1 /* $NetBSD: key.c,v 1.243 2017/11/22 05:43:28 ozaki-r Exp $ */ 2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */ 3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 4 5 /* 6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the project nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.243 2017/11/22 05:43:28 ozaki-r Exp $"); 36 37 /* 38 * This code is referred to RFC 2367 39 */ 40 41 #if defined(_KERNEL_OPT) 42 #include "opt_inet.h" 43 #include "opt_ipsec.h" 44 #include "opt_gateway.h" 45 #include "opt_net_mpsafe.h" 46 #endif 47 48 #include <sys/types.h> 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/callout.h> 52 #include <sys/kernel.h> 53 #include <sys/mbuf.h> 54 #include <sys/domain.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/errno.h> 59 #include <sys/proc.h> 60 #include <sys/queue.h> 61 #include <sys/syslog.h> 62 #include <sys/once.h> 63 #include <sys/cprng.h> 64 #include <sys/psref.h> 65 #include <sys/lwp.h> 66 #include <sys/workqueue.h> 67 #include <sys/kmem.h> 68 #include <sys/cpu.h> 69 #include <sys/atomic.h> 70 #include <sys/pslist.h> 71 #include <sys/mutex.h> 72 #include <sys/condvar.h> 73 #include <sys/localcount.h> 74 #include <sys/pserialize.h> 75 76 #include <net/if.h> 77 #include <net/route.h> 78 79 #include <netinet/in.h> 80 #include <netinet/in_systm.h> 81 #include <netinet/ip.h> 82 #include <netinet/in_var.h> 83 #ifdef INET 84 #include <netinet/ip_var.h> 85 #endif 86 87 #ifdef INET6 88 #include <netinet/ip6.h> 89 #include <netinet6/in6_var.h> 90 #include <netinet6/ip6_var.h> 91 #endif /* INET6 */ 92 93 #ifdef INET 94 #include <netinet/in_pcb.h> 95 #endif 96 #ifdef INET6 97 #include <netinet6/in6_pcb.h> 98 #endif /* INET6 */ 99 100 #include <net/pfkeyv2.h> 101 #include <netipsec/keydb.h> 102 #include <netipsec/key.h> 103 #include <netipsec/keysock.h> 104 #include <netipsec/key_debug.h> 105 106 #include <netipsec/ipsec.h> 107 #ifdef INET6 108 #include <netipsec/ipsec6.h> 109 #endif 110 #include <netipsec/ipsec_private.h> 111 112 #include <netipsec/xform.h> 113 #include <netipsec/ipcomp.h> 114 115 116 #include <net/net_osdep.h> 117 118 #define FULLMASK 0xff 119 #define _BITS(bytes) ((bytes) << 3) 120 121 #define PORT_NONE 0 122 #define PORT_LOOSE 1 123 #define PORT_STRICT 2 124 125 percpu_t *pfkeystat_percpu; 126 127 /* 128 * Note on SA reference counting: 129 * - SAs that are not in DEAD state will have (total external reference + 1) 130 * following value in reference count field. they cannot be freed and are 131 * referenced from SA header. 132 * - SAs that are in DEAD state will have (total external reference) 133 * in reference count field. they are ready to be freed. reference from 134 * SA header will be removed in key_delsav(), when the reference count 135 * field hits 0 (= no external reference other than from SA header. 136 */ 137 138 u_int32_t key_debug_level = 0; 139 static u_int key_spi_trycnt = 1000; 140 static u_int32_t key_spi_minval = 0x100; 141 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ 142 static u_int32_t policy_id = 0; 143 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ 144 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 145 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 146 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 147 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/ 148 149 static u_int32_t acq_seq = 0; 150 151 /* 152 * Locking order: there is no order for now; it means that any locks aren't 153 * overlapped. 154 */ 155 /* 156 * Locking notes on SPD: 157 * - Modifications to the key_spd.splist must be done with holding key_spd.lock 158 * which is a adaptive mutex 159 * - Read accesses to the key_spd.splist must be in pserialize(9) read sections 160 * - SP's lifetime is managed by localcount(9) 161 * - An SP that has been inserted to the key_spd.splist is initially referenced 162 * by none, i.e., a reference from the key_spd.splist isn't counted 163 * - When an SP is being destroyed, we change its state as DEAD, wait for 164 * references to the SP to be released, and then deallocate the SP 165 * (see key_unlink_sp) 166 * - Getting an SP 167 * - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx) 168 * - Must iterate the list and increment the reference count of a found SP 169 * (by key_sp_ref) in a pserialize read section 170 * - We can gain another reference from a held SP only if we check its state 171 * and take its reference in a pserialize read section 172 * (see esp_output for example) 173 * - We may get an SP from an SP cache. See below 174 * - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref) 175 * - Updating member variables of an SP 176 * - Most member variables of an SP are immutable 177 * - Only sp->state and sp->lastused can be changed 178 * - sp->state of an SP is updated only when destroying it under key_spd.lock 179 * - SP caches 180 * - SPs can be cached in PCBs 181 * - The lifetime of the caches is controlled by the global generation counter 182 * (ipsec_spdgen) 183 * - The global counter value is stored when an SP is cached 184 * - If the stored value is different from the global counter then the cache 185 * is considered invalidated 186 * - The counter is incremented when an SP is being destroyed 187 * - So checking the generation and taking a reference to an SP should be 188 * in a pserialize read section 189 * - Note that caching doesn't increment the reference counter of an SP 190 * - SPs in sockets 191 * - Userland programs can set a policy to a socket by 192 * setsockopt(IP_IPSEC_POLICY) 193 * - Such policies (SPs) are set to a socket (PCB) and also inserted to 194 * the key_spd.socksplist list (not the key_spd.splist) 195 * - Such a policy is destroyed when a corresponding socket is destroed, 196 * however, a socket can be destroyed in softint so we cannot destroy 197 * it directly instead we just mark it DEAD and delay the destruction 198 * until GC by the timer 199 */ 200 /* 201 * Locking notes on SAD: 202 * - Data structures 203 * - SAs are managed by the list called key_sad.sahlist and sav lists of sah 204 * entries 205 * - An sav is supposed to be an SA from a viewpoint of users 206 * - A sah has sav lists for each SA state 207 * - Multiple sahs with the same saidx can exist 208 * - Only one entry has MATURE state and others should be DEAD 209 * - DEAD entries are just ignored from searching 210 * - Modifications to the key_sad.sahlist and sah.savlist must be done with 211 * holding key_sad.lock which is a adaptive mutex 212 * - Read accesses to the key_sad.sahlist and sah.savlist must be in 213 * pserialize(9) read sections 214 * - sah's lifetime is managed by localcount(9) 215 * - Getting an sah entry 216 * - We get an sah from the key_sad.sahlist 217 * - Must iterate the list and increment the reference count of a found sah 218 * (by key_sah_ref) in a pserialize read section 219 * - A gotten sah must be released after use by key_sah_unref 220 * - An sah is destroyed when its state become DEAD and no sav is 221 * listed to the sah 222 * - The destruction is done only in the timer (see key_timehandler_sad) 223 * - sav's lifetime is managed by localcount(9) 224 * - Getting an sav entry 225 * - First get an sah by saidx and get an sav from either of sah's savlists 226 * - Must iterate the list and increment the reference count of a found sav 227 * (by key_sa_ref) in a pserialize read section 228 * - We can gain another reference from a held SA only if we check its state 229 * and take its reference in a pserialize read section 230 * (see esp_output for example) 231 * - A gotten sav must be released after use by key_sa_unref 232 * - An sav is destroyed when its state become DEAD 233 */ 234 /* 235 * Locking notes on misc data: 236 * - All lists of key_misc are protected by key_misc.lock 237 * - key_misc.lock must be held even for read accesses 238 */ 239 240 /* SPD */ 241 static struct { 242 kmutex_t lock; 243 kcondvar_t cv_lc; 244 struct pslist_head splist[IPSEC_DIR_MAX]; 245 /* 246 * The list has SPs that are set to a socket via 247 * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy. 248 */ 249 struct pslist_head socksplist; 250 251 pserialize_t psz; 252 kcondvar_t cv_psz; 253 bool psz_performing; 254 } key_spd __cacheline_aligned; 255 256 /* SAD */ 257 static struct { 258 kmutex_t lock; 259 kcondvar_t cv_lc; 260 struct pslist_head sahlist; 261 262 pserialize_t psz; 263 kcondvar_t cv_psz; 264 bool psz_performing; 265 } key_sad __cacheline_aligned; 266 267 /* Misc data */ 268 static struct { 269 kmutex_t lock; 270 /* registed list */ 271 LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1]; 272 #ifndef IPSEC_NONBLOCK_ACQUIRE 273 /* acquiring list */ 274 LIST_HEAD(_acqlist, secacq) acqlist; 275 #endif 276 #ifdef notyet 277 /* SP acquiring list */ 278 LIST_HEAD(_spacqlist, secspacq) spacqlist; 279 #endif 280 } key_misc __cacheline_aligned; 281 282 /* Macros for key_spd.splist */ 283 #define SPLIST_ENTRY_INIT(sp) \ 284 PSLIST_ENTRY_INIT((sp), pslist_entry) 285 #define SPLIST_ENTRY_DESTROY(sp) \ 286 PSLIST_ENTRY_DESTROY((sp), pslist_entry) 287 #define SPLIST_WRITER_REMOVE(sp) \ 288 PSLIST_WRITER_REMOVE((sp), pslist_entry) 289 #define SPLIST_READER_EMPTY(dir) \ 290 (PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ 291 pslist_entry) == NULL) 292 #define SPLIST_READER_FOREACH(sp, dir) \ 293 PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)], \ 294 struct secpolicy, pslist_entry) 295 #define SPLIST_WRITER_FOREACH(sp, dir) \ 296 PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)], \ 297 struct secpolicy, pslist_entry) 298 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \ 299 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry) 300 #define SPLIST_WRITER_EMPTY(dir) \ 301 (PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ 302 pslist_entry) == NULL) 303 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \ 304 PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp), \ 305 pslist_entry) 306 #define SPLIST_WRITER_NEXT(sp) \ 307 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry) 308 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \ 309 do { \ 310 if (SPLIST_WRITER_EMPTY((dir))) { \ 311 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \ 312 } else { \ 313 struct secpolicy *__sp; \ 314 SPLIST_WRITER_FOREACH(__sp, (dir)) { \ 315 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \ 316 SPLIST_WRITER_INSERT_AFTER(__sp,\ 317 (new)); \ 318 break; \ 319 } \ 320 } \ 321 } \ 322 } while (0) 323 324 /* Macros for key_spd.socksplist */ 325 #define SOCKSPLIST_WRITER_FOREACH(sp) \ 326 PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist, \ 327 struct secpolicy, pslist_entry) 328 #define SOCKSPLIST_READER_EMPTY() \ 329 (PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy, \ 330 pslist_entry) == NULL) 331 332 /* Macros for key_sad.sahlist */ 333 #define SAHLIST_ENTRY_INIT(sah) \ 334 PSLIST_ENTRY_INIT((sah), pslist_entry) 335 #define SAHLIST_ENTRY_DESTROY(sah) \ 336 PSLIST_ENTRY_DESTROY((sah), pslist_entry) 337 #define SAHLIST_WRITER_REMOVE(sah) \ 338 PSLIST_WRITER_REMOVE((sah), pslist_entry) 339 #define SAHLIST_READER_FOREACH(sah) \ 340 PSLIST_READER_FOREACH((sah), &key_sad.sahlist, struct secashead,\ 341 pslist_entry) 342 #define SAHLIST_WRITER_FOREACH(sah) \ 343 PSLIST_WRITER_FOREACH((sah), &key_sad.sahlist, struct secashead,\ 344 pslist_entry) 345 #define SAHLIST_WRITER_INSERT_HEAD(sah) \ 346 PSLIST_WRITER_INSERT_HEAD(&key_sad.sahlist, (sah), pslist_entry) 347 348 /* Macros for key_sad.sahlist#savlist */ 349 #define SAVLIST_ENTRY_INIT(sav) \ 350 PSLIST_ENTRY_INIT((sav), pslist_entry) 351 #define SAVLIST_ENTRY_DESTROY(sav) \ 352 PSLIST_ENTRY_DESTROY((sav), pslist_entry) 353 #define SAVLIST_READER_FIRST(sah, state) \ 354 PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ 355 pslist_entry) 356 #define SAVLIST_WRITER_REMOVE(sav) \ 357 PSLIST_WRITER_REMOVE((sav), pslist_entry) 358 #define SAVLIST_READER_FOREACH(sav, sah, state) \ 359 PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)], \ 360 struct secasvar, pslist_entry) 361 #define SAVLIST_WRITER_FOREACH(sav, sah, state) \ 362 PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)], \ 363 struct secasvar, pslist_entry) 364 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \ 365 PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry) 366 #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \ 367 PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry) 368 #define SAVLIST_WRITER_EMPTY(sah, state) \ 369 (PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ 370 pslist_entry) == NULL) 371 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \ 372 PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav), \ 373 pslist_entry) 374 #define SAVLIST_WRITER_NEXT(sav) \ 375 PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry) 376 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \ 377 do { \ 378 if (SAVLIST_WRITER_EMPTY((sah), (state))) { \ 379 SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\ 380 } else { \ 381 struct secasvar *__sav; \ 382 SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \ 383 if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\ 384 SAVLIST_WRITER_INSERT_AFTER(__sav,\ 385 (new)); \ 386 break; \ 387 } \ 388 } \ 389 } \ 390 } while (0) 391 #define SAVLIST_READER_NEXT(sav) \ 392 PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry) 393 394 395 /* search order for SAs */ 396 /* 397 * This order is important because we must select the oldest SA 398 * for outbound processing. For inbound, This is not important. 399 */ 400 static const u_int saorder_state_valid_prefer_old[] = { 401 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 402 }; 403 static const u_int saorder_state_valid_prefer_new[] = { 404 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 405 }; 406 407 static const u_int saorder_state_alive[] = { 408 /* except DEAD */ 409 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 410 }; 411 static const u_int saorder_state_any[] = { 412 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 413 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 414 }; 415 416 #define SASTATE_ALIVE_FOREACH(s) \ 417 for (int _i = 0; \ 418 _i < __arraycount(saorder_state_alive) ? \ 419 (s) = saorder_state_alive[_i], true : false; \ 420 _i++) 421 #define SASTATE_ANY_FOREACH(s) \ 422 for (int _i = 0; \ 423 _i < __arraycount(saorder_state_any) ? \ 424 (s) = saorder_state_any[_i], true : false; \ 425 _i++) 426 427 static const int minsize[] = { 428 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 429 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 430 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 431 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 432 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 433 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 434 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 435 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 436 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 437 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 438 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 439 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 440 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 441 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 442 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 443 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 444 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 445 0, /* SADB_X_EXT_KMPRIVATE */ 446 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 447 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 448 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 449 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 450 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 451 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 452 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 453 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 454 }; 455 static const int maxsize[] = { 456 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 457 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 458 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 459 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 460 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 461 0, /* SADB_EXT_ADDRESS_SRC */ 462 0, /* SADB_EXT_ADDRESS_DST */ 463 0, /* SADB_EXT_ADDRESS_PROXY */ 464 0, /* SADB_EXT_KEY_AUTH */ 465 0, /* SADB_EXT_KEY_ENCRYPT */ 466 0, /* SADB_EXT_IDENTITY_SRC */ 467 0, /* SADB_EXT_IDENTITY_DST */ 468 0, /* SADB_EXT_SENSITIVITY */ 469 0, /* SADB_EXT_PROPOSAL */ 470 0, /* SADB_EXT_SUPPORTED_AUTH */ 471 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 472 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 473 0, /* SADB_X_EXT_KMPRIVATE */ 474 0, /* SADB_X_EXT_POLICY */ 475 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 476 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 477 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 478 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 479 0, /* SADB_X_EXT_NAT_T_OAI */ 480 0, /* SADB_X_EXT_NAT_T_OAR */ 481 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 482 }; 483 484 static int ipsec_esp_keymin = 256; 485 static int ipsec_esp_auth = 0; 486 static int ipsec_ah_keymin = 128; 487 488 #ifdef SYSCTL_DECL 489 SYSCTL_DECL(_net_key); 490 #endif 491 492 #ifdef SYSCTL_INT 493 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \ 494 &key_debug_level, 0, ""); 495 496 /* max count of trial for the decision of spi value */ 497 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \ 498 &key_spi_trycnt, 0, ""); 499 500 /* minimum spi value to allocate automatically. */ 501 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \ 502 &key_spi_minval, 0, ""); 503 504 /* maximun spi value to allocate automatically. */ 505 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \ 506 &key_spi_maxval, 0, ""); 507 508 /* interval to initialize randseed */ 509 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \ 510 &key_int_random, 0, ""); 511 512 /* lifetime for larval SA */ 513 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \ 514 &key_larval_lifetime, 0, ""); 515 516 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 517 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \ 518 &key_blockacq_count, 0, ""); 519 520 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 521 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \ 522 &key_blockacq_lifetime, 0, ""); 523 524 /* ESP auth */ 525 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \ 526 &ipsec_esp_auth, 0, ""); 527 528 /* minimum ESP key length */ 529 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \ 530 &ipsec_esp_keymin, 0, ""); 531 532 /* minimum AH key length */ 533 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \ 534 &ipsec_ah_keymin, 0, ""); 535 536 /* perfered old SA rather than new SA */ 537 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\ 538 &key_prefered_oldsa, 0, ""); 539 #endif /* SYSCTL_INT */ 540 541 #define __LIST_CHAINED(elm) \ 542 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 543 #define LIST_INSERT_TAIL(head, elm, type, field) \ 544 do {\ 545 struct type *curelm = LIST_FIRST(head); \ 546 if (curelm == NULL) {\ 547 LIST_INSERT_HEAD(head, elm, field); \ 548 } else { \ 549 while (LIST_NEXT(curelm, field)) \ 550 curelm = LIST_NEXT(curelm, field);\ 551 LIST_INSERT_AFTER(curelm, elm, field);\ 552 }\ 553 } while (0) 554 555 #define KEY_CHKSASTATE(head, sav) \ 556 /* do */ { \ 557 if ((head) != (sav)) { \ 558 IPSECLOG(LOG_DEBUG, \ 559 "state mismatched (TREE=%d SA=%d)\n", \ 560 (head), (sav)); \ 561 continue; \ 562 } \ 563 } /* while (0) */ 564 565 #define KEY_CHKSPDIR(head, sp) \ 566 do { \ 567 if ((head) != (sp)) { \ 568 IPSECLOG(LOG_DEBUG, \ 569 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\ 570 (head), (sp)); \ 571 } \ 572 } while (0) 573 574 /* 575 * set parameters into secasindex buffer. 576 * Must allocate secasindex buffer before calling this function. 577 */ 578 static int 579 key_setsecasidx(int, int, int, const struct sockaddr *, 580 const struct sockaddr *, struct secasindex *); 581 582 /* key statistics */ 583 struct _keystat { 584 u_long getspi_count; /* the avarage of count to try to get new SPI */ 585 } keystat; 586 587 struct sadb_msghdr { 588 struct sadb_msg *msg; 589 void *ext[SADB_EXT_MAX + 1]; 590 int extoff[SADB_EXT_MAX + 1]; 591 int extlen[SADB_EXT_MAX + 1]; 592 }; 593 594 static void 595 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *); 596 597 static const struct sockaddr * 598 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx) 599 { 600 601 return PFKEY_ADDR_SADDR(mhp->ext[idx]); 602 } 603 604 static void 605 key_fill_replymsg(struct mbuf *m, int seq) 606 { 607 struct sadb_msg *msg; 608 609 KASSERT(m->m_len >= sizeof(*msg)); 610 611 msg = mtod(m, struct sadb_msg *); 612 msg->sadb_msg_errno = 0; 613 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 614 if (seq != 0) 615 msg->sadb_msg_seq = seq; 616 } 617 618 #if 0 619 static void key_freeso(struct socket *); 620 static void key_freesp_so(struct secpolicy **); 621 #endif 622 static struct secpolicy *key_getsp (const struct secpolicyindex *); 623 static struct secpolicy *key_getspbyid (u_int32_t); 624 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *); 625 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t); 626 static void key_destroy_sp(struct secpolicy *); 627 static u_int16_t key_newreqid (void); 628 static struct mbuf *key_gather_mbuf (struct mbuf *, 629 const struct sadb_msghdr *, int, int, ...); 630 static int key_api_spdadd(struct socket *, struct mbuf *, 631 const struct sadb_msghdr *); 632 static u_int32_t key_getnewspid (void); 633 static int key_api_spddelete(struct socket *, struct mbuf *, 634 const struct sadb_msghdr *); 635 static int key_api_spddelete2(struct socket *, struct mbuf *, 636 const struct sadb_msghdr *); 637 static int key_api_spdget(struct socket *, struct mbuf *, 638 const struct sadb_msghdr *); 639 static int key_api_spdflush(struct socket *, struct mbuf *, 640 const struct sadb_msghdr *); 641 static int key_api_spddump(struct socket *, struct mbuf *, 642 const struct sadb_msghdr *); 643 static struct mbuf * key_setspddump (int *errorp, pid_t); 644 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid); 645 static int key_api_nat_map(struct socket *, struct mbuf *, 646 const struct sadb_msghdr *); 647 static struct mbuf *key_setdumpsp (struct secpolicy *, 648 u_int8_t, u_int32_t, pid_t); 649 static u_int key_getspreqmsglen (const struct secpolicy *); 650 static int key_spdexpire (struct secpolicy *); 651 static struct secashead *key_newsah (const struct secasindex *); 652 static void key_unlink_sah(struct secashead *); 653 static void key_destroy_sah(struct secashead *); 654 static bool key_sah_has_sav(struct secashead *); 655 static void key_sah_ref(struct secashead *); 656 static void key_sah_unref(struct secashead *); 657 static void key_init_sav(struct secasvar *); 658 static void key_destroy_sav(struct secasvar *); 659 static void key_destroy_sav_with_ref(struct secasvar *); 660 static struct secasvar *key_newsav(struct mbuf *, 661 const struct sadb_msghdr *, int *, const char*, int); 662 #define KEY_NEWSAV(m, sadb, e) \ 663 key_newsav(m, sadb, e, __func__, __LINE__) 664 static void key_delsav (struct secasvar *); 665 static struct secashead *key_getsah(const struct secasindex *, int); 666 static struct secashead *key_getsah_ref(const struct secasindex *, int); 667 static bool key_checkspidup(const struct secasindex *, u_int32_t); 668 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t); 669 static int key_setsaval (struct secasvar *, struct mbuf *, 670 const struct sadb_msghdr *); 671 static void key_freesaval(struct secasvar *); 672 static int key_init_xform(struct secasvar *); 673 static void key_clear_xform(struct secasvar *); 674 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t, 675 u_int8_t, u_int32_t, u_int32_t); 676 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t); 677 static struct mbuf *key_setsadbxtype (u_int16_t); 678 static struct mbuf *key_setsadbxfrag (u_int16_t); 679 static void key_porttosaddr (union sockaddr_union *, u_int16_t); 680 static int key_checksalen (const union sockaddr_union *); 681 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t, 682 u_int32_t, pid_t, u_int16_t, int); 683 static struct mbuf *key_setsadbsa (struct secasvar *); 684 static struct mbuf *key_setsadbaddr(u_int16_t, 685 const struct sockaddr *, u_int8_t, u_int16_t, int); 686 #if 0 687 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *, 688 int, u_int64_t); 689 #endif 690 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t); 691 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t, 692 u_int32_t, int); 693 static void *key_newbuf (const void *, u_int); 694 #ifdef INET6 695 static int key_ismyaddr6 (const struct sockaddr_in6 *); 696 #endif 697 698 static void sysctl_net_keyv2_setup(struct sysctllog **); 699 static void sysctl_net_key_compat_setup(struct sysctllog **); 700 701 /* flags for key_saidx_match() */ 702 #define CMP_HEAD 1 /* protocol, addresses. */ 703 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 704 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 705 #define CMP_EXACTLY 4 /* all elements. */ 706 static int key_saidx_match(const struct secasindex *, 707 const struct secasindex *, int); 708 709 static int key_sockaddr_match(const struct sockaddr *, 710 const struct sockaddr *, int); 711 static int key_bb_match_withmask(const void *, const void *, u_int); 712 static u_int16_t key_satype2proto (u_int8_t); 713 static u_int8_t key_proto2satype (u_int16_t); 714 715 static int key_spidx_match_exactly(const struct secpolicyindex *, 716 const struct secpolicyindex *); 717 static int key_spidx_match_withmask(const struct secpolicyindex *, 718 const struct secpolicyindex *); 719 720 static int key_api_getspi(struct socket *, struct mbuf *, 721 const struct sadb_msghdr *); 722 static u_int32_t key_do_getnewspi (const struct sadb_spirange *, 723 const struct secasindex *); 724 static int key_handle_natt_info (struct secasvar *, 725 const struct sadb_msghdr *); 726 static int key_set_natt_ports (union sockaddr_union *, 727 union sockaddr_union *, 728 const struct sadb_msghdr *); 729 static int key_api_update(struct socket *, struct mbuf *, 730 const struct sadb_msghdr *); 731 #ifdef IPSEC_DOSEQCHECK 732 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t); 733 #endif 734 static int key_api_add(struct socket *, struct mbuf *, 735 const struct sadb_msghdr *); 736 static int key_setident (struct secashead *, struct mbuf *, 737 const struct sadb_msghdr *); 738 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *, 739 const struct sadb_msghdr *); 740 static int key_api_delete(struct socket *, struct mbuf *, 741 const struct sadb_msghdr *); 742 static int key_api_get(struct socket *, struct mbuf *, 743 const struct sadb_msghdr *); 744 745 static void key_getcomb_setlifetime (struct sadb_comb *); 746 static struct mbuf *key_getcomb_esp(int); 747 static struct mbuf *key_getcomb_ah(int); 748 static struct mbuf *key_getcomb_ipcomp(int); 749 static struct mbuf *key_getprop(const struct secasindex *, int); 750 751 static int key_acquire(const struct secasindex *, const struct secpolicy *, 752 int); 753 static int key_acquire_sendup_mbuf_later(struct mbuf *); 754 static void key_acquire_sendup_pending_mbuf(void); 755 #ifndef IPSEC_NONBLOCK_ACQUIRE 756 static struct secacq *key_newacq (const struct secasindex *); 757 static struct secacq *key_getacq (const struct secasindex *); 758 static struct secacq *key_getacqbyseq (u_int32_t); 759 #endif 760 #ifdef notyet 761 static struct secspacq *key_newspacq (const struct secpolicyindex *); 762 static struct secspacq *key_getspacq (const struct secpolicyindex *); 763 #endif 764 static int key_api_acquire(struct socket *, struct mbuf *, 765 const struct sadb_msghdr *); 766 static int key_api_register(struct socket *, struct mbuf *, 767 const struct sadb_msghdr *); 768 static int key_expire (struct secasvar *); 769 static int key_api_flush(struct socket *, struct mbuf *, 770 const struct sadb_msghdr *); 771 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp, 772 int *lenp, pid_t pid); 773 static int key_api_dump(struct socket *, struct mbuf *, 774 const struct sadb_msghdr *); 775 static int key_api_promisc(struct socket *, struct mbuf *, 776 const struct sadb_msghdr *); 777 static int key_senderror (struct socket *, struct mbuf *, int); 778 static int key_validate_ext (const struct sadb_ext *, int); 779 static int key_align (struct mbuf *, struct sadb_msghdr *); 780 #if 0 781 static const char *key_getfqdn (void); 782 static const char *key_getuserfqdn (void); 783 #endif 784 static void key_sa_chgstate (struct secasvar *, u_int8_t); 785 786 static struct mbuf *key_alloc_mbuf(int, int); 787 static struct mbuf *key_alloc_mbuf_simple(int, int); 788 789 static void key_timehandler(void *); 790 static void key_timehandler_work(struct work *, void *); 791 static struct callout key_timehandler_ch; 792 static struct workqueue *key_timehandler_wq; 793 static struct work key_timehandler_wk; 794 795 u_int 796 key_sp_refcnt(const struct secpolicy *sp) 797 { 798 799 /* FIXME */ 800 return 0; 801 } 802 803 #ifdef NET_MPSAFE 804 static void 805 key_spd_pserialize_perform(void) 806 { 807 808 KASSERT(mutex_owned(&key_spd.lock)); 809 810 while (key_spd.psz_performing) 811 cv_wait(&key_spd.cv_psz, &key_spd.lock); 812 key_spd.psz_performing = true; 813 mutex_exit(&key_spd.lock); 814 815 pserialize_perform(key_spd.psz); 816 817 mutex_enter(&key_spd.lock); 818 key_spd.psz_performing = false; 819 cv_broadcast(&key_spd.cv_psz); 820 } 821 #endif 822 823 /* 824 * Remove the sp from the key_spd.splist and wait for references to the sp 825 * to be released. key_spd.lock must be held. 826 */ 827 static void 828 key_unlink_sp(struct secpolicy *sp) 829 { 830 831 KASSERT(mutex_owned(&key_spd.lock)); 832 833 sp->state = IPSEC_SPSTATE_DEAD; 834 SPLIST_WRITER_REMOVE(sp); 835 836 /* Invalidate all cached SPD pointers in the PCBs. */ 837 ipsec_invalpcbcacheall(); 838 839 #ifdef NET_MPSAFE 840 KASSERT(mutex_ownable(softnet_lock)); 841 key_spd_pserialize_perform(); 842 #endif 843 844 localcount_drain(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); 845 } 846 847 /* 848 * Return 0 when there are known to be no SP's for the specified 849 * direction. Otherwise return 1. This is used by IPsec code 850 * to optimize performance. 851 */ 852 int 853 key_havesp(u_int dir) 854 { 855 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 856 !SPLIST_READER_EMPTY(dir) : 1); 857 } 858 859 /* %%% IPsec policy management */ 860 /* 861 * allocating a SP for OUTBOUND or INBOUND packet. 862 * Must call key_freesp() later. 863 * OUT: NULL: not found 864 * others: found and return the pointer. 865 */ 866 struct secpolicy * 867 key_lookup_sp_byspidx(const struct secpolicyindex *spidx, 868 u_int dir, const char* where, int tag) 869 { 870 struct secpolicy *sp; 871 int s; 872 873 KASSERT(spidx != NULL); 874 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir); 875 876 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); 877 878 /* get a SP entry */ 879 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { 880 kdebug_secpolicyindex("objects", spidx); 881 } 882 883 s = pserialize_read_enter(); 884 SPLIST_READER_FOREACH(sp, dir) { 885 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { 886 kdebug_secpolicyindex("in SPD", &sp->spidx); 887 } 888 889 if (sp->state == IPSEC_SPSTATE_DEAD) 890 continue; 891 if (key_spidx_match_withmask(&sp->spidx, spidx)) 892 goto found; 893 } 894 sp = NULL; 895 found: 896 if (sp) { 897 /* sanity check */ 898 KEY_CHKSPDIR(sp->spidx.dir, dir); 899 900 /* found a SPD entry */ 901 sp->lastused = time_uptime; 902 key_sp_ref(sp, where, tag); 903 } 904 pserialize_read_exit(s); 905 906 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 907 "DP return SP:%p (ID=%u) refcnt %u\n", 908 sp, sp ? sp->id : 0, key_sp_refcnt(sp)); 909 return sp; 910 } 911 912 /* 913 * return a policy that matches this particular inbound packet. 914 * XXX slow 915 */ 916 struct secpolicy * 917 key_gettunnel(const struct sockaddr *osrc, 918 const struct sockaddr *odst, 919 const struct sockaddr *isrc, 920 const struct sockaddr *idst, 921 const char* where, int tag) 922 { 923 struct secpolicy *sp; 924 const int dir = IPSEC_DIR_INBOUND; 925 int s; 926 struct ipsecrequest *r1, *r2, *p; 927 struct secpolicyindex spidx; 928 929 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); 930 931 if (isrc->sa_family != idst->sa_family) { 932 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.", 933 isrc->sa_family, idst->sa_family); 934 sp = NULL; 935 goto done; 936 } 937 938 s = pserialize_read_enter(); 939 SPLIST_READER_FOREACH(sp, dir) { 940 if (sp->state == IPSEC_SPSTATE_DEAD) 941 continue; 942 943 r1 = r2 = NULL; 944 for (p = sp->req; p; p = p->next) { 945 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 946 continue; 947 948 r1 = r2; 949 r2 = p; 950 951 if (!r1) { 952 /* here we look at address matches only */ 953 spidx = sp->spidx; 954 if (isrc->sa_len > sizeof(spidx.src) || 955 idst->sa_len > sizeof(spidx.dst)) 956 continue; 957 memcpy(&spidx.src, isrc, isrc->sa_len); 958 memcpy(&spidx.dst, idst, idst->sa_len); 959 if (!key_spidx_match_withmask(&sp->spidx, &spidx)) 960 continue; 961 } else { 962 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) || 963 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE)) 964 continue; 965 } 966 967 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) || 968 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE)) 969 continue; 970 971 goto found; 972 } 973 } 974 sp = NULL; 975 found: 976 if (sp) { 977 sp->lastused = time_uptime; 978 key_sp_ref(sp, where, tag); 979 } 980 pserialize_read_exit(s); 981 done: 982 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 983 "DP return SP:%p (ID=%u) refcnt %u\n", 984 sp, sp ? sp->id : 0, key_sp_refcnt(sp)); 985 return sp; 986 } 987 988 /* 989 * allocating an SA entry for an *OUTBOUND* packet. 990 * checking each request entries in SP, and acquire an SA if need. 991 * OUT: 0: there are valid requests. 992 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 993 */ 994 int 995 key_checkrequest(const struct ipsecrequest *isr, const struct secasindex *saidx, 996 struct secasvar **ret) 997 { 998 u_int level; 999 int error; 1000 struct secasvar *sav; 1001 1002 KASSERT(isr != NULL); 1003 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT || 1004 saidx->mode == IPSEC_MODE_TUNNEL, 1005 "unexpected policy %u", saidx->mode); 1006 1007 /* get current level */ 1008 level = ipsec_get_reqlevel(isr); 1009 1010 /* 1011 * XXX guard against protocol callbacks from the crypto 1012 * thread as they reference ipsecrequest.sav which we 1013 * temporarily null out below. Need to rethink how we 1014 * handle bundled SA's in the callback thread. 1015 */ 1016 IPSEC_SPLASSERT_SOFTNET("key_checkrequest"); 1017 1018 sav = key_lookup_sa_bysaidx(saidx); 1019 if (sav != NULL) { 1020 *ret = sav; 1021 return 0; 1022 } 1023 1024 /* there is no SA */ 1025 error = key_acquire(saidx, isr->sp, M_NOWAIT); 1026 if (error != 0) { 1027 /* XXX What should I do ? */ 1028 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", 1029 error); 1030 return error; 1031 } 1032 1033 if (level != IPSEC_LEVEL_REQUIRE) { 1034 /* XXX sigh, the interface to this routine is botched */ 1035 *ret = NULL; 1036 return 0; 1037 } else { 1038 return ENOENT; 1039 } 1040 } 1041 1042 /* 1043 * looking up a SA for policy entry from SAD. 1044 * NOTE: searching SAD of aliving state. 1045 * OUT: NULL: not found. 1046 * others: found and return the pointer. 1047 */ 1048 struct secasvar * 1049 key_lookup_sa_bysaidx(const struct secasindex *saidx) 1050 { 1051 struct secashead *sah; 1052 struct secasvar *sav = NULL; 1053 u_int stateidx, state; 1054 const u_int *saorder_state_valid; 1055 int arraysize; 1056 int s; 1057 1058 s = pserialize_read_enter(); 1059 sah = key_getsah(saidx, CMP_MODE_REQID); 1060 if (sah == NULL) 1061 goto out; 1062 1063 /* 1064 * search a valid state list for outbound packet. 1065 * This search order is important. 1066 */ 1067 if (key_prefered_oldsa) { 1068 saorder_state_valid = saorder_state_valid_prefer_old; 1069 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1070 } else { 1071 saorder_state_valid = saorder_state_valid_prefer_new; 1072 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1073 } 1074 1075 /* search valid state */ 1076 for (stateidx = 0; 1077 stateidx < arraysize; 1078 stateidx++) { 1079 1080 state = saorder_state_valid[stateidx]; 1081 1082 if (key_prefered_oldsa) 1083 sav = SAVLIST_READER_FIRST(sah, state); 1084 else { 1085 /* XXX need O(1) lookup */ 1086 struct secasvar *last = NULL; 1087 1088 SAVLIST_READER_FOREACH(sav, sah, state) 1089 last = sav; 1090 sav = last; 1091 } 1092 if (sav != NULL) { 1093 KEY_SA_REF(sav); 1094 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1095 "DP cause refcnt++:%d SA:%p\n", 1096 key_sa_refcnt(sav), sav); 1097 break; 1098 } 1099 } 1100 out: 1101 pserialize_read_exit(s); 1102 1103 return sav; 1104 } 1105 1106 #if 0 1107 static void 1108 key_sendup_message_delete(struct secasvar *sav) 1109 { 1110 struct mbuf *m, *result = 0; 1111 uint8_t satype; 1112 1113 satype = key_proto2satype(sav->sah->saidx.proto); 1114 if (satype == 0) 1115 goto msgfail; 1116 1117 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1); 1118 if (m == NULL) 1119 goto msgfail; 1120 result = m; 1121 1122 /* set sadb_address for saidx's. */ 1123 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, 1124 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY); 1125 if (m == NULL) 1126 goto msgfail; 1127 m_cat(result, m); 1128 1129 /* set sadb_address for saidx's. */ 1130 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa, 1131 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY); 1132 if (m == NULL) 1133 goto msgfail; 1134 m_cat(result, m); 1135 1136 /* create SA extension */ 1137 m = key_setsadbsa(sav); 1138 if (m == NULL) 1139 goto msgfail; 1140 m_cat(result, m); 1141 1142 if (result->m_len < sizeof(struct sadb_msg)) { 1143 result = m_pullup(result, sizeof(struct sadb_msg)); 1144 if (result == NULL) 1145 goto msgfail; 1146 } 1147 1148 result->m_pkthdr.len = 0; 1149 for (m = result; m; m = m->m_next) 1150 result->m_pkthdr.len += m->m_len; 1151 mtod(result, struct sadb_msg *)->sadb_msg_len = 1152 PFKEY_UNIT64(result->m_pkthdr.len); 1153 1154 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 1155 result = NULL; 1156 msgfail: 1157 if (result) 1158 m_freem(result); 1159 } 1160 #endif 1161 1162 /* 1163 * allocating a usable SA entry for a *INBOUND* packet. 1164 * Must call key_freesav() later. 1165 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1166 * NULL: not found, or error occurred. 1167 * 1168 * In the comparison, no source address is used--for RFC2401 conformance. 1169 * To quote, from section 4.1: 1170 * A security association is uniquely identified by a triple consisting 1171 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1172 * security protocol (AH or ESP) identifier. 1173 * Note that, however, we do need to keep source address in IPsec SA. 1174 * IKE specification and PF_KEY specification do assume that we 1175 * keep source address in IPsec SA. We see a tricky situation here. 1176 * 1177 * sport and dport are used for NAT-T. network order is always used. 1178 */ 1179 struct secasvar * 1180 key_lookup_sa( 1181 const union sockaddr_union *dst, 1182 u_int proto, 1183 u_int32_t spi, 1184 u_int16_t sport, 1185 u_int16_t dport, 1186 const char* where, int tag) 1187 { 1188 struct secashead *sah; 1189 struct secasvar *sav; 1190 u_int stateidx, state; 1191 const u_int *saorder_state_valid; 1192 int arraysize, chkport; 1193 int s; 1194 1195 int must_check_spi = 1; 1196 int must_check_alg = 0; 1197 u_int16_t cpi = 0; 1198 u_int8_t algo = 0; 1199 1200 if ((sport != 0) && (dport != 0)) 1201 chkport = PORT_STRICT; 1202 else 1203 chkport = PORT_NONE; 1204 1205 KASSERT(dst != NULL); 1206 1207 /* 1208 * XXX IPCOMP case 1209 * We use cpi to define spi here. In the case where cpi <= 1210 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not 1211 * the real spi. In this case, don't check the spi but check the 1212 * algorithm 1213 */ 1214 1215 if (proto == IPPROTO_IPCOMP) { 1216 u_int32_t tmp; 1217 tmp = ntohl(spi); 1218 cpi = (u_int16_t) tmp; 1219 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) { 1220 algo = (u_int8_t) cpi; 1221 must_check_spi = 0; 1222 must_check_alg = 1; 1223 } 1224 } 1225 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1226 "DP from %s:%u check_spi=%d, check_alg=%d\n", 1227 where, tag, must_check_spi, must_check_alg); 1228 1229 1230 /* 1231 * searching SAD. 1232 * XXX: to be checked internal IP header somewhere. Also when 1233 * IPsec tunnel packet is received. But ESP tunnel mode is 1234 * encrypted so we can't check internal IP header. 1235 */ 1236 if (key_prefered_oldsa) { 1237 saorder_state_valid = saorder_state_valid_prefer_old; 1238 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1239 } else { 1240 saorder_state_valid = saorder_state_valid_prefer_new; 1241 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1242 } 1243 s = pserialize_read_enter(); 1244 SAHLIST_READER_FOREACH(sah) { 1245 /* search valid state */ 1246 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1247 state = saorder_state_valid[stateidx]; 1248 SAVLIST_READER_FOREACH(sav, sah, state) { 1249 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1250 "try match spi %#x, %#x\n", 1251 ntohl(spi), ntohl(sav->spi)); 1252 /* sanity check */ 1253 KEY_CHKSASTATE(sav->state, state); 1254 /* do not return entries w/ unusable state */ 1255 if (!SADB_SASTATE_USABLE_P(sav)) { 1256 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1257 "bad state %d\n", sav->state); 1258 continue; 1259 } 1260 if (proto != sav->sah->saidx.proto) { 1261 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1262 "proto fail %d != %d\n", 1263 proto, sav->sah->saidx.proto); 1264 continue; 1265 } 1266 if (must_check_spi && spi != sav->spi) { 1267 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1268 "spi fail %#x != %#x\n", 1269 ntohl(spi), ntohl(sav->spi)); 1270 continue; 1271 } 1272 /* XXX only on the ipcomp case */ 1273 if (must_check_alg && algo != sav->alg_comp) { 1274 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1275 "algo fail %d != %d\n", 1276 algo, sav->alg_comp); 1277 continue; 1278 } 1279 1280 #if 0 /* don't check src */ 1281 /* Fix port in src->sa */ 1282 1283 /* check src address */ 1284 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE)) 1285 continue; 1286 #endif 1287 /* fix port of dst address XXX*/ 1288 key_porttosaddr(__UNCONST(dst), dport); 1289 /* check dst address */ 1290 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport)) 1291 continue; 1292 key_sa_ref(sav, where, tag); 1293 goto done; 1294 } 1295 } 1296 } 1297 sav = NULL; 1298 done: 1299 pserialize_read_exit(s); 1300 1301 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1302 "DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav)); 1303 return sav; 1304 } 1305 1306 static void 1307 key_validate_savlist(const struct secashead *sah, const u_int state) 1308 { 1309 #ifdef DEBUG 1310 struct secasvar *sav, *next; 1311 int s; 1312 1313 /* 1314 * The list should be sorted by lft_c->sadb_lifetime_addtime 1315 * in ascending order. 1316 */ 1317 s = pserialize_read_enter(); 1318 SAVLIST_READER_FOREACH(sav, sah, state) { 1319 next = SAVLIST_READER_NEXT(sav); 1320 if (next != NULL && 1321 sav->lft_c != NULL && next->lft_c != NULL) { 1322 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <= 1323 next->lft_c->sadb_lifetime_addtime, 1324 "savlist is not sorted: sah=%p, state=%d, " 1325 "sav=%" PRIu64 ", next=%" PRIu64, sah, state, 1326 sav->lft_c->sadb_lifetime_addtime, 1327 next->lft_c->sadb_lifetime_addtime); 1328 } 1329 } 1330 pserialize_read_exit(s); 1331 #endif 1332 } 1333 1334 void 1335 key_init_sp(struct secpolicy *sp) 1336 { 1337 1338 ASSERT_SLEEPABLE(); 1339 1340 sp->state = IPSEC_SPSTATE_ALIVE; 1341 if (sp->policy == IPSEC_POLICY_IPSEC) 1342 KASSERT(sp->req != NULL); 1343 localcount_init(&sp->localcount); 1344 SPLIST_ENTRY_INIT(sp); 1345 } 1346 1347 /* 1348 * Must be called in a pserialize read section. A held SP 1349 * must be released by key_sp_unref after use. 1350 */ 1351 void 1352 key_sp_ref(struct secpolicy *sp, const char* where, int tag) 1353 { 1354 1355 localcount_acquire(&sp->localcount); 1356 1357 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1358 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n", 1359 sp, sp->id, where, tag, key_sp_refcnt(sp)); 1360 } 1361 1362 /* 1363 * Must be called without holding key_spd.lock because the lock 1364 * would be held in localcount_release. 1365 */ 1366 void 1367 key_sp_unref(struct secpolicy *sp, const char* where, int tag) 1368 { 1369 1370 KDASSERT(mutex_ownable(&key_spd.lock)); 1371 1372 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1373 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n", 1374 sp, sp->id, where, tag, key_sp_refcnt(sp)); 1375 1376 localcount_release(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); 1377 } 1378 1379 static void 1380 key_init_sav(struct secasvar *sav) 1381 { 1382 1383 ASSERT_SLEEPABLE(); 1384 1385 localcount_init(&sav->localcount); 1386 SAVLIST_ENTRY_INIT(sav); 1387 } 1388 1389 u_int 1390 key_sa_refcnt(const struct secasvar *sav) 1391 { 1392 1393 /* FIXME */ 1394 return 0; 1395 } 1396 1397 void 1398 key_sa_ref(struct secasvar *sav, const char* where, int tag) 1399 { 1400 1401 localcount_acquire(&sav->localcount); 1402 1403 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1404 "DP cause refcnt++: SA:%p from %s:%u\n", 1405 sav, where, tag); 1406 } 1407 1408 void 1409 key_sa_unref(struct secasvar *sav, const char* where, int tag) 1410 { 1411 1412 KDASSERT(mutex_ownable(&key_sad.lock)); 1413 1414 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1415 "DP cause refcnt--: SA:%p from %s:%u\n", 1416 sav, where, tag); 1417 1418 localcount_release(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1419 } 1420 1421 #if 0 1422 /* 1423 * Must be called after calling key_lookup_sp*(). 1424 * For the packet with socket. 1425 */ 1426 static void 1427 key_freeso(struct socket *so) 1428 { 1429 /* sanity check */ 1430 KASSERT(so != NULL); 1431 1432 switch (so->so_proto->pr_domain->dom_family) { 1433 #ifdef INET 1434 case PF_INET: 1435 { 1436 struct inpcb *pcb = sotoinpcb(so); 1437 1438 /* Does it have a PCB ? */ 1439 if (pcb == NULL) 1440 return; 1441 1442 struct inpcbpolicy *sp = pcb->inp_sp; 1443 key_freesp_so(&sp->sp_in); 1444 key_freesp_so(&sp->sp_out); 1445 } 1446 break; 1447 #endif 1448 #ifdef INET6 1449 case PF_INET6: 1450 { 1451 #ifdef HAVE_NRL_INPCB 1452 struct inpcb *pcb = sotoinpcb(so); 1453 struct inpcbpolicy *sp = pcb->inp_sp; 1454 1455 /* Does it have a PCB ? */ 1456 if (pcb == NULL) 1457 return; 1458 key_freesp_so(&sp->sp_in); 1459 key_freesp_so(&sp->sp_out); 1460 #else 1461 struct in6pcb *pcb = sotoin6pcb(so); 1462 1463 /* Does it have a PCB ? */ 1464 if (pcb == NULL) 1465 return; 1466 key_freesp_so(&pcb->in6p_sp->sp_in); 1467 key_freesp_so(&pcb->in6p_sp->sp_out); 1468 #endif 1469 } 1470 break; 1471 #endif /* INET6 */ 1472 default: 1473 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n", 1474 so->so_proto->pr_domain->dom_family); 1475 return; 1476 } 1477 } 1478 1479 static void 1480 key_freesp_so(struct secpolicy **sp) 1481 { 1482 1483 KASSERT(sp != NULL); 1484 KASSERT(*sp != NULL); 1485 1486 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1487 (*sp)->policy == IPSEC_POLICY_BYPASS) 1488 return; 1489 1490 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC, 1491 "invalid policy %u", (*sp)->policy); 1492 KEY_SP_UNREF(&sp); 1493 } 1494 #endif 1495 1496 #ifdef NET_MPSAFE 1497 static void 1498 key_sad_pserialize_perform(void) 1499 { 1500 1501 KASSERT(mutex_owned(&key_sad.lock)); 1502 1503 while (key_sad.psz_performing) 1504 cv_wait(&key_sad.cv_psz, &key_sad.lock); 1505 key_sad.psz_performing = true; 1506 mutex_exit(&key_sad.lock); 1507 1508 pserialize_perform(key_sad.psz); 1509 1510 mutex_enter(&key_sad.lock); 1511 key_sad.psz_performing = false; 1512 cv_broadcast(&key_sad.cv_psz); 1513 } 1514 #endif 1515 1516 /* 1517 * Remove the sav from the savlist of its sah and wait for references to the sav 1518 * to be released. key_sad.lock must be held. 1519 */ 1520 static void 1521 key_unlink_sav(struct secasvar *sav) 1522 { 1523 1524 KASSERT(mutex_owned(&key_sad.lock)); 1525 1526 SAVLIST_WRITER_REMOVE(sav); 1527 1528 #ifdef NET_MPSAFE 1529 KASSERT(mutex_ownable(softnet_lock)); 1530 key_sad_pserialize_perform(); 1531 #endif 1532 1533 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1534 } 1535 1536 /* 1537 * Destroy an sav where the sav must be unlinked from an sah 1538 * by say key_unlink_sav. 1539 */ 1540 static void 1541 key_destroy_sav(struct secasvar *sav) 1542 { 1543 1544 ASSERT_SLEEPABLE(); 1545 1546 localcount_fini(&sav->localcount); 1547 SAVLIST_ENTRY_DESTROY(sav); 1548 1549 key_delsav(sav); 1550 } 1551 1552 /* 1553 * Destroy sav with holding its reference. 1554 */ 1555 static void 1556 key_destroy_sav_with_ref(struct secasvar *sav) 1557 { 1558 1559 ASSERT_SLEEPABLE(); 1560 1561 mutex_enter(&key_sad.lock); 1562 sav->state = SADB_SASTATE_DEAD; 1563 SAVLIST_WRITER_REMOVE(sav); 1564 mutex_exit(&key_sad.lock); 1565 1566 /* We cannot unref with holding key_sad.lock */ 1567 KEY_SA_UNREF(&sav); 1568 1569 mutex_enter(&key_sad.lock); 1570 #ifdef NET_MPSAFE 1571 KASSERT(mutex_ownable(softnet_lock)); 1572 key_sad_pserialize_perform(); 1573 #endif 1574 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1575 mutex_exit(&key_sad.lock); 1576 1577 key_destroy_sav(sav); 1578 } 1579 1580 /* %%% SPD management */ 1581 /* 1582 * free security policy entry. 1583 */ 1584 static void 1585 key_destroy_sp(struct secpolicy *sp) 1586 { 1587 1588 SPLIST_ENTRY_DESTROY(sp); 1589 localcount_fini(&sp->localcount); 1590 1591 key_free_sp(sp); 1592 1593 key_update_used(); 1594 } 1595 1596 void 1597 key_free_sp(struct secpolicy *sp) 1598 { 1599 struct ipsecrequest *isr = sp->req, *nextisr; 1600 1601 while (isr != NULL) { 1602 nextisr = isr->next; 1603 kmem_free(isr, sizeof(*isr)); 1604 isr = nextisr; 1605 } 1606 1607 kmem_free(sp, sizeof(*sp)); 1608 } 1609 1610 void 1611 key_socksplist_add(struct secpolicy *sp) 1612 { 1613 1614 mutex_enter(&key_spd.lock); 1615 PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry); 1616 mutex_exit(&key_spd.lock); 1617 1618 key_update_used(); 1619 } 1620 1621 /* 1622 * search SPD 1623 * OUT: NULL : not found 1624 * others : found, pointer to a SP. 1625 */ 1626 static struct secpolicy * 1627 key_getsp(const struct secpolicyindex *spidx) 1628 { 1629 struct secpolicy *sp; 1630 int s; 1631 1632 KASSERT(spidx != NULL); 1633 1634 s = pserialize_read_enter(); 1635 SPLIST_READER_FOREACH(sp, spidx->dir) { 1636 if (sp->state == IPSEC_SPSTATE_DEAD) 1637 continue; 1638 if (key_spidx_match_exactly(spidx, &sp->spidx)) { 1639 KEY_SP_REF(sp); 1640 pserialize_read_exit(s); 1641 return sp; 1642 } 1643 } 1644 pserialize_read_exit(s); 1645 1646 return NULL; 1647 } 1648 1649 /* 1650 * search SPD and remove found SP 1651 * OUT: NULL : not found 1652 * others : found, pointer to a SP. 1653 */ 1654 static struct secpolicy * 1655 key_lookup_and_remove_sp(const struct secpolicyindex *spidx) 1656 { 1657 struct secpolicy *sp = NULL; 1658 1659 mutex_enter(&key_spd.lock); 1660 SPLIST_WRITER_FOREACH(sp, spidx->dir) { 1661 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 1662 1663 if (key_spidx_match_exactly(spidx, &sp->spidx)) { 1664 key_unlink_sp(sp); 1665 goto out; 1666 } 1667 } 1668 sp = NULL; 1669 out: 1670 mutex_exit(&key_spd.lock); 1671 1672 return sp; 1673 } 1674 1675 /* 1676 * get SP by index. 1677 * OUT: NULL : not found 1678 * others : found, pointer to a SP. 1679 */ 1680 static struct secpolicy * 1681 key_getspbyid(u_int32_t id) 1682 { 1683 struct secpolicy *sp; 1684 int s; 1685 1686 s = pserialize_read_enter(); 1687 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { 1688 if (sp->state == IPSEC_SPSTATE_DEAD) 1689 continue; 1690 if (sp->id == id) { 1691 KEY_SP_REF(sp); 1692 goto out; 1693 } 1694 } 1695 1696 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { 1697 if (sp->state == IPSEC_SPSTATE_DEAD) 1698 continue; 1699 if (sp->id == id) { 1700 KEY_SP_REF(sp); 1701 goto out; 1702 } 1703 } 1704 out: 1705 pserialize_read_exit(s); 1706 return sp; 1707 } 1708 1709 /* 1710 * get SP by index, remove and return it. 1711 * OUT: NULL : not found 1712 * others : found, pointer to a SP. 1713 */ 1714 static struct secpolicy * 1715 key_lookupbyid_and_remove_sp(u_int32_t id) 1716 { 1717 struct secpolicy *sp; 1718 1719 mutex_enter(&key_spd.lock); 1720 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { 1721 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 1722 if (sp->id == id) 1723 goto out; 1724 } 1725 1726 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { 1727 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 1728 if (sp->id == id) 1729 goto out; 1730 } 1731 out: 1732 if (sp != NULL) 1733 key_unlink_sp(sp); 1734 mutex_exit(&key_spd.lock); 1735 return sp; 1736 } 1737 1738 struct secpolicy * 1739 key_newsp(const char* where, int tag) 1740 { 1741 struct secpolicy *newsp = NULL; 1742 1743 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP); 1744 1745 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1746 "DP from %s:%u return SP:%p\n", where, tag, newsp); 1747 return newsp; 1748 } 1749 1750 /* 1751 * create secpolicy structure from sadb_x_policy structure. 1752 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1753 * so must be set properly later. 1754 */ 1755 struct secpolicy * 1756 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error) 1757 { 1758 struct secpolicy *newsp; 1759 1760 KASSERT(!cpu_softintr_p()); 1761 KASSERT(xpl0 != NULL); 1762 KASSERT(len >= sizeof(*xpl0)); 1763 1764 if (len != PFKEY_EXTLEN(xpl0)) { 1765 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); 1766 *error = EINVAL; 1767 return NULL; 1768 } 1769 1770 newsp = KEY_NEWSP(); 1771 if (newsp == NULL) { 1772 *error = ENOBUFS; 1773 return NULL; 1774 } 1775 1776 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1777 newsp->policy = xpl0->sadb_x_policy_type; 1778 1779 /* check policy */ 1780 switch (xpl0->sadb_x_policy_type) { 1781 case IPSEC_POLICY_DISCARD: 1782 case IPSEC_POLICY_NONE: 1783 case IPSEC_POLICY_ENTRUST: 1784 case IPSEC_POLICY_BYPASS: 1785 newsp->req = NULL; 1786 *error = 0; 1787 return newsp; 1788 1789 case IPSEC_POLICY_IPSEC: 1790 /* Continued */ 1791 break; 1792 default: 1793 IPSECLOG(LOG_DEBUG, "invalid policy type.\n"); 1794 key_free_sp(newsp); 1795 *error = EINVAL; 1796 return NULL; 1797 } 1798 1799 /* IPSEC_POLICY_IPSEC */ 1800 { 1801 int tlen; 1802 const struct sadb_x_ipsecrequest *xisr; 1803 uint16_t xisr_reqid; 1804 struct ipsecrequest **p_isr = &newsp->req; 1805 1806 /* validity check */ 1807 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1808 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); 1809 *error = EINVAL; 1810 goto free_exit; 1811 } 1812 1813 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1814 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1); 1815 1816 while (tlen > 0) { 1817 /* length check */ 1818 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1819 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n"); 1820 *error = EINVAL; 1821 goto free_exit; 1822 } 1823 1824 /* allocate request buffer */ 1825 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP); 1826 1827 /* set values */ 1828 (*p_isr)->next = NULL; 1829 1830 switch (xisr->sadb_x_ipsecrequest_proto) { 1831 case IPPROTO_ESP: 1832 case IPPROTO_AH: 1833 case IPPROTO_IPCOMP: 1834 break; 1835 default: 1836 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n", 1837 xisr->sadb_x_ipsecrequest_proto); 1838 *error = EPROTONOSUPPORT; 1839 goto free_exit; 1840 } 1841 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1842 1843 switch (xisr->sadb_x_ipsecrequest_mode) { 1844 case IPSEC_MODE_TRANSPORT: 1845 case IPSEC_MODE_TUNNEL: 1846 break; 1847 case IPSEC_MODE_ANY: 1848 default: 1849 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n", 1850 xisr->sadb_x_ipsecrequest_mode); 1851 *error = EINVAL; 1852 goto free_exit; 1853 } 1854 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1855 1856 switch (xisr->sadb_x_ipsecrequest_level) { 1857 case IPSEC_LEVEL_DEFAULT: 1858 case IPSEC_LEVEL_USE: 1859 case IPSEC_LEVEL_REQUIRE: 1860 break; 1861 case IPSEC_LEVEL_UNIQUE: 1862 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid; 1863 /* validity check */ 1864 /* 1865 * If range violation of reqid, kernel will 1866 * update it, don't refuse it. 1867 */ 1868 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) { 1869 IPSECLOG(LOG_DEBUG, 1870 "reqid=%d range " 1871 "violation, updated by kernel.\n", 1872 xisr_reqid); 1873 xisr_reqid = 0; 1874 } 1875 1876 /* allocate new reqid id if reqid is zero. */ 1877 if (xisr_reqid == 0) { 1878 u_int16_t reqid = key_newreqid(); 1879 if (reqid == 0) { 1880 *error = ENOBUFS; 1881 goto free_exit; 1882 } 1883 (*p_isr)->saidx.reqid = reqid; 1884 } else { 1885 /* set it for manual keying. */ 1886 (*p_isr)->saidx.reqid = xisr_reqid; 1887 } 1888 break; 1889 1890 default: 1891 IPSECLOG(LOG_DEBUG, "invalid level=%u\n", 1892 xisr->sadb_x_ipsecrequest_level); 1893 *error = EINVAL; 1894 goto free_exit; 1895 } 1896 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1897 1898 /* set IP addresses if there */ 1899 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1900 const struct sockaddr *paddr; 1901 1902 paddr = (const struct sockaddr *)(xisr + 1); 1903 1904 /* validity check */ 1905 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) { 1906 IPSECLOG(LOG_DEBUG, "invalid request " 1907 "address length.\n"); 1908 *error = EINVAL; 1909 goto free_exit; 1910 } 1911 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len); 1912 1913 paddr = (const struct sockaddr *)((const char *)paddr 1914 + paddr->sa_len); 1915 1916 /* validity check */ 1917 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) { 1918 IPSECLOG(LOG_DEBUG, "invalid request " 1919 "address length.\n"); 1920 *error = EINVAL; 1921 goto free_exit; 1922 } 1923 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len); 1924 } 1925 1926 (*p_isr)->sp = newsp; 1927 1928 /* initialization for the next. */ 1929 p_isr = &(*p_isr)->next; 1930 tlen -= xisr->sadb_x_ipsecrequest_len; 1931 1932 /* validity check */ 1933 if (tlen < 0) { 1934 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n"); 1935 *error = EINVAL; 1936 goto free_exit; 1937 } 1938 1939 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr + 1940 xisr->sadb_x_ipsecrequest_len); 1941 } 1942 } 1943 1944 *error = 0; 1945 return newsp; 1946 1947 free_exit: 1948 key_free_sp(newsp); 1949 return NULL; 1950 } 1951 1952 static u_int16_t 1953 key_newreqid(void) 1954 { 1955 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1956 1957 auto_reqid = (auto_reqid == 0xffff ? 1958 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1959 1960 /* XXX should be unique check */ 1961 1962 return auto_reqid; 1963 } 1964 1965 /* 1966 * copy secpolicy struct to sadb_x_policy structure indicated. 1967 */ 1968 struct mbuf * 1969 key_sp2msg(const struct secpolicy *sp, int mflag) 1970 { 1971 struct sadb_x_policy *xpl; 1972 int tlen; 1973 char *p; 1974 struct mbuf *m; 1975 1976 KASSERT(sp != NULL); 1977 1978 tlen = key_getspreqmsglen(sp); 1979 1980 m = key_alloc_mbuf(tlen, mflag); 1981 if (!m || m->m_next) { /*XXX*/ 1982 if (m) 1983 m_freem(m); 1984 return NULL; 1985 } 1986 1987 m->m_len = tlen; 1988 m->m_next = NULL; 1989 xpl = mtod(m, struct sadb_x_policy *); 1990 memset(xpl, 0, tlen); 1991 1992 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1993 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1994 xpl->sadb_x_policy_type = sp->policy; 1995 xpl->sadb_x_policy_dir = sp->spidx.dir; 1996 xpl->sadb_x_policy_id = sp->id; 1997 p = (char *)xpl + sizeof(*xpl); 1998 1999 /* if is the policy for ipsec ? */ 2000 if (sp->policy == IPSEC_POLICY_IPSEC) { 2001 struct sadb_x_ipsecrequest *xisr; 2002 struct ipsecrequest *isr; 2003 2004 for (isr = sp->req; isr != NULL; isr = isr->next) { 2005 2006 xisr = (struct sadb_x_ipsecrequest *)p; 2007 2008 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 2009 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 2010 xisr->sadb_x_ipsecrequest_level = isr->level; 2011 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 2012 2013 p += sizeof(*xisr); 2014 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len); 2015 p += isr->saidx.src.sa.sa_len; 2016 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len); 2017 p += isr->saidx.src.sa.sa_len; 2018 2019 xisr->sadb_x_ipsecrequest_len = 2020 PFKEY_ALIGN8(sizeof(*xisr) 2021 + isr->saidx.src.sa.sa_len 2022 + isr->saidx.dst.sa.sa_len); 2023 } 2024 } 2025 2026 return m; 2027 } 2028 2029 /* 2030 * m will not be freed nor modified. It never return NULL. 2031 * If it returns a mbuf of M_PKTHDR, the mbuf ensures to have 2032 * contiguous length at least sizeof(struct sadb_msg). 2033 */ 2034 static struct mbuf * 2035 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 2036 int ndeep, int nitem, ...) 2037 { 2038 va_list ap; 2039 int idx; 2040 int i; 2041 struct mbuf *result = NULL, *n; 2042 int len; 2043 2044 KASSERT(m != NULL); 2045 KASSERT(mhp != NULL); 2046 KASSERT(!cpu_softintr_p()); 2047 2048 va_start(ap, nitem); 2049 for (i = 0; i < nitem; i++) { 2050 idx = va_arg(ap, int); 2051 KASSERT(idx >= 0); 2052 KASSERT(idx <= SADB_EXT_MAX); 2053 /* don't attempt to pull empty extension */ 2054 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 2055 continue; 2056 if (idx != SADB_EXT_RESERVED && 2057 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 2058 continue; 2059 2060 if (idx == SADB_EXT_RESERVED) { 2061 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN); 2062 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2063 MGETHDR(n, M_WAITOK, MT_DATA); 2064 n->m_len = len; 2065 n->m_next = NULL; 2066 m_copydata(m, 0, sizeof(struct sadb_msg), 2067 mtod(n, void *)); 2068 } else if (i < ndeep) { 2069 len = mhp->extlen[idx]; 2070 n = key_alloc_mbuf(len, M_WAITOK); 2071 KASSERT(n->m_next == NULL); 2072 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 2073 mtod(n, void *)); 2074 } else { 2075 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 2076 M_WAITOK); 2077 } 2078 KASSERT(n != NULL); 2079 2080 if (result) 2081 m_cat(result, n); 2082 else 2083 result = n; 2084 } 2085 va_end(ap); 2086 2087 KASSERT(result != NULL); 2088 if ((result->m_flags & M_PKTHDR) != 0) { 2089 result->m_pkthdr.len = 0; 2090 for (n = result; n; n = n->m_next) 2091 result->m_pkthdr.len += n->m_len; 2092 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 2093 } 2094 2095 return result; 2096 } 2097 2098 /* 2099 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 2100 * add an entry to SP database, when received 2101 * <base, address(SD), (lifetime(H),) policy> 2102 * from the user(?). 2103 * Adding to SP database, 2104 * and send 2105 * <base, address(SD), (lifetime(H),) policy> 2106 * to the socket which was send. 2107 * 2108 * SPDADD set a unique policy entry. 2109 * SPDSETIDX like SPDADD without a part of policy requests. 2110 * SPDUPDATE replace a unique policy entry. 2111 * 2112 * m will always be freed. 2113 */ 2114 static int 2115 key_api_spdadd(struct socket *so, struct mbuf *m, 2116 const struct sadb_msghdr *mhp) 2117 { 2118 const struct sockaddr *src, *dst; 2119 const struct sadb_x_policy *xpl0; 2120 struct sadb_x_policy *xpl; 2121 const struct sadb_lifetime *lft = NULL; 2122 struct secpolicyindex spidx; 2123 struct secpolicy *newsp; 2124 int error; 2125 2126 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2127 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2128 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2129 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2130 return key_senderror(so, m, EINVAL); 2131 } 2132 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2133 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2134 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2135 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2136 return key_senderror(so, m, EINVAL); 2137 } 2138 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 2139 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < 2140 sizeof(struct sadb_lifetime)) { 2141 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2142 return key_senderror(so, m, EINVAL); 2143 } 2144 lft = mhp->ext[SADB_EXT_LIFETIME_HARD]; 2145 } 2146 2147 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 2148 2149 /* checking the direciton. */ 2150 switch (xpl0->sadb_x_policy_dir) { 2151 case IPSEC_DIR_INBOUND: 2152 case IPSEC_DIR_OUTBOUND: 2153 break; 2154 default: 2155 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); 2156 return key_senderror(so, m, EINVAL); 2157 } 2158 2159 /* check policy */ 2160 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */ 2161 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST || 2162 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 2163 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n"); 2164 return key_senderror(so, m, EINVAL); 2165 } 2166 2167 /* policy requests are mandatory when action is ipsec. */ 2168 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX && 2169 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 2170 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 2171 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n"); 2172 return key_senderror(so, m, EINVAL); 2173 } 2174 2175 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 2176 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 2177 2178 /* sanity check on addr pair */ 2179 if (src->sa_family != dst->sa_family) 2180 return key_senderror(so, m, EINVAL); 2181 if (src->sa_len != dst->sa_len) 2182 return key_senderror(so, m, EINVAL); 2183 2184 key_init_spidx_bymsghdr(&spidx, mhp); 2185 2186 /* 2187 * checking there is SP already or not. 2188 * SPDUPDATE doesn't depend on whether there is a SP or not. 2189 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 2190 * then error. 2191 */ 2192 { 2193 struct secpolicy *sp; 2194 2195 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2196 sp = key_lookup_and_remove_sp(&spidx); 2197 if (sp != NULL) 2198 key_destroy_sp(sp); 2199 } else { 2200 sp = key_getsp(&spidx); 2201 if (sp != NULL) { 2202 KEY_SP_UNREF(&sp); 2203 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n"); 2204 return key_senderror(so, m, EEXIST); 2205 } 2206 } 2207 } 2208 2209 /* allocation new SP entry */ 2210 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error); 2211 if (newsp == NULL) { 2212 return key_senderror(so, m, error); 2213 } 2214 2215 newsp->id = key_getnewspid(); 2216 if (newsp->id == 0) { 2217 kmem_free(newsp, sizeof(*newsp)); 2218 return key_senderror(so, m, ENOBUFS); 2219 } 2220 2221 newsp->spidx = spidx; 2222 newsp->created = time_uptime; 2223 newsp->lastused = newsp->created; 2224 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 2225 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 2226 2227 key_init_sp(newsp); 2228 2229 mutex_enter(&key_spd.lock); 2230 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp); 2231 mutex_exit(&key_spd.lock); 2232 2233 #ifdef notyet 2234 /* delete the entry in key_misc.spacqlist */ 2235 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2236 struct secspacq *spacq = key_getspacq(&spidx); 2237 if (spacq != NULL) { 2238 /* reset counter in order to deletion by timehandler. */ 2239 spacq->created = time_uptime; 2240 spacq->count = 0; 2241 } 2242 } 2243 #endif 2244 2245 /* Invalidate all cached SPD pointers in the PCBs. */ 2246 ipsec_invalpcbcacheall(); 2247 2248 #if defined(GATEWAY) 2249 /* Invalidate the ipflow cache, as well. */ 2250 ipflow_invalidate_all(0); 2251 #ifdef INET6 2252 if (in6_present) 2253 ip6flow_invalidate_all(0); 2254 #endif /* INET6 */ 2255 #endif /* GATEWAY */ 2256 2257 key_update_used(); 2258 2259 { 2260 struct mbuf *n, *mpolicy; 2261 int off; 2262 2263 /* create new sadb_msg to reply. */ 2264 if (lft) { 2265 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 2266 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 2267 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2268 } else { 2269 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 2270 SADB_X_EXT_POLICY, 2271 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2272 } 2273 2274 key_fill_replymsg(n, 0); 2275 off = 0; 2276 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 2277 sizeof(*xpl), &off); 2278 if (mpolicy == NULL) { 2279 /* n is already freed */ 2280 return key_senderror(so, m, ENOBUFS); 2281 } 2282 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off); 2283 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 2284 m_freem(n); 2285 return key_senderror(so, m, EINVAL); 2286 } 2287 xpl->sadb_x_policy_id = newsp->id; 2288 2289 m_freem(m); 2290 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2291 } 2292 } 2293 2294 /* 2295 * get new policy id. 2296 * OUT: 2297 * 0: failure. 2298 * others: success. 2299 */ 2300 static u_int32_t 2301 key_getnewspid(void) 2302 { 2303 u_int32_t newid = 0; 2304 int count = key_spi_trycnt; /* XXX */ 2305 struct secpolicy *sp; 2306 2307 /* when requesting to allocate spi ranged */ 2308 while (count--) { 2309 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); 2310 2311 sp = key_getspbyid(newid); 2312 if (sp == NULL) 2313 break; 2314 2315 KEY_SP_UNREF(&sp); 2316 } 2317 2318 if (count == 0 || newid == 0) { 2319 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n"); 2320 return 0; 2321 } 2322 2323 return newid; 2324 } 2325 2326 /* 2327 * SADB_SPDDELETE processing 2328 * receive 2329 * <base, address(SD), policy(*)> 2330 * from the user(?), and set SADB_SASTATE_DEAD, 2331 * and send, 2332 * <base, address(SD), policy(*)> 2333 * to the ikmpd. 2334 * policy(*) including direction of policy. 2335 * 2336 * m will always be freed. 2337 */ 2338 static int 2339 key_api_spddelete(struct socket *so, struct mbuf *m, 2340 const struct sadb_msghdr *mhp) 2341 { 2342 struct sadb_x_policy *xpl0; 2343 struct secpolicyindex spidx; 2344 struct secpolicy *sp; 2345 2346 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2347 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2348 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2349 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2350 return key_senderror(so, m, EINVAL); 2351 } 2352 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2353 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2354 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2355 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2356 return key_senderror(so, m, EINVAL); 2357 } 2358 2359 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 2360 2361 /* checking the directon. */ 2362 switch (xpl0->sadb_x_policy_dir) { 2363 case IPSEC_DIR_INBOUND: 2364 case IPSEC_DIR_OUTBOUND: 2365 break; 2366 default: 2367 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); 2368 return key_senderror(so, m, EINVAL); 2369 } 2370 2371 /* make secindex */ 2372 key_init_spidx_bymsghdr(&spidx, mhp); 2373 2374 /* Is there SP in SPD ? */ 2375 sp = key_lookup_and_remove_sp(&spidx); 2376 if (sp == NULL) { 2377 IPSECLOG(LOG_DEBUG, "no SP found.\n"); 2378 return key_senderror(so, m, EINVAL); 2379 } 2380 2381 /* save policy id to buffer to be returned. */ 2382 xpl0->sadb_x_policy_id = sp->id; 2383 2384 key_destroy_sp(sp); 2385 2386 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2387 2388 { 2389 struct mbuf *n; 2390 2391 /* create new sadb_msg to reply. */ 2392 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2393 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2394 key_fill_replymsg(n, 0); 2395 m_freem(m); 2396 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2397 } 2398 } 2399 2400 static struct mbuf * 2401 key_alloc_mbuf_simple(int len, int mflag) 2402 { 2403 struct mbuf *n; 2404 2405 KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p())); 2406 2407 MGETHDR(n, mflag, MT_DATA); 2408 if (n && len > MHLEN) { 2409 MCLGET(n, mflag); 2410 if ((n->m_flags & M_EXT) == 0) { 2411 m_freem(n); 2412 n = NULL; 2413 } 2414 } 2415 return n; 2416 } 2417 2418 /* 2419 * SADB_SPDDELETE2 processing 2420 * receive 2421 * <base, policy(*)> 2422 * from the user(?), and set SADB_SASTATE_DEAD, 2423 * and send, 2424 * <base, policy(*)> 2425 * to the ikmpd. 2426 * policy(*) including direction of policy. 2427 * 2428 * m will always be freed. 2429 */ 2430 static int 2431 key_api_spddelete2(struct socket *so, struct mbuf *m, 2432 const struct sadb_msghdr *mhp) 2433 { 2434 u_int32_t id; 2435 struct secpolicy *sp; 2436 const struct sadb_x_policy *xpl; 2437 2438 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2439 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2440 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2441 return key_senderror(so, m, EINVAL); 2442 } 2443 2444 xpl = mhp->ext[SADB_X_EXT_POLICY]; 2445 id = xpl->sadb_x_policy_id; 2446 2447 /* Is there SP in SPD ? */ 2448 sp = key_lookupbyid_and_remove_sp(id); 2449 if (sp == NULL) { 2450 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); 2451 return key_senderror(so, m, EINVAL); 2452 } 2453 2454 key_destroy_sp(sp); 2455 2456 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2457 2458 { 2459 struct mbuf *n, *nn; 2460 int off, len; 2461 2462 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); 2463 2464 /* create new sadb_msg to reply. */ 2465 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2466 2467 n = key_alloc_mbuf_simple(len, M_WAITOK); 2468 n->m_len = len; 2469 n->m_next = NULL; 2470 off = 0; 2471 2472 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 2473 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2474 2475 KASSERTMSG(off == len, "length inconsistency"); 2476 2477 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2478 mhp->extlen[SADB_X_EXT_POLICY], M_WAITOK); 2479 2480 n->m_pkthdr.len = 0; 2481 for (nn = n; nn; nn = nn->m_next) 2482 n->m_pkthdr.len += nn->m_len; 2483 2484 key_fill_replymsg(n, 0); 2485 m_freem(m); 2486 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2487 } 2488 } 2489 2490 /* 2491 * SADB_X_GET processing 2492 * receive 2493 * <base, policy(*)> 2494 * from the user(?), 2495 * and send, 2496 * <base, address(SD), policy> 2497 * to the ikmpd. 2498 * policy(*) including direction of policy. 2499 * 2500 * m will always be freed. 2501 */ 2502 static int 2503 key_api_spdget(struct socket *so, struct mbuf *m, 2504 const struct sadb_msghdr *mhp) 2505 { 2506 u_int32_t id; 2507 struct secpolicy *sp; 2508 struct mbuf *n; 2509 const struct sadb_x_policy *xpl; 2510 2511 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2512 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2513 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2514 return key_senderror(so, m, EINVAL); 2515 } 2516 2517 xpl = mhp->ext[SADB_X_EXT_POLICY]; 2518 id = xpl->sadb_x_policy_id; 2519 2520 /* Is there SP in SPD ? */ 2521 sp = key_getspbyid(id); 2522 if (sp == NULL) { 2523 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); 2524 return key_senderror(so, m, ENOENT); 2525 } 2526 2527 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, 2528 mhp->msg->sadb_msg_pid); 2529 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */ 2530 m_freem(m); 2531 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2532 } 2533 2534 #ifdef notyet 2535 /* 2536 * SADB_X_SPDACQUIRE processing. 2537 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2538 * send 2539 * <base, policy(*)> 2540 * to KMD, and expect to receive 2541 * <base> with SADB_X_SPDACQUIRE if error occurred, 2542 * or 2543 * <base, policy> 2544 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2545 * policy(*) is without policy requests. 2546 * 2547 * 0 : succeed 2548 * others: error number 2549 */ 2550 int 2551 key_spdacquire(const struct secpolicy *sp) 2552 { 2553 struct mbuf *result = NULL, *m; 2554 struct secspacq *newspacq; 2555 int error; 2556 2557 KASSERT(sp != NULL); 2558 KASSERTMSG(sp->req == NULL, "called but there is request"); 2559 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC, 2560 "policy mismathed. IPsec is expected"); 2561 2562 /* Get an entry to check whether sent message or not. */ 2563 newspacq = key_getspacq(&sp->spidx); 2564 if (newspacq != NULL) { 2565 if (key_blockacq_count < newspacq->count) { 2566 /* reset counter and do send message. */ 2567 newspacq->count = 0; 2568 } else { 2569 /* increment counter and do nothing. */ 2570 newspacq->count++; 2571 return 0; 2572 } 2573 } else { 2574 /* make new entry for blocking to send SADB_ACQUIRE. */ 2575 newspacq = key_newspacq(&sp->spidx); 2576 if (newspacq == NULL) 2577 return ENOBUFS; 2578 2579 /* add to key_misc.acqlist */ 2580 LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain); 2581 } 2582 2583 /* create new sadb_msg to reply. */ 2584 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2585 if (!m) { 2586 error = ENOBUFS; 2587 goto fail; 2588 } 2589 result = m; 2590 2591 result->m_pkthdr.len = 0; 2592 for (m = result; m; m = m->m_next) 2593 result->m_pkthdr.len += m->m_len; 2594 2595 mtod(result, struct sadb_msg *)->sadb_msg_len = 2596 PFKEY_UNIT64(result->m_pkthdr.len); 2597 2598 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2599 2600 fail: 2601 if (result) 2602 m_freem(result); 2603 return error; 2604 } 2605 #endif /* notyet */ 2606 2607 /* 2608 * SADB_SPDFLUSH processing 2609 * receive 2610 * <base> 2611 * from the user, and free all entries in secpctree. 2612 * and send, 2613 * <base> 2614 * to the user. 2615 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2616 * 2617 * m will always be freed. 2618 */ 2619 static int 2620 key_api_spdflush(struct socket *so, struct mbuf *m, 2621 const struct sadb_msghdr *mhp) 2622 { 2623 struct sadb_msg *newmsg; 2624 struct secpolicy *sp; 2625 u_int dir; 2626 2627 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2628 return key_senderror(so, m, EINVAL); 2629 2630 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2631 retry: 2632 mutex_enter(&key_spd.lock); 2633 SPLIST_WRITER_FOREACH(sp, dir) { 2634 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 2635 key_unlink_sp(sp); 2636 mutex_exit(&key_spd.lock); 2637 key_destroy_sp(sp); 2638 goto retry; 2639 } 2640 mutex_exit(&key_spd.lock); 2641 } 2642 2643 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2644 2645 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2646 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 2647 return key_senderror(so, m, ENOBUFS); 2648 } 2649 2650 if (m->m_next) 2651 m_freem(m->m_next); 2652 m->m_next = NULL; 2653 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2654 newmsg = mtod(m, struct sadb_msg *); 2655 newmsg->sadb_msg_errno = 0; 2656 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2657 2658 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2659 } 2660 2661 static struct sockaddr key_src = { 2662 .sa_len = 2, 2663 .sa_family = PF_KEY, 2664 }; 2665 2666 static struct mbuf * 2667 key_setspddump_chain(int *errorp, int *lenp, pid_t pid) 2668 { 2669 struct secpolicy *sp; 2670 int cnt; 2671 u_int dir; 2672 struct mbuf *m, *n, *prev; 2673 int totlen; 2674 2675 KASSERT(mutex_owned(&key_spd.lock)); 2676 2677 *lenp = 0; 2678 2679 /* search SPD entry and get buffer size. */ 2680 cnt = 0; 2681 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2682 SPLIST_WRITER_FOREACH(sp, dir) { 2683 cnt++; 2684 } 2685 } 2686 2687 if (cnt == 0) { 2688 *errorp = ENOENT; 2689 return (NULL); 2690 } 2691 2692 m = NULL; 2693 prev = m; 2694 totlen = 0; 2695 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2696 SPLIST_WRITER_FOREACH(sp, dir) { 2697 --cnt; 2698 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 2699 2700 totlen += n->m_pkthdr.len; 2701 if (!m) { 2702 m = n; 2703 } else { 2704 prev->m_nextpkt = n; 2705 } 2706 prev = n; 2707 } 2708 } 2709 2710 *lenp = totlen; 2711 *errorp = 0; 2712 return (m); 2713 } 2714 2715 /* 2716 * SADB_SPDDUMP processing 2717 * receive 2718 * <base> 2719 * from the user, and dump all SP leaves 2720 * and send, 2721 * <base> ..... 2722 * to the ikmpd. 2723 * 2724 * m will always be freed. 2725 */ 2726 static int 2727 key_api_spddump(struct socket *so, struct mbuf *m0, 2728 const struct sadb_msghdr *mhp) 2729 { 2730 struct mbuf *n; 2731 int error, len; 2732 int ok; 2733 pid_t pid; 2734 2735 pid = mhp->msg->sadb_msg_pid; 2736 /* 2737 * If the requestor has insufficient socket-buffer space 2738 * for the entire chain, nobody gets any response to the DUMP. 2739 * XXX For now, only the requestor ever gets anything. 2740 * Moreover, if the requestor has any space at all, they receive 2741 * the entire chain, otherwise the request is refused with ENOBUFS. 2742 */ 2743 if (sbspace(&so->so_rcv) <= 0) { 2744 return key_senderror(so, m0, ENOBUFS); 2745 } 2746 2747 mutex_enter(&key_spd.lock); 2748 n = key_setspddump_chain(&error, &len, pid); 2749 mutex_exit(&key_spd.lock); 2750 2751 if (n == NULL) { 2752 return key_senderror(so, m0, ENOENT); 2753 } 2754 { 2755 uint64_t *ps = PFKEY_STAT_GETREF(); 2756 ps[PFKEY_STAT_IN_TOTAL]++; 2757 ps[PFKEY_STAT_IN_BYTES] += len; 2758 PFKEY_STAT_PUTREF(); 2759 } 2760 2761 /* 2762 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 2763 * The requestor receives either the entire chain, or an 2764 * error message with ENOBUFS. 2765 */ 2766 2767 /* 2768 * sbappendchainwith record takes the chain of entries, one 2769 * packet-record per SPD entry, prepends the key_src sockaddr 2770 * to each packet-record, links the sockaddr mbufs into a new 2771 * list of records, then appends the entire resulting 2772 * list to the requesting socket. 2773 */ 2774 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, 2775 SB_PRIO_ONESHOT_OVERFLOW); 2776 2777 if (!ok) { 2778 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 2779 m_freem(n); 2780 return key_senderror(so, m0, ENOBUFS); 2781 } 2782 2783 m_freem(m0); 2784 return error; 2785 } 2786 2787 /* 2788 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23 2789 */ 2790 static int 2791 key_api_nat_map(struct socket *so, struct mbuf *m, 2792 const struct sadb_msghdr *mhp) 2793 { 2794 struct sadb_x_nat_t_type *type; 2795 struct sadb_x_nat_t_port *sport; 2796 struct sadb_x_nat_t_port *dport; 2797 struct sadb_address *iaddr, *raddr; 2798 struct sadb_x_nat_t_frag *frag; 2799 2800 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 2801 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 2802 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) { 2803 IPSECLOG(LOG_DEBUG, "invalid message.\n"); 2804 return key_senderror(so, m, EINVAL); 2805 } 2806 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 2807 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 2808 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 2809 IPSECLOG(LOG_DEBUG, "invalid message.\n"); 2810 return key_senderror(so, m, EINVAL); 2811 } 2812 2813 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) && 2814 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) { 2815 IPSECLOG(LOG_DEBUG, "invalid message\n"); 2816 return key_senderror(so, m, EINVAL); 2817 } 2818 2819 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) && 2820 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) { 2821 IPSECLOG(LOG_DEBUG, "invalid message\n"); 2822 return key_senderror(so, m, EINVAL); 2823 } 2824 2825 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) && 2826 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) { 2827 IPSECLOG(LOG_DEBUG, "invalid message\n"); 2828 return key_senderror(so, m, EINVAL); 2829 } 2830 2831 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 2832 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 2833 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 2834 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; 2835 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; 2836 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 2837 2838 /* 2839 * XXX handle that, it should also contain a SA, or anything 2840 * that enable to update the SA information. 2841 */ 2842 2843 return 0; 2844 } 2845 2846 /* 2847 * Never return NULL. 2848 */ 2849 static struct mbuf * 2850 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid) 2851 { 2852 struct mbuf *result = NULL, *m; 2853 2854 KASSERT(!cpu_softintr_p()); 2855 2856 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, 2857 key_sp_refcnt(sp), M_WAITOK); 2858 result = m; 2859 2860 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2861 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK); 2862 m_cat(result, m); 2863 2864 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2865 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK); 2866 m_cat(result, m); 2867 2868 m = key_sp2msg(sp, M_WAITOK); 2869 m_cat(result, m); 2870 2871 KASSERT(result->m_flags & M_PKTHDR); 2872 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 2873 2874 result->m_pkthdr.len = 0; 2875 for (m = result; m; m = m->m_next) 2876 result->m_pkthdr.len += m->m_len; 2877 2878 mtod(result, struct sadb_msg *)->sadb_msg_len = 2879 PFKEY_UNIT64(result->m_pkthdr.len); 2880 2881 return result; 2882 } 2883 2884 /* 2885 * get PFKEY message length for security policy and request. 2886 */ 2887 static u_int 2888 key_getspreqmsglen(const struct secpolicy *sp) 2889 { 2890 u_int tlen; 2891 2892 tlen = sizeof(struct sadb_x_policy); 2893 2894 /* if is the policy for ipsec ? */ 2895 if (sp->policy != IPSEC_POLICY_IPSEC) 2896 return tlen; 2897 2898 /* get length of ipsec requests */ 2899 { 2900 const struct ipsecrequest *isr; 2901 int len; 2902 2903 for (isr = sp->req; isr != NULL; isr = isr->next) { 2904 len = sizeof(struct sadb_x_ipsecrequest) 2905 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len; 2906 2907 tlen += PFKEY_ALIGN8(len); 2908 } 2909 } 2910 2911 return tlen; 2912 } 2913 2914 /* 2915 * SADB_SPDEXPIRE processing 2916 * send 2917 * <base, address(SD), lifetime(CH), policy> 2918 * to KMD by PF_KEY. 2919 * 2920 * OUT: 0 : succeed 2921 * others : error number 2922 */ 2923 static int 2924 key_spdexpire(struct secpolicy *sp) 2925 { 2926 int s; 2927 struct mbuf *result = NULL, *m; 2928 int len; 2929 int error = -1; 2930 struct sadb_lifetime *lt; 2931 2932 /* XXX: Why do we lock ? */ 2933 s = splsoftnet(); /*called from softclock()*/ 2934 2935 KASSERT(sp != NULL); 2936 2937 /* set msg header */ 2938 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0, M_WAITOK); 2939 result = m; 2940 2941 /* create lifetime extension (current and hard) */ 2942 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2943 m = key_alloc_mbuf(len, M_WAITOK); 2944 KASSERT(m->m_next == NULL); 2945 2946 memset(mtod(m, void *), 0, len); 2947 lt = mtod(m, struct sadb_lifetime *); 2948 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2949 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2950 lt->sadb_lifetime_allocations = 0; 2951 lt->sadb_lifetime_bytes = 0; 2952 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created); 2953 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused); 2954 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 2955 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2956 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2957 lt->sadb_lifetime_allocations = 0; 2958 lt->sadb_lifetime_bytes = 0; 2959 lt->sadb_lifetime_addtime = sp->lifetime; 2960 lt->sadb_lifetime_usetime = sp->validtime; 2961 m_cat(result, m); 2962 2963 /* set sadb_address for source */ 2964 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa, 2965 sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK); 2966 m_cat(result, m); 2967 2968 /* set sadb_address for destination */ 2969 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa, 2970 sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK); 2971 m_cat(result, m); 2972 2973 /* set secpolicy */ 2974 m = key_sp2msg(sp, M_WAITOK); 2975 m_cat(result, m); 2976 2977 KASSERT(result->m_flags & M_PKTHDR); 2978 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 2979 2980 result->m_pkthdr.len = 0; 2981 for (m = result; m; m = m->m_next) 2982 result->m_pkthdr.len += m->m_len; 2983 2984 mtod(result, struct sadb_msg *)->sadb_msg_len = 2985 PFKEY_UNIT64(result->m_pkthdr.len); 2986 2987 error = key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2988 splx(s); 2989 return error; 2990 } 2991 2992 /* %%% SAD management */ 2993 /* 2994 * allocating a memory for new SA head, and copy from the values of mhp. 2995 * OUT: NULL : failure due to the lack of memory. 2996 * others : pointer to new SA head. 2997 */ 2998 static struct secashead * 2999 key_newsah(const struct secasindex *saidx) 3000 { 3001 struct secashead *newsah; 3002 int i; 3003 3004 KASSERT(saidx != NULL); 3005 3006 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP); 3007 for (i = 0; i < __arraycount(newsah->savlist); i++) 3008 PSLIST_INIT(&newsah->savlist[i]); 3009 newsah->saidx = *saidx; 3010 3011 localcount_init(&newsah->localcount); 3012 /* Take a reference for the caller */ 3013 localcount_acquire(&newsah->localcount); 3014 3015 /* Add to the sah list */ 3016 SAHLIST_ENTRY_INIT(newsah); 3017 newsah->state = SADB_SASTATE_MATURE; 3018 mutex_enter(&key_sad.lock); 3019 SAHLIST_WRITER_INSERT_HEAD(newsah); 3020 mutex_exit(&key_sad.lock); 3021 3022 return newsah; 3023 } 3024 3025 static bool 3026 key_sah_has_sav(struct secashead *sah) 3027 { 3028 u_int state; 3029 3030 KASSERT(mutex_owned(&key_sad.lock)); 3031 3032 SASTATE_ANY_FOREACH(state) { 3033 if (!SAVLIST_WRITER_EMPTY(sah, state)) 3034 return true; 3035 } 3036 3037 return false; 3038 } 3039 3040 static void 3041 key_unlink_sah(struct secashead *sah) 3042 { 3043 3044 KASSERT(!cpu_softintr_p()); 3045 KASSERT(mutex_owned(&key_sad.lock)); 3046 KASSERT(sah->state == SADB_SASTATE_DEAD); 3047 3048 /* Remove from the sah list */ 3049 SAHLIST_WRITER_REMOVE(sah); 3050 3051 #ifdef NET_MPSAFE 3052 KASSERT(mutex_ownable(softnet_lock)); 3053 key_sad_pserialize_perform(); 3054 #endif 3055 3056 localcount_drain(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); 3057 } 3058 3059 static void 3060 key_destroy_sah(struct secashead *sah) 3061 { 3062 3063 rtcache_free(&sah->sa_route); 3064 3065 SAHLIST_ENTRY_DESTROY(sah); 3066 localcount_fini(&sah->localcount); 3067 3068 if (sah->idents != NULL) 3069 kmem_free(sah->idents, sah->idents_len); 3070 if (sah->identd != NULL) 3071 kmem_free(sah->identd, sah->identd_len); 3072 3073 kmem_free(sah, sizeof(*sah)); 3074 } 3075 3076 /* 3077 * allocating a new SA with LARVAL state. 3078 * key_api_add() and key_api_getspi() call, 3079 * and copy the values of mhp into new buffer. 3080 * When SAD message type is GETSPI: 3081 * to set sequence number from acq_seq++, 3082 * to set zero to SPI. 3083 * not to call key_setsava(). 3084 * OUT: NULL : fail 3085 * others : pointer to new secasvar. 3086 * 3087 * does not modify mbuf. does not free mbuf on error. 3088 */ 3089 static struct secasvar * 3090 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp, 3091 int *errp, const char* where, int tag) 3092 { 3093 struct secasvar *newsav; 3094 const struct sadb_sa *xsa; 3095 3096 KASSERT(!cpu_softintr_p()); 3097 KASSERT(m != NULL); 3098 KASSERT(mhp != NULL); 3099 KASSERT(mhp->msg != NULL); 3100 3101 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); 3102 3103 switch (mhp->msg->sadb_msg_type) { 3104 case SADB_GETSPI: 3105 newsav->spi = 0; 3106 3107 #ifdef IPSEC_DOSEQCHECK 3108 /* sync sequence number */ 3109 if (mhp->msg->sadb_msg_seq == 0) 3110 newsav->seq = 3111 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 3112 else 3113 #endif 3114 newsav->seq = mhp->msg->sadb_msg_seq; 3115 break; 3116 3117 case SADB_ADD: 3118 /* sanity check */ 3119 if (mhp->ext[SADB_EXT_SA] == NULL) { 3120 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 3121 *errp = EINVAL; 3122 goto error; 3123 } 3124 xsa = mhp->ext[SADB_EXT_SA]; 3125 newsav->spi = xsa->sadb_sa_spi; 3126 newsav->seq = mhp->msg->sadb_msg_seq; 3127 break; 3128 default: 3129 *errp = EINVAL; 3130 goto error; 3131 } 3132 3133 /* copy sav values */ 3134 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 3135 *errp = key_setsaval(newsav, m, mhp); 3136 if (*errp) 3137 goto error; 3138 } else { 3139 /* We don't allow lft_c to be NULL */ 3140 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime), 3141 KM_SLEEP); 3142 } 3143 3144 /* reset created */ 3145 newsav->created = time_uptime; 3146 newsav->pid = mhp->msg->sadb_msg_pid; 3147 3148 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 3149 "DP from %s:%u return SA:%p\n", where, tag, newsav); 3150 return newsav; 3151 3152 error: 3153 KASSERT(*errp != 0); 3154 kmem_free(newsav, sizeof(*newsav)); 3155 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 3156 "DP from %s:%u return SA:NULL\n", where, tag); 3157 return NULL; 3158 } 3159 3160 3161 static void 3162 key_clear_xform(struct secasvar *sav) 3163 { 3164 3165 /* 3166 * Cleanup xform state. Note that zeroize'ing causes the 3167 * keys to be cleared; otherwise we must do it ourself. 3168 */ 3169 if (sav->tdb_xform != NULL) { 3170 sav->tdb_xform->xf_zeroize(sav); 3171 sav->tdb_xform = NULL; 3172 } else { 3173 if (sav->key_auth != NULL) 3174 explicit_memset(_KEYBUF(sav->key_auth), 0, 3175 _KEYLEN(sav->key_auth)); 3176 if (sav->key_enc != NULL) 3177 explicit_memset(_KEYBUF(sav->key_enc), 0, 3178 _KEYLEN(sav->key_enc)); 3179 } 3180 } 3181 3182 /* 3183 * free() SA variable entry. 3184 */ 3185 static void 3186 key_delsav(struct secasvar *sav) 3187 { 3188 3189 key_clear_xform(sav); 3190 key_freesaval(sav); 3191 kmem_free(sav, sizeof(*sav)); 3192 } 3193 3194 /* 3195 * Must be called in a pserialize read section. A held sah 3196 * must be released by key_sah_unref after use. 3197 */ 3198 static void 3199 key_sah_ref(struct secashead *sah) 3200 { 3201 3202 localcount_acquire(&sah->localcount); 3203 } 3204 3205 /* 3206 * Must be called without holding key_sad.lock because the lock 3207 * would be held in localcount_release. 3208 */ 3209 static void 3210 key_sah_unref(struct secashead *sah) 3211 { 3212 3213 KDASSERT(mutex_ownable(&key_sad.lock)); 3214 3215 localcount_release(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); 3216 } 3217 3218 /* 3219 * Search SAD and return sah. Must be called in a pserialize 3220 * read section. 3221 * OUT: 3222 * NULL : not found 3223 * others : found, pointer to a SA. 3224 */ 3225 static struct secashead * 3226 key_getsah(const struct secasindex *saidx, int flag) 3227 { 3228 struct secashead *sah; 3229 3230 SAHLIST_READER_FOREACH(sah) { 3231 if (sah->state == SADB_SASTATE_DEAD) 3232 continue; 3233 if (key_saidx_match(&sah->saidx, saidx, flag)) 3234 return sah; 3235 } 3236 3237 return NULL; 3238 } 3239 3240 /* 3241 * Search SAD and return sah. If sah is returned, the caller must call 3242 * key_sah_unref to releaset a reference. 3243 * OUT: 3244 * NULL : not found 3245 * others : found, pointer to a SA. 3246 */ 3247 static struct secashead * 3248 key_getsah_ref(const struct secasindex *saidx, int flag) 3249 { 3250 struct secashead *sah; 3251 int s; 3252 3253 s = pserialize_read_enter(); 3254 sah = key_getsah(saidx, flag); 3255 if (sah != NULL) 3256 key_sah_ref(sah); 3257 pserialize_read_exit(s); 3258 3259 return sah; 3260 } 3261 3262 /* 3263 * check not to be duplicated SPI. 3264 * NOTE: this function is too slow due to searching all SAD. 3265 * OUT: 3266 * NULL : not found 3267 * others : found, pointer to a SA. 3268 */ 3269 static bool 3270 key_checkspidup(const struct secasindex *saidx, u_int32_t spi) 3271 { 3272 struct secashead *sah; 3273 struct secasvar *sav; 3274 int s; 3275 3276 /* check address family */ 3277 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 3278 IPSECLOG(LOG_DEBUG, "address family mismatched.\n"); 3279 return false; 3280 } 3281 3282 /* check all SAD */ 3283 s = pserialize_read_enter(); 3284 SAHLIST_READER_FOREACH(sah) { 3285 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 3286 continue; 3287 sav = key_getsavbyspi(sah, spi); 3288 if (sav != NULL) { 3289 pserialize_read_exit(s); 3290 KEY_SA_UNREF(&sav); 3291 return true; 3292 } 3293 } 3294 pserialize_read_exit(s); 3295 3296 return false; 3297 } 3298 3299 /* 3300 * search SAD litmited alive SA, protocol, SPI. 3301 * OUT: 3302 * NULL : not found 3303 * others : found, pointer to a SA. 3304 */ 3305 static struct secasvar * 3306 key_getsavbyspi(struct secashead *sah, u_int32_t spi) 3307 { 3308 struct secasvar *sav = NULL; 3309 u_int state; 3310 int s; 3311 3312 /* search all status */ 3313 s = pserialize_read_enter(); 3314 SASTATE_ALIVE_FOREACH(state) { 3315 SAVLIST_READER_FOREACH(sav, sah, state) { 3316 /* sanity check */ 3317 if (sav->state != state) { 3318 IPSECLOG(LOG_DEBUG, 3319 "invalid sav->state (queue: %d SA: %d)\n", 3320 state, sav->state); 3321 continue; 3322 } 3323 3324 if (sav->spi == spi) { 3325 KEY_SA_REF(sav); 3326 goto out; 3327 } 3328 } 3329 } 3330 out: 3331 pserialize_read_exit(s); 3332 3333 return sav; 3334 } 3335 3336 /* 3337 * Free allocated data to member variables of sav: 3338 * sav->replay, sav->key_* and sav->lft_*. 3339 */ 3340 static void 3341 key_freesaval(struct secasvar *sav) 3342 { 3343 3344 KASSERT(key_sa_refcnt(sav) == 0); 3345 3346 if (sav->replay != NULL) 3347 kmem_intr_free(sav->replay, sav->replay_len); 3348 if (sav->key_auth != NULL) 3349 kmem_intr_free(sav->key_auth, sav->key_auth_len); 3350 if (sav->key_enc != NULL) 3351 kmem_intr_free(sav->key_enc, sav->key_enc_len); 3352 if (sav->lft_c != NULL) 3353 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c))); 3354 if (sav->lft_h != NULL) 3355 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h))); 3356 if (sav->lft_s != NULL) 3357 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s))); 3358 } 3359 3360 /* 3361 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3362 * You must update these if need. 3363 * OUT: 0: success. 3364 * !0: failure. 3365 * 3366 * does not modify mbuf. does not free mbuf on error. 3367 */ 3368 static int 3369 key_setsaval(struct secasvar *sav, struct mbuf *m, 3370 const struct sadb_msghdr *mhp) 3371 { 3372 int error = 0; 3373 3374 KASSERT(!cpu_softintr_p()); 3375 KASSERT(m != NULL); 3376 KASSERT(mhp != NULL); 3377 KASSERT(mhp->msg != NULL); 3378 3379 /* We shouldn't initialize sav variables while someone uses it. */ 3380 KASSERT(key_sa_refcnt(sav) == 0); 3381 3382 /* SA */ 3383 if (mhp->ext[SADB_EXT_SA] != NULL) { 3384 const struct sadb_sa *sa0; 3385 3386 sa0 = mhp->ext[SADB_EXT_SA]; 3387 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3388 error = EINVAL; 3389 goto fail; 3390 } 3391 3392 sav->alg_auth = sa0->sadb_sa_auth; 3393 sav->alg_enc = sa0->sadb_sa_encrypt; 3394 sav->flags = sa0->sadb_sa_flags; 3395 3396 /* replay window */ 3397 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3398 size_t len = sizeof(struct secreplay) + 3399 sa0->sadb_sa_replay; 3400 sav->replay = kmem_zalloc(len, KM_SLEEP); 3401 sav->replay_len = len; 3402 if (sa0->sadb_sa_replay != 0) 3403 sav->replay->bitmap = (char*)(sav->replay+1); 3404 sav->replay->wsize = sa0->sadb_sa_replay; 3405 } 3406 } 3407 3408 /* Authentication keys */ 3409 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3410 const struct sadb_key *key0; 3411 int len; 3412 3413 key0 = mhp->ext[SADB_EXT_KEY_AUTH]; 3414 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3415 3416 error = 0; 3417 if (len < sizeof(*key0)) { 3418 error = EINVAL; 3419 goto fail; 3420 } 3421 switch (mhp->msg->sadb_msg_satype) { 3422 case SADB_SATYPE_AH: 3423 case SADB_SATYPE_ESP: 3424 case SADB_X_SATYPE_TCPSIGNATURE: 3425 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3426 sav->alg_auth != SADB_X_AALG_NULL) 3427 error = EINVAL; 3428 break; 3429 case SADB_X_SATYPE_IPCOMP: 3430 default: 3431 error = EINVAL; 3432 break; 3433 } 3434 if (error) { 3435 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n"); 3436 goto fail; 3437 } 3438 3439 sav->key_auth = key_newbuf(key0, len); 3440 sav->key_auth_len = len; 3441 } 3442 3443 /* Encryption key */ 3444 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3445 const struct sadb_key *key0; 3446 int len; 3447 3448 key0 = mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3449 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3450 3451 error = 0; 3452 if (len < sizeof(*key0)) { 3453 error = EINVAL; 3454 goto fail; 3455 } 3456 switch (mhp->msg->sadb_msg_satype) { 3457 case SADB_SATYPE_ESP: 3458 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3459 sav->alg_enc != SADB_EALG_NULL) { 3460 error = EINVAL; 3461 break; 3462 } 3463 sav->key_enc = key_newbuf(key0, len); 3464 sav->key_enc_len = len; 3465 break; 3466 case SADB_X_SATYPE_IPCOMP: 3467 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3468 error = EINVAL; 3469 sav->key_enc = NULL; /*just in case*/ 3470 break; 3471 case SADB_SATYPE_AH: 3472 case SADB_X_SATYPE_TCPSIGNATURE: 3473 default: 3474 error = EINVAL; 3475 break; 3476 } 3477 if (error) { 3478 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n"); 3479 goto fail; 3480 } 3481 } 3482 3483 /* set iv */ 3484 sav->ivlen = 0; 3485 3486 switch (mhp->msg->sadb_msg_satype) { 3487 case SADB_SATYPE_AH: 3488 error = xform_init(sav, XF_AH); 3489 break; 3490 case SADB_SATYPE_ESP: 3491 error = xform_init(sav, XF_ESP); 3492 break; 3493 case SADB_X_SATYPE_IPCOMP: 3494 error = xform_init(sav, XF_IPCOMP); 3495 break; 3496 case SADB_X_SATYPE_TCPSIGNATURE: 3497 error = xform_init(sav, XF_TCPSIGNATURE); 3498 break; 3499 } 3500 if (error) { 3501 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n", 3502 mhp->msg->sadb_msg_satype); 3503 goto fail; 3504 } 3505 3506 /* reset created */ 3507 sav->created = time_uptime; 3508 3509 /* make lifetime for CURRENT */ 3510 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP); 3511 3512 sav->lft_c->sadb_lifetime_len = 3513 PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3514 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3515 sav->lft_c->sadb_lifetime_allocations = 0; 3516 sav->lft_c->sadb_lifetime_bytes = 0; 3517 sav->lft_c->sadb_lifetime_addtime = time_uptime; 3518 sav->lft_c->sadb_lifetime_usetime = 0; 3519 3520 /* lifetimes for HARD and SOFT */ 3521 { 3522 const struct sadb_lifetime *lft0; 3523 3524 lft0 = mhp->ext[SADB_EXT_LIFETIME_HARD]; 3525 if (lft0 != NULL) { 3526 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3527 error = EINVAL; 3528 goto fail; 3529 } 3530 sav->lft_h = key_newbuf(lft0, sizeof(*lft0)); 3531 } 3532 3533 lft0 = mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3534 if (lft0 != NULL) { 3535 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3536 error = EINVAL; 3537 goto fail; 3538 } 3539 sav->lft_s = key_newbuf(lft0, sizeof(*lft0)); 3540 /* to be initialize ? */ 3541 } 3542 } 3543 3544 return 0; 3545 3546 fail: 3547 key_clear_xform(sav); 3548 key_freesaval(sav); 3549 3550 return error; 3551 } 3552 3553 /* 3554 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3555 * OUT: 0: valid 3556 * other: errno 3557 */ 3558 static int 3559 key_init_xform(struct secasvar *sav) 3560 { 3561 int error; 3562 3563 /* We shouldn't initialize sav variables while someone uses it. */ 3564 KASSERT(key_sa_refcnt(sav) == 0); 3565 3566 /* check SPI value */ 3567 switch (sav->sah->saidx.proto) { 3568 case IPPROTO_ESP: 3569 case IPPROTO_AH: 3570 if (ntohl(sav->spi) <= 255) { 3571 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n", 3572 (u_int32_t)ntohl(sav->spi)); 3573 return EINVAL; 3574 } 3575 break; 3576 } 3577 3578 /* check satype */ 3579 switch (sav->sah->saidx.proto) { 3580 case IPPROTO_ESP: 3581 /* check flags */ 3582 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3583 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3584 IPSECLOG(LOG_DEBUG, 3585 "invalid flag (derived) given to old-esp.\n"); 3586 return EINVAL; 3587 } 3588 error = xform_init(sav, XF_ESP); 3589 break; 3590 case IPPROTO_AH: 3591 /* check flags */ 3592 if (sav->flags & SADB_X_EXT_DERIV) { 3593 IPSECLOG(LOG_DEBUG, 3594 "invalid flag (derived) given to AH SA.\n"); 3595 return EINVAL; 3596 } 3597 if (sav->alg_enc != SADB_EALG_NONE) { 3598 IPSECLOG(LOG_DEBUG, 3599 "protocol and algorithm mismated.\n"); 3600 return(EINVAL); 3601 } 3602 error = xform_init(sav, XF_AH); 3603 break; 3604 case IPPROTO_IPCOMP: 3605 if (sav->alg_auth != SADB_AALG_NONE) { 3606 IPSECLOG(LOG_DEBUG, 3607 "protocol and algorithm mismated.\n"); 3608 return(EINVAL); 3609 } 3610 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3611 && ntohl(sav->spi) >= 0x10000) { 3612 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n"); 3613 return(EINVAL); 3614 } 3615 error = xform_init(sav, XF_IPCOMP); 3616 break; 3617 case IPPROTO_TCP: 3618 if (sav->alg_enc != SADB_EALG_NONE) { 3619 IPSECLOG(LOG_DEBUG, 3620 "protocol and algorithm mismated.\n"); 3621 return(EINVAL); 3622 } 3623 error = xform_init(sav, XF_TCPSIGNATURE); 3624 break; 3625 default: 3626 IPSECLOG(LOG_DEBUG, "Invalid satype.\n"); 3627 error = EPROTONOSUPPORT; 3628 break; 3629 } 3630 3631 return error; 3632 } 3633 3634 /* 3635 * subroutine for SADB_GET and SADB_DUMP. It never return NULL. 3636 */ 3637 static struct mbuf * 3638 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3639 u_int32_t seq, u_int32_t pid) 3640 { 3641 struct mbuf *result = NULL, *tres = NULL, *m; 3642 int l = 0; 3643 int i; 3644 void *p; 3645 struct sadb_lifetime lt; 3646 int dumporder[] = { 3647 SADB_EXT_SA, SADB_X_EXT_SA2, 3648 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3649 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3650 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3651 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3652 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3653 SADB_X_EXT_NAT_T_TYPE, 3654 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3655 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3656 SADB_X_EXT_NAT_T_FRAG, 3657 3658 }; 3659 3660 m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav), M_WAITOK); 3661 result = m; 3662 3663 for (i = __arraycount(dumporder) - 1; i >= 0; i--) { 3664 m = NULL; 3665 p = NULL; 3666 switch (dumporder[i]) { 3667 case SADB_EXT_SA: 3668 m = key_setsadbsa(sav); 3669 break; 3670 3671 case SADB_X_EXT_SA2: 3672 m = key_setsadbxsa2(sav->sah->saidx.mode, 3673 sav->replay ? sav->replay->count : 0, 3674 sav->sah->saidx.reqid); 3675 break; 3676 3677 case SADB_EXT_ADDRESS_SRC: 3678 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3679 &sav->sah->saidx.src.sa, 3680 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 3681 break; 3682 3683 case SADB_EXT_ADDRESS_DST: 3684 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3685 &sav->sah->saidx.dst.sa, 3686 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 3687 break; 3688 3689 case SADB_EXT_KEY_AUTH: 3690 if (!sav->key_auth) 3691 continue; 3692 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len); 3693 p = sav->key_auth; 3694 break; 3695 3696 case SADB_EXT_KEY_ENCRYPT: 3697 if (!sav->key_enc) 3698 continue; 3699 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len); 3700 p = sav->key_enc; 3701 break; 3702 3703 case SADB_EXT_LIFETIME_CURRENT: 3704 KASSERT(sav->lft_c != NULL); 3705 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len); 3706 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime)); 3707 lt.sadb_lifetime_addtime = 3708 time_mono_to_wall(lt.sadb_lifetime_addtime); 3709 lt.sadb_lifetime_usetime = 3710 time_mono_to_wall(lt.sadb_lifetime_usetime); 3711 p = < 3712 break; 3713 3714 case SADB_EXT_LIFETIME_HARD: 3715 if (!sav->lft_h) 3716 continue; 3717 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len); 3718 p = sav->lft_h; 3719 break; 3720 3721 case SADB_EXT_LIFETIME_SOFT: 3722 if (!sav->lft_s) 3723 continue; 3724 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len); 3725 p = sav->lft_s; 3726 break; 3727 3728 case SADB_X_EXT_NAT_T_TYPE: 3729 m = key_setsadbxtype(sav->natt_type); 3730 break; 3731 3732 case SADB_X_EXT_NAT_T_DPORT: 3733 if (sav->natt_type == 0) 3734 continue; 3735 m = key_setsadbxport( 3736 key_portfromsaddr(&sav->sah->saidx.dst), 3737 SADB_X_EXT_NAT_T_DPORT); 3738 break; 3739 3740 case SADB_X_EXT_NAT_T_SPORT: 3741 if (sav->natt_type == 0) 3742 continue; 3743 m = key_setsadbxport( 3744 key_portfromsaddr(&sav->sah->saidx.src), 3745 SADB_X_EXT_NAT_T_SPORT); 3746 break; 3747 3748 case SADB_X_EXT_NAT_T_FRAG: 3749 /* don't send frag info if not set */ 3750 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET) 3751 continue; 3752 m = key_setsadbxfrag(sav->esp_frag); 3753 break; 3754 3755 case SADB_X_EXT_NAT_T_OAI: 3756 case SADB_X_EXT_NAT_T_OAR: 3757 continue; 3758 3759 case SADB_EXT_ADDRESS_PROXY: 3760 case SADB_EXT_IDENTITY_SRC: 3761 case SADB_EXT_IDENTITY_DST: 3762 /* XXX: should we brought from SPD ? */ 3763 case SADB_EXT_SENSITIVITY: 3764 default: 3765 continue; 3766 } 3767 3768 KASSERT(!(m && p)); 3769 KASSERT(m != NULL || p != NULL); 3770 if (p && tres) { 3771 M_PREPEND(tres, l, M_WAITOK); 3772 memcpy(mtod(tres, void *), p, l); 3773 continue; 3774 } 3775 if (p) { 3776 m = key_alloc_mbuf(l, M_WAITOK); 3777 m_copyback(m, 0, l, p); 3778 } 3779 3780 if (tres) 3781 m_cat(m, tres); 3782 tres = m; 3783 } 3784 3785 m_cat(result, tres); 3786 tres = NULL; /* avoid free on error below */ 3787 3788 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 3789 3790 result->m_pkthdr.len = 0; 3791 for (m = result; m; m = m->m_next) 3792 result->m_pkthdr.len += m->m_len; 3793 3794 mtod(result, struct sadb_msg *)->sadb_msg_len = 3795 PFKEY_UNIT64(result->m_pkthdr.len); 3796 3797 return result; 3798 } 3799 3800 3801 /* 3802 * set a type in sadb_x_nat_t_type 3803 */ 3804 static struct mbuf * 3805 key_setsadbxtype(u_int16_t type) 3806 { 3807 struct mbuf *m; 3808 size_t len; 3809 struct sadb_x_nat_t_type *p; 3810 3811 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3812 3813 m = key_alloc_mbuf(len, M_WAITOK); 3814 KASSERT(m->m_next == NULL); 3815 3816 p = mtod(m, struct sadb_x_nat_t_type *); 3817 3818 memset(p, 0, len); 3819 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3820 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3821 p->sadb_x_nat_t_type_type = type; 3822 3823 return m; 3824 } 3825 /* 3826 * set a port in sadb_x_nat_t_port. port is in network order 3827 */ 3828 static struct mbuf * 3829 key_setsadbxport(u_int16_t port, u_int16_t type) 3830 { 3831 struct mbuf *m; 3832 size_t len; 3833 struct sadb_x_nat_t_port *p; 3834 3835 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3836 3837 m = key_alloc_mbuf(len, M_WAITOK); 3838 KASSERT(m->m_next == NULL); 3839 3840 p = mtod(m, struct sadb_x_nat_t_port *); 3841 3842 memset(p, 0, len); 3843 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3844 p->sadb_x_nat_t_port_exttype = type; 3845 p->sadb_x_nat_t_port_port = port; 3846 3847 return m; 3848 } 3849 3850 /* 3851 * set fragmentation info in sadb_x_nat_t_frag 3852 */ 3853 static struct mbuf * 3854 key_setsadbxfrag(u_int16_t flen) 3855 { 3856 struct mbuf *m; 3857 size_t len; 3858 struct sadb_x_nat_t_frag *p; 3859 3860 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag)); 3861 3862 m = key_alloc_mbuf(len, M_WAITOK); 3863 KASSERT(m->m_next == NULL); 3864 3865 p = mtod(m, struct sadb_x_nat_t_frag *); 3866 3867 memset(p, 0, len); 3868 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len); 3869 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG; 3870 p->sadb_x_nat_t_frag_fraglen = flen; 3871 3872 return m; 3873 } 3874 3875 /* 3876 * Get port from sockaddr, port is in network order 3877 */ 3878 u_int16_t 3879 key_portfromsaddr(const union sockaddr_union *saddr) 3880 { 3881 u_int16_t port; 3882 3883 switch (saddr->sa.sa_family) { 3884 case AF_INET: { 3885 port = saddr->sin.sin_port; 3886 break; 3887 } 3888 #ifdef INET6 3889 case AF_INET6: { 3890 port = saddr->sin6.sin6_port; 3891 break; 3892 } 3893 #endif 3894 default: 3895 printf("%s: unexpected address family\n", __func__); 3896 port = 0; 3897 break; 3898 } 3899 3900 return port; 3901 } 3902 3903 3904 /* 3905 * Set port is struct sockaddr. port is in network order 3906 */ 3907 static void 3908 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port) 3909 { 3910 switch (saddr->sa.sa_family) { 3911 case AF_INET: { 3912 saddr->sin.sin_port = port; 3913 break; 3914 } 3915 #ifdef INET6 3916 case AF_INET6: { 3917 saddr->sin6.sin6_port = port; 3918 break; 3919 } 3920 #endif 3921 default: 3922 printf("%s: unexpected address family %d\n", __func__, 3923 saddr->sa.sa_family); 3924 break; 3925 } 3926 3927 return; 3928 } 3929 3930 /* 3931 * Safety check sa_len 3932 */ 3933 static int 3934 key_checksalen(const union sockaddr_union *saddr) 3935 { 3936 switch (saddr->sa.sa_family) { 3937 case AF_INET: 3938 if (saddr->sa.sa_len != sizeof(struct sockaddr_in)) 3939 return -1; 3940 break; 3941 #ifdef INET6 3942 case AF_INET6: 3943 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6)) 3944 return -1; 3945 break; 3946 #endif 3947 default: 3948 printf("%s: unexpected sa_family %d\n", __func__, 3949 saddr->sa.sa_family); 3950 return -1; 3951 break; 3952 } 3953 return 0; 3954 } 3955 3956 3957 /* 3958 * set data into sadb_msg. 3959 */ 3960 static struct mbuf * 3961 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, 3962 u_int32_t seq, pid_t pid, u_int16_t reserved, int mflag) 3963 { 3964 struct mbuf *m; 3965 struct sadb_msg *p; 3966 int len; 3967 3968 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); 3969 3970 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3971 3972 m = key_alloc_mbuf_simple(len, mflag); 3973 if (!m) 3974 return NULL; 3975 m->m_pkthdr.len = m->m_len = len; 3976 m->m_next = NULL; 3977 3978 p = mtod(m, struct sadb_msg *); 3979 3980 memset(p, 0, len); 3981 p->sadb_msg_version = PF_KEY_V2; 3982 p->sadb_msg_type = type; 3983 p->sadb_msg_errno = 0; 3984 p->sadb_msg_satype = satype; 3985 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3986 p->sadb_msg_reserved = reserved; 3987 p->sadb_msg_seq = seq; 3988 p->sadb_msg_pid = (u_int32_t)pid; 3989 3990 return m; 3991 } 3992 3993 /* 3994 * copy secasvar data into sadb_address. 3995 */ 3996 static struct mbuf * 3997 key_setsadbsa(struct secasvar *sav) 3998 { 3999 struct mbuf *m; 4000 struct sadb_sa *p; 4001 int len; 4002 4003 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4004 m = key_alloc_mbuf(len, M_WAITOK); 4005 KASSERT(m->m_next == NULL); 4006 4007 p = mtod(m, struct sadb_sa *); 4008 4009 memset(p, 0, len); 4010 p->sadb_sa_len = PFKEY_UNIT64(len); 4011 p->sadb_sa_exttype = SADB_EXT_SA; 4012 p->sadb_sa_spi = sav->spi; 4013 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 4014 p->sadb_sa_state = sav->state; 4015 p->sadb_sa_auth = sav->alg_auth; 4016 p->sadb_sa_encrypt = sav->alg_enc; 4017 p->sadb_sa_flags = sav->flags; 4018 4019 return m; 4020 } 4021 4022 /* 4023 * set data into sadb_address. 4024 */ 4025 static struct mbuf * 4026 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 4027 u_int8_t prefixlen, u_int16_t ul_proto, int mflag) 4028 { 4029 struct mbuf *m; 4030 struct sadb_address *p; 4031 size_t len; 4032 4033 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 4034 PFKEY_ALIGN8(saddr->sa_len); 4035 m = key_alloc_mbuf(len, mflag); 4036 if (!m || m->m_next) { /*XXX*/ 4037 if (m) 4038 m_freem(m); 4039 return NULL; 4040 } 4041 4042 p = mtod(m, struct sadb_address *); 4043 4044 memset(p, 0, len); 4045 p->sadb_address_len = PFKEY_UNIT64(len); 4046 p->sadb_address_exttype = exttype; 4047 p->sadb_address_proto = ul_proto; 4048 if (prefixlen == FULLMASK) { 4049 switch (saddr->sa_family) { 4050 case AF_INET: 4051 prefixlen = sizeof(struct in_addr) << 3; 4052 break; 4053 case AF_INET6: 4054 prefixlen = sizeof(struct in6_addr) << 3; 4055 break; 4056 default: 4057 ; /*XXX*/ 4058 } 4059 } 4060 p->sadb_address_prefixlen = prefixlen; 4061 p->sadb_address_reserved = 0; 4062 4063 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 4064 saddr, saddr->sa_len); 4065 4066 return m; 4067 } 4068 4069 #if 0 4070 /* 4071 * set data into sadb_ident. 4072 */ 4073 static struct mbuf * 4074 key_setsadbident(u_int16_t exttype, u_int16_t idtype, 4075 void *string, int stringlen, u_int64_t id) 4076 { 4077 struct mbuf *m; 4078 struct sadb_ident *p; 4079 size_t len; 4080 4081 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen); 4082 m = key_alloc_mbuf(len); 4083 if (!m || m->m_next) { /*XXX*/ 4084 if (m) 4085 m_freem(m); 4086 return NULL; 4087 } 4088 4089 p = mtod(m, struct sadb_ident *); 4090 4091 memset(p, 0, len); 4092 p->sadb_ident_len = PFKEY_UNIT64(len); 4093 p->sadb_ident_exttype = exttype; 4094 p->sadb_ident_type = idtype; 4095 p->sadb_ident_reserved = 0; 4096 p->sadb_ident_id = id; 4097 4098 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)), 4099 string, stringlen); 4100 4101 return m; 4102 } 4103 #endif 4104 4105 /* 4106 * set data into sadb_x_sa2. 4107 */ 4108 static struct mbuf * 4109 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid) 4110 { 4111 struct mbuf *m; 4112 struct sadb_x_sa2 *p; 4113 size_t len; 4114 4115 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 4116 m = key_alloc_mbuf(len, M_WAITOK); 4117 KASSERT(m->m_next == NULL); 4118 4119 p = mtod(m, struct sadb_x_sa2 *); 4120 4121 memset(p, 0, len); 4122 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 4123 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 4124 p->sadb_x_sa2_mode = mode; 4125 p->sadb_x_sa2_reserved1 = 0; 4126 p->sadb_x_sa2_reserved2 = 0; 4127 p->sadb_x_sa2_sequence = seq; 4128 p->sadb_x_sa2_reqid = reqid; 4129 4130 return m; 4131 } 4132 4133 /* 4134 * set data into sadb_x_policy 4135 */ 4136 static struct mbuf * 4137 key_setsadbxpolicy(const u_int16_t type, const u_int8_t dir, const u_int32_t id, 4138 int mflag) 4139 { 4140 struct mbuf *m; 4141 struct sadb_x_policy *p; 4142 size_t len; 4143 4144 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 4145 m = key_alloc_mbuf(len, mflag); 4146 if (!m || m->m_next) { /*XXX*/ 4147 if (m) 4148 m_freem(m); 4149 return NULL; 4150 } 4151 4152 p = mtod(m, struct sadb_x_policy *); 4153 4154 memset(p, 0, len); 4155 p->sadb_x_policy_len = PFKEY_UNIT64(len); 4156 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 4157 p->sadb_x_policy_type = type; 4158 p->sadb_x_policy_dir = dir; 4159 p->sadb_x_policy_id = id; 4160 4161 return m; 4162 } 4163 4164 /* %%% utilities */ 4165 /* 4166 * copy a buffer into the new buffer allocated. 4167 */ 4168 static void * 4169 key_newbuf(const void *src, u_int len) 4170 { 4171 void *new; 4172 4173 new = kmem_alloc(len, KM_SLEEP); 4174 memcpy(new, src, len); 4175 4176 return new; 4177 } 4178 4179 /* compare my own address 4180 * OUT: 1: true, i.e. my address. 4181 * 0: false 4182 */ 4183 int 4184 key_ismyaddr(const struct sockaddr *sa) 4185 { 4186 #ifdef INET 4187 const struct sockaddr_in *sin; 4188 const struct in_ifaddr *ia; 4189 int s; 4190 #endif 4191 4192 KASSERT(sa != NULL); 4193 4194 switch (sa->sa_family) { 4195 #ifdef INET 4196 case AF_INET: 4197 sin = (const struct sockaddr_in *)sa; 4198 s = pserialize_read_enter(); 4199 IN_ADDRLIST_READER_FOREACH(ia) { 4200 if (sin->sin_family == ia->ia_addr.sin_family && 4201 sin->sin_len == ia->ia_addr.sin_len && 4202 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 4203 { 4204 pserialize_read_exit(s); 4205 return 1; 4206 } 4207 } 4208 pserialize_read_exit(s); 4209 break; 4210 #endif 4211 #ifdef INET6 4212 case AF_INET6: 4213 return key_ismyaddr6((const struct sockaddr_in6 *)sa); 4214 #endif 4215 } 4216 4217 return 0; 4218 } 4219 4220 #ifdef INET6 4221 /* 4222 * compare my own address for IPv6. 4223 * 1: ours 4224 * 0: other 4225 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 4226 */ 4227 #include <netinet6/in6_var.h> 4228 4229 static int 4230 key_ismyaddr6(const struct sockaddr_in6 *sin6) 4231 { 4232 struct in6_ifaddr *ia; 4233 int s; 4234 struct psref psref; 4235 int bound; 4236 int ours = 1; 4237 4238 bound = curlwp_bind(); 4239 s = pserialize_read_enter(); 4240 IN6_ADDRLIST_READER_FOREACH(ia) { 4241 bool ingroup; 4242 4243 if (key_sockaddr_match((const struct sockaddr *)&sin6, 4244 (const struct sockaddr *)&ia->ia_addr, 0)) { 4245 pserialize_read_exit(s); 4246 goto ours; 4247 } 4248 ia6_acquire(ia, &psref); 4249 pserialize_read_exit(s); 4250 4251 /* 4252 * XXX Multicast 4253 * XXX why do we care about multlicast here while we don't care 4254 * about IPv4 multicast?? 4255 * XXX scope 4256 */ 4257 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp); 4258 if (ingroup) { 4259 ia6_release(ia, &psref); 4260 goto ours; 4261 } 4262 4263 s = pserialize_read_enter(); 4264 ia6_release(ia, &psref); 4265 } 4266 pserialize_read_exit(s); 4267 4268 /* loopback, just for safety */ 4269 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 4270 goto ours; 4271 4272 ours = 0; 4273 ours: 4274 curlwp_bindx(bound); 4275 4276 return ours; 4277 } 4278 #endif /*INET6*/ 4279 4280 /* 4281 * compare two secasindex structure. 4282 * flag can specify to compare 2 saidxes. 4283 * compare two secasindex structure without both mode and reqid. 4284 * don't compare port. 4285 * IN: 4286 * saidx0: source, it can be in SAD. 4287 * saidx1: object. 4288 * OUT: 4289 * 1 : equal 4290 * 0 : not equal 4291 */ 4292 static int 4293 key_saidx_match( 4294 const struct secasindex *saidx0, 4295 const struct secasindex *saidx1, 4296 int flag) 4297 { 4298 int chkport; 4299 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst; 4300 4301 KASSERT(saidx0 != NULL); 4302 KASSERT(saidx1 != NULL); 4303 4304 /* sanity */ 4305 if (saidx0->proto != saidx1->proto) 4306 return 0; 4307 4308 if (flag == CMP_EXACTLY) { 4309 if (saidx0->mode != saidx1->mode) 4310 return 0; 4311 if (saidx0->reqid != saidx1->reqid) 4312 return 0; 4313 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4314 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4315 return 0; 4316 } else { 4317 4318 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4319 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) { 4320 /* 4321 * If reqid of SPD is non-zero, unique SA is required. 4322 * The result must be of same reqid in this case. 4323 */ 4324 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4325 return 0; 4326 } 4327 4328 if (flag == CMP_MODE_REQID) { 4329 if (saidx0->mode != IPSEC_MODE_ANY && 4330 saidx0->mode != saidx1->mode) 4331 return 0; 4332 } 4333 4334 4335 sa0src = &saidx0->src.sa; 4336 sa0dst = &saidx0->dst.sa; 4337 sa1src = &saidx1->src.sa; 4338 sa1dst = &saidx1->dst.sa; 4339 /* 4340 * If NAT-T is enabled, check ports for tunnel mode. 4341 * Don't do it for transport mode, as there is no 4342 * port information available in the SP. 4343 * Also don't check ports if they are set to zero 4344 * in the SPD: This means we have a non-generated 4345 * SPD which can't know UDP ports. 4346 */ 4347 if (saidx1->mode == IPSEC_MODE_TUNNEL) 4348 chkport = PORT_LOOSE; 4349 else 4350 chkport = PORT_NONE; 4351 4352 if (!key_sockaddr_match(sa0src, sa1src, chkport)) { 4353 return 0; 4354 } 4355 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) { 4356 return 0; 4357 } 4358 } 4359 4360 return 1; 4361 } 4362 4363 /* 4364 * compare two secindex structure exactly. 4365 * IN: 4366 * spidx0: source, it is often in SPD. 4367 * spidx1: object, it is often from PFKEY message. 4368 * OUT: 4369 * 1 : equal 4370 * 0 : not equal 4371 */ 4372 static int 4373 key_spidx_match_exactly( 4374 const struct secpolicyindex *spidx0, 4375 const struct secpolicyindex *spidx1) 4376 { 4377 4378 KASSERT(spidx0 != NULL); 4379 KASSERT(spidx1 != NULL); 4380 4381 /* sanity */ 4382 if (spidx0->prefs != spidx1->prefs || 4383 spidx0->prefd != spidx1->prefd || 4384 spidx0->ul_proto != spidx1->ul_proto) 4385 return 0; 4386 4387 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) && 4388 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT); 4389 } 4390 4391 /* 4392 * compare two secindex structure with mask. 4393 * IN: 4394 * spidx0: source, it is often in SPD. 4395 * spidx1: object, it is often from IP header. 4396 * OUT: 4397 * 1 : equal 4398 * 0 : not equal 4399 */ 4400 static int 4401 key_spidx_match_withmask( 4402 const struct secpolicyindex *spidx0, 4403 const struct secpolicyindex *spidx1) 4404 { 4405 4406 KASSERT(spidx0 != NULL); 4407 KASSERT(spidx1 != NULL); 4408 4409 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4410 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4411 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4412 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4413 return 0; 4414 4415 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4416 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY && 4417 spidx0->ul_proto != spidx1->ul_proto) 4418 return 0; 4419 4420 switch (spidx0->src.sa.sa_family) { 4421 case AF_INET: 4422 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY && 4423 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4424 return 0; 4425 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr, 4426 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4427 return 0; 4428 break; 4429 case AF_INET6: 4430 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY && 4431 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4432 return 0; 4433 /* 4434 * scope_id check. if sin6_scope_id is 0, we regard it 4435 * as a wildcard scope, which matches any scope zone ID. 4436 */ 4437 if (spidx0->src.sin6.sin6_scope_id && 4438 spidx1->src.sin6.sin6_scope_id && 4439 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4440 return 0; 4441 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr, 4442 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4443 return 0; 4444 break; 4445 default: 4446 /* XXX */ 4447 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4448 return 0; 4449 break; 4450 } 4451 4452 switch (spidx0->dst.sa.sa_family) { 4453 case AF_INET: 4454 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY && 4455 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4456 return 0; 4457 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr, 4458 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4459 return 0; 4460 break; 4461 case AF_INET6: 4462 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY && 4463 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4464 return 0; 4465 /* 4466 * scope_id check. if sin6_scope_id is 0, we regard it 4467 * as a wildcard scope, which matches any scope zone ID. 4468 */ 4469 if (spidx0->src.sin6.sin6_scope_id && 4470 spidx1->src.sin6.sin6_scope_id && 4471 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4472 return 0; 4473 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr, 4474 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4475 return 0; 4476 break; 4477 default: 4478 /* XXX */ 4479 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4480 return 0; 4481 break; 4482 } 4483 4484 /* XXX Do we check other field ? e.g. flowinfo */ 4485 4486 return 1; 4487 } 4488 4489 /* returns 0 on match */ 4490 static int 4491 key_portcomp(in_port_t port1, in_port_t port2, int howport) 4492 { 4493 switch (howport) { 4494 case PORT_NONE: 4495 return 0; 4496 case PORT_LOOSE: 4497 if (port1 == 0 || port2 == 0) 4498 return 0; 4499 /*FALLTHROUGH*/ 4500 case PORT_STRICT: 4501 if (port1 != port2) { 4502 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4503 "port fail %d != %d\n", port1, port2); 4504 return 1; 4505 } 4506 return 0; 4507 default: 4508 KASSERT(0); 4509 return 1; 4510 } 4511 } 4512 4513 /* returns 1 on match */ 4514 static int 4515 key_sockaddr_match( 4516 const struct sockaddr *sa1, 4517 const struct sockaddr *sa2, 4518 int howport) 4519 { 4520 const struct sockaddr_in *sin1, *sin2; 4521 const struct sockaddr_in6 *sin61, *sin62; 4522 char s1[IPSEC_ADDRSTRLEN], s2[IPSEC_ADDRSTRLEN]; 4523 4524 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) { 4525 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4526 "fam/len fail %d != %d || %d != %d\n", 4527 sa1->sa_family, sa2->sa_family, sa1->sa_len, 4528 sa2->sa_len); 4529 return 0; 4530 } 4531 4532 switch (sa1->sa_family) { 4533 case AF_INET: 4534 if (sa1->sa_len != sizeof(struct sockaddr_in)) { 4535 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4536 "len fail %d != %zu\n", 4537 sa1->sa_len, sizeof(struct sockaddr_in)); 4538 return 0; 4539 } 4540 sin1 = (const struct sockaddr_in *)sa1; 4541 sin2 = (const struct sockaddr_in *)sa2; 4542 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) { 4543 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4544 "addr fail %s != %s\n", 4545 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), 4546 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2)); 4547 return 0; 4548 } 4549 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) { 4550 return 0; 4551 } 4552 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4553 "addr success %s[%d] == %s[%d]\n", 4554 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), 4555 sin1->sin_port, 4556 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2), 4557 sin2->sin_port); 4558 break; 4559 case AF_INET6: 4560 sin61 = (const struct sockaddr_in6 *)sa1; 4561 sin62 = (const struct sockaddr_in6 *)sa2; 4562 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4563 return 0; /*EINVAL*/ 4564 4565 if (sin61->sin6_scope_id != sin62->sin6_scope_id) { 4566 return 0; 4567 } 4568 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) { 4569 return 0; 4570 } 4571 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) { 4572 return 0; 4573 } 4574 break; 4575 default: 4576 if (memcmp(sa1, sa2, sa1->sa_len) != 0) 4577 return 0; 4578 break; 4579 } 4580 4581 return 1; 4582 } 4583 4584 /* 4585 * compare two buffers with mask. 4586 * IN: 4587 * addr1: source 4588 * addr2: object 4589 * bits: Number of bits to compare 4590 * OUT: 4591 * 1 : equal 4592 * 0 : not equal 4593 */ 4594 static int 4595 key_bb_match_withmask(const void *a1, const void *a2, u_int bits) 4596 { 4597 const unsigned char *p1 = a1; 4598 const unsigned char *p2 = a2; 4599 4600 /* XXX: This could be considerably faster if we compare a word 4601 * at a time, but it is complicated on LSB Endian machines */ 4602 4603 /* Handle null pointers */ 4604 if (p1 == NULL || p2 == NULL) 4605 return (p1 == p2); 4606 4607 while (bits >= 8) { 4608 if (*p1++ != *p2++) 4609 return 0; 4610 bits -= 8; 4611 } 4612 4613 if (bits > 0) { 4614 u_int8_t mask = ~((1<<(8-bits))-1); 4615 if ((*p1 & mask) != (*p2 & mask)) 4616 return 0; 4617 } 4618 return 1; /* Match! */ 4619 } 4620 4621 static void 4622 key_timehandler_spd(time_t now) 4623 { 4624 u_int dir; 4625 struct secpolicy *sp; 4626 4627 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4628 retry: 4629 mutex_enter(&key_spd.lock); 4630 SPLIST_WRITER_FOREACH(sp, dir) { 4631 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 4632 4633 if (sp->lifetime == 0 && sp->validtime == 0) 4634 continue; 4635 4636 if ((sp->lifetime && now - sp->created > sp->lifetime) || 4637 (sp->validtime && now - sp->lastused > sp->validtime)) { 4638 key_unlink_sp(sp); 4639 mutex_exit(&key_spd.lock); 4640 key_spdexpire(sp); 4641 key_destroy_sp(sp); 4642 goto retry; 4643 } 4644 } 4645 mutex_exit(&key_spd.lock); 4646 } 4647 4648 retry_socksplist: 4649 mutex_enter(&key_spd.lock); 4650 SOCKSPLIST_WRITER_FOREACH(sp) { 4651 if (sp->state != IPSEC_SPSTATE_DEAD) 4652 continue; 4653 4654 key_unlink_sp(sp); 4655 mutex_exit(&key_spd.lock); 4656 key_destroy_sp(sp); 4657 goto retry_socksplist; 4658 } 4659 mutex_exit(&key_spd.lock); 4660 } 4661 4662 static void 4663 key_timehandler_sad(time_t now) 4664 { 4665 struct secashead *sah; 4666 int s; 4667 4668 restart: 4669 mutex_enter(&key_sad.lock); 4670 SAHLIST_WRITER_FOREACH(sah) { 4671 /* If sah has been dead and has no sav, then delete it */ 4672 if (sah->state == SADB_SASTATE_DEAD && 4673 !key_sah_has_sav(sah)) { 4674 key_unlink_sah(sah); 4675 mutex_exit(&key_sad.lock); 4676 key_destroy_sah(sah); 4677 goto restart; 4678 } 4679 } 4680 mutex_exit(&key_sad.lock); 4681 4682 s = pserialize_read_enter(); 4683 SAHLIST_READER_FOREACH(sah) { 4684 struct secasvar *sav; 4685 4686 key_sah_ref(sah); 4687 pserialize_read_exit(s); 4688 4689 /* if LARVAL entry doesn't become MATURE, delete it. */ 4690 mutex_enter(&key_sad.lock); 4691 restart_sav_LARVAL: 4692 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) { 4693 if (now - sav->created > key_larval_lifetime) { 4694 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4695 goto restart_sav_LARVAL; 4696 } 4697 } 4698 mutex_exit(&key_sad.lock); 4699 4700 /* 4701 * check MATURE entry to start to send expire message 4702 * whether or not. 4703 */ 4704 restart_sav_MATURE: 4705 mutex_enter(&key_sad.lock); 4706 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_MATURE) { 4707 /* we don't need to check. */ 4708 if (sav->lft_s == NULL) 4709 continue; 4710 4711 /* sanity check */ 4712 KASSERT(sav->lft_c != NULL); 4713 4714 /* check SOFT lifetime */ 4715 if (sav->lft_s->sadb_lifetime_addtime != 0 && 4716 now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 4717 /* 4718 * check SA to be used whether or not. 4719 * when SA hasn't been used, delete it. 4720 */ 4721 if (sav->lft_c->sadb_lifetime_usetime == 0) { 4722 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4723 mutex_exit(&key_sad.lock); 4724 } else { 4725 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4726 mutex_exit(&key_sad.lock); 4727 /* 4728 * XXX If we keep to send expire 4729 * message in the status of 4730 * DYING. Do remove below code. 4731 */ 4732 key_expire(sav); 4733 } 4734 goto restart_sav_MATURE; 4735 } 4736 /* check SOFT lifetime by bytes */ 4737 /* 4738 * XXX I don't know the way to delete this SA 4739 * when new SA is installed. Caution when it's 4740 * installed too big lifetime by time. 4741 */ 4742 else if (sav->lft_s->sadb_lifetime_bytes != 0 && 4743 sav->lft_s->sadb_lifetime_bytes < 4744 sav->lft_c->sadb_lifetime_bytes) { 4745 4746 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4747 mutex_exit(&key_sad.lock); 4748 /* 4749 * XXX If we keep to send expire 4750 * message in the status of 4751 * DYING. Do remove below code. 4752 */ 4753 key_expire(sav); 4754 goto restart_sav_MATURE; 4755 } 4756 } 4757 mutex_exit(&key_sad.lock); 4758 4759 /* check DYING entry to change status to DEAD. */ 4760 mutex_enter(&key_sad.lock); 4761 restart_sav_DYING: 4762 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DYING) { 4763 /* we don't need to check. */ 4764 if (sav->lft_h == NULL) 4765 continue; 4766 4767 /* sanity check */ 4768 KASSERT(sav->lft_c != NULL); 4769 4770 if (sav->lft_h->sadb_lifetime_addtime != 0 && 4771 now - sav->created > sav->lft_h->sadb_lifetime_addtime) { 4772 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4773 goto restart_sav_DYING; 4774 } 4775 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4776 else if (sav->lft_s != NULL 4777 && sav->lft_s->sadb_lifetime_addtime != 0 4778 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 4779 /* 4780 * XXX: should be checked to be 4781 * installed the valid SA. 4782 */ 4783 4784 /* 4785 * If there is no SA then sending 4786 * expire message. 4787 */ 4788 key_expire(sav); 4789 } 4790 #endif 4791 /* check HARD lifetime by bytes */ 4792 else if (sav->lft_h->sadb_lifetime_bytes != 0 && 4793 sav->lft_h->sadb_lifetime_bytes < 4794 sav->lft_c->sadb_lifetime_bytes) { 4795 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4796 goto restart_sav_DYING; 4797 } 4798 } 4799 mutex_exit(&key_sad.lock); 4800 4801 /* delete entry in DEAD */ 4802 restart_sav_DEAD: 4803 mutex_enter(&key_sad.lock); 4804 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DEAD) { 4805 key_unlink_sav(sav); 4806 mutex_exit(&key_sad.lock); 4807 key_destroy_sav(sav); 4808 goto restart_sav_DEAD; 4809 } 4810 mutex_exit(&key_sad.lock); 4811 4812 s = pserialize_read_enter(); 4813 key_sah_unref(sah); 4814 } 4815 pserialize_read_exit(s); 4816 } 4817 4818 static void 4819 key_timehandler_acq(time_t now) 4820 { 4821 #ifndef IPSEC_NONBLOCK_ACQUIRE 4822 struct secacq *acq, *nextacq; 4823 4824 restart: 4825 mutex_enter(&key_misc.lock); 4826 LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) { 4827 if (now - acq->created > key_blockacq_lifetime) { 4828 LIST_REMOVE(acq, chain); 4829 mutex_exit(&key_misc.lock); 4830 kmem_free(acq, sizeof(*acq)); 4831 goto restart; 4832 } 4833 } 4834 mutex_exit(&key_misc.lock); 4835 #endif 4836 } 4837 4838 static void 4839 key_timehandler_spacq(time_t now) 4840 { 4841 #ifdef notyet 4842 struct secspacq *acq, *nextacq; 4843 4844 LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) { 4845 if (now - acq->created > key_blockacq_lifetime) { 4846 KASSERT(__LIST_CHAINED(acq)); 4847 LIST_REMOVE(acq, chain); 4848 kmem_free(acq, sizeof(*acq)); 4849 } 4850 } 4851 #endif 4852 } 4853 4854 static unsigned int key_timehandler_work_enqueued = 0; 4855 4856 /* 4857 * time handler. 4858 * scanning SPD and SAD to check status for each entries, 4859 * and do to remove or to expire. 4860 */ 4861 static void 4862 key_timehandler_work(struct work *wk, void *arg) 4863 { 4864 time_t now = time_uptime; 4865 IPSEC_DECLARE_LOCK_VARIABLE; 4866 4867 /* We can allow enqueuing another work at this point */ 4868 atomic_swap_uint(&key_timehandler_work_enqueued, 0); 4869 4870 IPSEC_ACQUIRE_GLOBAL_LOCKS(); 4871 4872 key_timehandler_spd(now); 4873 key_timehandler_sad(now); 4874 key_timehandler_acq(now); 4875 key_timehandler_spacq(now); 4876 4877 key_acquire_sendup_pending_mbuf(); 4878 4879 /* do exchange to tick time !! */ 4880 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 4881 4882 IPSEC_RELEASE_GLOBAL_LOCKS(); 4883 return; 4884 } 4885 4886 static void 4887 key_timehandler(void *arg) 4888 { 4889 4890 /* Avoid enqueuing another work when one is already enqueued */ 4891 if (atomic_swap_uint(&key_timehandler_work_enqueued, 1) == 1) 4892 return; 4893 4894 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL); 4895 } 4896 4897 u_long 4898 key_random(void) 4899 { 4900 u_long value; 4901 4902 key_randomfill(&value, sizeof(value)); 4903 return value; 4904 } 4905 4906 void 4907 key_randomfill(void *p, size_t l) 4908 { 4909 4910 cprng_fast(p, l); 4911 } 4912 4913 /* 4914 * map SADB_SATYPE_* to IPPROTO_*. 4915 * if satype == SADB_SATYPE then satype is mapped to ~0. 4916 * OUT: 4917 * 0: invalid satype. 4918 */ 4919 static u_int16_t 4920 key_satype2proto(u_int8_t satype) 4921 { 4922 switch (satype) { 4923 case SADB_SATYPE_UNSPEC: 4924 return IPSEC_PROTO_ANY; 4925 case SADB_SATYPE_AH: 4926 return IPPROTO_AH; 4927 case SADB_SATYPE_ESP: 4928 return IPPROTO_ESP; 4929 case SADB_X_SATYPE_IPCOMP: 4930 return IPPROTO_IPCOMP; 4931 case SADB_X_SATYPE_TCPSIGNATURE: 4932 return IPPROTO_TCP; 4933 default: 4934 return 0; 4935 } 4936 /* NOTREACHED */ 4937 } 4938 4939 /* 4940 * map IPPROTO_* to SADB_SATYPE_* 4941 * OUT: 4942 * 0: invalid protocol type. 4943 */ 4944 static u_int8_t 4945 key_proto2satype(u_int16_t proto) 4946 { 4947 switch (proto) { 4948 case IPPROTO_AH: 4949 return SADB_SATYPE_AH; 4950 case IPPROTO_ESP: 4951 return SADB_SATYPE_ESP; 4952 case IPPROTO_IPCOMP: 4953 return SADB_X_SATYPE_IPCOMP; 4954 case IPPROTO_TCP: 4955 return SADB_X_SATYPE_TCPSIGNATURE; 4956 default: 4957 return 0; 4958 } 4959 /* NOTREACHED */ 4960 } 4961 4962 static int 4963 key_setsecasidx(int proto, int mode, int reqid, 4964 const struct sockaddr *src, const struct sockaddr *dst, 4965 struct secasindex * saidx) 4966 { 4967 const union sockaddr_union *src_u = (const union sockaddr_union *)src; 4968 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst; 4969 4970 /* sa len safety check */ 4971 if (key_checksalen(src_u) != 0) 4972 return -1; 4973 if (key_checksalen(dst_u) != 0) 4974 return -1; 4975 4976 memset(saidx, 0, sizeof(*saidx)); 4977 saidx->proto = proto; 4978 saidx->mode = mode; 4979 saidx->reqid = reqid; 4980 memcpy(&saidx->src, src_u, src_u->sa.sa_len); 4981 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len); 4982 4983 key_porttosaddr(&((saidx)->src), 0); 4984 key_porttosaddr(&((saidx)->dst), 0); 4985 return 0; 4986 } 4987 4988 static void 4989 key_init_spidx_bymsghdr(struct secpolicyindex *spidx, 4990 const struct sadb_msghdr *mhp) 4991 { 4992 const struct sadb_address *src0, *dst0; 4993 const struct sockaddr *src, *dst; 4994 const struct sadb_x_policy *xpl0; 4995 4996 src0 = mhp->ext[SADB_EXT_ADDRESS_SRC]; 4997 dst0 = mhp->ext[SADB_EXT_ADDRESS_DST]; 4998 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 4999 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5000 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 5001 5002 memset(spidx, 0, sizeof(*spidx)); 5003 spidx->dir = xpl0->sadb_x_policy_dir; 5004 spidx->prefs = src0->sadb_address_prefixlen; 5005 spidx->prefd = dst0->sadb_address_prefixlen; 5006 spidx->ul_proto = src0->sadb_address_proto; 5007 /* XXX boundary check against sa_len */ 5008 memcpy(&spidx->src, src, src->sa_len); 5009 memcpy(&spidx->dst, dst, dst->sa_len); 5010 } 5011 5012 /* %%% PF_KEY */ 5013 /* 5014 * SADB_GETSPI processing is to receive 5015 * <base, (SA2), src address, dst address, (SPI range)> 5016 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 5017 * tree with the status of LARVAL, and send 5018 * <base, SA(*), address(SD)> 5019 * to the IKMPd. 5020 * 5021 * IN: mhp: pointer to the pointer to each header. 5022 * OUT: NULL if fail. 5023 * other if success, return pointer to the message to send. 5024 */ 5025 static int 5026 key_api_getspi(struct socket *so, struct mbuf *m, 5027 const struct sadb_msghdr *mhp) 5028 { 5029 const struct sockaddr *src, *dst; 5030 struct secasindex saidx; 5031 struct secashead *sah; 5032 struct secasvar *newsav; 5033 u_int8_t proto; 5034 u_int32_t spi; 5035 u_int8_t mode; 5036 u_int16_t reqid; 5037 int error; 5038 5039 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5040 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5041 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5042 return key_senderror(so, m, EINVAL); 5043 } 5044 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5045 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5046 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5047 return key_senderror(so, m, EINVAL); 5048 } 5049 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5050 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5051 mode = sa2->sadb_x_sa2_mode; 5052 reqid = sa2->sadb_x_sa2_reqid; 5053 } else { 5054 mode = IPSEC_MODE_ANY; 5055 reqid = 0; 5056 } 5057 5058 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5059 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5060 5061 /* map satype to proto */ 5062 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5063 if (proto == 0) { 5064 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5065 return key_senderror(so, m, EINVAL); 5066 } 5067 5068 5069 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5070 if (error != 0) 5071 return key_senderror(so, m, EINVAL); 5072 5073 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5074 if (error != 0) 5075 return key_senderror(so, m, EINVAL); 5076 5077 /* SPI allocation */ 5078 spi = key_do_getnewspi(mhp->ext[SADB_EXT_SPIRANGE], &saidx); 5079 if (spi == 0) 5080 return key_senderror(so, m, EINVAL); 5081 5082 /* get a SA index */ 5083 sah = key_getsah_ref(&saidx, CMP_REQID); 5084 if (sah == NULL) { 5085 /* create a new SA index */ 5086 sah = key_newsah(&saidx); 5087 if (sah == NULL) { 5088 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5089 return key_senderror(so, m, ENOBUFS); 5090 } 5091 } 5092 5093 /* get a new SA */ 5094 /* XXX rewrite */ 5095 newsav = KEY_NEWSAV(m, mhp, &error); 5096 if (newsav == NULL) { 5097 key_sah_unref(sah); 5098 /* XXX don't free new SA index allocated in above. */ 5099 return key_senderror(so, m, error); 5100 } 5101 5102 /* set spi */ 5103 newsav->spi = htonl(spi); 5104 5105 /* Add to sah#savlist */ 5106 key_init_sav(newsav); 5107 newsav->sah = sah; 5108 newsav->state = SADB_SASTATE_LARVAL; 5109 mutex_enter(&key_sad.lock); 5110 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav); 5111 mutex_exit(&key_sad.lock); 5112 key_validate_savlist(sah, SADB_SASTATE_LARVAL); 5113 5114 key_sah_unref(sah); 5115 5116 #ifndef IPSEC_NONBLOCK_ACQUIRE 5117 /* delete the entry in key_misc.acqlist */ 5118 if (mhp->msg->sadb_msg_seq != 0) { 5119 struct secacq *acq; 5120 mutex_enter(&key_misc.lock); 5121 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); 5122 if (acq != NULL) { 5123 /* reset counter in order to deletion by timehandler. */ 5124 acq->created = time_uptime; 5125 acq->count = 0; 5126 } 5127 mutex_exit(&key_misc.lock); 5128 } 5129 #endif 5130 5131 { 5132 struct mbuf *n, *nn; 5133 struct sadb_sa *m_sa; 5134 int off, len; 5135 5136 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 5137 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES); 5138 5139 /* create new sadb_msg to reply. */ 5140 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 5141 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5142 5143 n = key_alloc_mbuf_simple(len, M_WAITOK); 5144 n->m_len = len; 5145 n->m_next = NULL; 5146 off = 0; 5147 5148 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 5149 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 5150 5151 m_sa = (struct sadb_sa *)(mtod(n, char *) + off); 5152 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 5153 m_sa->sadb_sa_exttype = SADB_EXT_SA; 5154 m_sa->sadb_sa_spi = htonl(spi); 5155 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5156 5157 KASSERTMSG(off == len, "length inconsistency"); 5158 5159 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 5160 SADB_EXT_ADDRESS_DST); 5161 5162 KASSERT(n->m_len >= sizeof(struct sadb_msg)); 5163 5164 n->m_pkthdr.len = 0; 5165 for (nn = n; nn; nn = nn->m_next) 5166 n->m_pkthdr.len += nn->m_len; 5167 5168 key_fill_replymsg(n, newsav->seq); 5169 m_freem(m); 5170 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5171 } 5172 } 5173 5174 /* 5175 * allocating new SPI 5176 * called by key_api_getspi(). 5177 * OUT: 5178 * 0: failure. 5179 * others: success. 5180 */ 5181 static u_int32_t 5182 key_do_getnewspi(const struct sadb_spirange *spirange, 5183 const struct secasindex *saidx) 5184 { 5185 u_int32_t newspi; 5186 u_int32_t spmin, spmax; 5187 int count = key_spi_trycnt; 5188 5189 /* set spi range to allocate */ 5190 if (spirange != NULL) { 5191 spmin = spirange->sadb_spirange_min; 5192 spmax = spirange->sadb_spirange_max; 5193 } else { 5194 spmin = key_spi_minval; 5195 spmax = key_spi_maxval; 5196 } 5197 /* IPCOMP needs 2-byte SPI */ 5198 if (saidx->proto == IPPROTO_IPCOMP) { 5199 u_int32_t t; 5200 if (spmin >= 0x10000) 5201 spmin = 0xffff; 5202 if (spmax >= 0x10000) 5203 spmax = 0xffff; 5204 if (spmin > spmax) { 5205 t = spmin; spmin = spmax; spmax = t; 5206 } 5207 } 5208 5209 if (spmin == spmax) { 5210 if (key_checkspidup(saidx, htonl(spmin))) { 5211 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin); 5212 return 0; 5213 } 5214 5215 count--; /* taking one cost. */ 5216 newspi = spmin; 5217 5218 } else { 5219 5220 /* init SPI */ 5221 newspi = 0; 5222 5223 /* when requesting to allocate spi ranged */ 5224 while (count--) { 5225 /* generate pseudo-random SPI value ranged. */ 5226 newspi = spmin + (key_random() % (spmax - spmin + 1)); 5227 5228 if (!key_checkspidup(saidx, htonl(newspi))) 5229 break; 5230 } 5231 5232 if (count == 0 || newspi == 0) { 5233 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n"); 5234 return 0; 5235 } 5236 } 5237 5238 /* statistics */ 5239 keystat.getspi_count = 5240 (keystat.getspi_count + key_spi_trycnt - count) / 2; 5241 5242 return newspi; 5243 } 5244 5245 static int 5246 key_handle_natt_info(struct secasvar *sav, 5247 const struct sadb_msghdr *mhp) 5248 { 5249 const char *msg = "?" ; 5250 struct sadb_x_nat_t_type *type; 5251 struct sadb_x_nat_t_port *sport, *dport; 5252 struct sadb_address *iaddr, *raddr; 5253 struct sadb_x_nat_t_frag *frag; 5254 5255 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 5256 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 5257 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) 5258 return 0; 5259 5260 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) { 5261 msg = "TYPE"; 5262 goto bad; 5263 } 5264 5265 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) { 5266 msg = "SPORT"; 5267 goto bad; 5268 } 5269 5270 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5271 msg = "DPORT"; 5272 goto bad; 5273 } 5274 5275 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) { 5276 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); 5277 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) { 5278 msg = "OAI"; 5279 goto bad; 5280 } 5281 } 5282 5283 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5284 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); 5285 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5286 msg = "OAR"; 5287 goto bad; 5288 } 5289 } 5290 5291 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5292 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5293 msg = "FRAG"; 5294 goto bad; 5295 } 5296 } 5297 5298 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5299 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5300 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5301 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5302 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5303 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5304 5305 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", 5306 type->sadb_x_nat_t_type_type, 5307 ntohs(sport->sadb_x_nat_t_port_port), 5308 ntohs(dport->sadb_x_nat_t_port_port)); 5309 5310 sav->natt_type = type->sadb_x_nat_t_type_type; 5311 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port); 5312 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port); 5313 if (frag) 5314 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen; 5315 else 5316 sav->esp_frag = IP_MAXPACKET; 5317 5318 return 0; 5319 bad: 5320 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg); 5321 __USE(msg); 5322 return -1; 5323 } 5324 5325 /* Just update the IPSEC_NAT_T ports if present */ 5326 static int 5327 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst, 5328 const struct sadb_msghdr *mhp) 5329 { 5330 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 5331 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); 5332 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 5333 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); 5334 5335 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) && 5336 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) && 5337 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) { 5338 struct sadb_x_nat_t_type *type; 5339 struct sadb_x_nat_t_port *sport; 5340 struct sadb_x_nat_t_port *dport; 5341 5342 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 5343 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 5344 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 5345 IPSECLOG(LOG_DEBUG, "invalid message\n"); 5346 return -1; 5347 } 5348 5349 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5350 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5351 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5352 5353 key_porttosaddr(src, sport->sadb_x_nat_t_port_port); 5354 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port); 5355 5356 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", 5357 type->sadb_x_nat_t_type_type, 5358 ntohs(sport->sadb_x_nat_t_port_port), 5359 ntohs(dport->sadb_x_nat_t_port_port)); 5360 } 5361 5362 return 0; 5363 } 5364 5365 5366 /* 5367 * SADB_UPDATE processing 5368 * receive 5369 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5370 * key(AE), (identity(SD),) (sensitivity)> 5371 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 5372 * and send 5373 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5374 * (identity(SD),) (sensitivity)> 5375 * to the ikmpd. 5376 * 5377 * m will always be freed. 5378 */ 5379 static int 5380 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5381 { 5382 struct sadb_sa *sa0; 5383 const struct sockaddr *src, *dst; 5384 struct secasindex saidx; 5385 struct secashead *sah; 5386 struct secasvar *sav, *newsav; 5387 u_int16_t proto; 5388 u_int8_t mode; 5389 u_int16_t reqid; 5390 int error; 5391 5392 /* map satype to proto */ 5393 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5394 if (proto == 0) { 5395 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5396 return key_senderror(so, m, EINVAL); 5397 } 5398 5399 if (mhp->ext[SADB_EXT_SA] == NULL || 5400 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5401 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5402 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5403 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5404 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5405 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5406 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5407 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5408 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5409 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5410 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5411 return key_senderror(so, m, EINVAL); 5412 } 5413 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5414 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5415 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5416 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5417 return key_senderror(so, m, EINVAL); 5418 } 5419 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5420 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5421 mode = sa2->sadb_x_sa2_mode; 5422 reqid = sa2->sadb_x_sa2_reqid; 5423 } else { 5424 mode = IPSEC_MODE_ANY; 5425 reqid = 0; 5426 } 5427 /* XXX boundary checking for other extensions */ 5428 5429 sa0 = mhp->ext[SADB_EXT_SA]; 5430 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5431 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5432 5433 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5434 if (error != 0) 5435 return key_senderror(so, m, EINVAL); 5436 5437 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5438 if (error != 0) 5439 return key_senderror(so, m, EINVAL); 5440 5441 /* get a SA header */ 5442 sah = key_getsah_ref(&saidx, CMP_REQID); 5443 if (sah == NULL) { 5444 IPSECLOG(LOG_DEBUG, "no SA index found.\n"); 5445 return key_senderror(so, m, ENOENT); 5446 } 5447 5448 /* set spidx if there */ 5449 /* XXX rewrite */ 5450 error = key_setident(sah, m, mhp); 5451 if (error) 5452 goto error_sah; 5453 5454 /* find a SA with sequence number. */ 5455 #ifdef IPSEC_DOSEQCHECK 5456 if (mhp->msg->sadb_msg_seq != 0) { 5457 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq); 5458 if (sav == NULL) { 5459 IPSECLOG(LOG_DEBUG, 5460 "no larval SA with sequence %u exists.\n", 5461 mhp->msg->sadb_msg_seq); 5462 error = ENOENT; 5463 goto error_sah; 5464 } 5465 } 5466 #else 5467 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5468 if (sav == NULL) { 5469 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n", 5470 (u_int32_t)ntohl(sa0->sadb_sa_spi)); 5471 error = EINVAL; 5472 goto error_sah; 5473 } 5474 #endif 5475 5476 /* validity check */ 5477 if (sav->sah->saidx.proto != proto) { 5478 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n", 5479 sav->sah->saidx.proto, proto); 5480 error = EINVAL; 5481 goto error; 5482 } 5483 #ifdef IPSEC_DOSEQCHECK 5484 if (sav->spi != sa0->sadb_sa_spi) { 5485 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n", 5486 (u_int32_t)ntohl(sav->spi), 5487 (u_int32_t)ntohl(sa0->sadb_sa_spi)); 5488 error = EINVAL; 5489 goto error; 5490 } 5491 #endif 5492 if (sav->pid != mhp->msg->sadb_msg_pid) { 5493 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n", 5494 sav->pid, mhp->msg->sadb_msg_pid); 5495 error = EINVAL; 5496 goto error; 5497 } 5498 5499 /* 5500 * Allocate a new SA instead of modifying the existing SA directly 5501 * to avoid race conditions. 5502 */ 5503 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); 5504 5505 /* copy sav values */ 5506 newsav->spi = sav->spi; 5507 newsav->seq = sav->seq; 5508 newsav->created = sav->created; 5509 newsav->pid = sav->pid; 5510 newsav->sah = sav->sah; 5511 5512 error = key_setsaval(newsav, m, mhp); 5513 if (error) { 5514 key_delsav(newsav); 5515 goto error; 5516 } 5517 5518 error = key_handle_natt_info(newsav, mhp); 5519 if (error != 0) { 5520 key_delsav(newsav); 5521 goto error; 5522 } 5523 5524 error = key_init_xform(newsav); 5525 if (error != 0) { 5526 key_delsav(newsav); 5527 goto error; 5528 } 5529 5530 /* Add to sah#savlist */ 5531 key_init_sav(newsav); 5532 newsav->state = SADB_SASTATE_MATURE; 5533 mutex_enter(&key_sad.lock); 5534 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); 5535 mutex_exit(&key_sad.lock); 5536 key_validate_savlist(sah, SADB_SASTATE_MATURE); 5537 5538 key_sah_unref(sah); 5539 sah = NULL; 5540 5541 key_destroy_sav_with_ref(sav); 5542 sav = NULL; 5543 5544 { 5545 struct mbuf *n; 5546 5547 /* set msg buf from mhp */ 5548 n = key_getmsgbuf_x1(m, mhp); 5549 if (n == NULL) { 5550 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5551 return key_senderror(so, m, ENOBUFS); 5552 } 5553 5554 m_freem(m); 5555 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5556 } 5557 error: 5558 KEY_SA_UNREF(&sav); 5559 error_sah: 5560 key_sah_unref(sah); 5561 return key_senderror(so, m, error); 5562 } 5563 5564 /* 5565 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5566 * only called by key_api_update(). 5567 * OUT: 5568 * NULL : not found 5569 * others : found, pointer to a SA. 5570 */ 5571 #ifdef IPSEC_DOSEQCHECK 5572 static struct secasvar * 5573 key_getsavbyseq(struct secashead *sah, u_int32_t seq) 5574 { 5575 struct secasvar *sav; 5576 u_int state; 5577 int s; 5578 5579 state = SADB_SASTATE_LARVAL; 5580 5581 /* search SAD with sequence number ? */ 5582 s = pserialize_read_enter(); 5583 SAVLIST_READER_FOREACH(sav, sah, state) { 5584 KEY_CHKSASTATE(state, sav->state); 5585 5586 if (sav->seq == seq) { 5587 SA_ADDREF(sav); 5588 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 5589 "DP cause refcnt++:%d SA:%p\n", 5590 key_sa_refcnt(sav), sav); 5591 break; 5592 } 5593 } 5594 pserialize_read_exit(s); 5595 5596 return sav; 5597 } 5598 #endif 5599 5600 /* 5601 * SADB_ADD processing 5602 * add an entry to SA database, when received 5603 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5604 * key(AE), (identity(SD),) (sensitivity)> 5605 * from the ikmpd, 5606 * and send 5607 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5608 * (identity(SD),) (sensitivity)> 5609 * to the ikmpd. 5610 * 5611 * IGNORE identity and sensitivity messages. 5612 * 5613 * m will always be freed. 5614 */ 5615 static int 5616 key_api_add(struct socket *so, struct mbuf *m, 5617 const struct sadb_msghdr *mhp) 5618 { 5619 struct sadb_sa *sa0; 5620 const struct sockaddr *src, *dst; 5621 struct secasindex saidx; 5622 struct secashead *sah; 5623 struct secasvar *newsav; 5624 u_int16_t proto; 5625 u_int8_t mode; 5626 u_int16_t reqid; 5627 int error; 5628 5629 /* map satype to proto */ 5630 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5631 if (proto == 0) { 5632 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5633 return key_senderror(so, m, EINVAL); 5634 } 5635 5636 if (mhp->ext[SADB_EXT_SA] == NULL || 5637 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5638 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5639 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5640 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5641 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5642 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5643 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5644 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5645 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5646 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5647 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5648 return key_senderror(so, m, EINVAL); 5649 } 5650 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5651 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5652 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5653 /* XXX need more */ 5654 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5655 return key_senderror(so, m, EINVAL); 5656 } 5657 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5658 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5659 mode = sa2->sadb_x_sa2_mode; 5660 reqid = sa2->sadb_x_sa2_reqid; 5661 } else { 5662 mode = IPSEC_MODE_ANY; 5663 reqid = 0; 5664 } 5665 5666 sa0 = mhp->ext[SADB_EXT_SA]; 5667 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5668 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5669 5670 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5671 if (error != 0) 5672 return key_senderror(so, m, EINVAL); 5673 5674 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5675 if (error != 0) 5676 return key_senderror(so, m, EINVAL); 5677 5678 /* get a SA header */ 5679 sah = key_getsah_ref(&saidx, CMP_REQID); 5680 if (sah == NULL) { 5681 /* create a new SA header */ 5682 sah = key_newsah(&saidx); 5683 if (sah == NULL) { 5684 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5685 return key_senderror(so, m, ENOBUFS); 5686 } 5687 } 5688 5689 /* set spidx if there */ 5690 /* XXX rewrite */ 5691 error = key_setident(sah, m, mhp); 5692 if (error) 5693 goto error; 5694 5695 { 5696 struct secasvar *sav; 5697 5698 /* We can create new SA only if SPI is differenct. */ 5699 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5700 if (sav != NULL) { 5701 KEY_SA_UNREF(&sav); 5702 IPSECLOG(LOG_DEBUG, "SA already exists.\n"); 5703 error = EEXIST; 5704 goto error; 5705 } 5706 } 5707 5708 /* create new SA entry. */ 5709 newsav = KEY_NEWSAV(m, mhp, &error); 5710 if (newsav == NULL) 5711 goto error; 5712 newsav->sah = sah; 5713 5714 error = key_handle_natt_info(newsav, mhp); 5715 if (error != 0) { 5716 key_delsav(newsav); 5717 error = EINVAL; 5718 goto error; 5719 } 5720 5721 error = key_init_xform(newsav); 5722 if (error != 0) { 5723 key_delsav(newsav); 5724 goto error; 5725 } 5726 5727 /* Add to sah#savlist */ 5728 key_init_sav(newsav); 5729 newsav->state = SADB_SASTATE_MATURE; 5730 mutex_enter(&key_sad.lock); 5731 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); 5732 mutex_exit(&key_sad.lock); 5733 key_validate_savlist(sah, SADB_SASTATE_MATURE); 5734 5735 key_sah_unref(sah); 5736 sah = NULL; 5737 5738 /* 5739 * don't call key_freesav() here, as we would like to keep the SA 5740 * in the database on success. 5741 */ 5742 5743 { 5744 struct mbuf *n; 5745 5746 /* set msg buf from mhp */ 5747 n = key_getmsgbuf_x1(m, mhp); 5748 if (n == NULL) { 5749 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5750 return key_senderror(so, m, ENOBUFS); 5751 } 5752 5753 m_freem(m); 5754 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5755 } 5756 error: 5757 key_sah_unref(sah); 5758 return key_senderror(so, m, error); 5759 } 5760 5761 /* m is retained */ 5762 static int 5763 key_setident(struct secashead *sah, struct mbuf *m, 5764 const struct sadb_msghdr *mhp) 5765 { 5766 const struct sadb_ident *idsrc, *iddst; 5767 int idsrclen, iddstlen; 5768 5769 KASSERT(!cpu_softintr_p()); 5770 KASSERT(sah != NULL); 5771 KASSERT(m != NULL); 5772 KASSERT(mhp != NULL); 5773 KASSERT(mhp->msg != NULL); 5774 5775 /* 5776 * Can be called with an existing sah from key_api_update(). 5777 */ 5778 if (sah->idents != NULL) { 5779 kmem_free(sah->idents, sah->idents_len); 5780 sah->idents = NULL; 5781 sah->idents_len = 0; 5782 } 5783 if (sah->identd != NULL) { 5784 kmem_free(sah->identd, sah->identd_len); 5785 sah->identd = NULL; 5786 sah->identd_len = 0; 5787 } 5788 5789 /* don't make buffer if not there */ 5790 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5791 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5792 sah->idents = NULL; 5793 sah->identd = NULL; 5794 return 0; 5795 } 5796 5797 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5798 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5799 IPSECLOG(LOG_DEBUG, "invalid identity.\n"); 5800 return EINVAL; 5801 } 5802 5803 idsrc = mhp->ext[SADB_EXT_IDENTITY_SRC]; 5804 iddst = mhp->ext[SADB_EXT_IDENTITY_DST]; 5805 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5806 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5807 5808 /* validity check */ 5809 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5810 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n"); 5811 return EINVAL; 5812 } 5813 5814 switch (idsrc->sadb_ident_type) { 5815 case SADB_IDENTTYPE_PREFIX: 5816 case SADB_IDENTTYPE_FQDN: 5817 case SADB_IDENTTYPE_USERFQDN: 5818 default: 5819 /* XXX do nothing */ 5820 sah->idents = NULL; 5821 sah->identd = NULL; 5822 return 0; 5823 } 5824 5825 /* make structure */ 5826 sah->idents = kmem_alloc(idsrclen, KM_SLEEP); 5827 sah->idents_len = idsrclen; 5828 sah->identd = kmem_alloc(iddstlen, KM_SLEEP); 5829 sah->identd_len = iddstlen; 5830 memcpy(sah->idents, idsrc, idsrclen); 5831 memcpy(sah->identd, iddst, iddstlen); 5832 5833 return 0; 5834 } 5835 5836 /* 5837 * m will not be freed on return. It never return NULL. 5838 * it is caller's responsibility to free the result. 5839 */ 5840 static struct mbuf * 5841 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 5842 { 5843 struct mbuf *n; 5844 5845 KASSERT(m != NULL); 5846 KASSERT(mhp != NULL); 5847 KASSERT(mhp->msg != NULL); 5848 5849 /* create new sadb_msg to reply. */ 5850 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED, 5851 SADB_EXT_SA, SADB_X_EXT_SA2, 5852 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5853 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5854 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, 5855 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, 5856 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, 5857 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG); 5858 5859 KASSERT(n->m_len >= sizeof(struct sadb_msg)); 5860 5861 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5862 mtod(n, struct sadb_msg *)->sadb_msg_len = 5863 PFKEY_UNIT64(n->m_pkthdr.len); 5864 5865 return n; 5866 } 5867 5868 static int key_delete_all (struct socket *, struct mbuf *, 5869 const struct sadb_msghdr *, u_int16_t); 5870 5871 /* 5872 * SADB_DELETE processing 5873 * receive 5874 * <base, SA(*), address(SD)> 5875 * from the ikmpd, and set SADB_SASTATE_DEAD, 5876 * and send, 5877 * <base, SA(*), address(SD)> 5878 * to the ikmpd. 5879 * 5880 * m will always be freed. 5881 */ 5882 static int 5883 key_api_delete(struct socket *so, struct mbuf *m, 5884 const struct sadb_msghdr *mhp) 5885 { 5886 struct sadb_sa *sa0; 5887 const struct sockaddr *src, *dst; 5888 struct secasindex saidx; 5889 struct secashead *sah; 5890 struct secasvar *sav = NULL; 5891 u_int16_t proto; 5892 int error; 5893 5894 /* map satype to proto */ 5895 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5896 if (proto == 0) { 5897 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5898 return key_senderror(so, m, EINVAL); 5899 } 5900 5901 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5902 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5903 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5904 return key_senderror(so, m, EINVAL); 5905 } 5906 5907 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5908 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5909 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5910 return key_senderror(so, m, EINVAL); 5911 } 5912 5913 if (mhp->ext[SADB_EXT_SA] == NULL) { 5914 /* 5915 * Caller wants us to delete all non-LARVAL SAs 5916 * that match the src/dst. This is used during 5917 * IKE INITIAL-CONTACT. 5918 */ 5919 IPSECLOG(LOG_DEBUG, "doing delete all.\n"); 5920 return key_delete_all(so, m, mhp, proto); 5921 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5922 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5923 return key_senderror(so, m, EINVAL); 5924 } 5925 5926 sa0 = mhp->ext[SADB_EXT_SA]; 5927 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5928 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5929 5930 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 5931 if (error != 0) 5932 return key_senderror(so, m, EINVAL); 5933 5934 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5935 if (error != 0) 5936 return key_senderror(so, m, EINVAL); 5937 5938 /* get a SA header */ 5939 sah = key_getsah_ref(&saidx, CMP_HEAD); 5940 if (sah != NULL) { 5941 /* get a SA with SPI. */ 5942 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5943 key_sah_unref(sah); 5944 } 5945 5946 if (sav == NULL) { 5947 IPSECLOG(LOG_DEBUG, "no SA found.\n"); 5948 return key_senderror(so, m, ENOENT); 5949 } 5950 5951 key_destroy_sav_with_ref(sav); 5952 sav = NULL; 5953 5954 { 5955 struct mbuf *n; 5956 5957 /* create new sadb_msg to reply. */ 5958 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5959 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5960 5961 key_fill_replymsg(n, 0); 5962 m_freem(m); 5963 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5964 } 5965 } 5966 5967 /* 5968 * delete all SAs for src/dst. Called from key_api_delete(). 5969 */ 5970 static int 5971 key_delete_all(struct socket *so, struct mbuf *m, 5972 const struct sadb_msghdr *mhp, u_int16_t proto) 5973 { 5974 const struct sockaddr *src, *dst; 5975 struct secasindex saidx; 5976 struct secashead *sah; 5977 struct secasvar *sav; 5978 u_int state; 5979 int error; 5980 5981 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5982 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5983 5984 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 5985 if (error != 0) 5986 return key_senderror(so, m, EINVAL); 5987 5988 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5989 if (error != 0) 5990 return key_senderror(so, m, EINVAL); 5991 5992 sah = key_getsah_ref(&saidx, CMP_HEAD); 5993 if (sah != NULL) { 5994 /* Delete all non-LARVAL SAs. */ 5995 SASTATE_ALIVE_FOREACH(state) { 5996 if (state == SADB_SASTATE_LARVAL) 5997 continue; 5998 restart: 5999 mutex_enter(&key_sad.lock); 6000 SAVLIST_WRITER_FOREACH(sav, sah, state) { 6001 sav->state = SADB_SASTATE_DEAD; 6002 key_unlink_sav(sav); 6003 mutex_exit(&key_sad.lock); 6004 key_destroy_sav(sav); 6005 goto restart; 6006 } 6007 mutex_exit(&key_sad.lock); 6008 } 6009 key_sah_unref(sah); 6010 } 6011 { 6012 struct mbuf *n; 6013 6014 /* create new sadb_msg to reply. */ 6015 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 6016 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6017 6018 key_fill_replymsg(n, 0); 6019 m_freem(m); 6020 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6021 } 6022 } 6023 6024 /* 6025 * SADB_GET processing 6026 * receive 6027 * <base, SA(*), address(SD)> 6028 * from the ikmpd, and get a SP and a SA to respond, 6029 * and send, 6030 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 6031 * (identity(SD),) (sensitivity)> 6032 * to the ikmpd. 6033 * 6034 * m will always be freed. 6035 */ 6036 static int 6037 key_api_get(struct socket *so, struct mbuf *m, 6038 const struct sadb_msghdr *mhp) 6039 { 6040 struct sadb_sa *sa0; 6041 const struct sockaddr *src, *dst; 6042 struct secasindex saidx; 6043 struct secasvar *sav = NULL; 6044 u_int16_t proto; 6045 int error; 6046 6047 /* map satype to proto */ 6048 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6049 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6050 return key_senderror(so, m, EINVAL); 6051 } 6052 6053 if (mhp->ext[SADB_EXT_SA] == NULL || 6054 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6055 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 6056 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6057 return key_senderror(so, m, EINVAL); 6058 } 6059 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 6060 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6061 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6062 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6063 return key_senderror(so, m, EINVAL); 6064 } 6065 6066 sa0 = mhp->ext[SADB_EXT_SA]; 6067 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6068 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6069 6070 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6071 if (error != 0) 6072 return key_senderror(so, m, EINVAL); 6073 6074 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6075 if (error != 0) 6076 return key_senderror(so, m, EINVAL); 6077 6078 /* get a SA header */ 6079 { 6080 struct secashead *sah; 6081 int s = pserialize_read_enter(); 6082 6083 sah = key_getsah(&saidx, CMP_HEAD); 6084 if (sah != NULL) { 6085 /* get a SA with SPI. */ 6086 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 6087 } 6088 pserialize_read_exit(s); 6089 } 6090 if (sav == NULL) { 6091 IPSECLOG(LOG_DEBUG, "no SA found.\n"); 6092 return key_senderror(so, m, ENOENT); 6093 } 6094 6095 { 6096 struct mbuf *n; 6097 u_int8_t satype; 6098 6099 /* map proto to satype */ 6100 satype = key_proto2satype(sav->sah->saidx.proto); 6101 if (satype == 0) { 6102 KEY_SA_UNREF(&sav); 6103 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n"); 6104 return key_senderror(so, m, EINVAL); 6105 } 6106 6107 /* create new sadb_msg to reply. */ 6108 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 6109 mhp->msg->sadb_msg_pid); 6110 KEY_SA_UNREF(&sav); 6111 m_freem(m); 6112 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6113 } 6114 } 6115 6116 /* XXX make it sysctl-configurable? */ 6117 static void 6118 key_getcomb_setlifetime(struct sadb_comb *comb) 6119 { 6120 6121 comb->sadb_comb_soft_allocations = 1; 6122 comb->sadb_comb_hard_allocations = 1; 6123 comb->sadb_comb_soft_bytes = 0; 6124 comb->sadb_comb_hard_bytes = 0; 6125 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 6126 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100; 6127 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */ 6128 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 6129 } 6130 6131 /* 6132 * XXX reorder combinations by preference 6133 * XXX no idea if the user wants ESP authentication or not 6134 */ 6135 static struct mbuf * 6136 key_getcomb_esp(int mflag) 6137 { 6138 struct sadb_comb *comb; 6139 const struct enc_xform *algo; 6140 struct mbuf *result = NULL, *m, *n; 6141 int encmin; 6142 int i, off, o; 6143 int totlen; 6144 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6145 6146 m = NULL; 6147 for (i = 1; i <= SADB_EALG_MAX; i++) { 6148 algo = esp_algorithm_lookup(i); 6149 if (algo == NULL) 6150 continue; 6151 6152 /* discard algorithms with key size smaller than system min */ 6153 if (_BITS(algo->maxkey) < ipsec_esp_keymin) 6154 continue; 6155 if (_BITS(algo->minkey) < ipsec_esp_keymin) 6156 encmin = ipsec_esp_keymin; 6157 else 6158 encmin = _BITS(algo->minkey); 6159 6160 if (ipsec_esp_auth) 6161 m = key_getcomb_ah(mflag); 6162 else { 6163 KASSERTMSG(l <= MLEN, 6164 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6165 MGET(m, mflag, MT_DATA); 6166 if (m) { 6167 M_ALIGN(m, l); 6168 m->m_len = l; 6169 m->m_next = NULL; 6170 memset(mtod(m, void *), 0, m->m_len); 6171 } 6172 } 6173 if (!m) 6174 goto fail; 6175 6176 totlen = 0; 6177 for (n = m; n; n = n->m_next) 6178 totlen += n->m_len; 6179 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l); 6180 6181 for (off = 0; off < totlen; off += l) { 6182 n = m_pulldown(m, off, l, &o); 6183 if (!n) { 6184 /* m is already freed */ 6185 goto fail; 6186 } 6187 comb = (struct sadb_comb *)(mtod(n, char *) + o); 6188 memset(comb, 0, sizeof(*comb)); 6189 key_getcomb_setlifetime(comb); 6190 comb->sadb_comb_encrypt = i; 6191 comb->sadb_comb_encrypt_minbits = encmin; 6192 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6193 } 6194 6195 if (!result) 6196 result = m; 6197 else 6198 m_cat(result, m); 6199 } 6200 6201 return result; 6202 6203 fail: 6204 if (result) 6205 m_freem(result); 6206 return NULL; 6207 } 6208 6209 static void 6210 key_getsizes_ah(const struct auth_hash *ah, int alg, 6211 u_int16_t* ksmin, u_int16_t* ksmax) 6212 { 6213 *ksmin = *ksmax = ah->keysize; 6214 if (ah->keysize == 0) { 6215 /* 6216 * Transform takes arbitrary key size but algorithm 6217 * key size is restricted. Enforce this here. 6218 */ 6219 switch (alg) { 6220 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break; 6221 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break; 6222 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break; 6223 default: 6224 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg); 6225 break; 6226 } 6227 } 6228 } 6229 6230 /* 6231 * XXX reorder combinations by preference 6232 */ 6233 static struct mbuf * 6234 key_getcomb_ah(int mflag) 6235 { 6236 struct sadb_comb *comb; 6237 const struct auth_hash *algo; 6238 struct mbuf *m; 6239 u_int16_t minkeysize, maxkeysize; 6240 int i; 6241 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6242 6243 m = NULL; 6244 for (i = 1; i <= SADB_AALG_MAX; i++) { 6245 #if 1 6246 /* we prefer HMAC algorithms, not old algorithms */ 6247 if (i != SADB_AALG_SHA1HMAC && 6248 i != SADB_AALG_MD5HMAC && 6249 i != SADB_X_AALG_SHA2_256 && 6250 i != SADB_X_AALG_SHA2_384 && 6251 i != SADB_X_AALG_SHA2_512) 6252 continue; 6253 #endif 6254 algo = ah_algorithm_lookup(i); 6255 if (!algo) 6256 continue; 6257 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6258 /* discard algorithms with key size smaller than system min */ 6259 if (_BITS(minkeysize) < ipsec_ah_keymin) 6260 continue; 6261 6262 if (!m) { 6263 KASSERTMSG(l <= MLEN, 6264 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6265 MGET(m, mflag, MT_DATA); 6266 if (m) { 6267 M_ALIGN(m, l); 6268 m->m_len = l; 6269 m->m_next = NULL; 6270 } 6271 } else 6272 M_PREPEND(m, l, mflag); 6273 if (!m) 6274 return NULL; 6275 6276 if (m->m_len < sizeof(struct sadb_comb)) { 6277 m = m_pullup(m, sizeof(struct sadb_comb)); 6278 if (m == NULL) 6279 return NULL; 6280 } 6281 6282 comb = mtod(m, struct sadb_comb *); 6283 memset(comb, 0, sizeof(*comb)); 6284 key_getcomb_setlifetime(comb); 6285 comb->sadb_comb_auth = i; 6286 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6287 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6288 } 6289 6290 return m; 6291 } 6292 6293 /* 6294 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6295 * XXX reorder combinations by preference 6296 */ 6297 static struct mbuf * 6298 key_getcomb_ipcomp(int mflag) 6299 { 6300 struct sadb_comb *comb; 6301 const struct comp_algo *algo; 6302 struct mbuf *m; 6303 int i; 6304 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6305 6306 m = NULL; 6307 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6308 algo = ipcomp_algorithm_lookup(i); 6309 if (!algo) 6310 continue; 6311 6312 if (!m) { 6313 KASSERTMSG(l <= MLEN, 6314 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6315 MGET(m, mflag, MT_DATA); 6316 if (m) { 6317 M_ALIGN(m, l); 6318 m->m_len = l; 6319 m->m_next = NULL; 6320 } 6321 } else 6322 M_PREPEND(m, l, mflag); 6323 if (!m) 6324 return NULL; 6325 6326 if (m->m_len < sizeof(struct sadb_comb)) { 6327 m = m_pullup(m, sizeof(struct sadb_comb)); 6328 if (m == NULL) 6329 return NULL; 6330 } 6331 6332 comb = mtod(m, struct sadb_comb *); 6333 memset(comb, 0, sizeof(*comb)); 6334 key_getcomb_setlifetime(comb); 6335 comb->sadb_comb_encrypt = i; 6336 /* what should we set into sadb_comb_*_{min,max}bits? */ 6337 } 6338 6339 return m; 6340 } 6341 6342 /* 6343 * XXX no way to pass mode (transport/tunnel) to userland 6344 * XXX replay checking? 6345 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6346 */ 6347 static struct mbuf * 6348 key_getprop(const struct secasindex *saidx, int mflag) 6349 { 6350 struct sadb_prop *prop; 6351 struct mbuf *m, *n; 6352 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6353 int totlen; 6354 6355 switch (saidx->proto) { 6356 case IPPROTO_ESP: 6357 m = key_getcomb_esp(mflag); 6358 break; 6359 case IPPROTO_AH: 6360 m = key_getcomb_ah(mflag); 6361 break; 6362 case IPPROTO_IPCOMP: 6363 m = key_getcomb_ipcomp(mflag); 6364 break; 6365 default: 6366 return NULL; 6367 } 6368 6369 if (!m) 6370 return NULL; 6371 M_PREPEND(m, l, mflag); 6372 if (!m) 6373 return NULL; 6374 6375 totlen = 0; 6376 for (n = m; n; n = n->m_next) 6377 totlen += n->m_len; 6378 6379 prop = mtod(m, struct sadb_prop *); 6380 memset(prop, 0, sizeof(*prop)); 6381 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6382 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6383 prop->sadb_prop_replay = 32; /* XXX */ 6384 6385 return m; 6386 } 6387 6388 /* 6389 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire(). 6390 * send 6391 * <base, SA, address(SD), (address(P)), x_policy, 6392 * (identity(SD),) (sensitivity,) proposal> 6393 * to KMD, and expect to receive 6394 * <base> with SADB_ACQUIRE if error occurred, 6395 * or 6396 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6397 * from KMD by PF_KEY. 6398 * 6399 * XXX x_policy is outside of RFC2367 (KAME extension). 6400 * XXX sensitivity is not supported. 6401 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6402 * see comment for key_getcomb_ipcomp(). 6403 * 6404 * OUT: 6405 * 0 : succeed 6406 * others: error number 6407 */ 6408 static int 6409 key_acquire(const struct secasindex *saidx, const struct secpolicy *sp, int mflag) 6410 { 6411 struct mbuf *result = NULL, *m; 6412 #ifndef IPSEC_NONBLOCK_ACQUIRE 6413 struct secacq *newacq; 6414 #endif 6415 u_int8_t satype; 6416 int error = -1; 6417 u_int32_t seq; 6418 6419 /* sanity check */ 6420 KASSERT(saidx != NULL); 6421 satype = key_proto2satype(saidx->proto); 6422 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto); 6423 6424 #ifndef IPSEC_NONBLOCK_ACQUIRE 6425 /* 6426 * We never do anything about acquirng SA. There is anather 6427 * solution that kernel blocks to send SADB_ACQUIRE message until 6428 * getting something message from IKEd. In later case, to be 6429 * managed with ACQUIRING list. 6430 */ 6431 /* Get an entry to check whether sending message or not. */ 6432 mutex_enter(&key_misc.lock); 6433 newacq = key_getacq(saidx); 6434 if (newacq != NULL) { 6435 if (key_blockacq_count < newacq->count) { 6436 /* reset counter and do send message. */ 6437 newacq->count = 0; 6438 } else { 6439 /* increment counter and do nothing. */ 6440 newacq->count++; 6441 mutex_exit(&key_misc.lock); 6442 return 0; 6443 } 6444 } else { 6445 /* make new entry for blocking to send SADB_ACQUIRE. */ 6446 newacq = key_newacq(saidx); 6447 if (newacq == NULL) { 6448 mutex_exit(&key_misc.lock); 6449 return ENOBUFS; 6450 } 6451 6452 /* add to key_misc.acqlist */ 6453 LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain); 6454 } 6455 6456 seq = newacq->seq; 6457 mutex_exit(&key_misc.lock); 6458 #else 6459 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 6460 #endif 6461 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0, mflag); 6462 if (!m) { 6463 error = ENOBUFS; 6464 goto fail; 6465 } 6466 result = m; 6467 6468 /* set sadb_address for saidx's. */ 6469 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK, 6470 IPSEC_ULPROTO_ANY, mflag); 6471 if (!m) { 6472 error = ENOBUFS; 6473 goto fail; 6474 } 6475 m_cat(result, m); 6476 6477 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK, 6478 IPSEC_ULPROTO_ANY, mflag); 6479 if (!m) { 6480 error = ENOBUFS; 6481 goto fail; 6482 } 6483 m_cat(result, m); 6484 6485 /* XXX proxy address (optional) */ 6486 6487 /* set sadb_x_policy */ 6488 if (sp) { 6489 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id, 6490 mflag); 6491 if (!m) { 6492 error = ENOBUFS; 6493 goto fail; 6494 } 6495 m_cat(result, m); 6496 } 6497 6498 /* XXX identity (optional) */ 6499 #if 0 6500 if (idexttype && fqdn) { 6501 /* create identity extension (FQDN) */ 6502 struct sadb_ident *id; 6503 int fqdnlen; 6504 6505 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6506 id = (struct sadb_ident *)p; 6507 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6508 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6509 id->sadb_ident_exttype = idexttype; 6510 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6511 memcpy(id + 1, fqdn, fqdnlen); 6512 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6513 } 6514 6515 if (idexttype) { 6516 /* create identity extension (USERFQDN) */ 6517 struct sadb_ident *id; 6518 int userfqdnlen; 6519 6520 if (userfqdn) { 6521 /* +1 for terminating-NUL */ 6522 userfqdnlen = strlen(userfqdn) + 1; 6523 } else 6524 userfqdnlen = 0; 6525 id = (struct sadb_ident *)p; 6526 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6527 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6528 id->sadb_ident_exttype = idexttype; 6529 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6530 /* XXX is it correct? */ 6531 if (curlwp) 6532 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred); 6533 if (userfqdn && userfqdnlen) 6534 memcpy(id + 1, userfqdn, userfqdnlen); 6535 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6536 } 6537 #endif 6538 6539 /* XXX sensitivity (optional) */ 6540 6541 /* create proposal/combination extension */ 6542 m = key_getprop(saidx, mflag); 6543 #if 0 6544 /* 6545 * spec conformant: always attach proposal/combination extension, 6546 * the problem is that we have no way to attach it for ipcomp, 6547 * due to the way sadb_comb is declared in RFC2367. 6548 */ 6549 if (!m) { 6550 error = ENOBUFS; 6551 goto fail; 6552 } 6553 m_cat(result, m); 6554 #else 6555 /* 6556 * outside of spec; make proposal/combination extension optional. 6557 */ 6558 if (m) 6559 m_cat(result, m); 6560 #endif 6561 6562 KASSERT(result->m_flags & M_PKTHDR); 6563 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 6564 6565 result->m_pkthdr.len = 0; 6566 for (m = result; m; m = m->m_next) 6567 result->m_pkthdr.len += m->m_len; 6568 6569 mtod(result, struct sadb_msg *)->sadb_msg_len = 6570 PFKEY_UNIT64(result->m_pkthdr.len); 6571 6572 /* 6573 * Called from key_api_acquire that must come from userland, so 6574 * we can call key_sendup_mbuf immediately. 6575 */ 6576 if (mflag == M_WAITOK) 6577 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6578 /* 6579 * XXX we cannot call key_sendup_mbuf directly here because 6580 * it can cause a deadlock: 6581 * - We have a reference to an SP (and an SA) here 6582 * - key_sendup_mbuf will try to take key_so_mtx 6583 * - Some other thread may try to localcount_drain to the SP with 6584 * holding key_so_mtx in say key_api_spdflush 6585 * - In this case localcount_drain never return because key_sendup_mbuf 6586 * that has stuck on key_so_mtx never release a reference to the SP 6587 * 6588 * So defer key_sendup_mbuf to the timer. 6589 */ 6590 return key_acquire_sendup_mbuf_later(result); 6591 6592 fail: 6593 if (result) 6594 m_freem(result); 6595 return error; 6596 } 6597 6598 static struct mbuf *key_acquire_mbuf_head = NULL; 6599 static unsigned key_acquire_mbuf_count = 0; 6600 #define KEY_ACQUIRE_MBUF_MAX 10 6601 6602 static void 6603 key_acquire_sendup_pending_mbuf(void) 6604 { 6605 struct mbuf *m, *prev; 6606 int error; 6607 6608 again: 6609 prev = NULL; 6610 mutex_enter(&key_misc.lock); 6611 m = key_acquire_mbuf_head; 6612 /* Get an earliest mbuf (one at the tail of the list) */ 6613 while (m != NULL) { 6614 if (m->m_nextpkt == NULL) { 6615 if (prev != NULL) 6616 prev->m_nextpkt = NULL; 6617 if (m == key_acquire_mbuf_head) 6618 key_acquire_mbuf_head = NULL; 6619 key_acquire_mbuf_count--; 6620 break; 6621 } 6622 prev = m; 6623 m = m->m_nextpkt; 6624 } 6625 mutex_exit(&key_misc.lock); 6626 6627 if (m == NULL) 6628 return; 6629 6630 m->m_nextpkt = NULL; 6631 error = key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 6632 if (error != 0) 6633 IPSECLOG(LOG_WARNING, "key_sendup_mbuf failed (error=%d)\n", 6634 error); 6635 6636 if (prev != NULL) 6637 goto again; 6638 } 6639 6640 static int 6641 key_acquire_sendup_mbuf_later(struct mbuf *m) 6642 { 6643 6644 mutex_enter(&key_misc.lock); 6645 /* Avoid queuing too much mbufs */ 6646 if (key_acquire_mbuf_count >= KEY_ACQUIRE_MBUF_MAX) { 6647 mutex_exit(&key_misc.lock); 6648 m_freem(m); 6649 return ENOBUFS; /* XXX */ 6650 } 6651 /* Enqueue mbuf at the head of the list */ 6652 m->m_nextpkt = key_acquire_mbuf_head; 6653 key_acquire_mbuf_head = m; 6654 key_acquire_mbuf_count++; 6655 mutex_exit(&key_misc.lock); 6656 6657 /* Kick the timer */ 6658 key_timehandler(NULL); 6659 6660 return 0; 6661 } 6662 6663 #ifndef IPSEC_NONBLOCK_ACQUIRE 6664 static struct secacq * 6665 key_newacq(const struct secasindex *saidx) 6666 { 6667 struct secacq *newacq; 6668 6669 /* get new entry */ 6670 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP); 6671 if (newacq == NULL) { 6672 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 6673 return NULL; 6674 } 6675 6676 /* copy secindex */ 6677 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx)); 6678 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); 6679 newacq->created = time_uptime; 6680 newacq->count = 0; 6681 6682 return newacq; 6683 } 6684 6685 static struct secacq * 6686 key_getacq(const struct secasindex *saidx) 6687 { 6688 struct secacq *acq; 6689 6690 KASSERT(mutex_owned(&key_misc.lock)); 6691 6692 LIST_FOREACH(acq, &key_misc.acqlist, chain) { 6693 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY)) 6694 return acq; 6695 } 6696 6697 return NULL; 6698 } 6699 6700 static struct secacq * 6701 key_getacqbyseq(u_int32_t seq) 6702 { 6703 struct secacq *acq; 6704 6705 KASSERT(mutex_owned(&key_misc.lock)); 6706 6707 LIST_FOREACH(acq, &key_misc.acqlist, chain) { 6708 if (acq->seq == seq) 6709 return acq; 6710 } 6711 6712 return NULL; 6713 } 6714 #endif 6715 6716 #ifdef notyet 6717 static struct secspacq * 6718 key_newspacq(const struct secpolicyindex *spidx) 6719 { 6720 struct secspacq *acq; 6721 6722 /* get new entry */ 6723 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP); 6724 if (acq == NULL) { 6725 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 6726 return NULL; 6727 } 6728 6729 /* copy secindex */ 6730 memcpy(&acq->spidx, spidx, sizeof(acq->spidx)); 6731 acq->created = time_uptime; 6732 acq->count = 0; 6733 6734 return acq; 6735 } 6736 6737 static struct secspacq * 6738 key_getspacq(const struct secpolicyindex *spidx) 6739 { 6740 struct secspacq *acq; 6741 6742 LIST_FOREACH(acq, &key_misc.spacqlist, chain) { 6743 if (key_spidx_match_exactly(spidx, &acq->spidx)) 6744 return acq; 6745 } 6746 6747 return NULL; 6748 } 6749 #endif /* notyet */ 6750 6751 /* 6752 * SADB_ACQUIRE processing, 6753 * in first situation, is receiving 6754 * <base> 6755 * from the ikmpd, and clear sequence of its secasvar entry. 6756 * 6757 * In second situation, is receiving 6758 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6759 * from a user land process, and return 6760 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6761 * to the socket. 6762 * 6763 * m will always be freed. 6764 */ 6765 static int 6766 key_api_acquire(struct socket *so, struct mbuf *m, 6767 const struct sadb_msghdr *mhp) 6768 { 6769 const struct sockaddr *src, *dst; 6770 struct secasindex saidx; 6771 u_int16_t proto; 6772 int error; 6773 6774 /* 6775 * Error message from KMd. 6776 * We assume that if error was occurred in IKEd, the length of PFKEY 6777 * message is equal to the size of sadb_msg structure. 6778 * We do not raise error even if error occurred in this function. 6779 */ 6780 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6781 #ifndef IPSEC_NONBLOCK_ACQUIRE 6782 struct secacq *acq; 6783 6784 /* check sequence number */ 6785 if (mhp->msg->sadb_msg_seq == 0) { 6786 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n"); 6787 m_freem(m); 6788 return 0; 6789 } 6790 6791 mutex_enter(&key_misc.lock); 6792 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); 6793 if (acq == NULL) { 6794 mutex_exit(&key_misc.lock); 6795 /* 6796 * the specified larval SA is already gone, or we got 6797 * a bogus sequence number. we can silently ignore it. 6798 */ 6799 m_freem(m); 6800 return 0; 6801 } 6802 6803 /* reset acq counter in order to deletion by timehander. */ 6804 acq->created = time_uptime; 6805 acq->count = 0; 6806 mutex_exit(&key_misc.lock); 6807 #endif 6808 m_freem(m); 6809 return 0; 6810 } 6811 6812 /* 6813 * This message is from user land. 6814 */ 6815 6816 /* map satype to proto */ 6817 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 6818 if (proto == 0) { 6819 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6820 return key_senderror(so, m, EINVAL); 6821 } 6822 6823 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6824 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6825 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6826 /* error */ 6827 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6828 return key_senderror(so, m, EINVAL); 6829 } 6830 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6831 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6832 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6833 /* error */ 6834 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6835 return key_senderror(so, m, EINVAL); 6836 } 6837 6838 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6839 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6840 6841 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6842 if (error != 0) 6843 return key_senderror(so, m, EINVAL); 6844 6845 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6846 if (error != 0) 6847 return key_senderror(so, m, EINVAL); 6848 6849 /* get a SA index */ 6850 { 6851 struct secashead *sah; 6852 int s = pserialize_read_enter(); 6853 6854 sah = key_getsah(&saidx, CMP_MODE_REQID); 6855 if (sah != NULL) { 6856 pserialize_read_exit(s); 6857 IPSECLOG(LOG_DEBUG, "a SA exists already.\n"); 6858 return key_senderror(so, m, EEXIST); 6859 } 6860 pserialize_read_exit(s); 6861 } 6862 6863 error = key_acquire(&saidx, NULL, M_WAITOK); 6864 if (error != 0) { 6865 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", 6866 error); 6867 return key_senderror(so, m, error); 6868 } 6869 6870 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6871 } 6872 6873 /* 6874 * SADB_REGISTER processing. 6875 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6876 * receive 6877 * <base> 6878 * from the ikmpd, and register a socket to send PF_KEY messages, 6879 * and send 6880 * <base, supported> 6881 * to KMD by PF_KEY. 6882 * If socket is detached, must free from regnode. 6883 * 6884 * m will always be freed. 6885 */ 6886 static int 6887 key_api_register(struct socket *so, struct mbuf *m, 6888 const struct sadb_msghdr *mhp) 6889 { 6890 struct secreg *reg, *newreg = 0; 6891 6892 /* check for invalid register message */ 6893 if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist)) 6894 return key_senderror(so, m, EINVAL); 6895 6896 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6897 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6898 goto setmsg; 6899 6900 /* Allocate regnode in advance, out of mutex */ 6901 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP); 6902 6903 /* check whether existing or not */ 6904 mutex_enter(&key_misc.lock); 6905 LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) { 6906 if (reg->so == so) { 6907 IPSECLOG(LOG_DEBUG, "socket exists already.\n"); 6908 mutex_exit(&key_misc.lock); 6909 kmem_free(newreg, sizeof(*newreg)); 6910 return key_senderror(so, m, EEXIST); 6911 } 6912 } 6913 6914 newreg->so = so; 6915 ((struct keycb *)sotorawcb(so))->kp_registered++; 6916 6917 /* add regnode to key_misc.reglist. */ 6918 LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain); 6919 mutex_exit(&key_misc.lock); 6920 6921 setmsg: 6922 { 6923 struct mbuf *n; 6924 struct sadb_supported *sup; 6925 u_int len, alen, elen; 6926 int off; 6927 int i; 6928 struct sadb_alg *alg; 6929 6930 /* create new sadb_msg to reply. */ 6931 alen = 0; 6932 for (i = 1; i <= SADB_AALG_MAX; i++) { 6933 if (ah_algorithm_lookup(i)) 6934 alen += sizeof(struct sadb_alg); 6935 } 6936 if (alen) 6937 alen += sizeof(struct sadb_supported); 6938 elen = 0; 6939 for (i = 1; i <= SADB_EALG_MAX; i++) { 6940 if (esp_algorithm_lookup(i)) 6941 elen += sizeof(struct sadb_alg); 6942 } 6943 if (elen) 6944 elen += sizeof(struct sadb_supported); 6945 6946 len = sizeof(struct sadb_msg) + alen + elen; 6947 6948 if (len > MCLBYTES) 6949 return key_senderror(so, m, ENOBUFS); 6950 6951 n = key_alloc_mbuf_simple(len, M_WAITOK); 6952 n->m_pkthdr.len = n->m_len = len; 6953 n->m_next = NULL; 6954 off = 0; 6955 6956 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 6957 key_fill_replymsg(n, 0); 6958 6959 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6960 6961 /* for authentication algorithm */ 6962 if (alen) { 6963 sup = (struct sadb_supported *)(mtod(n, char *) + off); 6964 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6965 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6966 off += PFKEY_ALIGN8(sizeof(*sup)); 6967 6968 for (i = 1; i <= SADB_AALG_MAX; i++) { 6969 const struct auth_hash *aalgo; 6970 u_int16_t minkeysize, maxkeysize; 6971 6972 aalgo = ah_algorithm_lookup(i); 6973 if (!aalgo) 6974 continue; 6975 alg = (struct sadb_alg *)(mtod(n, char *) + off); 6976 alg->sadb_alg_id = i; 6977 alg->sadb_alg_ivlen = 0; 6978 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6979 alg->sadb_alg_minbits = _BITS(minkeysize); 6980 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6981 off += PFKEY_ALIGN8(sizeof(*alg)); 6982 } 6983 } 6984 6985 /* for encryption algorithm */ 6986 if (elen) { 6987 sup = (struct sadb_supported *)(mtod(n, char *) + off); 6988 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6989 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6990 off += PFKEY_ALIGN8(sizeof(*sup)); 6991 6992 for (i = 1; i <= SADB_EALG_MAX; i++) { 6993 const struct enc_xform *ealgo; 6994 6995 ealgo = esp_algorithm_lookup(i); 6996 if (!ealgo) 6997 continue; 6998 alg = (struct sadb_alg *)(mtod(n, char *) + off); 6999 alg->sadb_alg_id = i; 7000 alg->sadb_alg_ivlen = ealgo->blocksize; 7001 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 7002 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 7003 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 7004 } 7005 } 7006 7007 KASSERTMSG(off == len, "length inconsistency"); 7008 7009 m_freem(m); 7010 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 7011 } 7012 } 7013 7014 /* 7015 * free secreg entry registered. 7016 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 7017 */ 7018 void 7019 key_freereg(struct socket *so) 7020 { 7021 struct secreg *reg; 7022 int i; 7023 7024 KASSERT(!cpu_softintr_p()); 7025 KASSERT(so != NULL); 7026 7027 /* 7028 * check whether existing or not. 7029 * check all type of SA, because there is a potential that 7030 * one socket is registered to multiple type of SA. 7031 */ 7032 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7033 mutex_enter(&key_misc.lock); 7034 LIST_FOREACH(reg, &key_misc.reglist[i], chain) { 7035 if (reg->so == so) { 7036 LIST_REMOVE(reg, chain); 7037 break; 7038 } 7039 } 7040 mutex_exit(&key_misc.lock); 7041 if (reg != NULL) 7042 kmem_free(reg, sizeof(*reg)); 7043 } 7044 7045 return; 7046 } 7047 7048 /* 7049 * SADB_EXPIRE processing 7050 * send 7051 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 7052 * to KMD by PF_KEY. 7053 * NOTE: We send only soft lifetime extension. 7054 * 7055 * OUT: 0 : succeed 7056 * others : error number 7057 */ 7058 static int 7059 key_expire(struct secasvar *sav) 7060 { 7061 int s; 7062 int satype; 7063 struct mbuf *result = NULL, *m; 7064 int len; 7065 int error = -1; 7066 struct sadb_lifetime *lt; 7067 7068 /* XXX: Why do we lock ? */ 7069 s = splsoftnet(); /*called from softclock()*/ 7070 7071 KASSERT(sav != NULL); 7072 7073 satype = key_proto2satype(sav->sah->saidx.proto); 7074 KASSERTMSG(satype != 0, "invalid proto is passed"); 7075 7076 /* set msg header */ 7077 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav), 7078 M_WAITOK); 7079 result = m; 7080 7081 /* create SA extension */ 7082 m = key_setsadbsa(sav); 7083 m_cat(result, m); 7084 7085 /* create SA extension */ 7086 m = key_setsadbxsa2(sav->sah->saidx.mode, 7087 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid); 7088 m_cat(result, m); 7089 7090 /* create lifetime extension (current and soft) */ 7091 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 7092 m = key_alloc_mbuf(len, M_WAITOK); 7093 KASSERT(m->m_next == NULL); 7094 7095 memset(mtod(m, void *), 0, len); 7096 lt = mtod(m, struct sadb_lifetime *); 7097 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7098 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 7099 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations; 7100 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes; 7101 lt->sadb_lifetime_addtime = 7102 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime); 7103 lt->sadb_lifetime_usetime = 7104 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime); 7105 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 7106 memcpy(lt, sav->lft_s, sizeof(*lt)); 7107 m_cat(result, m); 7108 7109 /* set sadb_address for source */ 7110 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, 7111 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 7112 m_cat(result, m); 7113 7114 /* set sadb_address for destination */ 7115 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa, 7116 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 7117 m_cat(result, m); 7118 7119 if ((result->m_flags & M_PKTHDR) == 0) { 7120 error = EINVAL; 7121 goto fail; 7122 } 7123 7124 if (result->m_len < sizeof(struct sadb_msg)) { 7125 result = m_pullup(result, sizeof(struct sadb_msg)); 7126 if (result == NULL) { 7127 error = ENOBUFS; 7128 goto fail; 7129 } 7130 } 7131 7132 result->m_pkthdr.len = 0; 7133 for (m = result; m; m = m->m_next) 7134 result->m_pkthdr.len += m->m_len; 7135 7136 mtod(result, struct sadb_msg *)->sadb_msg_len = 7137 PFKEY_UNIT64(result->m_pkthdr.len); 7138 7139 splx(s); 7140 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7141 7142 fail: 7143 if (result) 7144 m_freem(result); 7145 splx(s); 7146 return error; 7147 } 7148 7149 /* 7150 * SADB_FLUSH processing 7151 * receive 7152 * <base> 7153 * from the ikmpd, and free all entries in secastree. 7154 * and send, 7155 * <base> 7156 * to the ikmpd. 7157 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7158 * 7159 * m will always be freed. 7160 */ 7161 static int 7162 key_api_flush(struct socket *so, struct mbuf *m, 7163 const struct sadb_msghdr *mhp) 7164 { 7165 struct sadb_msg *newmsg; 7166 struct secashead *sah; 7167 struct secasvar *sav; 7168 u_int16_t proto; 7169 u_int8_t state; 7170 int s; 7171 7172 /* map satype to proto */ 7173 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 7174 if (proto == 0) { 7175 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7176 return key_senderror(so, m, EINVAL); 7177 } 7178 7179 /* no SATYPE specified, i.e. flushing all SA. */ 7180 s = pserialize_read_enter(); 7181 SAHLIST_READER_FOREACH(sah) { 7182 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && 7183 proto != sah->saidx.proto) 7184 continue; 7185 7186 key_sah_ref(sah); 7187 pserialize_read_exit(s); 7188 7189 SASTATE_ALIVE_FOREACH(state) { 7190 restart: 7191 mutex_enter(&key_sad.lock); 7192 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7193 sav->state = SADB_SASTATE_DEAD; 7194 key_unlink_sav(sav); 7195 mutex_exit(&key_sad.lock); 7196 key_destroy_sav(sav); 7197 goto restart; 7198 } 7199 mutex_exit(&key_sad.lock); 7200 } 7201 7202 s = pserialize_read_enter(); 7203 sah->state = SADB_SASTATE_DEAD; 7204 key_sah_unref(sah); 7205 } 7206 pserialize_read_exit(s); 7207 7208 if (m->m_len < sizeof(struct sadb_msg) || 7209 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7210 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 7211 return key_senderror(so, m, ENOBUFS); 7212 } 7213 7214 if (m->m_next) 7215 m_freem(m->m_next); 7216 m->m_next = NULL; 7217 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7218 newmsg = mtod(m, struct sadb_msg *); 7219 newmsg->sadb_msg_errno = 0; 7220 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7221 7222 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7223 } 7224 7225 7226 static struct mbuf * 7227 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid) 7228 { 7229 struct secashead *sah; 7230 struct secasvar *sav; 7231 u_int16_t proto; 7232 u_int8_t satype; 7233 u_int8_t state; 7234 int cnt; 7235 struct mbuf *m, *n, *prev; 7236 7237 KASSERT(mutex_owned(&key_sad.lock)); 7238 7239 *lenp = 0; 7240 7241 /* map satype to proto */ 7242 proto = key_satype2proto(req_satype); 7243 if (proto == 0) { 7244 *errorp = EINVAL; 7245 return (NULL); 7246 } 7247 7248 /* count sav entries to be sent to userland. */ 7249 cnt = 0; 7250 SAHLIST_WRITER_FOREACH(sah) { 7251 if (req_satype != SADB_SATYPE_UNSPEC && 7252 proto != sah->saidx.proto) 7253 continue; 7254 7255 SASTATE_ANY_FOREACH(state) { 7256 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7257 cnt++; 7258 } 7259 } 7260 } 7261 7262 if (cnt == 0) { 7263 *errorp = ENOENT; 7264 return (NULL); 7265 } 7266 7267 /* send this to the userland, one at a time. */ 7268 m = NULL; 7269 prev = m; 7270 SAHLIST_WRITER_FOREACH(sah) { 7271 if (req_satype != SADB_SATYPE_UNSPEC && 7272 proto != sah->saidx.proto) 7273 continue; 7274 7275 /* map proto to satype */ 7276 satype = key_proto2satype(sah->saidx.proto); 7277 if (satype == 0) { 7278 m_freem(m); 7279 *errorp = EINVAL; 7280 return (NULL); 7281 } 7282 7283 SASTATE_ANY_FOREACH(state) { 7284 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7285 n = key_setdumpsa(sav, SADB_DUMP, satype, 7286 --cnt, pid); 7287 if (!m) 7288 m = n; 7289 else 7290 prev->m_nextpkt = n; 7291 prev = n; 7292 } 7293 } 7294 } 7295 7296 if (!m) { 7297 *errorp = EINVAL; 7298 return (NULL); 7299 } 7300 7301 if ((m->m_flags & M_PKTHDR) != 0) { 7302 m->m_pkthdr.len = 0; 7303 for (n = m; n; n = n->m_next) 7304 m->m_pkthdr.len += n->m_len; 7305 } 7306 7307 *errorp = 0; 7308 return (m); 7309 } 7310 7311 /* 7312 * SADB_DUMP processing 7313 * dump all entries including status of DEAD in SAD. 7314 * receive 7315 * <base> 7316 * from the ikmpd, and dump all secasvar leaves 7317 * and send, 7318 * <base> ..... 7319 * to the ikmpd. 7320 * 7321 * m will always be freed. 7322 */ 7323 static int 7324 key_api_dump(struct socket *so, struct mbuf *m0, 7325 const struct sadb_msghdr *mhp) 7326 { 7327 u_int16_t proto; 7328 u_int8_t satype; 7329 struct mbuf *n; 7330 int error, len, ok; 7331 7332 /* map satype to proto */ 7333 satype = mhp->msg->sadb_msg_satype; 7334 proto = key_satype2proto(satype); 7335 if (proto == 0) { 7336 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7337 return key_senderror(so, m0, EINVAL); 7338 } 7339 7340 /* 7341 * If the requestor has insufficient socket-buffer space 7342 * for the entire chain, nobody gets any response to the DUMP. 7343 * XXX For now, only the requestor ever gets anything. 7344 * Moreover, if the requestor has any space at all, they receive 7345 * the entire chain, otherwise the request is refused with ENOBUFS. 7346 */ 7347 if (sbspace(&so->so_rcv) <= 0) { 7348 return key_senderror(so, m0, ENOBUFS); 7349 } 7350 7351 mutex_enter(&key_sad.lock); 7352 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid); 7353 mutex_exit(&key_sad.lock); 7354 7355 if (n == NULL) { 7356 return key_senderror(so, m0, ENOENT); 7357 } 7358 { 7359 uint64_t *ps = PFKEY_STAT_GETREF(); 7360 ps[PFKEY_STAT_IN_TOTAL]++; 7361 ps[PFKEY_STAT_IN_BYTES] += len; 7362 PFKEY_STAT_PUTREF(); 7363 } 7364 7365 /* 7366 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 7367 * The requestor receives either the entire chain, or an 7368 * error message with ENOBUFS. 7369 * 7370 * sbappendaddrchain() takes the chain of entries, one 7371 * packet-record per SPD entry, prepends the key_src sockaddr 7372 * to each packet-record, links the sockaddr mbufs into a new 7373 * list of records, then appends the entire resulting 7374 * list to the requesting socket. 7375 */ 7376 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, 7377 SB_PRIO_ONESHOT_OVERFLOW); 7378 7379 if (!ok) { 7380 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 7381 m_freem(n); 7382 return key_senderror(so, m0, ENOBUFS); 7383 } 7384 7385 m_freem(m0); 7386 return 0; 7387 } 7388 7389 /* 7390 * SADB_X_PROMISC processing 7391 * 7392 * m will always be freed. 7393 */ 7394 static int 7395 key_api_promisc(struct socket *so, struct mbuf *m, 7396 const struct sadb_msghdr *mhp) 7397 { 7398 int olen; 7399 7400 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7401 7402 if (olen < sizeof(struct sadb_msg)) { 7403 #if 1 7404 return key_senderror(so, m, EINVAL); 7405 #else 7406 m_freem(m); 7407 return 0; 7408 #endif 7409 } else if (olen == sizeof(struct sadb_msg)) { 7410 /* enable/disable promisc mode */ 7411 struct keycb *kp = (struct keycb *)sotorawcb(so); 7412 if (kp == NULL) 7413 return key_senderror(so, m, EINVAL); 7414 mhp->msg->sadb_msg_errno = 0; 7415 switch (mhp->msg->sadb_msg_satype) { 7416 case 0: 7417 case 1: 7418 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7419 break; 7420 default: 7421 return key_senderror(so, m, EINVAL); 7422 } 7423 7424 /* send the original message back to everyone */ 7425 mhp->msg->sadb_msg_errno = 0; 7426 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7427 } else { 7428 /* send packet as is */ 7429 7430 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7431 7432 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7433 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7434 } 7435 } 7436 7437 static int (*key_api_typesw[]) (struct socket *, struct mbuf *, 7438 const struct sadb_msghdr *) = { 7439 NULL, /* SADB_RESERVED */ 7440 key_api_getspi, /* SADB_GETSPI */ 7441 key_api_update, /* SADB_UPDATE */ 7442 key_api_add, /* SADB_ADD */ 7443 key_api_delete, /* SADB_DELETE */ 7444 key_api_get, /* SADB_GET */ 7445 key_api_acquire, /* SADB_ACQUIRE */ 7446 key_api_register, /* SADB_REGISTER */ 7447 NULL, /* SADB_EXPIRE */ 7448 key_api_flush, /* SADB_FLUSH */ 7449 key_api_dump, /* SADB_DUMP */ 7450 key_api_promisc, /* SADB_X_PROMISC */ 7451 NULL, /* SADB_X_PCHANGE */ 7452 key_api_spdadd, /* SADB_X_SPDUPDATE */ 7453 key_api_spdadd, /* SADB_X_SPDADD */ 7454 key_api_spddelete, /* SADB_X_SPDDELETE */ 7455 key_api_spdget, /* SADB_X_SPDGET */ 7456 NULL, /* SADB_X_SPDACQUIRE */ 7457 key_api_spddump, /* SADB_X_SPDDUMP */ 7458 key_api_spdflush, /* SADB_X_SPDFLUSH */ 7459 key_api_spdadd, /* SADB_X_SPDSETIDX */ 7460 NULL, /* SADB_X_SPDEXPIRE */ 7461 key_api_spddelete2, /* SADB_X_SPDDELETE2 */ 7462 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */ 7463 }; 7464 7465 /* 7466 * parse sadb_msg buffer to process PFKEYv2, 7467 * and create a data to response if needed. 7468 * I think to be dealed with mbuf directly. 7469 * IN: 7470 * msgp : pointer to pointer to a received buffer pulluped. 7471 * This is rewrited to response. 7472 * so : pointer to socket. 7473 * OUT: 7474 * length for buffer to send to user process. 7475 */ 7476 int 7477 key_parse(struct mbuf *m, struct socket *so) 7478 { 7479 struct sadb_msg *msg; 7480 struct sadb_msghdr mh; 7481 u_int orglen; 7482 int error; 7483 7484 KASSERT(m != NULL); 7485 KASSERT(so != NULL); 7486 7487 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7488 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) { 7489 kdebug_sadb("passed sadb_msg", msg); 7490 } 7491 #endif 7492 7493 if (m->m_len < sizeof(struct sadb_msg)) { 7494 m = m_pullup(m, sizeof(struct sadb_msg)); 7495 if (!m) 7496 return ENOBUFS; 7497 } 7498 msg = mtod(m, struct sadb_msg *); 7499 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7500 7501 if ((m->m_flags & M_PKTHDR) == 0 || 7502 m->m_pkthdr.len != orglen) { 7503 IPSECLOG(LOG_DEBUG, "invalid message length.\n"); 7504 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7505 error = EINVAL; 7506 goto senderror; 7507 } 7508 7509 if (msg->sadb_msg_version != PF_KEY_V2) { 7510 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n", 7511 msg->sadb_msg_version); 7512 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER); 7513 error = EINVAL; 7514 goto senderror; 7515 } 7516 7517 if (msg->sadb_msg_type > SADB_MAX) { 7518 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", 7519 msg->sadb_msg_type); 7520 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 7521 error = EINVAL; 7522 goto senderror; 7523 } 7524 7525 /* for old-fashioned code - should be nuked */ 7526 if (m->m_pkthdr.len > MCLBYTES) { 7527 m_freem(m); 7528 return ENOBUFS; 7529 } 7530 if (m->m_next) { 7531 struct mbuf *n; 7532 7533 n = key_alloc_mbuf_simple(m->m_pkthdr.len, M_WAITOK); 7534 7535 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *)); 7536 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7537 n->m_next = NULL; 7538 m_freem(m); 7539 m = n; 7540 } 7541 7542 /* align the mbuf chain so that extensions are in contiguous region. */ 7543 error = key_align(m, &mh); 7544 if (error) 7545 return error; 7546 7547 if (m->m_next) { /*XXX*/ 7548 m_freem(m); 7549 return ENOBUFS; 7550 } 7551 7552 msg = mh.msg; 7553 7554 /* check SA type */ 7555 switch (msg->sadb_msg_satype) { 7556 case SADB_SATYPE_UNSPEC: 7557 switch (msg->sadb_msg_type) { 7558 case SADB_GETSPI: 7559 case SADB_UPDATE: 7560 case SADB_ADD: 7561 case SADB_DELETE: 7562 case SADB_GET: 7563 case SADB_ACQUIRE: 7564 case SADB_EXPIRE: 7565 IPSECLOG(LOG_DEBUG, 7566 "must specify satype when msg type=%u.\n", 7567 msg->sadb_msg_type); 7568 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7569 error = EINVAL; 7570 goto senderror; 7571 } 7572 break; 7573 case SADB_SATYPE_AH: 7574 case SADB_SATYPE_ESP: 7575 case SADB_X_SATYPE_IPCOMP: 7576 case SADB_X_SATYPE_TCPSIGNATURE: 7577 switch (msg->sadb_msg_type) { 7578 case SADB_X_SPDADD: 7579 case SADB_X_SPDDELETE: 7580 case SADB_X_SPDGET: 7581 case SADB_X_SPDDUMP: 7582 case SADB_X_SPDFLUSH: 7583 case SADB_X_SPDSETIDX: 7584 case SADB_X_SPDUPDATE: 7585 case SADB_X_SPDDELETE2: 7586 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n", 7587 msg->sadb_msg_type); 7588 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7589 error = EINVAL; 7590 goto senderror; 7591 } 7592 break; 7593 case SADB_SATYPE_RSVP: 7594 case SADB_SATYPE_OSPFV2: 7595 case SADB_SATYPE_RIPV2: 7596 case SADB_SATYPE_MIP: 7597 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n", 7598 msg->sadb_msg_satype); 7599 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7600 error = EOPNOTSUPP; 7601 goto senderror; 7602 case 1: /* XXX: What does it do? */ 7603 if (msg->sadb_msg_type == SADB_X_PROMISC) 7604 break; 7605 /*FALLTHROUGH*/ 7606 default: 7607 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", 7608 msg->sadb_msg_satype); 7609 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7610 error = EINVAL; 7611 goto senderror; 7612 } 7613 7614 /* check field of upper layer protocol and address family */ 7615 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL && 7616 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7617 const struct sadb_address *src0, *dst0; 7618 const struct sockaddr *sa0, *da0; 7619 u_int plen; 7620 7621 src0 = mh.ext[SADB_EXT_ADDRESS_SRC]; 7622 dst0 = mh.ext[SADB_EXT_ADDRESS_DST]; 7623 sa0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_SRC); 7624 da0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_DST); 7625 7626 /* check upper layer protocol */ 7627 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7628 IPSECLOG(LOG_DEBUG, 7629 "upper layer protocol mismatched.\n"); 7630 goto invaddr; 7631 } 7632 7633 /* check family */ 7634 if (sa0->sa_family != da0->sa_family) { 7635 IPSECLOG(LOG_DEBUG, "address family mismatched.\n"); 7636 goto invaddr; 7637 } 7638 if (sa0->sa_len != da0->sa_len) { 7639 IPSECLOG(LOG_DEBUG, 7640 "address struct size mismatched.\n"); 7641 goto invaddr; 7642 } 7643 7644 switch (sa0->sa_family) { 7645 case AF_INET: 7646 if (sa0->sa_len != sizeof(struct sockaddr_in)) 7647 goto invaddr; 7648 break; 7649 case AF_INET6: 7650 if (sa0->sa_len != sizeof(struct sockaddr_in6)) 7651 goto invaddr; 7652 break; 7653 default: 7654 IPSECLOG(LOG_DEBUG, "unsupported address family.\n"); 7655 error = EAFNOSUPPORT; 7656 goto senderror; 7657 } 7658 7659 switch (sa0->sa_family) { 7660 case AF_INET: 7661 plen = sizeof(struct in_addr) << 3; 7662 break; 7663 case AF_INET6: 7664 plen = sizeof(struct in6_addr) << 3; 7665 break; 7666 default: 7667 plen = 0; /*fool gcc*/ 7668 break; 7669 } 7670 7671 /* check max prefix length */ 7672 if (src0->sadb_address_prefixlen > plen || 7673 dst0->sadb_address_prefixlen > plen) { 7674 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n"); 7675 goto invaddr; 7676 } 7677 7678 /* 7679 * prefixlen == 0 is valid because there can be a case when 7680 * all addresses are matched. 7681 */ 7682 } 7683 7684 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) || 7685 key_api_typesw[msg->sadb_msg_type] == NULL) { 7686 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 7687 error = EINVAL; 7688 goto senderror; 7689 } 7690 7691 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh); 7692 7693 invaddr: 7694 error = EINVAL; 7695 senderror: 7696 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 7697 return key_senderror(so, m, error); 7698 } 7699 7700 static int 7701 key_senderror(struct socket *so, struct mbuf *m, int code) 7702 { 7703 struct sadb_msg *msg; 7704 7705 KASSERT(m->m_len >= sizeof(struct sadb_msg)); 7706 7707 msg = mtod(m, struct sadb_msg *); 7708 msg->sadb_msg_errno = code; 7709 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7710 } 7711 7712 /* 7713 * set the pointer to each header into message buffer. 7714 * m will be freed on error. 7715 * XXX larger-than-MCLBYTES extension? 7716 */ 7717 static int 7718 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 7719 { 7720 struct mbuf *n; 7721 struct sadb_ext *ext; 7722 size_t off, end; 7723 int extlen; 7724 int toff; 7725 7726 KASSERT(m != NULL); 7727 KASSERT(mhp != NULL); 7728 KASSERT(m->m_len >= sizeof(struct sadb_msg)); 7729 7730 /* initialize */ 7731 memset(mhp, 0, sizeof(*mhp)); 7732 7733 mhp->msg = mtod(m, struct sadb_msg *); 7734 mhp->ext[0] = mhp->msg; /*XXX backward compat */ 7735 7736 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7737 extlen = end; /*just in case extlen is not updated*/ 7738 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7739 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7740 if (!n) { 7741 /* m is already freed */ 7742 return ENOBUFS; 7743 } 7744 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 7745 7746 /* set pointer */ 7747 switch (ext->sadb_ext_type) { 7748 case SADB_EXT_SA: 7749 case SADB_EXT_ADDRESS_SRC: 7750 case SADB_EXT_ADDRESS_DST: 7751 case SADB_EXT_ADDRESS_PROXY: 7752 case SADB_EXT_LIFETIME_CURRENT: 7753 case SADB_EXT_LIFETIME_HARD: 7754 case SADB_EXT_LIFETIME_SOFT: 7755 case SADB_EXT_KEY_AUTH: 7756 case SADB_EXT_KEY_ENCRYPT: 7757 case SADB_EXT_IDENTITY_SRC: 7758 case SADB_EXT_IDENTITY_DST: 7759 case SADB_EXT_SENSITIVITY: 7760 case SADB_EXT_PROPOSAL: 7761 case SADB_EXT_SUPPORTED_AUTH: 7762 case SADB_EXT_SUPPORTED_ENCRYPT: 7763 case SADB_EXT_SPIRANGE: 7764 case SADB_X_EXT_POLICY: 7765 case SADB_X_EXT_SA2: 7766 case SADB_X_EXT_NAT_T_TYPE: 7767 case SADB_X_EXT_NAT_T_SPORT: 7768 case SADB_X_EXT_NAT_T_DPORT: 7769 case SADB_X_EXT_NAT_T_OAI: 7770 case SADB_X_EXT_NAT_T_OAR: 7771 case SADB_X_EXT_NAT_T_FRAG: 7772 /* duplicate check */ 7773 /* 7774 * XXX Are there duplication payloads of either 7775 * KEY_AUTH or KEY_ENCRYPT ? 7776 */ 7777 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7778 IPSECLOG(LOG_DEBUG, 7779 "duplicate ext_type %u is passed.\n", 7780 ext->sadb_ext_type); 7781 m_freem(m); 7782 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT); 7783 return EINVAL; 7784 } 7785 break; 7786 default: 7787 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n", 7788 ext->sadb_ext_type); 7789 m_freem(m); 7790 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE); 7791 return EINVAL; 7792 } 7793 7794 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7795 7796 if (key_validate_ext(ext, extlen)) { 7797 m_freem(m); 7798 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7799 return EINVAL; 7800 } 7801 7802 n = m_pulldown(m, off, extlen, &toff); 7803 if (!n) { 7804 /* m is already freed */ 7805 return ENOBUFS; 7806 } 7807 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 7808 7809 mhp->ext[ext->sadb_ext_type] = ext; 7810 mhp->extoff[ext->sadb_ext_type] = off; 7811 mhp->extlen[ext->sadb_ext_type] = extlen; 7812 } 7813 7814 if (off != end) { 7815 m_freem(m); 7816 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7817 return EINVAL; 7818 } 7819 7820 return 0; 7821 } 7822 7823 static int 7824 key_validate_ext(const struct sadb_ext *ext, int len) 7825 { 7826 const struct sockaddr *sa; 7827 enum { NONE, ADDR } checktype = NONE; 7828 int baselen = 0; 7829 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7830 7831 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7832 return EINVAL; 7833 7834 /* if it does not match minimum/maximum length, bail */ 7835 if (ext->sadb_ext_type >= __arraycount(minsize) || 7836 ext->sadb_ext_type >= __arraycount(maxsize)) 7837 return EINVAL; 7838 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7839 return EINVAL; 7840 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7841 return EINVAL; 7842 7843 /* more checks based on sadb_ext_type XXX need more */ 7844 switch (ext->sadb_ext_type) { 7845 case SADB_EXT_ADDRESS_SRC: 7846 case SADB_EXT_ADDRESS_DST: 7847 case SADB_EXT_ADDRESS_PROXY: 7848 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7849 checktype = ADDR; 7850 break; 7851 case SADB_EXT_IDENTITY_SRC: 7852 case SADB_EXT_IDENTITY_DST: 7853 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7854 SADB_X_IDENTTYPE_ADDR) { 7855 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7856 checktype = ADDR; 7857 } else 7858 checktype = NONE; 7859 break; 7860 default: 7861 checktype = NONE; 7862 break; 7863 } 7864 7865 switch (checktype) { 7866 case NONE: 7867 break; 7868 case ADDR: 7869 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7870 if (len < baselen + sal) 7871 return EINVAL; 7872 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7873 return EINVAL; 7874 break; 7875 } 7876 7877 return 0; 7878 } 7879 7880 static int 7881 key_do_init(void) 7882 { 7883 int i, error; 7884 7885 mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE); 7886 7887 mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE); 7888 cv_init(&key_spd.cv_lc, "key_sp_lc"); 7889 key_spd.psz = pserialize_create(); 7890 cv_init(&key_spd.cv_psz, "key_sp_psz"); 7891 key_spd.psz_performing = false; 7892 7893 mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE); 7894 cv_init(&key_sad.cv_lc, "key_sa_lc"); 7895 key_sad.psz = pserialize_create(); 7896 cv_init(&key_sad.cv_psz, "key_sa_psz"); 7897 key_sad.psz_performing = false; 7898 7899 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS); 7900 7901 callout_init(&key_timehandler_ch, CALLOUT_MPSAFE); 7902 error = workqueue_create(&key_timehandler_wq, "key_timehandler", 7903 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE); 7904 if (error != 0) 7905 panic("%s: workqueue_create failed (%d)\n", __func__, error); 7906 7907 for (i = 0; i < IPSEC_DIR_MAX; i++) { 7908 PSLIST_INIT(&key_spd.splist[i]); 7909 } 7910 7911 PSLIST_INIT(&key_spd.socksplist); 7912 7913 PSLIST_INIT(&key_sad.sahlist); 7914 7915 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7916 LIST_INIT(&key_misc.reglist[i]); 7917 } 7918 7919 #ifndef IPSEC_NONBLOCK_ACQUIRE 7920 LIST_INIT(&key_misc.acqlist); 7921 #endif 7922 #ifdef notyet 7923 LIST_INIT(&key_misc.spacqlist); 7924 #endif 7925 7926 /* system default */ 7927 ip4_def_policy.policy = IPSEC_POLICY_NONE; 7928 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE; 7929 localcount_init(&ip4_def_policy.localcount); 7930 7931 #ifdef INET6 7932 ip6_def_policy.policy = IPSEC_POLICY_NONE; 7933 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE; 7934 localcount_init(&ip6_def_policy.localcount); 7935 #endif 7936 7937 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 7938 7939 /* initialize key statistics */ 7940 keystat.getspi_count = 1; 7941 7942 aprint_verbose("IPsec: Initialized Security Association Processing.\n"); 7943 7944 return (0); 7945 } 7946 7947 void 7948 key_init(void) 7949 { 7950 static ONCE_DECL(key_init_once); 7951 7952 sysctl_net_keyv2_setup(NULL); 7953 sysctl_net_key_compat_setup(NULL); 7954 7955 RUN_ONCE(&key_init_once, key_do_init); 7956 7957 key_init_so(); 7958 } 7959 7960 /* 7961 * XXX: maybe This function is called after INBOUND IPsec processing. 7962 * 7963 * Special check for tunnel-mode packets. 7964 * We must make some checks for consistency between inner and outer IP header. 7965 * 7966 * xxx more checks to be provided 7967 */ 7968 int 7969 key_checktunnelsanity( 7970 struct secasvar *sav, 7971 u_int family, 7972 void *src, 7973 void *dst 7974 ) 7975 { 7976 7977 /* XXX: check inner IP header */ 7978 7979 return 1; 7980 } 7981 7982 #if 0 7983 #define hostnamelen strlen(hostname) 7984 7985 /* 7986 * Get FQDN for the host. 7987 * If the administrator configured hostname (by hostname(1)) without 7988 * domain name, returns nothing. 7989 */ 7990 static const char * 7991 key_getfqdn(void) 7992 { 7993 int i; 7994 int hasdot; 7995 static char fqdn[MAXHOSTNAMELEN + 1]; 7996 7997 if (!hostnamelen) 7998 return NULL; 7999 8000 /* check if it comes with domain name. */ 8001 hasdot = 0; 8002 for (i = 0; i < hostnamelen; i++) { 8003 if (hostname[i] == '.') 8004 hasdot++; 8005 } 8006 if (!hasdot) 8007 return NULL; 8008 8009 /* NOTE: hostname may not be NUL-terminated. */ 8010 memset(fqdn, 0, sizeof(fqdn)); 8011 memcpy(fqdn, hostname, hostnamelen); 8012 fqdn[hostnamelen] = '\0'; 8013 return fqdn; 8014 } 8015 8016 /* 8017 * get username@FQDN for the host/user. 8018 */ 8019 static const char * 8020 key_getuserfqdn(void) 8021 { 8022 const char *host; 8023 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2]; 8024 struct proc *p = curproc; 8025 char *q; 8026 8027 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session) 8028 return NULL; 8029 if (!(host = key_getfqdn())) 8030 return NULL; 8031 8032 /* NOTE: s_login may not be-NUL terminated. */ 8033 memset(userfqdn, 0, sizeof(userfqdn)); 8034 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME); 8035 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */ 8036 q = userfqdn + strlen(userfqdn); 8037 *q++ = '@'; 8038 memcpy(q, host, strlen(host)); 8039 q += strlen(host); 8040 *q++ = '\0'; 8041 8042 return userfqdn; 8043 } 8044 #endif 8045 8046 /* record data transfer on SA, and update timestamps */ 8047 void 8048 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 8049 { 8050 8051 KASSERT(sav != NULL); 8052 KASSERT(sav->lft_c != NULL); 8053 KASSERT(m != NULL); 8054 8055 /* 8056 * XXX Currently, there is a difference of bytes size 8057 * between inbound and outbound processing. 8058 */ 8059 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len; 8060 /* to check bytes lifetime is done in key_timehandler(). */ 8061 8062 /* 8063 * We use the number of packets as the unit of 8064 * sadb_lifetime_allocations. We increment the variable 8065 * whenever {esp,ah}_{in,out}put is called. 8066 */ 8067 sav->lft_c->sadb_lifetime_allocations++; 8068 /* XXX check for expires? */ 8069 8070 /* 8071 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock, 8072 * in seconds. HARD and SOFT lifetime are measured by the time 8073 * difference (again in seconds) from sadb_lifetime_usetime. 8074 * 8075 * usetime 8076 * v expire expire 8077 * -----+-----+--------+---> t 8078 * <--------------> HARD 8079 * <-----> SOFT 8080 */ 8081 sav->lft_c->sadb_lifetime_usetime = time_uptime; 8082 /* XXX check for expires? */ 8083 8084 return; 8085 } 8086 8087 /* dumb version */ 8088 void 8089 key_sa_routechange(struct sockaddr *dst) 8090 { 8091 struct secashead *sah; 8092 int s; 8093 8094 s = pserialize_read_enter(); 8095 SAHLIST_READER_FOREACH(sah) { 8096 struct route *ro; 8097 const struct sockaddr *sa; 8098 8099 key_sah_ref(sah); 8100 pserialize_read_exit(s); 8101 8102 ro = &sah->sa_route; 8103 sa = rtcache_getdst(ro); 8104 if (sa != NULL && dst->sa_len == sa->sa_len && 8105 memcmp(dst, sa, dst->sa_len) == 0) 8106 rtcache_free(ro); 8107 8108 s = pserialize_read_enter(); 8109 key_sah_unref(sah); 8110 } 8111 pserialize_read_exit(s); 8112 8113 return; 8114 } 8115 8116 static void 8117 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 8118 { 8119 struct secasvar *_sav; 8120 8121 ASSERT_SLEEPABLE(); 8122 KASSERT(mutex_owned(&key_sad.lock)); 8123 8124 if (sav->state == state) 8125 return; 8126 8127 key_unlink_sav(sav); 8128 localcount_fini(&sav->localcount); 8129 SAVLIST_ENTRY_DESTROY(sav); 8130 key_init_sav(sav); 8131 8132 sav->state = state; 8133 if (!SADB_SASTATE_USABLE_P(sav)) { 8134 /* We don't need to care about the order */ 8135 SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav); 8136 return; 8137 } 8138 /* 8139 * Sort the list by lft_c->sadb_lifetime_addtime 8140 * in ascending order. 8141 */ 8142 SAVLIST_WRITER_FOREACH(_sav, sav->sah, state) { 8143 if (_sav->lft_c->sadb_lifetime_addtime > 8144 sav->lft_c->sadb_lifetime_addtime) { 8145 SAVLIST_WRITER_INSERT_BEFORE(_sav, sav); 8146 break; 8147 } 8148 } 8149 if (_sav == NULL) { 8150 SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav); 8151 } 8152 key_validate_savlist(sav->sah, state); 8153 } 8154 8155 /* XXX too much? */ 8156 static struct mbuf * 8157 key_alloc_mbuf(int l, int mflag) 8158 { 8159 struct mbuf *m = NULL, *n; 8160 int len, t; 8161 8162 KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p())); 8163 8164 len = l; 8165 while (len > 0) { 8166 MGET(n, mflag, MT_DATA); 8167 if (n && len > MLEN) { 8168 MCLGET(n, mflag); 8169 if ((n->m_flags & M_EXT) == 0) { 8170 m_freem(n); 8171 n = NULL; 8172 } 8173 } 8174 if (!n) { 8175 m_freem(m); 8176 return NULL; 8177 } 8178 8179 n->m_next = NULL; 8180 n->m_len = 0; 8181 n->m_len = M_TRAILINGSPACE(n); 8182 /* use the bottom of mbuf, hoping we can prepend afterwards */ 8183 if (n->m_len > len) { 8184 t = (n->m_len - len) & ~(sizeof(long) - 1); 8185 n->m_data += t; 8186 n->m_len = len; 8187 } 8188 8189 len -= n->m_len; 8190 8191 if (m) 8192 m_cat(m, n); 8193 else 8194 m = n; 8195 } 8196 8197 return m; 8198 } 8199 8200 static struct mbuf * 8201 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid) 8202 { 8203 struct secashead *sah; 8204 struct secasvar *sav; 8205 u_int16_t proto; 8206 u_int8_t satype; 8207 u_int8_t state; 8208 int cnt; 8209 struct mbuf *m, *n; 8210 8211 KASSERT(mutex_owned(&key_sad.lock)); 8212 8213 /* map satype to proto */ 8214 proto = key_satype2proto(req_satype); 8215 if (proto == 0) { 8216 *errorp = EINVAL; 8217 return (NULL); 8218 } 8219 8220 /* count sav entries to be sent to the userland. */ 8221 cnt = 0; 8222 SAHLIST_WRITER_FOREACH(sah) { 8223 if (req_satype != SADB_SATYPE_UNSPEC && 8224 proto != sah->saidx.proto) 8225 continue; 8226 8227 SASTATE_ANY_FOREACH(state) { 8228 SAVLIST_WRITER_FOREACH(sav, sah, state) { 8229 cnt++; 8230 } 8231 } 8232 } 8233 8234 if (cnt == 0) { 8235 *errorp = ENOENT; 8236 return (NULL); 8237 } 8238 8239 /* send this to the userland, one at a time. */ 8240 m = NULL; 8241 SAHLIST_WRITER_FOREACH(sah) { 8242 if (req_satype != SADB_SATYPE_UNSPEC && 8243 proto != sah->saidx.proto) 8244 continue; 8245 8246 /* map proto to satype */ 8247 satype = key_proto2satype(sah->saidx.proto); 8248 if (satype == 0) { 8249 m_freem(m); 8250 *errorp = EINVAL; 8251 return (NULL); 8252 } 8253 8254 SASTATE_ANY_FOREACH(state) { 8255 SAVLIST_WRITER_FOREACH(sav, sah, state) { 8256 n = key_setdumpsa(sav, SADB_DUMP, satype, 8257 --cnt, pid); 8258 if (!m) 8259 m = n; 8260 else 8261 m_cat(m, n); 8262 } 8263 } 8264 } 8265 8266 if (!m) { 8267 *errorp = EINVAL; 8268 return (NULL); 8269 } 8270 8271 if ((m->m_flags & M_PKTHDR) != 0) { 8272 m->m_pkthdr.len = 0; 8273 for (n = m; n; n = n->m_next) 8274 m->m_pkthdr.len += n->m_len; 8275 } 8276 8277 *errorp = 0; 8278 return (m); 8279 } 8280 8281 static struct mbuf * 8282 key_setspddump(int *errorp, pid_t pid) 8283 { 8284 struct secpolicy *sp; 8285 int cnt; 8286 u_int dir; 8287 struct mbuf *m, *n; 8288 8289 KASSERT(mutex_owned(&key_spd.lock)); 8290 8291 /* search SPD entry and get buffer size. */ 8292 cnt = 0; 8293 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8294 SPLIST_WRITER_FOREACH(sp, dir) { 8295 cnt++; 8296 } 8297 } 8298 8299 if (cnt == 0) { 8300 *errorp = ENOENT; 8301 return (NULL); 8302 } 8303 8304 m = NULL; 8305 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8306 SPLIST_WRITER_FOREACH(sp, dir) { 8307 --cnt; 8308 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 8309 8310 if (!m) 8311 m = n; 8312 else { 8313 m->m_pkthdr.len += n->m_pkthdr.len; 8314 m_cat(m, n); 8315 } 8316 } 8317 } 8318 8319 *errorp = 0; 8320 return (m); 8321 } 8322 8323 int 8324 key_get_used(void) { 8325 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) || 8326 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) || 8327 !SOCKSPLIST_READER_EMPTY(); 8328 } 8329 8330 void 8331 key_update_used(void) 8332 { 8333 switch (ipsec_enabled) { 8334 default: 8335 case 0: 8336 #ifdef notyet 8337 /* XXX: racy */ 8338 ipsec_used = 0; 8339 #endif 8340 break; 8341 case 1: 8342 #ifndef notyet 8343 /* XXX: racy */ 8344 if (!ipsec_used) 8345 #endif 8346 ipsec_used = key_get_used(); 8347 break; 8348 case 2: 8349 ipsec_used = 1; 8350 break; 8351 } 8352 } 8353 8354 static int 8355 sysctl_net_key_dumpsa(SYSCTLFN_ARGS) 8356 { 8357 struct mbuf *m, *n; 8358 int err2 = 0; 8359 char *p, *ep; 8360 size_t len; 8361 int error; 8362 8363 if (newp) 8364 return (EPERM); 8365 if (namelen != 1) 8366 return (EINVAL); 8367 8368 mutex_enter(&key_sad.lock); 8369 m = key_setdump(name[0], &error, l->l_proc->p_pid); 8370 mutex_exit(&key_sad.lock); 8371 if (!m) 8372 return (error); 8373 if (!oldp) 8374 *oldlenp = m->m_pkthdr.len; 8375 else { 8376 p = oldp; 8377 if (*oldlenp < m->m_pkthdr.len) { 8378 err2 = ENOMEM; 8379 ep = p + *oldlenp; 8380 } else { 8381 *oldlenp = m->m_pkthdr.len; 8382 ep = p + m->m_pkthdr.len; 8383 } 8384 for (n = m; n; n = n->m_next) { 8385 len = (ep - p < n->m_len) ? 8386 ep - p : n->m_len; 8387 error = copyout(mtod(n, const void *), p, len); 8388 p += len; 8389 if (error) 8390 break; 8391 } 8392 if (error == 0) 8393 error = err2; 8394 } 8395 m_freem(m); 8396 8397 return (error); 8398 } 8399 8400 static int 8401 sysctl_net_key_dumpsp(SYSCTLFN_ARGS) 8402 { 8403 struct mbuf *m, *n; 8404 int err2 = 0; 8405 char *p, *ep; 8406 size_t len; 8407 int error; 8408 8409 if (newp) 8410 return (EPERM); 8411 if (namelen != 0) 8412 return (EINVAL); 8413 8414 mutex_enter(&key_spd.lock); 8415 m = key_setspddump(&error, l->l_proc->p_pid); 8416 mutex_exit(&key_spd.lock); 8417 if (!m) 8418 return (error); 8419 if (!oldp) 8420 *oldlenp = m->m_pkthdr.len; 8421 else { 8422 p = oldp; 8423 if (*oldlenp < m->m_pkthdr.len) { 8424 err2 = ENOMEM; 8425 ep = p + *oldlenp; 8426 } else { 8427 *oldlenp = m->m_pkthdr.len; 8428 ep = p + m->m_pkthdr.len; 8429 } 8430 for (n = m; n; n = n->m_next) { 8431 len = (ep - p < n->m_len) ? ep - p : n->m_len; 8432 error = copyout(mtod(n, const void *), p, len); 8433 p += len; 8434 if (error) 8435 break; 8436 } 8437 if (error == 0) 8438 error = err2; 8439 } 8440 m_freem(m); 8441 8442 return (error); 8443 } 8444 8445 /* 8446 * Create sysctl tree for native IPSEC key knobs, originally 8447 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }. 8448 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 }; 8449 * and in any case the part of our sysctl namespace used for dumping the 8450 * SPD and SA database *HAS* to be compatible with the KAME sysctl 8451 * namespace, for API reasons. 8452 * 8453 * Pending a consensus on the right way to fix this, add a level of 8454 * indirection in how we number the `native' IPSEC key nodes; 8455 * and (as requested by Andrew Brown) move registration of the 8456 * KAME-compatible names to a separate function. 8457 */ 8458 #if 0 8459 # define IPSEC_PFKEY PF_KEY_V2 8460 # define IPSEC_PFKEY_NAME "keyv2" 8461 #else 8462 # define IPSEC_PFKEY PF_KEY 8463 # define IPSEC_PFKEY_NAME "key" 8464 #endif 8465 8466 static int 8467 sysctl_net_key_stats(SYSCTLFN_ARGS) 8468 { 8469 8470 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS)); 8471 } 8472 8473 static void 8474 sysctl_net_keyv2_setup(struct sysctllog **clog) 8475 { 8476 8477 sysctl_createv(clog, 0, NULL, NULL, 8478 CTLFLAG_PERMANENT, 8479 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL, 8480 NULL, 0, NULL, 0, 8481 CTL_NET, IPSEC_PFKEY, CTL_EOL); 8482 8483 sysctl_createv(clog, 0, NULL, NULL, 8484 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8485 CTLTYPE_INT, "debug", NULL, 8486 NULL, 0, &key_debug_level, 0, 8487 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL); 8488 sysctl_createv(clog, 0, NULL, NULL, 8489 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8490 CTLTYPE_INT, "spi_try", NULL, 8491 NULL, 0, &key_spi_trycnt, 0, 8492 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL); 8493 sysctl_createv(clog, 0, NULL, NULL, 8494 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8495 CTLTYPE_INT, "spi_min_value", NULL, 8496 NULL, 0, &key_spi_minval, 0, 8497 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL); 8498 sysctl_createv(clog, 0, NULL, NULL, 8499 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8500 CTLTYPE_INT, "spi_max_value", NULL, 8501 NULL, 0, &key_spi_maxval, 0, 8502 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL); 8503 sysctl_createv(clog, 0, NULL, NULL, 8504 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8505 CTLTYPE_INT, "random_int", NULL, 8506 NULL, 0, &key_int_random, 0, 8507 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL); 8508 sysctl_createv(clog, 0, NULL, NULL, 8509 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8510 CTLTYPE_INT, "larval_lifetime", NULL, 8511 NULL, 0, &key_larval_lifetime, 0, 8512 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL); 8513 sysctl_createv(clog, 0, NULL, NULL, 8514 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8515 CTLTYPE_INT, "blockacq_count", NULL, 8516 NULL, 0, &key_blockacq_count, 0, 8517 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL); 8518 sysctl_createv(clog, 0, NULL, NULL, 8519 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8520 CTLTYPE_INT, "blockacq_lifetime", NULL, 8521 NULL, 0, &key_blockacq_lifetime, 0, 8522 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL); 8523 sysctl_createv(clog, 0, NULL, NULL, 8524 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8525 CTLTYPE_INT, "esp_keymin", NULL, 8526 NULL, 0, &ipsec_esp_keymin, 0, 8527 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL); 8528 sysctl_createv(clog, 0, NULL, NULL, 8529 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8530 CTLTYPE_INT, "prefered_oldsa", NULL, 8531 NULL, 0, &key_prefered_oldsa, 0, 8532 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL); 8533 sysctl_createv(clog, 0, NULL, NULL, 8534 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8535 CTLTYPE_INT, "esp_auth", NULL, 8536 NULL, 0, &ipsec_esp_auth, 0, 8537 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL); 8538 sysctl_createv(clog, 0, NULL, NULL, 8539 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8540 CTLTYPE_INT, "ah_keymin", NULL, 8541 NULL, 0, &ipsec_ah_keymin, 0, 8542 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL); 8543 sysctl_createv(clog, 0, NULL, NULL, 8544 CTLFLAG_PERMANENT, 8545 CTLTYPE_STRUCT, "stats", 8546 SYSCTL_DESCR("PF_KEY statistics"), 8547 sysctl_net_key_stats, 0, NULL, 0, 8548 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL); 8549 } 8550 8551 /* 8552 * Register sysctl names used by setkey(8). For historical reasons, 8553 * and to share a single API, these names appear under { CTL_NET, PF_KEY } 8554 * for both IPSEC and KAME IPSEC. 8555 */ 8556 static void 8557 sysctl_net_key_compat_setup(struct sysctllog **clog) 8558 { 8559 8560 sysctl_createv(clog, 0, NULL, NULL, 8561 CTLFLAG_PERMANENT, 8562 CTLTYPE_NODE, "key", NULL, 8563 NULL, 0, NULL, 0, 8564 CTL_NET, PF_KEY, CTL_EOL); 8565 8566 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */ 8567 sysctl_createv(clog, 0, NULL, NULL, 8568 CTLFLAG_PERMANENT, 8569 CTLTYPE_STRUCT, "dumpsa", NULL, 8570 sysctl_net_key_dumpsa, 0, NULL, 0, 8571 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL); 8572 sysctl_createv(clog, 0, NULL, NULL, 8573 CTLFLAG_PERMANENT, 8574 CTLTYPE_STRUCT, "dumpsp", NULL, 8575 sysctl_net_key_dumpsp, 0, NULL, 0, 8576 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL); 8577 } 8578