1 /* $NetBSD: key.c,v 1.277 2022/10/11 09:51:47 knakahara Exp $ */ 2 /* $FreeBSD: key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */ 3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 4 5 /* 6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the project nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.277 2022/10/11 09:51:47 knakahara Exp $"); 36 37 /* 38 * This code is referred to RFC 2367 39 */ 40 41 #if defined(_KERNEL_OPT) 42 #include "opt_inet.h" 43 #include "opt_ipsec.h" 44 #include "opt_gateway.h" 45 #include "opt_net_mpsafe.h" 46 #endif 47 48 #include <sys/types.h> 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/callout.h> 52 #include <sys/kernel.h> 53 #include <sys/mbuf.h> 54 #include <sys/domain.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/errno.h> 59 #include <sys/proc.h> 60 #include <sys/queue.h> 61 #include <sys/syslog.h> 62 #include <sys/once.h> 63 #include <sys/cprng.h> 64 #include <sys/psref.h> 65 #include <sys/lwp.h> 66 #include <sys/workqueue.h> 67 #include <sys/kmem.h> 68 #include <sys/cpu.h> 69 #include <sys/atomic.h> 70 #include <sys/pslist.h> 71 #include <sys/mutex.h> 72 #include <sys/condvar.h> 73 #include <sys/localcount.h> 74 #include <sys/pserialize.h> 75 #include <sys/hash.h> 76 #include <sys/xcall.h> 77 78 #include <net/if.h> 79 #include <net/route.h> 80 81 #include <netinet/in.h> 82 #include <netinet/in_systm.h> 83 #include <netinet/ip.h> 84 #include <netinet/in_var.h> 85 #ifdef INET 86 #include <netinet/ip_var.h> 87 #endif 88 89 #ifdef INET6 90 #include <netinet/ip6.h> 91 #include <netinet6/in6_var.h> 92 #include <netinet6/ip6_var.h> 93 #endif /* INET6 */ 94 95 #ifdef INET 96 #include <netinet/in_pcb.h> 97 #endif 98 #ifdef INET6 99 #include <netinet6/in6_pcb.h> 100 #endif /* INET6 */ 101 102 #include <net/pfkeyv2.h> 103 #include <netipsec/keydb.h> 104 #include <netipsec/key.h> 105 #include <netipsec/keysock.h> 106 #include <netipsec/key_debug.h> 107 108 #include <netipsec/ipsec.h> 109 #ifdef INET6 110 #include <netipsec/ipsec6.h> 111 #endif 112 #include <netipsec/ipsec_private.h> 113 114 #include <netipsec/xform.h> 115 #include <netipsec/ipcomp.h> 116 117 #define FULLMASK 0xffu 118 #define _BITS(bytes) ((bytes) << 3) 119 120 #define PORT_NONE 0 121 #define PORT_LOOSE 1 122 #define PORT_STRICT 2 123 124 #ifndef SAHHASH_NHASH 125 #define SAHHASH_NHASH 128 126 #endif 127 128 #ifndef SAVLUT_NHASH 129 #define SAVLUT_NHASH 128 130 #endif 131 132 percpu_t *pfkeystat_percpu; 133 134 /* 135 * Note on SA reference counting: 136 * - SAs that are not in DEAD state will have (total external reference + 1) 137 * following value in reference count field. they cannot be freed and are 138 * referenced from SA header. 139 * - SAs that are in DEAD state will have (total external reference) 140 * in reference count field. they are ready to be freed. reference from 141 * SA header will be removed in key_delsav(), when the reference count 142 * field hits 0 (= no external reference other than from SA header. 143 */ 144 145 u_int32_t key_debug_level = 0; 146 static u_int key_spi_trycnt = 1000; 147 static u_int32_t key_spi_minval = 0x100; 148 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ 149 static u_int32_t policy_id = 0; 150 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ 151 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 152 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 153 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 154 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/ 155 156 static u_int32_t acq_seq = 0; 157 158 /* 159 * Locking order: there is no order for now; it means that any locks aren't 160 * overlapped. 161 */ 162 /* 163 * Locking notes on SPD: 164 * - Modifications to the key_spd.splist must be done with holding key_spd.lock 165 * which is a adaptive mutex 166 * - Read accesses to the key_spd.splist must be in pserialize(9) read sections 167 * - SP's lifetime is managed by localcount(9) 168 * - An SP that has been inserted to the key_spd.splist is initially referenced 169 * by none, i.e., a reference from the key_spd.splist isn't counted 170 * - When an SP is being destroyed, we change its state as DEAD, wait for 171 * references to the SP to be released, and then deallocate the SP 172 * (see key_unlink_sp) 173 * - Getting an SP 174 * - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx) 175 * - Must iterate the list and increment the reference count of a found SP 176 * (by key_sp_ref) in a pserialize read section 177 * - We can gain another reference from a held SP only if we check its state 178 * and take its reference in a pserialize read section 179 * (see esp_output for example) 180 * - We may get an SP from an SP cache. See below 181 * - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref) 182 * - Updating member variables of an SP 183 * - Most member variables of an SP are immutable 184 * - Only sp->state and sp->lastused can be changed 185 * - sp->state of an SP is updated only when destroying it under key_spd.lock 186 * - SP caches 187 * - SPs can be cached in PCBs 188 * - The lifetime of the caches is controlled by the global generation counter 189 * (ipsec_spdgen) 190 * - The global counter value is stored when an SP is cached 191 * - If the stored value is different from the global counter then the cache 192 * is considered invalidated 193 * - The counter is incremented when an SP is being destroyed 194 * - So checking the generation and taking a reference to an SP should be 195 * in a pserialize read section 196 * - Note that caching doesn't increment the reference counter of an SP 197 * - SPs in sockets 198 * - Userland programs can set a policy to a socket by 199 * setsockopt(IP_IPSEC_POLICY) 200 * - Such policies (SPs) are set to a socket (PCB) and also inserted to 201 * the key_spd.socksplist list (not the key_spd.splist) 202 * - Such a policy is destroyed when a corresponding socket is destroed, 203 * however, a socket can be destroyed in softint so we cannot destroy 204 * it directly instead we just mark it DEAD and delay the destruction 205 * until GC by the timer 206 * - SP origin 207 * - SPs can be created by both userland programs and kernel components. 208 * The SPs created in kernel must not be removed by userland programs, 209 * although the SPs can be read by userland programs. 210 */ 211 /* 212 * Locking notes on SAD: 213 * - Data structures 214 * - SAs are managed by the list called key_sad.sahlists and sav lists of 215 * sah entries 216 * - An sav is supposed to be an SA from a viewpoint of users 217 * - A sah has sav lists for each SA state 218 * - Multiple saves with the same saidx can exist 219 * - Only one entry has MATURE state and others should be DEAD 220 * - DEAD entries are just ignored from searching 221 * - All sav whose state is MATURE or DYING are registered to the lookup 222 * table called key_sad.savlut in addition to the savlists. 223 * - The table is used to search an sav without use of saidx. 224 * - Modifications to the key_sad.sahlists, sah.savlist and key_sad.savlut 225 * must be done with holding key_sad.lock which is a adaptive mutex 226 * - Read accesses to the key_sad.sahlists, sah.savlist and key_sad.savlut 227 * must be in pserialize(9) read sections 228 * - sah's lifetime is managed by localcount(9) 229 * - Getting an sah entry 230 * - We get an sah from the key_sad.sahlists 231 * - Must iterate the list and increment the reference count of a found sah 232 * (by key_sah_ref) in a pserialize read section 233 * - A gotten sah must be released after use by key_sah_unref 234 * - An sah is destroyed when its state become DEAD and no sav is 235 * listed to the sah 236 * - The destruction is done only in the timer (see key_timehandler_sad) 237 * - sav's lifetime is managed by localcount(9) 238 * - Getting an sav entry 239 * - First get an sah by saidx and get an sav from either of sah's savlists 240 * - Must iterate the list and increment the reference count of a found sav 241 * (by key_sa_ref) in a pserialize read section 242 * - We can gain another reference from a held SA only if we check its state 243 * and take its reference in a pserialize read section 244 * (see esp_output for example) 245 * - A gotten sav must be released after use by key_sa_unref 246 * - An sav is destroyed when its state become DEAD 247 */ 248 /* 249 * Locking notes on misc data: 250 * - All lists of key_misc are protected by key_misc.lock 251 * - key_misc.lock must be held even for read accesses 252 */ 253 254 /* SPD */ 255 static struct { 256 kmutex_t lock; 257 kcondvar_t cv_lc; 258 struct pslist_head splist[IPSEC_DIR_MAX]; 259 /* 260 * The list has SPs that are set to a socket via 261 * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy. 262 */ 263 struct pslist_head socksplist; 264 265 pserialize_t psz; 266 kcondvar_t cv_psz; 267 bool psz_performing; 268 } key_spd __cacheline_aligned; 269 270 /* SAD */ 271 static struct { 272 kmutex_t lock; 273 kcondvar_t cv_lc; 274 struct pslist_head *sahlists; 275 u_long sahlistmask; 276 struct pslist_head *savlut; 277 u_long savlutmask; 278 279 pserialize_t psz; 280 kcondvar_t cv_psz; 281 bool psz_performing; 282 } key_sad __cacheline_aligned; 283 284 /* Misc data */ 285 static struct { 286 kmutex_t lock; 287 /* registed list */ 288 LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1]; 289 #ifndef IPSEC_NONBLOCK_ACQUIRE 290 /* acquiring list */ 291 LIST_HEAD(_acqlist, secacq) acqlist; 292 #endif 293 #ifdef notyet 294 /* SP acquiring list */ 295 LIST_HEAD(_spacqlist, secspacq) spacqlist; 296 #endif 297 } key_misc __cacheline_aligned; 298 299 /* Macros for key_spd.splist */ 300 #define SPLIST_ENTRY_INIT(sp) \ 301 PSLIST_ENTRY_INIT((sp), pslist_entry) 302 #define SPLIST_ENTRY_DESTROY(sp) \ 303 PSLIST_ENTRY_DESTROY((sp), pslist_entry) 304 #define SPLIST_WRITER_REMOVE(sp) \ 305 PSLIST_WRITER_REMOVE((sp), pslist_entry) 306 #define SPLIST_READER_EMPTY(dir) \ 307 (PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ 308 pslist_entry) == NULL) 309 #define SPLIST_READER_FOREACH(sp, dir) \ 310 PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)], \ 311 struct secpolicy, pslist_entry) 312 #define SPLIST_WRITER_FOREACH(sp, dir) \ 313 PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)], \ 314 struct secpolicy, pslist_entry) 315 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \ 316 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry) 317 #define SPLIST_WRITER_EMPTY(dir) \ 318 (PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ 319 pslist_entry) == NULL) 320 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \ 321 PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp), \ 322 pslist_entry) 323 #define SPLIST_WRITER_NEXT(sp) \ 324 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry) 325 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \ 326 do { \ 327 if (SPLIST_WRITER_EMPTY((dir))) { \ 328 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \ 329 } else { \ 330 struct secpolicy *__sp; \ 331 SPLIST_WRITER_FOREACH(__sp, (dir)) { \ 332 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \ 333 SPLIST_WRITER_INSERT_AFTER(__sp,\ 334 (new)); \ 335 break; \ 336 } \ 337 } \ 338 } \ 339 } while (0) 340 341 /* Macros for key_spd.socksplist */ 342 #define SOCKSPLIST_WRITER_FOREACH(sp) \ 343 PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist, \ 344 struct secpolicy, pslist_entry) 345 #define SOCKSPLIST_READER_EMPTY() \ 346 (PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy, \ 347 pslist_entry) == NULL) 348 349 /* Macros for key_sad.sahlist */ 350 #define SAHLIST_ENTRY_INIT(sah) \ 351 PSLIST_ENTRY_INIT((sah), pslist_entry) 352 #define SAHLIST_ENTRY_DESTROY(sah) \ 353 PSLIST_ENTRY_DESTROY((sah), pslist_entry) 354 #define SAHLIST_WRITER_REMOVE(sah) \ 355 PSLIST_WRITER_REMOVE((sah), pslist_entry) 356 #define SAHLIST_READER_FOREACH(sah) \ 357 for(int _i_sah = 0; _i_sah <= key_sad.sahlistmask; _i_sah++) \ 358 PSLIST_READER_FOREACH((sah), &key_sad.sahlists[_i_sah], \ 359 struct secashead, pslist_entry) 360 #define SAHLIST_READER_FOREACH_SAIDX(sah, saidx) \ 361 PSLIST_READER_FOREACH((sah), \ 362 &key_sad.sahlists[key_saidxhash((saidx), \ 363 key_sad.sahlistmask)], \ 364 struct secashead, pslist_entry) 365 #define SAHLIST_WRITER_FOREACH(sah) \ 366 for(int _i_sah = 0; _i_sah <= key_sad.sahlistmask; _i_sah++) \ 367 PSLIST_WRITER_FOREACH((sah), &key_sad.sahlists[_i_sah], \ 368 struct secashead, pslist_entry) 369 #define SAHLIST_WRITER_INSERT_HEAD(sah) \ 370 PSLIST_WRITER_INSERT_HEAD( \ 371 &key_sad.sahlists[key_saidxhash(&(sah)->saidx, \ 372 key_sad.sahlistmask)], \ 373 (sah), pslist_entry) 374 375 /* Macros for key_sad.sahlist#savlist */ 376 #define SAVLIST_ENTRY_INIT(sav) \ 377 PSLIST_ENTRY_INIT((sav), pslist_entry) 378 #define SAVLIST_ENTRY_DESTROY(sav) \ 379 PSLIST_ENTRY_DESTROY((sav), pslist_entry) 380 #define SAVLIST_READER_FIRST(sah, state) \ 381 PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ 382 pslist_entry) 383 #define SAVLIST_WRITER_REMOVE(sav) \ 384 PSLIST_WRITER_REMOVE((sav), pslist_entry) 385 #define SAVLIST_READER_FOREACH(sav, sah, state) \ 386 PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)], \ 387 struct secasvar, pslist_entry) 388 #define SAVLIST_WRITER_FOREACH(sav, sah, state) \ 389 PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)], \ 390 struct secasvar, pslist_entry) 391 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \ 392 PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry) 393 #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \ 394 PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry) 395 #define SAVLIST_WRITER_EMPTY(sah, state) \ 396 (PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ 397 pslist_entry) == NULL) 398 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \ 399 PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav), \ 400 pslist_entry) 401 #define SAVLIST_WRITER_NEXT(sav) \ 402 PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry) 403 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \ 404 do { \ 405 if (SAVLIST_WRITER_EMPTY((sah), (state))) { \ 406 SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\ 407 } else { \ 408 struct secasvar *__sav; \ 409 SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \ 410 if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\ 411 SAVLIST_WRITER_INSERT_AFTER(__sav,\ 412 (new)); \ 413 break; \ 414 } \ 415 } \ 416 } \ 417 } while (0) 418 #define SAVLIST_READER_NEXT(sav) \ 419 PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry) 420 421 /* Macros for key_sad.savlut */ 422 #define SAVLUT_ENTRY_INIT(sav) \ 423 PSLIST_ENTRY_INIT((sav), pslist_entry_savlut) 424 #define SAVLUT_READER_FOREACH(sav, dst, proto, hash_key) \ 425 PSLIST_READER_FOREACH((sav), \ 426 &key_sad.savlut[key_savluthash(dst, proto, hash_key, \ 427 key_sad.savlutmask)], \ 428 struct secasvar, pslist_entry_savlut) 429 #define SAVLUT_WRITER_INSERT_HEAD(sav) \ 430 key_savlut_writer_insert_head((sav)) 431 #define SAVLUT_WRITER_REMOVE(sav) \ 432 do { \ 433 if (!(sav)->savlut_added) \ 434 break; \ 435 PSLIST_WRITER_REMOVE((sav), pslist_entry_savlut); \ 436 (sav)->savlut_added = false; \ 437 } while(0) 438 439 /* search order for SAs */ 440 /* 441 * This order is important because we must select the oldest SA 442 * for outbound processing. For inbound, This is not important. 443 */ 444 static const u_int saorder_state_valid_prefer_old[] = { 445 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 446 }; 447 static const u_int saorder_state_valid_prefer_new[] = { 448 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 449 }; 450 451 static const u_int saorder_state_alive[] = { 452 /* except DEAD */ 453 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 454 }; 455 static const u_int saorder_state_any[] = { 456 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 457 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 458 }; 459 460 #define SASTATE_ALIVE_FOREACH(s) \ 461 for (int _i = 0; \ 462 _i < __arraycount(saorder_state_alive) ? \ 463 (s) = saorder_state_alive[_i], true : false; \ 464 _i++) 465 #define SASTATE_ANY_FOREACH(s) \ 466 for (int _i = 0; \ 467 _i < __arraycount(saorder_state_any) ? \ 468 (s) = saorder_state_any[_i], true : false; \ 469 _i++) 470 #define SASTATE_USABLE_FOREACH(s) \ 471 for (int _i = 0; \ 472 _i < __arraycount(saorder_state_valid_prefer_new) ? \ 473 (s) = saorder_state_valid_prefer_new[_i], \ 474 true : false; \ 475 _i++) 476 477 static const int minsize[] = { 478 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 479 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 480 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 481 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 482 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 483 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 484 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 485 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 486 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 487 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 488 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 489 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 490 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 491 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 492 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 493 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 494 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 495 0, /* SADB_X_EXT_KMPRIVATE */ 496 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 497 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 498 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 499 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 500 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 501 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 502 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 503 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 504 }; 505 static const int maxsize[] = { 506 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 507 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 508 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 509 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 510 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 511 0, /* SADB_EXT_ADDRESS_SRC */ 512 0, /* SADB_EXT_ADDRESS_DST */ 513 0, /* SADB_EXT_ADDRESS_PROXY */ 514 0, /* SADB_EXT_KEY_AUTH */ 515 0, /* SADB_EXT_KEY_ENCRYPT */ 516 0, /* SADB_EXT_IDENTITY_SRC */ 517 0, /* SADB_EXT_IDENTITY_DST */ 518 0, /* SADB_EXT_SENSITIVITY */ 519 0, /* SADB_EXT_PROPOSAL */ 520 0, /* SADB_EXT_SUPPORTED_AUTH */ 521 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 522 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 523 0, /* SADB_X_EXT_KMPRIVATE */ 524 0, /* SADB_X_EXT_POLICY */ 525 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 526 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 527 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 528 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 529 0, /* SADB_X_EXT_NAT_T_OAI */ 530 0, /* SADB_X_EXT_NAT_T_OAR */ 531 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 532 }; 533 534 static int ipsec_esp_keymin = 256; 535 static int ipsec_esp_auth = 0; 536 static int ipsec_ah_keymin = 128; 537 static bool ipsec_allow_different_idtype = false; 538 539 #ifdef SYSCTL_DECL 540 SYSCTL_DECL(_net_key); 541 #endif 542 543 #ifdef SYSCTL_INT 544 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \ 545 &key_debug_level, 0, ""); 546 547 /* max count of trial for the decision of spi value */ 548 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \ 549 &key_spi_trycnt, 0, ""); 550 551 /* minimum spi value to allocate automatically. */ 552 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \ 553 &key_spi_minval, 0, ""); 554 555 /* maximun spi value to allocate automatically. */ 556 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \ 557 &key_spi_maxval, 0, ""); 558 559 /* interval to initialize randseed */ 560 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \ 561 &key_int_random, 0, ""); 562 563 /* lifetime for larval SA */ 564 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \ 565 &key_larval_lifetime, 0, ""); 566 567 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 568 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \ 569 &key_blockacq_count, 0, ""); 570 571 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 572 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \ 573 &key_blockacq_lifetime, 0, ""); 574 575 /* ESP auth */ 576 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \ 577 &ipsec_esp_auth, 0, ""); 578 579 /* minimum ESP key length */ 580 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \ 581 &ipsec_esp_keymin, 0, ""); 582 583 /* minimum AH key length */ 584 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \ 585 &ipsec_ah_keymin, 0, ""); 586 587 /* perfered old SA rather than new SA */ 588 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\ 589 &key_prefered_oldsa, 0, ""); 590 #endif /* SYSCTL_INT */ 591 592 #define __LIST_CHAINED(elm) \ 593 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 594 #define LIST_INSERT_TAIL(head, elm, type, field) \ 595 do {\ 596 struct type *curelm = LIST_FIRST(head); \ 597 if (curelm == NULL) {\ 598 LIST_INSERT_HEAD(head, elm, field); \ 599 } else { \ 600 while (LIST_NEXT(curelm, field)) \ 601 curelm = LIST_NEXT(curelm, field);\ 602 LIST_INSERT_AFTER(curelm, elm, field);\ 603 }\ 604 } while (0) 605 606 #define KEY_CHKSASTATE(head, sav) \ 607 /* do */ { \ 608 if ((head) != (sav)) { \ 609 IPSECLOG(LOG_DEBUG, \ 610 "state mismatched (TREE=%d SA=%d)\n", \ 611 (head), (sav)); \ 612 continue; \ 613 } \ 614 } /* while (0) */ 615 616 #define KEY_CHKSPDIR(head, sp) \ 617 do { \ 618 if ((head) != (sp)) { \ 619 IPSECLOG(LOG_DEBUG, \ 620 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\ 621 (head), (sp)); \ 622 } \ 623 } while (0) 624 625 /* 626 * set parameters into secasindex buffer. 627 * Must allocate secasindex buffer before calling this function. 628 */ 629 static int 630 key_setsecasidx(int, int, int, const struct sockaddr *, 631 const struct sockaddr *, struct secasindex *); 632 633 /* key statistics */ 634 struct _keystat { 635 u_long getspi_count; /* the avarage of count to try to get new SPI */ 636 } keystat; 637 638 static void 639 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *); 640 641 static const struct sockaddr * 642 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx) 643 { 644 645 return PFKEY_ADDR_SADDR(mhp->ext[idx]); 646 } 647 648 static void 649 key_fill_replymsg(struct mbuf *m, int seq) 650 { 651 struct sadb_msg *msg; 652 653 KASSERT(m->m_len >= sizeof(*msg)); 654 655 msg = mtod(m, struct sadb_msg *); 656 msg->sadb_msg_errno = 0; 657 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 658 if (seq != 0) 659 msg->sadb_msg_seq = seq; 660 } 661 662 #if 0 663 static void key_freeso(struct socket *); 664 static void key_freesp_so(struct secpolicy **); 665 #endif 666 static struct secpolicy *key_getsp (const struct secpolicyindex *); 667 static struct secpolicy *key_getspbyid (u_int32_t); 668 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *, bool); 669 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t, bool); 670 static void key_destroy_sp(struct secpolicy *); 671 static struct mbuf *key_gather_mbuf (struct mbuf *, 672 const struct sadb_msghdr *, int, int, ...); 673 static int key_api_spdadd(struct socket *, struct mbuf *, 674 const struct sadb_msghdr *); 675 static u_int32_t key_getnewspid (void); 676 static int key_api_spddelete(struct socket *, struct mbuf *, 677 const struct sadb_msghdr *); 678 static int key_api_spddelete2(struct socket *, struct mbuf *, 679 const struct sadb_msghdr *); 680 static int key_api_spdget(struct socket *, struct mbuf *, 681 const struct sadb_msghdr *); 682 static int key_api_spdflush(struct socket *, struct mbuf *, 683 const struct sadb_msghdr *); 684 static int key_api_spddump(struct socket *, struct mbuf *, 685 const struct sadb_msghdr *); 686 static struct mbuf * key_setspddump (int *errorp, pid_t); 687 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid); 688 static int key_api_nat_map(struct socket *, struct mbuf *, 689 const struct sadb_msghdr *); 690 static struct mbuf *key_setdumpsp (struct secpolicy *, 691 u_int8_t, u_int32_t, pid_t); 692 static u_int key_getspreqmsglen (const struct secpolicy *); 693 static int key_spdexpire (struct secpolicy *); 694 static struct secashead *key_newsah (const struct secasindex *); 695 static void key_unlink_sah(struct secashead *); 696 static void key_destroy_sah(struct secashead *); 697 static bool key_sah_has_sav(struct secashead *); 698 static void key_sah_ref(struct secashead *); 699 static void key_sah_unref(struct secashead *); 700 static void key_init_sav(struct secasvar *); 701 static void key_wait_sav(struct secasvar *); 702 static void key_destroy_sav(struct secasvar *); 703 static struct secasvar *key_newsav(struct mbuf *, 704 const struct sadb_msghdr *, int *, int, const char*, int); 705 #define KEY_NEWSAV(m, sadb, e, proto) \ 706 key_newsav(m, sadb, e, proto, __func__, __LINE__) 707 static void key_delsav (struct secasvar *); 708 static struct secashead *key_getsah(const struct secasindex *, int); 709 static struct secashead *key_getsah_ref(const struct secasindex *, int); 710 static bool key_checkspidup(const struct secasindex *, u_int32_t); 711 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t); 712 static int key_setsaval (struct secasvar *, struct mbuf *, 713 const struct sadb_msghdr *); 714 static void key_freesaval(struct secasvar *); 715 static int key_init_xform(struct secasvar *); 716 static void key_clear_xform(struct secasvar *); 717 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t, 718 u_int8_t, u_int32_t, u_int32_t); 719 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t); 720 static struct mbuf *key_setsadbxtype (u_int16_t); 721 static struct mbuf *key_setsadbxfrag (u_int16_t); 722 static void key_porttosaddr (union sockaddr_union *, u_int16_t); 723 static int key_checksalen (const union sockaddr_union *); 724 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t, 725 u_int32_t, pid_t, u_int16_t, int); 726 static struct mbuf *key_setsadbsa (struct secasvar *); 727 static struct mbuf *key_setsadbaddr(u_int16_t, 728 const struct sockaddr *, u_int8_t, u_int16_t, int); 729 #if 0 730 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *, 731 int, u_int64_t); 732 #endif 733 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t); 734 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t, 735 u_int32_t, int); 736 static void *key_newbuf (const void *, u_int); 737 #ifdef INET6 738 static int key_ismyaddr6 (const struct sockaddr_in6 *); 739 #endif 740 741 static void sysctl_net_keyv2_setup(struct sysctllog **); 742 static void sysctl_net_key_compat_setup(struct sysctllog **); 743 744 /* flags for key_saidx_match() */ 745 #define CMP_HEAD 1 /* protocol, addresses. */ 746 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 747 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 748 #define CMP_EXACTLY 4 /* all elements. */ 749 static int key_saidx_match(const struct secasindex *, 750 const struct secasindex *, int); 751 752 static int key_sockaddr_match(const struct sockaddr *, 753 const struct sockaddr *, int); 754 static int key_bb_match_withmask(const void *, const void *, u_int); 755 static u_int16_t key_satype2proto (u_int8_t); 756 static u_int8_t key_proto2satype (u_int16_t); 757 758 static int key_spidx_match_exactly(const struct secpolicyindex *, 759 const struct secpolicyindex *); 760 static int key_spidx_match_withmask(const struct secpolicyindex *, 761 const struct secpolicyindex *); 762 763 static int key_api_getspi(struct socket *, struct mbuf *, 764 const struct sadb_msghdr *); 765 static u_int32_t key_do_getnewspi (const struct sadb_spirange *, 766 const struct secasindex *); 767 static int key_handle_natt_info (struct secasvar *, 768 const struct sadb_msghdr *); 769 static int key_set_natt_ports (union sockaddr_union *, 770 union sockaddr_union *, 771 const struct sadb_msghdr *); 772 static int key_api_update(struct socket *, struct mbuf *, 773 const struct sadb_msghdr *); 774 #ifdef IPSEC_DOSEQCHECK 775 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t); 776 #endif 777 static int key_api_add(struct socket *, struct mbuf *, 778 const struct sadb_msghdr *); 779 static int key_setident (struct secashead *, struct mbuf *, 780 const struct sadb_msghdr *); 781 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *, 782 const struct sadb_msghdr *); 783 static int key_api_delete(struct socket *, struct mbuf *, 784 const struct sadb_msghdr *); 785 static int key_api_get(struct socket *, struct mbuf *, 786 const struct sadb_msghdr *); 787 788 static void key_getcomb_setlifetime (struct sadb_comb *); 789 static struct mbuf *key_getcomb_esp(int); 790 static struct mbuf *key_getcomb_ah(int); 791 static struct mbuf *key_getcomb_ipcomp(int); 792 static struct mbuf *key_getprop(const struct secasindex *, int); 793 794 static int key_acquire(const struct secasindex *, const struct secpolicy *, 795 int); 796 static int key_acquire_sendup_mbuf_later(struct mbuf *); 797 static void key_acquire_sendup_pending_mbuf(void); 798 #ifndef IPSEC_NONBLOCK_ACQUIRE 799 static struct secacq *key_newacq (const struct secasindex *); 800 static struct secacq *key_getacq (const struct secasindex *); 801 static struct secacq *key_getacqbyseq (u_int32_t); 802 #endif 803 #ifdef notyet 804 static struct secspacq *key_newspacq (const struct secpolicyindex *); 805 static struct secspacq *key_getspacq (const struct secpolicyindex *); 806 #endif 807 static int key_api_acquire(struct socket *, struct mbuf *, 808 const struct sadb_msghdr *); 809 static int key_api_register(struct socket *, struct mbuf *, 810 const struct sadb_msghdr *); 811 static int key_expire (struct secasvar *); 812 static int key_api_flush(struct socket *, struct mbuf *, 813 const struct sadb_msghdr *); 814 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp, 815 int *lenp, pid_t pid); 816 static int key_api_dump(struct socket *, struct mbuf *, 817 const struct sadb_msghdr *); 818 static int key_api_promisc(struct socket *, struct mbuf *, 819 const struct sadb_msghdr *); 820 static int key_senderror (struct socket *, struct mbuf *, int); 821 static int key_validate_ext (const struct sadb_ext *, int); 822 static int key_align (struct mbuf *, struct sadb_msghdr *); 823 #if 0 824 static const char *key_getfqdn (void); 825 static const char *key_getuserfqdn (void); 826 #endif 827 static void key_sa_chgstate (struct secasvar *, u_int8_t); 828 829 static struct mbuf *key_alloc_mbuf(int, int); 830 static struct mbuf *key_alloc_mbuf_simple(int, int); 831 832 static void key_timehandler(void *); 833 static void key_timehandler_work(struct work *, void *); 834 static struct callout key_timehandler_ch; 835 static struct workqueue *key_timehandler_wq; 836 static struct work key_timehandler_wk; 837 838 static inline void 839 key_savlut_writer_insert_head(struct secasvar *sav); 840 static inline uint32_t 841 key_saidxhash(const struct secasindex *, u_long); 842 static inline uint32_t 843 key_savluthash(const struct sockaddr *, 844 uint32_t, uint32_t, u_long); 845 846 /* 847 * Utilities for percpu counters for sadb_lifetime_allocations and 848 * sadb_lifetime_bytes. 849 */ 850 #define LIFETIME_COUNTER_ALLOCATIONS 0 851 #define LIFETIME_COUNTER_BYTES 1 852 #define LIFETIME_COUNTER_SIZE 2 853 854 typedef uint64_t lifetime_counters_t[LIFETIME_COUNTER_SIZE]; 855 856 static void 857 key_sum_lifetime_counters(void *p, void *arg, struct cpu_info *ci __unused) 858 { 859 lifetime_counters_t *one = p; 860 lifetime_counters_t *sum = arg; 861 862 (*sum)[LIFETIME_COUNTER_ALLOCATIONS] += (*one)[LIFETIME_COUNTER_ALLOCATIONS]; 863 (*sum)[LIFETIME_COUNTER_BYTES] += (*one)[LIFETIME_COUNTER_BYTES]; 864 } 865 866 u_int 867 key_sp_refcnt(const struct secpolicy *sp) 868 { 869 870 /* FIXME */ 871 return 0; 872 } 873 874 static void 875 key_spd_pserialize_perform(void) 876 { 877 878 KASSERT(mutex_owned(&key_spd.lock)); 879 880 while (key_spd.psz_performing) 881 cv_wait(&key_spd.cv_psz, &key_spd.lock); 882 key_spd.psz_performing = true; 883 mutex_exit(&key_spd.lock); 884 885 pserialize_perform(key_spd.psz); 886 887 mutex_enter(&key_spd.lock); 888 key_spd.psz_performing = false; 889 cv_broadcast(&key_spd.cv_psz); 890 } 891 892 /* 893 * Remove the sp from the key_spd.splist and wait for references to the sp 894 * to be released. key_spd.lock must be held. 895 */ 896 static void 897 key_unlink_sp(struct secpolicy *sp) 898 { 899 900 KASSERT(mutex_owned(&key_spd.lock)); 901 902 sp->state = IPSEC_SPSTATE_DEAD; 903 SPLIST_WRITER_REMOVE(sp); 904 905 /* Invalidate all cached SPD pointers in the PCBs. */ 906 ipsec_invalpcbcacheall(); 907 908 KDASSERT(mutex_ownable(softnet_lock)); 909 key_spd_pserialize_perform(); 910 911 localcount_drain(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); 912 } 913 914 /* 915 * Return 0 when there are known to be no SP's for the specified 916 * direction. Otherwise return 1. This is used by IPsec code 917 * to optimize performance. 918 */ 919 int 920 key_havesp(u_int dir) 921 { 922 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 923 !SPLIST_READER_EMPTY(dir) : 1); 924 } 925 926 /* %%% IPsec policy management */ 927 /* 928 * allocating a SP for OUTBOUND or INBOUND packet. 929 * Must call key_freesp() later. 930 * OUT: NULL: not found 931 * others: found and return the pointer. 932 */ 933 struct secpolicy * 934 key_lookup_sp_byspidx(const struct secpolicyindex *spidx, 935 u_int dir, const char* where, int tag) 936 { 937 struct secpolicy *sp; 938 int s; 939 940 KASSERT(spidx != NULL); 941 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir); 942 943 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); 944 945 /* get a SP entry */ 946 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { 947 kdebug_secpolicyindex("objects", spidx); 948 } 949 950 s = pserialize_read_enter(); 951 SPLIST_READER_FOREACH(sp, dir) { 952 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { 953 kdebug_secpolicyindex("in SPD", &sp->spidx); 954 } 955 956 if (sp->state == IPSEC_SPSTATE_DEAD) 957 continue; 958 if (key_spidx_match_withmask(&sp->spidx, spidx)) 959 goto found; 960 } 961 sp = NULL; 962 found: 963 if (sp) { 964 /* sanity check */ 965 KEY_CHKSPDIR(sp->spidx.dir, dir); 966 967 /* found a SPD entry */ 968 sp->lastused = time_uptime; 969 key_sp_ref(sp, where, tag); 970 } 971 pserialize_read_exit(s); 972 973 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 974 "DP return SP:%p (ID=%u) refcnt %u\n", 975 sp, sp ? sp->id : 0, key_sp_refcnt(sp)); 976 return sp; 977 } 978 979 /* 980 * return a policy that matches this particular inbound packet. 981 * XXX slow 982 */ 983 struct secpolicy * 984 key_gettunnel(const struct sockaddr *osrc, 985 const struct sockaddr *odst, 986 const struct sockaddr *isrc, 987 const struct sockaddr *idst, 988 const char* where, int tag) 989 { 990 struct secpolicy *sp; 991 const int dir = IPSEC_DIR_INBOUND; 992 int s; 993 struct ipsecrequest *r1, *r2, *p; 994 struct secpolicyindex spidx; 995 996 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); 997 998 if (isrc->sa_family != idst->sa_family) { 999 IPSECLOG(LOG_ERR, 1000 "address family mismatched src %u, dst %u.\n", 1001 isrc->sa_family, idst->sa_family); 1002 sp = NULL; 1003 goto done; 1004 } 1005 1006 s = pserialize_read_enter(); 1007 SPLIST_READER_FOREACH(sp, dir) { 1008 if (sp->state == IPSEC_SPSTATE_DEAD) 1009 continue; 1010 1011 r1 = r2 = NULL; 1012 for (p = sp->req; p; p = p->next) { 1013 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 1014 continue; 1015 1016 r1 = r2; 1017 r2 = p; 1018 1019 if (!r1) { 1020 /* here we look at address matches only */ 1021 spidx = sp->spidx; 1022 if (isrc->sa_len > sizeof(spidx.src) || 1023 idst->sa_len > sizeof(spidx.dst)) 1024 continue; 1025 memcpy(&spidx.src, isrc, isrc->sa_len); 1026 memcpy(&spidx.dst, idst, idst->sa_len); 1027 if (!key_spidx_match_withmask(&sp->spidx, &spidx)) 1028 continue; 1029 } else { 1030 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) || 1031 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE)) 1032 continue; 1033 } 1034 1035 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) || 1036 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE)) 1037 continue; 1038 1039 goto found; 1040 } 1041 } 1042 sp = NULL; 1043 found: 1044 if (sp) { 1045 sp->lastused = time_uptime; 1046 key_sp_ref(sp, where, tag); 1047 } 1048 pserialize_read_exit(s); 1049 done: 1050 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1051 "DP return SP:%p (ID=%u) refcnt %u\n", 1052 sp, sp ? sp->id : 0, key_sp_refcnt(sp)); 1053 return sp; 1054 } 1055 1056 /* 1057 * allocating an SA entry for an *OUTBOUND* packet. 1058 * checking each request entries in SP, and acquire an SA if need. 1059 * OUT: 0: there are valid requests. 1060 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 1061 */ 1062 int 1063 key_checkrequest(const struct ipsecrequest *isr, const struct secasindex *saidx, 1064 struct secasvar **ret) 1065 { 1066 u_int level; 1067 int error; 1068 struct secasvar *sav; 1069 1070 KASSERT(isr != NULL); 1071 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT || 1072 saidx->mode == IPSEC_MODE_TUNNEL, 1073 "unexpected policy %u", saidx->mode); 1074 1075 /* get current level */ 1076 level = ipsec_get_reqlevel(isr); 1077 1078 /* 1079 * XXX guard against protocol callbacks from the crypto 1080 * thread as they reference ipsecrequest.sav which we 1081 * temporarily null out below. Need to rethink how we 1082 * handle bundled SA's in the callback thread. 1083 */ 1084 1085 sav = key_lookup_sa_bysaidx(saidx); 1086 if (sav != NULL) { 1087 *ret = sav; 1088 return 0; 1089 } 1090 1091 /* there is no SA */ 1092 error = key_acquire(saidx, isr->sp, M_NOWAIT); 1093 if (error != 0) { 1094 /* XXX What should I do ? */ 1095 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", 1096 error); 1097 return error; 1098 } 1099 1100 if (level != IPSEC_LEVEL_REQUIRE) { 1101 /* XXX sigh, the interface to this routine is botched */ 1102 *ret = NULL; 1103 return 0; 1104 } else { 1105 return ENOENT; 1106 } 1107 } 1108 1109 /* 1110 * looking up a SA for policy entry from SAD. 1111 * NOTE: searching SAD of aliving state. 1112 * OUT: NULL: not found. 1113 * others: found and return the pointer. 1114 */ 1115 struct secasvar * 1116 key_lookup_sa_bysaidx(const struct secasindex *saidx) 1117 { 1118 struct secashead *sah; 1119 struct secasvar *sav = NULL; 1120 u_int stateidx, state; 1121 const u_int *saorder_state_valid; 1122 int arraysize; 1123 int s; 1124 1125 s = pserialize_read_enter(); 1126 sah = key_getsah(saidx, CMP_MODE_REQID); 1127 if (sah == NULL) 1128 goto out; 1129 1130 /* 1131 * search a valid state list for outbound packet. 1132 * This search order is important. 1133 */ 1134 if (key_prefered_oldsa) { 1135 saorder_state_valid = saorder_state_valid_prefer_old; 1136 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1137 } else { 1138 saorder_state_valid = saorder_state_valid_prefer_new; 1139 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1140 } 1141 1142 /* search valid state */ 1143 for (stateidx = 0; 1144 stateidx < arraysize; 1145 stateidx++) { 1146 1147 state = saorder_state_valid[stateidx]; 1148 1149 if (key_prefered_oldsa) 1150 sav = SAVLIST_READER_FIRST(sah, state); 1151 else { 1152 /* XXX need O(1) lookup */ 1153 struct secasvar *last = NULL; 1154 1155 SAVLIST_READER_FOREACH(sav, sah, state) 1156 last = sav; 1157 sav = last; 1158 } 1159 if (sav != NULL) { 1160 KEY_SA_REF(sav); 1161 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1162 "DP cause refcnt++:%d SA:%p\n", 1163 key_sa_refcnt(sav), sav); 1164 break; 1165 } 1166 } 1167 out: 1168 pserialize_read_exit(s); 1169 1170 return sav; 1171 } 1172 1173 #if 0 1174 static void 1175 key_sendup_message_delete(struct secasvar *sav) 1176 { 1177 struct mbuf *m, *result = 0; 1178 uint8_t satype; 1179 1180 satype = key_proto2satype(sav->sah->saidx.proto); 1181 if (satype == 0) 1182 goto msgfail; 1183 1184 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1); 1185 if (m == NULL) 1186 goto msgfail; 1187 result = m; 1188 1189 /* set sadb_address for saidx's. */ 1190 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, 1191 _BITS(sav->sah->saidx.src.sa.sa_len), IPSEC_ULPROTO_ANY); 1192 if (m == NULL) 1193 goto msgfail; 1194 m_cat(result, m); 1195 1196 /* set sadb_address for saidx's. */ 1197 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa, 1198 _BITS(sav->sah->saidx.src.sa.sa_len), IPSEC_ULPROTO_ANY); 1199 if (m == NULL) 1200 goto msgfail; 1201 m_cat(result, m); 1202 1203 /* create SA extension */ 1204 m = key_setsadbsa(sav); 1205 if (m == NULL) 1206 goto msgfail; 1207 m_cat(result, m); 1208 1209 if (result->m_len < sizeof(struct sadb_msg)) { 1210 result = m_pullup(result, sizeof(struct sadb_msg)); 1211 if (result == NULL) 1212 goto msgfail; 1213 } 1214 1215 result->m_pkthdr.len = 0; 1216 for (m = result; m; m = m->m_next) 1217 result->m_pkthdr.len += m->m_len; 1218 mtod(result, struct sadb_msg *)->sadb_msg_len = 1219 PFKEY_UNIT64(result->m_pkthdr.len); 1220 1221 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 1222 result = NULL; 1223 msgfail: 1224 if (result) 1225 m_freem(result); 1226 } 1227 #endif 1228 1229 /* 1230 * allocating a usable SA entry for a *INBOUND* packet. 1231 * Must call key_freesav() later. 1232 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1233 * NULL: not found, or error occurred. 1234 * 1235 * In the comparison, no source address is used--for RFC2401 conformance. 1236 * To quote, from section 4.1: 1237 * A security association is uniquely identified by a triple consisting 1238 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1239 * security protocol (AH or ESP) identifier. 1240 * Note that, however, we do need to keep source address in IPsec SA. 1241 * IKE specification and PF_KEY specification do assume that we 1242 * keep source address in IPsec SA. We see a tricky situation here. 1243 * 1244 * sport and dport are used for NAT-T. network order is always used. 1245 */ 1246 struct secasvar * 1247 key_lookup_sa( 1248 const union sockaddr_union *dst, 1249 u_int proto, 1250 u_int32_t spi, 1251 u_int16_t sport, 1252 u_int16_t dport, 1253 const char* where, int tag) 1254 { 1255 struct secasvar *sav; 1256 int chkport; 1257 int s; 1258 1259 int must_check_spi = 1; 1260 int must_check_alg = 0; 1261 u_int16_t cpi = 0; 1262 u_int8_t algo = 0; 1263 uint32_t hash_key = spi; 1264 1265 if ((sport != 0) && (dport != 0)) 1266 chkport = PORT_STRICT; 1267 else 1268 chkport = PORT_NONE; 1269 1270 KASSERT(dst != NULL); 1271 1272 /* 1273 * XXX IPCOMP case 1274 * We use cpi to define spi here. In the case where cpi <= 1275 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not 1276 * the real spi. In this case, don't check the spi but check the 1277 * algorithm 1278 */ 1279 1280 if (proto == IPPROTO_IPCOMP) { 1281 u_int32_t tmp; 1282 tmp = ntohl(spi); 1283 cpi = (u_int16_t) tmp; 1284 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) { 1285 algo = (u_int8_t) cpi; 1286 hash_key = algo; 1287 must_check_spi = 0; 1288 must_check_alg = 1; 1289 } 1290 } 1291 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1292 "DP from %s:%u check_spi=%d(%#x), check_alg=%d(%d), proto=%d\n", 1293 where, tag, 1294 must_check_spi, ntohl(spi), 1295 must_check_alg, algo, 1296 proto); 1297 1298 1299 /* 1300 * searching SAD. 1301 * XXX: to be checked internal IP header somewhere. Also when 1302 * IPsec tunnel packet is received. But ESP tunnel mode is 1303 * encrypted so we can't check internal IP header. 1304 */ 1305 s = pserialize_read_enter(); 1306 SAVLUT_READER_FOREACH(sav, &dst->sa, proto, hash_key) { 1307 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1308 "try match spi %#x, %#x\n", 1309 ntohl(spi), ntohl(sav->spi)); 1310 1311 /* do not return entries w/ unusable state */ 1312 if (!SADB_SASTATE_USABLE_P(sav)) { 1313 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1314 "bad state %d\n", sav->state); 1315 continue; 1316 } 1317 if (proto != sav->sah->saidx.proto) { 1318 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1319 "proto fail %d != %d\n", 1320 proto, sav->sah->saidx.proto); 1321 continue; 1322 } 1323 if (must_check_spi && spi != sav->spi) { 1324 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1325 "spi fail %#x != %#x\n", 1326 ntohl(spi), ntohl(sav->spi)); 1327 continue; 1328 } 1329 /* XXX only on the ipcomp case */ 1330 if (must_check_alg && algo != sav->alg_comp) { 1331 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1332 "algo fail %d != %d\n", 1333 algo, sav->alg_comp); 1334 continue; 1335 } 1336 1337 #if 0 /* don't check src */ 1338 /* Fix port in src->sa */ 1339 1340 /* check src address */ 1341 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE)) 1342 continue; 1343 #endif 1344 /* fix port of dst address XXX*/ 1345 key_porttosaddr(__UNCONST(dst), dport); 1346 /* check dst address */ 1347 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport)) 1348 continue; 1349 key_sa_ref(sav, where, tag); 1350 goto done; 1351 } 1352 sav = NULL; 1353 done: 1354 pserialize_read_exit(s); 1355 1356 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1357 "DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav)); 1358 return sav; 1359 } 1360 1361 static void 1362 key_validate_savlist(const struct secashead *sah, const u_int state) 1363 { 1364 #ifdef DEBUG 1365 struct secasvar *sav, *next; 1366 int s; 1367 1368 /* 1369 * The list should be sorted by lft_c->sadb_lifetime_addtime 1370 * in ascending order. 1371 */ 1372 s = pserialize_read_enter(); 1373 SAVLIST_READER_FOREACH(sav, sah, state) { 1374 next = SAVLIST_READER_NEXT(sav); 1375 if (next != NULL && 1376 sav->lft_c != NULL && next->lft_c != NULL) { 1377 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <= 1378 next->lft_c->sadb_lifetime_addtime, 1379 "savlist is not sorted: sah=%p, state=%d, " 1380 "sav=%" PRIu64 ", next=%" PRIu64, sah, state, 1381 sav->lft_c->sadb_lifetime_addtime, 1382 next->lft_c->sadb_lifetime_addtime); 1383 } 1384 } 1385 pserialize_read_exit(s); 1386 #endif 1387 } 1388 1389 void 1390 key_init_sp(struct secpolicy *sp) 1391 { 1392 1393 ASSERT_SLEEPABLE(); 1394 1395 sp->state = IPSEC_SPSTATE_ALIVE; 1396 if (sp->policy == IPSEC_POLICY_IPSEC) 1397 KASSERT(sp->req != NULL); 1398 localcount_init(&sp->localcount); 1399 SPLIST_ENTRY_INIT(sp); 1400 } 1401 1402 /* 1403 * Must be called in a pserialize read section. A held SP 1404 * must be released by key_sp_unref after use. 1405 */ 1406 void 1407 key_sp_ref(struct secpolicy *sp, const char* where, int tag) 1408 { 1409 1410 localcount_acquire(&sp->localcount); 1411 1412 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1413 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n", 1414 sp, sp->id, where, tag, key_sp_refcnt(sp)); 1415 } 1416 1417 /* 1418 * Must be called without holding key_spd.lock because the lock 1419 * would be held in localcount_release. 1420 */ 1421 void 1422 key_sp_unref(struct secpolicy *sp, const char* where, int tag) 1423 { 1424 1425 KDASSERT(mutex_ownable(&key_spd.lock)); 1426 1427 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1428 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n", 1429 sp, sp->id, where, tag, key_sp_refcnt(sp)); 1430 1431 localcount_release(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); 1432 } 1433 1434 static void 1435 key_init_sav(struct secasvar *sav) 1436 { 1437 1438 ASSERT_SLEEPABLE(); 1439 1440 localcount_init(&sav->localcount); 1441 SAVLIST_ENTRY_INIT(sav); 1442 SAVLUT_ENTRY_INIT(sav); 1443 } 1444 1445 u_int 1446 key_sa_refcnt(const struct secasvar *sav) 1447 { 1448 1449 /* FIXME */ 1450 return 0; 1451 } 1452 1453 void 1454 key_sa_ref(struct secasvar *sav, const char* where, int tag) 1455 { 1456 1457 localcount_acquire(&sav->localcount); 1458 1459 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1460 "DP cause refcnt++: SA:%p from %s:%u\n", 1461 sav, where, tag); 1462 } 1463 1464 void 1465 key_sa_unref(struct secasvar *sav, const char* where, int tag) 1466 { 1467 1468 KDASSERT(mutex_ownable(&key_sad.lock)); 1469 1470 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1471 "DP cause refcnt--: SA:%p from %s:%u\n", 1472 sav, where, tag); 1473 1474 localcount_release(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1475 } 1476 1477 #if 0 1478 /* 1479 * Must be called after calling key_lookup_sp*(). 1480 * For the packet with socket. 1481 */ 1482 static void 1483 key_freeso(struct socket *so) 1484 { 1485 /* sanity check */ 1486 KASSERT(so != NULL); 1487 1488 switch (so->so_proto->pr_domain->dom_family) { 1489 #ifdef INET 1490 case PF_INET: 1491 { 1492 struct inpcb *pcb = sotoinpcb(so); 1493 1494 /* Does it have a PCB ? */ 1495 if (pcb == NULL) 1496 return; 1497 1498 struct inpcbpolicy *sp = pcb->inp_sp; 1499 key_freesp_so(&sp->sp_in); 1500 key_freesp_so(&sp->sp_out); 1501 } 1502 break; 1503 #endif 1504 #ifdef INET6 1505 case PF_INET6: 1506 { 1507 #ifdef HAVE_NRL_INPCB 1508 struct inpcb *pcb = sotoinpcb(so); 1509 struct inpcbpolicy *sp = pcb->inp_sp; 1510 1511 /* Does it have a PCB ? */ 1512 if (pcb == NULL) 1513 return; 1514 key_freesp_so(&sp->sp_in); 1515 key_freesp_so(&sp->sp_out); 1516 #else 1517 struct in6pcb *pcb = sotoin6pcb(so); 1518 1519 /* Does it have a PCB ? */ 1520 if (pcb == NULL) 1521 return; 1522 key_freesp_so(&pcb->in6p_sp->sp_in); 1523 key_freesp_so(&pcb->in6p_sp->sp_out); 1524 #endif 1525 } 1526 break; 1527 #endif /* INET6 */ 1528 default: 1529 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n", 1530 so->so_proto->pr_domain->dom_family); 1531 return; 1532 } 1533 } 1534 1535 static void 1536 key_freesp_so(struct secpolicy **sp) 1537 { 1538 1539 KASSERT(sp != NULL); 1540 KASSERT(*sp != NULL); 1541 1542 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1543 (*sp)->policy == IPSEC_POLICY_BYPASS) 1544 return; 1545 1546 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC, 1547 "invalid policy %u", (*sp)->policy); 1548 KEY_SP_UNREF(&sp); 1549 } 1550 #endif 1551 1552 static void 1553 key_sad_pserialize_perform(void) 1554 { 1555 1556 KASSERT(mutex_owned(&key_sad.lock)); 1557 1558 while (key_sad.psz_performing) 1559 cv_wait(&key_sad.cv_psz, &key_sad.lock); 1560 key_sad.psz_performing = true; 1561 mutex_exit(&key_sad.lock); 1562 1563 pserialize_perform(key_sad.psz); 1564 1565 mutex_enter(&key_sad.lock); 1566 key_sad.psz_performing = false; 1567 cv_broadcast(&key_sad.cv_psz); 1568 } 1569 1570 /* 1571 * Remove the sav from the savlist of its sah and wait for references to the sav 1572 * to be released. key_sad.lock must be held. 1573 */ 1574 static void 1575 key_unlink_sav(struct secasvar *sav) 1576 { 1577 1578 KASSERT(mutex_owned(&key_sad.lock)); 1579 1580 SAVLIST_WRITER_REMOVE(sav); 1581 SAVLUT_WRITER_REMOVE(sav); 1582 1583 KDASSERT(mutex_ownable(softnet_lock)); 1584 key_sad_pserialize_perform(); 1585 1586 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1587 } 1588 1589 /* 1590 * Destroy an sav where the sav must be unlinked from an sah 1591 * by say key_unlink_sav. 1592 */ 1593 static void 1594 key_destroy_sav(struct secasvar *sav) 1595 { 1596 1597 ASSERT_SLEEPABLE(); 1598 1599 localcount_fini(&sav->localcount); 1600 SAVLIST_ENTRY_DESTROY(sav); 1601 1602 key_delsav(sav); 1603 } 1604 1605 /* 1606 * Wait for references of a passed sav to go away. 1607 */ 1608 static void 1609 key_wait_sav(struct secasvar *sav) 1610 { 1611 1612 ASSERT_SLEEPABLE(); 1613 1614 mutex_enter(&key_sad.lock); 1615 KASSERT(sav->state == SADB_SASTATE_DEAD); 1616 KDASSERT(mutex_ownable(softnet_lock)); 1617 key_sad_pserialize_perform(); 1618 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1619 mutex_exit(&key_sad.lock); 1620 } 1621 1622 /* %%% SPD management */ 1623 /* 1624 * free security policy entry. 1625 */ 1626 static void 1627 key_destroy_sp(struct secpolicy *sp) 1628 { 1629 1630 SPLIST_ENTRY_DESTROY(sp); 1631 localcount_fini(&sp->localcount); 1632 1633 key_free_sp(sp); 1634 1635 key_update_used(); 1636 } 1637 1638 void 1639 key_free_sp(struct secpolicy *sp) 1640 { 1641 struct ipsecrequest *isr = sp->req, *nextisr; 1642 1643 while (isr != NULL) { 1644 nextisr = isr->next; 1645 kmem_free(isr, sizeof(*isr)); 1646 isr = nextisr; 1647 } 1648 1649 kmem_free(sp, sizeof(*sp)); 1650 } 1651 1652 void 1653 key_socksplist_add(struct secpolicy *sp) 1654 { 1655 1656 mutex_enter(&key_spd.lock); 1657 PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry); 1658 mutex_exit(&key_spd.lock); 1659 1660 key_update_used(); 1661 } 1662 1663 /* 1664 * search SPD 1665 * OUT: NULL : not found 1666 * others : found, pointer to a SP. 1667 */ 1668 static struct secpolicy * 1669 key_getsp(const struct secpolicyindex *spidx) 1670 { 1671 struct secpolicy *sp; 1672 int s; 1673 1674 KASSERT(spidx != NULL); 1675 1676 s = pserialize_read_enter(); 1677 SPLIST_READER_FOREACH(sp, spidx->dir) { 1678 if (sp->state == IPSEC_SPSTATE_DEAD) 1679 continue; 1680 if (key_spidx_match_exactly(spidx, &sp->spidx)) { 1681 KEY_SP_REF(sp); 1682 pserialize_read_exit(s); 1683 return sp; 1684 } 1685 } 1686 pserialize_read_exit(s); 1687 1688 return NULL; 1689 } 1690 1691 /* 1692 * search SPD and remove found SP 1693 * OUT: NULL : not found 1694 * others : found, pointer to a SP. 1695 */ 1696 static struct secpolicy * 1697 key_lookup_and_remove_sp(const struct secpolicyindex *spidx, bool from_kernel) 1698 { 1699 struct secpolicy *sp = NULL; 1700 1701 mutex_enter(&key_spd.lock); 1702 SPLIST_WRITER_FOREACH(sp, spidx->dir) { 1703 KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, "sp->state=%u", 1704 sp->state); 1705 /* 1706 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1707 * removed by userland programs. 1708 */ 1709 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1710 continue; 1711 if (key_spidx_match_exactly(spidx, &sp->spidx)) { 1712 key_unlink_sp(sp); 1713 goto out; 1714 } 1715 } 1716 sp = NULL; 1717 out: 1718 mutex_exit(&key_spd.lock); 1719 1720 return sp; 1721 } 1722 1723 /* 1724 * get SP by index. 1725 * OUT: NULL : not found 1726 * others : found, pointer to a SP. 1727 */ 1728 static struct secpolicy * 1729 key_getspbyid(u_int32_t id) 1730 { 1731 struct secpolicy *sp; 1732 int s; 1733 1734 s = pserialize_read_enter(); 1735 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { 1736 if (sp->state == IPSEC_SPSTATE_DEAD) 1737 continue; 1738 if (sp->id == id) { 1739 KEY_SP_REF(sp); 1740 goto out; 1741 } 1742 } 1743 1744 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { 1745 if (sp->state == IPSEC_SPSTATE_DEAD) 1746 continue; 1747 if (sp->id == id) { 1748 KEY_SP_REF(sp); 1749 goto out; 1750 } 1751 } 1752 out: 1753 pserialize_read_exit(s); 1754 return sp; 1755 } 1756 1757 /* 1758 * get SP by index, remove and return it. 1759 * OUT: NULL : not found 1760 * others : found, pointer to a SP. 1761 */ 1762 static struct secpolicy * 1763 key_lookupbyid_and_remove_sp(u_int32_t id, bool from_kernel) 1764 { 1765 struct secpolicy *sp; 1766 1767 mutex_enter(&key_spd.lock); 1768 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { 1769 KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, "sp->state=%u", 1770 sp->state); 1771 /* 1772 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1773 * removed by userland programs. 1774 */ 1775 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1776 continue; 1777 if (sp->id == id) 1778 goto out; 1779 } 1780 1781 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { 1782 KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, "sp->state=%u", 1783 sp->state); 1784 /* 1785 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1786 * removed by userland programs. 1787 */ 1788 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1789 continue; 1790 if (sp->id == id) 1791 goto out; 1792 } 1793 out: 1794 if (sp != NULL) 1795 key_unlink_sp(sp); 1796 mutex_exit(&key_spd.lock); 1797 return sp; 1798 } 1799 1800 struct secpolicy * 1801 key_newsp(const char* where, int tag) 1802 { 1803 struct secpolicy *newsp = NULL; 1804 1805 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP); 1806 1807 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1808 "DP from %s:%u return SP:%p\n", where, tag, newsp); 1809 return newsp; 1810 } 1811 1812 /* 1813 * create secpolicy structure from sadb_x_policy structure. 1814 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1815 * so must be set properly later. 1816 */ 1817 static struct secpolicy * 1818 _key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error, 1819 bool from_kernel) 1820 { 1821 struct secpolicy *newsp; 1822 1823 KASSERT(!cpu_softintr_p()); 1824 KASSERT(xpl0 != NULL); 1825 KASSERT(len >= sizeof(*xpl0)); 1826 1827 if (len != PFKEY_EXTLEN(xpl0)) { 1828 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); 1829 *error = EINVAL; 1830 return NULL; 1831 } 1832 1833 newsp = KEY_NEWSP(); 1834 if (newsp == NULL) { 1835 *error = ENOBUFS; 1836 return NULL; 1837 } 1838 1839 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1840 newsp->policy = xpl0->sadb_x_policy_type; 1841 1842 /* check policy */ 1843 switch (xpl0->sadb_x_policy_type) { 1844 case IPSEC_POLICY_DISCARD: 1845 case IPSEC_POLICY_NONE: 1846 case IPSEC_POLICY_ENTRUST: 1847 case IPSEC_POLICY_BYPASS: 1848 newsp->req = NULL; 1849 *error = 0; 1850 return newsp; 1851 1852 case IPSEC_POLICY_IPSEC: 1853 /* Continued */ 1854 break; 1855 default: 1856 IPSECLOG(LOG_DEBUG, "invalid policy type.\n"); 1857 key_free_sp(newsp); 1858 *error = EINVAL; 1859 return NULL; 1860 } 1861 1862 /* IPSEC_POLICY_IPSEC */ 1863 { 1864 int tlen; 1865 const struct sadb_x_ipsecrequest *xisr; 1866 uint16_t xisr_reqid; 1867 struct ipsecrequest **p_isr = &newsp->req; 1868 1869 /* validity check */ 1870 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1871 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); 1872 *error = EINVAL; 1873 goto free_exit; 1874 } 1875 1876 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1877 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1); 1878 1879 while (tlen > 0) { 1880 /* length check */ 1881 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1882 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n"); 1883 *error = EINVAL; 1884 goto free_exit; 1885 } 1886 1887 /* allocate request buffer */ 1888 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP); 1889 1890 /* set values */ 1891 (*p_isr)->next = NULL; 1892 1893 switch (xisr->sadb_x_ipsecrequest_proto) { 1894 case IPPROTO_ESP: 1895 case IPPROTO_AH: 1896 case IPPROTO_IPCOMP: 1897 break; 1898 default: 1899 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n", 1900 xisr->sadb_x_ipsecrequest_proto); 1901 *error = EPROTONOSUPPORT; 1902 goto free_exit; 1903 } 1904 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1905 1906 switch (xisr->sadb_x_ipsecrequest_mode) { 1907 case IPSEC_MODE_TRANSPORT: 1908 case IPSEC_MODE_TUNNEL: 1909 break; 1910 case IPSEC_MODE_ANY: 1911 default: 1912 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n", 1913 xisr->sadb_x_ipsecrequest_mode); 1914 *error = EINVAL; 1915 goto free_exit; 1916 } 1917 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1918 1919 switch (xisr->sadb_x_ipsecrequest_level) { 1920 case IPSEC_LEVEL_DEFAULT: 1921 case IPSEC_LEVEL_USE: 1922 case IPSEC_LEVEL_REQUIRE: 1923 break; 1924 case IPSEC_LEVEL_UNIQUE: 1925 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid; 1926 /* validity check */ 1927 /* 1928 * case 1) from_kernel == false 1929 * That means the request comes from userland. 1930 * If range violation of reqid, kernel will 1931 * update it, don't refuse it. 1932 * 1933 * case 2) from_kernel == true 1934 * That means the request comes from kernel 1935 * (e.g. ipsec(4) I/F). 1936 * Use thre requested reqid to avoid inconsistency 1937 * between kernel's reqid and the reqid in pf_key 1938 * message sent to userland. The pf_key message is 1939 * built by diverting request mbuf. 1940 */ 1941 if (!from_kernel && 1942 xisr_reqid > IPSEC_MANUAL_REQID_MAX) { 1943 IPSECLOG(LOG_DEBUG, 1944 "reqid=%d range " 1945 "violation, updated by kernel.\n", 1946 xisr_reqid); 1947 xisr_reqid = 0; 1948 } 1949 1950 /* allocate new reqid id if reqid is zero. */ 1951 if (xisr_reqid == 0) { 1952 u_int16_t reqid = key_newreqid(); 1953 if (reqid == 0) { 1954 *error = ENOBUFS; 1955 goto free_exit; 1956 } 1957 (*p_isr)->saidx.reqid = reqid; 1958 } else { 1959 /* set it for manual keying. */ 1960 (*p_isr)->saidx.reqid = xisr_reqid; 1961 } 1962 break; 1963 1964 default: 1965 IPSECLOG(LOG_DEBUG, "invalid level=%u\n", 1966 xisr->sadb_x_ipsecrequest_level); 1967 *error = EINVAL; 1968 goto free_exit; 1969 } 1970 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1971 1972 /* set IP addresses if there */ 1973 /* 1974 * NOTE: 1975 * MOBIKE Extensions for PF_KEY draft says: 1976 * If tunnel mode is specified, the sadb_x_ipsecrequest 1977 * structure is followed by two sockaddr structures that 1978 * define the tunnel endpoint addresses. In the case that 1979 * transport mode is used, no additional addresses are 1980 * specified. 1981 * see: https://tools.ietf.org/html/draft-schilcher-mobike-pfkey-extension-01 1982 * 1983 * And then, the IP addresses will be set by 1984 * ipsec_fill_saidx_bymbuf() from packet in transport mode. 1985 * This behavior is used by NAT-T enabled ipsecif(4). 1986 */ 1987 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1988 const struct sockaddr *paddr; 1989 1990 paddr = (const struct sockaddr *)(xisr + 1); 1991 1992 /* validity check */ 1993 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) { 1994 IPSECLOG(LOG_DEBUG, "invalid request " 1995 "address length.\n"); 1996 *error = EINVAL; 1997 goto free_exit; 1998 } 1999 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len); 2000 2001 paddr = (const struct sockaddr *)((const char *)paddr 2002 + paddr->sa_len); 2003 2004 /* validity check */ 2005 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) { 2006 IPSECLOG(LOG_DEBUG, "invalid request " 2007 "address length.\n"); 2008 *error = EINVAL; 2009 goto free_exit; 2010 } 2011 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len); 2012 } 2013 2014 (*p_isr)->sp = newsp; 2015 2016 /* initialization for the next. */ 2017 p_isr = &(*p_isr)->next; 2018 tlen -= xisr->sadb_x_ipsecrequest_len; 2019 2020 /* validity check */ 2021 if (tlen < 0) { 2022 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n"); 2023 *error = EINVAL; 2024 goto free_exit; 2025 } 2026 2027 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr + 2028 xisr->sadb_x_ipsecrequest_len); 2029 } 2030 } 2031 2032 *error = 0; 2033 return newsp; 2034 2035 free_exit: 2036 key_free_sp(newsp); 2037 return NULL; 2038 } 2039 2040 struct secpolicy * 2041 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error) 2042 { 2043 2044 return _key_msg2sp(xpl0, len, error, false); 2045 } 2046 2047 u_int16_t 2048 key_newreqid(void) 2049 { 2050 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 2051 2052 auto_reqid = (auto_reqid == 0xffff ? 2053 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 2054 2055 /* XXX should be unique check */ 2056 2057 return auto_reqid; 2058 } 2059 2060 /* 2061 * copy secpolicy struct to sadb_x_policy structure indicated. 2062 */ 2063 struct mbuf * 2064 key_sp2msg(const struct secpolicy *sp, int mflag) 2065 { 2066 struct sadb_x_policy *xpl; 2067 int tlen; 2068 char *p; 2069 struct mbuf *m; 2070 2071 KASSERT(sp != NULL); 2072 2073 tlen = key_getspreqmsglen(sp); 2074 2075 m = key_alloc_mbuf(tlen, mflag); 2076 if (!m || m->m_next) { /*XXX*/ 2077 if (m) 2078 m_freem(m); 2079 return NULL; 2080 } 2081 2082 m->m_len = tlen; 2083 m->m_next = NULL; 2084 xpl = mtod(m, struct sadb_x_policy *); 2085 memset(xpl, 0, tlen); 2086 2087 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 2088 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 2089 xpl->sadb_x_policy_type = sp->policy; 2090 xpl->sadb_x_policy_dir = sp->spidx.dir; 2091 xpl->sadb_x_policy_id = sp->id; 2092 if (sp->origin == IPSEC_SPORIGIN_KERNEL) 2093 xpl->sadb_x_policy_flags |= IPSEC_POLICY_FLAG_ORIGIN_KERNEL; 2094 p = (char *)xpl + sizeof(*xpl); 2095 2096 /* if is the policy for ipsec ? */ 2097 if (sp->policy == IPSEC_POLICY_IPSEC) { 2098 struct sadb_x_ipsecrequest *xisr; 2099 struct ipsecrequest *isr; 2100 2101 for (isr = sp->req; isr != NULL; isr = isr->next) { 2102 2103 xisr = (struct sadb_x_ipsecrequest *)p; 2104 2105 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 2106 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 2107 xisr->sadb_x_ipsecrequest_level = isr->level; 2108 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 2109 2110 p += sizeof(*xisr); 2111 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len); 2112 p += isr->saidx.src.sa.sa_len; 2113 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len); 2114 p += isr->saidx.src.sa.sa_len; 2115 2116 xisr->sadb_x_ipsecrequest_len = 2117 PFKEY_ALIGN8(sizeof(*xisr) 2118 + isr->saidx.src.sa.sa_len 2119 + isr->saidx.dst.sa.sa_len); 2120 } 2121 } 2122 2123 return m; 2124 } 2125 2126 /* 2127 * m will not be freed nor modified. It never return NULL. 2128 * If it returns a mbuf of M_PKTHDR, the mbuf ensures to have 2129 * contiguous length at least sizeof(struct sadb_msg). 2130 */ 2131 static struct mbuf * 2132 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 2133 int ndeep, int nitem, ...) 2134 { 2135 va_list ap; 2136 int idx; 2137 int i; 2138 struct mbuf *result = NULL, *n; 2139 int len; 2140 2141 KASSERT(m != NULL); 2142 KASSERT(mhp != NULL); 2143 KASSERT(!cpu_softintr_p()); 2144 2145 va_start(ap, nitem); 2146 for (i = 0; i < nitem; i++) { 2147 idx = va_arg(ap, int); 2148 KASSERT(idx >= 0); 2149 KASSERT(idx <= SADB_EXT_MAX); 2150 /* don't attempt to pull empty extension */ 2151 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 2152 continue; 2153 if (idx != SADB_EXT_RESERVED && 2154 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 2155 continue; 2156 2157 if (idx == SADB_EXT_RESERVED) { 2158 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN); 2159 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2160 MGETHDR(n, M_WAITOK, MT_DATA); 2161 n->m_len = len; 2162 n->m_next = NULL; 2163 m_copydata(m, 0, sizeof(struct sadb_msg), 2164 mtod(n, void *)); 2165 } else if (i < ndeep) { 2166 len = mhp->extlen[idx]; 2167 n = key_alloc_mbuf(len, M_WAITOK); 2168 KASSERT(n->m_next == NULL); 2169 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 2170 mtod(n, void *)); 2171 } else { 2172 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 2173 M_WAITOK); 2174 } 2175 KASSERT(n != NULL); 2176 2177 if (result) 2178 m_cat(result, n); 2179 else 2180 result = n; 2181 } 2182 va_end(ap); 2183 2184 KASSERT(result != NULL); 2185 if ((result->m_flags & M_PKTHDR) != 0) { 2186 result->m_pkthdr.len = 0; 2187 for (n = result; n; n = n->m_next) 2188 result->m_pkthdr.len += n->m_len; 2189 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 2190 } 2191 2192 return result; 2193 } 2194 2195 /* 2196 * The argument _sp must not overwrite until SP is created and registered 2197 * successfully. 2198 */ 2199 static int 2200 key_spdadd(struct socket *so, struct mbuf *m, 2201 const struct sadb_msghdr *mhp, struct secpolicy **_sp, 2202 bool from_kernel) 2203 { 2204 const struct sockaddr *src, *dst; 2205 const struct sadb_x_policy *xpl0; 2206 struct sadb_x_policy *xpl; 2207 const struct sadb_lifetime *lft = NULL; 2208 struct secpolicyindex spidx; 2209 struct secpolicy *newsp; 2210 int error; 2211 uint32_t sadb_x_policy_id; 2212 2213 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2214 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2215 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2216 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2217 return key_senderror(so, m, EINVAL); 2218 } 2219 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2220 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2221 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2222 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2223 return key_senderror(so, m, EINVAL); 2224 } 2225 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 2226 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < 2227 sizeof(struct sadb_lifetime)) { 2228 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2229 return key_senderror(so, m, EINVAL); 2230 } 2231 lft = mhp->ext[SADB_EXT_LIFETIME_HARD]; 2232 } 2233 2234 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 2235 2236 /* checking the direciton. */ 2237 switch (xpl0->sadb_x_policy_dir) { 2238 case IPSEC_DIR_INBOUND: 2239 case IPSEC_DIR_OUTBOUND: 2240 break; 2241 default: 2242 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); 2243 return key_senderror(so, m, EINVAL); 2244 } 2245 2246 /* check policy */ 2247 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */ 2248 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST || 2249 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 2250 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n"); 2251 return key_senderror(so, m, EINVAL); 2252 } 2253 2254 /* policy requests are mandatory when action is ipsec. */ 2255 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX && 2256 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 2257 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 2258 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n"); 2259 return key_senderror(so, m, EINVAL); 2260 } 2261 2262 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 2263 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 2264 2265 /* sanity check on addr pair */ 2266 if (src->sa_family != dst->sa_family) 2267 return key_senderror(so, m, EINVAL); 2268 if (src->sa_len != dst->sa_len) 2269 return key_senderror(so, m, EINVAL); 2270 2271 key_init_spidx_bymsghdr(&spidx, mhp); 2272 2273 /* 2274 * checking there is SP already or not. 2275 * SPDUPDATE doesn't depend on whether there is a SP or not. 2276 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 2277 * then error. 2278 */ 2279 { 2280 struct secpolicy *sp; 2281 2282 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2283 sp = key_lookup_and_remove_sp(&spidx, from_kernel); 2284 if (sp != NULL) 2285 key_destroy_sp(sp); 2286 } else { 2287 sp = key_getsp(&spidx); 2288 if (sp != NULL) { 2289 KEY_SP_UNREF(&sp); 2290 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n"); 2291 return key_senderror(so, m, EEXIST); 2292 } 2293 } 2294 } 2295 2296 /* allocation new SP entry */ 2297 newsp = _key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error, from_kernel); 2298 if (newsp == NULL) { 2299 return key_senderror(so, m, error); 2300 } 2301 2302 newsp->id = key_getnewspid(); 2303 if (newsp->id == 0) { 2304 kmem_free(newsp, sizeof(*newsp)); 2305 return key_senderror(so, m, ENOBUFS); 2306 } 2307 2308 newsp->spidx = spidx; 2309 newsp->created = time_uptime; 2310 newsp->lastused = newsp->created; 2311 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 2312 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 2313 if (from_kernel) 2314 newsp->origin = IPSEC_SPORIGIN_KERNEL; 2315 else 2316 newsp->origin = IPSEC_SPORIGIN_USER; 2317 2318 key_init_sp(newsp); 2319 if (from_kernel) 2320 KEY_SP_REF(newsp); 2321 2322 sadb_x_policy_id = newsp->id; 2323 2324 if (_sp != NULL) 2325 *_sp = newsp; 2326 2327 mutex_enter(&key_spd.lock); 2328 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp); 2329 mutex_exit(&key_spd.lock); 2330 /* 2331 * We don't have a reference to newsp, so we must not touch newsp from 2332 * now on. If you want to do, you must take a reference beforehand. 2333 */ 2334 newsp = NULL; 2335 2336 #ifdef notyet 2337 /* delete the entry in key_misc.spacqlist */ 2338 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2339 struct secspacq *spacq = key_getspacq(&spidx); 2340 if (spacq != NULL) { 2341 /* reset counter in order to deletion by timehandler. */ 2342 spacq->created = time_uptime; 2343 spacq->count = 0; 2344 } 2345 } 2346 #endif 2347 2348 /* Invalidate all cached SPD pointers in the PCBs. */ 2349 ipsec_invalpcbcacheall(); 2350 2351 #if defined(GATEWAY) 2352 /* Invalidate the ipflow cache, as well. */ 2353 ipflow_invalidate_all(0); 2354 #ifdef INET6 2355 if (in6_present) 2356 ip6flow_invalidate_all(0); 2357 #endif /* INET6 */ 2358 #endif /* GATEWAY */ 2359 2360 key_update_used(); 2361 2362 { 2363 struct mbuf *n, *mpolicy; 2364 int off; 2365 2366 /* create new sadb_msg to reply. */ 2367 if (lft) { 2368 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 2369 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 2370 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2371 } else { 2372 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 2373 SADB_X_EXT_POLICY, 2374 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2375 } 2376 2377 key_fill_replymsg(n, 0); 2378 off = 0; 2379 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 2380 sizeof(*xpl), &off); 2381 if (mpolicy == NULL) { 2382 /* n is already freed */ 2383 /* 2384 * valid sp has been created, so we does not overwrite _sp 2385 * NULL here. let caller decide to use the sp or not. 2386 */ 2387 return key_senderror(so, m, ENOBUFS); 2388 } 2389 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off); 2390 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 2391 m_freem(n); 2392 /* ditto */ 2393 return key_senderror(so, m, EINVAL); 2394 } 2395 2396 xpl->sadb_x_policy_id = sadb_x_policy_id; 2397 2398 m_freem(m); 2399 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2400 } 2401 } 2402 2403 /* 2404 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 2405 * add an entry to SP database, when received 2406 * <base, address(SD), (lifetime(H),) policy> 2407 * from the user(?). 2408 * Adding to SP database, 2409 * and send 2410 * <base, address(SD), (lifetime(H),) policy> 2411 * to the socket which was send. 2412 * 2413 * SPDADD set a unique policy entry. 2414 * SPDSETIDX like SPDADD without a part of policy requests. 2415 * SPDUPDATE replace a unique policy entry. 2416 * 2417 * m will always be freed. 2418 */ 2419 static int 2420 key_api_spdadd(struct socket *so, struct mbuf *m, 2421 const struct sadb_msghdr *mhp) 2422 { 2423 2424 return key_spdadd(so, m, mhp, NULL, false); 2425 } 2426 2427 struct secpolicy * 2428 key_kpi_spdadd(struct mbuf *m) 2429 { 2430 struct sadb_msghdr mh; 2431 int error; 2432 struct secpolicy *sp = NULL; 2433 2434 error = key_align(m, &mh); 2435 if (error) 2436 return NULL; 2437 2438 error = key_spdadd(NULL, m, &mh, &sp, true); 2439 if (error) { 2440 /* 2441 * Currently, when key_spdadd() cannot send a PFKEY message 2442 * which means SP has been created, key_spdadd() returns error 2443 * although SP is created successfully. 2444 * Kernel components would not care PFKEY messages, so return 2445 * the "sp" regardless of error code. key_spdadd() overwrites 2446 * the argument only if SP is created successfully. 2447 */ 2448 } 2449 return sp; 2450 } 2451 2452 /* 2453 * get new policy id. 2454 * OUT: 2455 * 0: failure. 2456 * others: success. 2457 */ 2458 static u_int32_t 2459 key_getnewspid(void) 2460 { 2461 u_int32_t newid = 0; 2462 int count = key_spi_trycnt; /* XXX */ 2463 struct secpolicy *sp; 2464 2465 /* when requesting to allocate spi ranged */ 2466 while (count--) { 2467 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); 2468 2469 sp = key_getspbyid(newid); 2470 if (sp == NULL) 2471 break; 2472 2473 KEY_SP_UNREF(&sp); 2474 } 2475 2476 if (count == 0 || newid == 0) { 2477 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n"); 2478 return 0; 2479 } 2480 2481 return newid; 2482 } 2483 2484 /* 2485 * SADB_SPDDELETE processing 2486 * receive 2487 * <base, address(SD), policy(*)> 2488 * from the user(?), and set SADB_SASTATE_DEAD, 2489 * and send, 2490 * <base, address(SD), policy(*)> 2491 * to the ikmpd. 2492 * policy(*) including direction of policy. 2493 * 2494 * m will always be freed. 2495 */ 2496 static int 2497 key_api_spddelete(struct socket *so, struct mbuf *m, 2498 const struct sadb_msghdr *mhp) 2499 { 2500 struct sadb_x_policy *xpl0; 2501 struct secpolicyindex spidx; 2502 struct secpolicy *sp; 2503 2504 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2505 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2506 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2507 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2508 return key_senderror(so, m, EINVAL); 2509 } 2510 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2511 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2512 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2513 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2514 return key_senderror(so, m, EINVAL); 2515 } 2516 2517 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 2518 2519 /* checking the direction. */ 2520 switch (xpl0->sadb_x_policy_dir) { 2521 case IPSEC_DIR_INBOUND: 2522 case IPSEC_DIR_OUTBOUND: 2523 break; 2524 default: 2525 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); 2526 return key_senderror(so, m, EINVAL); 2527 } 2528 2529 /* make secindex */ 2530 key_init_spidx_bymsghdr(&spidx, mhp); 2531 2532 /* Is there SP in SPD ? */ 2533 sp = key_lookup_and_remove_sp(&spidx, false); 2534 if (sp == NULL) { 2535 IPSECLOG(LOG_DEBUG, "no SP found.\n"); 2536 return key_senderror(so, m, EINVAL); 2537 } 2538 2539 /* save policy id to buffer to be returned. */ 2540 xpl0->sadb_x_policy_id = sp->id; 2541 2542 key_destroy_sp(sp); 2543 2544 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2545 2546 { 2547 struct mbuf *n; 2548 2549 /* create new sadb_msg to reply. */ 2550 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2551 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2552 key_fill_replymsg(n, 0); 2553 m_freem(m); 2554 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2555 } 2556 } 2557 2558 static struct mbuf * 2559 key_alloc_mbuf_simple(int len, int mflag) 2560 { 2561 struct mbuf *n; 2562 2563 KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p())); 2564 2565 MGETHDR(n, mflag, MT_DATA); 2566 if (n && len > MHLEN) { 2567 MCLGET(n, mflag); 2568 if ((n->m_flags & M_EXT) == 0) { 2569 m_freem(n); 2570 n = NULL; 2571 } 2572 } 2573 return n; 2574 } 2575 2576 /* 2577 * SADB_SPDDELETE2 processing 2578 * receive 2579 * <base, policy(*)> 2580 * from the user(?), and set SADB_SASTATE_DEAD, 2581 * and send, 2582 * <base, policy(*)> 2583 * to the ikmpd. 2584 * policy(*) including direction of policy. 2585 * 2586 * m will always be freed. 2587 */ 2588 static int 2589 key_spddelete2(struct socket *so, struct mbuf *m, 2590 const struct sadb_msghdr *mhp, bool from_kernel) 2591 { 2592 u_int32_t id; 2593 struct secpolicy *sp; 2594 const struct sadb_x_policy *xpl; 2595 2596 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2597 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2598 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2599 return key_senderror(so, m, EINVAL); 2600 } 2601 2602 xpl = mhp->ext[SADB_X_EXT_POLICY]; 2603 id = xpl->sadb_x_policy_id; 2604 2605 /* Is there SP in SPD ? */ 2606 sp = key_lookupbyid_and_remove_sp(id, from_kernel); 2607 if (sp == NULL) { 2608 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); 2609 return key_senderror(so, m, EINVAL); 2610 } 2611 2612 key_destroy_sp(sp); 2613 2614 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2615 2616 { 2617 struct mbuf *n, *nn; 2618 int off, len; 2619 2620 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); 2621 2622 /* create new sadb_msg to reply. */ 2623 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2624 2625 n = key_alloc_mbuf_simple(len, M_WAITOK); 2626 n->m_len = len; 2627 n->m_next = NULL; 2628 off = 0; 2629 2630 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 2631 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2632 2633 KASSERTMSG(off == len, "length inconsistency"); 2634 2635 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2636 mhp->extlen[SADB_X_EXT_POLICY], M_WAITOK); 2637 2638 n->m_pkthdr.len = 0; 2639 for (nn = n; nn; nn = nn->m_next) 2640 n->m_pkthdr.len += nn->m_len; 2641 2642 key_fill_replymsg(n, 0); 2643 m_freem(m); 2644 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2645 } 2646 } 2647 2648 /* 2649 * SADB_SPDDELETE2 processing 2650 * receive 2651 * <base, policy(*)> 2652 * from the user(?), and set SADB_SASTATE_DEAD, 2653 * and send, 2654 * <base, policy(*)> 2655 * to the ikmpd. 2656 * policy(*) including direction of policy. 2657 * 2658 * m will always be freed. 2659 */ 2660 static int 2661 key_api_spddelete2(struct socket *so, struct mbuf *m, 2662 const struct sadb_msghdr *mhp) 2663 { 2664 2665 return key_spddelete2(so, m, mhp, false); 2666 } 2667 2668 int 2669 key_kpi_spddelete2(struct mbuf *m) 2670 { 2671 struct sadb_msghdr mh; 2672 int error; 2673 2674 error = key_align(m, &mh); 2675 if (error) 2676 return EINVAL; 2677 2678 return key_spddelete2(NULL, m, &mh, true); 2679 } 2680 2681 /* 2682 * SADB_X_GET processing 2683 * receive 2684 * <base, policy(*)> 2685 * from the user(?), 2686 * and send, 2687 * <base, address(SD), policy> 2688 * to the ikmpd. 2689 * policy(*) including direction of policy. 2690 * 2691 * m will always be freed. 2692 */ 2693 static int 2694 key_api_spdget(struct socket *so, struct mbuf *m, 2695 const struct sadb_msghdr *mhp) 2696 { 2697 u_int32_t id; 2698 struct secpolicy *sp; 2699 struct mbuf *n; 2700 const struct sadb_x_policy *xpl; 2701 2702 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2703 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2704 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2705 return key_senderror(so, m, EINVAL); 2706 } 2707 2708 xpl = mhp->ext[SADB_X_EXT_POLICY]; 2709 id = xpl->sadb_x_policy_id; 2710 2711 /* Is there SP in SPD ? */ 2712 sp = key_getspbyid(id); 2713 if (sp == NULL) { 2714 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); 2715 return key_senderror(so, m, ENOENT); 2716 } 2717 2718 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, 2719 mhp->msg->sadb_msg_pid); 2720 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */ 2721 m_freem(m); 2722 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2723 } 2724 2725 #ifdef notyet 2726 /* 2727 * SADB_X_SPDACQUIRE processing. 2728 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2729 * send 2730 * <base, policy(*)> 2731 * to KMD, and expect to receive 2732 * <base> with SADB_X_SPDACQUIRE if error occurred, 2733 * or 2734 * <base, policy> 2735 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2736 * policy(*) is without policy requests. 2737 * 2738 * 0 : succeed 2739 * others: error number 2740 */ 2741 int 2742 key_spdacquire(const struct secpolicy *sp) 2743 { 2744 struct mbuf *result = NULL, *m; 2745 struct secspacq *newspacq; 2746 int error; 2747 2748 KASSERT(sp != NULL); 2749 KASSERTMSG(sp->req == NULL, "called but there is request"); 2750 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC, 2751 "policy mismathed. IPsec is expected"); 2752 2753 /* Get an entry to check whether sent message or not. */ 2754 newspacq = key_getspacq(&sp->spidx); 2755 if (newspacq != NULL) { 2756 if (key_blockacq_count < newspacq->count) { 2757 /* reset counter and do send message. */ 2758 newspacq->count = 0; 2759 } else { 2760 /* increment counter and do nothing. */ 2761 newspacq->count++; 2762 return 0; 2763 } 2764 } else { 2765 /* make new entry for blocking to send SADB_ACQUIRE. */ 2766 newspacq = key_newspacq(&sp->spidx); 2767 if (newspacq == NULL) 2768 return ENOBUFS; 2769 2770 /* add to key_misc.acqlist */ 2771 LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain); 2772 } 2773 2774 /* create new sadb_msg to reply. */ 2775 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2776 if (!m) { 2777 error = ENOBUFS; 2778 goto fail; 2779 } 2780 result = m; 2781 2782 result->m_pkthdr.len = 0; 2783 for (m = result; m; m = m->m_next) 2784 result->m_pkthdr.len += m->m_len; 2785 2786 mtod(result, struct sadb_msg *)->sadb_msg_len = 2787 PFKEY_UNIT64(result->m_pkthdr.len); 2788 2789 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2790 2791 fail: 2792 if (result) 2793 m_freem(result); 2794 return error; 2795 } 2796 #endif /* notyet */ 2797 2798 /* 2799 * SADB_SPDFLUSH processing 2800 * receive 2801 * <base> 2802 * from the user, and free all entries in secpctree. 2803 * and send, 2804 * <base> 2805 * to the user. 2806 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2807 * 2808 * m will always be freed. 2809 */ 2810 static int 2811 key_api_spdflush(struct socket *so, struct mbuf *m, 2812 const struct sadb_msghdr *mhp) 2813 { 2814 struct sadb_msg *newmsg; 2815 struct secpolicy *sp; 2816 u_int dir; 2817 2818 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2819 return key_senderror(so, m, EINVAL); 2820 2821 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2822 retry: 2823 mutex_enter(&key_spd.lock); 2824 SPLIST_WRITER_FOREACH(sp, dir) { 2825 KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, 2826 "sp->state=%u", sp->state); 2827 /* 2828 * Userlang programs can remove SPs created by userland 2829 * probrams only, that is, they cannot remove SPs 2830 * created in kernel(e.g. ipsec(4) I/F). 2831 */ 2832 if (sp->origin == IPSEC_SPORIGIN_USER) { 2833 key_unlink_sp(sp); 2834 mutex_exit(&key_spd.lock); 2835 key_destroy_sp(sp); 2836 goto retry; 2837 } 2838 } 2839 mutex_exit(&key_spd.lock); 2840 } 2841 2842 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2843 2844 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2845 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 2846 return key_senderror(so, m, ENOBUFS); 2847 } 2848 2849 if (m->m_next) 2850 m_freem(m->m_next); 2851 m->m_next = NULL; 2852 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2853 newmsg = mtod(m, struct sadb_msg *); 2854 newmsg->sadb_msg_errno = 0; 2855 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2856 2857 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2858 } 2859 2860 static struct sockaddr key_src = { 2861 .sa_len = 2, 2862 .sa_family = PF_KEY, 2863 }; 2864 2865 static struct mbuf * 2866 key_setspddump_chain(int *errorp, int *lenp, pid_t pid) 2867 { 2868 struct secpolicy *sp; 2869 int cnt; 2870 u_int dir; 2871 struct mbuf *m, *n, *prev; 2872 int totlen; 2873 2874 KASSERT(mutex_owned(&key_spd.lock)); 2875 2876 *lenp = 0; 2877 2878 /* search SPD entry and get buffer size. */ 2879 cnt = 0; 2880 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2881 SPLIST_WRITER_FOREACH(sp, dir) { 2882 cnt++; 2883 } 2884 } 2885 2886 if (cnt == 0) { 2887 *errorp = ENOENT; 2888 return (NULL); 2889 } 2890 2891 m = NULL; 2892 prev = m; 2893 totlen = 0; 2894 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2895 SPLIST_WRITER_FOREACH(sp, dir) { 2896 --cnt; 2897 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 2898 2899 totlen += n->m_pkthdr.len; 2900 if (!m) { 2901 m = n; 2902 } else { 2903 prev->m_nextpkt = n; 2904 } 2905 prev = n; 2906 } 2907 } 2908 2909 *lenp = totlen; 2910 *errorp = 0; 2911 return (m); 2912 } 2913 2914 /* 2915 * SADB_SPDDUMP processing 2916 * receive 2917 * <base> 2918 * from the user, and dump all SP leaves 2919 * and send, 2920 * <base> ..... 2921 * to the ikmpd. 2922 * 2923 * m will always be freed. 2924 */ 2925 static int 2926 key_api_spddump(struct socket *so, struct mbuf *m0, 2927 const struct sadb_msghdr *mhp) 2928 { 2929 struct mbuf *n; 2930 int error, len; 2931 int ok; 2932 pid_t pid; 2933 2934 pid = mhp->msg->sadb_msg_pid; 2935 /* 2936 * If the requestor has insufficient socket-buffer space 2937 * for the entire chain, nobody gets any response to the DUMP. 2938 * XXX For now, only the requestor ever gets anything. 2939 * Moreover, if the requestor has any space at all, they receive 2940 * the entire chain, otherwise the request is refused with ENOBUFS. 2941 */ 2942 if (sbspace(&so->so_rcv) <= 0) { 2943 return key_senderror(so, m0, ENOBUFS); 2944 } 2945 2946 mutex_enter(&key_spd.lock); 2947 n = key_setspddump_chain(&error, &len, pid); 2948 mutex_exit(&key_spd.lock); 2949 2950 if (n == NULL) { 2951 return key_senderror(so, m0, ENOENT); 2952 } 2953 { 2954 uint64_t *ps = PFKEY_STAT_GETREF(); 2955 ps[PFKEY_STAT_IN_TOTAL]++; 2956 ps[PFKEY_STAT_IN_BYTES] += len; 2957 PFKEY_STAT_PUTREF(); 2958 } 2959 2960 /* 2961 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 2962 * The requestor receives either the entire chain, or an 2963 * error message with ENOBUFS. 2964 */ 2965 2966 /* 2967 * sbappendchainwith record takes the chain of entries, one 2968 * packet-record per SPD entry, prepends the key_src sockaddr 2969 * to each packet-record, links the sockaddr mbufs into a new 2970 * list of records, then appends the entire resulting 2971 * list to the requesting socket. 2972 */ 2973 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, 2974 SB_PRIO_ONESHOT_OVERFLOW); 2975 2976 if (!ok) { 2977 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 2978 m_freem(n); 2979 return key_senderror(so, m0, ENOBUFS); 2980 } 2981 2982 m_freem(m0); 2983 return error; 2984 } 2985 2986 /* 2987 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23 2988 */ 2989 static int 2990 key_api_nat_map(struct socket *so, struct mbuf *m, 2991 const struct sadb_msghdr *mhp) 2992 { 2993 struct sadb_x_nat_t_type *type; 2994 struct sadb_x_nat_t_port *sport; 2995 struct sadb_x_nat_t_port *dport; 2996 struct sadb_address *iaddr, *raddr; 2997 struct sadb_x_nat_t_frag *frag; 2998 2999 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 3000 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 3001 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) { 3002 IPSECLOG(LOG_DEBUG, "invalid message.\n"); 3003 return key_senderror(so, m, EINVAL); 3004 } 3005 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 3006 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 3007 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 3008 IPSECLOG(LOG_DEBUG, "invalid message.\n"); 3009 return key_senderror(so, m, EINVAL); 3010 } 3011 3012 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) && 3013 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) { 3014 IPSECLOG(LOG_DEBUG, "invalid message\n"); 3015 return key_senderror(so, m, EINVAL); 3016 } 3017 3018 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) && 3019 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) { 3020 IPSECLOG(LOG_DEBUG, "invalid message\n"); 3021 return key_senderror(so, m, EINVAL); 3022 } 3023 3024 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) && 3025 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) { 3026 IPSECLOG(LOG_DEBUG, "invalid message\n"); 3027 return key_senderror(so, m, EINVAL); 3028 } 3029 3030 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 3031 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 3032 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 3033 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; 3034 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; 3035 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 3036 3037 /* 3038 * XXX handle that, it should also contain a SA, or anything 3039 * that enable to update the SA information. 3040 */ 3041 3042 return 0; 3043 } 3044 3045 /* 3046 * Never return NULL. 3047 */ 3048 static struct mbuf * 3049 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid) 3050 { 3051 struct mbuf *result = NULL, *m; 3052 3053 KASSERT(!cpu_softintr_p()); 3054 3055 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, 3056 key_sp_refcnt(sp), M_WAITOK); 3057 result = m; 3058 3059 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3060 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK); 3061 m_cat(result, m); 3062 3063 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3064 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK); 3065 m_cat(result, m); 3066 3067 m = key_sp2msg(sp, M_WAITOK); 3068 m_cat(result, m); 3069 3070 KASSERT(result->m_flags & M_PKTHDR); 3071 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 3072 3073 result->m_pkthdr.len = 0; 3074 for (m = result; m; m = m->m_next) 3075 result->m_pkthdr.len += m->m_len; 3076 3077 mtod(result, struct sadb_msg *)->sadb_msg_len = 3078 PFKEY_UNIT64(result->m_pkthdr.len); 3079 3080 return result; 3081 } 3082 3083 /* 3084 * get PFKEY message length for security policy and request. 3085 */ 3086 static u_int 3087 key_getspreqmsglen(const struct secpolicy *sp) 3088 { 3089 u_int tlen; 3090 3091 tlen = sizeof(struct sadb_x_policy); 3092 3093 /* if is the policy for ipsec ? */ 3094 if (sp->policy != IPSEC_POLICY_IPSEC) 3095 return tlen; 3096 3097 /* get length of ipsec requests */ 3098 { 3099 const struct ipsecrequest *isr; 3100 int len; 3101 3102 for (isr = sp->req; isr != NULL; isr = isr->next) { 3103 len = sizeof(struct sadb_x_ipsecrequest) 3104 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len; 3105 3106 tlen += PFKEY_ALIGN8(len); 3107 } 3108 } 3109 3110 return tlen; 3111 } 3112 3113 /* 3114 * SADB_SPDEXPIRE processing 3115 * send 3116 * <base, address(SD), lifetime(CH), policy> 3117 * to KMD by PF_KEY. 3118 * 3119 * OUT: 0 : succeed 3120 * others : error number 3121 */ 3122 static int 3123 key_spdexpire(struct secpolicy *sp) 3124 { 3125 int s; 3126 struct mbuf *result = NULL, *m; 3127 int len; 3128 int error = -1; 3129 struct sadb_lifetime *lt; 3130 3131 /* XXX: Why do we lock ? */ 3132 s = splsoftnet(); /*called from softclock()*/ 3133 3134 KASSERT(sp != NULL); 3135 3136 /* set msg header */ 3137 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0, M_WAITOK); 3138 result = m; 3139 3140 /* create lifetime extension (current and hard) */ 3141 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 3142 m = key_alloc_mbuf(len, M_WAITOK); 3143 KASSERT(m->m_next == NULL); 3144 3145 memset(mtod(m, void *), 0, len); 3146 lt = mtod(m, struct sadb_lifetime *); 3147 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3148 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3149 lt->sadb_lifetime_allocations = 0; 3150 lt->sadb_lifetime_bytes = 0; 3151 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created); 3152 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused); 3153 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 3154 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3155 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 3156 lt->sadb_lifetime_allocations = 0; 3157 lt->sadb_lifetime_bytes = 0; 3158 lt->sadb_lifetime_addtime = sp->lifetime; 3159 lt->sadb_lifetime_usetime = sp->validtime; 3160 m_cat(result, m); 3161 3162 /* set sadb_address for source */ 3163 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa, 3164 sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK); 3165 m_cat(result, m); 3166 3167 /* set sadb_address for destination */ 3168 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa, 3169 sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK); 3170 m_cat(result, m); 3171 3172 /* set secpolicy */ 3173 m = key_sp2msg(sp, M_WAITOK); 3174 m_cat(result, m); 3175 3176 KASSERT(result->m_flags & M_PKTHDR); 3177 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 3178 3179 result->m_pkthdr.len = 0; 3180 for (m = result; m; m = m->m_next) 3181 result->m_pkthdr.len += m->m_len; 3182 3183 mtod(result, struct sadb_msg *)->sadb_msg_len = 3184 PFKEY_UNIT64(result->m_pkthdr.len); 3185 3186 error = key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 3187 splx(s); 3188 return error; 3189 } 3190 3191 /* %%% SAD management */ 3192 /* 3193 * allocating a memory for new SA head, and copy from the values of mhp. 3194 * OUT: NULL : failure due to the lack of memory. 3195 * others : pointer to new SA head. 3196 */ 3197 static struct secashead * 3198 key_newsah(const struct secasindex *saidx) 3199 { 3200 struct secashead *newsah; 3201 int i; 3202 3203 KASSERT(saidx != NULL); 3204 3205 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP); 3206 for (i = 0; i < __arraycount(newsah->savlist); i++) 3207 PSLIST_INIT(&newsah->savlist[i]); 3208 newsah->saidx = *saidx; 3209 3210 localcount_init(&newsah->localcount); 3211 /* Take a reference for the caller */ 3212 localcount_acquire(&newsah->localcount); 3213 3214 /* Add to the sah list */ 3215 SAHLIST_ENTRY_INIT(newsah); 3216 newsah->state = SADB_SASTATE_MATURE; 3217 mutex_enter(&key_sad.lock); 3218 SAHLIST_WRITER_INSERT_HEAD(newsah); 3219 mutex_exit(&key_sad.lock); 3220 3221 return newsah; 3222 } 3223 3224 static bool 3225 key_sah_has_sav(struct secashead *sah) 3226 { 3227 u_int state; 3228 3229 KASSERT(mutex_owned(&key_sad.lock)); 3230 3231 SASTATE_ANY_FOREACH(state) { 3232 if (!SAVLIST_WRITER_EMPTY(sah, state)) 3233 return true; 3234 } 3235 3236 return false; 3237 } 3238 3239 static void 3240 key_unlink_sah(struct secashead *sah) 3241 { 3242 3243 KASSERT(!cpu_softintr_p()); 3244 KASSERT(mutex_owned(&key_sad.lock)); 3245 KASSERTMSG(sah->state == SADB_SASTATE_DEAD, "sah->state=%u", sah->state); 3246 3247 /* Remove from the sah list */ 3248 SAHLIST_WRITER_REMOVE(sah); 3249 3250 KDASSERT(mutex_ownable(softnet_lock)); 3251 key_sad_pserialize_perform(); 3252 3253 localcount_drain(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); 3254 } 3255 3256 static void 3257 key_destroy_sah(struct secashead *sah) 3258 { 3259 3260 rtcache_free(&sah->sa_route); 3261 3262 SAHLIST_ENTRY_DESTROY(sah); 3263 localcount_fini(&sah->localcount); 3264 3265 if (sah->idents != NULL) 3266 kmem_free(sah->idents, sah->idents_len); 3267 if (sah->identd != NULL) 3268 kmem_free(sah->identd, sah->identd_len); 3269 3270 kmem_free(sah, sizeof(*sah)); 3271 } 3272 3273 /* 3274 * allocating a new SA with LARVAL state. 3275 * key_api_add() and key_api_getspi() call, 3276 * and copy the values of mhp into new buffer. 3277 * When SAD message type is GETSPI: 3278 * to set sequence number from acq_seq++, 3279 * to set zero to SPI. 3280 * not to call key_setsaval(). 3281 * OUT: NULL : fail 3282 * others : pointer to new secasvar. 3283 * 3284 * does not modify mbuf. does not free mbuf on error. 3285 */ 3286 static struct secasvar * 3287 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp, 3288 int *errp, int proto, const char* where, int tag) 3289 { 3290 struct secasvar *newsav; 3291 const struct sadb_sa *xsa; 3292 3293 KASSERT(!cpu_softintr_p()); 3294 KASSERT(m != NULL); 3295 KASSERT(mhp != NULL); 3296 KASSERT(mhp->msg != NULL); 3297 3298 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); 3299 3300 switch (mhp->msg->sadb_msg_type) { 3301 case SADB_GETSPI: 3302 newsav->spi = 0; 3303 3304 #ifdef IPSEC_DOSEQCHECK 3305 /* sync sequence number */ 3306 if (mhp->msg->sadb_msg_seq == 0) 3307 newsav->seq = 3308 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 3309 else 3310 #endif 3311 newsav->seq = mhp->msg->sadb_msg_seq; 3312 break; 3313 3314 case SADB_ADD: 3315 /* sanity check */ 3316 if (mhp->ext[SADB_EXT_SA] == NULL) { 3317 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 3318 *errp = EINVAL; 3319 goto error; 3320 } 3321 xsa = mhp->ext[SADB_EXT_SA]; 3322 newsav->spi = xsa->sadb_sa_spi; 3323 newsav->seq = mhp->msg->sadb_msg_seq; 3324 break; 3325 default: 3326 *errp = EINVAL; 3327 goto error; 3328 } 3329 3330 /* copy sav values */ 3331 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 3332 *errp = key_setsaval(newsav, m, mhp); 3333 if (*errp) 3334 goto error; 3335 } else { 3336 /* We don't allow lft_c to be NULL */ 3337 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime), 3338 KM_SLEEP); 3339 newsav->lft_c_counters_percpu = 3340 percpu_alloc(sizeof(lifetime_counters_t)); 3341 } 3342 3343 /* reset created */ 3344 newsav->created = time_uptime; 3345 newsav->pid = mhp->msg->sadb_msg_pid; 3346 3347 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 3348 "DP from %s:%u return SA:%p spi=%#x proto=%d\n", 3349 where, tag, newsav, ntohl(newsav->spi), proto); 3350 return newsav; 3351 3352 error: 3353 KASSERT(*errp != 0); 3354 kmem_free(newsav, sizeof(*newsav)); 3355 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 3356 "DP from %s:%u return SA:NULL\n", where, tag); 3357 return NULL; 3358 } 3359 3360 3361 static void 3362 key_clear_xform(struct secasvar *sav) 3363 { 3364 3365 /* 3366 * Cleanup xform state. Note that zeroize'ing causes the 3367 * keys to be cleared; otherwise we must do it ourself. 3368 */ 3369 if (sav->tdb_xform != NULL) { 3370 sav->tdb_xform->xf_zeroize(sav); 3371 sav->tdb_xform = NULL; 3372 } else { 3373 if (sav->key_auth != NULL) 3374 explicit_memset(_KEYBUF(sav->key_auth), 0, 3375 _KEYLEN(sav->key_auth)); 3376 if (sav->key_enc != NULL) 3377 explicit_memset(_KEYBUF(sav->key_enc), 0, 3378 _KEYLEN(sav->key_enc)); 3379 } 3380 } 3381 3382 /* 3383 * free() SA variable entry. 3384 */ 3385 static void 3386 key_delsav(struct secasvar *sav) 3387 { 3388 3389 key_clear_xform(sav); 3390 key_freesaval(sav); 3391 kmem_free(sav, sizeof(*sav)); 3392 } 3393 3394 /* 3395 * Must be called in a pserialize read section. A held sah 3396 * must be released by key_sah_unref after use. 3397 */ 3398 static void 3399 key_sah_ref(struct secashead *sah) 3400 { 3401 3402 localcount_acquire(&sah->localcount); 3403 } 3404 3405 /* 3406 * Must be called without holding key_sad.lock because the lock 3407 * would be held in localcount_release. 3408 */ 3409 static void 3410 key_sah_unref(struct secashead *sah) 3411 { 3412 3413 KDASSERT(mutex_ownable(&key_sad.lock)); 3414 3415 localcount_release(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); 3416 } 3417 3418 /* 3419 * Search SAD and return sah. Must be called in a pserialize 3420 * read section. 3421 * OUT: 3422 * NULL : not found 3423 * others : found, pointer to a SA. 3424 */ 3425 static struct secashead * 3426 key_getsah(const struct secasindex *saidx, int flag) 3427 { 3428 struct secashead *sah; 3429 3430 SAHLIST_READER_FOREACH_SAIDX(sah, saidx) { 3431 if (sah->state == SADB_SASTATE_DEAD) 3432 continue; 3433 if (key_saidx_match(&sah->saidx, saidx, flag)) 3434 return sah; 3435 } 3436 3437 return NULL; 3438 } 3439 3440 /* 3441 * Search SAD and return sah. If sah is returned, the caller must call 3442 * key_sah_unref to releaset a reference. 3443 * OUT: 3444 * NULL : not found 3445 * others : found, pointer to a SA. 3446 */ 3447 static struct secashead * 3448 key_getsah_ref(const struct secasindex *saidx, int flag) 3449 { 3450 struct secashead *sah; 3451 int s; 3452 3453 s = pserialize_read_enter(); 3454 sah = key_getsah(saidx, flag); 3455 if (sah != NULL) 3456 key_sah_ref(sah); 3457 pserialize_read_exit(s); 3458 3459 return sah; 3460 } 3461 3462 /* 3463 * check not to be duplicated SPI. 3464 * NOTE: this function is too slow due to searching all SAD. 3465 * OUT: 3466 * NULL : not found 3467 * others : found, pointer to a SA. 3468 */ 3469 static bool 3470 key_checkspidup(const struct secasindex *saidx, u_int32_t spi) 3471 { 3472 struct secashead *sah; 3473 struct secasvar *sav; 3474 3475 /* check address family */ 3476 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 3477 IPSECLOG(LOG_DEBUG, 3478 "address family mismatched src %u, dst %u.\n", 3479 saidx->src.sa.sa_family, saidx->dst.sa.sa_family); 3480 return false; 3481 } 3482 3483 /* check all SAD */ 3484 /* key_ismyaddr may sleep, so use mutex, not pserialize, here. */ 3485 mutex_enter(&key_sad.lock); 3486 SAHLIST_WRITER_FOREACH(sah) { 3487 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 3488 continue; 3489 sav = key_getsavbyspi(sah, spi); 3490 if (sav != NULL) { 3491 KEY_SA_UNREF(&sav); 3492 mutex_exit(&key_sad.lock); 3493 return true; 3494 } 3495 } 3496 mutex_exit(&key_sad.lock); 3497 3498 return false; 3499 } 3500 3501 /* 3502 * search SAD litmited alive SA, protocol, SPI. 3503 * OUT: 3504 * NULL : not found 3505 * others : found, pointer to a SA. 3506 */ 3507 static struct secasvar * 3508 key_getsavbyspi(struct secashead *sah, u_int32_t spi) 3509 { 3510 struct secasvar *sav = NULL; 3511 u_int state; 3512 int s; 3513 3514 /* search all status */ 3515 s = pserialize_read_enter(); 3516 SASTATE_ALIVE_FOREACH(state) { 3517 SAVLIST_READER_FOREACH(sav, sah, state) { 3518 /* sanity check */ 3519 if (sav->state != state) { 3520 IPSECLOG(LOG_DEBUG, 3521 "invalid sav->state (queue: %d SA: %d)\n", 3522 state, sav->state); 3523 continue; 3524 } 3525 3526 if (sav->spi == spi) { 3527 KEY_SA_REF(sav); 3528 goto out; 3529 } 3530 } 3531 } 3532 out: 3533 pserialize_read_exit(s); 3534 3535 return sav; 3536 } 3537 3538 /* 3539 * Search SAD litmited alive SA by an SPI and remove it from a list. 3540 * OUT: 3541 * NULL : not found 3542 * others : found, pointer to a SA. 3543 */ 3544 static struct secasvar * 3545 key_lookup_and_remove_sav(struct secashead *sah, u_int32_t spi, 3546 const struct secasvar *hint) 3547 { 3548 struct secasvar *sav = NULL; 3549 u_int state; 3550 3551 /* search all status */ 3552 mutex_enter(&key_sad.lock); 3553 SASTATE_ALIVE_FOREACH(state) { 3554 SAVLIST_WRITER_FOREACH(sav, sah, state) { 3555 KASSERT(sav->state == state); 3556 3557 if (sav->spi == spi) { 3558 if (hint != NULL && hint != sav) 3559 continue; 3560 sav->state = SADB_SASTATE_DEAD; 3561 SAVLIST_WRITER_REMOVE(sav); 3562 SAVLUT_WRITER_REMOVE(sav); 3563 goto out; 3564 } 3565 } 3566 } 3567 out: 3568 mutex_exit(&key_sad.lock); 3569 3570 return sav; 3571 } 3572 3573 /* 3574 * Free allocated data to member variables of sav: 3575 * sav->replay, sav->key_* and sav->lft_*. 3576 */ 3577 static void 3578 key_freesaval(struct secasvar *sav) 3579 { 3580 3581 KASSERTMSG(key_sa_refcnt(sav) == 0, "key_sa_refcnt(sav)=%u", 3582 key_sa_refcnt(sav)); 3583 3584 if (sav->replay != NULL) 3585 kmem_intr_free(sav->replay, sav->replay_len); 3586 if (sav->key_auth != NULL) 3587 kmem_intr_free(sav->key_auth, sav->key_auth_len); 3588 if (sav->key_enc != NULL) 3589 kmem_intr_free(sav->key_enc, sav->key_enc_len); 3590 if (sav->lft_c_counters_percpu != NULL) { 3591 percpu_free(sav->lft_c_counters_percpu, 3592 sizeof(lifetime_counters_t)); 3593 } 3594 if (sav->lft_c != NULL) 3595 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c))); 3596 if (sav->lft_h != NULL) 3597 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h))); 3598 if (sav->lft_s != NULL) 3599 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s))); 3600 } 3601 3602 /* 3603 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3604 * You must update these if need. 3605 * OUT: 0: success. 3606 * !0: failure. 3607 * 3608 * does not modify mbuf. does not free mbuf on error. 3609 */ 3610 static int 3611 key_setsaval(struct secasvar *sav, struct mbuf *m, 3612 const struct sadb_msghdr *mhp) 3613 { 3614 int error = 0; 3615 3616 KASSERT(!cpu_softintr_p()); 3617 KASSERT(m != NULL); 3618 KASSERT(mhp != NULL); 3619 KASSERT(mhp->msg != NULL); 3620 3621 /* We shouldn't initialize sav variables while someone uses it. */ 3622 KASSERTMSG(key_sa_refcnt(sav) == 0, "key_sa_refcnt(sav)=%u", 3623 key_sa_refcnt(sav)); 3624 3625 /* SA */ 3626 if (mhp->ext[SADB_EXT_SA] != NULL) { 3627 const struct sadb_sa *sa0; 3628 3629 sa0 = mhp->ext[SADB_EXT_SA]; 3630 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3631 error = EINVAL; 3632 goto fail; 3633 } 3634 3635 sav->alg_auth = sa0->sadb_sa_auth; 3636 sav->alg_enc = sa0->sadb_sa_encrypt; 3637 sav->flags = sa0->sadb_sa_flags; 3638 3639 /* replay window */ 3640 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3641 size_t len = sizeof(struct secreplay) + 3642 sa0->sadb_sa_replay; 3643 sav->replay = kmem_zalloc(len, KM_SLEEP); 3644 sav->replay_len = len; 3645 if (sa0->sadb_sa_replay != 0) 3646 sav->replay->bitmap = (char*)(sav->replay+1); 3647 sav->replay->wsize = sa0->sadb_sa_replay; 3648 } 3649 } 3650 3651 /* Authentication keys */ 3652 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3653 const struct sadb_key *key0; 3654 int len; 3655 3656 key0 = mhp->ext[SADB_EXT_KEY_AUTH]; 3657 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3658 3659 error = 0; 3660 if (len < sizeof(*key0)) { 3661 error = EINVAL; 3662 goto fail; 3663 } 3664 switch (mhp->msg->sadb_msg_satype) { 3665 case SADB_SATYPE_AH: 3666 case SADB_SATYPE_ESP: 3667 case SADB_X_SATYPE_TCPSIGNATURE: 3668 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3669 sav->alg_auth != SADB_X_AALG_NULL) 3670 error = EINVAL; 3671 break; 3672 case SADB_X_SATYPE_IPCOMP: 3673 default: 3674 error = EINVAL; 3675 break; 3676 } 3677 if (error) { 3678 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n"); 3679 goto fail; 3680 } 3681 3682 sav->key_auth = key_newbuf(key0, len); 3683 sav->key_auth_len = len; 3684 } 3685 3686 /* Encryption key */ 3687 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3688 const struct sadb_key *key0; 3689 int len; 3690 3691 key0 = mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3692 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3693 3694 error = 0; 3695 if (len < sizeof(*key0)) { 3696 error = EINVAL; 3697 goto fail; 3698 } 3699 switch (mhp->msg->sadb_msg_satype) { 3700 case SADB_SATYPE_ESP: 3701 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3702 sav->alg_enc != SADB_EALG_NULL) { 3703 error = EINVAL; 3704 break; 3705 } 3706 sav->key_enc = key_newbuf(key0, len); 3707 sav->key_enc_len = len; 3708 break; 3709 case SADB_X_SATYPE_IPCOMP: 3710 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3711 error = EINVAL; 3712 sav->key_enc = NULL; /*just in case*/ 3713 break; 3714 case SADB_SATYPE_AH: 3715 case SADB_X_SATYPE_TCPSIGNATURE: 3716 default: 3717 error = EINVAL; 3718 break; 3719 } 3720 if (error) { 3721 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n"); 3722 goto fail; 3723 } 3724 } 3725 3726 /* set iv */ 3727 sav->ivlen = 0; 3728 3729 switch (mhp->msg->sadb_msg_satype) { 3730 case SADB_SATYPE_AH: 3731 error = xform_init(sav, XF_AH); 3732 break; 3733 case SADB_SATYPE_ESP: 3734 error = xform_init(sav, XF_ESP); 3735 break; 3736 case SADB_X_SATYPE_IPCOMP: 3737 error = xform_init(sav, XF_IPCOMP); 3738 break; 3739 case SADB_X_SATYPE_TCPSIGNATURE: 3740 error = xform_init(sav, XF_TCPSIGNATURE); 3741 break; 3742 default: 3743 error = EOPNOTSUPP; 3744 break; 3745 } 3746 if (error) { 3747 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u (%d)\n", 3748 mhp->msg->sadb_msg_satype, error); 3749 goto fail; 3750 } 3751 3752 /* reset created */ 3753 sav->created = time_uptime; 3754 3755 /* make lifetime for CURRENT */ 3756 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP); 3757 3758 sav->lft_c->sadb_lifetime_len = 3759 PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3760 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3761 sav->lft_c->sadb_lifetime_allocations = 0; 3762 sav->lft_c->sadb_lifetime_bytes = 0; 3763 sav->lft_c->sadb_lifetime_addtime = time_uptime; 3764 sav->lft_c->sadb_lifetime_usetime = 0; 3765 3766 sav->lft_c_counters_percpu = percpu_alloc(sizeof(lifetime_counters_t)); 3767 3768 /* lifetimes for HARD and SOFT */ 3769 { 3770 const struct sadb_lifetime *lft0; 3771 3772 lft0 = mhp->ext[SADB_EXT_LIFETIME_HARD]; 3773 if (lft0 != NULL) { 3774 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3775 error = EINVAL; 3776 goto fail; 3777 } 3778 sav->lft_h = key_newbuf(lft0, sizeof(*lft0)); 3779 } 3780 3781 lft0 = mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3782 if (lft0 != NULL) { 3783 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3784 error = EINVAL; 3785 goto fail; 3786 } 3787 sav->lft_s = key_newbuf(lft0, sizeof(*lft0)); 3788 /* to be initialize ? */ 3789 } 3790 } 3791 3792 return 0; 3793 3794 fail: 3795 key_clear_xform(sav); 3796 key_freesaval(sav); 3797 3798 return error; 3799 } 3800 3801 /* 3802 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3803 * OUT: 0: valid 3804 * other: errno 3805 */ 3806 static int 3807 key_init_xform(struct secasvar *sav) 3808 { 3809 int error; 3810 3811 /* We shouldn't initialize sav variables while someone uses it. */ 3812 KASSERTMSG(key_sa_refcnt(sav) == 0, "key_sa_refcnt(sav)=%u", 3813 key_sa_refcnt(sav)); 3814 3815 /* check SPI value */ 3816 switch (sav->sah->saidx.proto) { 3817 case IPPROTO_ESP: 3818 case IPPROTO_AH: 3819 if (ntohl(sav->spi) <= 255) { 3820 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n", 3821 (u_int32_t)ntohl(sav->spi)); 3822 return EINVAL; 3823 } 3824 break; 3825 } 3826 3827 /* check algo */ 3828 switch (sav->sah->saidx.proto) { 3829 case IPPROTO_AH: 3830 case IPPROTO_TCP: 3831 if (sav->alg_enc != SADB_EALG_NONE) { 3832 IPSECLOG(LOG_DEBUG, 3833 "protocol %u and algorithm mismatched %u != %u.\n", 3834 sav->sah->saidx.proto, 3835 sav->alg_enc, SADB_EALG_NONE); 3836 return EINVAL; 3837 } 3838 break; 3839 case IPPROTO_IPCOMP: 3840 if (sav->alg_auth != SADB_AALG_NONE) { 3841 IPSECLOG(LOG_DEBUG, 3842 "protocol %u and algorithm mismatched %d != %d.\n", 3843 sav->sah->saidx.proto, 3844 sav->alg_auth, SADB_AALG_NONE); 3845 return(EINVAL); 3846 } 3847 break; 3848 default: 3849 break; 3850 } 3851 3852 /* check satype */ 3853 switch (sav->sah->saidx.proto) { 3854 case IPPROTO_ESP: 3855 /* check flags */ 3856 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3857 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3858 IPSECLOG(LOG_DEBUG, 3859 "invalid flag (derived) given to old-esp.\n"); 3860 return EINVAL; 3861 } 3862 error = xform_init(sav, XF_ESP); 3863 break; 3864 case IPPROTO_AH: 3865 /* check flags */ 3866 if (sav->flags & SADB_X_EXT_DERIV) { 3867 IPSECLOG(LOG_DEBUG, 3868 "invalid flag (derived) given to AH SA.\n"); 3869 return EINVAL; 3870 } 3871 error = xform_init(sav, XF_AH); 3872 break; 3873 case IPPROTO_IPCOMP: 3874 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3875 && ntohl(sav->spi) >= 0x10000) { 3876 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n"); 3877 return(EINVAL); 3878 } 3879 error = xform_init(sav, XF_IPCOMP); 3880 break; 3881 case IPPROTO_TCP: 3882 error = xform_init(sav, XF_TCPSIGNATURE); 3883 break; 3884 default: 3885 IPSECLOG(LOG_DEBUG, "Invalid satype.\n"); 3886 error = EPROTONOSUPPORT; 3887 break; 3888 } 3889 3890 return error; 3891 } 3892 3893 /* 3894 * subroutine for SADB_GET and SADB_DUMP. It never return NULL. 3895 */ 3896 static struct mbuf * 3897 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3898 u_int32_t seq, u_int32_t pid) 3899 { 3900 struct mbuf *result = NULL, *tres = NULL, *m; 3901 int l = 0; 3902 int i; 3903 void *p; 3904 struct sadb_lifetime lt; 3905 int dumporder[] = { 3906 SADB_EXT_SA, SADB_X_EXT_SA2, 3907 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3908 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3909 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3910 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3911 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3912 SADB_X_EXT_NAT_T_TYPE, 3913 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3914 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3915 SADB_X_EXT_NAT_T_FRAG, 3916 3917 }; 3918 3919 m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav), M_WAITOK); 3920 result = m; 3921 3922 for (i = __arraycount(dumporder) - 1; i >= 0; i--) { 3923 m = NULL; 3924 p = NULL; 3925 switch (dumporder[i]) { 3926 case SADB_EXT_SA: 3927 m = key_setsadbsa(sav); 3928 break; 3929 3930 case SADB_X_EXT_SA2: 3931 m = key_setsadbxsa2(sav->sah->saidx.mode, 3932 sav->replay ? sav->replay->count : 0, 3933 sav->sah->saidx.reqid); 3934 break; 3935 3936 case SADB_EXT_ADDRESS_SRC: 3937 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3938 &sav->sah->saidx.src.sa, 3939 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 3940 break; 3941 3942 case SADB_EXT_ADDRESS_DST: 3943 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3944 &sav->sah->saidx.dst.sa, 3945 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 3946 break; 3947 3948 case SADB_EXT_KEY_AUTH: 3949 if (!sav->key_auth) 3950 continue; 3951 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len); 3952 p = sav->key_auth; 3953 break; 3954 3955 case SADB_EXT_KEY_ENCRYPT: 3956 if (!sav->key_enc) 3957 continue; 3958 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len); 3959 p = sav->key_enc; 3960 break; 3961 3962 case SADB_EXT_LIFETIME_CURRENT: { 3963 lifetime_counters_t sum = {0}; 3964 3965 KASSERT(sav->lft_c != NULL); 3966 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len); 3967 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime)); 3968 lt.sadb_lifetime_addtime = 3969 time_mono_to_wall(lt.sadb_lifetime_addtime); 3970 lt.sadb_lifetime_usetime = 3971 time_mono_to_wall(lt.sadb_lifetime_usetime); 3972 percpu_foreach_xcall(sav->lft_c_counters_percpu, 3973 XC_HIGHPRI_IPL(IPL_SOFTNET), 3974 key_sum_lifetime_counters, sum); 3975 lt.sadb_lifetime_allocations = 3976 sum[LIFETIME_COUNTER_ALLOCATIONS]; 3977 lt.sadb_lifetime_bytes = 3978 sum[LIFETIME_COUNTER_BYTES]; 3979 p = < 3980 break; 3981 } 3982 3983 case SADB_EXT_LIFETIME_HARD: 3984 if (!sav->lft_h) 3985 continue; 3986 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len); 3987 p = sav->lft_h; 3988 break; 3989 3990 case SADB_EXT_LIFETIME_SOFT: 3991 if (!sav->lft_s) 3992 continue; 3993 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len); 3994 p = sav->lft_s; 3995 break; 3996 3997 case SADB_X_EXT_NAT_T_TYPE: 3998 m = key_setsadbxtype(sav->natt_type); 3999 break; 4000 4001 case SADB_X_EXT_NAT_T_DPORT: 4002 if (sav->natt_type == 0) 4003 continue; 4004 m = key_setsadbxport( 4005 key_portfromsaddr(&sav->sah->saidx.dst), 4006 SADB_X_EXT_NAT_T_DPORT); 4007 break; 4008 4009 case SADB_X_EXT_NAT_T_SPORT: 4010 if (sav->natt_type == 0) 4011 continue; 4012 m = key_setsadbxport( 4013 key_portfromsaddr(&sav->sah->saidx.src), 4014 SADB_X_EXT_NAT_T_SPORT); 4015 break; 4016 4017 case SADB_X_EXT_NAT_T_FRAG: 4018 /* don't send frag info if not set */ 4019 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET) 4020 continue; 4021 m = key_setsadbxfrag(sav->esp_frag); 4022 break; 4023 4024 case SADB_X_EXT_NAT_T_OAI: 4025 case SADB_X_EXT_NAT_T_OAR: 4026 continue; 4027 4028 case SADB_EXT_ADDRESS_PROXY: 4029 case SADB_EXT_IDENTITY_SRC: 4030 case SADB_EXT_IDENTITY_DST: 4031 /* XXX: should we brought from SPD ? */ 4032 case SADB_EXT_SENSITIVITY: 4033 default: 4034 continue; 4035 } 4036 4037 KASSERT(!(m && p)); 4038 KASSERT(m != NULL || p != NULL); 4039 if (p && tres) { 4040 M_PREPEND(tres, l, M_WAITOK); 4041 memcpy(mtod(tres, void *), p, l); 4042 continue; 4043 } 4044 if (p) { 4045 m = key_alloc_mbuf(l, M_WAITOK); 4046 m_copyback(m, 0, l, p); 4047 } 4048 4049 if (tres) 4050 m_cat(m, tres); 4051 tres = m; 4052 } 4053 4054 m_cat(result, tres); 4055 tres = NULL; /* avoid free on error below */ 4056 4057 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 4058 4059 result->m_pkthdr.len = 0; 4060 for (m = result; m; m = m->m_next) 4061 result->m_pkthdr.len += m->m_len; 4062 4063 mtod(result, struct sadb_msg *)->sadb_msg_len = 4064 PFKEY_UNIT64(result->m_pkthdr.len); 4065 4066 return result; 4067 } 4068 4069 4070 /* 4071 * set a type in sadb_x_nat_t_type 4072 */ 4073 static struct mbuf * 4074 key_setsadbxtype(u_int16_t type) 4075 { 4076 struct mbuf *m; 4077 size_t len; 4078 struct sadb_x_nat_t_type *p; 4079 4080 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 4081 4082 m = key_alloc_mbuf(len, M_WAITOK); 4083 KASSERT(m->m_next == NULL); 4084 4085 p = mtod(m, struct sadb_x_nat_t_type *); 4086 4087 memset(p, 0, len); 4088 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 4089 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 4090 p->sadb_x_nat_t_type_type = type; 4091 4092 return m; 4093 } 4094 /* 4095 * set a port in sadb_x_nat_t_port. port is in network order 4096 */ 4097 static struct mbuf * 4098 key_setsadbxport(u_int16_t port, u_int16_t type) 4099 { 4100 struct mbuf *m; 4101 size_t len; 4102 struct sadb_x_nat_t_port *p; 4103 4104 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 4105 4106 m = key_alloc_mbuf(len, M_WAITOK); 4107 KASSERT(m->m_next == NULL); 4108 4109 p = mtod(m, struct sadb_x_nat_t_port *); 4110 4111 memset(p, 0, len); 4112 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 4113 p->sadb_x_nat_t_port_exttype = type; 4114 p->sadb_x_nat_t_port_port = port; 4115 4116 return m; 4117 } 4118 4119 /* 4120 * set fragmentation info in sadb_x_nat_t_frag 4121 */ 4122 static struct mbuf * 4123 key_setsadbxfrag(u_int16_t flen) 4124 { 4125 struct mbuf *m; 4126 size_t len; 4127 struct sadb_x_nat_t_frag *p; 4128 4129 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag)); 4130 4131 m = key_alloc_mbuf(len, M_WAITOK); 4132 KASSERT(m->m_next == NULL); 4133 4134 p = mtod(m, struct sadb_x_nat_t_frag *); 4135 4136 memset(p, 0, len); 4137 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len); 4138 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG; 4139 p->sadb_x_nat_t_frag_fraglen = flen; 4140 4141 return m; 4142 } 4143 4144 /* 4145 * Get port from sockaddr, port is in network order 4146 */ 4147 u_int16_t 4148 key_portfromsaddr(const union sockaddr_union *saddr) 4149 { 4150 u_int16_t port; 4151 4152 switch (saddr->sa.sa_family) { 4153 case AF_INET: { 4154 port = saddr->sin.sin_port; 4155 break; 4156 } 4157 #ifdef INET6 4158 case AF_INET6: { 4159 port = saddr->sin6.sin6_port; 4160 break; 4161 } 4162 #endif 4163 default: 4164 printf("%s: unexpected address family\n", __func__); 4165 port = 0; 4166 break; 4167 } 4168 4169 return port; 4170 } 4171 4172 4173 /* 4174 * Set port is struct sockaddr. port is in network order 4175 */ 4176 static void 4177 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port) 4178 { 4179 switch (saddr->sa.sa_family) { 4180 case AF_INET: { 4181 saddr->sin.sin_port = port; 4182 break; 4183 } 4184 #ifdef INET6 4185 case AF_INET6: { 4186 saddr->sin6.sin6_port = port; 4187 break; 4188 } 4189 #endif 4190 default: 4191 printf("%s: unexpected address family %d\n", __func__, 4192 saddr->sa.sa_family); 4193 break; 4194 } 4195 4196 return; 4197 } 4198 4199 /* 4200 * Safety check sa_len 4201 */ 4202 static int 4203 key_checksalen(const union sockaddr_union *saddr) 4204 { 4205 switch (saddr->sa.sa_family) { 4206 case AF_INET: 4207 if (saddr->sa.sa_len != sizeof(struct sockaddr_in)) 4208 return -1; 4209 break; 4210 #ifdef INET6 4211 case AF_INET6: 4212 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6)) 4213 return -1; 4214 break; 4215 #endif 4216 default: 4217 printf("%s: unexpected sa_family %d\n", __func__, 4218 saddr->sa.sa_family); 4219 return -1; 4220 break; 4221 } 4222 return 0; 4223 } 4224 4225 4226 /* 4227 * set data into sadb_msg. 4228 */ 4229 static struct mbuf * 4230 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, 4231 u_int32_t seq, pid_t pid, u_int16_t reserved, int mflag) 4232 { 4233 struct mbuf *m; 4234 struct sadb_msg *p; 4235 int len; 4236 4237 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); 4238 4239 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4240 4241 m = key_alloc_mbuf_simple(len, mflag); 4242 if (!m) 4243 return NULL; 4244 m->m_pkthdr.len = m->m_len = len; 4245 m->m_next = NULL; 4246 4247 p = mtod(m, struct sadb_msg *); 4248 4249 memset(p, 0, len); 4250 p->sadb_msg_version = PF_KEY_V2; 4251 p->sadb_msg_type = type; 4252 p->sadb_msg_errno = 0; 4253 p->sadb_msg_satype = satype; 4254 p->sadb_msg_len = PFKEY_UNIT64(tlen); 4255 p->sadb_msg_reserved = reserved; 4256 p->sadb_msg_seq = seq; 4257 p->sadb_msg_pid = (u_int32_t)pid; 4258 4259 return m; 4260 } 4261 4262 /* 4263 * copy secasvar data into sadb_address. 4264 */ 4265 static struct mbuf * 4266 key_setsadbsa(struct secasvar *sav) 4267 { 4268 struct mbuf *m; 4269 struct sadb_sa *p; 4270 int len; 4271 4272 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4273 m = key_alloc_mbuf(len, M_WAITOK); 4274 KASSERT(m->m_next == NULL); 4275 4276 p = mtod(m, struct sadb_sa *); 4277 4278 memset(p, 0, len); 4279 p->sadb_sa_len = PFKEY_UNIT64(len); 4280 p->sadb_sa_exttype = SADB_EXT_SA; 4281 p->sadb_sa_spi = sav->spi; 4282 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 4283 p->sadb_sa_state = sav->state; 4284 p->sadb_sa_auth = sav->alg_auth; 4285 p->sadb_sa_encrypt = sav->alg_enc; 4286 p->sadb_sa_flags = sav->flags; 4287 4288 return m; 4289 } 4290 4291 static uint8_t 4292 key_sabits(const struct sockaddr *saddr) 4293 { 4294 switch (saddr->sa_family) { 4295 case AF_INET: 4296 return _BITS(sizeof(struct in_addr)); 4297 case AF_INET6: 4298 return _BITS(sizeof(struct in6_addr)); 4299 default: 4300 return FULLMASK; 4301 } 4302 } 4303 4304 /* 4305 * set data into sadb_address. 4306 */ 4307 static struct mbuf * 4308 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 4309 u_int8_t prefixlen, u_int16_t ul_proto, int mflag) 4310 { 4311 struct mbuf *m; 4312 struct sadb_address *p; 4313 size_t len; 4314 4315 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 4316 PFKEY_ALIGN8(saddr->sa_len); 4317 m = key_alloc_mbuf(len, mflag); 4318 if (!m || m->m_next) { /*XXX*/ 4319 if (m) 4320 m_freem(m); 4321 return NULL; 4322 } 4323 4324 p = mtod(m, struct sadb_address *); 4325 4326 memset(p, 0, len); 4327 p->sadb_address_len = PFKEY_UNIT64(len); 4328 p->sadb_address_exttype = exttype; 4329 p->sadb_address_proto = ul_proto; 4330 if (prefixlen == FULLMASK) { 4331 prefixlen = key_sabits(saddr); 4332 } 4333 p->sadb_address_prefixlen = prefixlen; 4334 p->sadb_address_reserved = 0; 4335 4336 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 4337 saddr, saddr->sa_len); 4338 4339 return m; 4340 } 4341 4342 #if 0 4343 /* 4344 * set data into sadb_ident. 4345 */ 4346 static struct mbuf * 4347 key_setsadbident(u_int16_t exttype, u_int16_t idtype, 4348 void *string, int stringlen, u_int64_t id) 4349 { 4350 struct mbuf *m; 4351 struct sadb_ident *p; 4352 size_t len; 4353 4354 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen); 4355 m = key_alloc_mbuf(len); 4356 if (!m || m->m_next) { /*XXX*/ 4357 if (m) 4358 m_freem(m); 4359 return NULL; 4360 } 4361 4362 p = mtod(m, struct sadb_ident *); 4363 4364 memset(p, 0, len); 4365 p->sadb_ident_len = PFKEY_UNIT64(len); 4366 p->sadb_ident_exttype = exttype; 4367 p->sadb_ident_type = idtype; 4368 p->sadb_ident_reserved = 0; 4369 p->sadb_ident_id = id; 4370 4371 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)), 4372 string, stringlen); 4373 4374 return m; 4375 } 4376 #endif 4377 4378 /* 4379 * set data into sadb_x_sa2. 4380 */ 4381 static struct mbuf * 4382 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid) 4383 { 4384 struct mbuf *m; 4385 struct sadb_x_sa2 *p; 4386 size_t len; 4387 4388 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 4389 m = key_alloc_mbuf(len, M_WAITOK); 4390 KASSERT(m->m_next == NULL); 4391 4392 p = mtod(m, struct sadb_x_sa2 *); 4393 4394 memset(p, 0, len); 4395 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 4396 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 4397 p->sadb_x_sa2_mode = mode; 4398 p->sadb_x_sa2_reserved1 = 0; 4399 p->sadb_x_sa2_reserved2 = 0; 4400 p->sadb_x_sa2_sequence = seq; 4401 p->sadb_x_sa2_reqid = reqid; 4402 4403 return m; 4404 } 4405 4406 /* 4407 * set data into sadb_x_policy 4408 */ 4409 static struct mbuf * 4410 key_setsadbxpolicy(const u_int16_t type, const u_int8_t dir, const u_int32_t id, 4411 int mflag) 4412 { 4413 struct mbuf *m; 4414 struct sadb_x_policy *p; 4415 size_t len; 4416 4417 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 4418 m = key_alloc_mbuf(len, mflag); 4419 if (!m || m->m_next) { /*XXX*/ 4420 if (m) 4421 m_freem(m); 4422 return NULL; 4423 } 4424 4425 p = mtod(m, struct sadb_x_policy *); 4426 4427 memset(p, 0, len); 4428 p->sadb_x_policy_len = PFKEY_UNIT64(len); 4429 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 4430 p->sadb_x_policy_type = type; 4431 p->sadb_x_policy_dir = dir; 4432 p->sadb_x_policy_id = id; 4433 4434 return m; 4435 } 4436 4437 /* %%% utilities */ 4438 /* 4439 * copy a buffer into the new buffer allocated. 4440 */ 4441 static void * 4442 key_newbuf(const void *src, u_int len) 4443 { 4444 void *new; 4445 4446 new = kmem_alloc(len, KM_SLEEP); 4447 memcpy(new, src, len); 4448 4449 return new; 4450 } 4451 4452 /* compare my own address 4453 * OUT: 1: true, i.e. my address. 4454 * 0: false 4455 */ 4456 int 4457 key_ismyaddr(const struct sockaddr *sa) 4458 { 4459 #ifdef INET 4460 const struct sockaddr_in *sin; 4461 const struct in_ifaddr *ia; 4462 int s; 4463 #endif 4464 4465 KASSERT(sa != NULL); 4466 4467 switch (sa->sa_family) { 4468 #ifdef INET 4469 case AF_INET: 4470 sin = (const struct sockaddr_in *)sa; 4471 s = pserialize_read_enter(); 4472 IN_ADDRLIST_READER_FOREACH(ia) { 4473 if (sin->sin_family == ia->ia_addr.sin_family && 4474 sin->sin_len == ia->ia_addr.sin_len && 4475 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 4476 { 4477 pserialize_read_exit(s); 4478 return 1; 4479 } 4480 } 4481 pserialize_read_exit(s); 4482 break; 4483 #endif 4484 #ifdef INET6 4485 case AF_INET6: 4486 return key_ismyaddr6((const struct sockaddr_in6 *)sa); 4487 #endif 4488 } 4489 4490 return 0; 4491 } 4492 4493 #ifdef INET6 4494 /* 4495 * compare my own address for IPv6. 4496 * 1: ours 4497 * 0: other 4498 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 4499 */ 4500 #include <netinet6/in6_var.h> 4501 4502 static int 4503 key_ismyaddr6(const struct sockaddr_in6 *sin6) 4504 { 4505 struct in6_ifaddr *ia; 4506 int s; 4507 struct psref psref; 4508 int bound; 4509 int ours = 1; 4510 4511 bound = curlwp_bind(); 4512 s = pserialize_read_enter(); 4513 IN6_ADDRLIST_READER_FOREACH(ia) { 4514 if (key_sockaddr_match((const struct sockaddr *)&sin6, 4515 (const struct sockaddr *)&ia->ia_addr, 0)) { 4516 pserialize_read_exit(s); 4517 goto ours; 4518 } 4519 4520 if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { 4521 bool ingroup; 4522 4523 ia6_acquire(ia, &psref); 4524 pserialize_read_exit(s); 4525 4526 /* 4527 * XXX Multicast 4528 * XXX why do we care about multlicast here while we don't care 4529 * about IPv4 multicast?? 4530 * XXX scope 4531 */ 4532 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp); 4533 if (ingroup) { 4534 ia6_release(ia, &psref); 4535 goto ours; 4536 } 4537 4538 s = pserialize_read_enter(); 4539 ia6_release(ia, &psref); 4540 } 4541 4542 } 4543 pserialize_read_exit(s); 4544 4545 /* loopback, just for safety */ 4546 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 4547 goto ours; 4548 4549 ours = 0; 4550 ours: 4551 curlwp_bindx(bound); 4552 4553 return ours; 4554 } 4555 #endif /*INET6*/ 4556 4557 /* 4558 * compare two secasindex structure. 4559 * flag can specify to compare 2 saidxes. 4560 * compare two secasindex structure without both mode and reqid. 4561 * don't compare port. 4562 * IN: 4563 * saidx0: source, it can be in SAD. 4564 * saidx1: object. 4565 * OUT: 4566 * 1 : equal 4567 * 0 : not equal 4568 */ 4569 static int 4570 key_saidx_match( 4571 const struct secasindex *saidx0, 4572 const struct secasindex *saidx1, 4573 int flag) 4574 { 4575 int chkport; 4576 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst; 4577 4578 KASSERT(saidx0 != NULL); 4579 KASSERT(saidx1 != NULL); 4580 4581 /* sanity */ 4582 if (saidx0->proto != saidx1->proto) 4583 return 0; 4584 4585 if (flag == CMP_EXACTLY) { 4586 if (saidx0->mode != saidx1->mode) 4587 return 0; 4588 if (saidx0->reqid != saidx1->reqid) 4589 return 0; 4590 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4591 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4592 return 0; 4593 } else { 4594 4595 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4596 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) { 4597 /* 4598 * If reqid of SPD is non-zero, unique SA is required. 4599 * The result must be of same reqid in this case. 4600 */ 4601 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4602 return 0; 4603 } 4604 4605 if (flag == CMP_MODE_REQID) { 4606 if (saidx0->mode != IPSEC_MODE_ANY && 4607 saidx0->mode != saidx1->mode) 4608 return 0; 4609 } 4610 4611 4612 sa0src = &saidx0->src.sa; 4613 sa0dst = &saidx0->dst.sa; 4614 sa1src = &saidx1->src.sa; 4615 sa1dst = &saidx1->dst.sa; 4616 /* 4617 * If NAT-T is enabled, check ports for tunnel mode. 4618 * For ipsecif(4), check ports for transport mode, too. 4619 * Don't check ports if they are set to zero 4620 * in the SPD: This means we have a non-generated 4621 * SPD which can't know UDP ports. 4622 */ 4623 if (saidx1->mode == IPSEC_MODE_TUNNEL || 4624 saidx1->mode == IPSEC_MODE_TRANSPORT) 4625 chkport = PORT_LOOSE; 4626 else 4627 chkport = PORT_NONE; 4628 4629 if (!key_sockaddr_match(sa0src, sa1src, chkport)) { 4630 return 0; 4631 } 4632 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) { 4633 return 0; 4634 } 4635 } 4636 4637 return 1; 4638 } 4639 4640 /* 4641 * compare two secindex structure exactly. 4642 * IN: 4643 * spidx0: source, it is often in SPD. 4644 * spidx1: object, it is often from PFKEY message. 4645 * OUT: 4646 * 1 : equal 4647 * 0 : not equal 4648 */ 4649 static int 4650 key_spidx_match_exactly( 4651 const struct secpolicyindex *spidx0, 4652 const struct secpolicyindex *spidx1) 4653 { 4654 4655 KASSERT(spidx0 != NULL); 4656 KASSERT(spidx1 != NULL); 4657 4658 /* sanity */ 4659 if (spidx0->prefs != spidx1->prefs || 4660 spidx0->prefd != spidx1->prefd || 4661 spidx0->ul_proto != spidx1->ul_proto) 4662 return 0; 4663 4664 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) && 4665 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT); 4666 } 4667 4668 /* 4669 * compare two secindex structure with mask. 4670 * IN: 4671 * spidx0: source, it is often in SPD. 4672 * spidx1: object, it is often from IP header. 4673 * OUT: 4674 * 1 : equal 4675 * 0 : not equal 4676 */ 4677 static int 4678 key_spidx_match_withmask( 4679 const struct secpolicyindex *spidx0, 4680 const struct secpolicyindex *spidx1) 4681 { 4682 4683 KASSERT(spidx0 != NULL); 4684 KASSERT(spidx1 != NULL); 4685 4686 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4687 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4688 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4689 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) { 4690 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, ".sa wrong\n"); 4691 return 0; 4692 } 4693 4694 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4695 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY && 4696 spidx0->ul_proto != spidx1->ul_proto) { 4697 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "proto wrong\n"); 4698 return 0; 4699 } 4700 4701 switch (spidx0->src.sa.sa_family) { 4702 case AF_INET: 4703 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY && 4704 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) { 4705 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v4 src port wrong\n"); 4706 return 0; 4707 } 4708 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr, 4709 &spidx1->src.sin.sin_addr, spidx0->prefs)) { 4710 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v4 src addr wrong\n"); 4711 return 0; 4712 } 4713 break; 4714 case AF_INET6: 4715 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY && 4716 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) { 4717 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 src port wrong\n"); 4718 return 0; 4719 } 4720 /* 4721 * scope_id check. if sin6_scope_id is 0, we regard it 4722 * as a wildcard scope, which matches any scope zone ID. 4723 */ 4724 if (spidx0->src.sin6.sin6_scope_id && 4725 spidx1->src.sin6.sin6_scope_id && 4726 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) { 4727 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 src scope wrong\n"); 4728 return 0; 4729 } 4730 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr, 4731 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) { 4732 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 src addr wrong\n"); 4733 return 0; 4734 } 4735 break; 4736 default: 4737 /* XXX */ 4738 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) { 4739 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "src memcmp wrong\n"); 4740 return 0; 4741 } 4742 break; 4743 } 4744 4745 switch (spidx0->dst.sa.sa_family) { 4746 case AF_INET: 4747 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY && 4748 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) { 4749 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v4 dst port wrong\n"); 4750 return 0; 4751 } 4752 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr, 4753 &spidx1->dst.sin.sin_addr, spidx0->prefd)) { 4754 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v4 dst addr wrong\n"); 4755 return 0; 4756 } 4757 break; 4758 case AF_INET6: 4759 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY && 4760 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) { 4761 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 dst port wrong\n"); 4762 return 0; 4763 } 4764 /* 4765 * scope_id check. if sin6_scope_id is 0, we regard it 4766 * as a wildcard scope, which matches any scope zone ID. 4767 */ 4768 if (spidx0->src.sin6.sin6_scope_id && 4769 spidx1->src.sin6.sin6_scope_id && 4770 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) { 4771 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "DP v6 dst scope wrong\n"); 4772 return 0; 4773 } 4774 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr, 4775 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) { 4776 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "v6 dst addr wrong\n"); 4777 return 0; 4778 } 4779 break; 4780 default: 4781 /* XXX */ 4782 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) { 4783 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, "dst memcmp wrong\n"); 4784 return 0; 4785 } 4786 break; 4787 } 4788 4789 /* XXX Do we check other field ? e.g. flowinfo */ 4790 4791 return 1; 4792 } 4793 4794 /* returns 0 on match */ 4795 static int 4796 key_portcomp(in_port_t port1, in_port_t port2, int howport) 4797 { 4798 switch (howport) { 4799 case PORT_NONE: 4800 return 0; 4801 case PORT_LOOSE: 4802 if (port1 == 0 || port2 == 0) 4803 return 0; 4804 /*FALLTHROUGH*/ 4805 case PORT_STRICT: 4806 if (port1 != port2) { 4807 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4808 "port fail %d != %d\n", ntohs(port1), ntohs(port2)); 4809 return 1; 4810 } 4811 return 0; 4812 default: 4813 KASSERT(0); 4814 return 1; 4815 } 4816 } 4817 4818 /* returns 1 on match */ 4819 static int 4820 key_sockaddr_match( 4821 const struct sockaddr *sa1, 4822 const struct sockaddr *sa2, 4823 int howport) 4824 { 4825 const struct sockaddr_in *sin1, *sin2; 4826 const struct sockaddr_in6 *sin61, *sin62; 4827 char s1[IPSEC_ADDRSTRLEN], s2[IPSEC_ADDRSTRLEN]; 4828 4829 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) { 4830 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4831 "fam/len fail %d != %d || %d != %d\n", 4832 sa1->sa_family, sa2->sa_family, sa1->sa_len, 4833 sa2->sa_len); 4834 return 0; 4835 } 4836 4837 switch (sa1->sa_family) { 4838 case AF_INET: 4839 if (sa1->sa_len != sizeof(struct sockaddr_in)) { 4840 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4841 "len fail %d != %zu\n", 4842 sa1->sa_len, sizeof(struct sockaddr_in)); 4843 return 0; 4844 } 4845 sin1 = (const struct sockaddr_in *)sa1; 4846 sin2 = (const struct sockaddr_in *)sa2; 4847 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) { 4848 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4849 "addr fail %s != %s\n", 4850 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), 4851 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2)); 4852 return 0; 4853 } 4854 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) { 4855 return 0; 4856 } 4857 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4858 "addr success %s[%d] == %s[%d]\n", 4859 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), 4860 ntohs(sin1->sin_port), 4861 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2), 4862 ntohs(sin2->sin_port)); 4863 break; 4864 case AF_INET6: 4865 sin61 = (const struct sockaddr_in6 *)sa1; 4866 sin62 = (const struct sockaddr_in6 *)sa2; 4867 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4868 return 0; /*EINVAL*/ 4869 4870 if (sin61->sin6_scope_id != sin62->sin6_scope_id) { 4871 return 0; 4872 } 4873 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) { 4874 return 0; 4875 } 4876 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) { 4877 return 0; 4878 } 4879 break; 4880 default: 4881 if (memcmp(sa1, sa2, sa1->sa_len) != 0) 4882 return 0; 4883 break; 4884 } 4885 4886 return 1; 4887 } 4888 4889 /* 4890 * compare two buffers with mask. 4891 * IN: 4892 * addr1: source 4893 * addr2: object 4894 * bits: Number of bits to compare 4895 * OUT: 4896 * 1 : equal 4897 * 0 : not equal 4898 */ 4899 static int 4900 key_bb_match_withmask(const void *a1, const void *a2, u_int bits) 4901 { 4902 const unsigned char *p1 = a1; 4903 const unsigned char *p2 = a2; 4904 4905 /* XXX: This could be considerably faster if we compare a word 4906 * at a time, but it is complicated on LSB Endian machines */ 4907 4908 /* Handle null pointers */ 4909 if (p1 == NULL || p2 == NULL) 4910 return (p1 == p2); 4911 4912 while (bits >= 8) { 4913 if (*p1++ != *p2++) 4914 return 0; 4915 bits -= 8; 4916 } 4917 4918 if (bits > 0) { 4919 u_int8_t mask = ~((1<<(8-bits))-1); 4920 if ((*p1 & mask) != (*p2 & mask)) 4921 return 0; 4922 } 4923 return 1; /* Match! */ 4924 } 4925 4926 static void 4927 key_timehandler_spd(void) 4928 { 4929 u_int dir; 4930 struct secpolicy *sp; 4931 volatile time_t now; 4932 4933 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4934 retry: 4935 mutex_enter(&key_spd.lock); 4936 /* 4937 * To avoid for sp->created to overtake "now" because of 4938 * waiting mutex, set time_uptime here. 4939 */ 4940 now = time_uptime; 4941 SPLIST_WRITER_FOREACH(sp, dir) { 4942 KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, 4943 "sp->state=%u", sp->state); 4944 4945 if (sp->lifetime == 0 && sp->validtime == 0) 4946 continue; 4947 4948 if ((sp->lifetime && now - sp->created > sp->lifetime) || 4949 (sp->validtime && now - sp->lastused > sp->validtime)) { 4950 key_unlink_sp(sp); 4951 mutex_exit(&key_spd.lock); 4952 key_spdexpire(sp); 4953 key_destroy_sp(sp); 4954 goto retry; 4955 } 4956 } 4957 mutex_exit(&key_spd.lock); 4958 } 4959 4960 retry_socksplist: 4961 mutex_enter(&key_spd.lock); 4962 SOCKSPLIST_WRITER_FOREACH(sp) { 4963 if (sp->state != IPSEC_SPSTATE_DEAD) 4964 continue; 4965 4966 key_unlink_sp(sp); 4967 mutex_exit(&key_spd.lock); 4968 key_destroy_sp(sp); 4969 goto retry_socksplist; 4970 } 4971 mutex_exit(&key_spd.lock); 4972 } 4973 4974 static void 4975 key_timehandler_sad(void) 4976 { 4977 struct secashead *sah; 4978 int s; 4979 volatile time_t now; 4980 4981 restart: 4982 mutex_enter(&key_sad.lock); 4983 SAHLIST_WRITER_FOREACH(sah) { 4984 /* If sah has been dead and has no sav, then delete it */ 4985 if (sah->state == SADB_SASTATE_DEAD && 4986 !key_sah_has_sav(sah)) { 4987 key_unlink_sah(sah); 4988 mutex_exit(&key_sad.lock); 4989 key_destroy_sah(sah); 4990 goto restart; 4991 } 4992 } 4993 mutex_exit(&key_sad.lock); 4994 4995 s = pserialize_read_enter(); 4996 SAHLIST_READER_FOREACH(sah) { 4997 struct secasvar *sav; 4998 4999 key_sah_ref(sah); 5000 pserialize_read_exit(s); 5001 5002 /* if LARVAL entry doesn't become MATURE, delete it. */ 5003 mutex_enter(&key_sad.lock); 5004 restart_sav_LARVAL: 5005 /* 5006 * Same as key_timehandler_spd(), set time_uptime here. 5007 */ 5008 now = time_uptime; 5009 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) { 5010 if (now - sav->created > key_larval_lifetime) { 5011 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5012 goto restart_sav_LARVAL; 5013 } 5014 } 5015 mutex_exit(&key_sad.lock); 5016 5017 /* 5018 * check MATURE entry to start to send expire message 5019 * whether or not. 5020 */ 5021 restart_sav_MATURE: 5022 mutex_enter(&key_sad.lock); 5023 /* 5024 * ditto 5025 */ 5026 now = time_uptime; 5027 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_MATURE) { 5028 /* we don't need to check. */ 5029 if (sav->lft_s == NULL) 5030 continue; 5031 5032 /* sanity check */ 5033 KASSERT(sav->lft_c != NULL); 5034 5035 /* check SOFT lifetime */ 5036 if (sav->lft_s->sadb_lifetime_addtime != 0 && 5037 now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 5038 /* 5039 * check SA to be used whether or not. 5040 * when SA hasn't been used, delete it. 5041 */ 5042 if (sav->lft_c->sadb_lifetime_usetime == 0) { 5043 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5044 mutex_exit(&key_sad.lock); 5045 } else { 5046 key_sa_chgstate(sav, SADB_SASTATE_DYING); 5047 mutex_exit(&key_sad.lock); 5048 /* 5049 * XXX If we keep to send expire 5050 * message in the status of 5051 * DYING. Do remove below code. 5052 */ 5053 key_expire(sav); 5054 } 5055 goto restart_sav_MATURE; 5056 } 5057 /* check SOFT lifetime by bytes */ 5058 /* 5059 * XXX I don't know the way to delete this SA 5060 * when new SA is installed. Caution when it's 5061 * installed too big lifetime by time. 5062 */ 5063 else { 5064 uint64_t lft_c_bytes = 0; 5065 lifetime_counters_t sum = {0}; 5066 5067 percpu_foreach_xcall(sav->lft_c_counters_percpu, 5068 XC_HIGHPRI_IPL(IPL_SOFTNET), 5069 key_sum_lifetime_counters, sum); 5070 lft_c_bytes = sum[LIFETIME_COUNTER_BYTES]; 5071 5072 if (sav->lft_s->sadb_lifetime_bytes == 0 || 5073 sav->lft_s->sadb_lifetime_bytes >= lft_c_bytes) 5074 continue; 5075 5076 key_sa_chgstate(sav, SADB_SASTATE_DYING); 5077 mutex_exit(&key_sad.lock); 5078 /* 5079 * XXX If we keep to send expire 5080 * message in the status of 5081 * DYING. Do remove below code. 5082 */ 5083 key_expire(sav); 5084 goto restart_sav_MATURE; 5085 } 5086 } 5087 mutex_exit(&key_sad.lock); 5088 5089 /* check DYING entry to change status to DEAD. */ 5090 mutex_enter(&key_sad.lock); 5091 restart_sav_DYING: 5092 /* 5093 * ditto 5094 */ 5095 now = time_uptime; 5096 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DYING) { 5097 /* we don't need to check. */ 5098 if (sav->lft_h == NULL) 5099 continue; 5100 5101 /* sanity check */ 5102 KASSERT(sav->lft_c != NULL); 5103 5104 if (sav->lft_h->sadb_lifetime_addtime != 0 && 5105 now - sav->created > sav->lft_h->sadb_lifetime_addtime) { 5106 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5107 goto restart_sav_DYING; 5108 } 5109 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 5110 else if (sav->lft_s != NULL 5111 && sav->lft_s->sadb_lifetime_addtime != 0 5112 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 5113 /* 5114 * XXX: should be checked to be 5115 * installed the valid SA. 5116 */ 5117 5118 /* 5119 * If there is no SA then sending 5120 * expire message. 5121 */ 5122 key_expire(sav); 5123 } 5124 #endif 5125 /* check HARD lifetime by bytes */ 5126 else { 5127 uint64_t lft_c_bytes = 0; 5128 lifetime_counters_t sum = {0}; 5129 5130 percpu_foreach_xcall(sav->lft_c_counters_percpu, 5131 XC_HIGHPRI_IPL(IPL_SOFTNET), 5132 key_sum_lifetime_counters, sum); 5133 lft_c_bytes = sum[LIFETIME_COUNTER_BYTES]; 5134 5135 if (sav->lft_h->sadb_lifetime_bytes == 0 || 5136 sav->lft_h->sadb_lifetime_bytes >= lft_c_bytes) 5137 continue; 5138 5139 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5140 goto restart_sav_DYING; 5141 } 5142 } 5143 mutex_exit(&key_sad.lock); 5144 5145 /* delete entry in DEAD */ 5146 restart_sav_DEAD: 5147 mutex_enter(&key_sad.lock); 5148 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DEAD) { 5149 key_unlink_sav(sav); 5150 mutex_exit(&key_sad.lock); 5151 key_destroy_sav(sav); 5152 goto restart_sav_DEAD; 5153 } 5154 mutex_exit(&key_sad.lock); 5155 5156 s = pserialize_read_enter(); 5157 key_sah_unref(sah); 5158 } 5159 pserialize_read_exit(s); 5160 } 5161 5162 static void 5163 key_timehandler_acq(void) 5164 { 5165 #ifndef IPSEC_NONBLOCK_ACQUIRE 5166 struct secacq *acq, *nextacq; 5167 volatile time_t now; 5168 5169 restart: 5170 mutex_enter(&key_misc.lock); 5171 /* 5172 * Same as key_timehandler_spd(), set time_uptime here. 5173 */ 5174 now = time_uptime; 5175 LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) { 5176 if (now - acq->created > key_blockacq_lifetime) { 5177 LIST_REMOVE(acq, chain); 5178 mutex_exit(&key_misc.lock); 5179 kmem_free(acq, sizeof(*acq)); 5180 goto restart; 5181 } 5182 } 5183 mutex_exit(&key_misc.lock); 5184 #endif 5185 } 5186 5187 static void 5188 key_timehandler_spacq(void) 5189 { 5190 #ifdef notyet 5191 struct secspacq *acq, *nextacq; 5192 time_t now = time_uptime; 5193 5194 LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) { 5195 if (now - acq->created > key_blockacq_lifetime) { 5196 KASSERT(__LIST_CHAINED(acq)); 5197 LIST_REMOVE(acq, chain); 5198 kmem_free(acq, sizeof(*acq)); 5199 } 5200 } 5201 #endif 5202 } 5203 5204 static unsigned int key_timehandler_work_enqueued = 0; 5205 5206 /* 5207 * time handler. 5208 * scanning SPD and SAD to check status for each entries, 5209 * and do to remove or to expire. 5210 */ 5211 static void 5212 key_timehandler_work(struct work *wk, void *arg) 5213 { 5214 5215 /* We can allow enqueuing another work at this point */ 5216 atomic_swap_uint(&key_timehandler_work_enqueued, 0); 5217 5218 key_timehandler_spd(); 5219 key_timehandler_sad(); 5220 key_timehandler_acq(); 5221 key_timehandler_spacq(); 5222 5223 key_acquire_sendup_pending_mbuf(); 5224 5225 /* do exchange to tick time !! */ 5226 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 5227 5228 return; 5229 } 5230 5231 static void 5232 key_timehandler(void *arg) 5233 { 5234 5235 /* Avoid enqueuing another work when one is already enqueued */ 5236 if (atomic_swap_uint(&key_timehandler_work_enqueued, 1) == 1) 5237 return; 5238 5239 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL); 5240 } 5241 5242 u_long 5243 key_random(void) 5244 { 5245 u_long value; 5246 5247 key_randomfill(&value, sizeof(value)); 5248 return value; 5249 } 5250 5251 void 5252 key_randomfill(void *p, size_t l) 5253 { 5254 5255 cprng_fast(p, l); 5256 } 5257 5258 /* 5259 * map SADB_SATYPE_* to IPPROTO_*. 5260 * if satype == SADB_SATYPE then satype is mapped to ~0. 5261 * OUT: 5262 * 0: invalid satype. 5263 */ 5264 static u_int16_t 5265 key_satype2proto(u_int8_t satype) 5266 { 5267 switch (satype) { 5268 case SADB_SATYPE_UNSPEC: 5269 return IPSEC_PROTO_ANY; 5270 case SADB_SATYPE_AH: 5271 return IPPROTO_AH; 5272 case SADB_SATYPE_ESP: 5273 return IPPROTO_ESP; 5274 case SADB_X_SATYPE_IPCOMP: 5275 return IPPROTO_IPCOMP; 5276 case SADB_X_SATYPE_TCPSIGNATURE: 5277 return IPPROTO_TCP; 5278 default: 5279 return 0; 5280 } 5281 /* NOTREACHED */ 5282 } 5283 5284 /* 5285 * map IPPROTO_* to SADB_SATYPE_* 5286 * OUT: 5287 * 0: invalid protocol type. 5288 */ 5289 static u_int8_t 5290 key_proto2satype(u_int16_t proto) 5291 { 5292 switch (proto) { 5293 case IPPROTO_AH: 5294 return SADB_SATYPE_AH; 5295 case IPPROTO_ESP: 5296 return SADB_SATYPE_ESP; 5297 case IPPROTO_IPCOMP: 5298 return SADB_X_SATYPE_IPCOMP; 5299 case IPPROTO_TCP: 5300 return SADB_X_SATYPE_TCPSIGNATURE; 5301 default: 5302 return 0; 5303 } 5304 /* NOTREACHED */ 5305 } 5306 5307 static int 5308 key_setsecasidx(int proto, int mode, int reqid, 5309 const struct sockaddr *src, const struct sockaddr *dst, 5310 struct secasindex * saidx) 5311 { 5312 const union sockaddr_union *src_u = (const union sockaddr_union *)src; 5313 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst; 5314 5315 /* sa len safety check */ 5316 if (key_checksalen(src_u) != 0) 5317 return -1; 5318 if (key_checksalen(dst_u) != 0) 5319 return -1; 5320 5321 memset(saidx, 0, sizeof(*saidx)); 5322 saidx->proto = proto; 5323 saidx->mode = mode; 5324 saidx->reqid = reqid; 5325 memcpy(&saidx->src, src_u, src_u->sa.sa_len); 5326 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len); 5327 5328 key_porttosaddr(&((saidx)->src), 0); 5329 key_porttosaddr(&((saidx)->dst), 0); 5330 return 0; 5331 } 5332 5333 static void 5334 key_init_spidx_bymsghdr(struct secpolicyindex *spidx, 5335 const struct sadb_msghdr *mhp) 5336 { 5337 const struct sadb_address *src0, *dst0; 5338 const struct sockaddr *src, *dst; 5339 const struct sadb_x_policy *xpl0; 5340 5341 src0 = mhp->ext[SADB_EXT_ADDRESS_SRC]; 5342 dst0 = mhp->ext[SADB_EXT_ADDRESS_DST]; 5343 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5344 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5345 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 5346 5347 memset(spidx, 0, sizeof(*spidx)); 5348 spidx->dir = xpl0->sadb_x_policy_dir; 5349 spidx->prefs = src0->sadb_address_prefixlen; 5350 spidx->prefd = dst0->sadb_address_prefixlen; 5351 spidx->ul_proto = src0->sadb_address_proto; 5352 /* XXX boundary check against sa_len */ 5353 memcpy(&spidx->src, src, src->sa_len); 5354 memcpy(&spidx->dst, dst, dst->sa_len); 5355 } 5356 5357 /* %%% PF_KEY */ 5358 /* 5359 * SADB_GETSPI processing is to receive 5360 * <base, (SA2), src address, dst address, (SPI range)> 5361 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 5362 * tree with the status of LARVAL, and send 5363 * <base, SA(*), address(SD)> 5364 * to the IKMPd. 5365 * 5366 * IN: mhp: pointer to the pointer to each header. 5367 * OUT: NULL if fail. 5368 * other if success, return pointer to the message to send. 5369 */ 5370 static int 5371 key_api_getspi(struct socket *so, struct mbuf *m, 5372 const struct sadb_msghdr *mhp) 5373 { 5374 const struct sockaddr *src, *dst; 5375 struct secasindex saidx; 5376 struct secashead *sah; 5377 struct secasvar *newsav; 5378 u_int8_t proto; 5379 u_int32_t spi; 5380 u_int8_t mode; 5381 u_int16_t reqid; 5382 int error; 5383 5384 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5385 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5386 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5387 return key_senderror(so, m, EINVAL); 5388 } 5389 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5390 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5391 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5392 return key_senderror(so, m, EINVAL); 5393 } 5394 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5395 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5396 mode = sa2->sadb_x_sa2_mode; 5397 reqid = sa2->sadb_x_sa2_reqid; 5398 } else { 5399 mode = IPSEC_MODE_ANY; 5400 reqid = 0; 5401 } 5402 5403 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5404 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5405 5406 /* map satype to proto */ 5407 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5408 if (proto == 0) { 5409 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5410 return key_senderror(so, m, EINVAL); 5411 } 5412 5413 5414 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5415 if (error != 0) 5416 return key_senderror(so, m, EINVAL); 5417 5418 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5419 if (error != 0) 5420 return key_senderror(so, m, EINVAL); 5421 5422 /* SPI allocation */ 5423 spi = key_do_getnewspi(mhp->ext[SADB_EXT_SPIRANGE], &saidx); 5424 if (spi == 0) 5425 return key_senderror(so, m, EINVAL); 5426 5427 /* get a SA index */ 5428 sah = key_getsah_ref(&saidx, CMP_REQID); 5429 if (sah == NULL) { 5430 /* create a new SA index */ 5431 sah = key_newsah(&saidx); 5432 if (sah == NULL) { 5433 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5434 return key_senderror(so, m, ENOBUFS); 5435 } 5436 } 5437 5438 /* get a new SA */ 5439 /* XXX rewrite */ 5440 newsav = KEY_NEWSAV(m, mhp, &error, proto); 5441 if (newsav == NULL) { 5442 key_sah_unref(sah); 5443 /* XXX don't free new SA index allocated in above. */ 5444 return key_senderror(so, m, error); 5445 } 5446 5447 /* set spi */ 5448 newsav->spi = htonl(spi); 5449 5450 /* Add to sah#savlist */ 5451 key_init_sav(newsav); 5452 newsav->sah = sah; 5453 newsav->state = SADB_SASTATE_LARVAL; 5454 mutex_enter(&key_sad.lock); 5455 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav); 5456 mutex_exit(&key_sad.lock); 5457 key_validate_savlist(sah, SADB_SASTATE_LARVAL); 5458 5459 key_sah_unref(sah); 5460 5461 #ifndef IPSEC_NONBLOCK_ACQUIRE 5462 /* delete the entry in key_misc.acqlist */ 5463 if (mhp->msg->sadb_msg_seq != 0) { 5464 struct secacq *acq; 5465 mutex_enter(&key_misc.lock); 5466 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); 5467 if (acq != NULL) { 5468 /* reset counter in order to deletion by timehandler. */ 5469 acq->created = time_uptime; 5470 acq->count = 0; 5471 } 5472 mutex_exit(&key_misc.lock); 5473 } 5474 #endif 5475 5476 { 5477 struct mbuf *n, *nn; 5478 struct sadb_sa *m_sa; 5479 int off, len; 5480 5481 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 5482 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES); 5483 5484 /* create new sadb_msg to reply. */ 5485 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 5486 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5487 5488 n = key_alloc_mbuf_simple(len, M_WAITOK); 5489 n->m_len = len; 5490 n->m_next = NULL; 5491 off = 0; 5492 5493 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 5494 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 5495 5496 m_sa = (struct sadb_sa *)(mtod(n, char *) + off); 5497 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 5498 m_sa->sadb_sa_exttype = SADB_EXT_SA; 5499 m_sa->sadb_sa_spi = htonl(spi); 5500 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5501 5502 KASSERTMSG(off == len, "length inconsistency"); 5503 5504 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 5505 SADB_EXT_ADDRESS_DST); 5506 5507 KASSERT(n->m_len >= sizeof(struct sadb_msg)); 5508 5509 n->m_pkthdr.len = 0; 5510 for (nn = n; nn; nn = nn->m_next) 5511 n->m_pkthdr.len += nn->m_len; 5512 5513 key_fill_replymsg(n, newsav->seq); 5514 m_freem(m); 5515 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5516 } 5517 } 5518 5519 /* 5520 * allocating new SPI 5521 * called by key_api_getspi(). 5522 * OUT: 5523 * 0: failure. 5524 * others: success. 5525 */ 5526 static u_int32_t 5527 key_do_getnewspi(const struct sadb_spirange *spirange, 5528 const struct secasindex *saidx) 5529 { 5530 u_int32_t newspi; 5531 u_int32_t spmin, spmax; 5532 int count = key_spi_trycnt; 5533 5534 /* set spi range to allocate */ 5535 if (spirange != NULL) { 5536 spmin = spirange->sadb_spirange_min; 5537 spmax = spirange->sadb_spirange_max; 5538 } else { 5539 spmin = key_spi_minval; 5540 spmax = key_spi_maxval; 5541 } 5542 /* IPCOMP needs 2-byte SPI */ 5543 if (saidx->proto == IPPROTO_IPCOMP) { 5544 u_int32_t t; 5545 if (spmin >= 0x10000) 5546 spmin = 0xffff; 5547 if (spmax >= 0x10000) 5548 spmax = 0xffff; 5549 if (spmin > spmax) { 5550 t = spmin; spmin = spmax; spmax = t; 5551 } 5552 } 5553 5554 if (spmin == spmax) { 5555 if (key_checkspidup(saidx, htonl(spmin))) { 5556 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin); 5557 return 0; 5558 } 5559 5560 count--; /* taking one cost. */ 5561 newspi = spmin; 5562 5563 } else { 5564 5565 /* init SPI */ 5566 newspi = 0; 5567 5568 /* when requesting to allocate spi ranged */ 5569 while (count--) { 5570 /* generate pseudo-random SPI value ranged. */ 5571 newspi = spmin + (key_random() % (spmax - spmin + 1)); 5572 5573 if (!key_checkspidup(saidx, htonl(newspi))) 5574 break; 5575 } 5576 5577 if (count == 0 || newspi == 0) { 5578 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n"); 5579 return 0; 5580 } 5581 } 5582 5583 /* statistics */ 5584 keystat.getspi_count = 5585 (keystat.getspi_count + key_spi_trycnt - count) / 2; 5586 5587 return newspi; 5588 } 5589 5590 static int 5591 key_handle_natt_info(struct secasvar *sav, 5592 const struct sadb_msghdr *mhp) 5593 { 5594 const char *msg = "?" ; 5595 struct sadb_x_nat_t_type *type; 5596 struct sadb_x_nat_t_port *sport, *dport; 5597 struct sadb_address *iaddr, *raddr; 5598 struct sadb_x_nat_t_frag *frag; 5599 5600 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 5601 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 5602 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) 5603 return 0; 5604 5605 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) { 5606 msg = "TYPE"; 5607 goto bad; 5608 } 5609 5610 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) { 5611 msg = "SPORT"; 5612 goto bad; 5613 } 5614 5615 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5616 msg = "DPORT"; 5617 goto bad; 5618 } 5619 5620 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) { 5621 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); 5622 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) { 5623 msg = "OAI"; 5624 goto bad; 5625 } 5626 } 5627 5628 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5629 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); 5630 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5631 msg = "OAR"; 5632 goto bad; 5633 } 5634 } 5635 5636 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5637 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5638 msg = "FRAG"; 5639 goto bad; 5640 } 5641 } 5642 5643 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5644 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5645 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5646 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5647 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5648 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5649 5650 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", 5651 type->sadb_x_nat_t_type_type, 5652 ntohs(sport->sadb_x_nat_t_port_port), 5653 ntohs(dport->sadb_x_nat_t_port_port)); 5654 5655 sav->natt_type = type->sadb_x_nat_t_type_type; 5656 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port); 5657 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port); 5658 if (frag) 5659 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen; 5660 else 5661 sav->esp_frag = IP_MAXPACKET; 5662 5663 return 0; 5664 bad: 5665 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg); 5666 __USE(msg); 5667 return -1; 5668 } 5669 5670 /* Just update the IPSEC_NAT_T ports if present */ 5671 static int 5672 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst, 5673 const struct sadb_msghdr *mhp) 5674 { 5675 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 5676 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); 5677 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 5678 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); 5679 5680 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) && 5681 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) && 5682 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) { 5683 struct sadb_x_nat_t_type *type; 5684 struct sadb_x_nat_t_port *sport; 5685 struct sadb_x_nat_t_port *dport; 5686 5687 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 5688 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 5689 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 5690 IPSECLOG(LOG_DEBUG, "invalid message\n"); 5691 return -1; 5692 } 5693 5694 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5695 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5696 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5697 5698 key_porttosaddr(src, sport->sadb_x_nat_t_port_port); 5699 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port); 5700 5701 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", 5702 type->sadb_x_nat_t_type_type, 5703 ntohs(sport->sadb_x_nat_t_port_port), 5704 ntohs(dport->sadb_x_nat_t_port_port)); 5705 } 5706 5707 return 0; 5708 } 5709 5710 5711 /* 5712 * SADB_UPDATE processing 5713 * receive 5714 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5715 * key(AE), (identity(SD),) (sensitivity)> 5716 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 5717 * and send 5718 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5719 * (identity(SD),) (sensitivity)> 5720 * to the ikmpd. 5721 * 5722 * m will always be freed. 5723 */ 5724 static int 5725 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5726 { 5727 struct sadb_sa *sa0; 5728 const struct sockaddr *src, *dst; 5729 struct secasindex saidx; 5730 struct secashead *sah; 5731 struct secasvar *sav, *newsav, *oldsav; 5732 u_int16_t proto; 5733 u_int8_t mode; 5734 u_int16_t reqid; 5735 int error; 5736 5737 /* map satype to proto */ 5738 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5739 if (proto == 0) { 5740 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5741 return key_senderror(so, m, EINVAL); 5742 } 5743 5744 if (mhp->ext[SADB_EXT_SA] == NULL || 5745 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5746 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5747 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5748 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5749 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5750 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5751 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5752 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5753 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5754 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5755 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5756 return key_senderror(so, m, EINVAL); 5757 } 5758 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5759 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5760 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5761 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5762 return key_senderror(so, m, EINVAL); 5763 } 5764 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5765 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5766 mode = sa2->sadb_x_sa2_mode; 5767 reqid = sa2->sadb_x_sa2_reqid; 5768 } else { 5769 mode = IPSEC_MODE_ANY; 5770 reqid = 0; 5771 } 5772 /* XXX boundary checking for other extensions */ 5773 5774 sa0 = mhp->ext[SADB_EXT_SA]; 5775 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5776 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5777 5778 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5779 if (error != 0) 5780 return key_senderror(so, m, EINVAL); 5781 5782 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5783 if (error != 0) 5784 return key_senderror(so, m, EINVAL); 5785 5786 /* get a SA header */ 5787 sah = key_getsah_ref(&saidx, CMP_REQID); 5788 if (sah == NULL) { 5789 IPSECLOG(LOG_DEBUG, "no SA index found.\n"); 5790 return key_senderror(so, m, ENOENT); 5791 } 5792 5793 /* set spidx if there */ 5794 /* XXX rewrite */ 5795 error = key_setident(sah, m, mhp); 5796 if (error) 5797 goto error_sah; 5798 5799 /* find a SA with sequence number. */ 5800 #ifdef IPSEC_DOSEQCHECK 5801 if (mhp->msg->sadb_msg_seq != 0) { 5802 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq); 5803 if (sav == NULL) { 5804 IPSECLOG(LOG_DEBUG, 5805 "no larval SA with sequence %u exists.\n", 5806 mhp->msg->sadb_msg_seq); 5807 error = ENOENT; 5808 goto error_sah; 5809 } 5810 } 5811 #else 5812 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5813 if (sav == NULL) { 5814 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n", 5815 (u_int32_t)ntohl(sa0->sadb_sa_spi)); 5816 error = EINVAL; 5817 goto error_sah; 5818 } 5819 #endif 5820 5821 /* validity check */ 5822 if (sav->sah->saidx.proto != proto) { 5823 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n", 5824 sav->sah->saidx.proto, proto); 5825 error = EINVAL; 5826 goto error; 5827 } 5828 #ifdef IPSEC_DOSEQCHECK 5829 if (sav->spi != sa0->sadb_sa_spi) { 5830 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n", 5831 (u_int32_t)ntohl(sav->spi), 5832 (u_int32_t)ntohl(sa0->sadb_sa_spi)); 5833 error = EINVAL; 5834 goto error; 5835 } 5836 #endif 5837 if (sav->pid != mhp->msg->sadb_msg_pid) { 5838 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n", 5839 sav->pid, mhp->msg->sadb_msg_pid); 5840 error = EINVAL; 5841 goto error; 5842 } 5843 5844 /* 5845 * Allocate a new SA instead of modifying the existing SA directly 5846 * to avoid race conditions. 5847 */ 5848 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); 5849 5850 /* copy sav values */ 5851 newsav->spi = sav->spi; 5852 newsav->seq = sav->seq; 5853 newsav->created = sav->created; 5854 newsav->pid = sav->pid; 5855 newsav->sah = sav->sah; 5856 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 5857 "DP from %s:%u update SA:%p to SA:%p spi=%#x proto=%d\n", 5858 __func__, __LINE__, sav, newsav, 5859 ntohl(newsav->spi), proto); 5860 5861 error = key_setsaval(newsav, m, mhp); 5862 if (error) { 5863 kmem_free(newsav, sizeof(*newsav)); 5864 goto error; 5865 } 5866 5867 error = key_handle_natt_info(newsav, mhp); 5868 if (error != 0) { 5869 key_delsav(newsav); 5870 goto error; 5871 } 5872 5873 error = key_init_xform(newsav); 5874 if (error != 0) { 5875 key_delsav(newsav); 5876 goto error; 5877 } 5878 5879 /* Add to sah#savlist */ 5880 key_init_sav(newsav); 5881 newsav->state = SADB_SASTATE_MATURE; 5882 mutex_enter(&key_sad.lock); 5883 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); 5884 SAVLUT_WRITER_INSERT_HEAD(newsav); 5885 mutex_exit(&key_sad.lock); 5886 key_validate_savlist(sah, SADB_SASTATE_MATURE); 5887 5888 /* 5889 * We need to lookup and remove the sav atomically, so get it again 5890 * here by a special API while we have a reference to it. 5891 */ 5892 oldsav = key_lookup_and_remove_sav(sah, sa0->sadb_sa_spi, sav); 5893 KASSERT(oldsav == NULL || oldsav == sav); 5894 /* We can release the reference because of oldsav */ 5895 KEY_SA_UNREF(&sav); 5896 if (oldsav == NULL) { 5897 /* Someone has already removed the sav. Nothing to do. */ 5898 } else { 5899 key_wait_sav(oldsav); 5900 key_destroy_sav(oldsav); 5901 oldsav = NULL; 5902 } 5903 sav = NULL; 5904 5905 key_sah_unref(sah); 5906 sah = NULL; 5907 5908 { 5909 struct mbuf *n; 5910 5911 /* set msg buf from mhp */ 5912 n = key_getmsgbuf_x1(m, mhp); 5913 if (n == NULL) { 5914 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5915 return key_senderror(so, m, ENOBUFS); 5916 } 5917 5918 m_freem(m); 5919 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5920 } 5921 error: 5922 KEY_SA_UNREF(&sav); 5923 error_sah: 5924 key_sah_unref(sah); 5925 return key_senderror(so, m, error); 5926 } 5927 5928 /* 5929 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5930 * only called by key_api_update(). 5931 * OUT: 5932 * NULL : not found 5933 * others : found, pointer to a SA. 5934 */ 5935 #ifdef IPSEC_DOSEQCHECK 5936 static struct secasvar * 5937 key_getsavbyseq(struct secashead *sah, u_int32_t seq) 5938 { 5939 struct secasvar *sav; 5940 u_int state; 5941 int s; 5942 5943 state = SADB_SASTATE_LARVAL; 5944 5945 /* search SAD with sequence number ? */ 5946 s = pserialize_read_enter(); 5947 SAVLIST_READER_FOREACH(sav, sah, state) { 5948 KEY_CHKSASTATE(state, sav->state); 5949 5950 if (sav->seq == seq) { 5951 SA_ADDREF(sav); 5952 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 5953 "DP cause refcnt++:%d SA:%p\n", 5954 key_sa_refcnt(sav), sav); 5955 break; 5956 } 5957 } 5958 pserialize_read_exit(s); 5959 5960 return sav; 5961 } 5962 #endif 5963 5964 /* 5965 * SADB_ADD processing 5966 * add an entry to SA database, when received 5967 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5968 * key(AE), (identity(SD),) (sensitivity)> 5969 * from the ikmpd, 5970 * and send 5971 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5972 * (identity(SD),) (sensitivity)> 5973 * to the ikmpd. 5974 * 5975 * IGNORE identity and sensitivity messages. 5976 * 5977 * m will always be freed. 5978 */ 5979 static int 5980 key_api_add(struct socket *so, struct mbuf *m, 5981 const struct sadb_msghdr *mhp) 5982 { 5983 struct sadb_sa *sa0; 5984 const struct sockaddr *src, *dst; 5985 struct secasindex saidx; 5986 struct secashead *sah; 5987 struct secasvar *newsav; 5988 u_int16_t proto; 5989 u_int8_t mode; 5990 u_int16_t reqid; 5991 int error; 5992 5993 /* map satype to proto */ 5994 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5995 if (proto == 0) { 5996 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5997 return key_senderror(so, m, EINVAL); 5998 } 5999 6000 if (mhp->ext[SADB_EXT_SA] == NULL || 6001 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6002 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6003 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 6004 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 6005 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 6006 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 6007 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 6008 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 6009 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 6010 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 6011 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6012 return key_senderror(so, m, EINVAL); 6013 } 6014 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 6015 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6016 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6017 /* XXX need more */ 6018 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6019 return key_senderror(so, m, EINVAL); 6020 } 6021 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 6022 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 6023 mode = sa2->sadb_x_sa2_mode; 6024 reqid = sa2->sadb_x_sa2_reqid; 6025 } else { 6026 mode = IPSEC_MODE_ANY; 6027 reqid = 0; 6028 } 6029 6030 sa0 = mhp->ext[SADB_EXT_SA]; 6031 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6032 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6033 6034 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 6035 if (error != 0) 6036 return key_senderror(so, m, EINVAL); 6037 6038 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6039 if (error != 0) 6040 return key_senderror(so, m, EINVAL); 6041 6042 /* get a SA header */ 6043 sah = key_getsah_ref(&saidx, CMP_REQID); 6044 if (sah == NULL) { 6045 /* create a new SA header */ 6046 sah = key_newsah(&saidx); 6047 if (sah == NULL) { 6048 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 6049 return key_senderror(so, m, ENOBUFS); 6050 } 6051 } 6052 6053 /* set spidx if there */ 6054 /* XXX rewrite */ 6055 error = key_setident(sah, m, mhp); 6056 if (error) 6057 goto error; 6058 6059 { 6060 struct secasvar *sav; 6061 6062 /* We can create new SA only if SPI is differenct. */ 6063 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 6064 if (sav != NULL) { 6065 KEY_SA_UNREF(&sav); 6066 IPSECLOG(LOG_DEBUG, "SA already exists.\n"); 6067 error = EEXIST; 6068 goto error; 6069 } 6070 } 6071 6072 /* create new SA entry. */ 6073 newsav = KEY_NEWSAV(m, mhp, &error, proto); 6074 if (newsav == NULL) 6075 goto error; 6076 newsav->sah = sah; 6077 6078 error = key_handle_natt_info(newsav, mhp); 6079 if (error != 0) { 6080 key_delsav(newsav); 6081 error = EINVAL; 6082 goto error; 6083 } 6084 6085 error = key_init_xform(newsav); 6086 if (error != 0) { 6087 key_delsav(newsav); 6088 goto error; 6089 } 6090 6091 /* Add to sah#savlist */ 6092 key_init_sav(newsav); 6093 newsav->state = SADB_SASTATE_MATURE; 6094 mutex_enter(&key_sad.lock); 6095 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); 6096 SAVLUT_WRITER_INSERT_HEAD(newsav); 6097 mutex_exit(&key_sad.lock); 6098 key_validate_savlist(sah, SADB_SASTATE_MATURE); 6099 6100 key_sah_unref(sah); 6101 sah = NULL; 6102 6103 /* 6104 * don't call key_freesav() here, as we would like to keep the SA 6105 * in the database on success. 6106 */ 6107 6108 { 6109 struct mbuf *n; 6110 6111 /* set msg buf from mhp */ 6112 n = key_getmsgbuf_x1(m, mhp); 6113 if (n == NULL) { 6114 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 6115 return key_senderror(so, m, ENOBUFS); 6116 } 6117 6118 m_freem(m); 6119 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6120 } 6121 error: 6122 key_sah_unref(sah); 6123 return key_senderror(so, m, error); 6124 } 6125 6126 /* m is retained */ 6127 static int 6128 key_setident(struct secashead *sah, struct mbuf *m, 6129 const struct sadb_msghdr *mhp) 6130 { 6131 const struct sadb_ident *idsrc, *iddst; 6132 int idsrclen, iddstlen; 6133 6134 KASSERT(!cpu_softintr_p()); 6135 KASSERT(sah != NULL); 6136 KASSERT(m != NULL); 6137 KASSERT(mhp != NULL); 6138 KASSERT(mhp->msg != NULL); 6139 6140 /* 6141 * Can be called with an existing sah from key_api_update(). 6142 */ 6143 if (sah->idents != NULL) { 6144 kmem_free(sah->idents, sah->idents_len); 6145 sah->idents = NULL; 6146 sah->idents_len = 0; 6147 } 6148 if (sah->identd != NULL) { 6149 kmem_free(sah->identd, sah->identd_len); 6150 sah->identd = NULL; 6151 sah->identd_len = 0; 6152 } 6153 6154 /* don't make buffer if not there */ 6155 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 6156 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 6157 sah->idents = NULL; 6158 sah->identd = NULL; 6159 return 0; 6160 } 6161 6162 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 6163 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 6164 IPSECLOG(LOG_DEBUG, "invalid identity.\n"); 6165 return EINVAL; 6166 } 6167 6168 idsrc = mhp->ext[SADB_EXT_IDENTITY_SRC]; 6169 iddst = mhp->ext[SADB_EXT_IDENTITY_DST]; 6170 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 6171 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 6172 6173 /* validity check */ 6174 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 6175 IPSECLOG(LOG_DEBUG, "ident type mismatched src %u, dst %u.\n", 6176 idsrc->sadb_ident_type, iddst->sadb_ident_type); 6177 /* 6178 * Some VPN appliances(e.g. NetScreen) can send different 6179 * identifier types on IDii and IDir, so be able to allow 6180 * such message. 6181 */ 6182 if (!ipsec_allow_different_idtype) { 6183 return EINVAL; 6184 } 6185 } 6186 6187 switch (idsrc->sadb_ident_type) { 6188 case SADB_IDENTTYPE_PREFIX: 6189 case SADB_IDENTTYPE_FQDN: 6190 case SADB_IDENTTYPE_USERFQDN: 6191 default: 6192 /* XXX do nothing */ 6193 sah->idents = NULL; 6194 sah->identd = NULL; 6195 return 0; 6196 } 6197 6198 /* make structure */ 6199 sah->idents = kmem_alloc(idsrclen, KM_SLEEP); 6200 sah->idents_len = idsrclen; 6201 sah->identd = kmem_alloc(iddstlen, KM_SLEEP); 6202 sah->identd_len = iddstlen; 6203 memcpy(sah->idents, idsrc, idsrclen); 6204 memcpy(sah->identd, iddst, iddstlen); 6205 6206 return 0; 6207 } 6208 6209 /* 6210 * m will not be freed on return. It never return NULL. 6211 * it is caller's responsibility to free the result. 6212 */ 6213 static struct mbuf * 6214 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 6215 { 6216 struct mbuf *n; 6217 6218 KASSERT(m != NULL); 6219 KASSERT(mhp != NULL); 6220 KASSERT(mhp->msg != NULL); 6221 6222 /* create new sadb_msg to reply. */ 6223 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED, 6224 SADB_EXT_SA, SADB_X_EXT_SA2, 6225 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 6226 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 6227 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, 6228 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, 6229 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, 6230 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG); 6231 6232 KASSERT(n->m_len >= sizeof(struct sadb_msg)); 6233 6234 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 6235 mtod(n, struct sadb_msg *)->sadb_msg_len = 6236 PFKEY_UNIT64(n->m_pkthdr.len); 6237 6238 return n; 6239 } 6240 6241 static int key_delete_all (struct socket *, struct mbuf *, 6242 const struct sadb_msghdr *, u_int16_t); 6243 6244 /* 6245 * SADB_DELETE processing 6246 * receive 6247 * <base, SA(*), address(SD)> 6248 * from the ikmpd, and set SADB_SASTATE_DEAD, 6249 * and send, 6250 * <base, SA(*), address(SD)> 6251 * to the ikmpd. 6252 * 6253 * m will always be freed. 6254 */ 6255 static int 6256 key_api_delete(struct socket *so, struct mbuf *m, 6257 const struct sadb_msghdr *mhp) 6258 { 6259 struct sadb_sa *sa0; 6260 const struct sockaddr *src, *dst; 6261 struct secasindex saidx; 6262 struct secashead *sah; 6263 struct secasvar *sav = NULL; 6264 u_int16_t proto; 6265 int error; 6266 6267 /* map satype to proto */ 6268 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 6269 if (proto == 0) { 6270 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6271 return key_senderror(so, m, EINVAL); 6272 } 6273 6274 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6275 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 6276 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6277 return key_senderror(so, m, EINVAL); 6278 } 6279 6280 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6281 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6282 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6283 return key_senderror(so, m, EINVAL); 6284 } 6285 6286 if (mhp->ext[SADB_EXT_SA] == NULL) { 6287 /* 6288 * Caller wants us to delete all non-LARVAL SAs 6289 * that match the src/dst. This is used during 6290 * IKE INITIAL-CONTACT. 6291 */ 6292 IPSECLOG(LOG_DEBUG, "doing delete all.\n"); 6293 return key_delete_all(so, m, mhp, proto); 6294 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 6295 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6296 return key_senderror(so, m, EINVAL); 6297 } 6298 6299 sa0 = mhp->ext[SADB_EXT_SA]; 6300 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6301 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6302 6303 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6304 if (error != 0) 6305 return key_senderror(so, m, EINVAL); 6306 6307 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6308 if (error != 0) 6309 return key_senderror(so, m, EINVAL); 6310 6311 /* get a SA header */ 6312 sah = key_getsah_ref(&saidx, CMP_HEAD); 6313 if (sah != NULL) { 6314 /* get a SA with SPI. */ 6315 sav = key_lookup_and_remove_sav(sah, sa0->sadb_sa_spi, NULL); 6316 key_sah_unref(sah); 6317 } 6318 6319 if (sav == NULL) { 6320 IPSECLOG(LOG_DEBUG, "no SA found.\n"); 6321 return key_senderror(so, m, ENOENT); 6322 } 6323 6324 key_wait_sav(sav); 6325 key_destroy_sav(sav); 6326 sav = NULL; 6327 6328 { 6329 struct mbuf *n; 6330 6331 /* create new sadb_msg to reply. */ 6332 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 6333 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6334 6335 key_fill_replymsg(n, 0); 6336 m_freem(m); 6337 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6338 } 6339 } 6340 6341 /* 6342 * delete all SAs for src/dst. Called from key_api_delete(). 6343 */ 6344 static int 6345 key_delete_all(struct socket *so, struct mbuf *m, 6346 const struct sadb_msghdr *mhp, u_int16_t proto) 6347 { 6348 const struct sockaddr *src, *dst; 6349 struct secasindex saidx; 6350 struct secashead *sah; 6351 struct secasvar *sav; 6352 u_int state; 6353 int error; 6354 6355 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6356 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6357 6358 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6359 if (error != 0) 6360 return key_senderror(so, m, EINVAL); 6361 6362 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6363 if (error != 0) 6364 return key_senderror(so, m, EINVAL); 6365 6366 sah = key_getsah_ref(&saidx, CMP_HEAD); 6367 if (sah != NULL) { 6368 /* Delete all non-LARVAL SAs. */ 6369 SASTATE_ALIVE_FOREACH(state) { 6370 if (state == SADB_SASTATE_LARVAL) 6371 continue; 6372 restart: 6373 mutex_enter(&key_sad.lock); 6374 SAVLIST_WRITER_FOREACH(sav, sah, state) { 6375 sav->state = SADB_SASTATE_DEAD; 6376 key_unlink_sav(sav); 6377 mutex_exit(&key_sad.lock); 6378 key_destroy_sav(sav); 6379 goto restart; 6380 } 6381 mutex_exit(&key_sad.lock); 6382 } 6383 key_sah_unref(sah); 6384 } 6385 { 6386 struct mbuf *n; 6387 6388 /* create new sadb_msg to reply. */ 6389 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 6390 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6391 6392 key_fill_replymsg(n, 0); 6393 m_freem(m); 6394 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6395 } 6396 } 6397 6398 /* 6399 * SADB_GET processing 6400 * receive 6401 * <base, SA(*), address(SD)> 6402 * from the ikmpd, and get a SP and a SA to respond, 6403 * and send, 6404 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 6405 * (identity(SD),) (sensitivity)> 6406 * to the ikmpd. 6407 * 6408 * m will always be freed. 6409 */ 6410 static int 6411 key_api_get(struct socket *so, struct mbuf *m, 6412 const struct sadb_msghdr *mhp) 6413 { 6414 struct sadb_sa *sa0; 6415 const struct sockaddr *src, *dst; 6416 struct secasindex saidx; 6417 struct secasvar *sav = NULL; 6418 u_int16_t proto; 6419 int error; 6420 6421 /* map satype to proto */ 6422 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6423 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6424 return key_senderror(so, m, EINVAL); 6425 } 6426 6427 if (mhp->ext[SADB_EXT_SA] == NULL || 6428 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6429 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 6430 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6431 return key_senderror(so, m, EINVAL); 6432 } 6433 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 6434 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6435 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6436 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6437 return key_senderror(so, m, EINVAL); 6438 } 6439 6440 sa0 = mhp->ext[SADB_EXT_SA]; 6441 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6442 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6443 6444 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6445 if (error != 0) 6446 return key_senderror(so, m, EINVAL); 6447 6448 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6449 if (error != 0) 6450 return key_senderror(so, m, EINVAL); 6451 6452 /* get a SA header */ 6453 { 6454 struct secashead *sah; 6455 int s = pserialize_read_enter(); 6456 6457 sah = key_getsah(&saidx, CMP_HEAD); 6458 if (sah != NULL) { 6459 /* get a SA with SPI. */ 6460 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 6461 } 6462 pserialize_read_exit(s); 6463 } 6464 if (sav == NULL) { 6465 IPSECLOG(LOG_DEBUG, "no SA found.\n"); 6466 return key_senderror(so, m, ENOENT); 6467 } 6468 6469 { 6470 struct mbuf *n; 6471 u_int8_t satype; 6472 6473 /* map proto to satype */ 6474 satype = key_proto2satype(sav->sah->saidx.proto); 6475 if (satype == 0) { 6476 KEY_SA_UNREF(&sav); 6477 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n"); 6478 return key_senderror(so, m, EINVAL); 6479 } 6480 6481 /* create new sadb_msg to reply. */ 6482 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 6483 mhp->msg->sadb_msg_pid); 6484 KEY_SA_UNREF(&sav); 6485 m_freem(m); 6486 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6487 } 6488 } 6489 6490 /* XXX make it sysctl-configurable? */ 6491 static void 6492 key_getcomb_setlifetime(struct sadb_comb *comb) 6493 { 6494 6495 comb->sadb_comb_soft_allocations = 1; 6496 comb->sadb_comb_hard_allocations = 1; 6497 comb->sadb_comb_soft_bytes = 0; 6498 comb->sadb_comb_hard_bytes = 0; 6499 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 6500 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100; 6501 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */ 6502 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 6503 } 6504 6505 /* 6506 * XXX reorder combinations by preference 6507 * XXX no idea if the user wants ESP authentication or not 6508 */ 6509 static struct mbuf * 6510 key_getcomb_esp(int mflag) 6511 { 6512 struct sadb_comb *comb; 6513 const struct enc_xform *algo; 6514 struct mbuf *result = NULL, *m, *n; 6515 int encmin; 6516 int i, off, o; 6517 int totlen; 6518 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6519 6520 m = NULL; 6521 for (i = 1; i <= SADB_EALG_MAX; i++) { 6522 algo = esp_algorithm_lookup(i); 6523 if (algo == NULL) 6524 continue; 6525 6526 /* discard algorithms with key size smaller than system min */ 6527 if (_BITS(algo->maxkey) < ipsec_esp_keymin) 6528 continue; 6529 if (_BITS(algo->minkey) < ipsec_esp_keymin) 6530 encmin = ipsec_esp_keymin; 6531 else 6532 encmin = _BITS(algo->minkey); 6533 6534 if (ipsec_esp_auth) 6535 m = key_getcomb_ah(mflag); 6536 else { 6537 KASSERTMSG(l <= MLEN, 6538 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6539 MGET(m, mflag, MT_DATA); 6540 if (m) { 6541 m_align(m, l); 6542 m->m_len = l; 6543 m->m_next = NULL; 6544 memset(mtod(m, void *), 0, m->m_len); 6545 } 6546 } 6547 if (!m) 6548 goto fail; 6549 6550 totlen = 0; 6551 for (n = m; n; n = n->m_next) 6552 totlen += n->m_len; 6553 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l); 6554 6555 for (off = 0; off < totlen; off += l) { 6556 n = m_pulldown(m, off, l, &o); 6557 if (!n) { 6558 /* m is already freed */ 6559 goto fail; 6560 } 6561 comb = (struct sadb_comb *)(mtod(n, char *) + o); 6562 memset(comb, 0, sizeof(*comb)); 6563 key_getcomb_setlifetime(comb); 6564 comb->sadb_comb_encrypt = i; 6565 comb->sadb_comb_encrypt_minbits = encmin; 6566 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6567 } 6568 6569 if (!result) 6570 result = m; 6571 else 6572 m_cat(result, m); 6573 } 6574 6575 return result; 6576 6577 fail: 6578 if (result) 6579 m_freem(result); 6580 return NULL; 6581 } 6582 6583 static void 6584 key_getsizes_ah(const struct auth_hash *ah, int alg, 6585 u_int16_t* ksmin, u_int16_t* ksmax) 6586 { 6587 *ksmin = *ksmax = ah->keysize; 6588 if (ah->keysize == 0) { 6589 /* 6590 * Transform takes arbitrary key size but algorithm 6591 * key size is restricted. Enforce this here. 6592 */ 6593 switch (alg) { 6594 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break; 6595 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break; 6596 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break; 6597 default: 6598 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg); 6599 break; 6600 } 6601 } 6602 } 6603 6604 /* 6605 * XXX reorder combinations by preference 6606 */ 6607 static struct mbuf * 6608 key_getcomb_ah(int mflag) 6609 { 6610 struct sadb_comb *comb; 6611 const struct auth_hash *algo; 6612 struct mbuf *m; 6613 u_int16_t minkeysize, maxkeysize; 6614 int i; 6615 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6616 6617 m = NULL; 6618 for (i = 1; i <= SADB_AALG_MAX; i++) { 6619 #if 1 6620 /* we prefer HMAC algorithms, not old algorithms */ 6621 if (i != SADB_AALG_SHA1HMAC && 6622 i != SADB_AALG_MD5HMAC && 6623 i != SADB_X_AALG_SHA2_256 && 6624 i != SADB_X_AALG_SHA2_384 && 6625 i != SADB_X_AALG_SHA2_512) 6626 continue; 6627 #endif 6628 algo = ah_algorithm_lookup(i); 6629 if (!algo) 6630 continue; 6631 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6632 /* discard algorithms with key size smaller than system min */ 6633 if (_BITS(minkeysize) < ipsec_ah_keymin) 6634 continue; 6635 6636 if (!m) { 6637 KASSERTMSG(l <= MLEN, 6638 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6639 MGET(m, mflag, MT_DATA); 6640 if (m) { 6641 m_align(m, l); 6642 m->m_len = l; 6643 m->m_next = NULL; 6644 } 6645 } else 6646 M_PREPEND(m, l, mflag); 6647 if (!m) 6648 return NULL; 6649 6650 if (m->m_len < sizeof(struct sadb_comb)) { 6651 m = m_pullup(m, sizeof(struct sadb_comb)); 6652 if (m == NULL) 6653 return NULL; 6654 } 6655 6656 comb = mtod(m, struct sadb_comb *); 6657 memset(comb, 0, sizeof(*comb)); 6658 key_getcomb_setlifetime(comb); 6659 comb->sadb_comb_auth = i; 6660 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6661 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6662 } 6663 6664 return m; 6665 } 6666 6667 /* 6668 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6669 * XXX reorder combinations by preference 6670 */ 6671 static struct mbuf * 6672 key_getcomb_ipcomp(int mflag) 6673 { 6674 struct sadb_comb *comb; 6675 const struct comp_algo *algo; 6676 struct mbuf *m; 6677 int i; 6678 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6679 6680 m = NULL; 6681 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6682 algo = ipcomp_algorithm_lookup(i); 6683 if (!algo) 6684 continue; 6685 6686 if (!m) { 6687 KASSERTMSG(l <= MLEN, 6688 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6689 MGET(m, mflag, MT_DATA); 6690 if (m) { 6691 m_align(m, l); 6692 m->m_len = l; 6693 m->m_next = NULL; 6694 } 6695 } else 6696 M_PREPEND(m, l, mflag); 6697 if (!m) 6698 return NULL; 6699 6700 if (m->m_len < sizeof(struct sadb_comb)) { 6701 m = m_pullup(m, sizeof(struct sadb_comb)); 6702 if (m == NULL) 6703 return NULL; 6704 } 6705 6706 comb = mtod(m, struct sadb_comb *); 6707 memset(comb, 0, sizeof(*comb)); 6708 key_getcomb_setlifetime(comb); 6709 comb->sadb_comb_encrypt = i; 6710 /* what should we set into sadb_comb_*_{min,max}bits? */ 6711 } 6712 6713 return m; 6714 } 6715 6716 /* 6717 * XXX no way to pass mode (transport/tunnel) to userland 6718 * XXX replay checking? 6719 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6720 */ 6721 static struct mbuf * 6722 key_getprop(const struct secasindex *saidx, int mflag) 6723 { 6724 struct sadb_prop *prop; 6725 struct mbuf *m, *n; 6726 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6727 int totlen; 6728 6729 switch (saidx->proto) { 6730 case IPPROTO_ESP: 6731 m = key_getcomb_esp(mflag); 6732 break; 6733 case IPPROTO_AH: 6734 m = key_getcomb_ah(mflag); 6735 break; 6736 case IPPROTO_IPCOMP: 6737 m = key_getcomb_ipcomp(mflag); 6738 break; 6739 default: 6740 return NULL; 6741 } 6742 6743 if (!m) 6744 return NULL; 6745 M_PREPEND(m, l, mflag); 6746 if (!m) 6747 return NULL; 6748 6749 totlen = 0; 6750 for (n = m; n; n = n->m_next) 6751 totlen += n->m_len; 6752 6753 prop = mtod(m, struct sadb_prop *); 6754 memset(prop, 0, sizeof(*prop)); 6755 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6756 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6757 prop->sadb_prop_replay = 32; /* XXX */ 6758 6759 return m; 6760 } 6761 6762 /* 6763 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire(). 6764 * send 6765 * <base, SA, address(SD), (address(P)), x_policy, 6766 * (identity(SD),) (sensitivity,) proposal> 6767 * to KMD, and expect to receive 6768 * <base> with SADB_ACQUIRE if error occurred, 6769 * or 6770 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6771 * from KMD by PF_KEY. 6772 * 6773 * XXX x_policy is outside of RFC2367 (KAME extension). 6774 * XXX sensitivity is not supported. 6775 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6776 * see comment for key_getcomb_ipcomp(). 6777 * 6778 * OUT: 6779 * 0 : succeed 6780 * others: error number 6781 */ 6782 static int 6783 key_acquire(const struct secasindex *saidx, const struct secpolicy *sp, int mflag) 6784 { 6785 struct mbuf *result = NULL, *m; 6786 #ifndef IPSEC_NONBLOCK_ACQUIRE 6787 struct secacq *newacq; 6788 #endif 6789 u_int8_t satype; 6790 int error = -1; 6791 u_int32_t seq; 6792 6793 /* sanity check */ 6794 KASSERT(saidx != NULL); 6795 satype = key_proto2satype(saidx->proto); 6796 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto); 6797 6798 #ifndef IPSEC_NONBLOCK_ACQUIRE 6799 /* 6800 * We never do anything about acquiring SA. There is another 6801 * solution that kernel blocks to send SADB_ACQUIRE message until 6802 * getting something message from IKEd. In later case, to be 6803 * managed with ACQUIRING list. 6804 */ 6805 /* Get an entry to check whether sending message or not. */ 6806 mutex_enter(&key_misc.lock); 6807 newacq = key_getacq(saidx); 6808 if (newacq != NULL) { 6809 if (key_blockacq_count < newacq->count) { 6810 /* reset counter and do send message. */ 6811 newacq->count = 0; 6812 } else { 6813 /* increment counter and do nothing. */ 6814 newacq->count++; 6815 mutex_exit(&key_misc.lock); 6816 return 0; 6817 } 6818 } else { 6819 /* make new entry for blocking to send SADB_ACQUIRE. */ 6820 newacq = key_newacq(saidx); 6821 if (newacq == NULL) { 6822 mutex_exit(&key_misc.lock); 6823 return ENOBUFS; 6824 } 6825 6826 /* add to key_misc.acqlist */ 6827 LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain); 6828 } 6829 6830 seq = newacq->seq; 6831 mutex_exit(&key_misc.lock); 6832 #else 6833 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 6834 #endif 6835 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0, mflag); 6836 if (!m) { 6837 error = ENOBUFS; 6838 goto fail; 6839 } 6840 result = m; 6841 6842 /* set sadb_address for saidx's. */ 6843 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK, 6844 IPSEC_ULPROTO_ANY, mflag); 6845 if (!m) { 6846 error = ENOBUFS; 6847 goto fail; 6848 } 6849 m_cat(result, m); 6850 6851 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK, 6852 IPSEC_ULPROTO_ANY, mflag); 6853 if (!m) { 6854 error = ENOBUFS; 6855 goto fail; 6856 } 6857 m_cat(result, m); 6858 6859 /* XXX proxy address (optional) */ 6860 6861 /* set sadb_x_policy */ 6862 if (sp) { 6863 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id, 6864 mflag); 6865 if (!m) { 6866 error = ENOBUFS; 6867 goto fail; 6868 } 6869 m_cat(result, m); 6870 } 6871 6872 /* XXX identity (optional) */ 6873 #if 0 6874 if (idexttype && fqdn) { 6875 /* create identity extension (FQDN) */ 6876 struct sadb_ident *id; 6877 int fqdnlen; 6878 6879 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6880 id = (struct sadb_ident *)p; 6881 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6882 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6883 id->sadb_ident_exttype = idexttype; 6884 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6885 memcpy(id + 1, fqdn, fqdnlen); 6886 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6887 } 6888 6889 if (idexttype) { 6890 /* create identity extension (USERFQDN) */ 6891 struct sadb_ident *id; 6892 int userfqdnlen; 6893 6894 if (userfqdn) { 6895 /* +1 for terminating-NUL */ 6896 userfqdnlen = strlen(userfqdn) + 1; 6897 } else 6898 userfqdnlen = 0; 6899 id = (struct sadb_ident *)p; 6900 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6901 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6902 id->sadb_ident_exttype = idexttype; 6903 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6904 /* XXX is it correct? */ 6905 if (curlwp) 6906 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred); 6907 if (userfqdn && userfqdnlen) 6908 memcpy(id + 1, userfqdn, userfqdnlen); 6909 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6910 } 6911 #endif 6912 6913 /* XXX sensitivity (optional) */ 6914 6915 /* create proposal/combination extension */ 6916 m = key_getprop(saidx, mflag); 6917 #if 0 6918 /* 6919 * spec conformant: always attach proposal/combination extension, 6920 * the problem is that we have no way to attach it for ipcomp, 6921 * due to the way sadb_comb is declared in RFC2367. 6922 */ 6923 if (!m) { 6924 error = ENOBUFS; 6925 goto fail; 6926 } 6927 m_cat(result, m); 6928 #else 6929 /* 6930 * outside of spec; make proposal/combination extension optional. 6931 */ 6932 if (m) 6933 m_cat(result, m); 6934 #endif 6935 6936 KASSERT(result->m_flags & M_PKTHDR); 6937 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 6938 6939 result->m_pkthdr.len = 0; 6940 for (m = result; m; m = m->m_next) 6941 result->m_pkthdr.len += m->m_len; 6942 6943 mtod(result, struct sadb_msg *)->sadb_msg_len = 6944 PFKEY_UNIT64(result->m_pkthdr.len); 6945 6946 /* 6947 * Called from key_api_acquire that must come from userland, so 6948 * we can call key_sendup_mbuf immediately. 6949 */ 6950 if (mflag == M_WAITOK) 6951 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6952 /* 6953 * XXX we cannot call key_sendup_mbuf directly here because 6954 * it can cause a deadlock: 6955 * - We have a reference to an SP (and an SA) here 6956 * - key_sendup_mbuf will try to take key_so_mtx 6957 * - Some other thread may try to localcount_drain to the SP with 6958 * holding key_so_mtx in say key_api_spdflush 6959 * - In this case localcount_drain never return because key_sendup_mbuf 6960 * that has stuck on key_so_mtx never release a reference to the SP 6961 * 6962 * So defer key_sendup_mbuf to the timer. 6963 */ 6964 return key_acquire_sendup_mbuf_later(result); 6965 6966 fail: 6967 if (result) 6968 m_freem(result); 6969 return error; 6970 } 6971 6972 static struct mbuf *key_acquire_mbuf_head = NULL; 6973 static unsigned key_acquire_mbuf_count = 0; 6974 #define KEY_ACQUIRE_MBUF_MAX 10 6975 6976 static void 6977 key_acquire_sendup_pending_mbuf(void) 6978 { 6979 struct mbuf *m, *prev; 6980 int error; 6981 6982 again: 6983 prev = NULL; 6984 mutex_enter(&key_misc.lock); 6985 m = key_acquire_mbuf_head; 6986 /* Get an earliest mbuf (one at the tail of the list) */ 6987 while (m != NULL) { 6988 if (m->m_nextpkt == NULL) { 6989 if (prev != NULL) 6990 prev->m_nextpkt = NULL; 6991 if (m == key_acquire_mbuf_head) 6992 key_acquire_mbuf_head = NULL; 6993 key_acquire_mbuf_count--; 6994 break; 6995 } 6996 prev = m; 6997 m = m->m_nextpkt; 6998 } 6999 mutex_exit(&key_misc.lock); 7000 7001 if (m == NULL) 7002 return; 7003 7004 m->m_nextpkt = NULL; 7005 error = key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 7006 if (error != 0) 7007 IPSECLOG(LOG_WARNING, "key_sendup_mbuf failed (error=%d)\n", 7008 error); 7009 7010 if (prev != NULL) 7011 goto again; 7012 } 7013 7014 static int 7015 key_acquire_sendup_mbuf_later(struct mbuf *m) 7016 { 7017 7018 mutex_enter(&key_misc.lock); 7019 /* Avoid queuing too much mbufs */ 7020 if (key_acquire_mbuf_count >= KEY_ACQUIRE_MBUF_MAX) { 7021 mutex_exit(&key_misc.lock); 7022 m_freem(m); 7023 return ENOBUFS; /* XXX */ 7024 } 7025 /* Enqueue mbuf at the head of the list */ 7026 m->m_nextpkt = key_acquire_mbuf_head; 7027 key_acquire_mbuf_head = m; 7028 key_acquire_mbuf_count++; 7029 mutex_exit(&key_misc.lock); 7030 7031 /* Kick the timer */ 7032 key_timehandler(NULL); 7033 7034 return 0; 7035 } 7036 7037 #ifndef IPSEC_NONBLOCK_ACQUIRE 7038 static struct secacq * 7039 key_newacq(const struct secasindex *saidx) 7040 { 7041 struct secacq *newacq; 7042 7043 /* get new entry */ 7044 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP); 7045 if (newacq == NULL) { 7046 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 7047 return NULL; 7048 } 7049 7050 /* copy secindex */ 7051 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx)); 7052 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); 7053 newacq->created = time_uptime; 7054 newacq->count = 0; 7055 7056 return newacq; 7057 } 7058 7059 static struct secacq * 7060 key_getacq(const struct secasindex *saidx) 7061 { 7062 struct secacq *acq; 7063 7064 KASSERT(mutex_owned(&key_misc.lock)); 7065 7066 LIST_FOREACH(acq, &key_misc.acqlist, chain) { 7067 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY)) 7068 return acq; 7069 } 7070 7071 return NULL; 7072 } 7073 7074 static struct secacq * 7075 key_getacqbyseq(u_int32_t seq) 7076 { 7077 struct secacq *acq; 7078 7079 KASSERT(mutex_owned(&key_misc.lock)); 7080 7081 LIST_FOREACH(acq, &key_misc.acqlist, chain) { 7082 if (acq->seq == seq) 7083 return acq; 7084 } 7085 7086 return NULL; 7087 } 7088 #endif 7089 7090 #ifdef notyet 7091 static struct secspacq * 7092 key_newspacq(const struct secpolicyindex *spidx) 7093 { 7094 struct secspacq *acq; 7095 7096 /* get new entry */ 7097 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP); 7098 if (acq == NULL) { 7099 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 7100 return NULL; 7101 } 7102 7103 /* copy secindex */ 7104 memcpy(&acq->spidx, spidx, sizeof(acq->spidx)); 7105 acq->created = time_uptime; 7106 acq->count = 0; 7107 7108 return acq; 7109 } 7110 7111 static struct secspacq * 7112 key_getspacq(const struct secpolicyindex *spidx) 7113 { 7114 struct secspacq *acq; 7115 7116 LIST_FOREACH(acq, &key_misc.spacqlist, chain) { 7117 if (key_spidx_match_exactly(spidx, &acq->spidx)) 7118 return acq; 7119 } 7120 7121 return NULL; 7122 } 7123 #endif /* notyet */ 7124 7125 /* 7126 * SADB_ACQUIRE processing, 7127 * in first situation, is receiving 7128 * <base> 7129 * from the ikmpd, and clear sequence of its secasvar entry. 7130 * 7131 * In second situation, is receiving 7132 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 7133 * from a user land process, and return 7134 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 7135 * to the socket. 7136 * 7137 * m will always be freed. 7138 */ 7139 static int 7140 key_api_acquire(struct socket *so, struct mbuf *m, 7141 const struct sadb_msghdr *mhp) 7142 { 7143 const struct sockaddr *src, *dst; 7144 struct secasindex saidx; 7145 u_int16_t proto; 7146 int error; 7147 7148 /* 7149 * Error message from KMd. 7150 * We assume that if error was occurred in IKEd, the length of PFKEY 7151 * message is equal to the size of sadb_msg structure. 7152 * We do not raise error even if error occurred in this function. 7153 */ 7154 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 7155 #ifndef IPSEC_NONBLOCK_ACQUIRE 7156 struct secacq *acq; 7157 7158 /* check sequence number */ 7159 if (mhp->msg->sadb_msg_seq == 0) { 7160 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n"); 7161 m_freem(m); 7162 return 0; 7163 } 7164 7165 mutex_enter(&key_misc.lock); 7166 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); 7167 if (acq == NULL) { 7168 mutex_exit(&key_misc.lock); 7169 /* 7170 * the specified larval SA is already gone, or we got 7171 * a bogus sequence number. we can silently ignore it. 7172 */ 7173 m_freem(m); 7174 return 0; 7175 } 7176 7177 /* reset acq counter in order to deletion by timehander. */ 7178 acq->created = time_uptime; 7179 acq->count = 0; 7180 mutex_exit(&key_misc.lock); 7181 #endif 7182 m_freem(m); 7183 return 0; 7184 } 7185 7186 /* 7187 * This message is from user land. 7188 */ 7189 7190 /* map satype to proto */ 7191 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 7192 if (proto == 0) { 7193 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7194 return key_senderror(so, m, EINVAL); 7195 } 7196 7197 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 7198 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 7199 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 7200 /* error */ 7201 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 7202 return key_senderror(so, m, EINVAL); 7203 } 7204 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 7205 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 7206 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 7207 /* error */ 7208 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 7209 return key_senderror(so, m, EINVAL); 7210 } 7211 7212 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 7213 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 7214 7215 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 7216 if (error != 0) 7217 return key_senderror(so, m, EINVAL); 7218 7219 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 7220 if (error != 0) 7221 return key_senderror(so, m, EINVAL); 7222 7223 /* get a SA index */ 7224 { 7225 struct secashead *sah; 7226 int s = pserialize_read_enter(); 7227 7228 sah = key_getsah(&saidx, CMP_MODE_REQID); 7229 if (sah != NULL) { 7230 pserialize_read_exit(s); 7231 IPSECLOG(LOG_DEBUG, "a SA exists already.\n"); 7232 return key_senderror(so, m, EEXIST); 7233 } 7234 pserialize_read_exit(s); 7235 } 7236 7237 error = key_acquire(&saidx, NULL, M_WAITOK); 7238 if (error != 0) { 7239 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", 7240 error); 7241 return key_senderror(so, m, error); 7242 } 7243 7244 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 7245 } 7246 7247 /* 7248 * SADB_REGISTER processing. 7249 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 7250 * receive 7251 * <base> 7252 * from the ikmpd, and register a socket to send PF_KEY messages, 7253 * and send 7254 * <base, supported> 7255 * to KMD by PF_KEY. 7256 * If socket is detached, must free from regnode. 7257 * 7258 * m will always be freed. 7259 */ 7260 static int 7261 key_api_register(struct socket *so, struct mbuf *m, 7262 const struct sadb_msghdr *mhp) 7263 { 7264 struct secreg *reg, *newreg = 0; 7265 7266 /* check for invalid register message */ 7267 if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist)) 7268 return key_senderror(so, m, EINVAL); 7269 7270 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 7271 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 7272 goto setmsg; 7273 7274 /* Allocate regnode in advance, out of mutex */ 7275 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP); 7276 7277 /* check whether existing or not */ 7278 mutex_enter(&key_misc.lock); 7279 LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) { 7280 if (reg->so == so) { 7281 IPSECLOG(LOG_DEBUG, "socket exists already.\n"); 7282 mutex_exit(&key_misc.lock); 7283 kmem_free(newreg, sizeof(*newreg)); 7284 return key_senderror(so, m, EEXIST); 7285 } 7286 } 7287 7288 newreg->so = so; 7289 ((struct keycb *)sotorawcb(so))->kp_registered++; 7290 7291 /* add regnode to key_misc.reglist. */ 7292 LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain); 7293 mutex_exit(&key_misc.lock); 7294 7295 setmsg: 7296 { 7297 struct mbuf *n; 7298 struct sadb_supported *sup; 7299 u_int len, alen, elen; 7300 int off; 7301 int i; 7302 struct sadb_alg *alg; 7303 7304 /* create new sadb_msg to reply. */ 7305 alen = 0; 7306 for (i = 1; i <= SADB_AALG_MAX; i++) { 7307 if (ah_algorithm_lookup(i)) 7308 alen += sizeof(struct sadb_alg); 7309 } 7310 if (alen) 7311 alen += sizeof(struct sadb_supported); 7312 elen = 0; 7313 for (i = 1; i <= SADB_EALG_MAX; i++) { 7314 if (esp_algorithm_lookup(i)) 7315 elen += sizeof(struct sadb_alg); 7316 } 7317 if (elen) 7318 elen += sizeof(struct sadb_supported); 7319 7320 len = sizeof(struct sadb_msg) + alen + elen; 7321 7322 if (len > MCLBYTES) 7323 return key_senderror(so, m, ENOBUFS); 7324 7325 n = key_alloc_mbuf_simple(len, M_WAITOK); 7326 n->m_pkthdr.len = n->m_len = len; 7327 n->m_next = NULL; 7328 off = 0; 7329 7330 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 7331 key_fill_replymsg(n, 0); 7332 7333 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 7334 7335 /* for authentication algorithm */ 7336 if (alen) { 7337 sup = (struct sadb_supported *)(mtod(n, char *) + off); 7338 sup->sadb_supported_len = PFKEY_UNIT64(alen); 7339 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 7340 sup->sadb_supported_reserved = 0; 7341 off += PFKEY_ALIGN8(sizeof(*sup)); 7342 7343 for (i = 1; i <= SADB_AALG_MAX; i++) { 7344 const struct auth_hash *aalgo; 7345 u_int16_t minkeysize, maxkeysize; 7346 7347 aalgo = ah_algorithm_lookup(i); 7348 if (!aalgo) 7349 continue; 7350 alg = (struct sadb_alg *)(mtod(n, char *) + off); 7351 alg->sadb_alg_id = i; 7352 alg->sadb_alg_ivlen = 0; 7353 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 7354 alg->sadb_alg_minbits = _BITS(minkeysize); 7355 alg->sadb_alg_maxbits = _BITS(maxkeysize); 7356 alg->sadb_alg_reserved = 0; 7357 off += PFKEY_ALIGN8(sizeof(*alg)); 7358 } 7359 } 7360 7361 /* for encryption algorithm */ 7362 if (elen) { 7363 sup = (struct sadb_supported *)(mtod(n, char *) + off); 7364 sup->sadb_supported_len = PFKEY_UNIT64(elen); 7365 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 7366 sup->sadb_supported_reserved = 0; 7367 off += PFKEY_ALIGN8(sizeof(*sup)); 7368 7369 for (i = 1; i <= SADB_EALG_MAX; i++) { 7370 const struct enc_xform *ealgo; 7371 7372 ealgo = esp_algorithm_lookup(i); 7373 if (!ealgo) 7374 continue; 7375 alg = (struct sadb_alg *)(mtod(n, char *) + off); 7376 alg->sadb_alg_id = i; 7377 alg->sadb_alg_ivlen = ealgo->blocksize; 7378 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 7379 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 7380 alg->sadb_alg_reserved = 0; 7381 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 7382 } 7383 } 7384 7385 KASSERTMSG(off == len, "length inconsistency"); 7386 7387 m_freem(m); 7388 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 7389 } 7390 } 7391 7392 /* 7393 * free secreg entry registered. 7394 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 7395 */ 7396 void 7397 key_freereg(struct socket *so) 7398 { 7399 struct secreg *reg; 7400 int i; 7401 7402 KASSERT(!cpu_softintr_p()); 7403 KASSERT(so != NULL); 7404 7405 /* 7406 * check whether existing or not. 7407 * check all type of SA, because there is a potential that 7408 * one socket is registered to multiple type of SA. 7409 */ 7410 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7411 mutex_enter(&key_misc.lock); 7412 LIST_FOREACH(reg, &key_misc.reglist[i], chain) { 7413 if (reg->so == so) { 7414 LIST_REMOVE(reg, chain); 7415 break; 7416 } 7417 } 7418 mutex_exit(&key_misc.lock); 7419 if (reg != NULL) 7420 kmem_free(reg, sizeof(*reg)); 7421 } 7422 7423 return; 7424 } 7425 7426 /* 7427 * SADB_EXPIRE processing 7428 * send 7429 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 7430 * to KMD by PF_KEY. 7431 * NOTE: We send only soft lifetime extension. 7432 * 7433 * OUT: 0 : succeed 7434 * others : error number 7435 */ 7436 static int 7437 key_expire(struct secasvar *sav) 7438 { 7439 int s; 7440 int satype; 7441 struct mbuf *result = NULL, *m; 7442 int len; 7443 int error = -1; 7444 struct sadb_lifetime *lt; 7445 lifetime_counters_t sum = {0}; 7446 7447 /* XXX: Why do we lock ? */ 7448 s = splsoftnet(); /*called from softclock()*/ 7449 7450 KASSERT(sav != NULL); 7451 7452 satype = key_proto2satype(sav->sah->saidx.proto); 7453 KASSERTMSG(satype != 0, "invalid proto is passed"); 7454 7455 /* set msg header */ 7456 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav), 7457 M_WAITOK); 7458 result = m; 7459 7460 /* create SA extension */ 7461 m = key_setsadbsa(sav); 7462 m_cat(result, m); 7463 7464 /* create SA extension */ 7465 m = key_setsadbxsa2(sav->sah->saidx.mode, 7466 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid); 7467 m_cat(result, m); 7468 7469 /* create lifetime extension (current and soft) */ 7470 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 7471 m = key_alloc_mbuf(len, M_WAITOK); 7472 KASSERT(m->m_next == NULL); 7473 7474 memset(mtod(m, void *), 0, len); 7475 lt = mtod(m, struct sadb_lifetime *); 7476 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7477 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 7478 percpu_foreach_xcall(sav->lft_c_counters_percpu, 7479 XC_HIGHPRI_IPL(IPL_SOFTNET), key_sum_lifetime_counters, sum); 7480 lt->sadb_lifetime_allocations = sum[LIFETIME_COUNTER_ALLOCATIONS]; 7481 lt->sadb_lifetime_bytes = sum[LIFETIME_COUNTER_BYTES]; 7482 lt->sadb_lifetime_addtime = 7483 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime); 7484 lt->sadb_lifetime_usetime = 7485 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime); 7486 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 7487 memcpy(lt, sav->lft_s, sizeof(*lt)); 7488 m_cat(result, m); 7489 7490 /* set sadb_address for source */ 7491 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, 7492 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 7493 m_cat(result, m); 7494 7495 /* set sadb_address for destination */ 7496 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa, 7497 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 7498 m_cat(result, m); 7499 7500 if ((result->m_flags & M_PKTHDR) == 0) { 7501 error = EINVAL; 7502 goto fail; 7503 } 7504 7505 if (result->m_len < sizeof(struct sadb_msg)) { 7506 result = m_pullup(result, sizeof(struct sadb_msg)); 7507 if (result == NULL) { 7508 error = ENOBUFS; 7509 goto fail; 7510 } 7511 } 7512 7513 result->m_pkthdr.len = 0; 7514 for (m = result; m; m = m->m_next) 7515 result->m_pkthdr.len += m->m_len; 7516 7517 mtod(result, struct sadb_msg *)->sadb_msg_len = 7518 PFKEY_UNIT64(result->m_pkthdr.len); 7519 7520 splx(s); 7521 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7522 7523 fail: 7524 if (result) 7525 m_freem(result); 7526 splx(s); 7527 return error; 7528 } 7529 7530 /* 7531 * SADB_FLUSH processing 7532 * receive 7533 * <base> 7534 * from the ikmpd, and free all entries in secastree. 7535 * and send, 7536 * <base> 7537 * to the ikmpd. 7538 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7539 * 7540 * m will always be freed. 7541 */ 7542 static int 7543 key_api_flush(struct socket *so, struct mbuf *m, 7544 const struct sadb_msghdr *mhp) 7545 { 7546 struct sadb_msg *newmsg; 7547 struct secashead *sah; 7548 struct secasvar *sav; 7549 u_int16_t proto; 7550 u_int8_t state; 7551 int s; 7552 7553 /* map satype to proto */ 7554 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 7555 if (proto == 0) { 7556 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7557 return key_senderror(so, m, EINVAL); 7558 } 7559 7560 /* no SATYPE specified, i.e. flushing all SA. */ 7561 s = pserialize_read_enter(); 7562 SAHLIST_READER_FOREACH(sah) { 7563 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && 7564 proto != sah->saidx.proto) 7565 continue; 7566 7567 key_sah_ref(sah); 7568 pserialize_read_exit(s); 7569 7570 SASTATE_ALIVE_FOREACH(state) { 7571 restart: 7572 mutex_enter(&key_sad.lock); 7573 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7574 sav->state = SADB_SASTATE_DEAD; 7575 key_unlink_sav(sav); 7576 mutex_exit(&key_sad.lock); 7577 key_destroy_sav(sav); 7578 goto restart; 7579 } 7580 mutex_exit(&key_sad.lock); 7581 } 7582 7583 s = pserialize_read_enter(); 7584 sah->state = SADB_SASTATE_DEAD; 7585 key_sah_unref(sah); 7586 } 7587 pserialize_read_exit(s); 7588 7589 if (m->m_len < sizeof(struct sadb_msg) || 7590 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7591 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 7592 return key_senderror(so, m, ENOBUFS); 7593 } 7594 7595 if (m->m_next) 7596 m_freem(m->m_next); 7597 m->m_next = NULL; 7598 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7599 newmsg = mtod(m, struct sadb_msg *); 7600 newmsg->sadb_msg_errno = 0; 7601 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7602 7603 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7604 } 7605 7606 7607 static struct mbuf * 7608 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid) 7609 { 7610 struct secashead *sah; 7611 struct secasvar *sav; 7612 u_int16_t proto; 7613 u_int8_t satype; 7614 u_int8_t state; 7615 int cnt; 7616 struct mbuf *m, *n, *prev; 7617 7618 KASSERT(mutex_owned(&key_sad.lock)); 7619 7620 *lenp = 0; 7621 7622 /* map satype to proto */ 7623 proto = key_satype2proto(req_satype); 7624 if (proto == 0) { 7625 *errorp = EINVAL; 7626 return (NULL); 7627 } 7628 7629 /* count sav entries to be sent to userland. */ 7630 cnt = 0; 7631 SAHLIST_WRITER_FOREACH(sah) { 7632 if (req_satype != SADB_SATYPE_UNSPEC && 7633 proto != sah->saidx.proto) 7634 continue; 7635 7636 SASTATE_ANY_FOREACH(state) { 7637 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7638 cnt++; 7639 } 7640 } 7641 } 7642 7643 if (cnt == 0) { 7644 *errorp = ENOENT; 7645 return (NULL); 7646 } 7647 7648 /* send this to the userland, one at a time. */ 7649 m = NULL; 7650 prev = m; 7651 SAHLIST_WRITER_FOREACH(sah) { 7652 if (req_satype != SADB_SATYPE_UNSPEC && 7653 proto != sah->saidx.proto) 7654 continue; 7655 7656 /* map proto to satype */ 7657 satype = key_proto2satype(sah->saidx.proto); 7658 if (satype == 0) { 7659 m_freem(m); 7660 *errorp = EINVAL; 7661 return (NULL); 7662 } 7663 7664 SASTATE_ANY_FOREACH(state) { 7665 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7666 n = key_setdumpsa(sav, SADB_DUMP, satype, 7667 --cnt, pid); 7668 if (!m) 7669 m = n; 7670 else 7671 prev->m_nextpkt = n; 7672 prev = n; 7673 } 7674 } 7675 } 7676 7677 if (!m) { 7678 *errorp = EINVAL; 7679 return (NULL); 7680 } 7681 7682 if ((m->m_flags & M_PKTHDR) != 0) { 7683 m->m_pkthdr.len = 0; 7684 for (n = m; n; n = n->m_next) 7685 m->m_pkthdr.len += n->m_len; 7686 } 7687 7688 *errorp = 0; 7689 return (m); 7690 } 7691 7692 /* 7693 * SADB_DUMP processing 7694 * dump all entries including status of DEAD in SAD. 7695 * receive 7696 * <base> 7697 * from the ikmpd, and dump all secasvar leaves 7698 * and send, 7699 * <base> ..... 7700 * to the ikmpd. 7701 * 7702 * m will always be freed. 7703 */ 7704 static int 7705 key_api_dump(struct socket *so, struct mbuf *m0, 7706 const struct sadb_msghdr *mhp) 7707 { 7708 u_int16_t proto; 7709 u_int8_t satype; 7710 struct mbuf *n; 7711 int error, len, ok; 7712 7713 /* map satype to proto */ 7714 satype = mhp->msg->sadb_msg_satype; 7715 proto = key_satype2proto(satype); 7716 if (proto == 0) { 7717 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7718 return key_senderror(so, m0, EINVAL); 7719 } 7720 7721 /* 7722 * If the requestor has insufficient socket-buffer space 7723 * for the entire chain, nobody gets any response to the DUMP. 7724 * XXX For now, only the requestor ever gets anything. 7725 * Moreover, if the requestor has any space at all, they receive 7726 * the entire chain, otherwise the request is refused with ENOBUFS. 7727 */ 7728 if (sbspace(&so->so_rcv) <= 0) { 7729 return key_senderror(so, m0, ENOBUFS); 7730 } 7731 7732 mutex_enter(&key_sad.lock); 7733 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid); 7734 mutex_exit(&key_sad.lock); 7735 7736 if (n == NULL) { 7737 return key_senderror(so, m0, ENOENT); 7738 } 7739 { 7740 uint64_t *ps = PFKEY_STAT_GETREF(); 7741 ps[PFKEY_STAT_IN_TOTAL]++; 7742 ps[PFKEY_STAT_IN_BYTES] += len; 7743 PFKEY_STAT_PUTREF(); 7744 } 7745 7746 /* 7747 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 7748 * The requestor receives either the entire chain, or an 7749 * error message with ENOBUFS. 7750 * 7751 * sbappendaddrchain() takes the chain of entries, one 7752 * packet-record per SPD entry, prepends the key_src sockaddr 7753 * to each packet-record, links the sockaddr mbufs into a new 7754 * list of records, then appends the entire resulting 7755 * list to the requesting socket. 7756 */ 7757 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, 7758 SB_PRIO_ONESHOT_OVERFLOW); 7759 7760 if (!ok) { 7761 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 7762 m_freem(n); 7763 return key_senderror(so, m0, ENOBUFS); 7764 } 7765 7766 m_freem(m0); 7767 return 0; 7768 } 7769 7770 /* 7771 * SADB_X_PROMISC processing 7772 * 7773 * m will always be freed. 7774 */ 7775 static int 7776 key_api_promisc(struct socket *so, struct mbuf *m, 7777 const struct sadb_msghdr *mhp) 7778 { 7779 int olen; 7780 7781 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7782 7783 if (olen < sizeof(struct sadb_msg)) { 7784 #if 1 7785 return key_senderror(so, m, EINVAL); 7786 #else 7787 m_freem(m); 7788 return 0; 7789 #endif 7790 } else if (olen == sizeof(struct sadb_msg)) { 7791 /* enable/disable promisc mode */ 7792 struct keycb *kp = (struct keycb *)sotorawcb(so); 7793 if (kp == NULL) 7794 return key_senderror(so, m, EINVAL); 7795 mhp->msg->sadb_msg_errno = 0; 7796 switch (mhp->msg->sadb_msg_satype) { 7797 case 0: 7798 case 1: 7799 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7800 break; 7801 default: 7802 return key_senderror(so, m, EINVAL); 7803 } 7804 7805 /* send the original message back to everyone */ 7806 mhp->msg->sadb_msg_errno = 0; 7807 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7808 } else { 7809 /* send packet as is */ 7810 7811 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7812 7813 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7814 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7815 } 7816 } 7817 7818 static int (*key_api_typesw[]) (struct socket *, struct mbuf *, 7819 const struct sadb_msghdr *) = { 7820 NULL, /* SADB_RESERVED */ 7821 key_api_getspi, /* SADB_GETSPI */ 7822 key_api_update, /* SADB_UPDATE */ 7823 key_api_add, /* SADB_ADD */ 7824 key_api_delete, /* SADB_DELETE */ 7825 key_api_get, /* SADB_GET */ 7826 key_api_acquire, /* SADB_ACQUIRE */ 7827 key_api_register, /* SADB_REGISTER */ 7828 NULL, /* SADB_EXPIRE */ 7829 key_api_flush, /* SADB_FLUSH */ 7830 key_api_dump, /* SADB_DUMP */ 7831 key_api_promisc, /* SADB_X_PROMISC */ 7832 NULL, /* SADB_X_PCHANGE */ 7833 key_api_spdadd, /* SADB_X_SPDUPDATE */ 7834 key_api_spdadd, /* SADB_X_SPDADD */ 7835 key_api_spddelete, /* SADB_X_SPDDELETE */ 7836 key_api_spdget, /* SADB_X_SPDGET */ 7837 NULL, /* SADB_X_SPDACQUIRE */ 7838 key_api_spddump, /* SADB_X_SPDDUMP */ 7839 key_api_spdflush, /* SADB_X_SPDFLUSH */ 7840 key_api_spdadd, /* SADB_X_SPDSETIDX */ 7841 NULL, /* SADB_X_SPDEXPIRE */ 7842 key_api_spddelete2, /* SADB_X_SPDDELETE2 */ 7843 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */ 7844 }; 7845 7846 /* 7847 * parse sadb_msg buffer to process PFKEYv2, 7848 * and create a data to response if needed. 7849 * I think to be dealed with mbuf directly. 7850 * IN: 7851 * msgp : pointer to pointer to a received buffer pulluped. 7852 * This is rewrited to response. 7853 * so : pointer to socket. 7854 * OUT: 7855 * length for buffer to send to user process. 7856 */ 7857 int 7858 key_parse(struct mbuf *m, struct socket *so) 7859 { 7860 struct sadb_msg *msg; 7861 struct sadb_msghdr mh; 7862 u_int orglen; 7863 int error; 7864 7865 KASSERT(m != NULL); 7866 KASSERT(so != NULL); 7867 7868 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7869 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) { 7870 kdebug_sadb("passed sadb_msg", msg); 7871 } 7872 #endif 7873 7874 if (m->m_len < sizeof(struct sadb_msg)) { 7875 m = m_pullup(m, sizeof(struct sadb_msg)); 7876 if (!m) 7877 return ENOBUFS; 7878 } 7879 msg = mtod(m, struct sadb_msg *); 7880 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7881 7882 if ((m->m_flags & M_PKTHDR) == 0 || 7883 m->m_pkthdr.len != orglen) { 7884 IPSECLOG(LOG_DEBUG, "invalid message length.\n"); 7885 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7886 error = EINVAL; 7887 goto senderror; 7888 } 7889 7890 if (msg->sadb_msg_version != PF_KEY_V2) { 7891 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n", 7892 msg->sadb_msg_version); 7893 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER); 7894 error = EINVAL; 7895 goto senderror; 7896 } 7897 7898 if (msg->sadb_msg_type > SADB_MAX) { 7899 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", 7900 msg->sadb_msg_type); 7901 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 7902 error = EINVAL; 7903 goto senderror; 7904 } 7905 7906 /* for old-fashioned code - should be nuked */ 7907 if (m->m_pkthdr.len > MCLBYTES) { 7908 m_freem(m); 7909 return ENOBUFS; 7910 } 7911 if (m->m_next) { 7912 struct mbuf *n; 7913 7914 n = key_alloc_mbuf_simple(m->m_pkthdr.len, M_WAITOK); 7915 7916 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *)); 7917 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7918 n->m_next = NULL; 7919 m_freem(m); 7920 m = n; 7921 } 7922 7923 /* align the mbuf chain so that extensions are in contiguous region. */ 7924 error = key_align(m, &mh); 7925 if (error) 7926 return error; 7927 7928 if (m->m_next) { /*XXX*/ 7929 m_freem(m); 7930 return ENOBUFS; 7931 } 7932 7933 msg = mh.msg; 7934 7935 /* check SA type */ 7936 switch (msg->sadb_msg_satype) { 7937 case SADB_SATYPE_UNSPEC: 7938 switch (msg->sadb_msg_type) { 7939 case SADB_GETSPI: 7940 case SADB_UPDATE: 7941 case SADB_ADD: 7942 case SADB_DELETE: 7943 case SADB_GET: 7944 case SADB_ACQUIRE: 7945 case SADB_EXPIRE: 7946 IPSECLOG(LOG_DEBUG, 7947 "must specify satype when msg type=%u.\n", 7948 msg->sadb_msg_type); 7949 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7950 error = EINVAL; 7951 goto senderror; 7952 } 7953 break; 7954 case SADB_SATYPE_AH: 7955 case SADB_SATYPE_ESP: 7956 case SADB_X_SATYPE_IPCOMP: 7957 case SADB_X_SATYPE_TCPSIGNATURE: 7958 switch (msg->sadb_msg_type) { 7959 case SADB_X_SPDADD: 7960 case SADB_X_SPDDELETE: 7961 case SADB_X_SPDGET: 7962 case SADB_X_SPDDUMP: 7963 case SADB_X_SPDFLUSH: 7964 case SADB_X_SPDSETIDX: 7965 case SADB_X_SPDUPDATE: 7966 case SADB_X_SPDDELETE2: 7967 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n", 7968 msg->sadb_msg_type); 7969 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7970 error = EINVAL; 7971 goto senderror; 7972 } 7973 break; 7974 case SADB_SATYPE_RSVP: 7975 case SADB_SATYPE_OSPFV2: 7976 case SADB_SATYPE_RIPV2: 7977 case SADB_SATYPE_MIP: 7978 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n", 7979 msg->sadb_msg_satype); 7980 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7981 error = EOPNOTSUPP; 7982 goto senderror; 7983 case 1: /* XXX: What does it do? */ 7984 if (msg->sadb_msg_type == SADB_X_PROMISC) 7985 break; 7986 /*FALLTHROUGH*/ 7987 default: 7988 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", 7989 msg->sadb_msg_satype); 7990 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7991 error = EINVAL; 7992 goto senderror; 7993 } 7994 7995 /* check field of upper layer protocol and address family */ 7996 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL && 7997 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7998 const struct sadb_address *src0, *dst0; 7999 const struct sockaddr *sa0, *da0; 8000 u_int plen; 8001 8002 src0 = mh.ext[SADB_EXT_ADDRESS_SRC]; 8003 dst0 = mh.ext[SADB_EXT_ADDRESS_DST]; 8004 sa0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_SRC); 8005 da0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_DST); 8006 8007 /* check upper layer protocol */ 8008 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 8009 IPSECLOG(LOG_DEBUG, 8010 "upper layer protocol mismatched src %u, dst %u.\n", 8011 src0->sadb_address_proto, dst0->sadb_address_proto); 8012 8013 goto invaddr; 8014 } 8015 8016 /* check family */ 8017 if (sa0->sa_family != da0->sa_family) { 8018 IPSECLOG(LOG_DEBUG, 8019 "address family mismatched src %u, dst %u.\n", 8020 sa0->sa_family, da0->sa_family); 8021 goto invaddr; 8022 } 8023 if (sa0->sa_len != da0->sa_len) { 8024 IPSECLOG(LOG_DEBUG, 8025 "address size mismatched src %u, dst %u.\n", 8026 sa0->sa_len, da0->sa_len); 8027 goto invaddr; 8028 } 8029 8030 switch (sa0->sa_family) { 8031 case AF_INET: 8032 if (sa0->sa_len != sizeof(struct sockaddr_in)) { 8033 IPSECLOG(LOG_DEBUG, 8034 "address size mismatched %u != %zu.\n", 8035 sa0->sa_len, sizeof(struct sockaddr_in)); 8036 goto invaddr; 8037 } 8038 break; 8039 case AF_INET6: 8040 if (sa0->sa_len != sizeof(struct sockaddr_in6)) { 8041 IPSECLOG(LOG_DEBUG, 8042 "address size mismatched %u != %zu.\n", 8043 sa0->sa_len, sizeof(struct sockaddr_in6)); 8044 goto invaddr; 8045 } 8046 break; 8047 default: 8048 IPSECLOG(LOG_DEBUG, "unsupported address family %u.\n", 8049 sa0->sa_family); 8050 error = EAFNOSUPPORT; 8051 goto senderror; 8052 } 8053 plen = key_sabits(sa0); 8054 8055 /* check max prefix length */ 8056 if (src0->sadb_address_prefixlen > plen || 8057 dst0->sadb_address_prefixlen > plen) { 8058 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n"); 8059 goto invaddr; 8060 } 8061 8062 /* 8063 * prefixlen == 0 is valid because there can be a case when 8064 * all addresses are matched. 8065 */ 8066 } 8067 8068 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) || 8069 key_api_typesw[msg->sadb_msg_type] == NULL) { 8070 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 8071 error = EINVAL; 8072 goto senderror; 8073 } 8074 8075 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh); 8076 8077 invaddr: 8078 error = EINVAL; 8079 senderror: 8080 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 8081 return key_senderror(so, m, error); 8082 } 8083 8084 static int 8085 key_senderror(struct socket *so, struct mbuf *m, int code) 8086 { 8087 struct sadb_msg *msg; 8088 8089 KASSERT(m->m_len >= sizeof(struct sadb_msg)); 8090 8091 if (so == NULL) { 8092 /* 8093 * This means the request comes from kernel. 8094 * As the request comes from kernel, it is unnecessary to 8095 * send message to userland. Just return errcode directly. 8096 */ 8097 m_freem(m); 8098 return code; 8099 } 8100 8101 msg = mtod(m, struct sadb_msg *); 8102 msg->sadb_msg_errno = code; 8103 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 8104 } 8105 8106 /* 8107 * set the pointer to each header into message buffer. 8108 * m will be freed on error. 8109 * XXX larger-than-MCLBYTES extension? 8110 */ 8111 static int 8112 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 8113 { 8114 struct mbuf *n; 8115 struct sadb_ext *ext; 8116 size_t off, end; 8117 int extlen; 8118 int toff; 8119 8120 KASSERT(m != NULL); 8121 KASSERT(mhp != NULL); 8122 KASSERT(m->m_len >= sizeof(struct sadb_msg)); 8123 8124 /* initialize */ 8125 memset(mhp, 0, sizeof(*mhp)); 8126 8127 mhp->msg = mtod(m, struct sadb_msg *); 8128 mhp->ext[0] = mhp->msg; /*XXX backward compat */ 8129 8130 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 8131 extlen = end; /*just in case extlen is not updated*/ 8132 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 8133 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 8134 if (!n) { 8135 /* m is already freed */ 8136 return ENOBUFS; 8137 } 8138 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 8139 8140 /* set pointer */ 8141 switch (ext->sadb_ext_type) { 8142 case SADB_EXT_SA: 8143 case SADB_EXT_ADDRESS_SRC: 8144 case SADB_EXT_ADDRESS_DST: 8145 case SADB_EXT_ADDRESS_PROXY: 8146 case SADB_EXT_LIFETIME_CURRENT: 8147 case SADB_EXT_LIFETIME_HARD: 8148 case SADB_EXT_LIFETIME_SOFT: 8149 case SADB_EXT_KEY_AUTH: 8150 case SADB_EXT_KEY_ENCRYPT: 8151 case SADB_EXT_IDENTITY_SRC: 8152 case SADB_EXT_IDENTITY_DST: 8153 case SADB_EXT_SENSITIVITY: 8154 case SADB_EXT_PROPOSAL: 8155 case SADB_EXT_SUPPORTED_AUTH: 8156 case SADB_EXT_SUPPORTED_ENCRYPT: 8157 case SADB_EXT_SPIRANGE: 8158 case SADB_X_EXT_POLICY: 8159 case SADB_X_EXT_SA2: 8160 case SADB_X_EXT_NAT_T_TYPE: 8161 case SADB_X_EXT_NAT_T_SPORT: 8162 case SADB_X_EXT_NAT_T_DPORT: 8163 case SADB_X_EXT_NAT_T_OAI: 8164 case SADB_X_EXT_NAT_T_OAR: 8165 case SADB_X_EXT_NAT_T_FRAG: 8166 /* duplicate check */ 8167 /* 8168 * XXX Are there duplication payloads of either 8169 * KEY_AUTH or KEY_ENCRYPT ? 8170 */ 8171 if (mhp->ext[ext->sadb_ext_type] != NULL) { 8172 IPSECLOG(LOG_DEBUG, 8173 "duplicate ext_type %u is passed.\n", 8174 ext->sadb_ext_type); 8175 m_freem(m); 8176 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT); 8177 return EINVAL; 8178 } 8179 break; 8180 default: 8181 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n", 8182 ext->sadb_ext_type); 8183 m_freem(m); 8184 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE); 8185 return EINVAL; 8186 } 8187 8188 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 8189 8190 if (key_validate_ext(ext, extlen)) { 8191 m_freem(m); 8192 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 8193 return EINVAL; 8194 } 8195 8196 n = m_pulldown(m, off, extlen, &toff); 8197 if (!n) { 8198 /* m is already freed */ 8199 return ENOBUFS; 8200 } 8201 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 8202 8203 mhp->ext[ext->sadb_ext_type] = ext; 8204 mhp->extoff[ext->sadb_ext_type] = off; 8205 mhp->extlen[ext->sadb_ext_type] = extlen; 8206 } 8207 8208 if (off != end) { 8209 m_freem(m); 8210 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 8211 return EINVAL; 8212 } 8213 8214 return 0; 8215 } 8216 8217 static int 8218 key_validate_ext(const struct sadb_ext *ext, int len) 8219 { 8220 const struct sockaddr *sa; 8221 enum { NONE, ADDR } checktype = NONE; 8222 int baselen = 0; 8223 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 8224 8225 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 8226 return EINVAL; 8227 8228 /* if it does not match minimum/maximum length, bail */ 8229 if (ext->sadb_ext_type >= __arraycount(minsize) || 8230 ext->sadb_ext_type >= __arraycount(maxsize)) 8231 return EINVAL; 8232 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 8233 return EINVAL; 8234 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 8235 return EINVAL; 8236 8237 /* more checks based on sadb_ext_type XXX need more */ 8238 switch (ext->sadb_ext_type) { 8239 case SADB_EXT_ADDRESS_SRC: 8240 case SADB_EXT_ADDRESS_DST: 8241 case SADB_EXT_ADDRESS_PROXY: 8242 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 8243 checktype = ADDR; 8244 break; 8245 case SADB_EXT_IDENTITY_SRC: 8246 case SADB_EXT_IDENTITY_DST: 8247 if (((const struct sadb_ident *)ext)->sadb_ident_type == 8248 SADB_X_IDENTTYPE_ADDR) { 8249 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 8250 checktype = ADDR; 8251 } else 8252 checktype = NONE; 8253 break; 8254 default: 8255 checktype = NONE; 8256 break; 8257 } 8258 8259 switch (checktype) { 8260 case NONE: 8261 break; 8262 case ADDR: 8263 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 8264 if (len < baselen + sal) 8265 return EINVAL; 8266 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 8267 return EINVAL; 8268 break; 8269 } 8270 8271 return 0; 8272 } 8273 8274 static int 8275 key_do_init(void) 8276 { 8277 int i, error; 8278 8279 mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE); 8280 8281 mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE); 8282 cv_init(&key_spd.cv_lc, "key_sp_lc"); 8283 key_spd.psz = pserialize_create(); 8284 cv_init(&key_spd.cv_psz, "key_sp_psz"); 8285 key_spd.psz_performing = false; 8286 8287 mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE); 8288 cv_init(&key_sad.cv_lc, "key_sa_lc"); 8289 key_sad.psz = pserialize_create(); 8290 cv_init(&key_sad.cv_psz, "key_sa_psz"); 8291 key_sad.psz_performing = false; 8292 8293 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS); 8294 8295 callout_init(&key_timehandler_ch, CALLOUT_MPSAFE); 8296 error = workqueue_create(&key_timehandler_wq, "key_timehandler", 8297 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE); 8298 if (error != 0) 8299 panic("%s: workqueue_create failed (%d)\n", __func__, error); 8300 8301 for (i = 0; i < IPSEC_DIR_MAX; i++) { 8302 PSLIST_INIT(&key_spd.splist[i]); 8303 } 8304 8305 PSLIST_INIT(&key_spd.socksplist); 8306 8307 key_sad.sahlists = hashinit(SAHHASH_NHASH, HASH_PSLIST, true, 8308 &key_sad.sahlistmask); 8309 key_sad.savlut = hashinit(SAVLUT_NHASH, HASH_PSLIST, true, 8310 &key_sad.savlutmask); 8311 8312 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 8313 LIST_INIT(&key_misc.reglist[i]); 8314 } 8315 8316 #ifndef IPSEC_NONBLOCK_ACQUIRE 8317 LIST_INIT(&key_misc.acqlist); 8318 #endif 8319 #ifdef notyet 8320 LIST_INIT(&key_misc.spacqlist); 8321 #endif 8322 8323 /* system default */ 8324 ip4_def_policy.policy = IPSEC_POLICY_NONE; 8325 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE; 8326 localcount_init(&ip4_def_policy.localcount); 8327 8328 #ifdef INET6 8329 ip6_def_policy.policy = IPSEC_POLICY_NONE; 8330 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE; 8331 localcount_init(&ip6_def_policy.localcount); 8332 #endif 8333 8334 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 8335 8336 /* initialize key statistics */ 8337 keystat.getspi_count = 1; 8338 8339 aprint_verbose("IPsec: Initialized Security Association Processing.\n"); 8340 8341 return (0); 8342 } 8343 8344 void 8345 key_init(void) 8346 { 8347 static ONCE_DECL(key_init_once); 8348 8349 sysctl_net_keyv2_setup(NULL); 8350 sysctl_net_key_compat_setup(NULL); 8351 8352 RUN_ONCE(&key_init_once, key_do_init); 8353 8354 key_init_so(); 8355 } 8356 8357 /* 8358 * XXX: maybe This function is called after INBOUND IPsec processing. 8359 * 8360 * Special check for tunnel-mode packets. 8361 * We must make some checks for consistency between inner and outer IP header. 8362 * 8363 * xxx more checks to be provided 8364 */ 8365 int 8366 key_checktunnelsanity( 8367 struct secasvar *sav, 8368 u_int family, 8369 void *src, 8370 void *dst 8371 ) 8372 { 8373 8374 /* XXX: check inner IP header */ 8375 8376 return 1; 8377 } 8378 8379 #if 0 8380 #define hostnamelen strlen(hostname) 8381 8382 /* 8383 * Get FQDN for the host. 8384 * If the administrator configured hostname (by hostname(1)) without 8385 * domain name, returns nothing. 8386 */ 8387 static const char * 8388 key_getfqdn(void) 8389 { 8390 int i; 8391 int hasdot; 8392 static char fqdn[MAXHOSTNAMELEN + 1]; 8393 8394 if (!hostnamelen) 8395 return NULL; 8396 8397 /* check if it comes with domain name. */ 8398 hasdot = 0; 8399 for (i = 0; i < hostnamelen; i++) { 8400 if (hostname[i] == '.') 8401 hasdot++; 8402 } 8403 if (!hasdot) 8404 return NULL; 8405 8406 /* NOTE: hostname may not be NUL-terminated. */ 8407 memset(fqdn, 0, sizeof(fqdn)); 8408 memcpy(fqdn, hostname, hostnamelen); 8409 fqdn[hostnamelen] = '\0'; 8410 return fqdn; 8411 } 8412 8413 /* 8414 * get username@FQDN for the host/user. 8415 */ 8416 static const char * 8417 key_getuserfqdn(void) 8418 { 8419 const char *host; 8420 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2]; 8421 struct proc *p = curproc; 8422 char *q; 8423 8424 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session) 8425 return NULL; 8426 if (!(host = key_getfqdn())) 8427 return NULL; 8428 8429 /* NOTE: s_login may not be-NUL terminated. */ 8430 memset(userfqdn, 0, sizeof(userfqdn)); 8431 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME); 8432 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */ 8433 q = userfqdn + strlen(userfqdn); 8434 *q++ = '@'; 8435 memcpy(q, host, strlen(host)); 8436 q += strlen(host); 8437 *q++ = '\0'; 8438 8439 return userfqdn; 8440 } 8441 #endif 8442 8443 /* record data transfer on SA, and update timestamps */ 8444 void 8445 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 8446 { 8447 lifetime_counters_t *counters; 8448 8449 KASSERT(sav != NULL); 8450 KASSERT(sav->lft_c != NULL); 8451 KASSERT(m != NULL); 8452 8453 counters = percpu_getref(sav->lft_c_counters_percpu); 8454 8455 /* 8456 * XXX Currently, there is a difference of bytes size 8457 * between inbound and outbound processing. 8458 */ 8459 (*counters)[LIFETIME_COUNTER_BYTES] += m->m_pkthdr.len; 8460 /* to check bytes lifetime is done in key_timehandler(). */ 8461 8462 /* 8463 * We use the number of packets as the unit of 8464 * sadb_lifetime_allocations. We increment the variable 8465 * whenever {esp,ah}_{in,out}put is called. 8466 */ 8467 (*counters)[LIFETIME_COUNTER_ALLOCATIONS]++; 8468 /* XXX check for expires? */ 8469 8470 percpu_putref(sav->lft_c_counters_percpu); 8471 8472 /* 8473 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock, 8474 * in seconds. HARD and SOFT lifetime are measured by the time 8475 * difference (again in seconds) from sadb_lifetime_usetime. 8476 * 8477 * usetime 8478 * v expire expire 8479 * -----+-----+--------+---> t 8480 * <--------------> HARD 8481 * <-----> SOFT 8482 */ 8483 sav->lft_c->sadb_lifetime_usetime = time_uptime; 8484 /* XXX check for expires? */ 8485 8486 return; 8487 } 8488 8489 /* dumb version */ 8490 void 8491 key_sa_routechange(struct sockaddr *dst) 8492 { 8493 struct secashead *sah; 8494 int s; 8495 8496 s = pserialize_read_enter(); 8497 SAHLIST_READER_FOREACH(sah) { 8498 struct route *ro; 8499 const struct sockaddr *sa; 8500 8501 key_sah_ref(sah); 8502 pserialize_read_exit(s); 8503 8504 ro = &sah->sa_route; 8505 sa = rtcache_getdst(ro); 8506 if (sa != NULL && dst->sa_len == sa->sa_len && 8507 memcmp(dst, sa, dst->sa_len) == 0) 8508 rtcache_free(ro); 8509 8510 s = pserialize_read_enter(); 8511 key_sah_unref(sah); 8512 } 8513 pserialize_read_exit(s); 8514 8515 return; 8516 } 8517 8518 static void 8519 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 8520 { 8521 struct secasvar *_sav; 8522 8523 ASSERT_SLEEPABLE(); 8524 KASSERT(mutex_owned(&key_sad.lock)); 8525 8526 if (sav->state == state) 8527 return; 8528 8529 key_unlink_sav(sav); 8530 localcount_fini(&sav->localcount); 8531 SAVLIST_ENTRY_DESTROY(sav); 8532 key_init_sav(sav); 8533 8534 sav->state = state; 8535 if (!SADB_SASTATE_USABLE_P(sav)) { 8536 /* We don't need to care about the order */ 8537 SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav); 8538 return; 8539 } 8540 /* 8541 * Sort the list by lft_c->sadb_lifetime_addtime 8542 * in ascending order. 8543 */ 8544 SAVLIST_WRITER_FOREACH(_sav, sav->sah, state) { 8545 if (_sav->lft_c->sadb_lifetime_addtime > 8546 sav->lft_c->sadb_lifetime_addtime) { 8547 SAVLIST_WRITER_INSERT_BEFORE(_sav, sav); 8548 break; 8549 } 8550 } 8551 if (_sav == NULL) { 8552 SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav); 8553 } 8554 8555 SAVLUT_WRITER_INSERT_HEAD(sav); 8556 8557 key_validate_savlist(sav->sah, state); 8558 } 8559 8560 /* XXX too much? */ 8561 static struct mbuf * 8562 key_alloc_mbuf(int l, int mflag) 8563 { 8564 struct mbuf *m = NULL, *n; 8565 int len, t; 8566 8567 KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p())); 8568 8569 len = l; 8570 while (len > 0) { 8571 MGET(n, mflag, MT_DATA); 8572 if (n && len > MLEN) { 8573 MCLGET(n, mflag); 8574 if ((n->m_flags & M_EXT) == 0) { 8575 m_freem(n); 8576 n = NULL; 8577 } 8578 } 8579 if (!n) { 8580 m_freem(m); 8581 return NULL; 8582 } 8583 8584 n->m_next = NULL; 8585 n->m_len = 0; 8586 n->m_len = M_TRAILINGSPACE(n); 8587 /* use the bottom of mbuf, hoping we can prepend afterwards */ 8588 if (n->m_len > len) { 8589 t = (n->m_len - len) & ~(sizeof(long) - 1); 8590 n->m_data += t; 8591 n->m_len = len; 8592 } 8593 8594 len -= n->m_len; 8595 8596 if (m) 8597 m_cat(m, n); 8598 else 8599 m = n; 8600 } 8601 8602 return m; 8603 } 8604 8605 static struct mbuf * 8606 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid) 8607 { 8608 struct secashead *sah; 8609 struct secasvar *sav; 8610 u_int16_t proto; 8611 u_int8_t satype; 8612 u_int8_t state; 8613 int cnt; 8614 struct mbuf *m, *n; 8615 8616 KASSERT(mutex_owned(&key_sad.lock)); 8617 8618 /* map satype to proto */ 8619 proto = key_satype2proto(req_satype); 8620 if (proto == 0) { 8621 *errorp = EINVAL; 8622 return (NULL); 8623 } 8624 8625 /* count sav entries to be sent to the userland. */ 8626 cnt = 0; 8627 SAHLIST_WRITER_FOREACH(sah) { 8628 if (req_satype != SADB_SATYPE_UNSPEC && 8629 proto != sah->saidx.proto) 8630 continue; 8631 8632 SASTATE_ANY_FOREACH(state) { 8633 SAVLIST_WRITER_FOREACH(sav, sah, state) { 8634 cnt++; 8635 } 8636 } 8637 } 8638 8639 if (cnt == 0) { 8640 *errorp = ENOENT; 8641 return (NULL); 8642 } 8643 8644 /* send this to the userland, one at a time. */ 8645 m = NULL; 8646 SAHLIST_WRITER_FOREACH(sah) { 8647 if (req_satype != SADB_SATYPE_UNSPEC && 8648 proto != sah->saidx.proto) 8649 continue; 8650 8651 /* map proto to satype */ 8652 satype = key_proto2satype(sah->saidx.proto); 8653 if (satype == 0) { 8654 m_freem(m); 8655 *errorp = EINVAL; 8656 return (NULL); 8657 } 8658 8659 SASTATE_ANY_FOREACH(state) { 8660 SAVLIST_WRITER_FOREACH(sav, sah, state) { 8661 n = key_setdumpsa(sav, SADB_DUMP, satype, 8662 --cnt, pid); 8663 if (!m) 8664 m = n; 8665 else 8666 m_cat(m, n); 8667 } 8668 } 8669 } 8670 8671 if (!m) { 8672 *errorp = EINVAL; 8673 return (NULL); 8674 } 8675 8676 if ((m->m_flags & M_PKTHDR) != 0) { 8677 m->m_pkthdr.len = 0; 8678 for (n = m; n; n = n->m_next) 8679 m->m_pkthdr.len += n->m_len; 8680 } 8681 8682 *errorp = 0; 8683 return (m); 8684 } 8685 8686 static struct mbuf * 8687 key_setspddump(int *errorp, pid_t pid) 8688 { 8689 struct secpolicy *sp; 8690 int cnt; 8691 u_int dir; 8692 struct mbuf *m, *n; 8693 8694 KASSERT(mutex_owned(&key_spd.lock)); 8695 8696 /* search SPD entry and get buffer size. */ 8697 cnt = 0; 8698 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8699 SPLIST_WRITER_FOREACH(sp, dir) { 8700 cnt++; 8701 } 8702 } 8703 8704 if (cnt == 0) { 8705 *errorp = ENOENT; 8706 return (NULL); 8707 } 8708 8709 m = NULL; 8710 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8711 SPLIST_WRITER_FOREACH(sp, dir) { 8712 --cnt; 8713 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 8714 8715 if (!m) 8716 m = n; 8717 else { 8718 m->m_pkthdr.len += n->m_pkthdr.len; 8719 m_cat(m, n); 8720 } 8721 } 8722 } 8723 8724 *errorp = 0; 8725 return (m); 8726 } 8727 8728 int 8729 key_get_used(void) { 8730 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) || 8731 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) || 8732 !SOCKSPLIST_READER_EMPTY(); 8733 } 8734 8735 void 8736 key_update_used(void) 8737 { 8738 switch (ipsec_enabled) { 8739 default: 8740 case 0: 8741 #ifdef notyet 8742 /* XXX: racy */ 8743 ipsec_used = 0; 8744 #endif 8745 break; 8746 case 1: 8747 #ifndef notyet 8748 /* XXX: racy */ 8749 if (!ipsec_used) 8750 #endif 8751 ipsec_used = key_get_used(); 8752 break; 8753 case 2: 8754 ipsec_used = 1; 8755 break; 8756 } 8757 } 8758 8759 static inline void 8760 key_savlut_writer_insert_head(struct secasvar *sav) 8761 { 8762 uint32_t hash_key; 8763 uint32_t hash; 8764 8765 KASSERT(mutex_owned(&key_sad.lock)); 8766 KASSERT(!sav->savlut_added); 8767 8768 if (sav->sah->saidx.proto == IPPROTO_IPCOMP) 8769 hash_key = sav->alg_comp; 8770 else 8771 hash_key = sav->spi; 8772 8773 hash = key_savluthash(&sav->sah->saidx.dst.sa, 8774 sav->sah->saidx.proto, hash_key, key_sad.savlutmask); 8775 8776 PSLIST_WRITER_INSERT_HEAD(&key_sad.savlut[hash], sav, 8777 pslist_entry_savlut); 8778 sav->savlut_added = true; 8779 } 8780 8781 /* 8782 * Calculate hash using protocol, source address, 8783 * and destination address included in saidx. 8784 */ 8785 static inline uint32_t 8786 key_saidxhash(const struct secasindex *saidx, u_long mask) 8787 { 8788 uint32_t hash32; 8789 const struct sockaddr_in *sin; 8790 const struct sockaddr_in6 *sin6; 8791 8792 hash32 = saidx->proto; 8793 8794 switch (saidx->src.sa.sa_family) { 8795 case AF_INET: 8796 sin = &saidx->src.sin; 8797 hash32 = hash32_buf(&sin->sin_addr, 8798 sizeof(sin->sin_addr), hash32); 8799 sin = &saidx->dst.sin; 8800 hash32 = hash32_buf(&sin->sin_addr, 8801 sizeof(sin->sin_addr), hash32 << 1); 8802 break; 8803 case AF_INET6: 8804 sin6 = &saidx->src.sin6; 8805 hash32 = hash32_buf(&sin6->sin6_addr, 8806 sizeof(sin6->sin6_addr), hash32); 8807 sin6 = &saidx->dst.sin6; 8808 hash32 = hash32_buf(&sin6->sin6_addr, 8809 sizeof(sin6->sin6_addr), hash32 << 1); 8810 break; 8811 default: 8812 hash32 = 0; 8813 break; 8814 } 8815 8816 return hash32 & mask; 8817 } 8818 8819 /* 8820 * Calculate hash using destination address, protocol, 8821 * and spi. Those parameter depend on the search of 8822 * key_lookup_sa(). 8823 */ 8824 static uint32_t 8825 key_savluthash(const struct sockaddr *dst, uint32_t proto, 8826 uint32_t spi, u_long mask) 8827 { 8828 uint32_t hash32; 8829 const struct sockaddr_in *sin; 8830 const struct sockaddr_in6 *sin6; 8831 8832 hash32 = hash32_buf(&proto, sizeof(proto), spi); 8833 8834 switch(dst->sa_family) { 8835 case AF_INET: 8836 sin = satocsin(dst); 8837 hash32 = hash32_buf(&sin->sin_addr, 8838 sizeof(sin->sin_addr), hash32); 8839 break; 8840 case AF_INET6: 8841 sin6 = satocsin6(dst); 8842 hash32 = hash32_buf(&sin6->sin6_addr, 8843 sizeof(sin6->sin6_addr), hash32); 8844 break; 8845 default: 8846 hash32 = 0; 8847 } 8848 8849 return hash32 & mask; 8850 } 8851 8852 static int 8853 sysctl_net_key_dumpsa(SYSCTLFN_ARGS) 8854 { 8855 struct mbuf *m, *n; 8856 int err2 = 0; 8857 char *p, *ep; 8858 size_t len; 8859 int error; 8860 8861 if (newp) 8862 return (EPERM); 8863 if (namelen != 1) 8864 return (EINVAL); 8865 8866 mutex_enter(&key_sad.lock); 8867 m = key_setdump(name[0], &error, l->l_proc->p_pid); 8868 mutex_exit(&key_sad.lock); 8869 if (!m) 8870 return (error); 8871 if (!oldp) 8872 *oldlenp = m->m_pkthdr.len; 8873 else { 8874 p = oldp; 8875 if (*oldlenp < m->m_pkthdr.len) { 8876 err2 = ENOMEM; 8877 ep = p + *oldlenp; 8878 } else { 8879 *oldlenp = m->m_pkthdr.len; 8880 ep = p + m->m_pkthdr.len; 8881 } 8882 for (n = m; n; n = n->m_next) { 8883 len = (ep - p < n->m_len) ? 8884 ep - p : n->m_len; 8885 error = copyout(mtod(n, const void *), p, len); 8886 p += len; 8887 if (error) 8888 break; 8889 } 8890 if (error == 0) 8891 error = err2; 8892 } 8893 m_freem(m); 8894 8895 return (error); 8896 } 8897 8898 static int 8899 sysctl_net_key_dumpsp(SYSCTLFN_ARGS) 8900 { 8901 struct mbuf *m, *n; 8902 int err2 = 0; 8903 char *p, *ep; 8904 size_t len; 8905 int error; 8906 8907 if (newp) 8908 return (EPERM); 8909 if (namelen != 0) 8910 return (EINVAL); 8911 8912 mutex_enter(&key_spd.lock); 8913 m = key_setspddump(&error, l->l_proc->p_pid); 8914 mutex_exit(&key_spd.lock); 8915 if (!m) 8916 return (error); 8917 if (!oldp) 8918 *oldlenp = m->m_pkthdr.len; 8919 else { 8920 p = oldp; 8921 if (*oldlenp < m->m_pkthdr.len) { 8922 err2 = ENOMEM; 8923 ep = p + *oldlenp; 8924 } else { 8925 *oldlenp = m->m_pkthdr.len; 8926 ep = p + m->m_pkthdr.len; 8927 } 8928 for (n = m; n; n = n->m_next) { 8929 len = (ep - p < n->m_len) ? ep - p : n->m_len; 8930 error = copyout(mtod(n, const void *), p, len); 8931 p += len; 8932 if (error) 8933 break; 8934 } 8935 if (error == 0) 8936 error = err2; 8937 } 8938 m_freem(m); 8939 8940 return (error); 8941 } 8942 8943 /* 8944 * Create sysctl tree for native IPSEC key knobs, originally 8945 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }. 8946 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 }; 8947 * and in any case the part of our sysctl namespace used for dumping the 8948 * SPD and SA database *HAS* to be compatible with the KAME sysctl 8949 * namespace, for API reasons. 8950 * 8951 * Pending a consensus on the right way to fix this, add a level of 8952 * indirection in how we number the `native' IPSEC key nodes; 8953 * and (as requested by Andrew Brown) move registration of the 8954 * KAME-compatible names to a separate function. 8955 */ 8956 #if 0 8957 # define IPSEC_PFKEY PF_KEY_V2 8958 # define IPSEC_PFKEY_NAME "keyv2" 8959 #else 8960 # define IPSEC_PFKEY PF_KEY 8961 # define IPSEC_PFKEY_NAME "key" 8962 #endif 8963 8964 static int 8965 sysctl_net_key_stats(SYSCTLFN_ARGS) 8966 { 8967 8968 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS)); 8969 } 8970 8971 static void 8972 sysctl_net_keyv2_setup(struct sysctllog **clog) 8973 { 8974 8975 sysctl_createv(clog, 0, NULL, NULL, 8976 CTLFLAG_PERMANENT, 8977 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL, 8978 NULL, 0, NULL, 0, 8979 CTL_NET, IPSEC_PFKEY, CTL_EOL); 8980 8981 sysctl_createv(clog, 0, NULL, NULL, 8982 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8983 CTLTYPE_INT, "debug", NULL, 8984 NULL, 0, &key_debug_level, 0, 8985 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL); 8986 sysctl_createv(clog, 0, NULL, NULL, 8987 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8988 CTLTYPE_INT, "spi_try", NULL, 8989 NULL, 0, &key_spi_trycnt, 0, 8990 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL); 8991 sysctl_createv(clog, 0, NULL, NULL, 8992 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8993 CTLTYPE_INT, "spi_min_value", NULL, 8994 NULL, 0, &key_spi_minval, 0, 8995 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL); 8996 sysctl_createv(clog, 0, NULL, NULL, 8997 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8998 CTLTYPE_INT, "spi_max_value", NULL, 8999 NULL, 0, &key_spi_maxval, 0, 9000 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL); 9001 sysctl_createv(clog, 0, NULL, NULL, 9002 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9003 CTLTYPE_INT, "random_int", NULL, 9004 NULL, 0, &key_int_random, 0, 9005 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL); 9006 sysctl_createv(clog, 0, NULL, NULL, 9007 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9008 CTLTYPE_INT, "larval_lifetime", NULL, 9009 NULL, 0, &key_larval_lifetime, 0, 9010 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL); 9011 sysctl_createv(clog, 0, NULL, NULL, 9012 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9013 CTLTYPE_INT, "blockacq_count", NULL, 9014 NULL, 0, &key_blockacq_count, 0, 9015 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL); 9016 sysctl_createv(clog, 0, NULL, NULL, 9017 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9018 CTLTYPE_INT, "blockacq_lifetime", NULL, 9019 NULL, 0, &key_blockacq_lifetime, 0, 9020 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL); 9021 sysctl_createv(clog, 0, NULL, NULL, 9022 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9023 CTLTYPE_INT, "esp_keymin", NULL, 9024 NULL, 0, &ipsec_esp_keymin, 0, 9025 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL); 9026 sysctl_createv(clog, 0, NULL, NULL, 9027 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9028 CTLTYPE_INT, "prefered_oldsa", NULL, 9029 NULL, 0, &key_prefered_oldsa, 0, 9030 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL); 9031 sysctl_createv(clog, 0, NULL, NULL, 9032 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9033 CTLTYPE_INT, "esp_auth", NULL, 9034 NULL, 0, &ipsec_esp_auth, 0, 9035 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL); 9036 sysctl_createv(clog, 0, NULL, NULL, 9037 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9038 CTLTYPE_INT, "ah_keymin", NULL, 9039 NULL, 0, &ipsec_ah_keymin, 0, 9040 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL); 9041 sysctl_createv(clog, 0, NULL, NULL, 9042 CTLFLAG_PERMANENT, 9043 CTLTYPE_STRUCT, "stats", 9044 SYSCTL_DESCR("PF_KEY statistics"), 9045 sysctl_net_key_stats, 0, NULL, 0, 9046 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL); 9047 sysctl_createv(clog, 0, NULL, NULL, 9048 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 9049 CTLTYPE_BOOL, "allow_different_idtype", NULL, 9050 NULL, 0, &ipsec_allow_different_idtype, 0, 9051 CTL_NET, IPSEC_PFKEY, KEYCTL_ALLOW_DIFFERENT_IDTYPE, CTL_EOL); 9052 } 9053 9054 /* 9055 * Register sysctl names used by setkey(8). For historical reasons, 9056 * and to share a single API, these names appear under { CTL_NET, PF_KEY } 9057 * for both IPSEC and KAME IPSEC. 9058 */ 9059 static void 9060 sysctl_net_key_compat_setup(struct sysctllog **clog) 9061 { 9062 9063 sysctl_createv(clog, 0, NULL, NULL, 9064 CTLFLAG_PERMANENT, 9065 CTLTYPE_NODE, "key", NULL, 9066 NULL, 0, NULL, 0, 9067 CTL_NET, PF_KEY, CTL_EOL); 9068 9069 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */ 9070 sysctl_createv(clog, 0, NULL, NULL, 9071 CTLFLAG_PERMANENT, 9072 CTLTYPE_STRUCT, "dumpsa", NULL, 9073 sysctl_net_key_dumpsa, 0, NULL, 0, 9074 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL); 9075 sysctl_createv(clog, 0, NULL, NULL, 9076 CTLFLAG_PERMANENT, 9077 CTLTYPE_STRUCT, "dumpsp", NULL, 9078 sysctl_net_key_dumpsp, 0, NULL, 0, 9079 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL); 9080 } 9081