1 /* $NetBSD: key.c,v 1.249 2018/03/02 07:37:13 ozaki-r Exp $ */ 2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */ 3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 4 5 /* 6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the project nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.249 2018/03/02 07:37:13 ozaki-r Exp $"); 36 37 /* 38 * This code is referred to RFC 2367 39 */ 40 41 #if defined(_KERNEL_OPT) 42 #include "opt_inet.h" 43 #include "opt_ipsec.h" 44 #include "opt_gateway.h" 45 #include "opt_net_mpsafe.h" 46 #endif 47 48 #include <sys/types.h> 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/callout.h> 52 #include <sys/kernel.h> 53 #include <sys/mbuf.h> 54 #include <sys/domain.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/errno.h> 59 #include <sys/proc.h> 60 #include <sys/queue.h> 61 #include <sys/syslog.h> 62 #include <sys/once.h> 63 #include <sys/cprng.h> 64 #include <sys/psref.h> 65 #include <sys/lwp.h> 66 #include <sys/workqueue.h> 67 #include <sys/kmem.h> 68 #include <sys/cpu.h> 69 #include <sys/atomic.h> 70 #include <sys/pslist.h> 71 #include <sys/mutex.h> 72 #include <sys/condvar.h> 73 #include <sys/localcount.h> 74 #include <sys/pserialize.h> 75 76 #include <net/if.h> 77 #include <net/route.h> 78 79 #include <netinet/in.h> 80 #include <netinet/in_systm.h> 81 #include <netinet/ip.h> 82 #include <netinet/in_var.h> 83 #ifdef INET 84 #include <netinet/ip_var.h> 85 #endif 86 87 #ifdef INET6 88 #include <netinet/ip6.h> 89 #include <netinet6/in6_var.h> 90 #include <netinet6/ip6_var.h> 91 #endif /* INET6 */ 92 93 #ifdef INET 94 #include <netinet/in_pcb.h> 95 #endif 96 #ifdef INET6 97 #include <netinet6/in6_pcb.h> 98 #endif /* INET6 */ 99 100 #include <net/pfkeyv2.h> 101 #include <netipsec/keydb.h> 102 #include <netipsec/key.h> 103 #include <netipsec/keysock.h> 104 #include <netipsec/key_debug.h> 105 106 #include <netipsec/ipsec.h> 107 #ifdef INET6 108 #include <netipsec/ipsec6.h> 109 #endif 110 #include <netipsec/ipsec_private.h> 111 112 #include <netipsec/xform.h> 113 #include <netipsec/ipcomp.h> 114 115 #define FULLMASK 0xff 116 #define _BITS(bytes) ((bytes) << 3) 117 118 #define PORT_NONE 0 119 #define PORT_LOOSE 1 120 #define PORT_STRICT 2 121 122 percpu_t *pfkeystat_percpu; 123 124 /* 125 * Note on SA reference counting: 126 * - SAs that are not in DEAD state will have (total external reference + 1) 127 * following value in reference count field. they cannot be freed and are 128 * referenced from SA header. 129 * - SAs that are in DEAD state will have (total external reference) 130 * in reference count field. they are ready to be freed. reference from 131 * SA header will be removed in key_delsav(), when the reference count 132 * field hits 0 (= no external reference other than from SA header. 133 */ 134 135 u_int32_t key_debug_level = 0; 136 static u_int key_spi_trycnt = 1000; 137 static u_int32_t key_spi_minval = 0x100; 138 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ 139 static u_int32_t policy_id = 0; 140 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ 141 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 142 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 143 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 144 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/ 145 146 static u_int32_t acq_seq = 0; 147 148 /* 149 * Locking order: there is no order for now; it means that any locks aren't 150 * overlapped. 151 */ 152 /* 153 * Locking notes on SPD: 154 * - Modifications to the key_spd.splist must be done with holding key_spd.lock 155 * which is a adaptive mutex 156 * - Read accesses to the key_spd.splist must be in pserialize(9) read sections 157 * - SP's lifetime is managed by localcount(9) 158 * - An SP that has been inserted to the key_spd.splist is initially referenced 159 * by none, i.e., a reference from the key_spd.splist isn't counted 160 * - When an SP is being destroyed, we change its state as DEAD, wait for 161 * references to the SP to be released, and then deallocate the SP 162 * (see key_unlink_sp) 163 * - Getting an SP 164 * - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx) 165 * - Must iterate the list and increment the reference count of a found SP 166 * (by key_sp_ref) in a pserialize read section 167 * - We can gain another reference from a held SP only if we check its state 168 * and take its reference in a pserialize read section 169 * (see esp_output for example) 170 * - We may get an SP from an SP cache. See below 171 * - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref) 172 * - Updating member variables of an SP 173 * - Most member variables of an SP are immutable 174 * - Only sp->state and sp->lastused can be changed 175 * - sp->state of an SP is updated only when destroying it under key_spd.lock 176 * - SP caches 177 * - SPs can be cached in PCBs 178 * - The lifetime of the caches is controlled by the global generation counter 179 * (ipsec_spdgen) 180 * - The global counter value is stored when an SP is cached 181 * - If the stored value is different from the global counter then the cache 182 * is considered invalidated 183 * - The counter is incremented when an SP is being destroyed 184 * - So checking the generation and taking a reference to an SP should be 185 * in a pserialize read section 186 * - Note that caching doesn't increment the reference counter of an SP 187 * - SPs in sockets 188 * - Userland programs can set a policy to a socket by 189 * setsockopt(IP_IPSEC_POLICY) 190 * - Such policies (SPs) are set to a socket (PCB) and also inserted to 191 * the key_spd.socksplist list (not the key_spd.splist) 192 * - Such a policy is destroyed when a corresponding socket is destroed, 193 * however, a socket can be destroyed in softint so we cannot destroy 194 * it directly instead we just mark it DEAD and delay the destruction 195 * until GC by the timer 196 * - SP origin 197 * - SPs can be created by both userland programs and kernel components. 198 * The SPs created in kernel must not be removed by userland programs, 199 * although the SPs can be read by userland programs. 200 */ 201 /* 202 * Locking notes on SAD: 203 * - Data structures 204 * - SAs are managed by the list called key_sad.sahlist and sav lists of sah 205 * entries 206 * - An sav is supposed to be an SA from a viewpoint of users 207 * - A sah has sav lists for each SA state 208 * - Multiple sahs with the same saidx can exist 209 * - Only one entry has MATURE state and others should be DEAD 210 * - DEAD entries are just ignored from searching 211 * - Modifications to the key_sad.sahlist and sah.savlist must be done with 212 * holding key_sad.lock which is a adaptive mutex 213 * - Read accesses to the key_sad.sahlist and sah.savlist must be in 214 * pserialize(9) read sections 215 * - sah's lifetime is managed by localcount(9) 216 * - Getting an sah entry 217 * - We get an sah from the key_sad.sahlist 218 * - Must iterate the list and increment the reference count of a found sah 219 * (by key_sah_ref) in a pserialize read section 220 * - A gotten sah must be released after use by key_sah_unref 221 * - An sah is destroyed when its state become DEAD and no sav is 222 * listed to the sah 223 * - The destruction is done only in the timer (see key_timehandler_sad) 224 * - sav's lifetime is managed by localcount(9) 225 * - Getting an sav entry 226 * - First get an sah by saidx and get an sav from either of sah's savlists 227 * - Must iterate the list and increment the reference count of a found sav 228 * (by key_sa_ref) in a pserialize read section 229 * - We can gain another reference from a held SA only if we check its state 230 * and take its reference in a pserialize read section 231 * (see esp_output for example) 232 * - A gotten sav must be released after use by key_sa_unref 233 * - An sav is destroyed when its state become DEAD 234 */ 235 /* 236 * Locking notes on misc data: 237 * - All lists of key_misc are protected by key_misc.lock 238 * - key_misc.lock must be held even for read accesses 239 */ 240 241 /* SPD */ 242 static struct { 243 kmutex_t lock; 244 kcondvar_t cv_lc; 245 struct pslist_head splist[IPSEC_DIR_MAX]; 246 /* 247 * The list has SPs that are set to a socket via 248 * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy. 249 */ 250 struct pslist_head socksplist; 251 252 pserialize_t psz; 253 kcondvar_t cv_psz; 254 bool psz_performing; 255 } key_spd __cacheline_aligned; 256 257 /* SAD */ 258 static struct { 259 kmutex_t lock; 260 kcondvar_t cv_lc; 261 struct pslist_head sahlist; 262 263 pserialize_t psz; 264 kcondvar_t cv_psz; 265 bool psz_performing; 266 } key_sad __cacheline_aligned; 267 268 /* Misc data */ 269 static struct { 270 kmutex_t lock; 271 /* registed list */ 272 LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1]; 273 #ifndef IPSEC_NONBLOCK_ACQUIRE 274 /* acquiring list */ 275 LIST_HEAD(_acqlist, secacq) acqlist; 276 #endif 277 #ifdef notyet 278 /* SP acquiring list */ 279 LIST_HEAD(_spacqlist, secspacq) spacqlist; 280 #endif 281 } key_misc __cacheline_aligned; 282 283 /* Macros for key_spd.splist */ 284 #define SPLIST_ENTRY_INIT(sp) \ 285 PSLIST_ENTRY_INIT((sp), pslist_entry) 286 #define SPLIST_ENTRY_DESTROY(sp) \ 287 PSLIST_ENTRY_DESTROY((sp), pslist_entry) 288 #define SPLIST_WRITER_REMOVE(sp) \ 289 PSLIST_WRITER_REMOVE((sp), pslist_entry) 290 #define SPLIST_READER_EMPTY(dir) \ 291 (PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ 292 pslist_entry) == NULL) 293 #define SPLIST_READER_FOREACH(sp, dir) \ 294 PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)], \ 295 struct secpolicy, pslist_entry) 296 #define SPLIST_WRITER_FOREACH(sp, dir) \ 297 PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)], \ 298 struct secpolicy, pslist_entry) 299 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \ 300 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry) 301 #define SPLIST_WRITER_EMPTY(dir) \ 302 (PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ 303 pslist_entry) == NULL) 304 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \ 305 PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp), \ 306 pslist_entry) 307 #define SPLIST_WRITER_NEXT(sp) \ 308 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry) 309 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \ 310 do { \ 311 if (SPLIST_WRITER_EMPTY((dir))) { \ 312 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \ 313 } else { \ 314 struct secpolicy *__sp; \ 315 SPLIST_WRITER_FOREACH(__sp, (dir)) { \ 316 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \ 317 SPLIST_WRITER_INSERT_AFTER(__sp,\ 318 (new)); \ 319 break; \ 320 } \ 321 } \ 322 } \ 323 } while (0) 324 325 /* Macros for key_spd.socksplist */ 326 #define SOCKSPLIST_WRITER_FOREACH(sp) \ 327 PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist, \ 328 struct secpolicy, pslist_entry) 329 #define SOCKSPLIST_READER_EMPTY() \ 330 (PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy, \ 331 pslist_entry) == NULL) 332 333 /* Macros for key_sad.sahlist */ 334 #define SAHLIST_ENTRY_INIT(sah) \ 335 PSLIST_ENTRY_INIT((sah), pslist_entry) 336 #define SAHLIST_ENTRY_DESTROY(sah) \ 337 PSLIST_ENTRY_DESTROY((sah), pslist_entry) 338 #define SAHLIST_WRITER_REMOVE(sah) \ 339 PSLIST_WRITER_REMOVE((sah), pslist_entry) 340 #define SAHLIST_READER_FOREACH(sah) \ 341 PSLIST_READER_FOREACH((sah), &key_sad.sahlist, struct secashead,\ 342 pslist_entry) 343 #define SAHLIST_WRITER_FOREACH(sah) \ 344 PSLIST_WRITER_FOREACH((sah), &key_sad.sahlist, struct secashead,\ 345 pslist_entry) 346 #define SAHLIST_WRITER_INSERT_HEAD(sah) \ 347 PSLIST_WRITER_INSERT_HEAD(&key_sad.sahlist, (sah), pslist_entry) 348 349 /* Macros for key_sad.sahlist#savlist */ 350 #define SAVLIST_ENTRY_INIT(sav) \ 351 PSLIST_ENTRY_INIT((sav), pslist_entry) 352 #define SAVLIST_ENTRY_DESTROY(sav) \ 353 PSLIST_ENTRY_DESTROY((sav), pslist_entry) 354 #define SAVLIST_READER_FIRST(sah, state) \ 355 PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ 356 pslist_entry) 357 #define SAVLIST_WRITER_REMOVE(sav) \ 358 PSLIST_WRITER_REMOVE((sav), pslist_entry) 359 #define SAVLIST_READER_FOREACH(sav, sah, state) \ 360 PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)], \ 361 struct secasvar, pslist_entry) 362 #define SAVLIST_WRITER_FOREACH(sav, sah, state) \ 363 PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)], \ 364 struct secasvar, pslist_entry) 365 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \ 366 PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry) 367 #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \ 368 PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry) 369 #define SAVLIST_WRITER_EMPTY(sah, state) \ 370 (PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ 371 pslist_entry) == NULL) 372 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \ 373 PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav), \ 374 pslist_entry) 375 #define SAVLIST_WRITER_NEXT(sav) \ 376 PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry) 377 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \ 378 do { \ 379 if (SAVLIST_WRITER_EMPTY((sah), (state))) { \ 380 SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\ 381 } else { \ 382 struct secasvar *__sav; \ 383 SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \ 384 if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\ 385 SAVLIST_WRITER_INSERT_AFTER(__sav,\ 386 (new)); \ 387 break; \ 388 } \ 389 } \ 390 } \ 391 } while (0) 392 #define SAVLIST_READER_NEXT(sav) \ 393 PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry) 394 395 396 /* search order for SAs */ 397 /* 398 * This order is important because we must select the oldest SA 399 * for outbound processing. For inbound, This is not important. 400 */ 401 static const u_int saorder_state_valid_prefer_old[] = { 402 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 403 }; 404 static const u_int saorder_state_valid_prefer_new[] = { 405 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 406 }; 407 408 static const u_int saorder_state_alive[] = { 409 /* except DEAD */ 410 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 411 }; 412 static const u_int saorder_state_any[] = { 413 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 414 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 415 }; 416 417 #define SASTATE_ALIVE_FOREACH(s) \ 418 for (int _i = 0; \ 419 _i < __arraycount(saorder_state_alive) ? \ 420 (s) = saorder_state_alive[_i], true : false; \ 421 _i++) 422 #define SASTATE_ANY_FOREACH(s) \ 423 for (int _i = 0; \ 424 _i < __arraycount(saorder_state_any) ? \ 425 (s) = saorder_state_any[_i], true : false; \ 426 _i++) 427 428 static const int minsize[] = { 429 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 430 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 431 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 432 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 433 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 434 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 435 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 436 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 437 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 438 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 439 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 440 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 441 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 442 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 443 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 444 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 445 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 446 0, /* SADB_X_EXT_KMPRIVATE */ 447 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 448 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 449 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 450 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 451 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 452 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 453 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 454 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 455 }; 456 static const int maxsize[] = { 457 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 458 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 459 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 460 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 461 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 462 0, /* SADB_EXT_ADDRESS_SRC */ 463 0, /* SADB_EXT_ADDRESS_DST */ 464 0, /* SADB_EXT_ADDRESS_PROXY */ 465 0, /* SADB_EXT_KEY_AUTH */ 466 0, /* SADB_EXT_KEY_ENCRYPT */ 467 0, /* SADB_EXT_IDENTITY_SRC */ 468 0, /* SADB_EXT_IDENTITY_DST */ 469 0, /* SADB_EXT_SENSITIVITY */ 470 0, /* SADB_EXT_PROPOSAL */ 471 0, /* SADB_EXT_SUPPORTED_AUTH */ 472 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 473 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 474 0, /* SADB_X_EXT_KMPRIVATE */ 475 0, /* SADB_X_EXT_POLICY */ 476 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 477 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 478 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 479 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 480 0, /* SADB_X_EXT_NAT_T_OAI */ 481 0, /* SADB_X_EXT_NAT_T_OAR */ 482 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 483 }; 484 485 static int ipsec_esp_keymin = 256; 486 static int ipsec_esp_auth = 0; 487 static int ipsec_ah_keymin = 128; 488 489 #ifdef SYSCTL_DECL 490 SYSCTL_DECL(_net_key); 491 #endif 492 493 #ifdef SYSCTL_INT 494 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \ 495 &key_debug_level, 0, ""); 496 497 /* max count of trial for the decision of spi value */ 498 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \ 499 &key_spi_trycnt, 0, ""); 500 501 /* minimum spi value to allocate automatically. */ 502 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \ 503 &key_spi_minval, 0, ""); 504 505 /* maximun spi value to allocate automatically. */ 506 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \ 507 &key_spi_maxval, 0, ""); 508 509 /* interval to initialize randseed */ 510 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \ 511 &key_int_random, 0, ""); 512 513 /* lifetime for larval SA */ 514 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \ 515 &key_larval_lifetime, 0, ""); 516 517 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 518 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \ 519 &key_blockacq_count, 0, ""); 520 521 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 522 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \ 523 &key_blockacq_lifetime, 0, ""); 524 525 /* ESP auth */ 526 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \ 527 &ipsec_esp_auth, 0, ""); 528 529 /* minimum ESP key length */ 530 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \ 531 &ipsec_esp_keymin, 0, ""); 532 533 /* minimum AH key length */ 534 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \ 535 &ipsec_ah_keymin, 0, ""); 536 537 /* perfered old SA rather than new SA */ 538 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\ 539 &key_prefered_oldsa, 0, ""); 540 #endif /* SYSCTL_INT */ 541 542 #define __LIST_CHAINED(elm) \ 543 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 544 #define LIST_INSERT_TAIL(head, elm, type, field) \ 545 do {\ 546 struct type *curelm = LIST_FIRST(head); \ 547 if (curelm == NULL) {\ 548 LIST_INSERT_HEAD(head, elm, field); \ 549 } else { \ 550 while (LIST_NEXT(curelm, field)) \ 551 curelm = LIST_NEXT(curelm, field);\ 552 LIST_INSERT_AFTER(curelm, elm, field);\ 553 }\ 554 } while (0) 555 556 #define KEY_CHKSASTATE(head, sav) \ 557 /* do */ { \ 558 if ((head) != (sav)) { \ 559 IPSECLOG(LOG_DEBUG, \ 560 "state mismatched (TREE=%d SA=%d)\n", \ 561 (head), (sav)); \ 562 continue; \ 563 } \ 564 } /* while (0) */ 565 566 #define KEY_CHKSPDIR(head, sp) \ 567 do { \ 568 if ((head) != (sp)) { \ 569 IPSECLOG(LOG_DEBUG, \ 570 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\ 571 (head), (sp)); \ 572 } \ 573 } while (0) 574 575 /* 576 * set parameters into secasindex buffer. 577 * Must allocate secasindex buffer before calling this function. 578 */ 579 static int 580 key_setsecasidx(int, int, int, const struct sockaddr *, 581 const struct sockaddr *, struct secasindex *); 582 583 /* key statistics */ 584 struct _keystat { 585 u_long getspi_count; /* the avarage of count to try to get new SPI */ 586 } keystat; 587 588 static void 589 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *); 590 591 static const struct sockaddr * 592 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx) 593 { 594 595 return PFKEY_ADDR_SADDR(mhp->ext[idx]); 596 } 597 598 static void 599 key_fill_replymsg(struct mbuf *m, int seq) 600 { 601 struct sadb_msg *msg; 602 603 KASSERT(m->m_len >= sizeof(*msg)); 604 605 msg = mtod(m, struct sadb_msg *); 606 msg->sadb_msg_errno = 0; 607 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 608 if (seq != 0) 609 msg->sadb_msg_seq = seq; 610 } 611 612 #if 0 613 static void key_freeso(struct socket *); 614 static void key_freesp_so(struct secpolicy **); 615 #endif 616 static struct secpolicy *key_getsp (const struct secpolicyindex *); 617 static struct secpolicy *key_getspbyid (u_int32_t); 618 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *, bool); 619 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t, bool); 620 static void key_destroy_sp(struct secpolicy *); 621 static struct mbuf *key_gather_mbuf (struct mbuf *, 622 const struct sadb_msghdr *, int, int, ...); 623 static int key_api_spdadd(struct socket *, struct mbuf *, 624 const struct sadb_msghdr *); 625 static u_int32_t key_getnewspid (void); 626 static int key_api_spddelete(struct socket *, struct mbuf *, 627 const struct sadb_msghdr *); 628 static int key_api_spddelete2(struct socket *, struct mbuf *, 629 const struct sadb_msghdr *); 630 static int key_api_spdget(struct socket *, struct mbuf *, 631 const struct sadb_msghdr *); 632 static int key_api_spdflush(struct socket *, struct mbuf *, 633 const struct sadb_msghdr *); 634 static int key_api_spddump(struct socket *, struct mbuf *, 635 const struct sadb_msghdr *); 636 static struct mbuf * key_setspddump (int *errorp, pid_t); 637 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid); 638 static int key_api_nat_map(struct socket *, struct mbuf *, 639 const struct sadb_msghdr *); 640 static struct mbuf *key_setdumpsp (struct secpolicy *, 641 u_int8_t, u_int32_t, pid_t); 642 static u_int key_getspreqmsglen (const struct secpolicy *); 643 static int key_spdexpire (struct secpolicy *); 644 static struct secashead *key_newsah (const struct secasindex *); 645 static void key_unlink_sah(struct secashead *); 646 static void key_destroy_sah(struct secashead *); 647 static bool key_sah_has_sav(struct secashead *); 648 static void key_sah_ref(struct secashead *); 649 static void key_sah_unref(struct secashead *); 650 static void key_init_sav(struct secasvar *); 651 static void key_destroy_sav(struct secasvar *); 652 static void key_destroy_sav_with_ref(struct secasvar *); 653 static struct secasvar *key_newsav(struct mbuf *, 654 const struct sadb_msghdr *, int *, const char*, int); 655 #define KEY_NEWSAV(m, sadb, e) \ 656 key_newsav(m, sadb, e, __func__, __LINE__) 657 static void key_delsav (struct secasvar *); 658 static struct secashead *key_getsah(const struct secasindex *, int); 659 static struct secashead *key_getsah_ref(const struct secasindex *, int); 660 static bool key_checkspidup(const struct secasindex *, u_int32_t); 661 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t); 662 static int key_setsaval (struct secasvar *, struct mbuf *, 663 const struct sadb_msghdr *); 664 static void key_freesaval(struct secasvar *); 665 static int key_init_xform(struct secasvar *); 666 static void key_clear_xform(struct secasvar *); 667 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t, 668 u_int8_t, u_int32_t, u_int32_t); 669 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t); 670 static struct mbuf *key_setsadbxtype (u_int16_t); 671 static struct mbuf *key_setsadbxfrag (u_int16_t); 672 static void key_porttosaddr (union sockaddr_union *, u_int16_t); 673 static int key_checksalen (const union sockaddr_union *); 674 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t, 675 u_int32_t, pid_t, u_int16_t, int); 676 static struct mbuf *key_setsadbsa (struct secasvar *); 677 static struct mbuf *key_setsadbaddr(u_int16_t, 678 const struct sockaddr *, u_int8_t, u_int16_t, int); 679 #if 0 680 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *, 681 int, u_int64_t); 682 #endif 683 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t); 684 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t, 685 u_int32_t, int); 686 static void *key_newbuf (const void *, u_int); 687 #ifdef INET6 688 static int key_ismyaddr6 (const struct sockaddr_in6 *); 689 #endif 690 691 static void sysctl_net_keyv2_setup(struct sysctllog **); 692 static void sysctl_net_key_compat_setup(struct sysctllog **); 693 694 /* flags for key_saidx_match() */ 695 #define CMP_HEAD 1 /* protocol, addresses. */ 696 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 697 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 698 #define CMP_EXACTLY 4 /* all elements. */ 699 static int key_saidx_match(const struct secasindex *, 700 const struct secasindex *, int); 701 702 static int key_sockaddr_match(const struct sockaddr *, 703 const struct sockaddr *, int); 704 static int key_bb_match_withmask(const void *, const void *, u_int); 705 static u_int16_t key_satype2proto (u_int8_t); 706 static u_int8_t key_proto2satype (u_int16_t); 707 708 static int key_spidx_match_exactly(const struct secpolicyindex *, 709 const struct secpolicyindex *); 710 static int key_spidx_match_withmask(const struct secpolicyindex *, 711 const struct secpolicyindex *); 712 713 static int key_api_getspi(struct socket *, struct mbuf *, 714 const struct sadb_msghdr *); 715 static u_int32_t key_do_getnewspi (const struct sadb_spirange *, 716 const struct secasindex *); 717 static int key_handle_natt_info (struct secasvar *, 718 const struct sadb_msghdr *); 719 static int key_set_natt_ports (union sockaddr_union *, 720 union sockaddr_union *, 721 const struct sadb_msghdr *); 722 static int key_api_update(struct socket *, struct mbuf *, 723 const struct sadb_msghdr *); 724 #ifdef IPSEC_DOSEQCHECK 725 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t); 726 #endif 727 static int key_api_add(struct socket *, struct mbuf *, 728 const struct sadb_msghdr *); 729 static int key_setident (struct secashead *, struct mbuf *, 730 const struct sadb_msghdr *); 731 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *, 732 const struct sadb_msghdr *); 733 static int key_api_delete(struct socket *, struct mbuf *, 734 const struct sadb_msghdr *); 735 static int key_api_get(struct socket *, struct mbuf *, 736 const struct sadb_msghdr *); 737 738 static void key_getcomb_setlifetime (struct sadb_comb *); 739 static struct mbuf *key_getcomb_esp(int); 740 static struct mbuf *key_getcomb_ah(int); 741 static struct mbuf *key_getcomb_ipcomp(int); 742 static struct mbuf *key_getprop(const struct secasindex *, int); 743 744 static int key_acquire(const struct secasindex *, const struct secpolicy *, 745 int); 746 static int key_acquire_sendup_mbuf_later(struct mbuf *); 747 static void key_acquire_sendup_pending_mbuf(void); 748 #ifndef IPSEC_NONBLOCK_ACQUIRE 749 static struct secacq *key_newacq (const struct secasindex *); 750 static struct secacq *key_getacq (const struct secasindex *); 751 static struct secacq *key_getacqbyseq (u_int32_t); 752 #endif 753 #ifdef notyet 754 static struct secspacq *key_newspacq (const struct secpolicyindex *); 755 static struct secspacq *key_getspacq (const struct secpolicyindex *); 756 #endif 757 static int key_api_acquire(struct socket *, struct mbuf *, 758 const struct sadb_msghdr *); 759 static int key_api_register(struct socket *, struct mbuf *, 760 const struct sadb_msghdr *); 761 static int key_expire (struct secasvar *); 762 static int key_api_flush(struct socket *, struct mbuf *, 763 const struct sadb_msghdr *); 764 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp, 765 int *lenp, pid_t pid); 766 static int key_api_dump(struct socket *, struct mbuf *, 767 const struct sadb_msghdr *); 768 static int key_api_promisc(struct socket *, struct mbuf *, 769 const struct sadb_msghdr *); 770 static int key_senderror (struct socket *, struct mbuf *, int); 771 static int key_validate_ext (const struct sadb_ext *, int); 772 static int key_align (struct mbuf *, struct sadb_msghdr *); 773 #if 0 774 static const char *key_getfqdn (void); 775 static const char *key_getuserfqdn (void); 776 #endif 777 static void key_sa_chgstate (struct secasvar *, u_int8_t); 778 779 static struct mbuf *key_alloc_mbuf(int, int); 780 static struct mbuf *key_alloc_mbuf_simple(int, int); 781 782 static void key_timehandler(void *); 783 static void key_timehandler_work(struct work *, void *); 784 static struct callout key_timehandler_ch; 785 static struct workqueue *key_timehandler_wq; 786 static struct work key_timehandler_wk; 787 788 /* 789 * Utilities for percpu counters for sadb_lifetime_allocations and 790 * sadb_lifetime_bytes. 791 */ 792 #define LIFETIME_COUNTER_ALLOCATIONS 0 793 #define LIFETIME_COUNTER_BYTES 1 794 #define LIFETIME_COUNTER_SIZE 2 795 796 typedef uint64_t lifetime_counters_t[LIFETIME_COUNTER_SIZE]; 797 798 static void 799 key_sum_lifetime_counters(void *p, void *arg, struct cpu_info *ci __unused) 800 { 801 lifetime_counters_t *one = p; 802 lifetime_counters_t *sum = arg; 803 804 (*sum)[LIFETIME_COUNTER_ALLOCATIONS] += (*one)[LIFETIME_COUNTER_ALLOCATIONS]; 805 (*sum)[LIFETIME_COUNTER_BYTES] += (*one)[LIFETIME_COUNTER_BYTES]; 806 } 807 808 u_int 809 key_sp_refcnt(const struct secpolicy *sp) 810 { 811 812 /* FIXME */ 813 return 0; 814 } 815 816 static void 817 key_spd_pserialize_perform(void) 818 { 819 820 KASSERT(mutex_owned(&key_spd.lock)); 821 822 while (key_spd.psz_performing) 823 cv_wait(&key_spd.cv_psz, &key_spd.lock); 824 key_spd.psz_performing = true; 825 mutex_exit(&key_spd.lock); 826 827 pserialize_perform(key_spd.psz); 828 829 mutex_enter(&key_spd.lock); 830 key_spd.psz_performing = false; 831 cv_broadcast(&key_spd.cv_psz); 832 } 833 834 /* 835 * Remove the sp from the key_spd.splist and wait for references to the sp 836 * to be released. key_spd.lock must be held. 837 */ 838 static void 839 key_unlink_sp(struct secpolicy *sp) 840 { 841 842 KASSERT(mutex_owned(&key_spd.lock)); 843 844 sp->state = IPSEC_SPSTATE_DEAD; 845 SPLIST_WRITER_REMOVE(sp); 846 847 /* Invalidate all cached SPD pointers in the PCBs. */ 848 ipsec_invalpcbcacheall(); 849 850 KDASSERT(mutex_ownable(softnet_lock)); 851 key_spd_pserialize_perform(); 852 853 localcount_drain(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); 854 } 855 856 /* 857 * Return 0 when there are known to be no SP's for the specified 858 * direction. Otherwise return 1. This is used by IPsec code 859 * to optimize performance. 860 */ 861 int 862 key_havesp(u_int dir) 863 { 864 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 865 !SPLIST_READER_EMPTY(dir) : 1); 866 } 867 868 /* %%% IPsec policy management */ 869 /* 870 * allocating a SP for OUTBOUND or INBOUND packet. 871 * Must call key_freesp() later. 872 * OUT: NULL: not found 873 * others: found and return the pointer. 874 */ 875 struct secpolicy * 876 key_lookup_sp_byspidx(const struct secpolicyindex *spidx, 877 u_int dir, const char* where, int tag) 878 { 879 struct secpolicy *sp; 880 int s; 881 882 KASSERT(spidx != NULL); 883 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir); 884 885 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); 886 887 /* get a SP entry */ 888 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { 889 kdebug_secpolicyindex("objects", spidx); 890 } 891 892 s = pserialize_read_enter(); 893 SPLIST_READER_FOREACH(sp, dir) { 894 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { 895 kdebug_secpolicyindex("in SPD", &sp->spidx); 896 } 897 898 if (sp->state == IPSEC_SPSTATE_DEAD) 899 continue; 900 if (key_spidx_match_withmask(&sp->spidx, spidx)) 901 goto found; 902 } 903 sp = NULL; 904 found: 905 if (sp) { 906 /* sanity check */ 907 KEY_CHKSPDIR(sp->spidx.dir, dir); 908 909 /* found a SPD entry */ 910 sp->lastused = time_uptime; 911 key_sp_ref(sp, where, tag); 912 } 913 pserialize_read_exit(s); 914 915 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 916 "DP return SP:%p (ID=%u) refcnt %u\n", 917 sp, sp ? sp->id : 0, key_sp_refcnt(sp)); 918 return sp; 919 } 920 921 /* 922 * return a policy that matches this particular inbound packet. 923 * XXX slow 924 */ 925 struct secpolicy * 926 key_gettunnel(const struct sockaddr *osrc, 927 const struct sockaddr *odst, 928 const struct sockaddr *isrc, 929 const struct sockaddr *idst, 930 const char* where, int tag) 931 { 932 struct secpolicy *sp; 933 const int dir = IPSEC_DIR_INBOUND; 934 int s; 935 struct ipsecrequest *r1, *r2, *p; 936 struct secpolicyindex spidx; 937 938 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); 939 940 if (isrc->sa_family != idst->sa_family) { 941 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.", 942 isrc->sa_family, idst->sa_family); 943 sp = NULL; 944 goto done; 945 } 946 947 s = pserialize_read_enter(); 948 SPLIST_READER_FOREACH(sp, dir) { 949 if (sp->state == IPSEC_SPSTATE_DEAD) 950 continue; 951 952 r1 = r2 = NULL; 953 for (p = sp->req; p; p = p->next) { 954 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 955 continue; 956 957 r1 = r2; 958 r2 = p; 959 960 if (!r1) { 961 /* here we look at address matches only */ 962 spidx = sp->spidx; 963 if (isrc->sa_len > sizeof(spidx.src) || 964 idst->sa_len > sizeof(spidx.dst)) 965 continue; 966 memcpy(&spidx.src, isrc, isrc->sa_len); 967 memcpy(&spidx.dst, idst, idst->sa_len); 968 if (!key_spidx_match_withmask(&sp->spidx, &spidx)) 969 continue; 970 } else { 971 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) || 972 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE)) 973 continue; 974 } 975 976 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) || 977 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE)) 978 continue; 979 980 goto found; 981 } 982 } 983 sp = NULL; 984 found: 985 if (sp) { 986 sp->lastused = time_uptime; 987 key_sp_ref(sp, where, tag); 988 } 989 pserialize_read_exit(s); 990 done: 991 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 992 "DP return SP:%p (ID=%u) refcnt %u\n", 993 sp, sp ? sp->id : 0, key_sp_refcnt(sp)); 994 return sp; 995 } 996 997 /* 998 * allocating an SA entry for an *OUTBOUND* packet. 999 * checking each request entries in SP, and acquire an SA if need. 1000 * OUT: 0: there are valid requests. 1001 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 1002 */ 1003 int 1004 key_checkrequest(const struct ipsecrequest *isr, const struct secasindex *saidx, 1005 struct secasvar **ret) 1006 { 1007 u_int level; 1008 int error; 1009 struct secasvar *sav; 1010 1011 KASSERT(isr != NULL); 1012 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT || 1013 saidx->mode == IPSEC_MODE_TUNNEL, 1014 "unexpected policy %u", saidx->mode); 1015 1016 /* get current level */ 1017 level = ipsec_get_reqlevel(isr); 1018 1019 /* 1020 * XXX guard against protocol callbacks from the crypto 1021 * thread as they reference ipsecrequest.sav which we 1022 * temporarily null out below. Need to rethink how we 1023 * handle bundled SA's in the callback thread. 1024 */ 1025 IPSEC_SPLASSERT_SOFTNET("key_checkrequest"); 1026 1027 sav = key_lookup_sa_bysaidx(saidx); 1028 if (sav != NULL) { 1029 *ret = sav; 1030 return 0; 1031 } 1032 1033 /* there is no SA */ 1034 error = key_acquire(saidx, isr->sp, M_NOWAIT); 1035 if (error != 0) { 1036 /* XXX What should I do ? */ 1037 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", 1038 error); 1039 return error; 1040 } 1041 1042 if (level != IPSEC_LEVEL_REQUIRE) { 1043 /* XXX sigh, the interface to this routine is botched */ 1044 *ret = NULL; 1045 return 0; 1046 } else { 1047 return ENOENT; 1048 } 1049 } 1050 1051 /* 1052 * looking up a SA for policy entry from SAD. 1053 * NOTE: searching SAD of aliving state. 1054 * OUT: NULL: not found. 1055 * others: found and return the pointer. 1056 */ 1057 struct secasvar * 1058 key_lookup_sa_bysaidx(const struct secasindex *saidx) 1059 { 1060 struct secashead *sah; 1061 struct secasvar *sav = NULL; 1062 u_int stateidx, state; 1063 const u_int *saorder_state_valid; 1064 int arraysize; 1065 int s; 1066 1067 s = pserialize_read_enter(); 1068 sah = key_getsah(saidx, CMP_MODE_REQID); 1069 if (sah == NULL) 1070 goto out; 1071 1072 /* 1073 * search a valid state list for outbound packet. 1074 * This search order is important. 1075 */ 1076 if (key_prefered_oldsa) { 1077 saorder_state_valid = saorder_state_valid_prefer_old; 1078 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1079 } else { 1080 saorder_state_valid = saorder_state_valid_prefer_new; 1081 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1082 } 1083 1084 /* search valid state */ 1085 for (stateidx = 0; 1086 stateidx < arraysize; 1087 stateidx++) { 1088 1089 state = saorder_state_valid[stateidx]; 1090 1091 if (key_prefered_oldsa) 1092 sav = SAVLIST_READER_FIRST(sah, state); 1093 else { 1094 /* XXX need O(1) lookup */ 1095 struct secasvar *last = NULL; 1096 1097 SAVLIST_READER_FOREACH(sav, sah, state) 1098 last = sav; 1099 sav = last; 1100 } 1101 if (sav != NULL) { 1102 KEY_SA_REF(sav); 1103 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1104 "DP cause refcnt++:%d SA:%p\n", 1105 key_sa_refcnt(sav), sav); 1106 break; 1107 } 1108 } 1109 out: 1110 pserialize_read_exit(s); 1111 1112 return sav; 1113 } 1114 1115 #if 0 1116 static void 1117 key_sendup_message_delete(struct secasvar *sav) 1118 { 1119 struct mbuf *m, *result = 0; 1120 uint8_t satype; 1121 1122 satype = key_proto2satype(sav->sah->saidx.proto); 1123 if (satype == 0) 1124 goto msgfail; 1125 1126 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1); 1127 if (m == NULL) 1128 goto msgfail; 1129 result = m; 1130 1131 /* set sadb_address for saidx's. */ 1132 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, 1133 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY); 1134 if (m == NULL) 1135 goto msgfail; 1136 m_cat(result, m); 1137 1138 /* set sadb_address for saidx's. */ 1139 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa, 1140 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY); 1141 if (m == NULL) 1142 goto msgfail; 1143 m_cat(result, m); 1144 1145 /* create SA extension */ 1146 m = key_setsadbsa(sav); 1147 if (m == NULL) 1148 goto msgfail; 1149 m_cat(result, m); 1150 1151 if (result->m_len < sizeof(struct sadb_msg)) { 1152 result = m_pullup(result, sizeof(struct sadb_msg)); 1153 if (result == NULL) 1154 goto msgfail; 1155 } 1156 1157 result->m_pkthdr.len = 0; 1158 for (m = result; m; m = m->m_next) 1159 result->m_pkthdr.len += m->m_len; 1160 mtod(result, struct sadb_msg *)->sadb_msg_len = 1161 PFKEY_UNIT64(result->m_pkthdr.len); 1162 1163 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 1164 result = NULL; 1165 msgfail: 1166 if (result) 1167 m_freem(result); 1168 } 1169 #endif 1170 1171 /* 1172 * allocating a usable SA entry for a *INBOUND* packet. 1173 * Must call key_freesav() later. 1174 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1175 * NULL: not found, or error occurred. 1176 * 1177 * In the comparison, no source address is used--for RFC2401 conformance. 1178 * To quote, from section 4.1: 1179 * A security association is uniquely identified by a triple consisting 1180 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1181 * security protocol (AH or ESP) identifier. 1182 * Note that, however, we do need to keep source address in IPsec SA. 1183 * IKE specification and PF_KEY specification do assume that we 1184 * keep source address in IPsec SA. We see a tricky situation here. 1185 * 1186 * sport and dport are used for NAT-T. network order is always used. 1187 */ 1188 struct secasvar * 1189 key_lookup_sa( 1190 const union sockaddr_union *dst, 1191 u_int proto, 1192 u_int32_t spi, 1193 u_int16_t sport, 1194 u_int16_t dport, 1195 const char* where, int tag) 1196 { 1197 struct secashead *sah; 1198 struct secasvar *sav; 1199 u_int stateidx, state; 1200 const u_int *saorder_state_valid; 1201 int arraysize, chkport; 1202 int s; 1203 1204 int must_check_spi = 1; 1205 int must_check_alg = 0; 1206 u_int16_t cpi = 0; 1207 u_int8_t algo = 0; 1208 1209 if ((sport != 0) && (dport != 0)) 1210 chkport = PORT_STRICT; 1211 else 1212 chkport = PORT_NONE; 1213 1214 KASSERT(dst != NULL); 1215 1216 /* 1217 * XXX IPCOMP case 1218 * We use cpi to define spi here. In the case where cpi <= 1219 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not 1220 * the real spi. In this case, don't check the spi but check the 1221 * algorithm 1222 */ 1223 1224 if (proto == IPPROTO_IPCOMP) { 1225 u_int32_t tmp; 1226 tmp = ntohl(spi); 1227 cpi = (u_int16_t) tmp; 1228 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) { 1229 algo = (u_int8_t) cpi; 1230 must_check_spi = 0; 1231 must_check_alg = 1; 1232 } 1233 } 1234 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1235 "DP from %s:%u check_spi=%d, check_alg=%d\n", 1236 where, tag, must_check_spi, must_check_alg); 1237 1238 1239 /* 1240 * searching SAD. 1241 * XXX: to be checked internal IP header somewhere. Also when 1242 * IPsec tunnel packet is received. But ESP tunnel mode is 1243 * encrypted so we can't check internal IP header. 1244 */ 1245 if (key_prefered_oldsa) { 1246 saorder_state_valid = saorder_state_valid_prefer_old; 1247 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1248 } else { 1249 saorder_state_valid = saorder_state_valid_prefer_new; 1250 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1251 } 1252 s = pserialize_read_enter(); 1253 SAHLIST_READER_FOREACH(sah) { 1254 /* search valid state */ 1255 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1256 state = saorder_state_valid[stateidx]; 1257 SAVLIST_READER_FOREACH(sav, sah, state) { 1258 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1259 "try match spi %#x, %#x\n", 1260 ntohl(spi), ntohl(sav->spi)); 1261 /* sanity check */ 1262 KEY_CHKSASTATE(sav->state, state); 1263 /* do not return entries w/ unusable state */ 1264 if (!SADB_SASTATE_USABLE_P(sav)) { 1265 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1266 "bad state %d\n", sav->state); 1267 continue; 1268 } 1269 if (proto != sav->sah->saidx.proto) { 1270 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1271 "proto fail %d != %d\n", 1272 proto, sav->sah->saidx.proto); 1273 continue; 1274 } 1275 if (must_check_spi && spi != sav->spi) { 1276 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1277 "spi fail %#x != %#x\n", 1278 ntohl(spi), ntohl(sav->spi)); 1279 continue; 1280 } 1281 /* XXX only on the ipcomp case */ 1282 if (must_check_alg && algo != sav->alg_comp) { 1283 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1284 "algo fail %d != %d\n", 1285 algo, sav->alg_comp); 1286 continue; 1287 } 1288 1289 #if 0 /* don't check src */ 1290 /* Fix port in src->sa */ 1291 1292 /* check src address */ 1293 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE)) 1294 continue; 1295 #endif 1296 /* fix port of dst address XXX*/ 1297 key_porttosaddr(__UNCONST(dst), dport); 1298 /* check dst address */ 1299 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport)) 1300 continue; 1301 key_sa_ref(sav, where, tag); 1302 goto done; 1303 } 1304 } 1305 } 1306 sav = NULL; 1307 done: 1308 pserialize_read_exit(s); 1309 1310 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1311 "DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav)); 1312 return sav; 1313 } 1314 1315 static void 1316 key_validate_savlist(const struct secashead *sah, const u_int state) 1317 { 1318 #ifdef DEBUG 1319 struct secasvar *sav, *next; 1320 int s; 1321 1322 /* 1323 * The list should be sorted by lft_c->sadb_lifetime_addtime 1324 * in ascending order. 1325 */ 1326 s = pserialize_read_enter(); 1327 SAVLIST_READER_FOREACH(sav, sah, state) { 1328 next = SAVLIST_READER_NEXT(sav); 1329 if (next != NULL && 1330 sav->lft_c != NULL && next->lft_c != NULL) { 1331 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <= 1332 next->lft_c->sadb_lifetime_addtime, 1333 "savlist is not sorted: sah=%p, state=%d, " 1334 "sav=%" PRIu64 ", next=%" PRIu64, sah, state, 1335 sav->lft_c->sadb_lifetime_addtime, 1336 next->lft_c->sadb_lifetime_addtime); 1337 } 1338 } 1339 pserialize_read_exit(s); 1340 #endif 1341 } 1342 1343 void 1344 key_init_sp(struct secpolicy *sp) 1345 { 1346 1347 ASSERT_SLEEPABLE(); 1348 1349 sp->state = IPSEC_SPSTATE_ALIVE; 1350 if (sp->policy == IPSEC_POLICY_IPSEC) 1351 KASSERT(sp->req != NULL); 1352 localcount_init(&sp->localcount); 1353 SPLIST_ENTRY_INIT(sp); 1354 } 1355 1356 /* 1357 * Must be called in a pserialize read section. A held SP 1358 * must be released by key_sp_unref after use. 1359 */ 1360 void 1361 key_sp_ref(struct secpolicy *sp, const char* where, int tag) 1362 { 1363 1364 localcount_acquire(&sp->localcount); 1365 1366 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1367 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n", 1368 sp, sp->id, where, tag, key_sp_refcnt(sp)); 1369 } 1370 1371 /* 1372 * Must be called without holding key_spd.lock because the lock 1373 * would be held in localcount_release. 1374 */ 1375 void 1376 key_sp_unref(struct secpolicy *sp, const char* where, int tag) 1377 { 1378 1379 KDASSERT(mutex_ownable(&key_spd.lock)); 1380 1381 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1382 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n", 1383 sp, sp->id, where, tag, key_sp_refcnt(sp)); 1384 1385 localcount_release(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); 1386 } 1387 1388 static void 1389 key_init_sav(struct secasvar *sav) 1390 { 1391 1392 ASSERT_SLEEPABLE(); 1393 1394 localcount_init(&sav->localcount); 1395 SAVLIST_ENTRY_INIT(sav); 1396 } 1397 1398 u_int 1399 key_sa_refcnt(const struct secasvar *sav) 1400 { 1401 1402 /* FIXME */ 1403 return 0; 1404 } 1405 1406 void 1407 key_sa_ref(struct secasvar *sav, const char* where, int tag) 1408 { 1409 1410 localcount_acquire(&sav->localcount); 1411 1412 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1413 "DP cause refcnt++: SA:%p from %s:%u\n", 1414 sav, where, tag); 1415 } 1416 1417 void 1418 key_sa_unref(struct secasvar *sav, const char* where, int tag) 1419 { 1420 1421 KDASSERT(mutex_ownable(&key_sad.lock)); 1422 1423 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1424 "DP cause refcnt--: SA:%p from %s:%u\n", 1425 sav, where, tag); 1426 1427 localcount_release(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1428 } 1429 1430 #if 0 1431 /* 1432 * Must be called after calling key_lookup_sp*(). 1433 * For the packet with socket. 1434 */ 1435 static void 1436 key_freeso(struct socket *so) 1437 { 1438 /* sanity check */ 1439 KASSERT(so != NULL); 1440 1441 switch (so->so_proto->pr_domain->dom_family) { 1442 #ifdef INET 1443 case PF_INET: 1444 { 1445 struct inpcb *pcb = sotoinpcb(so); 1446 1447 /* Does it have a PCB ? */ 1448 if (pcb == NULL) 1449 return; 1450 1451 struct inpcbpolicy *sp = pcb->inp_sp; 1452 key_freesp_so(&sp->sp_in); 1453 key_freesp_so(&sp->sp_out); 1454 } 1455 break; 1456 #endif 1457 #ifdef INET6 1458 case PF_INET6: 1459 { 1460 #ifdef HAVE_NRL_INPCB 1461 struct inpcb *pcb = sotoinpcb(so); 1462 struct inpcbpolicy *sp = pcb->inp_sp; 1463 1464 /* Does it have a PCB ? */ 1465 if (pcb == NULL) 1466 return; 1467 key_freesp_so(&sp->sp_in); 1468 key_freesp_so(&sp->sp_out); 1469 #else 1470 struct in6pcb *pcb = sotoin6pcb(so); 1471 1472 /* Does it have a PCB ? */ 1473 if (pcb == NULL) 1474 return; 1475 key_freesp_so(&pcb->in6p_sp->sp_in); 1476 key_freesp_so(&pcb->in6p_sp->sp_out); 1477 #endif 1478 } 1479 break; 1480 #endif /* INET6 */ 1481 default: 1482 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n", 1483 so->so_proto->pr_domain->dom_family); 1484 return; 1485 } 1486 } 1487 1488 static void 1489 key_freesp_so(struct secpolicy **sp) 1490 { 1491 1492 KASSERT(sp != NULL); 1493 KASSERT(*sp != NULL); 1494 1495 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1496 (*sp)->policy == IPSEC_POLICY_BYPASS) 1497 return; 1498 1499 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC, 1500 "invalid policy %u", (*sp)->policy); 1501 KEY_SP_UNREF(&sp); 1502 } 1503 #endif 1504 1505 static void 1506 key_sad_pserialize_perform(void) 1507 { 1508 1509 KASSERT(mutex_owned(&key_sad.lock)); 1510 1511 while (key_sad.psz_performing) 1512 cv_wait(&key_sad.cv_psz, &key_sad.lock); 1513 key_sad.psz_performing = true; 1514 mutex_exit(&key_sad.lock); 1515 1516 pserialize_perform(key_sad.psz); 1517 1518 mutex_enter(&key_sad.lock); 1519 key_sad.psz_performing = false; 1520 cv_broadcast(&key_sad.cv_psz); 1521 } 1522 1523 /* 1524 * Remove the sav from the savlist of its sah and wait for references to the sav 1525 * to be released. key_sad.lock must be held. 1526 */ 1527 static void 1528 key_unlink_sav(struct secasvar *sav) 1529 { 1530 1531 KASSERT(mutex_owned(&key_sad.lock)); 1532 1533 SAVLIST_WRITER_REMOVE(sav); 1534 1535 KDASSERT(mutex_ownable(softnet_lock)); 1536 key_sad_pserialize_perform(); 1537 1538 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1539 } 1540 1541 /* 1542 * Destroy an sav where the sav must be unlinked from an sah 1543 * by say key_unlink_sav. 1544 */ 1545 static void 1546 key_destroy_sav(struct secasvar *sav) 1547 { 1548 1549 ASSERT_SLEEPABLE(); 1550 1551 localcount_fini(&sav->localcount); 1552 SAVLIST_ENTRY_DESTROY(sav); 1553 1554 key_delsav(sav); 1555 } 1556 1557 /* 1558 * Destroy sav with holding its reference. 1559 */ 1560 static void 1561 key_destroy_sav_with_ref(struct secasvar *sav) 1562 { 1563 1564 ASSERT_SLEEPABLE(); 1565 1566 mutex_enter(&key_sad.lock); 1567 sav->state = SADB_SASTATE_DEAD; 1568 SAVLIST_WRITER_REMOVE(sav); 1569 mutex_exit(&key_sad.lock); 1570 1571 /* We cannot unref with holding key_sad.lock */ 1572 KEY_SA_UNREF(&sav); 1573 1574 mutex_enter(&key_sad.lock); 1575 KDASSERT(mutex_ownable(softnet_lock)); 1576 key_sad_pserialize_perform(); 1577 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1578 mutex_exit(&key_sad.lock); 1579 1580 key_destroy_sav(sav); 1581 } 1582 1583 /* %%% SPD management */ 1584 /* 1585 * free security policy entry. 1586 */ 1587 static void 1588 key_destroy_sp(struct secpolicy *sp) 1589 { 1590 1591 SPLIST_ENTRY_DESTROY(sp); 1592 localcount_fini(&sp->localcount); 1593 1594 key_free_sp(sp); 1595 1596 key_update_used(); 1597 } 1598 1599 void 1600 key_free_sp(struct secpolicy *sp) 1601 { 1602 struct ipsecrequest *isr = sp->req, *nextisr; 1603 1604 while (isr != NULL) { 1605 nextisr = isr->next; 1606 kmem_free(isr, sizeof(*isr)); 1607 isr = nextisr; 1608 } 1609 1610 kmem_free(sp, sizeof(*sp)); 1611 } 1612 1613 void 1614 key_socksplist_add(struct secpolicy *sp) 1615 { 1616 1617 mutex_enter(&key_spd.lock); 1618 PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry); 1619 mutex_exit(&key_spd.lock); 1620 1621 key_update_used(); 1622 } 1623 1624 /* 1625 * search SPD 1626 * OUT: NULL : not found 1627 * others : found, pointer to a SP. 1628 */ 1629 static struct secpolicy * 1630 key_getsp(const struct secpolicyindex *spidx) 1631 { 1632 struct secpolicy *sp; 1633 int s; 1634 1635 KASSERT(spidx != NULL); 1636 1637 s = pserialize_read_enter(); 1638 SPLIST_READER_FOREACH(sp, spidx->dir) { 1639 if (sp->state == IPSEC_SPSTATE_DEAD) 1640 continue; 1641 if (key_spidx_match_exactly(spidx, &sp->spidx)) { 1642 KEY_SP_REF(sp); 1643 pserialize_read_exit(s); 1644 return sp; 1645 } 1646 } 1647 pserialize_read_exit(s); 1648 1649 return NULL; 1650 } 1651 1652 /* 1653 * search SPD and remove found SP 1654 * OUT: NULL : not found 1655 * others : found, pointer to a SP. 1656 */ 1657 static struct secpolicy * 1658 key_lookup_and_remove_sp(const struct secpolicyindex *spidx, bool from_kernel) 1659 { 1660 struct secpolicy *sp = NULL; 1661 1662 mutex_enter(&key_spd.lock); 1663 SPLIST_WRITER_FOREACH(sp, spidx->dir) { 1664 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 1665 /* 1666 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1667 * removed by userland programs. 1668 */ 1669 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1670 continue; 1671 if (key_spidx_match_exactly(spidx, &sp->spidx)) { 1672 key_unlink_sp(sp); 1673 goto out; 1674 } 1675 } 1676 sp = NULL; 1677 out: 1678 mutex_exit(&key_spd.lock); 1679 1680 return sp; 1681 } 1682 1683 /* 1684 * get SP by index. 1685 * OUT: NULL : not found 1686 * others : found, pointer to a SP. 1687 */ 1688 static struct secpolicy * 1689 key_getspbyid(u_int32_t id) 1690 { 1691 struct secpolicy *sp; 1692 int s; 1693 1694 s = pserialize_read_enter(); 1695 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { 1696 if (sp->state == IPSEC_SPSTATE_DEAD) 1697 continue; 1698 if (sp->id == id) { 1699 KEY_SP_REF(sp); 1700 goto out; 1701 } 1702 } 1703 1704 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { 1705 if (sp->state == IPSEC_SPSTATE_DEAD) 1706 continue; 1707 if (sp->id == id) { 1708 KEY_SP_REF(sp); 1709 goto out; 1710 } 1711 } 1712 out: 1713 pserialize_read_exit(s); 1714 return sp; 1715 } 1716 1717 /* 1718 * get SP by index, remove and return it. 1719 * OUT: NULL : not found 1720 * others : found, pointer to a SP. 1721 */ 1722 static struct secpolicy * 1723 key_lookupbyid_and_remove_sp(u_int32_t id, bool from_kernel) 1724 { 1725 struct secpolicy *sp; 1726 1727 mutex_enter(&key_spd.lock); 1728 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { 1729 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 1730 /* 1731 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1732 * removed by userland programs. 1733 */ 1734 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1735 continue; 1736 if (sp->id == id) 1737 goto out; 1738 } 1739 1740 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { 1741 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 1742 /* 1743 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1744 * removed by userland programs. 1745 */ 1746 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1747 continue; 1748 if (sp->id == id) 1749 goto out; 1750 } 1751 out: 1752 if (sp != NULL) 1753 key_unlink_sp(sp); 1754 mutex_exit(&key_spd.lock); 1755 return sp; 1756 } 1757 1758 struct secpolicy * 1759 key_newsp(const char* where, int tag) 1760 { 1761 struct secpolicy *newsp = NULL; 1762 1763 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP); 1764 1765 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1766 "DP from %s:%u return SP:%p\n", where, tag, newsp); 1767 return newsp; 1768 } 1769 1770 /* 1771 * create secpolicy structure from sadb_x_policy structure. 1772 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1773 * so must be set properly later. 1774 */ 1775 static struct secpolicy * 1776 _key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error, 1777 bool from_kernel) 1778 { 1779 struct secpolicy *newsp; 1780 1781 KASSERT(!cpu_softintr_p()); 1782 KASSERT(xpl0 != NULL); 1783 KASSERT(len >= sizeof(*xpl0)); 1784 1785 if (len != PFKEY_EXTLEN(xpl0)) { 1786 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); 1787 *error = EINVAL; 1788 return NULL; 1789 } 1790 1791 newsp = KEY_NEWSP(); 1792 if (newsp == NULL) { 1793 *error = ENOBUFS; 1794 return NULL; 1795 } 1796 1797 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1798 newsp->policy = xpl0->sadb_x_policy_type; 1799 1800 /* check policy */ 1801 switch (xpl0->sadb_x_policy_type) { 1802 case IPSEC_POLICY_DISCARD: 1803 case IPSEC_POLICY_NONE: 1804 case IPSEC_POLICY_ENTRUST: 1805 case IPSEC_POLICY_BYPASS: 1806 newsp->req = NULL; 1807 *error = 0; 1808 return newsp; 1809 1810 case IPSEC_POLICY_IPSEC: 1811 /* Continued */ 1812 break; 1813 default: 1814 IPSECLOG(LOG_DEBUG, "invalid policy type.\n"); 1815 key_free_sp(newsp); 1816 *error = EINVAL; 1817 return NULL; 1818 } 1819 1820 /* IPSEC_POLICY_IPSEC */ 1821 { 1822 int tlen; 1823 const struct sadb_x_ipsecrequest *xisr; 1824 uint16_t xisr_reqid; 1825 struct ipsecrequest **p_isr = &newsp->req; 1826 1827 /* validity check */ 1828 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1829 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); 1830 *error = EINVAL; 1831 goto free_exit; 1832 } 1833 1834 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1835 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1); 1836 1837 while (tlen > 0) { 1838 /* length check */ 1839 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1840 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n"); 1841 *error = EINVAL; 1842 goto free_exit; 1843 } 1844 1845 /* allocate request buffer */ 1846 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP); 1847 1848 /* set values */ 1849 (*p_isr)->next = NULL; 1850 1851 switch (xisr->sadb_x_ipsecrequest_proto) { 1852 case IPPROTO_ESP: 1853 case IPPROTO_AH: 1854 case IPPROTO_IPCOMP: 1855 break; 1856 default: 1857 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n", 1858 xisr->sadb_x_ipsecrequest_proto); 1859 *error = EPROTONOSUPPORT; 1860 goto free_exit; 1861 } 1862 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1863 1864 switch (xisr->sadb_x_ipsecrequest_mode) { 1865 case IPSEC_MODE_TRANSPORT: 1866 case IPSEC_MODE_TUNNEL: 1867 break; 1868 case IPSEC_MODE_ANY: 1869 default: 1870 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n", 1871 xisr->sadb_x_ipsecrequest_mode); 1872 *error = EINVAL; 1873 goto free_exit; 1874 } 1875 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1876 1877 switch (xisr->sadb_x_ipsecrequest_level) { 1878 case IPSEC_LEVEL_DEFAULT: 1879 case IPSEC_LEVEL_USE: 1880 case IPSEC_LEVEL_REQUIRE: 1881 break; 1882 case IPSEC_LEVEL_UNIQUE: 1883 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid; 1884 /* validity check */ 1885 /* 1886 * case 1) from_kernel == false 1887 * That means the request comes from userland. 1888 * If range violation of reqid, kernel will 1889 * update it, don't refuse it. 1890 * 1891 * case 2) from_kernel == true 1892 * That means the request comes from kernel 1893 * (e.g. ipsec(4) I/F). 1894 * Use thre requested reqid to avoid inconsistency 1895 * between kernel's reqid and the reqid in pf_key 1896 * message sent to userland. The pf_key message is 1897 * built by diverting request mbuf. 1898 */ 1899 if (!from_kernel && 1900 xisr_reqid > IPSEC_MANUAL_REQID_MAX) { 1901 IPSECLOG(LOG_DEBUG, 1902 "reqid=%d range " 1903 "violation, updated by kernel.\n", 1904 xisr_reqid); 1905 xisr_reqid = 0; 1906 } 1907 1908 /* allocate new reqid id if reqid is zero. */ 1909 if (xisr_reqid == 0) { 1910 u_int16_t reqid = key_newreqid(); 1911 if (reqid == 0) { 1912 *error = ENOBUFS; 1913 goto free_exit; 1914 } 1915 (*p_isr)->saidx.reqid = reqid; 1916 } else { 1917 /* set it for manual keying. */ 1918 (*p_isr)->saidx.reqid = xisr_reqid; 1919 } 1920 break; 1921 1922 default: 1923 IPSECLOG(LOG_DEBUG, "invalid level=%u\n", 1924 xisr->sadb_x_ipsecrequest_level); 1925 *error = EINVAL; 1926 goto free_exit; 1927 } 1928 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1929 1930 /* set IP addresses if there */ 1931 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1932 const struct sockaddr *paddr; 1933 1934 paddr = (const struct sockaddr *)(xisr + 1); 1935 1936 /* validity check */ 1937 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) { 1938 IPSECLOG(LOG_DEBUG, "invalid request " 1939 "address length.\n"); 1940 *error = EINVAL; 1941 goto free_exit; 1942 } 1943 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len); 1944 1945 paddr = (const struct sockaddr *)((const char *)paddr 1946 + paddr->sa_len); 1947 1948 /* validity check */ 1949 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) { 1950 IPSECLOG(LOG_DEBUG, "invalid request " 1951 "address length.\n"); 1952 *error = EINVAL; 1953 goto free_exit; 1954 } 1955 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len); 1956 } 1957 1958 (*p_isr)->sp = newsp; 1959 1960 /* initialization for the next. */ 1961 p_isr = &(*p_isr)->next; 1962 tlen -= xisr->sadb_x_ipsecrequest_len; 1963 1964 /* validity check */ 1965 if (tlen < 0) { 1966 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n"); 1967 *error = EINVAL; 1968 goto free_exit; 1969 } 1970 1971 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr + 1972 xisr->sadb_x_ipsecrequest_len); 1973 } 1974 } 1975 1976 *error = 0; 1977 return newsp; 1978 1979 free_exit: 1980 key_free_sp(newsp); 1981 return NULL; 1982 } 1983 1984 struct secpolicy * 1985 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error) 1986 { 1987 1988 return _key_msg2sp(xpl0, len, error, false); 1989 } 1990 1991 u_int16_t 1992 key_newreqid(void) 1993 { 1994 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1995 1996 auto_reqid = (auto_reqid == 0xffff ? 1997 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1998 1999 /* XXX should be unique check */ 2000 2001 return auto_reqid; 2002 } 2003 2004 /* 2005 * copy secpolicy struct to sadb_x_policy structure indicated. 2006 */ 2007 struct mbuf * 2008 key_sp2msg(const struct secpolicy *sp, int mflag) 2009 { 2010 struct sadb_x_policy *xpl; 2011 int tlen; 2012 char *p; 2013 struct mbuf *m; 2014 2015 KASSERT(sp != NULL); 2016 2017 tlen = key_getspreqmsglen(sp); 2018 2019 m = key_alloc_mbuf(tlen, mflag); 2020 if (!m || m->m_next) { /*XXX*/ 2021 if (m) 2022 m_freem(m); 2023 return NULL; 2024 } 2025 2026 m->m_len = tlen; 2027 m->m_next = NULL; 2028 xpl = mtod(m, struct sadb_x_policy *); 2029 memset(xpl, 0, tlen); 2030 2031 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 2032 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 2033 xpl->sadb_x_policy_type = sp->policy; 2034 xpl->sadb_x_policy_dir = sp->spidx.dir; 2035 xpl->sadb_x_policy_id = sp->id; 2036 p = (char *)xpl + sizeof(*xpl); 2037 2038 /* if is the policy for ipsec ? */ 2039 if (sp->policy == IPSEC_POLICY_IPSEC) { 2040 struct sadb_x_ipsecrequest *xisr; 2041 struct ipsecrequest *isr; 2042 2043 for (isr = sp->req; isr != NULL; isr = isr->next) { 2044 2045 xisr = (struct sadb_x_ipsecrequest *)p; 2046 2047 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 2048 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 2049 xisr->sadb_x_ipsecrequest_level = isr->level; 2050 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 2051 2052 p += sizeof(*xisr); 2053 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len); 2054 p += isr->saidx.src.sa.sa_len; 2055 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len); 2056 p += isr->saidx.src.sa.sa_len; 2057 2058 xisr->sadb_x_ipsecrequest_len = 2059 PFKEY_ALIGN8(sizeof(*xisr) 2060 + isr->saidx.src.sa.sa_len 2061 + isr->saidx.dst.sa.sa_len); 2062 } 2063 } 2064 2065 return m; 2066 } 2067 2068 /* 2069 * m will not be freed nor modified. It never return NULL. 2070 * If it returns a mbuf of M_PKTHDR, the mbuf ensures to have 2071 * contiguous length at least sizeof(struct sadb_msg). 2072 */ 2073 static struct mbuf * 2074 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 2075 int ndeep, int nitem, ...) 2076 { 2077 va_list ap; 2078 int idx; 2079 int i; 2080 struct mbuf *result = NULL, *n; 2081 int len; 2082 2083 KASSERT(m != NULL); 2084 KASSERT(mhp != NULL); 2085 KASSERT(!cpu_softintr_p()); 2086 2087 va_start(ap, nitem); 2088 for (i = 0; i < nitem; i++) { 2089 idx = va_arg(ap, int); 2090 KASSERT(idx >= 0); 2091 KASSERT(idx <= SADB_EXT_MAX); 2092 /* don't attempt to pull empty extension */ 2093 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 2094 continue; 2095 if (idx != SADB_EXT_RESERVED && 2096 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 2097 continue; 2098 2099 if (idx == SADB_EXT_RESERVED) { 2100 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN); 2101 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2102 MGETHDR(n, M_WAITOK, MT_DATA); 2103 n->m_len = len; 2104 n->m_next = NULL; 2105 m_copydata(m, 0, sizeof(struct sadb_msg), 2106 mtod(n, void *)); 2107 } else if (i < ndeep) { 2108 len = mhp->extlen[idx]; 2109 n = key_alloc_mbuf(len, M_WAITOK); 2110 KASSERT(n->m_next == NULL); 2111 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 2112 mtod(n, void *)); 2113 } else { 2114 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 2115 M_WAITOK); 2116 } 2117 KASSERT(n != NULL); 2118 2119 if (result) 2120 m_cat(result, n); 2121 else 2122 result = n; 2123 } 2124 va_end(ap); 2125 2126 KASSERT(result != NULL); 2127 if ((result->m_flags & M_PKTHDR) != 0) { 2128 result->m_pkthdr.len = 0; 2129 for (n = result; n; n = n->m_next) 2130 result->m_pkthdr.len += n->m_len; 2131 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 2132 } 2133 2134 return result; 2135 } 2136 2137 /* 2138 * The argument _sp must not overwrite until SP is created and registered 2139 * successfully. 2140 */ 2141 static int 2142 key_spdadd(struct socket *so, struct mbuf *m, 2143 const struct sadb_msghdr *mhp, struct secpolicy **_sp, 2144 bool from_kernel) 2145 { 2146 const struct sockaddr *src, *dst; 2147 const struct sadb_x_policy *xpl0; 2148 struct sadb_x_policy *xpl; 2149 const struct sadb_lifetime *lft = NULL; 2150 struct secpolicyindex spidx; 2151 struct secpolicy *newsp; 2152 int error; 2153 uint32_t sadb_x_policy_id; 2154 2155 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2156 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2157 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2158 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2159 return key_senderror(so, m, EINVAL); 2160 } 2161 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2162 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2163 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2164 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2165 return key_senderror(so, m, EINVAL); 2166 } 2167 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 2168 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < 2169 sizeof(struct sadb_lifetime)) { 2170 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2171 return key_senderror(so, m, EINVAL); 2172 } 2173 lft = mhp->ext[SADB_EXT_LIFETIME_HARD]; 2174 } 2175 2176 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 2177 2178 /* checking the direciton. */ 2179 switch (xpl0->sadb_x_policy_dir) { 2180 case IPSEC_DIR_INBOUND: 2181 case IPSEC_DIR_OUTBOUND: 2182 break; 2183 default: 2184 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); 2185 return key_senderror(so, m, EINVAL); 2186 } 2187 2188 /* check policy */ 2189 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */ 2190 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST || 2191 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 2192 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n"); 2193 return key_senderror(so, m, EINVAL); 2194 } 2195 2196 /* policy requests are mandatory when action is ipsec. */ 2197 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX && 2198 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 2199 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 2200 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n"); 2201 return key_senderror(so, m, EINVAL); 2202 } 2203 2204 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 2205 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 2206 2207 /* sanity check on addr pair */ 2208 if (src->sa_family != dst->sa_family) 2209 return key_senderror(so, m, EINVAL); 2210 if (src->sa_len != dst->sa_len) 2211 return key_senderror(so, m, EINVAL); 2212 2213 key_init_spidx_bymsghdr(&spidx, mhp); 2214 2215 /* 2216 * checking there is SP already or not. 2217 * SPDUPDATE doesn't depend on whether there is a SP or not. 2218 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 2219 * then error. 2220 */ 2221 { 2222 struct secpolicy *sp; 2223 2224 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2225 sp = key_lookup_and_remove_sp(&spidx, from_kernel); 2226 if (sp != NULL) 2227 key_destroy_sp(sp); 2228 } else { 2229 sp = key_getsp(&spidx); 2230 if (sp != NULL) { 2231 KEY_SP_UNREF(&sp); 2232 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n"); 2233 return key_senderror(so, m, EEXIST); 2234 } 2235 } 2236 } 2237 2238 /* allocation new SP entry */ 2239 newsp = _key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error, from_kernel); 2240 if (newsp == NULL) { 2241 return key_senderror(so, m, error); 2242 } 2243 2244 newsp->id = key_getnewspid(); 2245 if (newsp->id == 0) { 2246 kmem_free(newsp, sizeof(*newsp)); 2247 return key_senderror(so, m, ENOBUFS); 2248 } 2249 2250 newsp->spidx = spidx; 2251 newsp->created = time_uptime; 2252 newsp->lastused = newsp->created; 2253 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 2254 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 2255 if (from_kernel) 2256 newsp->origin = IPSEC_SPORIGIN_KERNEL; 2257 else 2258 newsp->origin = IPSEC_SPORIGIN_USER; 2259 2260 key_init_sp(newsp); 2261 if (from_kernel) 2262 KEY_SP_REF(newsp); 2263 2264 sadb_x_policy_id = newsp->id; 2265 2266 if (_sp != NULL) 2267 *_sp = newsp; 2268 2269 mutex_enter(&key_spd.lock); 2270 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp); 2271 mutex_exit(&key_spd.lock); 2272 /* 2273 * We don't have a reference to newsp, so we must not touch newsp from 2274 * now on. If you want to do, you must take a reference beforehand. 2275 */ 2276 newsp = NULL; 2277 2278 #ifdef notyet 2279 /* delete the entry in key_misc.spacqlist */ 2280 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2281 struct secspacq *spacq = key_getspacq(&spidx); 2282 if (spacq != NULL) { 2283 /* reset counter in order to deletion by timehandler. */ 2284 spacq->created = time_uptime; 2285 spacq->count = 0; 2286 } 2287 } 2288 #endif 2289 2290 /* Invalidate all cached SPD pointers in the PCBs. */ 2291 ipsec_invalpcbcacheall(); 2292 2293 #if defined(GATEWAY) 2294 /* Invalidate the ipflow cache, as well. */ 2295 ipflow_invalidate_all(0); 2296 #ifdef INET6 2297 if (in6_present) 2298 ip6flow_invalidate_all(0); 2299 #endif /* INET6 */ 2300 #endif /* GATEWAY */ 2301 2302 key_update_used(); 2303 2304 { 2305 struct mbuf *n, *mpolicy; 2306 int off; 2307 2308 /* create new sadb_msg to reply. */ 2309 if (lft) { 2310 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 2311 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 2312 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2313 } else { 2314 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 2315 SADB_X_EXT_POLICY, 2316 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2317 } 2318 2319 key_fill_replymsg(n, 0); 2320 off = 0; 2321 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 2322 sizeof(*xpl), &off); 2323 if (mpolicy == NULL) { 2324 /* n is already freed */ 2325 /* 2326 * valid sp has been created, so we does not overwrite _sp 2327 * NULL here. let caller decide to use the sp or not. 2328 */ 2329 return key_senderror(so, m, ENOBUFS); 2330 } 2331 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off); 2332 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 2333 m_freem(n); 2334 /* ditto */ 2335 return key_senderror(so, m, EINVAL); 2336 } 2337 2338 xpl->sadb_x_policy_id = sadb_x_policy_id; 2339 2340 m_freem(m); 2341 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2342 } 2343 } 2344 2345 /* 2346 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 2347 * add an entry to SP database, when received 2348 * <base, address(SD), (lifetime(H),) policy> 2349 * from the user(?). 2350 * Adding to SP database, 2351 * and send 2352 * <base, address(SD), (lifetime(H),) policy> 2353 * to the socket which was send. 2354 * 2355 * SPDADD set a unique policy entry. 2356 * SPDSETIDX like SPDADD without a part of policy requests. 2357 * SPDUPDATE replace a unique policy entry. 2358 * 2359 * m will always be freed. 2360 */ 2361 static int 2362 key_api_spdadd(struct socket *so, struct mbuf *m, 2363 const struct sadb_msghdr *mhp) 2364 { 2365 2366 return key_spdadd(so, m, mhp, NULL, false); 2367 } 2368 2369 struct secpolicy * 2370 key_kpi_spdadd(struct mbuf *m) 2371 { 2372 struct sadb_msghdr mh; 2373 int error; 2374 struct secpolicy *sp = NULL; 2375 2376 error = key_align(m, &mh); 2377 if (error) 2378 return NULL; 2379 2380 error = key_spdadd(NULL, m, &mh, &sp, true); 2381 if (error) { 2382 /* 2383 * Currently, when key_spdadd() cannot send a PFKEY message 2384 * which means SP has been created, key_spdadd() returns error 2385 * although SP is created successfully. 2386 * Kernel components would not care PFKEY messages, so return 2387 * the "sp" regardless of error code. key_spdadd() overwrites 2388 * the argument only if SP is created successfully. 2389 */ 2390 } 2391 return sp; 2392 } 2393 2394 /* 2395 * get new policy id. 2396 * OUT: 2397 * 0: failure. 2398 * others: success. 2399 */ 2400 static u_int32_t 2401 key_getnewspid(void) 2402 { 2403 u_int32_t newid = 0; 2404 int count = key_spi_trycnt; /* XXX */ 2405 struct secpolicy *sp; 2406 2407 /* when requesting to allocate spi ranged */ 2408 while (count--) { 2409 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); 2410 2411 sp = key_getspbyid(newid); 2412 if (sp == NULL) 2413 break; 2414 2415 KEY_SP_UNREF(&sp); 2416 } 2417 2418 if (count == 0 || newid == 0) { 2419 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n"); 2420 return 0; 2421 } 2422 2423 return newid; 2424 } 2425 2426 /* 2427 * SADB_SPDDELETE processing 2428 * receive 2429 * <base, address(SD), policy(*)> 2430 * from the user(?), and set SADB_SASTATE_DEAD, 2431 * and send, 2432 * <base, address(SD), policy(*)> 2433 * to the ikmpd. 2434 * policy(*) including direction of policy. 2435 * 2436 * m will always be freed. 2437 */ 2438 static int 2439 key_api_spddelete(struct socket *so, struct mbuf *m, 2440 const struct sadb_msghdr *mhp) 2441 { 2442 struct sadb_x_policy *xpl0; 2443 struct secpolicyindex spidx; 2444 struct secpolicy *sp; 2445 2446 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2447 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2448 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2449 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2450 return key_senderror(so, m, EINVAL); 2451 } 2452 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2453 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2454 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2455 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2456 return key_senderror(so, m, EINVAL); 2457 } 2458 2459 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 2460 2461 /* checking the directon. */ 2462 switch (xpl0->sadb_x_policy_dir) { 2463 case IPSEC_DIR_INBOUND: 2464 case IPSEC_DIR_OUTBOUND: 2465 break; 2466 default: 2467 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); 2468 return key_senderror(so, m, EINVAL); 2469 } 2470 2471 /* make secindex */ 2472 key_init_spidx_bymsghdr(&spidx, mhp); 2473 2474 /* Is there SP in SPD ? */ 2475 sp = key_lookup_and_remove_sp(&spidx, false); 2476 if (sp == NULL) { 2477 IPSECLOG(LOG_DEBUG, "no SP found.\n"); 2478 return key_senderror(so, m, EINVAL); 2479 } 2480 2481 /* save policy id to buffer to be returned. */ 2482 xpl0->sadb_x_policy_id = sp->id; 2483 2484 key_destroy_sp(sp); 2485 2486 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2487 2488 { 2489 struct mbuf *n; 2490 2491 /* create new sadb_msg to reply. */ 2492 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2493 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2494 key_fill_replymsg(n, 0); 2495 m_freem(m); 2496 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2497 } 2498 } 2499 2500 static struct mbuf * 2501 key_alloc_mbuf_simple(int len, int mflag) 2502 { 2503 struct mbuf *n; 2504 2505 KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p())); 2506 2507 MGETHDR(n, mflag, MT_DATA); 2508 if (n && len > MHLEN) { 2509 MCLGET(n, mflag); 2510 if ((n->m_flags & M_EXT) == 0) { 2511 m_freem(n); 2512 n = NULL; 2513 } 2514 } 2515 return n; 2516 } 2517 2518 /* 2519 * SADB_SPDDELETE2 processing 2520 * receive 2521 * <base, policy(*)> 2522 * from the user(?), and set SADB_SASTATE_DEAD, 2523 * and send, 2524 * <base, policy(*)> 2525 * to the ikmpd. 2526 * policy(*) including direction of policy. 2527 * 2528 * m will always be freed. 2529 */ 2530 static int 2531 key_spddelete2(struct socket *so, struct mbuf *m, 2532 const struct sadb_msghdr *mhp, bool from_kernel) 2533 { 2534 u_int32_t id; 2535 struct secpolicy *sp; 2536 const struct sadb_x_policy *xpl; 2537 2538 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2539 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2540 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2541 return key_senderror(so, m, EINVAL); 2542 } 2543 2544 xpl = mhp->ext[SADB_X_EXT_POLICY]; 2545 id = xpl->sadb_x_policy_id; 2546 2547 /* Is there SP in SPD ? */ 2548 sp = key_lookupbyid_and_remove_sp(id, from_kernel); 2549 if (sp == NULL) { 2550 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); 2551 return key_senderror(so, m, EINVAL); 2552 } 2553 2554 key_destroy_sp(sp); 2555 2556 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2557 2558 { 2559 struct mbuf *n, *nn; 2560 int off, len; 2561 2562 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); 2563 2564 /* create new sadb_msg to reply. */ 2565 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2566 2567 n = key_alloc_mbuf_simple(len, M_WAITOK); 2568 n->m_len = len; 2569 n->m_next = NULL; 2570 off = 0; 2571 2572 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 2573 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2574 2575 KASSERTMSG(off == len, "length inconsistency"); 2576 2577 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2578 mhp->extlen[SADB_X_EXT_POLICY], M_WAITOK); 2579 2580 n->m_pkthdr.len = 0; 2581 for (nn = n; nn; nn = nn->m_next) 2582 n->m_pkthdr.len += nn->m_len; 2583 2584 key_fill_replymsg(n, 0); 2585 m_freem(m); 2586 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2587 } 2588 } 2589 2590 /* 2591 * SADB_SPDDELETE2 processing 2592 * receive 2593 * <base, policy(*)> 2594 * from the user(?), and set SADB_SASTATE_DEAD, 2595 * and send, 2596 * <base, policy(*)> 2597 * to the ikmpd. 2598 * policy(*) including direction of policy. 2599 * 2600 * m will always be freed. 2601 */ 2602 static int 2603 key_api_spddelete2(struct socket *so, struct mbuf *m, 2604 const struct sadb_msghdr *mhp) 2605 { 2606 2607 return key_spddelete2(so, m, mhp, false); 2608 } 2609 2610 int 2611 key_kpi_spddelete2(struct mbuf *m) 2612 { 2613 struct sadb_msghdr mh; 2614 int error; 2615 2616 error = key_align(m, &mh); 2617 if (error) 2618 return EINVAL; 2619 2620 return key_spddelete2(NULL, m, &mh, true); 2621 } 2622 2623 /* 2624 * SADB_X_GET processing 2625 * receive 2626 * <base, policy(*)> 2627 * from the user(?), 2628 * and send, 2629 * <base, address(SD), policy> 2630 * to the ikmpd. 2631 * policy(*) including direction of policy. 2632 * 2633 * m will always be freed. 2634 */ 2635 static int 2636 key_api_spdget(struct socket *so, struct mbuf *m, 2637 const struct sadb_msghdr *mhp) 2638 { 2639 u_int32_t id; 2640 struct secpolicy *sp; 2641 struct mbuf *n; 2642 const struct sadb_x_policy *xpl; 2643 2644 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2645 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2646 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2647 return key_senderror(so, m, EINVAL); 2648 } 2649 2650 xpl = mhp->ext[SADB_X_EXT_POLICY]; 2651 id = xpl->sadb_x_policy_id; 2652 2653 /* Is there SP in SPD ? */ 2654 sp = key_getspbyid(id); 2655 if (sp == NULL) { 2656 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); 2657 return key_senderror(so, m, ENOENT); 2658 } 2659 2660 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, 2661 mhp->msg->sadb_msg_pid); 2662 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */ 2663 m_freem(m); 2664 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2665 } 2666 2667 #ifdef notyet 2668 /* 2669 * SADB_X_SPDACQUIRE processing. 2670 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2671 * send 2672 * <base, policy(*)> 2673 * to KMD, and expect to receive 2674 * <base> with SADB_X_SPDACQUIRE if error occurred, 2675 * or 2676 * <base, policy> 2677 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2678 * policy(*) is without policy requests. 2679 * 2680 * 0 : succeed 2681 * others: error number 2682 */ 2683 int 2684 key_spdacquire(const struct secpolicy *sp) 2685 { 2686 struct mbuf *result = NULL, *m; 2687 struct secspacq *newspacq; 2688 int error; 2689 2690 KASSERT(sp != NULL); 2691 KASSERTMSG(sp->req == NULL, "called but there is request"); 2692 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC, 2693 "policy mismathed. IPsec is expected"); 2694 2695 /* Get an entry to check whether sent message or not. */ 2696 newspacq = key_getspacq(&sp->spidx); 2697 if (newspacq != NULL) { 2698 if (key_blockacq_count < newspacq->count) { 2699 /* reset counter and do send message. */ 2700 newspacq->count = 0; 2701 } else { 2702 /* increment counter and do nothing. */ 2703 newspacq->count++; 2704 return 0; 2705 } 2706 } else { 2707 /* make new entry for blocking to send SADB_ACQUIRE. */ 2708 newspacq = key_newspacq(&sp->spidx); 2709 if (newspacq == NULL) 2710 return ENOBUFS; 2711 2712 /* add to key_misc.acqlist */ 2713 LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain); 2714 } 2715 2716 /* create new sadb_msg to reply. */ 2717 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2718 if (!m) { 2719 error = ENOBUFS; 2720 goto fail; 2721 } 2722 result = m; 2723 2724 result->m_pkthdr.len = 0; 2725 for (m = result; m; m = m->m_next) 2726 result->m_pkthdr.len += m->m_len; 2727 2728 mtod(result, struct sadb_msg *)->sadb_msg_len = 2729 PFKEY_UNIT64(result->m_pkthdr.len); 2730 2731 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2732 2733 fail: 2734 if (result) 2735 m_freem(result); 2736 return error; 2737 } 2738 #endif /* notyet */ 2739 2740 /* 2741 * SADB_SPDFLUSH processing 2742 * receive 2743 * <base> 2744 * from the user, and free all entries in secpctree. 2745 * and send, 2746 * <base> 2747 * to the user. 2748 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2749 * 2750 * m will always be freed. 2751 */ 2752 static int 2753 key_api_spdflush(struct socket *so, struct mbuf *m, 2754 const struct sadb_msghdr *mhp) 2755 { 2756 struct sadb_msg *newmsg; 2757 struct secpolicy *sp; 2758 u_int dir; 2759 2760 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2761 return key_senderror(so, m, EINVAL); 2762 2763 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2764 retry: 2765 mutex_enter(&key_spd.lock); 2766 SPLIST_WRITER_FOREACH(sp, dir) { 2767 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 2768 /* 2769 * Userlang programs can remove SPs created by userland 2770 * probrams only, that is, they cannot remove SPs 2771 * created in kernel(e.g. ipsec(4) I/F). 2772 */ 2773 if (sp->origin == IPSEC_SPORIGIN_USER) { 2774 key_unlink_sp(sp); 2775 mutex_exit(&key_spd.lock); 2776 key_destroy_sp(sp); 2777 goto retry; 2778 } 2779 } 2780 mutex_exit(&key_spd.lock); 2781 } 2782 2783 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2784 2785 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2786 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 2787 return key_senderror(so, m, ENOBUFS); 2788 } 2789 2790 if (m->m_next) 2791 m_freem(m->m_next); 2792 m->m_next = NULL; 2793 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2794 newmsg = mtod(m, struct sadb_msg *); 2795 newmsg->sadb_msg_errno = 0; 2796 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2797 2798 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2799 } 2800 2801 static struct sockaddr key_src = { 2802 .sa_len = 2, 2803 .sa_family = PF_KEY, 2804 }; 2805 2806 static struct mbuf * 2807 key_setspddump_chain(int *errorp, int *lenp, pid_t pid) 2808 { 2809 struct secpolicy *sp; 2810 int cnt; 2811 u_int dir; 2812 struct mbuf *m, *n, *prev; 2813 int totlen; 2814 2815 KASSERT(mutex_owned(&key_spd.lock)); 2816 2817 *lenp = 0; 2818 2819 /* search SPD entry and get buffer size. */ 2820 cnt = 0; 2821 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2822 SPLIST_WRITER_FOREACH(sp, dir) { 2823 cnt++; 2824 } 2825 } 2826 2827 if (cnt == 0) { 2828 *errorp = ENOENT; 2829 return (NULL); 2830 } 2831 2832 m = NULL; 2833 prev = m; 2834 totlen = 0; 2835 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2836 SPLIST_WRITER_FOREACH(sp, dir) { 2837 --cnt; 2838 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 2839 2840 totlen += n->m_pkthdr.len; 2841 if (!m) { 2842 m = n; 2843 } else { 2844 prev->m_nextpkt = n; 2845 } 2846 prev = n; 2847 } 2848 } 2849 2850 *lenp = totlen; 2851 *errorp = 0; 2852 return (m); 2853 } 2854 2855 /* 2856 * SADB_SPDDUMP processing 2857 * receive 2858 * <base> 2859 * from the user, and dump all SP leaves 2860 * and send, 2861 * <base> ..... 2862 * to the ikmpd. 2863 * 2864 * m will always be freed. 2865 */ 2866 static int 2867 key_api_spddump(struct socket *so, struct mbuf *m0, 2868 const struct sadb_msghdr *mhp) 2869 { 2870 struct mbuf *n; 2871 int error, len; 2872 int ok; 2873 pid_t pid; 2874 2875 pid = mhp->msg->sadb_msg_pid; 2876 /* 2877 * If the requestor has insufficient socket-buffer space 2878 * for the entire chain, nobody gets any response to the DUMP. 2879 * XXX For now, only the requestor ever gets anything. 2880 * Moreover, if the requestor has any space at all, they receive 2881 * the entire chain, otherwise the request is refused with ENOBUFS. 2882 */ 2883 if (sbspace(&so->so_rcv) <= 0) { 2884 return key_senderror(so, m0, ENOBUFS); 2885 } 2886 2887 mutex_enter(&key_spd.lock); 2888 n = key_setspddump_chain(&error, &len, pid); 2889 mutex_exit(&key_spd.lock); 2890 2891 if (n == NULL) { 2892 return key_senderror(so, m0, ENOENT); 2893 } 2894 { 2895 uint64_t *ps = PFKEY_STAT_GETREF(); 2896 ps[PFKEY_STAT_IN_TOTAL]++; 2897 ps[PFKEY_STAT_IN_BYTES] += len; 2898 PFKEY_STAT_PUTREF(); 2899 } 2900 2901 /* 2902 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 2903 * The requestor receives either the entire chain, or an 2904 * error message with ENOBUFS. 2905 */ 2906 2907 /* 2908 * sbappendchainwith record takes the chain of entries, one 2909 * packet-record per SPD entry, prepends the key_src sockaddr 2910 * to each packet-record, links the sockaddr mbufs into a new 2911 * list of records, then appends the entire resulting 2912 * list to the requesting socket. 2913 */ 2914 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, 2915 SB_PRIO_ONESHOT_OVERFLOW); 2916 2917 if (!ok) { 2918 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 2919 m_freem(n); 2920 return key_senderror(so, m0, ENOBUFS); 2921 } 2922 2923 m_freem(m0); 2924 return error; 2925 } 2926 2927 /* 2928 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23 2929 */ 2930 static int 2931 key_api_nat_map(struct socket *so, struct mbuf *m, 2932 const struct sadb_msghdr *mhp) 2933 { 2934 struct sadb_x_nat_t_type *type; 2935 struct sadb_x_nat_t_port *sport; 2936 struct sadb_x_nat_t_port *dport; 2937 struct sadb_address *iaddr, *raddr; 2938 struct sadb_x_nat_t_frag *frag; 2939 2940 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 2941 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 2942 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) { 2943 IPSECLOG(LOG_DEBUG, "invalid message.\n"); 2944 return key_senderror(so, m, EINVAL); 2945 } 2946 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 2947 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 2948 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 2949 IPSECLOG(LOG_DEBUG, "invalid message.\n"); 2950 return key_senderror(so, m, EINVAL); 2951 } 2952 2953 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) && 2954 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) { 2955 IPSECLOG(LOG_DEBUG, "invalid message\n"); 2956 return key_senderror(so, m, EINVAL); 2957 } 2958 2959 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) && 2960 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) { 2961 IPSECLOG(LOG_DEBUG, "invalid message\n"); 2962 return key_senderror(so, m, EINVAL); 2963 } 2964 2965 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) && 2966 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) { 2967 IPSECLOG(LOG_DEBUG, "invalid message\n"); 2968 return key_senderror(so, m, EINVAL); 2969 } 2970 2971 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 2972 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 2973 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 2974 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; 2975 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; 2976 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 2977 2978 /* 2979 * XXX handle that, it should also contain a SA, or anything 2980 * that enable to update the SA information. 2981 */ 2982 2983 return 0; 2984 } 2985 2986 /* 2987 * Never return NULL. 2988 */ 2989 static struct mbuf * 2990 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid) 2991 { 2992 struct mbuf *result = NULL, *m; 2993 2994 KASSERT(!cpu_softintr_p()); 2995 2996 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, 2997 key_sp_refcnt(sp), M_WAITOK); 2998 result = m; 2999 3000 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3001 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK); 3002 m_cat(result, m); 3003 3004 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3005 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK); 3006 m_cat(result, m); 3007 3008 m = key_sp2msg(sp, M_WAITOK); 3009 m_cat(result, m); 3010 3011 KASSERT(result->m_flags & M_PKTHDR); 3012 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 3013 3014 result->m_pkthdr.len = 0; 3015 for (m = result; m; m = m->m_next) 3016 result->m_pkthdr.len += m->m_len; 3017 3018 mtod(result, struct sadb_msg *)->sadb_msg_len = 3019 PFKEY_UNIT64(result->m_pkthdr.len); 3020 3021 return result; 3022 } 3023 3024 /* 3025 * get PFKEY message length for security policy and request. 3026 */ 3027 static u_int 3028 key_getspreqmsglen(const struct secpolicy *sp) 3029 { 3030 u_int tlen; 3031 3032 tlen = sizeof(struct sadb_x_policy); 3033 3034 /* if is the policy for ipsec ? */ 3035 if (sp->policy != IPSEC_POLICY_IPSEC) 3036 return tlen; 3037 3038 /* get length of ipsec requests */ 3039 { 3040 const struct ipsecrequest *isr; 3041 int len; 3042 3043 for (isr = sp->req; isr != NULL; isr = isr->next) { 3044 len = sizeof(struct sadb_x_ipsecrequest) 3045 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len; 3046 3047 tlen += PFKEY_ALIGN8(len); 3048 } 3049 } 3050 3051 return tlen; 3052 } 3053 3054 /* 3055 * SADB_SPDEXPIRE processing 3056 * send 3057 * <base, address(SD), lifetime(CH), policy> 3058 * to KMD by PF_KEY. 3059 * 3060 * OUT: 0 : succeed 3061 * others : error number 3062 */ 3063 static int 3064 key_spdexpire(struct secpolicy *sp) 3065 { 3066 int s; 3067 struct mbuf *result = NULL, *m; 3068 int len; 3069 int error = -1; 3070 struct sadb_lifetime *lt; 3071 3072 /* XXX: Why do we lock ? */ 3073 s = splsoftnet(); /*called from softclock()*/ 3074 3075 KASSERT(sp != NULL); 3076 3077 /* set msg header */ 3078 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0, M_WAITOK); 3079 result = m; 3080 3081 /* create lifetime extension (current and hard) */ 3082 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 3083 m = key_alloc_mbuf(len, M_WAITOK); 3084 KASSERT(m->m_next == NULL); 3085 3086 memset(mtod(m, void *), 0, len); 3087 lt = mtod(m, struct sadb_lifetime *); 3088 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3089 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3090 lt->sadb_lifetime_allocations = 0; 3091 lt->sadb_lifetime_bytes = 0; 3092 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created); 3093 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused); 3094 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 3095 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3096 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 3097 lt->sadb_lifetime_allocations = 0; 3098 lt->sadb_lifetime_bytes = 0; 3099 lt->sadb_lifetime_addtime = sp->lifetime; 3100 lt->sadb_lifetime_usetime = sp->validtime; 3101 m_cat(result, m); 3102 3103 /* set sadb_address for source */ 3104 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa, 3105 sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK); 3106 m_cat(result, m); 3107 3108 /* set sadb_address for destination */ 3109 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa, 3110 sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK); 3111 m_cat(result, m); 3112 3113 /* set secpolicy */ 3114 m = key_sp2msg(sp, M_WAITOK); 3115 m_cat(result, m); 3116 3117 KASSERT(result->m_flags & M_PKTHDR); 3118 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 3119 3120 result->m_pkthdr.len = 0; 3121 for (m = result; m; m = m->m_next) 3122 result->m_pkthdr.len += m->m_len; 3123 3124 mtod(result, struct sadb_msg *)->sadb_msg_len = 3125 PFKEY_UNIT64(result->m_pkthdr.len); 3126 3127 error = key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 3128 splx(s); 3129 return error; 3130 } 3131 3132 /* %%% SAD management */ 3133 /* 3134 * allocating a memory for new SA head, and copy from the values of mhp. 3135 * OUT: NULL : failure due to the lack of memory. 3136 * others : pointer to new SA head. 3137 */ 3138 static struct secashead * 3139 key_newsah(const struct secasindex *saidx) 3140 { 3141 struct secashead *newsah; 3142 int i; 3143 3144 KASSERT(saidx != NULL); 3145 3146 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP); 3147 for (i = 0; i < __arraycount(newsah->savlist); i++) 3148 PSLIST_INIT(&newsah->savlist[i]); 3149 newsah->saidx = *saidx; 3150 3151 localcount_init(&newsah->localcount); 3152 /* Take a reference for the caller */ 3153 localcount_acquire(&newsah->localcount); 3154 3155 /* Add to the sah list */ 3156 SAHLIST_ENTRY_INIT(newsah); 3157 newsah->state = SADB_SASTATE_MATURE; 3158 mutex_enter(&key_sad.lock); 3159 SAHLIST_WRITER_INSERT_HEAD(newsah); 3160 mutex_exit(&key_sad.lock); 3161 3162 return newsah; 3163 } 3164 3165 static bool 3166 key_sah_has_sav(struct secashead *sah) 3167 { 3168 u_int state; 3169 3170 KASSERT(mutex_owned(&key_sad.lock)); 3171 3172 SASTATE_ANY_FOREACH(state) { 3173 if (!SAVLIST_WRITER_EMPTY(sah, state)) 3174 return true; 3175 } 3176 3177 return false; 3178 } 3179 3180 static void 3181 key_unlink_sah(struct secashead *sah) 3182 { 3183 3184 KASSERT(!cpu_softintr_p()); 3185 KASSERT(mutex_owned(&key_sad.lock)); 3186 KASSERT(sah->state == SADB_SASTATE_DEAD); 3187 3188 /* Remove from the sah list */ 3189 SAHLIST_WRITER_REMOVE(sah); 3190 3191 KDASSERT(mutex_ownable(softnet_lock)); 3192 key_sad_pserialize_perform(); 3193 3194 localcount_drain(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); 3195 } 3196 3197 static void 3198 key_destroy_sah(struct secashead *sah) 3199 { 3200 3201 rtcache_free(&sah->sa_route); 3202 3203 SAHLIST_ENTRY_DESTROY(sah); 3204 localcount_fini(&sah->localcount); 3205 3206 if (sah->idents != NULL) 3207 kmem_free(sah->idents, sah->idents_len); 3208 if (sah->identd != NULL) 3209 kmem_free(sah->identd, sah->identd_len); 3210 3211 kmem_free(sah, sizeof(*sah)); 3212 } 3213 3214 /* 3215 * allocating a new SA with LARVAL state. 3216 * key_api_add() and key_api_getspi() call, 3217 * and copy the values of mhp into new buffer. 3218 * When SAD message type is GETSPI: 3219 * to set sequence number from acq_seq++, 3220 * to set zero to SPI. 3221 * not to call key_setsava(). 3222 * OUT: NULL : fail 3223 * others : pointer to new secasvar. 3224 * 3225 * does not modify mbuf. does not free mbuf on error. 3226 */ 3227 static struct secasvar * 3228 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp, 3229 int *errp, const char* where, int tag) 3230 { 3231 struct secasvar *newsav; 3232 const struct sadb_sa *xsa; 3233 3234 KASSERT(!cpu_softintr_p()); 3235 KASSERT(m != NULL); 3236 KASSERT(mhp != NULL); 3237 KASSERT(mhp->msg != NULL); 3238 3239 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); 3240 3241 switch (mhp->msg->sadb_msg_type) { 3242 case SADB_GETSPI: 3243 newsav->spi = 0; 3244 3245 #ifdef IPSEC_DOSEQCHECK 3246 /* sync sequence number */ 3247 if (mhp->msg->sadb_msg_seq == 0) 3248 newsav->seq = 3249 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 3250 else 3251 #endif 3252 newsav->seq = mhp->msg->sadb_msg_seq; 3253 break; 3254 3255 case SADB_ADD: 3256 /* sanity check */ 3257 if (mhp->ext[SADB_EXT_SA] == NULL) { 3258 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 3259 *errp = EINVAL; 3260 goto error; 3261 } 3262 xsa = mhp->ext[SADB_EXT_SA]; 3263 newsav->spi = xsa->sadb_sa_spi; 3264 newsav->seq = mhp->msg->sadb_msg_seq; 3265 break; 3266 default: 3267 *errp = EINVAL; 3268 goto error; 3269 } 3270 3271 /* copy sav values */ 3272 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 3273 *errp = key_setsaval(newsav, m, mhp); 3274 if (*errp) 3275 goto error; 3276 } else { 3277 /* We don't allow lft_c to be NULL */ 3278 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime), 3279 KM_SLEEP); 3280 newsav->lft_c_counters_percpu = 3281 percpu_alloc(sizeof(lifetime_counters_t)); 3282 } 3283 3284 /* reset created */ 3285 newsav->created = time_uptime; 3286 newsav->pid = mhp->msg->sadb_msg_pid; 3287 3288 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 3289 "DP from %s:%u return SA:%p\n", where, tag, newsav); 3290 return newsav; 3291 3292 error: 3293 KASSERT(*errp != 0); 3294 kmem_free(newsav, sizeof(*newsav)); 3295 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 3296 "DP from %s:%u return SA:NULL\n", where, tag); 3297 return NULL; 3298 } 3299 3300 3301 static void 3302 key_clear_xform(struct secasvar *sav) 3303 { 3304 3305 /* 3306 * Cleanup xform state. Note that zeroize'ing causes the 3307 * keys to be cleared; otherwise we must do it ourself. 3308 */ 3309 if (sav->tdb_xform != NULL) { 3310 sav->tdb_xform->xf_zeroize(sav); 3311 sav->tdb_xform = NULL; 3312 } else { 3313 if (sav->key_auth != NULL) 3314 explicit_memset(_KEYBUF(sav->key_auth), 0, 3315 _KEYLEN(sav->key_auth)); 3316 if (sav->key_enc != NULL) 3317 explicit_memset(_KEYBUF(sav->key_enc), 0, 3318 _KEYLEN(sav->key_enc)); 3319 } 3320 } 3321 3322 /* 3323 * free() SA variable entry. 3324 */ 3325 static void 3326 key_delsav(struct secasvar *sav) 3327 { 3328 3329 key_clear_xform(sav); 3330 key_freesaval(sav); 3331 kmem_free(sav, sizeof(*sav)); 3332 } 3333 3334 /* 3335 * Must be called in a pserialize read section. A held sah 3336 * must be released by key_sah_unref after use. 3337 */ 3338 static void 3339 key_sah_ref(struct secashead *sah) 3340 { 3341 3342 localcount_acquire(&sah->localcount); 3343 } 3344 3345 /* 3346 * Must be called without holding key_sad.lock because the lock 3347 * would be held in localcount_release. 3348 */ 3349 static void 3350 key_sah_unref(struct secashead *sah) 3351 { 3352 3353 KDASSERT(mutex_ownable(&key_sad.lock)); 3354 3355 localcount_release(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); 3356 } 3357 3358 /* 3359 * Search SAD and return sah. Must be called in a pserialize 3360 * read section. 3361 * OUT: 3362 * NULL : not found 3363 * others : found, pointer to a SA. 3364 */ 3365 static struct secashead * 3366 key_getsah(const struct secasindex *saidx, int flag) 3367 { 3368 struct secashead *sah; 3369 3370 SAHLIST_READER_FOREACH(sah) { 3371 if (sah->state == SADB_SASTATE_DEAD) 3372 continue; 3373 if (key_saidx_match(&sah->saidx, saidx, flag)) 3374 return sah; 3375 } 3376 3377 return NULL; 3378 } 3379 3380 /* 3381 * Search SAD and return sah. If sah is returned, the caller must call 3382 * key_sah_unref to releaset a reference. 3383 * OUT: 3384 * NULL : not found 3385 * others : found, pointer to a SA. 3386 */ 3387 static struct secashead * 3388 key_getsah_ref(const struct secasindex *saidx, int flag) 3389 { 3390 struct secashead *sah; 3391 int s; 3392 3393 s = pserialize_read_enter(); 3394 sah = key_getsah(saidx, flag); 3395 if (sah != NULL) 3396 key_sah_ref(sah); 3397 pserialize_read_exit(s); 3398 3399 return sah; 3400 } 3401 3402 /* 3403 * check not to be duplicated SPI. 3404 * NOTE: this function is too slow due to searching all SAD. 3405 * OUT: 3406 * NULL : not found 3407 * others : found, pointer to a SA. 3408 */ 3409 static bool 3410 key_checkspidup(const struct secasindex *saidx, u_int32_t spi) 3411 { 3412 struct secashead *sah; 3413 struct secasvar *sav; 3414 int s; 3415 3416 /* check address family */ 3417 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 3418 IPSECLOG(LOG_DEBUG, "address family mismatched.\n"); 3419 return false; 3420 } 3421 3422 /* check all SAD */ 3423 s = pserialize_read_enter(); 3424 SAHLIST_READER_FOREACH(sah) { 3425 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 3426 continue; 3427 sav = key_getsavbyspi(sah, spi); 3428 if (sav != NULL) { 3429 pserialize_read_exit(s); 3430 KEY_SA_UNREF(&sav); 3431 return true; 3432 } 3433 } 3434 pserialize_read_exit(s); 3435 3436 return false; 3437 } 3438 3439 /* 3440 * search SAD litmited alive SA, protocol, SPI. 3441 * OUT: 3442 * NULL : not found 3443 * others : found, pointer to a SA. 3444 */ 3445 static struct secasvar * 3446 key_getsavbyspi(struct secashead *sah, u_int32_t spi) 3447 { 3448 struct secasvar *sav = NULL; 3449 u_int state; 3450 int s; 3451 3452 /* search all status */ 3453 s = pserialize_read_enter(); 3454 SASTATE_ALIVE_FOREACH(state) { 3455 SAVLIST_READER_FOREACH(sav, sah, state) { 3456 /* sanity check */ 3457 if (sav->state != state) { 3458 IPSECLOG(LOG_DEBUG, 3459 "invalid sav->state (queue: %d SA: %d)\n", 3460 state, sav->state); 3461 continue; 3462 } 3463 3464 if (sav->spi == spi) { 3465 KEY_SA_REF(sav); 3466 goto out; 3467 } 3468 } 3469 } 3470 out: 3471 pserialize_read_exit(s); 3472 3473 return sav; 3474 } 3475 3476 /* 3477 * Free allocated data to member variables of sav: 3478 * sav->replay, sav->key_* and sav->lft_*. 3479 */ 3480 static void 3481 key_freesaval(struct secasvar *sav) 3482 { 3483 3484 KASSERT(key_sa_refcnt(sav) == 0); 3485 3486 if (sav->replay != NULL) 3487 kmem_intr_free(sav->replay, sav->replay_len); 3488 if (sav->key_auth != NULL) 3489 kmem_intr_free(sav->key_auth, sav->key_auth_len); 3490 if (sav->key_enc != NULL) 3491 kmem_intr_free(sav->key_enc, sav->key_enc_len); 3492 if (sav->lft_c_counters_percpu != NULL) { 3493 percpu_free(sav->lft_c_counters_percpu, 3494 sizeof(lifetime_counters_t)); 3495 } 3496 if (sav->lft_c != NULL) 3497 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c))); 3498 if (sav->lft_h != NULL) 3499 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h))); 3500 if (sav->lft_s != NULL) 3501 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s))); 3502 } 3503 3504 /* 3505 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3506 * You must update these if need. 3507 * OUT: 0: success. 3508 * !0: failure. 3509 * 3510 * does not modify mbuf. does not free mbuf on error. 3511 */ 3512 static int 3513 key_setsaval(struct secasvar *sav, struct mbuf *m, 3514 const struct sadb_msghdr *mhp) 3515 { 3516 int error = 0; 3517 3518 KASSERT(!cpu_softintr_p()); 3519 KASSERT(m != NULL); 3520 KASSERT(mhp != NULL); 3521 KASSERT(mhp->msg != NULL); 3522 3523 /* We shouldn't initialize sav variables while someone uses it. */ 3524 KASSERT(key_sa_refcnt(sav) == 0); 3525 3526 /* SA */ 3527 if (mhp->ext[SADB_EXT_SA] != NULL) { 3528 const struct sadb_sa *sa0; 3529 3530 sa0 = mhp->ext[SADB_EXT_SA]; 3531 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3532 error = EINVAL; 3533 goto fail; 3534 } 3535 3536 sav->alg_auth = sa0->sadb_sa_auth; 3537 sav->alg_enc = sa0->sadb_sa_encrypt; 3538 sav->flags = sa0->sadb_sa_flags; 3539 3540 /* replay window */ 3541 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3542 size_t len = sizeof(struct secreplay) + 3543 sa0->sadb_sa_replay; 3544 sav->replay = kmem_zalloc(len, KM_SLEEP); 3545 sav->replay_len = len; 3546 if (sa0->sadb_sa_replay != 0) 3547 sav->replay->bitmap = (char*)(sav->replay+1); 3548 sav->replay->wsize = sa0->sadb_sa_replay; 3549 } 3550 } 3551 3552 /* Authentication keys */ 3553 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3554 const struct sadb_key *key0; 3555 int len; 3556 3557 key0 = mhp->ext[SADB_EXT_KEY_AUTH]; 3558 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3559 3560 error = 0; 3561 if (len < sizeof(*key0)) { 3562 error = EINVAL; 3563 goto fail; 3564 } 3565 switch (mhp->msg->sadb_msg_satype) { 3566 case SADB_SATYPE_AH: 3567 case SADB_SATYPE_ESP: 3568 case SADB_X_SATYPE_TCPSIGNATURE: 3569 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3570 sav->alg_auth != SADB_X_AALG_NULL) 3571 error = EINVAL; 3572 break; 3573 case SADB_X_SATYPE_IPCOMP: 3574 default: 3575 error = EINVAL; 3576 break; 3577 } 3578 if (error) { 3579 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n"); 3580 goto fail; 3581 } 3582 3583 sav->key_auth = key_newbuf(key0, len); 3584 sav->key_auth_len = len; 3585 } 3586 3587 /* Encryption key */ 3588 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3589 const struct sadb_key *key0; 3590 int len; 3591 3592 key0 = mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3593 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3594 3595 error = 0; 3596 if (len < sizeof(*key0)) { 3597 error = EINVAL; 3598 goto fail; 3599 } 3600 switch (mhp->msg->sadb_msg_satype) { 3601 case SADB_SATYPE_ESP: 3602 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3603 sav->alg_enc != SADB_EALG_NULL) { 3604 error = EINVAL; 3605 break; 3606 } 3607 sav->key_enc = key_newbuf(key0, len); 3608 sav->key_enc_len = len; 3609 break; 3610 case SADB_X_SATYPE_IPCOMP: 3611 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3612 error = EINVAL; 3613 sav->key_enc = NULL; /*just in case*/ 3614 break; 3615 case SADB_SATYPE_AH: 3616 case SADB_X_SATYPE_TCPSIGNATURE: 3617 default: 3618 error = EINVAL; 3619 break; 3620 } 3621 if (error) { 3622 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n"); 3623 goto fail; 3624 } 3625 } 3626 3627 /* set iv */ 3628 sav->ivlen = 0; 3629 3630 switch (mhp->msg->sadb_msg_satype) { 3631 case SADB_SATYPE_AH: 3632 error = xform_init(sav, XF_AH); 3633 break; 3634 case SADB_SATYPE_ESP: 3635 error = xform_init(sav, XF_ESP); 3636 break; 3637 case SADB_X_SATYPE_IPCOMP: 3638 error = xform_init(sav, XF_IPCOMP); 3639 break; 3640 case SADB_X_SATYPE_TCPSIGNATURE: 3641 error = xform_init(sav, XF_TCPSIGNATURE); 3642 break; 3643 } 3644 if (error) { 3645 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n", 3646 mhp->msg->sadb_msg_satype); 3647 goto fail; 3648 } 3649 3650 /* reset created */ 3651 sav->created = time_uptime; 3652 3653 /* make lifetime for CURRENT */ 3654 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP); 3655 3656 sav->lft_c->sadb_lifetime_len = 3657 PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3658 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3659 sav->lft_c->sadb_lifetime_allocations = 0; 3660 sav->lft_c->sadb_lifetime_bytes = 0; 3661 sav->lft_c->sadb_lifetime_addtime = time_uptime; 3662 sav->lft_c->sadb_lifetime_usetime = 0; 3663 3664 sav->lft_c_counters_percpu = percpu_alloc(sizeof(lifetime_counters_t)); 3665 3666 /* lifetimes for HARD and SOFT */ 3667 { 3668 const struct sadb_lifetime *lft0; 3669 3670 lft0 = mhp->ext[SADB_EXT_LIFETIME_HARD]; 3671 if (lft0 != NULL) { 3672 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3673 error = EINVAL; 3674 goto fail; 3675 } 3676 sav->lft_h = key_newbuf(lft0, sizeof(*lft0)); 3677 } 3678 3679 lft0 = mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3680 if (lft0 != NULL) { 3681 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3682 error = EINVAL; 3683 goto fail; 3684 } 3685 sav->lft_s = key_newbuf(lft0, sizeof(*lft0)); 3686 /* to be initialize ? */ 3687 } 3688 } 3689 3690 return 0; 3691 3692 fail: 3693 key_clear_xform(sav); 3694 key_freesaval(sav); 3695 3696 return error; 3697 } 3698 3699 /* 3700 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3701 * OUT: 0: valid 3702 * other: errno 3703 */ 3704 static int 3705 key_init_xform(struct secasvar *sav) 3706 { 3707 int error; 3708 3709 /* We shouldn't initialize sav variables while someone uses it. */ 3710 KASSERT(key_sa_refcnt(sav) == 0); 3711 3712 /* check SPI value */ 3713 switch (sav->sah->saidx.proto) { 3714 case IPPROTO_ESP: 3715 case IPPROTO_AH: 3716 if (ntohl(sav->spi) <= 255) { 3717 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n", 3718 (u_int32_t)ntohl(sav->spi)); 3719 return EINVAL; 3720 } 3721 break; 3722 } 3723 3724 /* check satype */ 3725 switch (sav->sah->saidx.proto) { 3726 case IPPROTO_ESP: 3727 /* check flags */ 3728 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3729 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3730 IPSECLOG(LOG_DEBUG, 3731 "invalid flag (derived) given to old-esp.\n"); 3732 return EINVAL; 3733 } 3734 error = xform_init(sav, XF_ESP); 3735 break; 3736 case IPPROTO_AH: 3737 /* check flags */ 3738 if (sav->flags & SADB_X_EXT_DERIV) { 3739 IPSECLOG(LOG_DEBUG, 3740 "invalid flag (derived) given to AH SA.\n"); 3741 return EINVAL; 3742 } 3743 if (sav->alg_enc != SADB_EALG_NONE) { 3744 IPSECLOG(LOG_DEBUG, 3745 "protocol and algorithm mismated.\n"); 3746 return(EINVAL); 3747 } 3748 error = xform_init(sav, XF_AH); 3749 break; 3750 case IPPROTO_IPCOMP: 3751 if (sav->alg_auth != SADB_AALG_NONE) { 3752 IPSECLOG(LOG_DEBUG, 3753 "protocol and algorithm mismated.\n"); 3754 return(EINVAL); 3755 } 3756 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3757 && ntohl(sav->spi) >= 0x10000) { 3758 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n"); 3759 return(EINVAL); 3760 } 3761 error = xform_init(sav, XF_IPCOMP); 3762 break; 3763 case IPPROTO_TCP: 3764 if (sav->alg_enc != SADB_EALG_NONE) { 3765 IPSECLOG(LOG_DEBUG, 3766 "protocol and algorithm mismated.\n"); 3767 return(EINVAL); 3768 } 3769 error = xform_init(sav, XF_TCPSIGNATURE); 3770 break; 3771 default: 3772 IPSECLOG(LOG_DEBUG, "Invalid satype.\n"); 3773 error = EPROTONOSUPPORT; 3774 break; 3775 } 3776 3777 return error; 3778 } 3779 3780 /* 3781 * subroutine for SADB_GET and SADB_DUMP. It never return NULL. 3782 */ 3783 static struct mbuf * 3784 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3785 u_int32_t seq, u_int32_t pid) 3786 { 3787 struct mbuf *result = NULL, *tres = NULL, *m; 3788 int l = 0; 3789 int i; 3790 void *p; 3791 struct sadb_lifetime lt; 3792 int dumporder[] = { 3793 SADB_EXT_SA, SADB_X_EXT_SA2, 3794 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3795 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3796 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3797 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3798 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3799 SADB_X_EXT_NAT_T_TYPE, 3800 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3801 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3802 SADB_X_EXT_NAT_T_FRAG, 3803 3804 }; 3805 3806 m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav), M_WAITOK); 3807 result = m; 3808 3809 for (i = __arraycount(dumporder) - 1; i >= 0; i--) { 3810 m = NULL; 3811 p = NULL; 3812 switch (dumporder[i]) { 3813 case SADB_EXT_SA: 3814 m = key_setsadbsa(sav); 3815 break; 3816 3817 case SADB_X_EXT_SA2: 3818 m = key_setsadbxsa2(sav->sah->saidx.mode, 3819 sav->replay ? sav->replay->count : 0, 3820 sav->sah->saidx.reqid); 3821 break; 3822 3823 case SADB_EXT_ADDRESS_SRC: 3824 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3825 &sav->sah->saidx.src.sa, 3826 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 3827 break; 3828 3829 case SADB_EXT_ADDRESS_DST: 3830 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3831 &sav->sah->saidx.dst.sa, 3832 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 3833 break; 3834 3835 case SADB_EXT_KEY_AUTH: 3836 if (!sav->key_auth) 3837 continue; 3838 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len); 3839 p = sav->key_auth; 3840 break; 3841 3842 case SADB_EXT_KEY_ENCRYPT: 3843 if (!sav->key_enc) 3844 continue; 3845 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len); 3846 p = sav->key_enc; 3847 break; 3848 3849 case SADB_EXT_LIFETIME_CURRENT: { 3850 lifetime_counters_t sum = {0}; 3851 3852 KASSERT(sav->lft_c != NULL); 3853 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len); 3854 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime)); 3855 lt.sadb_lifetime_addtime = 3856 time_mono_to_wall(lt.sadb_lifetime_addtime); 3857 lt.sadb_lifetime_usetime = 3858 time_mono_to_wall(lt.sadb_lifetime_usetime); 3859 percpu_foreach(sav->lft_c_counters_percpu, 3860 key_sum_lifetime_counters, sum); 3861 lt.sadb_lifetime_allocations = 3862 sum[LIFETIME_COUNTER_ALLOCATIONS]; 3863 lt.sadb_lifetime_bytes = 3864 sum[LIFETIME_COUNTER_BYTES]; 3865 p = < 3866 break; 3867 } 3868 3869 case SADB_EXT_LIFETIME_HARD: 3870 if (!sav->lft_h) 3871 continue; 3872 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len); 3873 p = sav->lft_h; 3874 break; 3875 3876 case SADB_EXT_LIFETIME_SOFT: 3877 if (!sav->lft_s) 3878 continue; 3879 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len); 3880 p = sav->lft_s; 3881 break; 3882 3883 case SADB_X_EXT_NAT_T_TYPE: 3884 m = key_setsadbxtype(sav->natt_type); 3885 break; 3886 3887 case SADB_X_EXT_NAT_T_DPORT: 3888 if (sav->natt_type == 0) 3889 continue; 3890 m = key_setsadbxport( 3891 key_portfromsaddr(&sav->sah->saidx.dst), 3892 SADB_X_EXT_NAT_T_DPORT); 3893 break; 3894 3895 case SADB_X_EXT_NAT_T_SPORT: 3896 if (sav->natt_type == 0) 3897 continue; 3898 m = key_setsadbxport( 3899 key_portfromsaddr(&sav->sah->saidx.src), 3900 SADB_X_EXT_NAT_T_SPORT); 3901 break; 3902 3903 case SADB_X_EXT_NAT_T_FRAG: 3904 /* don't send frag info if not set */ 3905 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET) 3906 continue; 3907 m = key_setsadbxfrag(sav->esp_frag); 3908 break; 3909 3910 case SADB_X_EXT_NAT_T_OAI: 3911 case SADB_X_EXT_NAT_T_OAR: 3912 continue; 3913 3914 case SADB_EXT_ADDRESS_PROXY: 3915 case SADB_EXT_IDENTITY_SRC: 3916 case SADB_EXT_IDENTITY_DST: 3917 /* XXX: should we brought from SPD ? */ 3918 case SADB_EXT_SENSITIVITY: 3919 default: 3920 continue; 3921 } 3922 3923 KASSERT(!(m && p)); 3924 KASSERT(m != NULL || p != NULL); 3925 if (p && tres) { 3926 M_PREPEND(tres, l, M_WAITOK); 3927 memcpy(mtod(tres, void *), p, l); 3928 continue; 3929 } 3930 if (p) { 3931 m = key_alloc_mbuf(l, M_WAITOK); 3932 m_copyback(m, 0, l, p); 3933 } 3934 3935 if (tres) 3936 m_cat(m, tres); 3937 tres = m; 3938 } 3939 3940 m_cat(result, tres); 3941 tres = NULL; /* avoid free on error below */ 3942 3943 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 3944 3945 result->m_pkthdr.len = 0; 3946 for (m = result; m; m = m->m_next) 3947 result->m_pkthdr.len += m->m_len; 3948 3949 mtod(result, struct sadb_msg *)->sadb_msg_len = 3950 PFKEY_UNIT64(result->m_pkthdr.len); 3951 3952 return result; 3953 } 3954 3955 3956 /* 3957 * set a type in sadb_x_nat_t_type 3958 */ 3959 static struct mbuf * 3960 key_setsadbxtype(u_int16_t type) 3961 { 3962 struct mbuf *m; 3963 size_t len; 3964 struct sadb_x_nat_t_type *p; 3965 3966 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3967 3968 m = key_alloc_mbuf(len, M_WAITOK); 3969 KASSERT(m->m_next == NULL); 3970 3971 p = mtod(m, struct sadb_x_nat_t_type *); 3972 3973 memset(p, 0, len); 3974 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3975 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3976 p->sadb_x_nat_t_type_type = type; 3977 3978 return m; 3979 } 3980 /* 3981 * set a port in sadb_x_nat_t_port. port is in network order 3982 */ 3983 static struct mbuf * 3984 key_setsadbxport(u_int16_t port, u_int16_t type) 3985 { 3986 struct mbuf *m; 3987 size_t len; 3988 struct sadb_x_nat_t_port *p; 3989 3990 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3991 3992 m = key_alloc_mbuf(len, M_WAITOK); 3993 KASSERT(m->m_next == NULL); 3994 3995 p = mtod(m, struct sadb_x_nat_t_port *); 3996 3997 memset(p, 0, len); 3998 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3999 p->sadb_x_nat_t_port_exttype = type; 4000 p->sadb_x_nat_t_port_port = port; 4001 4002 return m; 4003 } 4004 4005 /* 4006 * set fragmentation info in sadb_x_nat_t_frag 4007 */ 4008 static struct mbuf * 4009 key_setsadbxfrag(u_int16_t flen) 4010 { 4011 struct mbuf *m; 4012 size_t len; 4013 struct sadb_x_nat_t_frag *p; 4014 4015 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag)); 4016 4017 m = key_alloc_mbuf(len, M_WAITOK); 4018 KASSERT(m->m_next == NULL); 4019 4020 p = mtod(m, struct sadb_x_nat_t_frag *); 4021 4022 memset(p, 0, len); 4023 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len); 4024 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG; 4025 p->sadb_x_nat_t_frag_fraglen = flen; 4026 4027 return m; 4028 } 4029 4030 /* 4031 * Get port from sockaddr, port is in network order 4032 */ 4033 u_int16_t 4034 key_portfromsaddr(const union sockaddr_union *saddr) 4035 { 4036 u_int16_t port; 4037 4038 switch (saddr->sa.sa_family) { 4039 case AF_INET: { 4040 port = saddr->sin.sin_port; 4041 break; 4042 } 4043 #ifdef INET6 4044 case AF_INET6: { 4045 port = saddr->sin6.sin6_port; 4046 break; 4047 } 4048 #endif 4049 default: 4050 printf("%s: unexpected address family\n", __func__); 4051 port = 0; 4052 break; 4053 } 4054 4055 return port; 4056 } 4057 4058 4059 /* 4060 * Set port is struct sockaddr. port is in network order 4061 */ 4062 static void 4063 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port) 4064 { 4065 switch (saddr->sa.sa_family) { 4066 case AF_INET: { 4067 saddr->sin.sin_port = port; 4068 break; 4069 } 4070 #ifdef INET6 4071 case AF_INET6: { 4072 saddr->sin6.sin6_port = port; 4073 break; 4074 } 4075 #endif 4076 default: 4077 printf("%s: unexpected address family %d\n", __func__, 4078 saddr->sa.sa_family); 4079 break; 4080 } 4081 4082 return; 4083 } 4084 4085 /* 4086 * Safety check sa_len 4087 */ 4088 static int 4089 key_checksalen(const union sockaddr_union *saddr) 4090 { 4091 switch (saddr->sa.sa_family) { 4092 case AF_INET: 4093 if (saddr->sa.sa_len != sizeof(struct sockaddr_in)) 4094 return -1; 4095 break; 4096 #ifdef INET6 4097 case AF_INET6: 4098 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6)) 4099 return -1; 4100 break; 4101 #endif 4102 default: 4103 printf("%s: unexpected sa_family %d\n", __func__, 4104 saddr->sa.sa_family); 4105 return -1; 4106 break; 4107 } 4108 return 0; 4109 } 4110 4111 4112 /* 4113 * set data into sadb_msg. 4114 */ 4115 static struct mbuf * 4116 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, 4117 u_int32_t seq, pid_t pid, u_int16_t reserved, int mflag) 4118 { 4119 struct mbuf *m; 4120 struct sadb_msg *p; 4121 int len; 4122 4123 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); 4124 4125 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4126 4127 m = key_alloc_mbuf_simple(len, mflag); 4128 if (!m) 4129 return NULL; 4130 m->m_pkthdr.len = m->m_len = len; 4131 m->m_next = NULL; 4132 4133 p = mtod(m, struct sadb_msg *); 4134 4135 memset(p, 0, len); 4136 p->sadb_msg_version = PF_KEY_V2; 4137 p->sadb_msg_type = type; 4138 p->sadb_msg_errno = 0; 4139 p->sadb_msg_satype = satype; 4140 p->sadb_msg_len = PFKEY_UNIT64(tlen); 4141 p->sadb_msg_reserved = reserved; 4142 p->sadb_msg_seq = seq; 4143 p->sadb_msg_pid = (u_int32_t)pid; 4144 4145 return m; 4146 } 4147 4148 /* 4149 * copy secasvar data into sadb_address. 4150 */ 4151 static struct mbuf * 4152 key_setsadbsa(struct secasvar *sav) 4153 { 4154 struct mbuf *m; 4155 struct sadb_sa *p; 4156 int len; 4157 4158 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4159 m = key_alloc_mbuf(len, M_WAITOK); 4160 KASSERT(m->m_next == NULL); 4161 4162 p = mtod(m, struct sadb_sa *); 4163 4164 memset(p, 0, len); 4165 p->sadb_sa_len = PFKEY_UNIT64(len); 4166 p->sadb_sa_exttype = SADB_EXT_SA; 4167 p->sadb_sa_spi = sav->spi; 4168 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 4169 p->sadb_sa_state = sav->state; 4170 p->sadb_sa_auth = sav->alg_auth; 4171 p->sadb_sa_encrypt = sav->alg_enc; 4172 p->sadb_sa_flags = sav->flags; 4173 4174 return m; 4175 } 4176 4177 /* 4178 * set data into sadb_address. 4179 */ 4180 static struct mbuf * 4181 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 4182 u_int8_t prefixlen, u_int16_t ul_proto, int mflag) 4183 { 4184 struct mbuf *m; 4185 struct sadb_address *p; 4186 size_t len; 4187 4188 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 4189 PFKEY_ALIGN8(saddr->sa_len); 4190 m = key_alloc_mbuf(len, mflag); 4191 if (!m || m->m_next) { /*XXX*/ 4192 if (m) 4193 m_freem(m); 4194 return NULL; 4195 } 4196 4197 p = mtod(m, struct sadb_address *); 4198 4199 memset(p, 0, len); 4200 p->sadb_address_len = PFKEY_UNIT64(len); 4201 p->sadb_address_exttype = exttype; 4202 p->sadb_address_proto = ul_proto; 4203 if (prefixlen == FULLMASK) { 4204 switch (saddr->sa_family) { 4205 case AF_INET: 4206 prefixlen = sizeof(struct in_addr) << 3; 4207 break; 4208 case AF_INET6: 4209 prefixlen = sizeof(struct in6_addr) << 3; 4210 break; 4211 default: 4212 ; /*XXX*/ 4213 } 4214 } 4215 p->sadb_address_prefixlen = prefixlen; 4216 p->sadb_address_reserved = 0; 4217 4218 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 4219 saddr, saddr->sa_len); 4220 4221 return m; 4222 } 4223 4224 #if 0 4225 /* 4226 * set data into sadb_ident. 4227 */ 4228 static struct mbuf * 4229 key_setsadbident(u_int16_t exttype, u_int16_t idtype, 4230 void *string, int stringlen, u_int64_t id) 4231 { 4232 struct mbuf *m; 4233 struct sadb_ident *p; 4234 size_t len; 4235 4236 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen); 4237 m = key_alloc_mbuf(len); 4238 if (!m || m->m_next) { /*XXX*/ 4239 if (m) 4240 m_freem(m); 4241 return NULL; 4242 } 4243 4244 p = mtod(m, struct sadb_ident *); 4245 4246 memset(p, 0, len); 4247 p->sadb_ident_len = PFKEY_UNIT64(len); 4248 p->sadb_ident_exttype = exttype; 4249 p->sadb_ident_type = idtype; 4250 p->sadb_ident_reserved = 0; 4251 p->sadb_ident_id = id; 4252 4253 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)), 4254 string, stringlen); 4255 4256 return m; 4257 } 4258 #endif 4259 4260 /* 4261 * set data into sadb_x_sa2. 4262 */ 4263 static struct mbuf * 4264 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid) 4265 { 4266 struct mbuf *m; 4267 struct sadb_x_sa2 *p; 4268 size_t len; 4269 4270 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 4271 m = key_alloc_mbuf(len, M_WAITOK); 4272 KASSERT(m->m_next == NULL); 4273 4274 p = mtod(m, struct sadb_x_sa2 *); 4275 4276 memset(p, 0, len); 4277 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 4278 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 4279 p->sadb_x_sa2_mode = mode; 4280 p->sadb_x_sa2_reserved1 = 0; 4281 p->sadb_x_sa2_reserved2 = 0; 4282 p->sadb_x_sa2_sequence = seq; 4283 p->sadb_x_sa2_reqid = reqid; 4284 4285 return m; 4286 } 4287 4288 /* 4289 * set data into sadb_x_policy 4290 */ 4291 static struct mbuf * 4292 key_setsadbxpolicy(const u_int16_t type, const u_int8_t dir, const u_int32_t id, 4293 int mflag) 4294 { 4295 struct mbuf *m; 4296 struct sadb_x_policy *p; 4297 size_t len; 4298 4299 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 4300 m = key_alloc_mbuf(len, mflag); 4301 if (!m || m->m_next) { /*XXX*/ 4302 if (m) 4303 m_freem(m); 4304 return NULL; 4305 } 4306 4307 p = mtod(m, struct sadb_x_policy *); 4308 4309 memset(p, 0, len); 4310 p->sadb_x_policy_len = PFKEY_UNIT64(len); 4311 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 4312 p->sadb_x_policy_type = type; 4313 p->sadb_x_policy_dir = dir; 4314 p->sadb_x_policy_id = id; 4315 4316 return m; 4317 } 4318 4319 /* %%% utilities */ 4320 /* 4321 * copy a buffer into the new buffer allocated. 4322 */ 4323 static void * 4324 key_newbuf(const void *src, u_int len) 4325 { 4326 void *new; 4327 4328 new = kmem_alloc(len, KM_SLEEP); 4329 memcpy(new, src, len); 4330 4331 return new; 4332 } 4333 4334 /* compare my own address 4335 * OUT: 1: true, i.e. my address. 4336 * 0: false 4337 */ 4338 int 4339 key_ismyaddr(const struct sockaddr *sa) 4340 { 4341 #ifdef INET 4342 const struct sockaddr_in *sin; 4343 const struct in_ifaddr *ia; 4344 int s; 4345 #endif 4346 4347 KASSERT(sa != NULL); 4348 4349 switch (sa->sa_family) { 4350 #ifdef INET 4351 case AF_INET: 4352 sin = (const struct sockaddr_in *)sa; 4353 s = pserialize_read_enter(); 4354 IN_ADDRLIST_READER_FOREACH(ia) { 4355 if (sin->sin_family == ia->ia_addr.sin_family && 4356 sin->sin_len == ia->ia_addr.sin_len && 4357 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 4358 { 4359 pserialize_read_exit(s); 4360 return 1; 4361 } 4362 } 4363 pserialize_read_exit(s); 4364 break; 4365 #endif 4366 #ifdef INET6 4367 case AF_INET6: 4368 return key_ismyaddr6((const struct sockaddr_in6 *)sa); 4369 #endif 4370 } 4371 4372 return 0; 4373 } 4374 4375 #ifdef INET6 4376 /* 4377 * compare my own address for IPv6. 4378 * 1: ours 4379 * 0: other 4380 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 4381 */ 4382 #include <netinet6/in6_var.h> 4383 4384 static int 4385 key_ismyaddr6(const struct sockaddr_in6 *sin6) 4386 { 4387 struct in6_ifaddr *ia; 4388 int s; 4389 struct psref psref; 4390 int bound; 4391 int ours = 1; 4392 4393 bound = curlwp_bind(); 4394 s = pserialize_read_enter(); 4395 IN6_ADDRLIST_READER_FOREACH(ia) { 4396 bool ingroup; 4397 4398 if (key_sockaddr_match((const struct sockaddr *)&sin6, 4399 (const struct sockaddr *)&ia->ia_addr, 0)) { 4400 pserialize_read_exit(s); 4401 goto ours; 4402 } 4403 ia6_acquire(ia, &psref); 4404 pserialize_read_exit(s); 4405 4406 /* 4407 * XXX Multicast 4408 * XXX why do we care about multlicast here while we don't care 4409 * about IPv4 multicast?? 4410 * XXX scope 4411 */ 4412 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp); 4413 if (ingroup) { 4414 ia6_release(ia, &psref); 4415 goto ours; 4416 } 4417 4418 s = pserialize_read_enter(); 4419 ia6_release(ia, &psref); 4420 } 4421 pserialize_read_exit(s); 4422 4423 /* loopback, just for safety */ 4424 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 4425 goto ours; 4426 4427 ours = 0; 4428 ours: 4429 curlwp_bindx(bound); 4430 4431 return ours; 4432 } 4433 #endif /*INET6*/ 4434 4435 /* 4436 * compare two secasindex structure. 4437 * flag can specify to compare 2 saidxes. 4438 * compare two secasindex structure without both mode and reqid. 4439 * don't compare port. 4440 * IN: 4441 * saidx0: source, it can be in SAD. 4442 * saidx1: object. 4443 * OUT: 4444 * 1 : equal 4445 * 0 : not equal 4446 */ 4447 static int 4448 key_saidx_match( 4449 const struct secasindex *saidx0, 4450 const struct secasindex *saidx1, 4451 int flag) 4452 { 4453 int chkport; 4454 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst; 4455 4456 KASSERT(saidx0 != NULL); 4457 KASSERT(saidx1 != NULL); 4458 4459 /* sanity */ 4460 if (saidx0->proto != saidx1->proto) 4461 return 0; 4462 4463 if (flag == CMP_EXACTLY) { 4464 if (saidx0->mode != saidx1->mode) 4465 return 0; 4466 if (saidx0->reqid != saidx1->reqid) 4467 return 0; 4468 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4469 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4470 return 0; 4471 } else { 4472 4473 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4474 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) { 4475 /* 4476 * If reqid of SPD is non-zero, unique SA is required. 4477 * The result must be of same reqid in this case. 4478 */ 4479 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4480 return 0; 4481 } 4482 4483 if (flag == CMP_MODE_REQID) { 4484 if (saidx0->mode != IPSEC_MODE_ANY && 4485 saidx0->mode != saidx1->mode) 4486 return 0; 4487 } 4488 4489 4490 sa0src = &saidx0->src.sa; 4491 sa0dst = &saidx0->dst.sa; 4492 sa1src = &saidx1->src.sa; 4493 sa1dst = &saidx1->dst.sa; 4494 /* 4495 * If NAT-T is enabled, check ports for tunnel mode. 4496 * Don't do it for transport mode, as there is no 4497 * port information available in the SP. 4498 * Also don't check ports if they are set to zero 4499 * in the SPD: This means we have a non-generated 4500 * SPD which can't know UDP ports. 4501 */ 4502 if (saidx1->mode == IPSEC_MODE_TUNNEL) 4503 chkport = PORT_LOOSE; 4504 else 4505 chkport = PORT_NONE; 4506 4507 if (!key_sockaddr_match(sa0src, sa1src, chkport)) { 4508 return 0; 4509 } 4510 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) { 4511 return 0; 4512 } 4513 } 4514 4515 return 1; 4516 } 4517 4518 /* 4519 * compare two secindex structure exactly. 4520 * IN: 4521 * spidx0: source, it is often in SPD. 4522 * spidx1: object, it is often from PFKEY message. 4523 * OUT: 4524 * 1 : equal 4525 * 0 : not equal 4526 */ 4527 static int 4528 key_spidx_match_exactly( 4529 const struct secpolicyindex *spidx0, 4530 const struct secpolicyindex *spidx1) 4531 { 4532 4533 KASSERT(spidx0 != NULL); 4534 KASSERT(spidx1 != NULL); 4535 4536 /* sanity */ 4537 if (spidx0->prefs != spidx1->prefs || 4538 spidx0->prefd != spidx1->prefd || 4539 spidx0->ul_proto != spidx1->ul_proto) 4540 return 0; 4541 4542 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) && 4543 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT); 4544 } 4545 4546 /* 4547 * compare two secindex structure with mask. 4548 * IN: 4549 * spidx0: source, it is often in SPD. 4550 * spidx1: object, it is often from IP header. 4551 * OUT: 4552 * 1 : equal 4553 * 0 : not equal 4554 */ 4555 static int 4556 key_spidx_match_withmask( 4557 const struct secpolicyindex *spidx0, 4558 const struct secpolicyindex *spidx1) 4559 { 4560 4561 KASSERT(spidx0 != NULL); 4562 KASSERT(spidx1 != NULL); 4563 4564 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4565 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4566 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4567 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4568 return 0; 4569 4570 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4571 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY && 4572 spidx0->ul_proto != spidx1->ul_proto) 4573 return 0; 4574 4575 switch (spidx0->src.sa.sa_family) { 4576 case AF_INET: 4577 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY && 4578 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4579 return 0; 4580 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr, 4581 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4582 return 0; 4583 break; 4584 case AF_INET6: 4585 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY && 4586 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4587 return 0; 4588 /* 4589 * scope_id check. if sin6_scope_id is 0, we regard it 4590 * as a wildcard scope, which matches any scope zone ID. 4591 */ 4592 if (spidx0->src.sin6.sin6_scope_id && 4593 spidx1->src.sin6.sin6_scope_id && 4594 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4595 return 0; 4596 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr, 4597 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4598 return 0; 4599 break; 4600 default: 4601 /* XXX */ 4602 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4603 return 0; 4604 break; 4605 } 4606 4607 switch (spidx0->dst.sa.sa_family) { 4608 case AF_INET: 4609 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY && 4610 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4611 return 0; 4612 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr, 4613 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4614 return 0; 4615 break; 4616 case AF_INET6: 4617 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY && 4618 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4619 return 0; 4620 /* 4621 * scope_id check. if sin6_scope_id is 0, we regard it 4622 * as a wildcard scope, which matches any scope zone ID. 4623 */ 4624 if (spidx0->src.sin6.sin6_scope_id && 4625 spidx1->src.sin6.sin6_scope_id && 4626 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4627 return 0; 4628 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr, 4629 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4630 return 0; 4631 break; 4632 default: 4633 /* XXX */ 4634 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4635 return 0; 4636 break; 4637 } 4638 4639 /* XXX Do we check other field ? e.g. flowinfo */ 4640 4641 return 1; 4642 } 4643 4644 /* returns 0 on match */ 4645 static int 4646 key_portcomp(in_port_t port1, in_port_t port2, int howport) 4647 { 4648 switch (howport) { 4649 case PORT_NONE: 4650 return 0; 4651 case PORT_LOOSE: 4652 if (port1 == 0 || port2 == 0) 4653 return 0; 4654 /*FALLTHROUGH*/ 4655 case PORT_STRICT: 4656 if (port1 != port2) { 4657 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4658 "port fail %d != %d\n", port1, port2); 4659 return 1; 4660 } 4661 return 0; 4662 default: 4663 KASSERT(0); 4664 return 1; 4665 } 4666 } 4667 4668 /* returns 1 on match */ 4669 static int 4670 key_sockaddr_match( 4671 const struct sockaddr *sa1, 4672 const struct sockaddr *sa2, 4673 int howport) 4674 { 4675 const struct sockaddr_in *sin1, *sin2; 4676 const struct sockaddr_in6 *sin61, *sin62; 4677 char s1[IPSEC_ADDRSTRLEN], s2[IPSEC_ADDRSTRLEN]; 4678 4679 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) { 4680 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4681 "fam/len fail %d != %d || %d != %d\n", 4682 sa1->sa_family, sa2->sa_family, sa1->sa_len, 4683 sa2->sa_len); 4684 return 0; 4685 } 4686 4687 switch (sa1->sa_family) { 4688 case AF_INET: 4689 if (sa1->sa_len != sizeof(struct sockaddr_in)) { 4690 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4691 "len fail %d != %zu\n", 4692 sa1->sa_len, sizeof(struct sockaddr_in)); 4693 return 0; 4694 } 4695 sin1 = (const struct sockaddr_in *)sa1; 4696 sin2 = (const struct sockaddr_in *)sa2; 4697 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) { 4698 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4699 "addr fail %s != %s\n", 4700 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), 4701 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2)); 4702 return 0; 4703 } 4704 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) { 4705 return 0; 4706 } 4707 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4708 "addr success %s[%d] == %s[%d]\n", 4709 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), 4710 sin1->sin_port, 4711 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2), 4712 sin2->sin_port); 4713 break; 4714 case AF_INET6: 4715 sin61 = (const struct sockaddr_in6 *)sa1; 4716 sin62 = (const struct sockaddr_in6 *)sa2; 4717 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4718 return 0; /*EINVAL*/ 4719 4720 if (sin61->sin6_scope_id != sin62->sin6_scope_id) { 4721 return 0; 4722 } 4723 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) { 4724 return 0; 4725 } 4726 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) { 4727 return 0; 4728 } 4729 break; 4730 default: 4731 if (memcmp(sa1, sa2, sa1->sa_len) != 0) 4732 return 0; 4733 break; 4734 } 4735 4736 return 1; 4737 } 4738 4739 /* 4740 * compare two buffers with mask. 4741 * IN: 4742 * addr1: source 4743 * addr2: object 4744 * bits: Number of bits to compare 4745 * OUT: 4746 * 1 : equal 4747 * 0 : not equal 4748 */ 4749 static int 4750 key_bb_match_withmask(const void *a1, const void *a2, u_int bits) 4751 { 4752 const unsigned char *p1 = a1; 4753 const unsigned char *p2 = a2; 4754 4755 /* XXX: This could be considerably faster if we compare a word 4756 * at a time, but it is complicated on LSB Endian machines */ 4757 4758 /* Handle null pointers */ 4759 if (p1 == NULL || p2 == NULL) 4760 return (p1 == p2); 4761 4762 while (bits >= 8) { 4763 if (*p1++ != *p2++) 4764 return 0; 4765 bits -= 8; 4766 } 4767 4768 if (bits > 0) { 4769 u_int8_t mask = ~((1<<(8-bits))-1); 4770 if ((*p1 & mask) != (*p2 & mask)) 4771 return 0; 4772 } 4773 return 1; /* Match! */ 4774 } 4775 4776 static void 4777 key_timehandler_spd(time_t now) 4778 { 4779 u_int dir; 4780 struct secpolicy *sp; 4781 4782 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4783 retry: 4784 mutex_enter(&key_spd.lock); 4785 SPLIST_WRITER_FOREACH(sp, dir) { 4786 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 4787 4788 if (sp->lifetime == 0 && sp->validtime == 0) 4789 continue; 4790 4791 if ((sp->lifetime && now - sp->created > sp->lifetime) || 4792 (sp->validtime && now - sp->lastused > sp->validtime)) { 4793 key_unlink_sp(sp); 4794 mutex_exit(&key_spd.lock); 4795 key_spdexpire(sp); 4796 key_destroy_sp(sp); 4797 goto retry; 4798 } 4799 } 4800 mutex_exit(&key_spd.lock); 4801 } 4802 4803 retry_socksplist: 4804 mutex_enter(&key_spd.lock); 4805 SOCKSPLIST_WRITER_FOREACH(sp) { 4806 if (sp->state != IPSEC_SPSTATE_DEAD) 4807 continue; 4808 4809 key_unlink_sp(sp); 4810 mutex_exit(&key_spd.lock); 4811 key_destroy_sp(sp); 4812 goto retry_socksplist; 4813 } 4814 mutex_exit(&key_spd.lock); 4815 } 4816 4817 static void 4818 key_timehandler_sad(time_t now) 4819 { 4820 struct secashead *sah; 4821 int s; 4822 4823 restart: 4824 mutex_enter(&key_sad.lock); 4825 SAHLIST_WRITER_FOREACH(sah) { 4826 /* If sah has been dead and has no sav, then delete it */ 4827 if (sah->state == SADB_SASTATE_DEAD && 4828 !key_sah_has_sav(sah)) { 4829 key_unlink_sah(sah); 4830 mutex_exit(&key_sad.lock); 4831 key_destroy_sah(sah); 4832 goto restart; 4833 } 4834 } 4835 mutex_exit(&key_sad.lock); 4836 4837 s = pserialize_read_enter(); 4838 SAHLIST_READER_FOREACH(sah) { 4839 struct secasvar *sav; 4840 4841 key_sah_ref(sah); 4842 pserialize_read_exit(s); 4843 4844 /* if LARVAL entry doesn't become MATURE, delete it. */ 4845 mutex_enter(&key_sad.lock); 4846 restart_sav_LARVAL: 4847 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) { 4848 if (now - sav->created > key_larval_lifetime) { 4849 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4850 goto restart_sav_LARVAL; 4851 } 4852 } 4853 mutex_exit(&key_sad.lock); 4854 4855 /* 4856 * check MATURE entry to start to send expire message 4857 * whether or not. 4858 */ 4859 restart_sav_MATURE: 4860 mutex_enter(&key_sad.lock); 4861 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_MATURE) { 4862 /* we don't need to check. */ 4863 if (sav->lft_s == NULL) 4864 continue; 4865 4866 /* sanity check */ 4867 KASSERT(sav->lft_c != NULL); 4868 4869 /* check SOFT lifetime */ 4870 if (sav->lft_s->sadb_lifetime_addtime != 0 && 4871 now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 4872 /* 4873 * check SA to be used whether or not. 4874 * when SA hasn't been used, delete it. 4875 */ 4876 if (sav->lft_c->sadb_lifetime_usetime == 0) { 4877 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4878 mutex_exit(&key_sad.lock); 4879 } else { 4880 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4881 mutex_exit(&key_sad.lock); 4882 /* 4883 * XXX If we keep to send expire 4884 * message in the status of 4885 * DYING. Do remove below code. 4886 */ 4887 key_expire(sav); 4888 } 4889 goto restart_sav_MATURE; 4890 } 4891 /* check SOFT lifetime by bytes */ 4892 /* 4893 * XXX I don't know the way to delete this SA 4894 * when new SA is installed. Caution when it's 4895 * installed too big lifetime by time. 4896 */ 4897 else { 4898 uint64_t lft_c_bytes = 0; 4899 lifetime_counters_t sum = {0}; 4900 4901 percpu_foreach(sav->lft_c_counters_percpu, 4902 key_sum_lifetime_counters, sum); 4903 lft_c_bytes = sum[LIFETIME_COUNTER_BYTES]; 4904 4905 if (sav->lft_s->sadb_lifetime_bytes == 0 || 4906 sav->lft_s->sadb_lifetime_bytes >= lft_c_bytes) 4907 continue; 4908 4909 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4910 mutex_exit(&key_sad.lock); 4911 /* 4912 * XXX If we keep to send expire 4913 * message in the status of 4914 * DYING. Do remove below code. 4915 */ 4916 key_expire(sav); 4917 goto restart_sav_MATURE; 4918 } 4919 } 4920 mutex_exit(&key_sad.lock); 4921 4922 /* check DYING entry to change status to DEAD. */ 4923 mutex_enter(&key_sad.lock); 4924 restart_sav_DYING: 4925 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DYING) { 4926 /* we don't need to check. */ 4927 if (sav->lft_h == NULL) 4928 continue; 4929 4930 /* sanity check */ 4931 KASSERT(sav->lft_c != NULL); 4932 4933 if (sav->lft_h->sadb_lifetime_addtime != 0 && 4934 now - sav->created > sav->lft_h->sadb_lifetime_addtime) { 4935 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4936 goto restart_sav_DYING; 4937 } 4938 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4939 else if (sav->lft_s != NULL 4940 && sav->lft_s->sadb_lifetime_addtime != 0 4941 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 4942 /* 4943 * XXX: should be checked to be 4944 * installed the valid SA. 4945 */ 4946 4947 /* 4948 * If there is no SA then sending 4949 * expire message. 4950 */ 4951 key_expire(sav); 4952 } 4953 #endif 4954 /* check HARD lifetime by bytes */ 4955 else { 4956 uint64_t lft_c_bytes = 0; 4957 lifetime_counters_t sum = {0}; 4958 4959 percpu_foreach(sav->lft_c_counters_percpu, 4960 key_sum_lifetime_counters, sum); 4961 lft_c_bytes = sum[LIFETIME_COUNTER_BYTES]; 4962 4963 if (sav->lft_h->sadb_lifetime_bytes == 0 || 4964 sav->lft_h->sadb_lifetime_bytes >= lft_c_bytes) 4965 continue; 4966 4967 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4968 goto restart_sav_DYING; 4969 } 4970 } 4971 mutex_exit(&key_sad.lock); 4972 4973 /* delete entry in DEAD */ 4974 restart_sav_DEAD: 4975 mutex_enter(&key_sad.lock); 4976 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DEAD) { 4977 key_unlink_sav(sav); 4978 mutex_exit(&key_sad.lock); 4979 key_destroy_sav(sav); 4980 goto restart_sav_DEAD; 4981 } 4982 mutex_exit(&key_sad.lock); 4983 4984 s = pserialize_read_enter(); 4985 key_sah_unref(sah); 4986 } 4987 pserialize_read_exit(s); 4988 } 4989 4990 static void 4991 key_timehandler_acq(time_t now) 4992 { 4993 #ifndef IPSEC_NONBLOCK_ACQUIRE 4994 struct secacq *acq, *nextacq; 4995 4996 restart: 4997 mutex_enter(&key_misc.lock); 4998 LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) { 4999 if (now - acq->created > key_blockacq_lifetime) { 5000 LIST_REMOVE(acq, chain); 5001 mutex_exit(&key_misc.lock); 5002 kmem_free(acq, sizeof(*acq)); 5003 goto restart; 5004 } 5005 } 5006 mutex_exit(&key_misc.lock); 5007 #endif 5008 } 5009 5010 static void 5011 key_timehandler_spacq(time_t now) 5012 { 5013 #ifdef notyet 5014 struct secspacq *acq, *nextacq; 5015 5016 LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) { 5017 if (now - acq->created > key_blockacq_lifetime) { 5018 KASSERT(__LIST_CHAINED(acq)); 5019 LIST_REMOVE(acq, chain); 5020 kmem_free(acq, sizeof(*acq)); 5021 } 5022 } 5023 #endif 5024 } 5025 5026 static unsigned int key_timehandler_work_enqueued = 0; 5027 5028 /* 5029 * time handler. 5030 * scanning SPD and SAD to check status for each entries, 5031 * and do to remove or to expire. 5032 */ 5033 static void 5034 key_timehandler_work(struct work *wk, void *arg) 5035 { 5036 time_t now = time_uptime; 5037 5038 /* We can allow enqueuing another work at this point */ 5039 atomic_swap_uint(&key_timehandler_work_enqueued, 0); 5040 5041 key_timehandler_spd(now); 5042 key_timehandler_sad(now); 5043 key_timehandler_acq(now); 5044 key_timehandler_spacq(now); 5045 5046 key_acquire_sendup_pending_mbuf(); 5047 5048 /* do exchange to tick time !! */ 5049 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 5050 5051 return; 5052 } 5053 5054 static void 5055 key_timehandler(void *arg) 5056 { 5057 5058 /* Avoid enqueuing another work when one is already enqueued */ 5059 if (atomic_swap_uint(&key_timehandler_work_enqueued, 1) == 1) 5060 return; 5061 5062 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL); 5063 } 5064 5065 u_long 5066 key_random(void) 5067 { 5068 u_long value; 5069 5070 key_randomfill(&value, sizeof(value)); 5071 return value; 5072 } 5073 5074 void 5075 key_randomfill(void *p, size_t l) 5076 { 5077 5078 cprng_fast(p, l); 5079 } 5080 5081 /* 5082 * map SADB_SATYPE_* to IPPROTO_*. 5083 * if satype == SADB_SATYPE then satype is mapped to ~0. 5084 * OUT: 5085 * 0: invalid satype. 5086 */ 5087 static u_int16_t 5088 key_satype2proto(u_int8_t satype) 5089 { 5090 switch (satype) { 5091 case SADB_SATYPE_UNSPEC: 5092 return IPSEC_PROTO_ANY; 5093 case SADB_SATYPE_AH: 5094 return IPPROTO_AH; 5095 case SADB_SATYPE_ESP: 5096 return IPPROTO_ESP; 5097 case SADB_X_SATYPE_IPCOMP: 5098 return IPPROTO_IPCOMP; 5099 case SADB_X_SATYPE_TCPSIGNATURE: 5100 return IPPROTO_TCP; 5101 default: 5102 return 0; 5103 } 5104 /* NOTREACHED */ 5105 } 5106 5107 /* 5108 * map IPPROTO_* to SADB_SATYPE_* 5109 * OUT: 5110 * 0: invalid protocol type. 5111 */ 5112 static u_int8_t 5113 key_proto2satype(u_int16_t proto) 5114 { 5115 switch (proto) { 5116 case IPPROTO_AH: 5117 return SADB_SATYPE_AH; 5118 case IPPROTO_ESP: 5119 return SADB_SATYPE_ESP; 5120 case IPPROTO_IPCOMP: 5121 return SADB_X_SATYPE_IPCOMP; 5122 case IPPROTO_TCP: 5123 return SADB_X_SATYPE_TCPSIGNATURE; 5124 default: 5125 return 0; 5126 } 5127 /* NOTREACHED */ 5128 } 5129 5130 static int 5131 key_setsecasidx(int proto, int mode, int reqid, 5132 const struct sockaddr *src, const struct sockaddr *dst, 5133 struct secasindex * saidx) 5134 { 5135 const union sockaddr_union *src_u = (const union sockaddr_union *)src; 5136 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst; 5137 5138 /* sa len safety check */ 5139 if (key_checksalen(src_u) != 0) 5140 return -1; 5141 if (key_checksalen(dst_u) != 0) 5142 return -1; 5143 5144 memset(saidx, 0, sizeof(*saidx)); 5145 saidx->proto = proto; 5146 saidx->mode = mode; 5147 saidx->reqid = reqid; 5148 memcpy(&saidx->src, src_u, src_u->sa.sa_len); 5149 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len); 5150 5151 key_porttosaddr(&((saidx)->src), 0); 5152 key_porttosaddr(&((saidx)->dst), 0); 5153 return 0; 5154 } 5155 5156 static void 5157 key_init_spidx_bymsghdr(struct secpolicyindex *spidx, 5158 const struct sadb_msghdr *mhp) 5159 { 5160 const struct sadb_address *src0, *dst0; 5161 const struct sockaddr *src, *dst; 5162 const struct sadb_x_policy *xpl0; 5163 5164 src0 = mhp->ext[SADB_EXT_ADDRESS_SRC]; 5165 dst0 = mhp->ext[SADB_EXT_ADDRESS_DST]; 5166 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5167 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5168 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 5169 5170 memset(spidx, 0, sizeof(*spidx)); 5171 spidx->dir = xpl0->sadb_x_policy_dir; 5172 spidx->prefs = src0->sadb_address_prefixlen; 5173 spidx->prefd = dst0->sadb_address_prefixlen; 5174 spidx->ul_proto = src0->sadb_address_proto; 5175 /* XXX boundary check against sa_len */ 5176 memcpy(&spidx->src, src, src->sa_len); 5177 memcpy(&spidx->dst, dst, dst->sa_len); 5178 } 5179 5180 /* %%% PF_KEY */ 5181 /* 5182 * SADB_GETSPI processing is to receive 5183 * <base, (SA2), src address, dst address, (SPI range)> 5184 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 5185 * tree with the status of LARVAL, and send 5186 * <base, SA(*), address(SD)> 5187 * to the IKMPd. 5188 * 5189 * IN: mhp: pointer to the pointer to each header. 5190 * OUT: NULL if fail. 5191 * other if success, return pointer to the message to send. 5192 */ 5193 static int 5194 key_api_getspi(struct socket *so, struct mbuf *m, 5195 const struct sadb_msghdr *mhp) 5196 { 5197 const struct sockaddr *src, *dst; 5198 struct secasindex saidx; 5199 struct secashead *sah; 5200 struct secasvar *newsav; 5201 u_int8_t proto; 5202 u_int32_t spi; 5203 u_int8_t mode; 5204 u_int16_t reqid; 5205 int error; 5206 5207 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5208 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5209 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5210 return key_senderror(so, m, EINVAL); 5211 } 5212 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5213 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5214 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5215 return key_senderror(so, m, EINVAL); 5216 } 5217 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5218 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5219 mode = sa2->sadb_x_sa2_mode; 5220 reqid = sa2->sadb_x_sa2_reqid; 5221 } else { 5222 mode = IPSEC_MODE_ANY; 5223 reqid = 0; 5224 } 5225 5226 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5227 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5228 5229 /* map satype to proto */ 5230 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5231 if (proto == 0) { 5232 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5233 return key_senderror(so, m, EINVAL); 5234 } 5235 5236 5237 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5238 if (error != 0) 5239 return key_senderror(so, m, EINVAL); 5240 5241 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5242 if (error != 0) 5243 return key_senderror(so, m, EINVAL); 5244 5245 /* SPI allocation */ 5246 spi = key_do_getnewspi(mhp->ext[SADB_EXT_SPIRANGE], &saidx); 5247 if (spi == 0) 5248 return key_senderror(so, m, EINVAL); 5249 5250 /* get a SA index */ 5251 sah = key_getsah_ref(&saidx, CMP_REQID); 5252 if (sah == NULL) { 5253 /* create a new SA index */ 5254 sah = key_newsah(&saidx); 5255 if (sah == NULL) { 5256 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5257 return key_senderror(so, m, ENOBUFS); 5258 } 5259 } 5260 5261 /* get a new SA */ 5262 /* XXX rewrite */ 5263 newsav = KEY_NEWSAV(m, mhp, &error); 5264 if (newsav == NULL) { 5265 key_sah_unref(sah); 5266 /* XXX don't free new SA index allocated in above. */ 5267 return key_senderror(so, m, error); 5268 } 5269 5270 /* set spi */ 5271 newsav->spi = htonl(spi); 5272 5273 /* Add to sah#savlist */ 5274 key_init_sav(newsav); 5275 newsav->sah = sah; 5276 newsav->state = SADB_SASTATE_LARVAL; 5277 mutex_enter(&key_sad.lock); 5278 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav); 5279 mutex_exit(&key_sad.lock); 5280 key_validate_savlist(sah, SADB_SASTATE_LARVAL); 5281 5282 key_sah_unref(sah); 5283 5284 #ifndef IPSEC_NONBLOCK_ACQUIRE 5285 /* delete the entry in key_misc.acqlist */ 5286 if (mhp->msg->sadb_msg_seq != 0) { 5287 struct secacq *acq; 5288 mutex_enter(&key_misc.lock); 5289 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); 5290 if (acq != NULL) { 5291 /* reset counter in order to deletion by timehandler. */ 5292 acq->created = time_uptime; 5293 acq->count = 0; 5294 } 5295 mutex_exit(&key_misc.lock); 5296 } 5297 #endif 5298 5299 { 5300 struct mbuf *n, *nn; 5301 struct sadb_sa *m_sa; 5302 int off, len; 5303 5304 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 5305 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES); 5306 5307 /* create new sadb_msg to reply. */ 5308 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 5309 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5310 5311 n = key_alloc_mbuf_simple(len, M_WAITOK); 5312 n->m_len = len; 5313 n->m_next = NULL; 5314 off = 0; 5315 5316 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 5317 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 5318 5319 m_sa = (struct sadb_sa *)(mtod(n, char *) + off); 5320 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 5321 m_sa->sadb_sa_exttype = SADB_EXT_SA; 5322 m_sa->sadb_sa_spi = htonl(spi); 5323 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5324 5325 KASSERTMSG(off == len, "length inconsistency"); 5326 5327 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 5328 SADB_EXT_ADDRESS_DST); 5329 5330 KASSERT(n->m_len >= sizeof(struct sadb_msg)); 5331 5332 n->m_pkthdr.len = 0; 5333 for (nn = n; nn; nn = nn->m_next) 5334 n->m_pkthdr.len += nn->m_len; 5335 5336 key_fill_replymsg(n, newsav->seq); 5337 m_freem(m); 5338 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5339 } 5340 } 5341 5342 /* 5343 * allocating new SPI 5344 * called by key_api_getspi(). 5345 * OUT: 5346 * 0: failure. 5347 * others: success. 5348 */ 5349 static u_int32_t 5350 key_do_getnewspi(const struct sadb_spirange *spirange, 5351 const struct secasindex *saidx) 5352 { 5353 u_int32_t newspi; 5354 u_int32_t spmin, spmax; 5355 int count = key_spi_trycnt; 5356 5357 /* set spi range to allocate */ 5358 if (spirange != NULL) { 5359 spmin = spirange->sadb_spirange_min; 5360 spmax = spirange->sadb_spirange_max; 5361 } else { 5362 spmin = key_spi_minval; 5363 spmax = key_spi_maxval; 5364 } 5365 /* IPCOMP needs 2-byte SPI */ 5366 if (saidx->proto == IPPROTO_IPCOMP) { 5367 u_int32_t t; 5368 if (spmin >= 0x10000) 5369 spmin = 0xffff; 5370 if (spmax >= 0x10000) 5371 spmax = 0xffff; 5372 if (spmin > spmax) { 5373 t = spmin; spmin = spmax; spmax = t; 5374 } 5375 } 5376 5377 if (spmin == spmax) { 5378 if (key_checkspidup(saidx, htonl(spmin))) { 5379 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin); 5380 return 0; 5381 } 5382 5383 count--; /* taking one cost. */ 5384 newspi = spmin; 5385 5386 } else { 5387 5388 /* init SPI */ 5389 newspi = 0; 5390 5391 /* when requesting to allocate spi ranged */ 5392 while (count--) { 5393 /* generate pseudo-random SPI value ranged. */ 5394 newspi = spmin + (key_random() % (spmax - spmin + 1)); 5395 5396 if (!key_checkspidup(saidx, htonl(newspi))) 5397 break; 5398 } 5399 5400 if (count == 0 || newspi == 0) { 5401 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n"); 5402 return 0; 5403 } 5404 } 5405 5406 /* statistics */ 5407 keystat.getspi_count = 5408 (keystat.getspi_count + key_spi_trycnt - count) / 2; 5409 5410 return newspi; 5411 } 5412 5413 static int 5414 key_handle_natt_info(struct secasvar *sav, 5415 const struct sadb_msghdr *mhp) 5416 { 5417 const char *msg = "?" ; 5418 struct sadb_x_nat_t_type *type; 5419 struct sadb_x_nat_t_port *sport, *dport; 5420 struct sadb_address *iaddr, *raddr; 5421 struct sadb_x_nat_t_frag *frag; 5422 5423 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 5424 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 5425 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) 5426 return 0; 5427 5428 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) { 5429 msg = "TYPE"; 5430 goto bad; 5431 } 5432 5433 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) { 5434 msg = "SPORT"; 5435 goto bad; 5436 } 5437 5438 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5439 msg = "DPORT"; 5440 goto bad; 5441 } 5442 5443 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) { 5444 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); 5445 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) { 5446 msg = "OAI"; 5447 goto bad; 5448 } 5449 } 5450 5451 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5452 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); 5453 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5454 msg = "OAR"; 5455 goto bad; 5456 } 5457 } 5458 5459 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5460 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5461 msg = "FRAG"; 5462 goto bad; 5463 } 5464 } 5465 5466 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5467 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5468 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5469 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5470 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5471 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5472 5473 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", 5474 type->sadb_x_nat_t_type_type, 5475 ntohs(sport->sadb_x_nat_t_port_port), 5476 ntohs(dport->sadb_x_nat_t_port_port)); 5477 5478 sav->natt_type = type->sadb_x_nat_t_type_type; 5479 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port); 5480 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port); 5481 if (frag) 5482 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen; 5483 else 5484 sav->esp_frag = IP_MAXPACKET; 5485 5486 return 0; 5487 bad: 5488 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg); 5489 __USE(msg); 5490 return -1; 5491 } 5492 5493 /* Just update the IPSEC_NAT_T ports if present */ 5494 static int 5495 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst, 5496 const struct sadb_msghdr *mhp) 5497 { 5498 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 5499 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); 5500 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 5501 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); 5502 5503 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) && 5504 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) && 5505 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) { 5506 struct sadb_x_nat_t_type *type; 5507 struct sadb_x_nat_t_port *sport; 5508 struct sadb_x_nat_t_port *dport; 5509 5510 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 5511 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 5512 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 5513 IPSECLOG(LOG_DEBUG, "invalid message\n"); 5514 return -1; 5515 } 5516 5517 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5518 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5519 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5520 5521 key_porttosaddr(src, sport->sadb_x_nat_t_port_port); 5522 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port); 5523 5524 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", 5525 type->sadb_x_nat_t_type_type, 5526 ntohs(sport->sadb_x_nat_t_port_port), 5527 ntohs(dport->sadb_x_nat_t_port_port)); 5528 } 5529 5530 return 0; 5531 } 5532 5533 5534 /* 5535 * SADB_UPDATE processing 5536 * receive 5537 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5538 * key(AE), (identity(SD),) (sensitivity)> 5539 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 5540 * and send 5541 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5542 * (identity(SD),) (sensitivity)> 5543 * to the ikmpd. 5544 * 5545 * m will always be freed. 5546 */ 5547 static int 5548 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5549 { 5550 struct sadb_sa *sa0; 5551 const struct sockaddr *src, *dst; 5552 struct secasindex saidx; 5553 struct secashead *sah; 5554 struct secasvar *sav, *newsav; 5555 u_int16_t proto; 5556 u_int8_t mode; 5557 u_int16_t reqid; 5558 int error; 5559 5560 /* map satype to proto */ 5561 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5562 if (proto == 0) { 5563 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5564 return key_senderror(so, m, EINVAL); 5565 } 5566 5567 if (mhp->ext[SADB_EXT_SA] == NULL || 5568 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5569 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5570 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5571 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5572 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5573 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5574 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5575 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5576 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5577 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5578 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5579 return key_senderror(so, m, EINVAL); 5580 } 5581 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5582 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5583 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5584 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5585 return key_senderror(so, m, EINVAL); 5586 } 5587 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5588 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5589 mode = sa2->sadb_x_sa2_mode; 5590 reqid = sa2->sadb_x_sa2_reqid; 5591 } else { 5592 mode = IPSEC_MODE_ANY; 5593 reqid = 0; 5594 } 5595 /* XXX boundary checking for other extensions */ 5596 5597 sa0 = mhp->ext[SADB_EXT_SA]; 5598 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5599 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5600 5601 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5602 if (error != 0) 5603 return key_senderror(so, m, EINVAL); 5604 5605 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5606 if (error != 0) 5607 return key_senderror(so, m, EINVAL); 5608 5609 /* get a SA header */ 5610 sah = key_getsah_ref(&saidx, CMP_REQID); 5611 if (sah == NULL) { 5612 IPSECLOG(LOG_DEBUG, "no SA index found.\n"); 5613 return key_senderror(so, m, ENOENT); 5614 } 5615 5616 /* set spidx if there */ 5617 /* XXX rewrite */ 5618 error = key_setident(sah, m, mhp); 5619 if (error) 5620 goto error_sah; 5621 5622 /* find a SA with sequence number. */ 5623 #ifdef IPSEC_DOSEQCHECK 5624 if (mhp->msg->sadb_msg_seq != 0) { 5625 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq); 5626 if (sav == NULL) { 5627 IPSECLOG(LOG_DEBUG, 5628 "no larval SA with sequence %u exists.\n", 5629 mhp->msg->sadb_msg_seq); 5630 error = ENOENT; 5631 goto error_sah; 5632 } 5633 } 5634 #else 5635 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5636 if (sav == NULL) { 5637 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n", 5638 (u_int32_t)ntohl(sa0->sadb_sa_spi)); 5639 error = EINVAL; 5640 goto error_sah; 5641 } 5642 #endif 5643 5644 /* validity check */ 5645 if (sav->sah->saidx.proto != proto) { 5646 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n", 5647 sav->sah->saidx.proto, proto); 5648 error = EINVAL; 5649 goto error; 5650 } 5651 #ifdef IPSEC_DOSEQCHECK 5652 if (sav->spi != sa0->sadb_sa_spi) { 5653 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n", 5654 (u_int32_t)ntohl(sav->spi), 5655 (u_int32_t)ntohl(sa0->sadb_sa_spi)); 5656 error = EINVAL; 5657 goto error; 5658 } 5659 #endif 5660 if (sav->pid != mhp->msg->sadb_msg_pid) { 5661 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n", 5662 sav->pid, mhp->msg->sadb_msg_pid); 5663 error = EINVAL; 5664 goto error; 5665 } 5666 5667 /* 5668 * Allocate a new SA instead of modifying the existing SA directly 5669 * to avoid race conditions. 5670 */ 5671 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); 5672 5673 /* copy sav values */ 5674 newsav->spi = sav->spi; 5675 newsav->seq = sav->seq; 5676 newsav->created = sav->created; 5677 newsav->pid = sav->pid; 5678 newsav->sah = sav->sah; 5679 5680 error = key_setsaval(newsav, m, mhp); 5681 if (error) { 5682 key_delsav(newsav); 5683 goto error; 5684 } 5685 5686 error = key_handle_natt_info(newsav, mhp); 5687 if (error != 0) { 5688 key_delsav(newsav); 5689 goto error; 5690 } 5691 5692 error = key_init_xform(newsav); 5693 if (error != 0) { 5694 key_delsav(newsav); 5695 goto error; 5696 } 5697 5698 /* Add to sah#savlist */ 5699 key_init_sav(newsav); 5700 newsav->state = SADB_SASTATE_MATURE; 5701 mutex_enter(&key_sad.lock); 5702 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); 5703 mutex_exit(&key_sad.lock); 5704 key_validate_savlist(sah, SADB_SASTATE_MATURE); 5705 5706 key_sah_unref(sah); 5707 sah = NULL; 5708 5709 key_destroy_sav_with_ref(sav); 5710 sav = NULL; 5711 5712 { 5713 struct mbuf *n; 5714 5715 /* set msg buf from mhp */ 5716 n = key_getmsgbuf_x1(m, mhp); 5717 if (n == NULL) { 5718 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5719 return key_senderror(so, m, ENOBUFS); 5720 } 5721 5722 m_freem(m); 5723 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5724 } 5725 error: 5726 KEY_SA_UNREF(&sav); 5727 error_sah: 5728 key_sah_unref(sah); 5729 return key_senderror(so, m, error); 5730 } 5731 5732 /* 5733 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5734 * only called by key_api_update(). 5735 * OUT: 5736 * NULL : not found 5737 * others : found, pointer to a SA. 5738 */ 5739 #ifdef IPSEC_DOSEQCHECK 5740 static struct secasvar * 5741 key_getsavbyseq(struct secashead *sah, u_int32_t seq) 5742 { 5743 struct secasvar *sav; 5744 u_int state; 5745 int s; 5746 5747 state = SADB_SASTATE_LARVAL; 5748 5749 /* search SAD with sequence number ? */ 5750 s = pserialize_read_enter(); 5751 SAVLIST_READER_FOREACH(sav, sah, state) { 5752 KEY_CHKSASTATE(state, sav->state); 5753 5754 if (sav->seq == seq) { 5755 SA_ADDREF(sav); 5756 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 5757 "DP cause refcnt++:%d SA:%p\n", 5758 key_sa_refcnt(sav), sav); 5759 break; 5760 } 5761 } 5762 pserialize_read_exit(s); 5763 5764 return sav; 5765 } 5766 #endif 5767 5768 /* 5769 * SADB_ADD processing 5770 * add an entry to SA database, when received 5771 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5772 * key(AE), (identity(SD),) (sensitivity)> 5773 * from the ikmpd, 5774 * and send 5775 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5776 * (identity(SD),) (sensitivity)> 5777 * to the ikmpd. 5778 * 5779 * IGNORE identity and sensitivity messages. 5780 * 5781 * m will always be freed. 5782 */ 5783 static int 5784 key_api_add(struct socket *so, struct mbuf *m, 5785 const struct sadb_msghdr *mhp) 5786 { 5787 struct sadb_sa *sa0; 5788 const struct sockaddr *src, *dst; 5789 struct secasindex saidx; 5790 struct secashead *sah; 5791 struct secasvar *newsav; 5792 u_int16_t proto; 5793 u_int8_t mode; 5794 u_int16_t reqid; 5795 int error; 5796 5797 /* map satype to proto */ 5798 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5799 if (proto == 0) { 5800 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5801 return key_senderror(so, m, EINVAL); 5802 } 5803 5804 if (mhp->ext[SADB_EXT_SA] == NULL || 5805 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5806 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5807 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5808 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5809 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5810 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5811 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5812 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5813 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5814 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5815 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5816 return key_senderror(so, m, EINVAL); 5817 } 5818 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5819 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5820 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5821 /* XXX need more */ 5822 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5823 return key_senderror(so, m, EINVAL); 5824 } 5825 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5826 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5827 mode = sa2->sadb_x_sa2_mode; 5828 reqid = sa2->sadb_x_sa2_reqid; 5829 } else { 5830 mode = IPSEC_MODE_ANY; 5831 reqid = 0; 5832 } 5833 5834 sa0 = mhp->ext[SADB_EXT_SA]; 5835 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5836 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5837 5838 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5839 if (error != 0) 5840 return key_senderror(so, m, EINVAL); 5841 5842 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5843 if (error != 0) 5844 return key_senderror(so, m, EINVAL); 5845 5846 /* get a SA header */ 5847 sah = key_getsah_ref(&saidx, CMP_REQID); 5848 if (sah == NULL) { 5849 /* create a new SA header */ 5850 sah = key_newsah(&saidx); 5851 if (sah == NULL) { 5852 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5853 return key_senderror(so, m, ENOBUFS); 5854 } 5855 } 5856 5857 /* set spidx if there */ 5858 /* XXX rewrite */ 5859 error = key_setident(sah, m, mhp); 5860 if (error) 5861 goto error; 5862 5863 { 5864 struct secasvar *sav; 5865 5866 /* We can create new SA only if SPI is differenct. */ 5867 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5868 if (sav != NULL) { 5869 KEY_SA_UNREF(&sav); 5870 IPSECLOG(LOG_DEBUG, "SA already exists.\n"); 5871 error = EEXIST; 5872 goto error; 5873 } 5874 } 5875 5876 /* create new SA entry. */ 5877 newsav = KEY_NEWSAV(m, mhp, &error); 5878 if (newsav == NULL) 5879 goto error; 5880 newsav->sah = sah; 5881 5882 error = key_handle_natt_info(newsav, mhp); 5883 if (error != 0) { 5884 key_delsav(newsav); 5885 error = EINVAL; 5886 goto error; 5887 } 5888 5889 error = key_init_xform(newsav); 5890 if (error != 0) { 5891 key_delsav(newsav); 5892 goto error; 5893 } 5894 5895 /* Add to sah#savlist */ 5896 key_init_sav(newsav); 5897 newsav->state = SADB_SASTATE_MATURE; 5898 mutex_enter(&key_sad.lock); 5899 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); 5900 mutex_exit(&key_sad.lock); 5901 key_validate_savlist(sah, SADB_SASTATE_MATURE); 5902 5903 key_sah_unref(sah); 5904 sah = NULL; 5905 5906 /* 5907 * don't call key_freesav() here, as we would like to keep the SA 5908 * in the database on success. 5909 */ 5910 5911 { 5912 struct mbuf *n; 5913 5914 /* set msg buf from mhp */ 5915 n = key_getmsgbuf_x1(m, mhp); 5916 if (n == NULL) { 5917 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5918 return key_senderror(so, m, ENOBUFS); 5919 } 5920 5921 m_freem(m); 5922 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5923 } 5924 error: 5925 key_sah_unref(sah); 5926 return key_senderror(so, m, error); 5927 } 5928 5929 /* m is retained */ 5930 static int 5931 key_setident(struct secashead *sah, struct mbuf *m, 5932 const struct sadb_msghdr *mhp) 5933 { 5934 const struct sadb_ident *idsrc, *iddst; 5935 int idsrclen, iddstlen; 5936 5937 KASSERT(!cpu_softintr_p()); 5938 KASSERT(sah != NULL); 5939 KASSERT(m != NULL); 5940 KASSERT(mhp != NULL); 5941 KASSERT(mhp->msg != NULL); 5942 5943 /* 5944 * Can be called with an existing sah from key_api_update(). 5945 */ 5946 if (sah->idents != NULL) { 5947 kmem_free(sah->idents, sah->idents_len); 5948 sah->idents = NULL; 5949 sah->idents_len = 0; 5950 } 5951 if (sah->identd != NULL) { 5952 kmem_free(sah->identd, sah->identd_len); 5953 sah->identd = NULL; 5954 sah->identd_len = 0; 5955 } 5956 5957 /* don't make buffer if not there */ 5958 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5959 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5960 sah->idents = NULL; 5961 sah->identd = NULL; 5962 return 0; 5963 } 5964 5965 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5966 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5967 IPSECLOG(LOG_DEBUG, "invalid identity.\n"); 5968 return EINVAL; 5969 } 5970 5971 idsrc = mhp->ext[SADB_EXT_IDENTITY_SRC]; 5972 iddst = mhp->ext[SADB_EXT_IDENTITY_DST]; 5973 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5974 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5975 5976 /* validity check */ 5977 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5978 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n"); 5979 return EINVAL; 5980 } 5981 5982 switch (idsrc->sadb_ident_type) { 5983 case SADB_IDENTTYPE_PREFIX: 5984 case SADB_IDENTTYPE_FQDN: 5985 case SADB_IDENTTYPE_USERFQDN: 5986 default: 5987 /* XXX do nothing */ 5988 sah->idents = NULL; 5989 sah->identd = NULL; 5990 return 0; 5991 } 5992 5993 /* make structure */ 5994 sah->idents = kmem_alloc(idsrclen, KM_SLEEP); 5995 sah->idents_len = idsrclen; 5996 sah->identd = kmem_alloc(iddstlen, KM_SLEEP); 5997 sah->identd_len = iddstlen; 5998 memcpy(sah->idents, idsrc, idsrclen); 5999 memcpy(sah->identd, iddst, iddstlen); 6000 6001 return 0; 6002 } 6003 6004 /* 6005 * m will not be freed on return. It never return NULL. 6006 * it is caller's responsibility to free the result. 6007 */ 6008 static struct mbuf * 6009 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 6010 { 6011 struct mbuf *n; 6012 6013 KASSERT(m != NULL); 6014 KASSERT(mhp != NULL); 6015 KASSERT(mhp->msg != NULL); 6016 6017 /* create new sadb_msg to reply. */ 6018 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED, 6019 SADB_EXT_SA, SADB_X_EXT_SA2, 6020 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 6021 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 6022 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, 6023 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, 6024 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, 6025 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG); 6026 6027 KASSERT(n->m_len >= sizeof(struct sadb_msg)); 6028 6029 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 6030 mtod(n, struct sadb_msg *)->sadb_msg_len = 6031 PFKEY_UNIT64(n->m_pkthdr.len); 6032 6033 return n; 6034 } 6035 6036 static int key_delete_all (struct socket *, struct mbuf *, 6037 const struct sadb_msghdr *, u_int16_t); 6038 6039 /* 6040 * SADB_DELETE processing 6041 * receive 6042 * <base, SA(*), address(SD)> 6043 * from the ikmpd, and set SADB_SASTATE_DEAD, 6044 * and send, 6045 * <base, SA(*), address(SD)> 6046 * to the ikmpd. 6047 * 6048 * m will always be freed. 6049 */ 6050 static int 6051 key_api_delete(struct socket *so, struct mbuf *m, 6052 const struct sadb_msghdr *mhp) 6053 { 6054 struct sadb_sa *sa0; 6055 const struct sockaddr *src, *dst; 6056 struct secasindex saidx; 6057 struct secashead *sah; 6058 struct secasvar *sav = NULL; 6059 u_int16_t proto; 6060 int error; 6061 6062 /* map satype to proto */ 6063 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 6064 if (proto == 0) { 6065 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6066 return key_senderror(so, m, EINVAL); 6067 } 6068 6069 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6070 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 6071 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6072 return key_senderror(so, m, EINVAL); 6073 } 6074 6075 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6076 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6077 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6078 return key_senderror(so, m, EINVAL); 6079 } 6080 6081 if (mhp->ext[SADB_EXT_SA] == NULL) { 6082 /* 6083 * Caller wants us to delete all non-LARVAL SAs 6084 * that match the src/dst. This is used during 6085 * IKE INITIAL-CONTACT. 6086 */ 6087 IPSECLOG(LOG_DEBUG, "doing delete all.\n"); 6088 return key_delete_all(so, m, mhp, proto); 6089 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 6090 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6091 return key_senderror(so, m, EINVAL); 6092 } 6093 6094 sa0 = mhp->ext[SADB_EXT_SA]; 6095 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6096 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6097 6098 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6099 if (error != 0) 6100 return key_senderror(so, m, EINVAL); 6101 6102 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6103 if (error != 0) 6104 return key_senderror(so, m, EINVAL); 6105 6106 /* get a SA header */ 6107 sah = key_getsah_ref(&saidx, CMP_HEAD); 6108 if (sah != NULL) { 6109 /* get a SA with SPI. */ 6110 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 6111 key_sah_unref(sah); 6112 } 6113 6114 if (sav == NULL) { 6115 IPSECLOG(LOG_DEBUG, "no SA found.\n"); 6116 return key_senderror(so, m, ENOENT); 6117 } 6118 6119 key_destroy_sav_with_ref(sav); 6120 sav = NULL; 6121 6122 { 6123 struct mbuf *n; 6124 6125 /* create new sadb_msg to reply. */ 6126 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 6127 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6128 6129 key_fill_replymsg(n, 0); 6130 m_freem(m); 6131 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6132 } 6133 } 6134 6135 /* 6136 * delete all SAs for src/dst. Called from key_api_delete(). 6137 */ 6138 static int 6139 key_delete_all(struct socket *so, struct mbuf *m, 6140 const struct sadb_msghdr *mhp, u_int16_t proto) 6141 { 6142 const struct sockaddr *src, *dst; 6143 struct secasindex saidx; 6144 struct secashead *sah; 6145 struct secasvar *sav; 6146 u_int state; 6147 int error; 6148 6149 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6150 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6151 6152 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6153 if (error != 0) 6154 return key_senderror(so, m, EINVAL); 6155 6156 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6157 if (error != 0) 6158 return key_senderror(so, m, EINVAL); 6159 6160 sah = key_getsah_ref(&saidx, CMP_HEAD); 6161 if (sah != NULL) { 6162 /* Delete all non-LARVAL SAs. */ 6163 SASTATE_ALIVE_FOREACH(state) { 6164 if (state == SADB_SASTATE_LARVAL) 6165 continue; 6166 restart: 6167 mutex_enter(&key_sad.lock); 6168 SAVLIST_WRITER_FOREACH(sav, sah, state) { 6169 sav->state = SADB_SASTATE_DEAD; 6170 key_unlink_sav(sav); 6171 mutex_exit(&key_sad.lock); 6172 key_destroy_sav(sav); 6173 goto restart; 6174 } 6175 mutex_exit(&key_sad.lock); 6176 } 6177 key_sah_unref(sah); 6178 } 6179 { 6180 struct mbuf *n; 6181 6182 /* create new sadb_msg to reply. */ 6183 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 6184 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6185 6186 key_fill_replymsg(n, 0); 6187 m_freem(m); 6188 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6189 } 6190 } 6191 6192 /* 6193 * SADB_GET processing 6194 * receive 6195 * <base, SA(*), address(SD)> 6196 * from the ikmpd, and get a SP and a SA to respond, 6197 * and send, 6198 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 6199 * (identity(SD),) (sensitivity)> 6200 * to the ikmpd. 6201 * 6202 * m will always be freed. 6203 */ 6204 static int 6205 key_api_get(struct socket *so, struct mbuf *m, 6206 const struct sadb_msghdr *mhp) 6207 { 6208 struct sadb_sa *sa0; 6209 const struct sockaddr *src, *dst; 6210 struct secasindex saidx; 6211 struct secasvar *sav = NULL; 6212 u_int16_t proto; 6213 int error; 6214 6215 /* map satype to proto */ 6216 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6217 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6218 return key_senderror(so, m, EINVAL); 6219 } 6220 6221 if (mhp->ext[SADB_EXT_SA] == NULL || 6222 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6223 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 6224 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6225 return key_senderror(so, m, EINVAL); 6226 } 6227 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 6228 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6229 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6230 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6231 return key_senderror(so, m, EINVAL); 6232 } 6233 6234 sa0 = mhp->ext[SADB_EXT_SA]; 6235 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6236 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6237 6238 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6239 if (error != 0) 6240 return key_senderror(so, m, EINVAL); 6241 6242 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6243 if (error != 0) 6244 return key_senderror(so, m, EINVAL); 6245 6246 /* get a SA header */ 6247 { 6248 struct secashead *sah; 6249 int s = pserialize_read_enter(); 6250 6251 sah = key_getsah(&saidx, CMP_HEAD); 6252 if (sah != NULL) { 6253 /* get a SA with SPI. */ 6254 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 6255 } 6256 pserialize_read_exit(s); 6257 } 6258 if (sav == NULL) { 6259 IPSECLOG(LOG_DEBUG, "no SA found.\n"); 6260 return key_senderror(so, m, ENOENT); 6261 } 6262 6263 { 6264 struct mbuf *n; 6265 u_int8_t satype; 6266 6267 /* map proto to satype */ 6268 satype = key_proto2satype(sav->sah->saidx.proto); 6269 if (satype == 0) { 6270 KEY_SA_UNREF(&sav); 6271 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n"); 6272 return key_senderror(so, m, EINVAL); 6273 } 6274 6275 /* create new sadb_msg to reply. */ 6276 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 6277 mhp->msg->sadb_msg_pid); 6278 KEY_SA_UNREF(&sav); 6279 m_freem(m); 6280 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6281 } 6282 } 6283 6284 /* XXX make it sysctl-configurable? */ 6285 static void 6286 key_getcomb_setlifetime(struct sadb_comb *comb) 6287 { 6288 6289 comb->sadb_comb_soft_allocations = 1; 6290 comb->sadb_comb_hard_allocations = 1; 6291 comb->sadb_comb_soft_bytes = 0; 6292 comb->sadb_comb_hard_bytes = 0; 6293 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 6294 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100; 6295 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */ 6296 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 6297 } 6298 6299 /* 6300 * XXX reorder combinations by preference 6301 * XXX no idea if the user wants ESP authentication or not 6302 */ 6303 static struct mbuf * 6304 key_getcomb_esp(int mflag) 6305 { 6306 struct sadb_comb *comb; 6307 const struct enc_xform *algo; 6308 struct mbuf *result = NULL, *m, *n; 6309 int encmin; 6310 int i, off, o; 6311 int totlen; 6312 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6313 6314 m = NULL; 6315 for (i = 1; i <= SADB_EALG_MAX; i++) { 6316 algo = esp_algorithm_lookup(i); 6317 if (algo == NULL) 6318 continue; 6319 6320 /* discard algorithms with key size smaller than system min */ 6321 if (_BITS(algo->maxkey) < ipsec_esp_keymin) 6322 continue; 6323 if (_BITS(algo->minkey) < ipsec_esp_keymin) 6324 encmin = ipsec_esp_keymin; 6325 else 6326 encmin = _BITS(algo->minkey); 6327 6328 if (ipsec_esp_auth) 6329 m = key_getcomb_ah(mflag); 6330 else { 6331 KASSERTMSG(l <= MLEN, 6332 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6333 MGET(m, mflag, MT_DATA); 6334 if (m) { 6335 M_ALIGN(m, l); 6336 m->m_len = l; 6337 m->m_next = NULL; 6338 memset(mtod(m, void *), 0, m->m_len); 6339 } 6340 } 6341 if (!m) 6342 goto fail; 6343 6344 totlen = 0; 6345 for (n = m; n; n = n->m_next) 6346 totlen += n->m_len; 6347 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l); 6348 6349 for (off = 0; off < totlen; off += l) { 6350 n = m_pulldown(m, off, l, &o); 6351 if (!n) { 6352 /* m is already freed */ 6353 goto fail; 6354 } 6355 comb = (struct sadb_comb *)(mtod(n, char *) + o); 6356 memset(comb, 0, sizeof(*comb)); 6357 key_getcomb_setlifetime(comb); 6358 comb->sadb_comb_encrypt = i; 6359 comb->sadb_comb_encrypt_minbits = encmin; 6360 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6361 } 6362 6363 if (!result) 6364 result = m; 6365 else 6366 m_cat(result, m); 6367 } 6368 6369 return result; 6370 6371 fail: 6372 if (result) 6373 m_freem(result); 6374 return NULL; 6375 } 6376 6377 static void 6378 key_getsizes_ah(const struct auth_hash *ah, int alg, 6379 u_int16_t* ksmin, u_int16_t* ksmax) 6380 { 6381 *ksmin = *ksmax = ah->keysize; 6382 if (ah->keysize == 0) { 6383 /* 6384 * Transform takes arbitrary key size but algorithm 6385 * key size is restricted. Enforce this here. 6386 */ 6387 switch (alg) { 6388 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break; 6389 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break; 6390 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break; 6391 default: 6392 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg); 6393 break; 6394 } 6395 } 6396 } 6397 6398 /* 6399 * XXX reorder combinations by preference 6400 */ 6401 static struct mbuf * 6402 key_getcomb_ah(int mflag) 6403 { 6404 struct sadb_comb *comb; 6405 const struct auth_hash *algo; 6406 struct mbuf *m; 6407 u_int16_t minkeysize, maxkeysize; 6408 int i; 6409 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6410 6411 m = NULL; 6412 for (i = 1; i <= SADB_AALG_MAX; i++) { 6413 #if 1 6414 /* we prefer HMAC algorithms, not old algorithms */ 6415 if (i != SADB_AALG_SHA1HMAC && 6416 i != SADB_AALG_MD5HMAC && 6417 i != SADB_X_AALG_SHA2_256 && 6418 i != SADB_X_AALG_SHA2_384 && 6419 i != SADB_X_AALG_SHA2_512) 6420 continue; 6421 #endif 6422 algo = ah_algorithm_lookup(i); 6423 if (!algo) 6424 continue; 6425 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6426 /* discard algorithms with key size smaller than system min */ 6427 if (_BITS(minkeysize) < ipsec_ah_keymin) 6428 continue; 6429 6430 if (!m) { 6431 KASSERTMSG(l <= MLEN, 6432 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6433 MGET(m, mflag, MT_DATA); 6434 if (m) { 6435 M_ALIGN(m, l); 6436 m->m_len = l; 6437 m->m_next = NULL; 6438 } 6439 } else 6440 M_PREPEND(m, l, mflag); 6441 if (!m) 6442 return NULL; 6443 6444 if (m->m_len < sizeof(struct sadb_comb)) { 6445 m = m_pullup(m, sizeof(struct sadb_comb)); 6446 if (m == NULL) 6447 return NULL; 6448 } 6449 6450 comb = mtod(m, struct sadb_comb *); 6451 memset(comb, 0, sizeof(*comb)); 6452 key_getcomb_setlifetime(comb); 6453 comb->sadb_comb_auth = i; 6454 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6455 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6456 } 6457 6458 return m; 6459 } 6460 6461 /* 6462 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6463 * XXX reorder combinations by preference 6464 */ 6465 static struct mbuf * 6466 key_getcomb_ipcomp(int mflag) 6467 { 6468 struct sadb_comb *comb; 6469 const struct comp_algo *algo; 6470 struct mbuf *m; 6471 int i; 6472 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6473 6474 m = NULL; 6475 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6476 algo = ipcomp_algorithm_lookup(i); 6477 if (!algo) 6478 continue; 6479 6480 if (!m) { 6481 KASSERTMSG(l <= MLEN, 6482 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6483 MGET(m, mflag, MT_DATA); 6484 if (m) { 6485 M_ALIGN(m, l); 6486 m->m_len = l; 6487 m->m_next = NULL; 6488 } 6489 } else 6490 M_PREPEND(m, l, mflag); 6491 if (!m) 6492 return NULL; 6493 6494 if (m->m_len < sizeof(struct sadb_comb)) { 6495 m = m_pullup(m, sizeof(struct sadb_comb)); 6496 if (m == NULL) 6497 return NULL; 6498 } 6499 6500 comb = mtod(m, struct sadb_comb *); 6501 memset(comb, 0, sizeof(*comb)); 6502 key_getcomb_setlifetime(comb); 6503 comb->sadb_comb_encrypt = i; 6504 /* what should we set into sadb_comb_*_{min,max}bits? */ 6505 } 6506 6507 return m; 6508 } 6509 6510 /* 6511 * XXX no way to pass mode (transport/tunnel) to userland 6512 * XXX replay checking? 6513 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6514 */ 6515 static struct mbuf * 6516 key_getprop(const struct secasindex *saidx, int mflag) 6517 { 6518 struct sadb_prop *prop; 6519 struct mbuf *m, *n; 6520 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6521 int totlen; 6522 6523 switch (saidx->proto) { 6524 case IPPROTO_ESP: 6525 m = key_getcomb_esp(mflag); 6526 break; 6527 case IPPROTO_AH: 6528 m = key_getcomb_ah(mflag); 6529 break; 6530 case IPPROTO_IPCOMP: 6531 m = key_getcomb_ipcomp(mflag); 6532 break; 6533 default: 6534 return NULL; 6535 } 6536 6537 if (!m) 6538 return NULL; 6539 M_PREPEND(m, l, mflag); 6540 if (!m) 6541 return NULL; 6542 6543 totlen = 0; 6544 for (n = m; n; n = n->m_next) 6545 totlen += n->m_len; 6546 6547 prop = mtod(m, struct sadb_prop *); 6548 memset(prop, 0, sizeof(*prop)); 6549 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6550 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6551 prop->sadb_prop_replay = 32; /* XXX */ 6552 6553 return m; 6554 } 6555 6556 /* 6557 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire(). 6558 * send 6559 * <base, SA, address(SD), (address(P)), x_policy, 6560 * (identity(SD),) (sensitivity,) proposal> 6561 * to KMD, and expect to receive 6562 * <base> with SADB_ACQUIRE if error occurred, 6563 * or 6564 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6565 * from KMD by PF_KEY. 6566 * 6567 * XXX x_policy is outside of RFC2367 (KAME extension). 6568 * XXX sensitivity is not supported. 6569 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6570 * see comment for key_getcomb_ipcomp(). 6571 * 6572 * OUT: 6573 * 0 : succeed 6574 * others: error number 6575 */ 6576 static int 6577 key_acquire(const struct secasindex *saidx, const struct secpolicy *sp, int mflag) 6578 { 6579 struct mbuf *result = NULL, *m; 6580 #ifndef IPSEC_NONBLOCK_ACQUIRE 6581 struct secacq *newacq; 6582 #endif 6583 u_int8_t satype; 6584 int error = -1; 6585 u_int32_t seq; 6586 6587 /* sanity check */ 6588 KASSERT(saidx != NULL); 6589 satype = key_proto2satype(saidx->proto); 6590 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto); 6591 6592 #ifndef IPSEC_NONBLOCK_ACQUIRE 6593 /* 6594 * We never do anything about acquirng SA. There is anather 6595 * solution that kernel blocks to send SADB_ACQUIRE message until 6596 * getting something message from IKEd. In later case, to be 6597 * managed with ACQUIRING list. 6598 */ 6599 /* Get an entry to check whether sending message or not. */ 6600 mutex_enter(&key_misc.lock); 6601 newacq = key_getacq(saidx); 6602 if (newacq != NULL) { 6603 if (key_blockacq_count < newacq->count) { 6604 /* reset counter and do send message. */ 6605 newacq->count = 0; 6606 } else { 6607 /* increment counter and do nothing. */ 6608 newacq->count++; 6609 mutex_exit(&key_misc.lock); 6610 return 0; 6611 } 6612 } else { 6613 /* make new entry for blocking to send SADB_ACQUIRE. */ 6614 newacq = key_newacq(saidx); 6615 if (newacq == NULL) { 6616 mutex_exit(&key_misc.lock); 6617 return ENOBUFS; 6618 } 6619 6620 /* add to key_misc.acqlist */ 6621 LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain); 6622 } 6623 6624 seq = newacq->seq; 6625 mutex_exit(&key_misc.lock); 6626 #else 6627 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 6628 #endif 6629 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0, mflag); 6630 if (!m) { 6631 error = ENOBUFS; 6632 goto fail; 6633 } 6634 result = m; 6635 6636 /* set sadb_address for saidx's. */ 6637 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK, 6638 IPSEC_ULPROTO_ANY, mflag); 6639 if (!m) { 6640 error = ENOBUFS; 6641 goto fail; 6642 } 6643 m_cat(result, m); 6644 6645 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK, 6646 IPSEC_ULPROTO_ANY, mflag); 6647 if (!m) { 6648 error = ENOBUFS; 6649 goto fail; 6650 } 6651 m_cat(result, m); 6652 6653 /* XXX proxy address (optional) */ 6654 6655 /* set sadb_x_policy */ 6656 if (sp) { 6657 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id, 6658 mflag); 6659 if (!m) { 6660 error = ENOBUFS; 6661 goto fail; 6662 } 6663 m_cat(result, m); 6664 } 6665 6666 /* XXX identity (optional) */ 6667 #if 0 6668 if (idexttype && fqdn) { 6669 /* create identity extension (FQDN) */ 6670 struct sadb_ident *id; 6671 int fqdnlen; 6672 6673 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6674 id = (struct sadb_ident *)p; 6675 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6676 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6677 id->sadb_ident_exttype = idexttype; 6678 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6679 memcpy(id + 1, fqdn, fqdnlen); 6680 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6681 } 6682 6683 if (idexttype) { 6684 /* create identity extension (USERFQDN) */ 6685 struct sadb_ident *id; 6686 int userfqdnlen; 6687 6688 if (userfqdn) { 6689 /* +1 for terminating-NUL */ 6690 userfqdnlen = strlen(userfqdn) + 1; 6691 } else 6692 userfqdnlen = 0; 6693 id = (struct sadb_ident *)p; 6694 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6695 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6696 id->sadb_ident_exttype = idexttype; 6697 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6698 /* XXX is it correct? */ 6699 if (curlwp) 6700 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred); 6701 if (userfqdn && userfqdnlen) 6702 memcpy(id + 1, userfqdn, userfqdnlen); 6703 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6704 } 6705 #endif 6706 6707 /* XXX sensitivity (optional) */ 6708 6709 /* create proposal/combination extension */ 6710 m = key_getprop(saidx, mflag); 6711 #if 0 6712 /* 6713 * spec conformant: always attach proposal/combination extension, 6714 * the problem is that we have no way to attach it for ipcomp, 6715 * due to the way sadb_comb is declared in RFC2367. 6716 */ 6717 if (!m) { 6718 error = ENOBUFS; 6719 goto fail; 6720 } 6721 m_cat(result, m); 6722 #else 6723 /* 6724 * outside of spec; make proposal/combination extension optional. 6725 */ 6726 if (m) 6727 m_cat(result, m); 6728 #endif 6729 6730 KASSERT(result->m_flags & M_PKTHDR); 6731 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 6732 6733 result->m_pkthdr.len = 0; 6734 for (m = result; m; m = m->m_next) 6735 result->m_pkthdr.len += m->m_len; 6736 6737 mtod(result, struct sadb_msg *)->sadb_msg_len = 6738 PFKEY_UNIT64(result->m_pkthdr.len); 6739 6740 /* 6741 * Called from key_api_acquire that must come from userland, so 6742 * we can call key_sendup_mbuf immediately. 6743 */ 6744 if (mflag == M_WAITOK) 6745 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6746 /* 6747 * XXX we cannot call key_sendup_mbuf directly here because 6748 * it can cause a deadlock: 6749 * - We have a reference to an SP (and an SA) here 6750 * - key_sendup_mbuf will try to take key_so_mtx 6751 * - Some other thread may try to localcount_drain to the SP with 6752 * holding key_so_mtx in say key_api_spdflush 6753 * - In this case localcount_drain never return because key_sendup_mbuf 6754 * that has stuck on key_so_mtx never release a reference to the SP 6755 * 6756 * So defer key_sendup_mbuf to the timer. 6757 */ 6758 return key_acquire_sendup_mbuf_later(result); 6759 6760 fail: 6761 if (result) 6762 m_freem(result); 6763 return error; 6764 } 6765 6766 static struct mbuf *key_acquire_mbuf_head = NULL; 6767 static unsigned key_acquire_mbuf_count = 0; 6768 #define KEY_ACQUIRE_MBUF_MAX 10 6769 6770 static void 6771 key_acquire_sendup_pending_mbuf(void) 6772 { 6773 struct mbuf *m, *prev; 6774 int error; 6775 6776 again: 6777 prev = NULL; 6778 mutex_enter(&key_misc.lock); 6779 m = key_acquire_mbuf_head; 6780 /* Get an earliest mbuf (one at the tail of the list) */ 6781 while (m != NULL) { 6782 if (m->m_nextpkt == NULL) { 6783 if (prev != NULL) 6784 prev->m_nextpkt = NULL; 6785 if (m == key_acquire_mbuf_head) 6786 key_acquire_mbuf_head = NULL; 6787 key_acquire_mbuf_count--; 6788 break; 6789 } 6790 prev = m; 6791 m = m->m_nextpkt; 6792 } 6793 mutex_exit(&key_misc.lock); 6794 6795 if (m == NULL) 6796 return; 6797 6798 m->m_nextpkt = NULL; 6799 error = key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 6800 if (error != 0) 6801 IPSECLOG(LOG_WARNING, "key_sendup_mbuf failed (error=%d)\n", 6802 error); 6803 6804 if (prev != NULL) 6805 goto again; 6806 } 6807 6808 static int 6809 key_acquire_sendup_mbuf_later(struct mbuf *m) 6810 { 6811 6812 mutex_enter(&key_misc.lock); 6813 /* Avoid queuing too much mbufs */ 6814 if (key_acquire_mbuf_count >= KEY_ACQUIRE_MBUF_MAX) { 6815 mutex_exit(&key_misc.lock); 6816 m_freem(m); 6817 return ENOBUFS; /* XXX */ 6818 } 6819 /* Enqueue mbuf at the head of the list */ 6820 m->m_nextpkt = key_acquire_mbuf_head; 6821 key_acquire_mbuf_head = m; 6822 key_acquire_mbuf_count++; 6823 mutex_exit(&key_misc.lock); 6824 6825 /* Kick the timer */ 6826 key_timehandler(NULL); 6827 6828 return 0; 6829 } 6830 6831 #ifndef IPSEC_NONBLOCK_ACQUIRE 6832 static struct secacq * 6833 key_newacq(const struct secasindex *saidx) 6834 { 6835 struct secacq *newacq; 6836 6837 /* get new entry */ 6838 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP); 6839 if (newacq == NULL) { 6840 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 6841 return NULL; 6842 } 6843 6844 /* copy secindex */ 6845 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx)); 6846 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); 6847 newacq->created = time_uptime; 6848 newacq->count = 0; 6849 6850 return newacq; 6851 } 6852 6853 static struct secacq * 6854 key_getacq(const struct secasindex *saidx) 6855 { 6856 struct secacq *acq; 6857 6858 KASSERT(mutex_owned(&key_misc.lock)); 6859 6860 LIST_FOREACH(acq, &key_misc.acqlist, chain) { 6861 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY)) 6862 return acq; 6863 } 6864 6865 return NULL; 6866 } 6867 6868 static struct secacq * 6869 key_getacqbyseq(u_int32_t seq) 6870 { 6871 struct secacq *acq; 6872 6873 KASSERT(mutex_owned(&key_misc.lock)); 6874 6875 LIST_FOREACH(acq, &key_misc.acqlist, chain) { 6876 if (acq->seq == seq) 6877 return acq; 6878 } 6879 6880 return NULL; 6881 } 6882 #endif 6883 6884 #ifdef notyet 6885 static struct secspacq * 6886 key_newspacq(const struct secpolicyindex *spidx) 6887 { 6888 struct secspacq *acq; 6889 6890 /* get new entry */ 6891 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP); 6892 if (acq == NULL) { 6893 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 6894 return NULL; 6895 } 6896 6897 /* copy secindex */ 6898 memcpy(&acq->spidx, spidx, sizeof(acq->spidx)); 6899 acq->created = time_uptime; 6900 acq->count = 0; 6901 6902 return acq; 6903 } 6904 6905 static struct secspacq * 6906 key_getspacq(const struct secpolicyindex *spidx) 6907 { 6908 struct secspacq *acq; 6909 6910 LIST_FOREACH(acq, &key_misc.spacqlist, chain) { 6911 if (key_spidx_match_exactly(spidx, &acq->spidx)) 6912 return acq; 6913 } 6914 6915 return NULL; 6916 } 6917 #endif /* notyet */ 6918 6919 /* 6920 * SADB_ACQUIRE processing, 6921 * in first situation, is receiving 6922 * <base> 6923 * from the ikmpd, and clear sequence of its secasvar entry. 6924 * 6925 * In second situation, is receiving 6926 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6927 * from a user land process, and return 6928 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6929 * to the socket. 6930 * 6931 * m will always be freed. 6932 */ 6933 static int 6934 key_api_acquire(struct socket *so, struct mbuf *m, 6935 const struct sadb_msghdr *mhp) 6936 { 6937 const struct sockaddr *src, *dst; 6938 struct secasindex saidx; 6939 u_int16_t proto; 6940 int error; 6941 6942 /* 6943 * Error message from KMd. 6944 * We assume that if error was occurred in IKEd, the length of PFKEY 6945 * message is equal to the size of sadb_msg structure. 6946 * We do not raise error even if error occurred in this function. 6947 */ 6948 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6949 #ifndef IPSEC_NONBLOCK_ACQUIRE 6950 struct secacq *acq; 6951 6952 /* check sequence number */ 6953 if (mhp->msg->sadb_msg_seq == 0) { 6954 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n"); 6955 m_freem(m); 6956 return 0; 6957 } 6958 6959 mutex_enter(&key_misc.lock); 6960 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); 6961 if (acq == NULL) { 6962 mutex_exit(&key_misc.lock); 6963 /* 6964 * the specified larval SA is already gone, or we got 6965 * a bogus sequence number. we can silently ignore it. 6966 */ 6967 m_freem(m); 6968 return 0; 6969 } 6970 6971 /* reset acq counter in order to deletion by timehander. */ 6972 acq->created = time_uptime; 6973 acq->count = 0; 6974 mutex_exit(&key_misc.lock); 6975 #endif 6976 m_freem(m); 6977 return 0; 6978 } 6979 6980 /* 6981 * This message is from user land. 6982 */ 6983 6984 /* map satype to proto */ 6985 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 6986 if (proto == 0) { 6987 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6988 return key_senderror(so, m, EINVAL); 6989 } 6990 6991 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6992 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6993 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6994 /* error */ 6995 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6996 return key_senderror(so, m, EINVAL); 6997 } 6998 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6999 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 7000 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 7001 /* error */ 7002 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 7003 return key_senderror(so, m, EINVAL); 7004 } 7005 7006 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 7007 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 7008 7009 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 7010 if (error != 0) 7011 return key_senderror(so, m, EINVAL); 7012 7013 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 7014 if (error != 0) 7015 return key_senderror(so, m, EINVAL); 7016 7017 /* get a SA index */ 7018 { 7019 struct secashead *sah; 7020 int s = pserialize_read_enter(); 7021 7022 sah = key_getsah(&saidx, CMP_MODE_REQID); 7023 if (sah != NULL) { 7024 pserialize_read_exit(s); 7025 IPSECLOG(LOG_DEBUG, "a SA exists already.\n"); 7026 return key_senderror(so, m, EEXIST); 7027 } 7028 pserialize_read_exit(s); 7029 } 7030 7031 error = key_acquire(&saidx, NULL, M_WAITOK); 7032 if (error != 0) { 7033 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", 7034 error); 7035 return key_senderror(so, m, error); 7036 } 7037 7038 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 7039 } 7040 7041 /* 7042 * SADB_REGISTER processing. 7043 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 7044 * receive 7045 * <base> 7046 * from the ikmpd, and register a socket to send PF_KEY messages, 7047 * and send 7048 * <base, supported> 7049 * to KMD by PF_KEY. 7050 * If socket is detached, must free from regnode. 7051 * 7052 * m will always be freed. 7053 */ 7054 static int 7055 key_api_register(struct socket *so, struct mbuf *m, 7056 const struct sadb_msghdr *mhp) 7057 { 7058 struct secreg *reg, *newreg = 0; 7059 7060 /* check for invalid register message */ 7061 if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist)) 7062 return key_senderror(so, m, EINVAL); 7063 7064 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 7065 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 7066 goto setmsg; 7067 7068 /* Allocate regnode in advance, out of mutex */ 7069 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP); 7070 7071 /* check whether existing or not */ 7072 mutex_enter(&key_misc.lock); 7073 LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) { 7074 if (reg->so == so) { 7075 IPSECLOG(LOG_DEBUG, "socket exists already.\n"); 7076 mutex_exit(&key_misc.lock); 7077 kmem_free(newreg, sizeof(*newreg)); 7078 return key_senderror(so, m, EEXIST); 7079 } 7080 } 7081 7082 newreg->so = so; 7083 ((struct keycb *)sotorawcb(so))->kp_registered++; 7084 7085 /* add regnode to key_misc.reglist. */ 7086 LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain); 7087 mutex_exit(&key_misc.lock); 7088 7089 setmsg: 7090 { 7091 struct mbuf *n; 7092 struct sadb_supported *sup; 7093 u_int len, alen, elen; 7094 int off; 7095 int i; 7096 struct sadb_alg *alg; 7097 7098 /* create new sadb_msg to reply. */ 7099 alen = 0; 7100 for (i = 1; i <= SADB_AALG_MAX; i++) { 7101 if (ah_algorithm_lookup(i)) 7102 alen += sizeof(struct sadb_alg); 7103 } 7104 if (alen) 7105 alen += sizeof(struct sadb_supported); 7106 elen = 0; 7107 for (i = 1; i <= SADB_EALG_MAX; i++) { 7108 if (esp_algorithm_lookup(i)) 7109 elen += sizeof(struct sadb_alg); 7110 } 7111 if (elen) 7112 elen += sizeof(struct sadb_supported); 7113 7114 len = sizeof(struct sadb_msg) + alen + elen; 7115 7116 if (len > MCLBYTES) 7117 return key_senderror(so, m, ENOBUFS); 7118 7119 n = key_alloc_mbuf_simple(len, M_WAITOK); 7120 n->m_pkthdr.len = n->m_len = len; 7121 n->m_next = NULL; 7122 off = 0; 7123 7124 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 7125 key_fill_replymsg(n, 0); 7126 7127 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 7128 7129 /* for authentication algorithm */ 7130 if (alen) { 7131 sup = (struct sadb_supported *)(mtod(n, char *) + off); 7132 sup->sadb_supported_len = PFKEY_UNIT64(alen); 7133 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 7134 off += PFKEY_ALIGN8(sizeof(*sup)); 7135 7136 for (i = 1; i <= SADB_AALG_MAX; i++) { 7137 const struct auth_hash *aalgo; 7138 u_int16_t minkeysize, maxkeysize; 7139 7140 aalgo = ah_algorithm_lookup(i); 7141 if (!aalgo) 7142 continue; 7143 alg = (struct sadb_alg *)(mtod(n, char *) + off); 7144 alg->sadb_alg_id = i; 7145 alg->sadb_alg_ivlen = 0; 7146 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 7147 alg->sadb_alg_minbits = _BITS(minkeysize); 7148 alg->sadb_alg_maxbits = _BITS(maxkeysize); 7149 off += PFKEY_ALIGN8(sizeof(*alg)); 7150 } 7151 } 7152 7153 /* for encryption algorithm */ 7154 if (elen) { 7155 sup = (struct sadb_supported *)(mtod(n, char *) + off); 7156 sup->sadb_supported_len = PFKEY_UNIT64(elen); 7157 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 7158 off += PFKEY_ALIGN8(sizeof(*sup)); 7159 7160 for (i = 1; i <= SADB_EALG_MAX; i++) { 7161 const struct enc_xform *ealgo; 7162 7163 ealgo = esp_algorithm_lookup(i); 7164 if (!ealgo) 7165 continue; 7166 alg = (struct sadb_alg *)(mtod(n, char *) + off); 7167 alg->sadb_alg_id = i; 7168 alg->sadb_alg_ivlen = ealgo->blocksize; 7169 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 7170 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 7171 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 7172 } 7173 } 7174 7175 KASSERTMSG(off == len, "length inconsistency"); 7176 7177 m_freem(m); 7178 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 7179 } 7180 } 7181 7182 /* 7183 * free secreg entry registered. 7184 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 7185 */ 7186 void 7187 key_freereg(struct socket *so) 7188 { 7189 struct secreg *reg; 7190 int i; 7191 7192 KASSERT(!cpu_softintr_p()); 7193 KASSERT(so != NULL); 7194 7195 /* 7196 * check whether existing or not. 7197 * check all type of SA, because there is a potential that 7198 * one socket is registered to multiple type of SA. 7199 */ 7200 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7201 mutex_enter(&key_misc.lock); 7202 LIST_FOREACH(reg, &key_misc.reglist[i], chain) { 7203 if (reg->so == so) { 7204 LIST_REMOVE(reg, chain); 7205 break; 7206 } 7207 } 7208 mutex_exit(&key_misc.lock); 7209 if (reg != NULL) 7210 kmem_free(reg, sizeof(*reg)); 7211 } 7212 7213 return; 7214 } 7215 7216 /* 7217 * SADB_EXPIRE processing 7218 * send 7219 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 7220 * to KMD by PF_KEY. 7221 * NOTE: We send only soft lifetime extension. 7222 * 7223 * OUT: 0 : succeed 7224 * others : error number 7225 */ 7226 static int 7227 key_expire(struct secasvar *sav) 7228 { 7229 int s; 7230 int satype; 7231 struct mbuf *result = NULL, *m; 7232 int len; 7233 int error = -1; 7234 struct sadb_lifetime *lt; 7235 lifetime_counters_t sum = {0}; 7236 7237 /* XXX: Why do we lock ? */ 7238 s = splsoftnet(); /*called from softclock()*/ 7239 7240 KASSERT(sav != NULL); 7241 7242 satype = key_proto2satype(sav->sah->saidx.proto); 7243 KASSERTMSG(satype != 0, "invalid proto is passed"); 7244 7245 /* set msg header */ 7246 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav), 7247 M_WAITOK); 7248 result = m; 7249 7250 /* create SA extension */ 7251 m = key_setsadbsa(sav); 7252 m_cat(result, m); 7253 7254 /* create SA extension */ 7255 m = key_setsadbxsa2(sav->sah->saidx.mode, 7256 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid); 7257 m_cat(result, m); 7258 7259 /* create lifetime extension (current and soft) */ 7260 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 7261 m = key_alloc_mbuf(len, M_WAITOK); 7262 KASSERT(m->m_next == NULL); 7263 7264 memset(mtod(m, void *), 0, len); 7265 lt = mtod(m, struct sadb_lifetime *); 7266 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7267 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 7268 percpu_foreach(sav->lft_c_counters_percpu, 7269 key_sum_lifetime_counters, sum); 7270 lt->sadb_lifetime_allocations = sum[LIFETIME_COUNTER_ALLOCATIONS]; 7271 lt->sadb_lifetime_bytes = sum[LIFETIME_COUNTER_BYTES]; 7272 lt->sadb_lifetime_addtime = 7273 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime); 7274 lt->sadb_lifetime_usetime = 7275 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime); 7276 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 7277 memcpy(lt, sav->lft_s, sizeof(*lt)); 7278 m_cat(result, m); 7279 7280 /* set sadb_address for source */ 7281 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, 7282 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 7283 m_cat(result, m); 7284 7285 /* set sadb_address for destination */ 7286 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa, 7287 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 7288 m_cat(result, m); 7289 7290 if ((result->m_flags & M_PKTHDR) == 0) { 7291 error = EINVAL; 7292 goto fail; 7293 } 7294 7295 if (result->m_len < sizeof(struct sadb_msg)) { 7296 result = m_pullup(result, sizeof(struct sadb_msg)); 7297 if (result == NULL) { 7298 error = ENOBUFS; 7299 goto fail; 7300 } 7301 } 7302 7303 result->m_pkthdr.len = 0; 7304 for (m = result; m; m = m->m_next) 7305 result->m_pkthdr.len += m->m_len; 7306 7307 mtod(result, struct sadb_msg *)->sadb_msg_len = 7308 PFKEY_UNIT64(result->m_pkthdr.len); 7309 7310 splx(s); 7311 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7312 7313 fail: 7314 if (result) 7315 m_freem(result); 7316 splx(s); 7317 return error; 7318 } 7319 7320 /* 7321 * SADB_FLUSH processing 7322 * receive 7323 * <base> 7324 * from the ikmpd, and free all entries in secastree. 7325 * and send, 7326 * <base> 7327 * to the ikmpd. 7328 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7329 * 7330 * m will always be freed. 7331 */ 7332 static int 7333 key_api_flush(struct socket *so, struct mbuf *m, 7334 const struct sadb_msghdr *mhp) 7335 { 7336 struct sadb_msg *newmsg; 7337 struct secashead *sah; 7338 struct secasvar *sav; 7339 u_int16_t proto; 7340 u_int8_t state; 7341 int s; 7342 7343 /* map satype to proto */ 7344 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 7345 if (proto == 0) { 7346 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7347 return key_senderror(so, m, EINVAL); 7348 } 7349 7350 /* no SATYPE specified, i.e. flushing all SA. */ 7351 s = pserialize_read_enter(); 7352 SAHLIST_READER_FOREACH(sah) { 7353 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && 7354 proto != sah->saidx.proto) 7355 continue; 7356 7357 key_sah_ref(sah); 7358 pserialize_read_exit(s); 7359 7360 SASTATE_ALIVE_FOREACH(state) { 7361 restart: 7362 mutex_enter(&key_sad.lock); 7363 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7364 sav->state = SADB_SASTATE_DEAD; 7365 key_unlink_sav(sav); 7366 mutex_exit(&key_sad.lock); 7367 key_destroy_sav(sav); 7368 goto restart; 7369 } 7370 mutex_exit(&key_sad.lock); 7371 } 7372 7373 s = pserialize_read_enter(); 7374 sah->state = SADB_SASTATE_DEAD; 7375 key_sah_unref(sah); 7376 } 7377 pserialize_read_exit(s); 7378 7379 if (m->m_len < sizeof(struct sadb_msg) || 7380 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7381 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 7382 return key_senderror(so, m, ENOBUFS); 7383 } 7384 7385 if (m->m_next) 7386 m_freem(m->m_next); 7387 m->m_next = NULL; 7388 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7389 newmsg = mtod(m, struct sadb_msg *); 7390 newmsg->sadb_msg_errno = 0; 7391 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7392 7393 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7394 } 7395 7396 7397 static struct mbuf * 7398 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid) 7399 { 7400 struct secashead *sah; 7401 struct secasvar *sav; 7402 u_int16_t proto; 7403 u_int8_t satype; 7404 u_int8_t state; 7405 int cnt; 7406 struct mbuf *m, *n, *prev; 7407 7408 KASSERT(mutex_owned(&key_sad.lock)); 7409 7410 *lenp = 0; 7411 7412 /* map satype to proto */ 7413 proto = key_satype2proto(req_satype); 7414 if (proto == 0) { 7415 *errorp = EINVAL; 7416 return (NULL); 7417 } 7418 7419 /* count sav entries to be sent to userland. */ 7420 cnt = 0; 7421 SAHLIST_WRITER_FOREACH(sah) { 7422 if (req_satype != SADB_SATYPE_UNSPEC && 7423 proto != sah->saidx.proto) 7424 continue; 7425 7426 SASTATE_ANY_FOREACH(state) { 7427 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7428 cnt++; 7429 } 7430 } 7431 } 7432 7433 if (cnt == 0) { 7434 *errorp = ENOENT; 7435 return (NULL); 7436 } 7437 7438 /* send this to the userland, one at a time. */ 7439 m = NULL; 7440 prev = m; 7441 SAHLIST_WRITER_FOREACH(sah) { 7442 if (req_satype != SADB_SATYPE_UNSPEC && 7443 proto != sah->saidx.proto) 7444 continue; 7445 7446 /* map proto to satype */ 7447 satype = key_proto2satype(sah->saidx.proto); 7448 if (satype == 0) { 7449 m_freem(m); 7450 *errorp = EINVAL; 7451 return (NULL); 7452 } 7453 7454 SASTATE_ANY_FOREACH(state) { 7455 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7456 n = key_setdumpsa(sav, SADB_DUMP, satype, 7457 --cnt, pid); 7458 if (!m) 7459 m = n; 7460 else 7461 prev->m_nextpkt = n; 7462 prev = n; 7463 } 7464 } 7465 } 7466 7467 if (!m) { 7468 *errorp = EINVAL; 7469 return (NULL); 7470 } 7471 7472 if ((m->m_flags & M_PKTHDR) != 0) { 7473 m->m_pkthdr.len = 0; 7474 for (n = m; n; n = n->m_next) 7475 m->m_pkthdr.len += n->m_len; 7476 } 7477 7478 *errorp = 0; 7479 return (m); 7480 } 7481 7482 /* 7483 * SADB_DUMP processing 7484 * dump all entries including status of DEAD in SAD. 7485 * receive 7486 * <base> 7487 * from the ikmpd, and dump all secasvar leaves 7488 * and send, 7489 * <base> ..... 7490 * to the ikmpd. 7491 * 7492 * m will always be freed. 7493 */ 7494 static int 7495 key_api_dump(struct socket *so, struct mbuf *m0, 7496 const struct sadb_msghdr *mhp) 7497 { 7498 u_int16_t proto; 7499 u_int8_t satype; 7500 struct mbuf *n; 7501 int error, len, ok; 7502 7503 /* map satype to proto */ 7504 satype = mhp->msg->sadb_msg_satype; 7505 proto = key_satype2proto(satype); 7506 if (proto == 0) { 7507 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7508 return key_senderror(so, m0, EINVAL); 7509 } 7510 7511 /* 7512 * If the requestor has insufficient socket-buffer space 7513 * for the entire chain, nobody gets any response to the DUMP. 7514 * XXX For now, only the requestor ever gets anything. 7515 * Moreover, if the requestor has any space at all, they receive 7516 * the entire chain, otherwise the request is refused with ENOBUFS. 7517 */ 7518 if (sbspace(&so->so_rcv) <= 0) { 7519 return key_senderror(so, m0, ENOBUFS); 7520 } 7521 7522 mutex_enter(&key_sad.lock); 7523 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid); 7524 mutex_exit(&key_sad.lock); 7525 7526 if (n == NULL) { 7527 return key_senderror(so, m0, ENOENT); 7528 } 7529 { 7530 uint64_t *ps = PFKEY_STAT_GETREF(); 7531 ps[PFKEY_STAT_IN_TOTAL]++; 7532 ps[PFKEY_STAT_IN_BYTES] += len; 7533 PFKEY_STAT_PUTREF(); 7534 } 7535 7536 /* 7537 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 7538 * The requestor receives either the entire chain, or an 7539 * error message with ENOBUFS. 7540 * 7541 * sbappendaddrchain() takes the chain of entries, one 7542 * packet-record per SPD entry, prepends the key_src sockaddr 7543 * to each packet-record, links the sockaddr mbufs into a new 7544 * list of records, then appends the entire resulting 7545 * list to the requesting socket. 7546 */ 7547 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, 7548 SB_PRIO_ONESHOT_OVERFLOW); 7549 7550 if (!ok) { 7551 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 7552 m_freem(n); 7553 return key_senderror(so, m0, ENOBUFS); 7554 } 7555 7556 m_freem(m0); 7557 return 0; 7558 } 7559 7560 /* 7561 * SADB_X_PROMISC processing 7562 * 7563 * m will always be freed. 7564 */ 7565 static int 7566 key_api_promisc(struct socket *so, struct mbuf *m, 7567 const struct sadb_msghdr *mhp) 7568 { 7569 int olen; 7570 7571 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7572 7573 if (olen < sizeof(struct sadb_msg)) { 7574 #if 1 7575 return key_senderror(so, m, EINVAL); 7576 #else 7577 m_freem(m); 7578 return 0; 7579 #endif 7580 } else if (olen == sizeof(struct sadb_msg)) { 7581 /* enable/disable promisc mode */ 7582 struct keycb *kp = (struct keycb *)sotorawcb(so); 7583 if (kp == NULL) 7584 return key_senderror(so, m, EINVAL); 7585 mhp->msg->sadb_msg_errno = 0; 7586 switch (mhp->msg->sadb_msg_satype) { 7587 case 0: 7588 case 1: 7589 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7590 break; 7591 default: 7592 return key_senderror(so, m, EINVAL); 7593 } 7594 7595 /* send the original message back to everyone */ 7596 mhp->msg->sadb_msg_errno = 0; 7597 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7598 } else { 7599 /* send packet as is */ 7600 7601 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7602 7603 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7604 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7605 } 7606 } 7607 7608 static int (*key_api_typesw[]) (struct socket *, struct mbuf *, 7609 const struct sadb_msghdr *) = { 7610 NULL, /* SADB_RESERVED */ 7611 key_api_getspi, /* SADB_GETSPI */ 7612 key_api_update, /* SADB_UPDATE */ 7613 key_api_add, /* SADB_ADD */ 7614 key_api_delete, /* SADB_DELETE */ 7615 key_api_get, /* SADB_GET */ 7616 key_api_acquire, /* SADB_ACQUIRE */ 7617 key_api_register, /* SADB_REGISTER */ 7618 NULL, /* SADB_EXPIRE */ 7619 key_api_flush, /* SADB_FLUSH */ 7620 key_api_dump, /* SADB_DUMP */ 7621 key_api_promisc, /* SADB_X_PROMISC */ 7622 NULL, /* SADB_X_PCHANGE */ 7623 key_api_spdadd, /* SADB_X_SPDUPDATE */ 7624 key_api_spdadd, /* SADB_X_SPDADD */ 7625 key_api_spddelete, /* SADB_X_SPDDELETE */ 7626 key_api_spdget, /* SADB_X_SPDGET */ 7627 NULL, /* SADB_X_SPDACQUIRE */ 7628 key_api_spddump, /* SADB_X_SPDDUMP */ 7629 key_api_spdflush, /* SADB_X_SPDFLUSH */ 7630 key_api_spdadd, /* SADB_X_SPDSETIDX */ 7631 NULL, /* SADB_X_SPDEXPIRE */ 7632 key_api_spddelete2, /* SADB_X_SPDDELETE2 */ 7633 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */ 7634 }; 7635 7636 /* 7637 * parse sadb_msg buffer to process PFKEYv2, 7638 * and create a data to response if needed. 7639 * I think to be dealed with mbuf directly. 7640 * IN: 7641 * msgp : pointer to pointer to a received buffer pulluped. 7642 * This is rewrited to response. 7643 * so : pointer to socket. 7644 * OUT: 7645 * length for buffer to send to user process. 7646 */ 7647 int 7648 key_parse(struct mbuf *m, struct socket *so) 7649 { 7650 struct sadb_msg *msg; 7651 struct sadb_msghdr mh; 7652 u_int orglen; 7653 int error; 7654 7655 KASSERT(m != NULL); 7656 KASSERT(so != NULL); 7657 7658 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7659 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) { 7660 kdebug_sadb("passed sadb_msg", msg); 7661 } 7662 #endif 7663 7664 if (m->m_len < sizeof(struct sadb_msg)) { 7665 m = m_pullup(m, sizeof(struct sadb_msg)); 7666 if (!m) 7667 return ENOBUFS; 7668 } 7669 msg = mtod(m, struct sadb_msg *); 7670 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7671 7672 if ((m->m_flags & M_PKTHDR) == 0 || 7673 m->m_pkthdr.len != orglen) { 7674 IPSECLOG(LOG_DEBUG, "invalid message length.\n"); 7675 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7676 error = EINVAL; 7677 goto senderror; 7678 } 7679 7680 if (msg->sadb_msg_version != PF_KEY_V2) { 7681 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n", 7682 msg->sadb_msg_version); 7683 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER); 7684 error = EINVAL; 7685 goto senderror; 7686 } 7687 7688 if (msg->sadb_msg_type > SADB_MAX) { 7689 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", 7690 msg->sadb_msg_type); 7691 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 7692 error = EINVAL; 7693 goto senderror; 7694 } 7695 7696 /* for old-fashioned code - should be nuked */ 7697 if (m->m_pkthdr.len > MCLBYTES) { 7698 m_freem(m); 7699 return ENOBUFS; 7700 } 7701 if (m->m_next) { 7702 struct mbuf *n; 7703 7704 n = key_alloc_mbuf_simple(m->m_pkthdr.len, M_WAITOK); 7705 7706 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *)); 7707 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7708 n->m_next = NULL; 7709 m_freem(m); 7710 m = n; 7711 } 7712 7713 /* align the mbuf chain so that extensions are in contiguous region. */ 7714 error = key_align(m, &mh); 7715 if (error) 7716 return error; 7717 7718 if (m->m_next) { /*XXX*/ 7719 m_freem(m); 7720 return ENOBUFS; 7721 } 7722 7723 msg = mh.msg; 7724 7725 /* check SA type */ 7726 switch (msg->sadb_msg_satype) { 7727 case SADB_SATYPE_UNSPEC: 7728 switch (msg->sadb_msg_type) { 7729 case SADB_GETSPI: 7730 case SADB_UPDATE: 7731 case SADB_ADD: 7732 case SADB_DELETE: 7733 case SADB_GET: 7734 case SADB_ACQUIRE: 7735 case SADB_EXPIRE: 7736 IPSECLOG(LOG_DEBUG, 7737 "must specify satype when msg type=%u.\n", 7738 msg->sadb_msg_type); 7739 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7740 error = EINVAL; 7741 goto senderror; 7742 } 7743 break; 7744 case SADB_SATYPE_AH: 7745 case SADB_SATYPE_ESP: 7746 case SADB_X_SATYPE_IPCOMP: 7747 case SADB_X_SATYPE_TCPSIGNATURE: 7748 switch (msg->sadb_msg_type) { 7749 case SADB_X_SPDADD: 7750 case SADB_X_SPDDELETE: 7751 case SADB_X_SPDGET: 7752 case SADB_X_SPDDUMP: 7753 case SADB_X_SPDFLUSH: 7754 case SADB_X_SPDSETIDX: 7755 case SADB_X_SPDUPDATE: 7756 case SADB_X_SPDDELETE2: 7757 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n", 7758 msg->sadb_msg_type); 7759 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7760 error = EINVAL; 7761 goto senderror; 7762 } 7763 break; 7764 case SADB_SATYPE_RSVP: 7765 case SADB_SATYPE_OSPFV2: 7766 case SADB_SATYPE_RIPV2: 7767 case SADB_SATYPE_MIP: 7768 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n", 7769 msg->sadb_msg_satype); 7770 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7771 error = EOPNOTSUPP; 7772 goto senderror; 7773 case 1: /* XXX: What does it do? */ 7774 if (msg->sadb_msg_type == SADB_X_PROMISC) 7775 break; 7776 /*FALLTHROUGH*/ 7777 default: 7778 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", 7779 msg->sadb_msg_satype); 7780 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7781 error = EINVAL; 7782 goto senderror; 7783 } 7784 7785 /* check field of upper layer protocol and address family */ 7786 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL && 7787 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7788 const struct sadb_address *src0, *dst0; 7789 const struct sockaddr *sa0, *da0; 7790 u_int plen; 7791 7792 src0 = mh.ext[SADB_EXT_ADDRESS_SRC]; 7793 dst0 = mh.ext[SADB_EXT_ADDRESS_DST]; 7794 sa0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_SRC); 7795 da0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_DST); 7796 7797 /* check upper layer protocol */ 7798 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7799 IPSECLOG(LOG_DEBUG, 7800 "upper layer protocol mismatched.\n"); 7801 goto invaddr; 7802 } 7803 7804 /* check family */ 7805 if (sa0->sa_family != da0->sa_family) { 7806 IPSECLOG(LOG_DEBUG, "address family mismatched.\n"); 7807 goto invaddr; 7808 } 7809 if (sa0->sa_len != da0->sa_len) { 7810 IPSECLOG(LOG_DEBUG, 7811 "address struct size mismatched.\n"); 7812 goto invaddr; 7813 } 7814 7815 switch (sa0->sa_family) { 7816 case AF_INET: 7817 if (sa0->sa_len != sizeof(struct sockaddr_in)) 7818 goto invaddr; 7819 break; 7820 case AF_INET6: 7821 if (sa0->sa_len != sizeof(struct sockaddr_in6)) 7822 goto invaddr; 7823 break; 7824 default: 7825 IPSECLOG(LOG_DEBUG, "unsupported address family.\n"); 7826 error = EAFNOSUPPORT; 7827 goto senderror; 7828 } 7829 7830 switch (sa0->sa_family) { 7831 case AF_INET: 7832 plen = sizeof(struct in_addr) << 3; 7833 break; 7834 case AF_INET6: 7835 plen = sizeof(struct in6_addr) << 3; 7836 break; 7837 default: 7838 plen = 0; /*fool gcc*/ 7839 break; 7840 } 7841 7842 /* check max prefix length */ 7843 if (src0->sadb_address_prefixlen > plen || 7844 dst0->sadb_address_prefixlen > plen) { 7845 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n"); 7846 goto invaddr; 7847 } 7848 7849 /* 7850 * prefixlen == 0 is valid because there can be a case when 7851 * all addresses are matched. 7852 */ 7853 } 7854 7855 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) || 7856 key_api_typesw[msg->sadb_msg_type] == NULL) { 7857 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 7858 error = EINVAL; 7859 goto senderror; 7860 } 7861 7862 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh); 7863 7864 invaddr: 7865 error = EINVAL; 7866 senderror: 7867 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 7868 return key_senderror(so, m, error); 7869 } 7870 7871 static int 7872 key_senderror(struct socket *so, struct mbuf *m, int code) 7873 { 7874 struct sadb_msg *msg; 7875 7876 KASSERT(m->m_len >= sizeof(struct sadb_msg)); 7877 7878 if (so == NULL) { 7879 /* 7880 * This means the request comes from kernel. 7881 * As the request comes from kernel, it is unnecessary to 7882 * send message to userland. Just return errcode directly. 7883 */ 7884 m_freem(m); 7885 return code; 7886 } 7887 7888 msg = mtod(m, struct sadb_msg *); 7889 msg->sadb_msg_errno = code; 7890 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7891 } 7892 7893 /* 7894 * set the pointer to each header into message buffer. 7895 * m will be freed on error. 7896 * XXX larger-than-MCLBYTES extension? 7897 */ 7898 static int 7899 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 7900 { 7901 struct mbuf *n; 7902 struct sadb_ext *ext; 7903 size_t off, end; 7904 int extlen; 7905 int toff; 7906 7907 KASSERT(m != NULL); 7908 KASSERT(mhp != NULL); 7909 KASSERT(m->m_len >= sizeof(struct sadb_msg)); 7910 7911 /* initialize */ 7912 memset(mhp, 0, sizeof(*mhp)); 7913 7914 mhp->msg = mtod(m, struct sadb_msg *); 7915 mhp->ext[0] = mhp->msg; /*XXX backward compat */ 7916 7917 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7918 extlen = end; /*just in case extlen is not updated*/ 7919 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7920 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7921 if (!n) { 7922 /* m is already freed */ 7923 return ENOBUFS; 7924 } 7925 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 7926 7927 /* set pointer */ 7928 switch (ext->sadb_ext_type) { 7929 case SADB_EXT_SA: 7930 case SADB_EXT_ADDRESS_SRC: 7931 case SADB_EXT_ADDRESS_DST: 7932 case SADB_EXT_ADDRESS_PROXY: 7933 case SADB_EXT_LIFETIME_CURRENT: 7934 case SADB_EXT_LIFETIME_HARD: 7935 case SADB_EXT_LIFETIME_SOFT: 7936 case SADB_EXT_KEY_AUTH: 7937 case SADB_EXT_KEY_ENCRYPT: 7938 case SADB_EXT_IDENTITY_SRC: 7939 case SADB_EXT_IDENTITY_DST: 7940 case SADB_EXT_SENSITIVITY: 7941 case SADB_EXT_PROPOSAL: 7942 case SADB_EXT_SUPPORTED_AUTH: 7943 case SADB_EXT_SUPPORTED_ENCRYPT: 7944 case SADB_EXT_SPIRANGE: 7945 case SADB_X_EXT_POLICY: 7946 case SADB_X_EXT_SA2: 7947 case SADB_X_EXT_NAT_T_TYPE: 7948 case SADB_X_EXT_NAT_T_SPORT: 7949 case SADB_X_EXT_NAT_T_DPORT: 7950 case SADB_X_EXT_NAT_T_OAI: 7951 case SADB_X_EXT_NAT_T_OAR: 7952 case SADB_X_EXT_NAT_T_FRAG: 7953 /* duplicate check */ 7954 /* 7955 * XXX Are there duplication payloads of either 7956 * KEY_AUTH or KEY_ENCRYPT ? 7957 */ 7958 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7959 IPSECLOG(LOG_DEBUG, 7960 "duplicate ext_type %u is passed.\n", 7961 ext->sadb_ext_type); 7962 m_freem(m); 7963 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT); 7964 return EINVAL; 7965 } 7966 break; 7967 default: 7968 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n", 7969 ext->sadb_ext_type); 7970 m_freem(m); 7971 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE); 7972 return EINVAL; 7973 } 7974 7975 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7976 7977 if (key_validate_ext(ext, extlen)) { 7978 m_freem(m); 7979 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7980 return EINVAL; 7981 } 7982 7983 n = m_pulldown(m, off, extlen, &toff); 7984 if (!n) { 7985 /* m is already freed */ 7986 return ENOBUFS; 7987 } 7988 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 7989 7990 mhp->ext[ext->sadb_ext_type] = ext; 7991 mhp->extoff[ext->sadb_ext_type] = off; 7992 mhp->extlen[ext->sadb_ext_type] = extlen; 7993 } 7994 7995 if (off != end) { 7996 m_freem(m); 7997 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7998 return EINVAL; 7999 } 8000 8001 return 0; 8002 } 8003 8004 static int 8005 key_validate_ext(const struct sadb_ext *ext, int len) 8006 { 8007 const struct sockaddr *sa; 8008 enum { NONE, ADDR } checktype = NONE; 8009 int baselen = 0; 8010 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 8011 8012 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 8013 return EINVAL; 8014 8015 /* if it does not match minimum/maximum length, bail */ 8016 if (ext->sadb_ext_type >= __arraycount(minsize) || 8017 ext->sadb_ext_type >= __arraycount(maxsize)) 8018 return EINVAL; 8019 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 8020 return EINVAL; 8021 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 8022 return EINVAL; 8023 8024 /* more checks based on sadb_ext_type XXX need more */ 8025 switch (ext->sadb_ext_type) { 8026 case SADB_EXT_ADDRESS_SRC: 8027 case SADB_EXT_ADDRESS_DST: 8028 case SADB_EXT_ADDRESS_PROXY: 8029 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 8030 checktype = ADDR; 8031 break; 8032 case SADB_EXT_IDENTITY_SRC: 8033 case SADB_EXT_IDENTITY_DST: 8034 if (((const struct sadb_ident *)ext)->sadb_ident_type == 8035 SADB_X_IDENTTYPE_ADDR) { 8036 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 8037 checktype = ADDR; 8038 } else 8039 checktype = NONE; 8040 break; 8041 default: 8042 checktype = NONE; 8043 break; 8044 } 8045 8046 switch (checktype) { 8047 case NONE: 8048 break; 8049 case ADDR: 8050 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 8051 if (len < baselen + sal) 8052 return EINVAL; 8053 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 8054 return EINVAL; 8055 break; 8056 } 8057 8058 return 0; 8059 } 8060 8061 static int 8062 key_do_init(void) 8063 { 8064 int i, error; 8065 8066 mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE); 8067 8068 mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE); 8069 cv_init(&key_spd.cv_lc, "key_sp_lc"); 8070 key_spd.psz = pserialize_create(); 8071 cv_init(&key_spd.cv_psz, "key_sp_psz"); 8072 key_spd.psz_performing = false; 8073 8074 mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE); 8075 cv_init(&key_sad.cv_lc, "key_sa_lc"); 8076 key_sad.psz = pserialize_create(); 8077 cv_init(&key_sad.cv_psz, "key_sa_psz"); 8078 key_sad.psz_performing = false; 8079 8080 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS); 8081 8082 callout_init(&key_timehandler_ch, CALLOUT_MPSAFE); 8083 error = workqueue_create(&key_timehandler_wq, "key_timehandler", 8084 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE); 8085 if (error != 0) 8086 panic("%s: workqueue_create failed (%d)\n", __func__, error); 8087 8088 for (i = 0; i < IPSEC_DIR_MAX; i++) { 8089 PSLIST_INIT(&key_spd.splist[i]); 8090 } 8091 8092 PSLIST_INIT(&key_spd.socksplist); 8093 8094 PSLIST_INIT(&key_sad.sahlist); 8095 8096 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 8097 LIST_INIT(&key_misc.reglist[i]); 8098 } 8099 8100 #ifndef IPSEC_NONBLOCK_ACQUIRE 8101 LIST_INIT(&key_misc.acqlist); 8102 #endif 8103 #ifdef notyet 8104 LIST_INIT(&key_misc.spacqlist); 8105 #endif 8106 8107 /* system default */ 8108 ip4_def_policy.policy = IPSEC_POLICY_NONE; 8109 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE; 8110 localcount_init(&ip4_def_policy.localcount); 8111 8112 #ifdef INET6 8113 ip6_def_policy.policy = IPSEC_POLICY_NONE; 8114 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE; 8115 localcount_init(&ip6_def_policy.localcount); 8116 #endif 8117 8118 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 8119 8120 /* initialize key statistics */ 8121 keystat.getspi_count = 1; 8122 8123 aprint_verbose("IPsec: Initialized Security Association Processing.\n"); 8124 8125 return (0); 8126 } 8127 8128 void 8129 key_init(void) 8130 { 8131 static ONCE_DECL(key_init_once); 8132 8133 sysctl_net_keyv2_setup(NULL); 8134 sysctl_net_key_compat_setup(NULL); 8135 8136 RUN_ONCE(&key_init_once, key_do_init); 8137 8138 key_init_so(); 8139 } 8140 8141 /* 8142 * XXX: maybe This function is called after INBOUND IPsec processing. 8143 * 8144 * Special check for tunnel-mode packets. 8145 * We must make some checks for consistency between inner and outer IP header. 8146 * 8147 * xxx more checks to be provided 8148 */ 8149 int 8150 key_checktunnelsanity( 8151 struct secasvar *sav, 8152 u_int family, 8153 void *src, 8154 void *dst 8155 ) 8156 { 8157 8158 /* XXX: check inner IP header */ 8159 8160 return 1; 8161 } 8162 8163 #if 0 8164 #define hostnamelen strlen(hostname) 8165 8166 /* 8167 * Get FQDN for the host. 8168 * If the administrator configured hostname (by hostname(1)) without 8169 * domain name, returns nothing. 8170 */ 8171 static const char * 8172 key_getfqdn(void) 8173 { 8174 int i; 8175 int hasdot; 8176 static char fqdn[MAXHOSTNAMELEN + 1]; 8177 8178 if (!hostnamelen) 8179 return NULL; 8180 8181 /* check if it comes with domain name. */ 8182 hasdot = 0; 8183 for (i = 0; i < hostnamelen; i++) { 8184 if (hostname[i] == '.') 8185 hasdot++; 8186 } 8187 if (!hasdot) 8188 return NULL; 8189 8190 /* NOTE: hostname may not be NUL-terminated. */ 8191 memset(fqdn, 0, sizeof(fqdn)); 8192 memcpy(fqdn, hostname, hostnamelen); 8193 fqdn[hostnamelen] = '\0'; 8194 return fqdn; 8195 } 8196 8197 /* 8198 * get username@FQDN for the host/user. 8199 */ 8200 static const char * 8201 key_getuserfqdn(void) 8202 { 8203 const char *host; 8204 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2]; 8205 struct proc *p = curproc; 8206 char *q; 8207 8208 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session) 8209 return NULL; 8210 if (!(host = key_getfqdn())) 8211 return NULL; 8212 8213 /* NOTE: s_login may not be-NUL terminated. */ 8214 memset(userfqdn, 0, sizeof(userfqdn)); 8215 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME); 8216 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */ 8217 q = userfqdn + strlen(userfqdn); 8218 *q++ = '@'; 8219 memcpy(q, host, strlen(host)); 8220 q += strlen(host); 8221 *q++ = '\0'; 8222 8223 return userfqdn; 8224 } 8225 #endif 8226 8227 /* record data transfer on SA, and update timestamps */ 8228 void 8229 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 8230 { 8231 lifetime_counters_t *counters; 8232 8233 KASSERT(sav != NULL); 8234 KASSERT(sav->lft_c != NULL); 8235 KASSERT(m != NULL); 8236 8237 counters = percpu_getref(sav->lft_c_counters_percpu); 8238 8239 /* 8240 * XXX Currently, there is a difference of bytes size 8241 * between inbound and outbound processing. 8242 */ 8243 (*counters)[LIFETIME_COUNTER_BYTES] += m->m_pkthdr.len; 8244 /* to check bytes lifetime is done in key_timehandler(). */ 8245 8246 /* 8247 * We use the number of packets as the unit of 8248 * sadb_lifetime_allocations. We increment the variable 8249 * whenever {esp,ah}_{in,out}put is called. 8250 */ 8251 (*counters)[LIFETIME_COUNTER_ALLOCATIONS]++; 8252 /* XXX check for expires? */ 8253 8254 percpu_putref(sav->lft_c_counters_percpu); 8255 8256 /* 8257 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock, 8258 * in seconds. HARD and SOFT lifetime are measured by the time 8259 * difference (again in seconds) from sadb_lifetime_usetime. 8260 * 8261 * usetime 8262 * v expire expire 8263 * -----+-----+--------+---> t 8264 * <--------------> HARD 8265 * <-----> SOFT 8266 */ 8267 sav->lft_c->sadb_lifetime_usetime = time_uptime; 8268 /* XXX check for expires? */ 8269 8270 return; 8271 } 8272 8273 /* dumb version */ 8274 void 8275 key_sa_routechange(struct sockaddr *dst) 8276 { 8277 struct secashead *sah; 8278 int s; 8279 8280 s = pserialize_read_enter(); 8281 SAHLIST_READER_FOREACH(sah) { 8282 struct route *ro; 8283 const struct sockaddr *sa; 8284 8285 key_sah_ref(sah); 8286 pserialize_read_exit(s); 8287 8288 ro = &sah->sa_route; 8289 sa = rtcache_getdst(ro); 8290 if (sa != NULL && dst->sa_len == sa->sa_len && 8291 memcmp(dst, sa, dst->sa_len) == 0) 8292 rtcache_free(ro); 8293 8294 s = pserialize_read_enter(); 8295 key_sah_unref(sah); 8296 } 8297 pserialize_read_exit(s); 8298 8299 return; 8300 } 8301 8302 static void 8303 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 8304 { 8305 struct secasvar *_sav; 8306 8307 ASSERT_SLEEPABLE(); 8308 KASSERT(mutex_owned(&key_sad.lock)); 8309 8310 if (sav->state == state) 8311 return; 8312 8313 key_unlink_sav(sav); 8314 localcount_fini(&sav->localcount); 8315 SAVLIST_ENTRY_DESTROY(sav); 8316 key_init_sav(sav); 8317 8318 sav->state = state; 8319 if (!SADB_SASTATE_USABLE_P(sav)) { 8320 /* We don't need to care about the order */ 8321 SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav); 8322 return; 8323 } 8324 /* 8325 * Sort the list by lft_c->sadb_lifetime_addtime 8326 * in ascending order. 8327 */ 8328 SAVLIST_WRITER_FOREACH(_sav, sav->sah, state) { 8329 if (_sav->lft_c->sadb_lifetime_addtime > 8330 sav->lft_c->sadb_lifetime_addtime) { 8331 SAVLIST_WRITER_INSERT_BEFORE(_sav, sav); 8332 break; 8333 } 8334 } 8335 if (_sav == NULL) { 8336 SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav); 8337 } 8338 key_validate_savlist(sav->sah, state); 8339 } 8340 8341 /* XXX too much? */ 8342 static struct mbuf * 8343 key_alloc_mbuf(int l, int mflag) 8344 { 8345 struct mbuf *m = NULL, *n; 8346 int len, t; 8347 8348 KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p())); 8349 8350 len = l; 8351 while (len > 0) { 8352 MGET(n, mflag, MT_DATA); 8353 if (n && len > MLEN) { 8354 MCLGET(n, mflag); 8355 if ((n->m_flags & M_EXT) == 0) { 8356 m_freem(n); 8357 n = NULL; 8358 } 8359 } 8360 if (!n) { 8361 m_freem(m); 8362 return NULL; 8363 } 8364 8365 n->m_next = NULL; 8366 n->m_len = 0; 8367 n->m_len = M_TRAILINGSPACE(n); 8368 /* use the bottom of mbuf, hoping we can prepend afterwards */ 8369 if (n->m_len > len) { 8370 t = (n->m_len - len) & ~(sizeof(long) - 1); 8371 n->m_data += t; 8372 n->m_len = len; 8373 } 8374 8375 len -= n->m_len; 8376 8377 if (m) 8378 m_cat(m, n); 8379 else 8380 m = n; 8381 } 8382 8383 return m; 8384 } 8385 8386 static struct mbuf * 8387 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid) 8388 { 8389 struct secashead *sah; 8390 struct secasvar *sav; 8391 u_int16_t proto; 8392 u_int8_t satype; 8393 u_int8_t state; 8394 int cnt; 8395 struct mbuf *m, *n; 8396 8397 KASSERT(mutex_owned(&key_sad.lock)); 8398 8399 /* map satype to proto */ 8400 proto = key_satype2proto(req_satype); 8401 if (proto == 0) { 8402 *errorp = EINVAL; 8403 return (NULL); 8404 } 8405 8406 /* count sav entries to be sent to the userland. */ 8407 cnt = 0; 8408 SAHLIST_WRITER_FOREACH(sah) { 8409 if (req_satype != SADB_SATYPE_UNSPEC && 8410 proto != sah->saidx.proto) 8411 continue; 8412 8413 SASTATE_ANY_FOREACH(state) { 8414 SAVLIST_WRITER_FOREACH(sav, sah, state) { 8415 cnt++; 8416 } 8417 } 8418 } 8419 8420 if (cnt == 0) { 8421 *errorp = ENOENT; 8422 return (NULL); 8423 } 8424 8425 /* send this to the userland, one at a time. */ 8426 m = NULL; 8427 SAHLIST_WRITER_FOREACH(sah) { 8428 if (req_satype != SADB_SATYPE_UNSPEC && 8429 proto != sah->saidx.proto) 8430 continue; 8431 8432 /* map proto to satype */ 8433 satype = key_proto2satype(sah->saidx.proto); 8434 if (satype == 0) { 8435 m_freem(m); 8436 *errorp = EINVAL; 8437 return (NULL); 8438 } 8439 8440 SASTATE_ANY_FOREACH(state) { 8441 SAVLIST_WRITER_FOREACH(sav, sah, state) { 8442 n = key_setdumpsa(sav, SADB_DUMP, satype, 8443 --cnt, pid); 8444 if (!m) 8445 m = n; 8446 else 8447 m_cat(m, n); 8448 } 8449 } 8450 } 8451 8452 if (!m) { 8453 *errorp = EINVAL; 8454 return (NULL); 8455 } 8456 8457 if ((m->m_flags & M_PKTHDR) != 0) { 8458 m->m_pkthdr.len = 0; 8459 for (n = m; n; n = n->m_next) 8460 m->m_pkthdr.len += n->m_len; 8461 } 8462 8463 *errorp = 0; 8464 return (m); 8465 } 8466 8467 static struct mbuf * 8468 key_setspddump(int *errorp, pid_t pid) 8469 { 8470 struct secpolicy *sp; 8471 int cnt; 8472 u_int dir; 8473 struct mbuf *m, *n; 8474 8475 KASSERT(mutex_owned(&key_spd.lock)); 8476 8477 /* search SPD entry and get buffer size. */ 8478 cnt = 0; 8479 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8480 SPLIST_WRITER_FOREACH(sp, dir) { 8481 cnt++; 8482 } 8483 } 8484 8485 if (cnt == 0) { 8486 *errorp = ENOENT; 8487 return (NULL); 8488 } 8489 8490 m = NULL; 8491 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8492 SPLIST_WRITER_FOREACH(sp, dir) { 8493 --cnt; 8494 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 8495 8496 if (!m) 8497 m = n; 8498 else { 8499 m->m_pkthdr.len += n->m_pkthdr.len; 8500 m_cat(m, n); 8501 } 8502 } 8503 } 8504 8505 *errorp = 0; 8506 return (m); 8507 } 8508 8509 int 8510 key_get_used(void) { 8511 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) || 8512 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) || 8513 !SOCKSPLIST_READER_EMPTY(); 8514 } 8515 8516 void 8517 key_update_used(void) 8518 { 8519 switch (ipsec_enabled) { 8520 default: 8521 case 0: 8522 #ifdef notyet 8523 /* XXX: racy */ 8524 ipsec_used = 0; 8525 #endif 8526 break; 8527 case 1: 8528 #ifndef notyet 8529 /* XXX: racy */ 8530 if (!ipsec_used) 8531 #endif 8532 ipsec_used = key_get_used(); 8533 break; 8534 case 2: 8535 ipsec_used = 1; 8536 break; 8537 } 8538 } 8539 8540 static int 8541 sysctl_net_key_dumpsa(SYSCTLFN_ARGS) 8542 { 8543 struct mbuf *m, *n; 8544 int err2 = 0; 8545 char *p, *ep; 8546 size_t len; 8547 int error; 8548 8549 if (newp) 8550 return (EPERM); 8551 if (namelen != 1) 8552 return (EINVAL); 8553 8554 mutex_enter(&key_sad.lock); 8555 m = key_setdump(name[0], &error, l->l_proc->p_pid); 8556 mutex_exit(&key_sad.lock); 8557 if (!m) 8558 return (error); 8559 if (!oldp) 8560 *oldlenp = m->m_pkthdr.len; 8561 else { 8562 p = oldp; 8563 if (*oldlenp < m->m_pkthdr.len) { 8564 err2 = ENOMEM; 8565 ep = p + *oldlenp; 8566 } else { 8567 *oldlenp = m->m_pkthdr.len; 8568 ep = p + m->m_pkthdr.len; 8569 } 8570 for (n = m; n; n = n->m_next) { 8571 len = (ep - p < n->m_len) ? 8572 ep - p : n->m_len; 8573 error = copyout(mtod(n, const void *), p, len); 8574 p += len; 8575 if (error) 8576 break; 8577 } 8578 if (error == 0) 8579 error = err2; 8580 } 8581 m_freem(m); 8582 8583 return (error); 8584 } 8585 8586 static int 8587 sysctl_net_key_dumpsp(SYSCTLFN_ARGS) 8588 { 8589 struct mbuf *m, *n; 8590 int err2 = 0; 8591 char *p, *ep; 8592 size_t len; 8593 int error; 8594 8595 if (newp) 8596 return (EPERM); 8597 if (namelen != 0) 8598 return (EINVAL); 8599 8600 mutex_enter(&key_spd.lock); 8601 m = key_setspddump(&error, l->l_proc->p_pid); 8602 mutex_exit(&key_spd.lock); 8603 if (!m) 8604 return (error); 8605 if (!oldp) 8606 *oldlenp = m->m_pkthdr.len; 8607 else { 8608 p = oldp; 8609 if (*oldlenp < m->m_pkthdr.len) { 8610 err2 = ENOMEM; 8611 ep = p + *oldlenp; 8612 } else { 8613 *oldlenp = m->m_pkthdr.len; 8614 ep = p + m->m_pkthdr.len; 8615 } 8616 for (n = m; n; n = n->m_next) { 8617 len = (ep - p < n->m_len) ? ep - p : n->m_len; 8618 error = copyout(mtod(n, const void *), p, len); 8619 p += len; 8620 if (error) 8621 break; 8622 } 8623 if (error == 0) 8624 error = err2; 8625 } 8626 m_freem(m); 8627 8628 return (error); 8629 } 8630 8631 /* 8632 * Create sysctl tree for native IPSEC key knobs, originally 8633 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }. 8634 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 }; 8635 * and in any case the part of our sysctl namespace used for dumping the 8636 * SPD and SA database *HAS* to be compatible with the KAME sysctl 8637 * namespace, for API reasons. 8638 * 8639 * Pending a consensus on the right way to fix this, add a level of 8640 * indirection in how we number the `native' IPSEC key nodes; 8641 * and (as requested by Andrew Brown) move registration of the 8642 * KAME-compatible names to a separate function. 8643 */ 8644 #if 0 8645 # define IPSEC_PFKEY PF_KEY_V2 8646 # define IPSEC_PFKEY_NAME "keyv2" 8647 #else 8648 # define IPSEC_PFKEY PF_KEY 8649 # define IPSEC_PFKEY_NAME "key" 8650 #endif 8651 8652 static int 8653 sysctl_net_key_stats(SYSCTLFN_ARGS) 8654 { 8655 8656 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS)); 8657 } 8658 8659 static void 8660 sysctl_net_keyv2_setup(struct sysctllog **clog) 8661 { 8662 8663 sysctl_createv(clog, 0, NULL, NULL, 8664 CTLFLAG_PERMANENT, 8665 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL, 8666 NULL, 0, NULL, 0, 8667 CTL_NET, IPSEC_PFKEY, CTL_EOL); 8668 8669 sysctl_createv(clog, 0, NULL, NULL, 8670 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8671 CTLTYPE_INT, "debug", NULL, 8672 NULL, 0, &key_debug_level, 0, 8673 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL); 8674 sysctl_createv(clog, 0, NULL, NULL, 8675 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8676 CTLTYPE_INT, "spi_try", NULL, 8677 NULL, 0, &key_spi_trycnt, 0, 8678 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL); 8679 sysctl_createv(clog, 0, NULL, NULL, 8680 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8681 CTLTYPE_INT, "spi_min_value", NULL, 8682 NULL, 0, &key_spi_minval, 0, 8683 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL); 8684 sysctl_createv(clog, 0, NULL, NULL, 8685 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8686 CTLTYPE_INT, "spi_max_value", NULL, 8687 NULL, 0, &key_spi_maxval, 0, 8688 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL); 8689 sysctl_createv(clog, 0, NULL, NULL, 8690 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8691 CTLTYPE_INT, "random_int", NULL, 8692 NULL, 0, &key_int_random, 0, 8693 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL); 8694 sysctl_createv(clog, 0, NULL, NULL, 8695 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8696 CTLTYPE_INT, "larval_lifetime", NULL, 8697 NULL, 0, &key_larval_lifetime, 0, 8698 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL); 8699 sysctl_createv(clog, 0, NULL, NULL, 8700 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8701 CTLTYPE_INT, "blockacq_count", NULL, 8702 NULL, 0, &key_blockacq_count, 0, 8703 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL); 8704 sysctl_createv(clog, 0, NULL, NULL, 8705 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8706 CTLTYPE_INT, "blockacq_lifetime", NULL, 8707 NULL, 0, &key_blockacq_lifetime, 0, 8708 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL); 8709 sysctl_createv(clog, 0, NULL, NULL, 8710 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8711 CTLTYPE_INT, "esp_keymin", NULL, 8712 NULL, 0, &ipsec_esp_keymin, 0, 8713 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL); 8714 sysctl_createv(clog, 0, NULL, NULL, 8715 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8716 CTLTYPE_INT, "prefered_oldsa", NULL, 8717 NULL, 0, &key_prefered_oldsa, 0, 8718 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL); 8719 sysctl_createv(clog, 0, NULL, NULL, 8720 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8721 CTLTYPE_INT, "esp_auth", NULL, 8722 NULL, 0, &ipsec_esp_auth, 0, 8723 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL); 8724 sysctl_createv(clog, 0, NULL, NULL, 8725 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8726 CTLTYPE_INT, "ah_keymin", NULL, 8727 NULL, 0, &ipsec_ah_keymin, 0, 8728 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL); 8729 sysctl_createv(clog, 0, NULL, NULL, 8730 CTLFLAG_PERMANENT, 8731 CTLTYPE_STRUCT, "stats", 8732 SYSCTL_DESCR("PF_KEY statistics"), 8733 sysctl_net_key_stats, 0, NULL, 0, 8734 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL); 8735 } 8736 8737 /* 8738 * Register sysctl names used by setkey(8). For historical reasons, 8739 * and to share a single API, these names appear under { CTL_NET, PF_KEY } 8740 * for both IPSEC and KAME IPSEC. 8741 */ 8742 static void 8743 sysctl_net_key_compat_setup(struct sysctllog **clog) 8744 { 8745 8746 sysctl_createv(clog, 0, NULL, NULL, 8747 CTLFLAG_PERMANENT, 8748 CTLTYPE_NODE, "key", NULL, 8749 NULL, 0, NULL, 0, 8750 CTL_NET, PF_KEY, CTL_EOL); 8751 8752 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */ 8753 sysctl_createv(clog, 0, NULL, NULL, 8754 CTLFLAG_PERMANENT, 8755 CTLTYPE_STRUCT, "dumpsa", NULL, 8756 sysctl_net_key_dumpsa, 0, NULL, 0, 8757 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL); 8758 sysctl_createv(clog, 0, NULL, NULL, 8759 CTLFLAG_PERMANENT, 8760 CTLTYPE_STRUCT, "dumpsp", NULL, 8761 sysctl_net_key_dumpsp, 0, NULL, 0, 8762 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL); 8763 } 8764