717 return EINVAL; 7718 7719 /* more checks based on sadb_ext_type XXX need more */ 7720 switch (ext->sadb_ext_type) { 7721 case SADB_EXT_ADDRESS_SRC: 7722 case SADB_EXT_ADDRESS_DST: 7723 case SADB_EXT_ADDRESS_PROXY: 7724 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7725 checktype = ADDR; 7726 break; 7727 case SADB_EXT_IDENTITY_SRC: 7728 case SADB_EXT_IDENTITY_DST: 7729 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7730 SADB_X_IDENTTYPE_ADDR) { 7731 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7732 checktype = ADDR; 7733 } else 7734 checktype = NONE; 7735 break; 7736 default: 7737 checktype = NONE; 7738 break; 7739 } 7740 7741 switch (checktype) { 7742 case NONE: 7743 break; 7744 case ADDR: 7745 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7746 if (len < baselen + sal) 7747 return EINVAL; 7748 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7749 return EINVAL; 7750 break; 7751 } 7752 7753 return 0; 7754 } 7755 7756 static int 7757 key_do_init(void) 7758 { 7759 int i; 7760 7761 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS); 7762 7763 callout_init(&key_timehandler_ch, 0); 7764 7765 for (i = 0; i < IPSEC_DIR_MAX; i++) { 7766 LIST_INIT(&sptree[i]); 7767 } 7768 7769 LIST_INIT(&sahtree); 7770 7771 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7772 LIST_INIT(®tree[i]); 7773 } 7774 7775 #ifndef IPSEC_NONBLOCK_ACQUIRE 7776 LIST_INIT(&acqtree); 7777 #endif 7778 LIST_INIT(&spacqtree); 7779 7780 /* system default */ 7781 ip4_def_policy.policy = IPSEC_POLICY_NONE; 7782 ip4_def_policy.refcnt++; /*never reclaim this*/ 7783 7784 #ifdef INET6 7785 ip6_def_policy.policy = IPSEC_POLICY_NONE; 7786 ip6_def_policy.refcnt++; /*never reclaim this*/ 7787 #endif 7788 7789 7790 #ifndef IPSEC_DEBUG2 7791 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 7792 #endif /*IPSEC_DEBUG2*/ 7793 7794 /* initialize key statistics */ 7795 keystat.getspi_count = 1; 7796 7797 aprint_verbose("IPsec: Initialized Security Association Processing.\n"); 7798 7799 return (0); 7800 } 7801 7802 void 7803 key_init(void) 7804 { 7805 static ONCE_DECL(key_init_once); 7806 7807 RUN_ONCE(&key_init_once, key_do_init); 7808 } 7809 7810 /* 7811 * XXX: maybe This function is called after INBOUND IPsec processing. 7812 * 7813 * Special check for tunnel-mode packets. 7814 * We must make some checks for consistency between inner and outer IP header. 7815 * 7816 * xxx more checks to be provided 7817 */ 7818 int 7819 key_checktunnelsanity( 7820 struct secasvar *sav, 7821 u_int family, 7822 void *src, 7823 void *dst 7824 ) 7825 { 7826 /* sanity check */ 7827 if (sav->sah == NULL) 7828 panic("sav->sah == NULL at key_checktunnelsanity"); 7829 7830 /* XXX: check inner IP header */ 7831 7832 return 1; 7833 } 7834 7835 #if 0 7836 #define hostnamelen strlen(hostname) 7837 7838 /* 7839 * Get FQDN for the host. 7840 * If the administrator configured hostname (by hostname(1)) without 7841 * domain name, returns nothing. 7842 */ 7843 static const char * 7844 key_getfqdn(void) 7845 { 7846 int i; 7847 int hasdot; 7848 static char fqdn[MAXHOSTNAMELEN + 1]; 7849 7850 if (!hostnamelen) 7851 return NULL; 7852 7853 /* check if it comes with domain name. */ 7854 hasdot = 0; 7855 for (i = 0; i < hostnamelen; i++) { 7856 if (hostname[i] == '.') 7857 hasdot++; 7858 } 7859 if (!hasdot) 7860 return NULL; 7861 7862 /* NOTE: hostname may not be NUL-terminated. */ 7863 memset(fqdn, 0, sizeof(fqdn)); 7864 memcpy(fqdn, hostname, hostnamelen); 7865 fqdn[hostnamelen] = '\0'; 7866 return fqdn; 7867 } 7868 7869 /* 7870 * get username@FQDN for the host/user. 7871 */ 7872 static const char * 7873 key_getuserfqdn(void) 7874 { 7875 const char *host; 7876 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2]; 7877 struct proc *p = curproc; 7878 char *q; 7879 7880 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session) 7881 return NULL; 7882 if (!(host = key_getfqdn())) 7883 return NULL; 7884 7885 /* NOTE: s_login may not be-NUL terminated. */ 7886 memset(userfqdn, 0, sizeof(userfqdn)); 7887 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME); 7888 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */ 7889 q = userfqdn + strlen(userfqdn); 7890 *q++ = '@'; 7891 memcpy(q, host, strlen(host)); 7892 q += strlen(host); 7893 *q++ = '\0'; 7894 7895 return userfqdn; 7896 } 7897 #endif 7898 7899 /* record data transfer on SA, and update timestamps */ 7900 void 7901 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 7902 { 7903 IPSEC_ASSERT(sav != NULL, ("key_sa_recordxfer: Null secasvar")); 7904 IPSEC_ASSERT(m != NULL, ("key_sa_recordxfer: Null mbuf")); 7905 if (!sav->lft_c) 7906 return; 7907 7908 /* 7909 * XXX Currently, there is a difference of bytes size 7910 * between inbound and outbound processing. 7911 */ 7912 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len; 7913 /* to check bytes lifetime is done in key_timehandler(). */ 7914 7915 /* 7916 * We use the number of packets as the unit of 7917 * sadb_lifetime_allocations. We increment the variable 7918 * whenever {esp,ah}_{in,out}put is called. 7919 */ 7920 sav->lft_c->sadb_lifetime_allocations++; 7921 /* XXX check for expires? */ 7922 7923 /* 7924 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock, 7925 * in seconds. HARD and SOFT lifetime are measured by the time 7926 * difference (again in seconds) from sadb_lifetime_usetime. 7927 * 7928 * usetime 7929 * v expire expire 7930 * -----+-----+--------+---> t 7931 * <--------------> HARD 7932 * <-----> SOFT 7933 */ 7934 sav->lft_c->sadb_lifetime_usetime = time_uptime; 7935 /* XXX check for expires? */ 7936 7937 return; 7938 } 7939 7940 /* dumb version */ 7941 void 7942 key_sa_routechange(struct sockaddr *dst) 7943 { 7944 struct secashead *sah; 7945 struct route *ro; 7946 const struct sockaddr *sa; 7947 7948 LIST_FOREACH(sah, &sahtree, chain) { 7949 ro = &sah->sa_route; 7950 sa = rtcache_getdst(ro); 7951 if (sa != NULL && dst->sa_len == sa->sa_len && 7952 memcmp(dst, sa, dst->sa_len) == 0) 7953 rtcache_free(ro); 7954 } 7955 7956 return; 7957 } 7958 7959 static void 7960 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 7961 { 7962 if (sav == NULL) 7963 panic("key_sa_chgstate called with sav == NULL"); 7964 7965 if (sav->state == state) 7966 return; 7967 7968 if (__LIST_CHAINED(sav)) 7969 LIST_REMOVE(sav, chain); 7970 7971 sav->state = state; 7972 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7973 } 7974 7975 /* XXX too much? */ 7976 static struct mbuf * 7977 key_alloc_mbuf(int l) 7978 { 7979 struct mbuf *m = NULL, *n; 7980 int len, t; 7981 7982 len = l; 7983 while (len > 0) { 7984 MGET(n, M_DONTWAIT, MT_DATA); 7985 if (n && len > MLEN) 7986 MCLGET(n, M_DONTWAIT); 7987 if (!n) { 7988 m_freem(m); 7989 return NULL; 7990 } 7991 7992 n->m_next = NULL; 7993 n->m_len = 0; 7994 n->m_len = M_TRAILINGSPACE(n); 7995 /* use the bottom of mbuf, hoping we can prepend afterwards */ 7996 if (n->m_len > len) { 7997 t = (n->m_len - len) & ~(sizeof(long) - 1); 7998 n->m_data += t; 7999 n->m_len = len; 8000 } 8001 8002 len -= n->m_len; 8003 8004 if (m) 8005 m_cat(m, n); 8006 else 8007 m = n; 8008 } 8009 8010 return m; 8011 } 8012 8013 static struct mbuf * 8014 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid) 8015 { 8016 struct secashead *sah; 8017 struct secasvar *sav; 8018 u_int16_t proto; 8019 u_int stateidx; 8020 u_int8_t satype; 8021 u_int8_t state; 8022 int cnt; 8023 struct mbuf *m, *n; 8024 8025 /* map satype to proto */ 8026 if ((proto = key_satype2proto(req_satype)) == 0) { 8027 *errorp = EINVAL; 8028 return (NULL); 8029 } 8030 8031 /* count sav entries to be sent to the userland. */ 8032 cnt = 0; 8033 LIST_FOREACH(sah, &sahtree, chain) { 8034 if (req_satype != SADB_SATYPE_UNSPEC && 8035 proto != sah->saidx.proto) 8036 continue; 8037 8038 for (stateidx = 0; 8039 stateidx < _ARRAYLEN(saorder_state_any); 8040 stateidx++) { 8041 state = saorder_state_any[stateidx]; 8042 LIST_FOREACH(sav, &sah->savtree[state], chain) { 8043 cnt++; 8044 } 8045 } 8046 } 8047 8048 if (cnt == 0) { 8049 *errorp = ENOENT; 8050 return (NULL); 8051 } 8052 8053 /* send this to the userland, one at a time. */ 8054 m = NULL; 8055 LIST_FOREACH(sah, &sahtree, chain) { 8056 if (req_satype != SADB_SATYPE_UNSPEC && 8057 proto != sah->saidx.proto) 8058 continue; 8059 8060 /* map proto to satype */ 8061 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 8062 m_freem(m); 8063 *errorp = EINVAL; 8064 return (NULL); 8065 } 8066 8067 for (stateidx = 0; 8068 stateidx < _ARRAYLEN(saorder_state_any); 8069 stateidx++) { 8070 state = saorder_state_any[stateidx]; 8071 LIST_FOREACH(sav, &sah->savtree[state], chain) { 8072 n = key_setdumpsa(sav, SADB_DUMP, satype, 8073 --cnt, pid); 8074 if (!n) { 8075 m_freem(m); 8076 *errorp = ENOBUFS; 8077 return (NULL); 8078 } 8079 8080 if (!m) 8081 m = n; 8082 else 8083 m_cat(m, n); 8084 } 8085 } 8086 } 8087 8088 if (!m) { 8089 *errorp = EINVAL; 8090 return (NULL); 8091 } 8092 8093 if ((m->m_flags & M_PKTHDR) != 0) { 8094 m->m_pkthdr.len = 0; 8095 for (n = m; n; n = n->m_next) 8096 m->m_pkthdr.len += n->m_len; 8097 } 8098 8099 *errorp = 0; 8100 return (m); 8101 } 8102 8103 static struct mbuf * 8104 key_setspddump(int *errorp, pid_t pid) 8105 { 8106 struct secpolicy *sp; 8107 int cnt; 8108 u_int dir; 8109 struct mbuf *m, *n; 8110 8111 /* search SPD entry and get buffer size. */ 8112 cnt = 0; 8113 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8114 LIST_FOREACH(sp, &sptree[dir], chain) { 8115 cnt++; 8116 } 8117 } 8118 8119 if (cnt == 0) { 8120 *errorp = ENOENT; 8121 return (NULL); 8122 } 8123 8124 m = NULL; 8125 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8126 LIST_FOREACH(sp, &sptree[dir], chain) { 8127 --cnt; 8128 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 8129 8130 if (!n) { 8131 *errorp = ENOBUFS; 8132 m_freem(m); 8133 return (NULL); 8134 } 8135 if (!m) 8136 m = n; 8137 else { 8138 m->m_pkthdr.len += n->m_pkthdr.len; 8139 m_cat(m, n); 8140 } 8141 } 8142 } 8143 8144 *errorp = 0; 8145 return (m); 8146 } 8147 8148 static int 8149 sysctl_net_key_dumpsa(SYSCTLFN_ARGS) 8150 { 8151 struct mbuf *m, *n; 8152 int err2 = 0; 8153 char *p, *ep; 8154 size_t len; 8155 int s, error; 8156 8157 if (newp) 8158 return (EPERM); 8159 if (namelen != 1) 8160 return (EINVAL); 8161 8162 s = splsoftnet(); 8163 m = key_setdump(name[0], &error, l->l_proc->p_pid); 8164 splx(s); 8165 if (!m) 8166 return (error); 8167 if (!oldp) 8168 *oldlenp = m->m_pkthdr.len; 8169 else { 8170 p = oldp; 8171 if (*oldlenp < m->m_pkthdr.len) { 8172 err2 = ENOMEM; 8173 ep = p + *oldlenp; 8174 } else { 8175 *oldlenp = m->m_pkthdr.len; 8176 ep = p + m->m_pkthdr.len; 8177 } 8178 for (n = m; n; n = n->m_next) { 8179 len = (ep - p < n->m_len) ? 8180 ep - p : n->m_len; 8181 error = copyout(mtod(n, const void *), p, len); 8182 p += len; 8183 if (error) 8184 break; 8185 } 8186 if (error == 0) 8187 error = err2; 8188 } 8189 m_freem(m); 8190 8191 return (error); 8192 } 8193 8194 static int 8195 sysctl_net_key_dumpsp(SYSCTLFN_ARGS) 8196 { 8197 struct mbuf *m, *n; 8198 int err2 = 0; 8199 char *p, *ep; 8200 size_t len; 8201 int s, error; 8202 8203 if (newp) 8204 return (EPERM); 8205 if (namelen != 0) 8206 return (EINVAL); 8207 8208 s = splsoftnet(); 8209 m = key_setspddump(&error, l->l_proc->p_pid); 8210 splx(s); 8211 if (!m) 8212 return (error); 8213 if (!oldp) 8214 *oldlenp = m->m_pkthdr.len; 8215 else { 8216 p = oldp; 8217 if (*oldlenp < m->m_pkthdr.len) { 8218 err2 = ENOMEM; 8219 ep = p + *oldlenp; 8220 } else { 8221 *oldlenp = m->m_pkthdr.len; 8222 ep = p + m->m_pkthdr.len; 8223 } 8224 for (n = m; n; n = n->m_next) { 8225 len = (ep - p < n->m_len) ? 8226 ep - p : n->m_len; 8227 error = copyout(mtod(n, const void *), p, len); 8228 p += len; 8229 if (error) 8230 break; 8231 } 8232 if (error == 0) 8233 error = err2; 8234 } 8235 m_freem(m); 8236 8237 return (error); 8238 } 8239 8240 /* 8241 * Create sysctl tree for native FAST_IPSEC key knobs, originally 8242 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }. 8243 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 }; 8244 * and in any case the part of our sysctl namespace used for dumping the 8245 * SPD and SA database *HAS* to be compatible with the KAME sysctl 8246 * namespace, for API reasons. 8247 * 8248 * Pending a consensus on the right way to fix this, add a level of 8249 * indirection in how we number the `native' FAST_IPSEC key nodes; 8250 * and (as requested by Andrew Brown) move registration of the 8251 * KAME-compatible names to a separate function. 8252 */ 8253 #if 0 8254 # define FAST_IPSEC_PFKEY PF_KEY_V2 8255 # define FAST_IPSEC_PFKEY_NAME "keyv2" 8256 #else 8257 # define FAST_IPSEC_PFKEY PF_KEY 8258 # define FAST_IPSEC_PFKEY_NAME "key" 8259 #endif 8260 8261 static int 8262 sysctl_net_key_stats(SYSCTLFN_ARGS) 8263 { 8264 8265 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS)); 8266 } 8267 8268 SYSCTL_SETUP(sysctl_net_keyv2_setup, "sysctl net.keyv2 subtree setup") 8269 { 8270 8271 sysctl_createv(clog, 0, NULL, NULL, 8272 CTLFLAG_PERMANENT, 8273 CTLTYPE_NODE, "net", NULL, 8274 NULL, 0, NULL, 0, 8275 CTL_NET, CTL_EOL); 8276 sysctl_createv(clog, 0, NULL, NULL, 8277 CTLFLAG_PERMANENT, 8278 CTLTYPE_NODE, FAST_IPSEC_PFKEY_NAME, NULL, 8279 NULL, 0, NULL, 0, 8280 CTL_NET, FAST_IPSEC_PFKEY, CTL_EOL); 8281 8282 sysctl_createv(clog, 0, NULL, NULL, 8283 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8284 CTLTYPE_INT, "debug", NULL, 8285 NULL, 0, &key_debug_level, 0, 8286 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL); 8287 sysctl_createv(clog, 0, NULL, NULL, 8288 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8289 CTLTYPE_INT, "spi_try", NULL, 8290 NULL, 0, &key_spi_trycnt, 0, 8291 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL); 8292 sysctl_createv(clog, 0, NULL, NULL, 8293 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8294 CTLTYPE_INT, "spi_min_value", NULL, 8295 NULL, 0, &key_spi_minval, 0, 8296 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL); 8297 sysctl_createv(clog, 0, NULL, NULL, 8298 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8299 CTLTYPE_INT, "spi_max_value", NULL, 8300 NULL, 0, &key_spi_maxval, 0, 8301 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL); 8302 sysctl_createv(clog, 0, NULL, NULL, 8303 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8304 CTLTYPE_INT, "random_int", NULL, 8305 NULL, 0, &key_int_random, 0, 8306 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL); 8307 sysctl_createv(clog, 0, NULL, NULL, 8308 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8309 CTLTYPE_INT, "larval_lifetime", NULL, 8310 NULL, 0, &key_larval_lifetime, 0, 8311 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL); 8312 sysctl_createv(clog, 0, NULL, NULL, 8313 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8314 CTLTYPE_INT, "blockacq_count", NULL, 8315 NULL, 0, &key_blockacq_count, 0, 8316 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL); 8317 sysctl_createv(clog, 0, NULL, NULL, 8318 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8319 CTLTYPE_INT, "blockacq_lifetime", NULL, 8320 NULL, 0, &key_blockacq_lifetime, 0, 8321 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL); 8322 sysctl_createv(clog, 0, NULL, NULL, 8323 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8324 CTLTYPE_INT, "esp_keymin", NULL, 8325 NULL, 0, &ipsec_esp_keymin, 0, 8326 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL); 8327 sysctl_createv(clog, 0, NULL, NULL, 8328 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8329 CTLTYPE_INT, "prefered_oldsa", NULL, 8330 NULL, 0, &key_prefered_oldsa, 0, 8331 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL); 8332 sysctl_createv(clog, 0, NULL, NULL, 8333 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8334 CTLTYPE_INT, "esp_auth", NULL, 8335 NULL, 0, &ipsec_esp_auth, 0, 8336 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL); 8337 sysctl_createv(clog, 0, NULL, NULL, 8338 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8339 CTLTYPE_INT, "ah_keymin", NULL, 8340 NULL, 0, &ipsec_ah_keymin, 0, 8341 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL); 8342 sysctl_createv(clog, 0, NULL, NULL, 8343 CTLFLAG_PERMANENT, 8344 CTLTYPE_STRUCT, "stats", 8345 SYSCTL_DESCR("PF_KEY statistics"), 8346 sysctl_net_key_stats, 0, NULL, 0, 8347 CTL_NET, FAST_IPSEC_PFKEY, CTL_CREATE, CTL_EOL); 8348 } 8349 8350 /* 8351 * Register sysctl names used by setkey(8). For historical reasons, 8352 * and to share a single API, these names appear under { CTL_NET, PF_KEY } 8353 * for both FAST_IPSEC and KAME IPSEC. 8354 */ 8355 SYSCTL_SETUP(sysctl_net_key_compat_setup, "sysctl net.key subtree setup for FAST_IPSEC") 8356 { 8357 8358 /* Make sure net.key exists before we register nodes underneath it. */ 8359 sysctl_createv(clog, 0, NULL, NULL, 8360 CTLFLAG_PERMANENT, 8361 CTLTYPE_NODE, "net", NULL, 8362 NULL, 0, NULL, 0, 8363 CTL_NET, CTL_EOL); 8364 sysctl_createv(clog, 0, NULL, NULL, 8365 CTLFLAG_PERMANENT, 8366 CTLTYPE_NODE, "key", NULL, 8367 NULL, 0, NULL, 0, 8368 CTL_NET, PF_KEY, CTL_EOL); 8369 8370 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */ 8371 sysctl_createv(clog, 0, NULL, NULL, 8372 CTLFLAG_PERMANENT, 8373 CTLTYPE_STRUCT, "dumpsa", NULL, 8374 sysctl_net_key_dumpsa, 0, NULL, 0, 8375 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL); 8376 sysctl_createv(clog, 0, NULL, NULL, 8377 CTLFLAG_PERMANENT, 8378 CTLTYPE_STRUCT, "dumpsp", NULL, 8379 sysctl_net_key_dumpsp, 0, NULL, 0, 8380 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL); 8381 } 8382