1 /* $NetBSD: key.c,v 1.272 2021/12/03 13:27:39 andvar Exp $ */ 2 /* $FreeBSD: key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */ 3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 4 5 /* 6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the project nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.272 2021/12/03 13:27:39 andvar Exp $"); 36 37 /* 38 * This code is referred to RFC 2367 39 */ 40 41 #if defined(_KERNEL_OPT) 42 #include "opt_inet.h" 43 #include "opt_ipsec.h" 44 #include "opt_gateway.h" 45 #include "opt_net_mpsafe.h" 46 #endif 47 48 #include <sys/types.h> 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/callout.h> 52 #include <sys/kernel.h> 53 #include <sys/mbuf.h> 54 #include <sys/domain.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/errno.h> 59 #include <sys/proc.h> 60 #include <sys/queue.h> 61 #include <sys/syslog.h> 62 #include <sys/once.h> 63 #include <sys/cprng.h> 64 #include <sys/psref.h> 65 #include <sys/lwp.h> 66 #include <sys/workqueue.h> 67 #include <sys/kmem.h> 68 #include <sys/cpu.h> 69 #include <sys/atomic.h> 70 #include <sys/pslist.h> 71 #include <sys/mutex.h> 72 #include <sys/condvar.h> 73 #include <sys/localcount.h> 74 #include <sys/pserialize.h> 75 #include <sys/hash.h> 76 #include <sys/xcall.h> 77 78 #include <net/if.h> 79 #include <net/route.h> 80 81 #include <netinet/in.h> 82 #include <netinet/in_systm.h> 83 #include <netinet/ip.h> 84 #include <netinet/in_var.h> 85 #ifdef INET 86 #include <netinet/ip_var.h> 87 #endif 88 89 #ifdef INET6 90 #include <netinet/ip6.h> 91 #include <netinet6/in6_var.h> 92 #include <netinet6/ip6_var.h> 93 #endif /* INET6 */ 94 95 #ifdef INET 96 #include <netinet/in_pcb.h> 97 #endif 98 #ifdef INET6 99 #include <netinet6/in6_pcb.h> 100 #endif /* INET6 */ 101 102 #include <net/pfkeyv2.h> 103 #include <netipsec/keydb.h> 104 #include <netipsec/key.h> 105 #include <netipsec/keysock.h> 106 #include <netipsec/key_debug.h> 107 108 #include <netipsec/ipsec.h> 109 #ifdef INET6 110 #include <netipsec/ipsec6.h> 111 #endif 112 #include <netipsec/ipsec_private.h> 113 114 #include <netipsec/xform.h> 115 #include <netipsec/ipcomp.h> 116 117 #define FULLMASK 0xffu 118 #define _BITS(bytes) ((bytes) << 3) 119 120 #define PORT_NONE 0 121 #define PORT_LOOSE 1 122 #define PORT_STRICT 2 123 124 #ifndef SAHHASH_NHASH 125 #define SAHHASH_NHASH 128 126 #endif 127 128 #ifndef SAVLUT_NHASH 129 #define SAVLUT_NHASH 128 130 #endif 131 132 percpu_t *pfkeystat_percpu; 133 134 /* 135 * Note on SA reference counting: 136 * - SAs that are not in DEAD state will have (total external reference + 1) 137 * following value in reference count field. they cannot be freed and are 138 * referenced from SA header. 139 * - SAs that are in DEAD state will have (total external reference) 140 * in reference count field. they are ready to be freed. reference from 141 * SA header will be removed in key_delsav(), when the reference count 142 * field hits 0 (= no external reference other than from SA header. 143 */ 144 145 u_int32_t key_debug_level = 0; 146 static u_int key_spi_trycnt = 1000; 147 static u_int32_t key_spi_minval = 0x100; 148 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ 149 static u_int32_t policy_id = 0; 150 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ 151 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 152 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 153 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 154 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/ 155 156 static u_int32_t acq_seq = 0; 157 158 /* 159 * Locking order: there is no order for now; it means that any locks aren't 160 * overlapped. 161 */ 162 /* 163 * Locking notes on SPD: 164 * - Modifications to the key_spd.splist must be done with holding key_spd.lock 165 * which is a adaptive mutex 166 * - Read accesses to the key_spd.splist must be in pserialize(9) read sections 167 * - SP's lifetime is managed by localcount(9) 168 * - An SP that has been inserted to the key_spd.splist is initially referenced 169 * by none, i.e., a reference from the key_spd.splist isn't counted 170 * - When an SP is being destroyed, we change its state as DEAD, wait for 171 * references to the SP to be released, and then deallocate the SP 172 * (see key_unlink_sp) 173 * - Getting an SP 174 * - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx) 175 * - Must iterate the list and increment the reference count of a found SP 176 * (by key_sp_ref) in a pserialize read section 177 * - We can gain another reference from a held SP only if we check its state 178 * and take its reference in a pserialize read section 179 * (see esp_output for example) 180 * - We may get an SP from an SP cache. See below 181 * - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref) 182 * - Updating member variables of an SP 183 * - Most member variables of an SP are immutable 184 * - Only sp->state and sp->lastused can be changed 185 * - sp->state of an SP is updated only when destroying it under key_spd.lock 186 * - SP caches 187 * - SPs can be cached in PCBs 188 * - The lifetime of the caches is controlled by the global generation counter 189 * (ipsec_spdgen) 190 * - The global counter value is stored when an SP is cached 191 * - If the stored value is different from the global counter then the cache 192 * is considered invalidated 193 * - The counter is incremented when an SP is being destroyed 194 * - So checking the generation and taking a reference to an SP should be 195 * in a pserialize read section 196 * - Note that caching doesn't increment the reference counter of an SP 197 * - SPs in sockets 198 * - Userland programs can set a policy to a socket by 199 * setsockopt(IP_IPSEC_POLICY) 200 * - Such policies (SPs) are set to a socket (PCB) and also inserted to 201 * the key_spd.socksplist list (not the key_spd.splist) 202 * - Such a policy is destroyed when a corresponding socket is destroed, 203 * however, a socket can be destroyed in softint so we cannot destroy 204 * it directly instead we just mark it DEAD and delay the destruction 205 * until GC by the timer 206 * - SP origin 207 * - SPs can be created by both userland programs and kernel components. 208 * The SPs created in kernel must not be removed by userland programs, 209 * although the SPs can be read by userland programs. 210 */ 211 /* 212 * Locking notes on SAD: 213 * - Data structures 214 * - SAs are managed by the list called key_sad.sahlists and sav lists of 215 * sah entries 216 * - An sav is supposed to be an SA from a viewpoint of users 217 * - A sah has sav lists for each SA state 218 * - Multiple saves with the same saidx can exist 219 * - Only one entry has MATURE state and others should be DEAD 220 * - DEAD entries are just ignored from searching 221 * - All sav whose state is MATURE or DYING are registered to the lookup 222 * table called key_sad.savlut in addition to the savlists. 223 * - The table is used to search an sav without use of saidx. 224 * - Modifications to the key_sad.sahlists, sah.savlist and key_sad.savlut 225 * must be done with holding key_sad.lock which is a adaptive mutex 226 * - Read accesses to the key_sad.sahlists, sah.savlist and key_sad.savlut 227 * must be in pserialize(9) read sections 228 * - sah's lifetime is managed by localcount(9) 229 * - Getting an sah entry 230 * - We get an sah from the key_sad.sahlists 231 * - Must iterate the list and increment the reference count of a found sah 232 * (by key_sah_ref) in a pserialize read section 233 * - A gotten sah must be released after use by key_sah_unref 234 * - An sah is destroyed when its state become DEAD and no sav is 235 * listed to the sah 236 * - The destruction is done only in the timer (see key_timehandler_sad) 237 * - sav's lifetime is managed by localcount(9) 238 * - Getting an sav entry 239 * - First get an sah by saidx and get an sav from either of sah's savlists 240 * - Must iterate the list and increment the reference count of a found sav 241 * (by key_sa_ref) in a pserialize read section 242 * - We can gain another reference from a held SA only if we check its state 243 * and take its reference in a pserialize read section 244 * (see esp_output for example) 245 * - A gotten sav must be released after use by key_sa_unref 246 * - An sav is destroyed when its state become DEAD 247 */ 248 /* 249 * Locking notes on misc data: 250 * - All lists of key_misc are protected by key_misc.lock 251 * - key_misc.lock must be held even for read accesses 252 */ 253 254 /* SPD */ 255 static struct { 256 kmutex_t lock; 257 kcondvar_t cv_lc; 258 struct pslist_head splist[IPSEC_DIR_MAX]; 259 /* 260 * The list has SPs that are set to a socket via 261 * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy. 262 */ 263 struct pslist_head socksplist; 264 265 pserialize_t psz; 266 kcondvar_t cv_psz; 267 bool psz_performing; 268 } key_spd __cacheline_aligned; 269 270 /* SAD */ 271 static struct { 272 kmutex_t lock; 273 kcondvar_t cv_lc; 274 struct pslist_head *sahlists; 275 u_long sahlistmask; 276 struct pslist_head *savlut; 277 u_long savlutmask; 278 279 pserialize_t psz; 280 kcondvar_t cv_psz; 281 bool psz_performing; 282 } key_sad __cacheline_aligned; 283 284 /* Misc data */ 285 static struct { 286 kmutex_t lock; 287 /* registed list */ 288 LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1]; 289 #ifndef IPSEC_NONBLOCK_ACQUIRE 290 /* acquiring list */ 291 LIST_HEAD(_acqlist, secacq) acqlist; 292 #endif 293 #ifdef notyet 294 /* SP acquiring list */ 295 LIST_HEAD(_spacqlist, secspacq) spacqlist; 296 #endif 297 } key_misc __cacheline_aligned; 298 299 /* Macros for key_spd.splist */ 300 #define SPLIST_ENTRY_INIT(sp) \ 301 PSLIST_ENTRY_INIT((sp), pslist_entry) 302 #define SPLIST_ENTRY_DESTROY(sp) \ 303 PSLIST_ENTRY_DESTROY((sp), pslist_entry) 304 #define SPLIST_WRITER_REMOVE(sp) \ 305 PSLIST_WRITER_REMOVE((sp), pslist_entry) 306 #define SPLIST_READER_EMPTY(dir) \ 307 (PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ 308 pslist_entry) == NULL) 309 #define SPLIST_READER_FOREACH(sp, dir) \ 310 PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)], \ 311 struct secpolicy, pslist_entry) 312 #define SPLIST_WRITER_FOREACH(sp, dir) \ 313 PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)], \ 314 struct secpolicy, pslist_entry) 315 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \ 316 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry) 317 #define SPLIST_WRITER_EMPTY(dir) \ 318 (PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ 319 pslist_entry) == NULL) 320 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \ 321 PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp), \ 322 pslist_entry) 323 #define SPLIST_WRITER_NEXT(sp) \ 324 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry) 325 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \ 326 do { \ 327 if (SPLIST_WRITER_EMPTY((dir))) { \ 328 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \ 329 } else { \ 330 struct secpolicy *__sp; \ 331 SPLIST_WRITER_FOREACH(__sp, (dir)) { \ 332 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \ 333 SPLIST_WRITER_INSERT_AFTER(__sp,\ 334 (new)); \ 335 break; \ 336 } \ 337 } \ 338 } \ 339 } while (0) 340 341 /* Macros for key_spd.socksplist */ 342 #define SOCKSPLIST_WRITER_FOREACH(sp) \ 343 PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist, \ 344 struct secpolicy, pslist_entry) 345 #define SOCKSPLIST_READER_EMPTY() \ 346 (PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy, \ 347 pslist_entry) == NULL) 348 349 /* Macros for key_sad.sahlist */ 350 #define SAHLIST_ENTRY_INIT(sah) \ 351 PSLIST_ENTRY_INIT((sah), pslist_entry) 352 #define SAHLIST_ENTRY_DESTROY(sah) \ 353 PSLIST_ENTRY_DESTROY((sah), pslist_entry) 354 #define SAHLIST_WRITER_REMOVE(sah) \ 355 PSLIST_WRITER_REMOVE((sah), pslist_entry) 356 #define SAHLIST_READER_FOREACH(sah) \ 357 for(int _i_sah = 0; _i_sah <= key_sad.sahlistmask; _i_sah++) \ 358 PSLIST_READER_FOREACH((sah), &key_sad.sahlists[_i_sah], \ 359 struct secashead, pslist_entry) 360 #define SAHLIST_READER_FOREACH_SAIDX(sah, saidx) \ 361 PSLIST_READER_FOREACH((sah), \ 362 &key_sad.sahlists[key_saidxhash((saidx), \ 363 key_sad.sahlistmask)], \ 364 struct secashead, pslist_entry) 365 #define SAHLIST_WRITER_FOREACH(sah) \ 366 for(int _i_sah = 0; _i_sah <= key_sad.sahlistmask; _i_sah++) \ 367 PSLIST_WRITER_FOREACH((sah), &key_sad.sahlists[_i_sah], \ 368 struct secashead, pslist_entry) 369 #define SAHLIST_WRITER_INSERT_HEAD(sah) \ 370 PSLIST_WRITER_INSERT_HEAD( \ 371 &key_sad.sahlists[key_saidxhash(&(sah)->saidx, \ 372 key_sad.sahlistmask)], \ 373 (sah), pslist_entry) 374 375 /* Macros for key_sad.sahlist#savlist */ 376 #define SAVLIST_ENTRY_INIT(sav) \ 377 PSLIST_ENTRY_INIT((sav), pslist_entry) 378 #define SAVLIST_ENTRY_DESTROY(sav) \ 379 PSLIST_ENTRY_DESTROY((sav), pslist_entry) 380 #define SAVLIST_READER_FIRST(sah, state) \ 381 PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ 382 pslist_entry) 383 #define SAVLIST_WRITER_REMOVE(sav) \ 384 PSLIST_WRITER_REMOVE((sav), pslist_entry) 385 #define SAVLIST_READER_FOREACH(sav, sah, state) \ 386 PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)], \ 387 struct secasvar, pslist_entry) 388 #define SAVLIST_WRITER_FOREACH(sav, sah, state) \ 389 PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)], \ 390 struct secasvar, pslist_entry) 391 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \ 392 PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry) 393 #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \ 394 PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry) 395 #define SAVLIST_WRITER_EMPTY(sah, state) \ 396 (PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ 397 pslist_entry) == NULL) 398 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \ 399 PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav), \ 400 pslist_entry) 401 #define SAVLIST_WRITER_NEXT(sav) \ 402 PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry) 403 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \ 404 do { \ 405 if (SAVLIST_WRITER_EMPTY((sah), (state))) { \ 406 SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\ 407 } else { \ 408 struct secasvar *__sav; \ 409 SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \ 410 if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\ 411 SAVLIST_WRITER_INSERT_AFTER(__sav,\ 412 (new)); \ 413 break; \ 414 } \ 415 } \ 416 } \ 417 } while (0) 418 #define SAVLIST_READER_NEXT(sav) \ 419 PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry) 420 421 /* Macros for key_sad.savlut */ 422 #define SAVLUT_ENTRY_INIT(sav) \ 423 PSLIST_ENTRY_INIT((sav), pslist_entry_savlut) 424 #define SAVLUT_READER_FOREACH(sav, dst, proto, hash_key) \ 425 PSLIST_READER_FOREACH((sav), \ 426 &key_sad.savlut[key_savluthash(dst, proto, hash_key, \ 427 key_sad.savlutmask)], \ 428 struct secasvar, pslist_entry_savlut) 429 #define SAVLUT_WRITER_INSERT_HEAD(sav) \ 430 key_savlut_writer_insert_head((sav)) 431 #define SAVLUT_WRITER_REMOVE(sav) \ 432 do { \ 433 if (!(sav)->savlut_added) \ 434 break; \ 435 PSLIST_WRITER_REMOVE((sav), pslist_entry_savlut); \ 436 (sav)->savlut_added = false; \ 437 } while(0) 438 439 /* search order for SAs */ 440 /* 441 * This order is important because we must select the oldest SA 442 * for outbound processing. For inbound, This is not important. 443 */ 444 static const u_int saorder_state_valid_prefer_old[] = { 445 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 446 }; 447 static const u_int saorder_state_valid_prefer_new[] = { 448 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 449 }; 450 451 static const u_int saorder_state_alive[] = { 452 /* except DEAD */ 453 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 454 }; 455 static const u_int saorder_state_any[] = { 456 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 457 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 458 }; 459 460 #define SASTATE_ALIVE_FOREACH(s) \ 461 for (int _i = 0; \ 462 _i < __arraycount(saorder_state_alive) ? \ 463 (s) = saorder_state_alive[_i], true : false; \ 464 _i++) 465 #define SASTATE_ANY_FOREACH(s) \ 466 for (int _i = 0; \ 467 _i < __arraycount(saorder_state_any) ? \ 468 (s) = saorder_state_any[_i], true : false; \ 469 _i++) 470 #define SASTATE_USABLE_FOREACH(s) \ 471 for (int _i = 0; \ 472 _i < __arraycount(saorder_state_valid_prefer_new) ? \ 473 (s) = saorder_state_valid_prefer_new[_i], \ 474 true : false; \ 475 _i++) 476 477 static const int minsize[] = { 478 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 479 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 480 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 481 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 482 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 483 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 484 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 485 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 486 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 487 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 488 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 489 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 490 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 491 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 492 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 493 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 494 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 495 0, /* SADB_X_EXT_KMPRIVATE */ 496 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 497 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 498 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 499 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 500 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 501 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 502 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 503 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 504 }; 505 static const int maxsize[] = { 506 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 507 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 508 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 509 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 510 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 511 0, /* SADB_EXT_ADDRESS_SRC */ 512 0, /* SADB_EXT_ADDRESS_DST */ 513 0, /* SADB_EXT_ADDRESS_PROXY */ 514 0, /* SADB_EXT_KEY_AUTH */ 515 0, /* SADB_EXT_KEY_ENCRYPT */ 516 0, /* SADB_EXT_IDENTITY_SRC */ 517 0, /* SADB_EXT_IDENTITY_DST */ 518 0, /* SADB_EXT_SENSITIVITY */ 519 0, /* SADB_EXT_PROPOSAL */ 520 0, /* SADB_EXT_SUPPORTED_AUTH */ 521 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 522 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 523 0, /* SADB_X_EXT_KMPRIVATE */ 524 0, /* SADB_X_EXT_POLICY */ 525 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 526 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 527 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 528 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 529 0, /* SADB_X_EXT_NAT_T_OAI */ 530 0, /* SADB_X_EXT_NAT_T_OAR */ 531 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 532 }; 533 534 static int ipsec_esp_keymin = 256; 535 static int ipsec_esp_auth = 0; 536 static int ipsec_ah_keymin = 128; 537 538 #ifdef SYSCTL_DECL 539 SYSCTL_DECL(_net_key); 540 #endif 541 542 #ifdef SYSCTL_INT 543 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \ 544 &key_debug_level, 0, ""); 545 546 /* max count of trial for the decision of spi value */ 547 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \ 548 &key_spi_trycnt, 0, ""); 549 550 /* minimum spi value to allocate automatically. */ 551 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \ 552 &key_spi_minval, 0, ""); 553 554 /* maximun spi value to allocate automatically. */ 555 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \ 556 &key_spi_maxval, 0, ""); 557 558 /* interval to initialize randseed */ 559 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \ 560 &key_int_random, 0, ""); 561 562 /* lifetime for larval SA */ 563 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \ 564 &key_larval_lifetime, 0, ""); 565 566 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 567 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \ 568 &key_blockacq_count, 0, ""); 569 570 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 571 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \ 572 &key_blockacq_lifetime, 0, ""); 573 574 /* ESP auth */ 575 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \ 576 &ipsec_esp_auth, 0, ""); 577 578 /* minimum ESP key length */ 579 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \ 580 &ipsec_esp_keymin, 0, ""); 581 582 /* minimum AH key length */ 583 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \ 584 &ipsec_ah_keymin, 0, ""); 585 586 /* perfered old SA rather than new SA */ 587 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\ 588 &key_prefered_oldsa, 0, ""); 589 #endif /* SYSCTL_INT */ 590 591 #define __LIST_CHAINED(elm) \ 592 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 593 #define LIST_INSERT_TAIL(head, elm, type, field) \ 594 do {\ 595 struct type *curelm = LIST_FIRST(head); \ 596 if (curelm == NULL) {\ 597 LIST_INSERT_HEAD(head, elm, field); \ 598 } else { \ 599 while (LIST_NEXT(curelm, field)) \ 600 curelm = LIST_NEXT(curelm, field);\ 601 LIST_INSERT_AFTER(curelm, elm, field);\ 602 }\ 603 } while (0) 604 605 #define KEY_CHKSASTATE(head, sav) \ 606 /* do */ { \ 607 if ((head) != (sav)) { \ 608 IPSECLOG(LOG_DEBUG, \ 609 "state mismatched (TREE=%d SA=%d)\n", \ 610 (head), (sav)); \ 611 continue; \ 612 } \ 613 } /* while (0) */ 614 615 #define KEY_CHKSPDIR(head, sp) \ 616 do { \ 617 if ((head) != (sp)) { \ 618 IPSECLOG(LOG_DEBUG, \ 619 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\ 620 (head), (sp)); \ 621 } \ 622 } while (0) 623 624 /* 625 * set parameters into secasindex buffer. 626 * Must allocate secasindex buffer before calling this function. 627 */ 628 static int 629 key_setsecasidx(int, int, int, const struct sockaddr *, 630 const struct sockaddr *, struct secasindex *); 631 632 /* key statistics */ 633 struct _keystat { 634 u_long getspi_count; /* the avarage of count to try to get new SPI */ 635 } keystat; 636 637 static void 638 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *); 639 640 static const struct sockaddr * 641 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx) 642 { 643 644 return PFKEY_ADDR_SADDR(mhp->ext[idx]); 645 } 646 647 static void 648 key_fill_replymsg(struct mbuf *m, int seq) 649 { 650 struct sadb_msg *msg; 651 652 KASSERT(m->m_len >= sizeof(*msg)); 653 654 msg = mtod(m, struct sadb_msg *); 655 msg->sadb_msg_errno = 0; 656 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 657 if (seq != 0) 658 msg->sadb_msg_seq = seq; 659 } 660 661 #if 0 662 static void key_freeso(struct socket *); 663 static void key_freesp_so(struct secpolicy **); 664 #endif 665 static struct secpolicy *key_getsp (const struct secpolicyindex *); 666 static struct secpolicy *key_getspbyid (u_int32_t); 667 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *, bool); 668 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t, bool); 669 static void key_destroy_sp(struct secpolicy *); 670 static struct mbuf *key_gather_mbuf (struct mbuf *, 671 const struct sadb_msghdr *, int, int, ...); 672 static int key_api_spdadd(struct socket *, struct mbuf *, 673 const struct sadb_msghdr *); 674 static u_int32_t key_getnewspid (void); 675 static int key_api_spddelete(struct socket *, struct mbuf *, 676 const struct sadb_msghdr *); 677 static int key_api_spddelete2(struct socket *, struct mbuf *, 678 const struct sadb_msghdr *); 679 static int key_api_spdget(struct socket *, struct mbuf *, 680 const struct sadb_msghdr *); 681 static int key_api_spdflush(struct socket *, struct mbuf *, 682 const struct sadb_msghdr *); 683 static int key_api_spddump(struct socket *, struct mbuf *, 684 const struct sadb_msghdr *); 685 static struct mbuf * key_setspddump (int *errorp, pid_t); 686 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid); 687 static int key_api_nat_map(struct socket *, struct mbuf *, 688 const struct sadb_msghdr *); 689 static struct mbuf *key_setdumpsp (struct secpolicy *, 690 u_int8_t, u_int32_t, pid_t); 691 static u_int key_getspreqmsglen (const struct secpolicy *); 692 static int key_spdexpire (struct secpolicy *); 693 static struct secashead *key_newsah (const struct secasindex *); 694 static void key_unlink_sah(struct secashead *); 695 static void key_destroy_sah(struct secashead *); 696 static bool key_sah_has_sav(struct secashead *); 697 static void key_sah_ref(struct secashead *); 698 static void key_sah_unref(struct secashead *); 699 static void key_init_sav(struct secasvar *); 700 static void key_wait_sav(struct secasvar *); 701 static void key_destroy_sav(struct secasvar *); 702 static struct secasvar *key_newsav(struct mbuf *, 703 const struct sadb_msghdr *, int *, const char*, int); 704 #define KEY_NEWSAV(m, sadb, e) \ 705 key_newsav(m, sadb, e, __func__, __LINE__) 706 static void key_delsav (struct secasvar *); 707 static struct secashead *key_getsah(const struct secasindex *, int); 708 static struct secashead *key_getsah_ref(const struct secasindex *, int); 709 static bool key_checkspidup(const struct secasindex *, u_int32_t); 710 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t); 711 static int key_setsaval (struct secasvar *, struct mbuf *, 712 const struct sadb_msghdr *); 713 static void key_freesaval(struct secasvar *); 714 static int key_init_xform(struct secasvar *); 715 static void key_clear_xform(struct secasvar *); 716 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t, 717 u_int8_t, u_int32_t, u_int32_t); 718 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t); 719 static struct mbuf *key_setsadbxtype (u_int16_t); 720 static struct mbuf *key_setsadbxfrag (u_int16_t); 721 static void key_porttosaddr (union sockaddr_union *, u_int16_t); 722 static int key_checksalen (const union sockaddr_union *); 723 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t, 724 u_int32_t, pid_t, u_int16_t, int); 725 static struct mbuf *key_setsadbsa (struct secasvar *); 726 static struct mbuf *key_setsadbaddr(u_int16_t, 727 const struct sockaddr *, u_int8_t, u_int16_t, int); 728 #if 0 729 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *, 730 int, u_int64_t); 731 #endif 732 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t); 733 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t, 734 u_int32_t, int); 735 static void *key_newbuf (const void *, u_int); 736 #ifdef INET6 737 static int key_ismyaddr6 (const struct sockaddr_in6 *); 738 #endif 739 740 static void sysctl_net_keyv2_setup(struct sysctllog **); 741 static void sysctl_net_key_compat_setup(struct sysctllog **); 742 743 /* flags for key_saidx_match() */ 744 #define CMP_HEAD 1 /* protocol, addresses. */ 745 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 746 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 747 #define CMP_EXACTLY 4 /* all elements. */ 748 static int key_saidx_match(const struct secasindex *, 749 const struct secasindex *, int); 750 751 static int key_sockaddr_match(const struct sockaddr *, 752 const struct sockaddr *, int); 753 static int key_bb_match_withmask(const void *, const void *, u_int); 754 static u_int16_t key_satype2proto (u_int8_t); 755 static u_int8_t key_proto2satype (u_int16_t); 756 757 static int key_spidx_match_exactly(const struct secpolicyindex *, 758 const struct secpolicyindex *); 759 static int key_spidx_match_withmask(const struct secpolicyindex *, 760 const struct secpolicyindex *); 761 762 static int key_api_getspi(struct socket *, struct mbuf *, 763 const struct sadb_msghdr *); 764 static u_int32_t key_do_getnewspi (const struct sadb_spirange *, 765 const struct secasindex *); 766 static int key_handle_natt_info (struct secasvar *, 767 const struct sadb_msghdr *); 768 static int key_set_natt_ports (union sockaddr_union *, 769 union sockaddr_union *, 770 const struct sadb_msghdr *); 771 static int key_api_update(struct socket *, struct mbuf *, 772 const struct sadb_msghdr *); 773 #ifdef IPSEC_DOSEQCHECK 774 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t); 775 #endif 776 static int key_api_add(struct socket *, struct mbuf *, 777 const struct sadb_msghdr *); 778 static int key_setident (struct secashead *, struct mbuf *, 779 const struct sadb_msghdr *); 780 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *, 781 const struct sadb_msghdr *); 782 static int key_api_delete(struct socket *, struct mbuf *, 783 const struct sadb_msghdr *); 784 static int key_api_get(struct socket *, struct mbuf *, 785 const struct sadb_msghdr *); 786 787 static void key_getcomb_setlifetime (struct sadb_comb *); 788 static struct mbuf *key_getcomb_esp(int); 789 static struct mbuf *key_getcomb_ah(int); 790 static struct mbuf *key_getcomb_ipcomp(int); 791 static struct mbuf *key_getprop(const struct secasindex *, int); 792 793 static int key_acquire(const struct secasindex *, const struct secpolicy *, 794 int); 795 static int key_acquire_sendup_mbuf_later(struct mbuf *); 796 static void key_acquire_sendup_pending_mbuf(void); 797 #ifndef IPSEC_NONBLOCK_ACQUIRE 798 static struct secacq *key_newacq (const struct secasindex *); 799 static struct secacq *key_getacq (const struct secasindex *); 800 static struct secacq *key_getacqbyseq (u_int32_t); 801 #endif 802 #ifdef notyet 803 static struct secspacq *key_newspacq (const struct secpolicyindex *); 804 static struct secspacq *key_getspacq (const struct secpolicyindex *); 805 #endif 806 static int key_api_acquire(struct socket *, struct mbuf *, 807 const struct sadb_msghdr *); 808 static int key_api_register(struct socket *, struct mbuf *, 809 const struct sadb_msghdr *); 810 static int key_expire (struct secasvar *); 811 static int key_api_flush(struct socket *, struct mbuf *, 812 const struct sadb_msghdr *); 813 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp, 814 int *lenp, pid_t pid); 815 static int key_api_dump(struct socket *, struct mbuf *, 816 const struct sadb_msghdr *); 817 static int key_api_promisc(struct socket *, struct mbuf *, 818 const struct sadb_msghdr *); 819 static int key_senderror (struct socket *, struct mbuf *, int); 820 static int key_validate_ext (const struct sadb_ext *, int); 821 static int key_align (struct mbuf *, struct sadb_msghdr *); 822 #if 0 823 static const char *key_getfqdn (void); 824 static const char *key_getuserfqdn (void); 825 #endif 826 static void key_sa_chgstate (struct secasvar *, u_int8_t); 827 828 static struct mbuf *key_alloc_mbuf(int, int); 829 static struct mbuf *key_alloc_mbuf_simple(int, int); 830 831 static void key_timehandler(void *); 832 static void key_timehandler_work(struct work *, void *); 833 static struct callout key_timehandler_ch; 834 static struct workqueue *key_timehandler_wq; 835 static struct work key_timehandler_wk; 836 837 static inline void 838 key_savlut_writer_insert_head(struct secasvar *sav); 839 static inline uint32_t 840 key_saidxhash(const struct secasindex *, u_long); 841 static inline uint32_t 842 key_savluthash(const struct sockaddr *, 843 uint32_t, uint32_t, u_long); 844 845 /* 846 * Utilities for percpu counters for sadb_lifetime_allocations and 847 * sadb_lifetime_bytes. 848 */ 849 #define LIFETIME_COUNTER_ALLOCATIONS 0 850 #define LIFETIME_COUNTER_BYTES 1 851 #define LIFETIME_COUNTER_SIZE 2 852 853 typedef uint64_t lifetime_counters_t[LIFETIME_COUNTER_SIZE]; 854 855 static void 856 key_sum_lifetime_counters(void *p, void *arg, struct cpu_info *ci __unused) 857 { 858 lifetime_counters_t *one = p; 859 lifetime_counters_t *sum = arg; 860 861 (*sum)[LIFETIME_COUNTER_ALLOCATIONS] += (*one)[LIFETIME_COUNTER_ALLOCATIONS]; 862 (*sum)[LIFETIME_COUNTER_BYTES] += (*one)[LIFETIME_COUNTER_BYTES]; 863 } 864 865 u_int 866 key_sp_refcnt(const struct secpolicy *sp) 867 { 868 869 /* FIXME */ 870 return 0; 871 } 872 873 static void 874 key_spd_pserialize_perform(void) 875 { 876 877 KASSERT(mutex_owned(&key_spd.lock)); 878 879 while (key_spd.psz_performing) 880 cv_wait(&key_spd.cv_psz, &key_spd.lock); 881 key_spd.psz_performing = true; 882 mutex_exit(&key_spd.lock); 883 884 pserialize_perform(key_spd.psz); 885 886 mutex_enter(&key_spd.lock); 887 key_spd.psz_performing = false; 888 cv_broadcast(&key_spd.cv_psz); 889 } 890 891 /* 892 * Remove the sp from the key_spd.splist and wait for references to the sp 893 * to be released. key_spd.lock must be held. 894 */ 895 static void 896 key_unlink_sp(struct secpolicy *sp) 897 { 898 899 KASSERT(mutex_owned(&key_spd.lock)); 900 901 sp->state = IPSEC_SPSTATE_DEAD; 902 SPLIST_WRITER_REMOVE(sp); 903 904 /* Invalidate all cached SPD pointers in the PCBs. */ 905 ipsec_invalpcbcacheall(); 906 907 KDASSERT(mutex_ownable(softnet_lock)); 908 key_spd_pserialize_perform(); 909 910 localcount_drain(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); 911 } 912 913 /* 914 * Return 0 when there are known to be no SP's for the specified 915 * direction. Otherwise return 1. This is used by IPsec code 916 * to optimize performance. 917 */ 918 int 919 key_havesp(u_int dir) 920 { 921 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 922 !SPLIST_READER_EMPTY(dir) : 1); 923 } 924 925 /* %%% IPsec policy management */ 926 /* 927 * allocating a SP for OUTBOUND or INBOUND packet. 928 * Must call key_freesp() later. 929 * OUT: NULL: not found 930 * others: found and return the pointer. 931 */ 932 struct secpolicy * 933 key_lookup_sp_byspidx(const struct secpolicyindex *spidx, 934 u_int dir, const char* where, int tag) 935 { 936 struct secpolicy *sp; 937 int s; 938 939 KASSERT(spidx != NULL); 940 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir); 941 942 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); 943 944 /* get a SP entry */ 945 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { 946 kdebug_secpolicyindex("objects", spidx); 947 } 948 949 s = pserialize_read_enter(); 950 SPLIST_READER_FOREACH(sp, dir) { 951 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { 952 kdebug_secpolicyindex("in SPD", &sp->spidx); 953 } 954 955 if (sp->state == IPSEC_SPSTATE_DEAD) 956 continue; 957 if (key_spidx_match_withmask(&sp->spidx, spidx)) 958 goto found; 959 } 960 sp = NULL; 961 found: 962 if (sp) { 963 /* sanity check */ 964 KEY_CHKSPDIR(sp->spidx.dir, dir); 965 966 /* found a SPD entry */ 967 sp->lastused = time_uptime; 968 key_sp_ref(sp, where, tag); 969 } 970 pserialize_read_exit(s); 971 972 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 973 "DP return SP:%p (ID=%u) refcnt %u\n", 974 sp, sp ? sp->id : 0, key_sp_refcnt(sp)); 975 return sp; 976 } 977 978 /* 979 * return a policy that matches this particular inbound packet. 980 * XXX slow 981 */ 982 struct secpolicy * 983 key_gettunnel(const struct sockaddr *osrc, 984 const struct sockaddr *odst, 985 const struct sockaddr *isrc, 986 const struct sockaddr *idst, 987 const char* where, int tag) 988 { 989 struct secpolicy *sp; 990 const int dir = IPSEC_DIR_INBOUND; 991 int s; 992 struct ipsecrequest *r1, *r2, *p; 993 struct secpolicyindex spidx; 994 995 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); 996 997 if (isrc->sa_family != idst->sa_family) { 998 IPSECLOG(LOG_ERR, 999 "address family mismatched src %u, dst %u.\n", 1000 isrc->sa_family, idst->sa_family); 1001 sp = NULL; 1002 goto done; 1003 } 1004 1005 s = pserialize_read_enter(); 1006 SPLIST_READER_FOREACH(sp, dir) { 1007 if (sp->state == IPSEC_SPSTATE_DEAD) 1008 continue; 1009 1010 r1 = r2 = NULL; 1011 for (p = sp->req; p; p = p->next) { 1012 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 1013 continue; 1014 1015 r1 = r2; 1016 r2 = p; 1017 1018 if (!r1) { 1019 /* here we look at address matches only */ 1020 spidx = sp->spidx; 1021 if (isrc->sa_len > sizeof(spidx.src) || 1022 idst->sa_len > sizeof(spidx.dst)) 1023 continue; 1024 memcpy(&spidx.src, isrc, isrc->sa_len); 1025 memcpy(&spidx.dst, idst, idst->sa_len); 1026 if (!key_spidx_match_withmask(&sp->spidx, &spidx)) 1027 continue; 1028 } else { 1029 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) || 1030 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE)) 1031 continue; 1032 } 1033 1034 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) || 1035 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE)) 1036 continue; 1037 1038 goto found; 1039 } 1040 } 1041 sp = NULL; 1042 found: 1043 if (sp) { 1044 sp->lastused = time_uptime; 1045 key_sp_ref(sp, where, tag); 1046 } 1047 pserialize_read_exit(s); 1048 done: 1049 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1050 "DP return SP:%p (ID=%u) refcnt %u\n", 1051 sp, sp ? sp->id : 0, key_sp_refcnt(sp)); 1052 return sp; 1053 } 1054 1055 /* 1056 * allocating an SA entry for an *OUTBOUND* packet. 1057 * checking each request entries in SP, and acquire an SA if need. 1058 * OUT: 0: there are valid requests. 1059 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 1060 */ 1061 int 1062 key_checkrequest(const struct ipsecrequest *isr, const struct secasindex *saidx, 1063 struct secasvar **ret) 1064 { 1065 u_int level; 1066 int error; 1067 struct secasvar *sav; 1068 1069 KASSERT(isr != NULL); 1070 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT || 1071 saidx->mode == IPSEC_MODE_TUNNEL, 1072 "unexpected policy %u", saidx->mode); 1073 1074 /* get current level */ 1075 level = ipsec_get_reqlevel(isr); 1076 1077 /* 1078 * XXX guard against protocol callbacks from the crypto 1079 * thread as they reference ipsecrequest.sav which we 1080 * temporarily null out below. Need to rethink how we 1081 * handle bundled SA's in the callback thread. 1082 */ 1083 1084 sav = key_lookup_sa_bysaidx(saidx); 1085 if (sav != NULL) { 1086 *ret = sav; 1087 return 0; 1088 } 1089 1090 /* there is no SA */ 1091 error = key_acquire(saidx, isr->sp, M_NOWAIT); 1092 if (error != 0) { 1093 /* XXX What should I do ? */ 1094 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", 1095 error); 1096 return error; 1097 } 1098 1099 if (level != IPSEC_LEVEL_REQUIRE) { 1100 /* XXX sigh, the interface to this routine is botched */ 1101 *ret = NULL; 1102 return 0; 1103 } else { 1104 return ENOENT; 1105 } 1106 } 1107 1108 /* 1109 * looking up a SA for policy entry from SAD. 1110 * NOTE: searching SAD of aliving state. 1111 * OUT: NULL: not found. 1112 * others: found and return the pointer. 1113 */ 1114 struct secasvar * 1115 key_lookup_sa_bysaidx(const struct secasindex *saidx) 1116 { 1117 struct secashead *sah; 1118 struct secasvar *sav = NULL; 1119 u_int stateidx, state; 1120 const u_int *saorder_state_valid; 1121 int arraysize; 1122 int s; 1123 1124 s = pserialize_read_enter(); 1125 sah = key_getsah(saidx, CMP_MODE_REQID); 1126 if (sah == NULL) 1127 goto out; 1128 1129 /* 1130 * search a valid state list for outbound packet. 1131 * This search order is important. 1132 */ 1133 if (key_prefered_oldsa) { 1134 saorder_state_valid = saorder_state_valid_prefer_old; 1135 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1136 } else { 1137 saorder_state_valid = saorder_state_valid_prefer_new; 1138 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1139 } 1140 1141 /* search valid state */ 1142 for (stateidx = 0; 1143 stateidx < arraysize; 1144 stateidx++) { 1145 1146 state = saorder_state_valid[stateidx]; 1147 1148 if (key_prefered_oldsa) 1149 sav = SAVLIST_READER_FIRST(sah, state); 1150 else { 1151 /* XXX need O(1) lookup */ 1152 struct secasvar *last = NULL; 1153 1154 SAVLIST_READER_FOREACH(sav, sah, state) 1155 last = sav; 1156 sav = last; 1157 } 1158 if (sav != NULL) { 1159 KEY_SA_REF(sav); 1160 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1161 "DP cause refcnt++:%d SA:%p\n", 1162 key_sa_refcnt(sav), sav); 1163 break; 1164 } 1165 } 1166 out: 1167 pserialize_read_exit(s); 1168 1169 return sav; 1170 } 1171 1172 #if 0 1173 static void 1174 key_sendup_message_delete(struct secasvar *sav) 1175 { 1176 struct mbuf *m, *result = 0; 1177 uint8_t satype; 1178 1179 satype = key_proto2satype(sav->sah->saidx.proto); 1180 if (satype == 0) 1181 goto msgfail; 1182 1183 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1); 1184 if (m == NULL) 1185 goto msgfail; 1186 result = m; 1187 1188 /* set sadb_address for saidx's. */ 1189 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, 1190 _BITS(sav->sah->saidx.src.sa.sa_len), IPSEC_ULPROTO_ANY); 1191 if (m == NULL) 1192 goto msgfail; 1193 m_cat(result, m); 1194 1195 /* set sadb_address for saidx's. */ 1196 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa, 1197 _BITS(sav->sah->saidx.src.sa.sa_len), IPSEC_ULPROTO_ANY); 1198 if (m == NULL) 1199 goto msgfail; 1200 m_cat(result, m); 1201 1202 /* create SA extension */ 1203 m = key_setsadbsa(sav); 1204 if (m == NULL) 1205 goto msgfail; 1206 m_cat(result, m); 1207 1208 if (result->m_len < sizeof(struct sadb_msg)) { 1209 result = m_pullup(result, sizeof(struct sadb_msg)); 1210 if (result == NULL) 1211 goto msgfail; 1212 } 1213 1214 result->m_pkthdr.len = 0; 1215 for (m = result; m; m = m->m_next) 1216 result->m_pkthdr.len += m->m_len; 1217 mtod(result, struct sadb_msg *)->sadb_msg_len = 1218 PFKEY_UNIT64(result->m_pkthdr.len); 1219 1220 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 1221 result = NULL; 1222 msgfail: 1223 if (result) 1224 m_freem(result); 1225 } 1226 #endif 1227 1228 /* 1229 * allocating a usable SA entry for a *INBOUND* packet. 1230 * Must call key_freesav() later. 1231 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1232 * NULL: not found, or error occurred. 1233 * 1234 * In the comparison, no source address is used--for RFC2401 conformance. 1235 * To quote, from section 4.1: 1236 * A security association is uniquely identified by a triple consisting 1237 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1238 * security protocol (AH or ESP) identifier. 1239 * Note that, however, we do need to keep source address in IPsec SA. 1240 * IKE specification and PF_KEY specification do assume that we 1241 * keep source address in IPsec SA. We see a tricky situation here. 1242 * 1243 * sport and dport are used for NAT-T. network order is always used. 1244 */ 1245 struct secasvar * 1246 key_lookup_sa( 1247 const union sockaddr_union *dst, 1248 u_int proto, 1249 u_int32_t spi, 1250 u_int16_t sport, 1251 u_int16_t dport, 1252 const char* where, int tag) 1253 { 1254 struct secasvar *sav; 1255 int chkport; 1256 int s; 1257 1258 int must_check_spi = 1; 1259 int must_check_alg = 0; 1260 u_int16_t cpi = 0; 1261 u_int8_t algo = 0; 1262 uint32_t hash_key = spi; 1263 1264 if ((sport != 0) && (dport != 0)) 1265 chkport = PORT_STRICT; 1266 else 1267 chkport = PORT_NONE; 1268 1269 KASSERT(dst != NULL); 1270 1271 /* 1272 * XXX IPCOMP case 1273 * We use cpi to define spi here. In the case where cpi <= 1274 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not 1275 * the real spi. In this case, don't check the spi but check the 1276 * algorithm 1277 */ 1278 1279 if (proto == IPPROTO_IPCOMP) { 1280 u_int32_t tmp; 1281 tmp = ntohl(spi); 1282 cpi = (u_int16_t) tmp; 1283 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) { 1284 algo = (u_int8_t) cpi; 1285 hash_key = algo; 1286 must_check_spi = 0; 1287 must_check_alg = 1; 1288 } 1289 } 1290 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1291 "DP from %s:%u check_spi=%d, check_alg=%d\n", 1292 where, tag, must_check_spi, must_check_alg); 1293 1294 1295 /* 1296 * searching SAD. 1297 * XXX: to be checked internal IP header somewhere. Also when 1298 * IPsec tunnel packet is received. But ESP tunnel mode is 1299 * encrypted so we can't check internal IP header. 1300 */ 1301 s = pserialize_read_enter(); 1302 SAVLUT_READER_FOREACH(sav, &dst->sa, proto, hash_key) { 1303 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1304 "try match spi %#x, %#x\n", 1305 ntohl(spi), ntohl(sav->spi)); 1306 1307 /* do not return entries w/ unusable state */ 1308 if (!SADB_SASTATE_USABLE_P(sav)) { 1309 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1310 "bad state %d\n", sav->state); 1311 continue; 1312 } 1313 if (proto != sav->sah->saidx.proto) { 1314 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1315 "proto fail %d != %d\n", 1316 proto, sav->sah->saidx.proto); 1317 continue; 1318 } 1319 if (must_check_spi && spi != sav->spi) { 1320 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1321 "spi fail %#x != %#x\n", 1322 ntohl(spi), ntohl(sav->spi)); 1323 continue; 1324 } 1325 /* XXX only on the ipcomp case */ 1326 if (must_check_alg && algo != sav->alg_comp) { 1327 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1328 "algo fail %d != %d\n", 1329 algo, sav->alg_comp); 1330 continue; 1331 } 1332 1333 #if 0 /* don't check src */ 1334 /* Fix port in src->sa */ 1335 1336 /* check src address */ 1337 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE)) 1338 continue; 1339 #endif 1340 /* fix port of dst address XXX*/ 1341 key_porttosaddr(__UNCONST(dst), dport); 1342 /* check dst address */ 1343 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport)) 1344 continue; 1345 key_sa_ref(sav, where, tag); 1346 goto done; 1347 } 1348 sav = NULL; 1349 done: 1350 pserialize_read_exit(s); 1351 1352 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1353 "DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav)); 1354 return sav; 1355 } 1356 1357 static void 1358 key_validate_savlist(const struct secashead *sah, const u_int state) 1359 { 1360 #ifdef DEBUG 1361 struct secasvar *sav, *next; 1362 int s; 1363 1364 /* 1365 * The list should be sorted by lft_c->sadb_lifetime_addtime 1366 * in ascending order. 1367 */ 1368 s = pserialize_read_enter(); 1369 SAVLIST_READER_FOREACH(sav, sah, state) { 1370 next = SAVLIST_READER_NEXT(sav); 1371 if (next != NULL && 1372 sav->lft_c != NULL && next->lft_c != NULL) { 1373 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <= 1374 next->lft_c->sadb_lifetime_addtime, 1375 "savlist is not sorted: sah=%p, state=%d, " 1376 "sav=%" PRIu64 ", next=%" PRIu64, sah, state, 1377 sav->lft_c->sadb_lifetime_addtime, 1378 next->lft_c->sadb_lifetime_addtime); 1379 } 1380 } 1381 pserialize_read_exit(s); 1382 #endif 1383 } 1384 1385 void 1386 key_init_sp(struct secpolicy *sp) 1387 { 1388 1389 ASSERT_SLEEPABLE(); 1390 1391 sp->state = IPSEC_SPSTATE_ALIVE; 1392 if (sp->policy == IPSEC_POLICY_IPSEC) 1393 KASSERT(sp->req != NULL); 1394 localcount_init(&sp->localcount); 1395 SPLIST_ENTRY_INIT(sp); 1396 } 1397 1398 /* 1399 * Must be called in a pserialize read section. A held SP 1400 * must be released by key_sp_unref after use. 1401 */ 1402 void 1403 key_sp_ref(struct secpolicy *sp, const char* where, int tag) 1404 { 1405 1406 localcount_acquire(&sp->localcount); 1407 1408 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1409 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n", 1410 sp, sp->id, where, tag, key_sp_refcnt(sp)); 1411 } 1412 1413 /* 1414 * Must be called without holding key_spd.lock because the lock 1415 * would be held in localcount_release. 1416 */ 1417 void 1418 key_sp_unref(struct secpolicy *sp, const char* where, int tag) 1419 { 1420 1421 KDASSERT(mutex_ownable(&key_spd.lock)); 1422 1423 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1424 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n", 1425 sp, sp->id, where, tag, key_sp_refcnt(sp)); 1426 1427 localcount_release(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); 1428 } 1429 1430 static void 1431 key_init_sav(struct secasvar *sav) 1432 { 1433 1434 ASSERT_SLEEPABLE(); 1435 1436 localcount_init(&sav->localcount); 1437 SAVLIST_ENTRY_INIT(sav); 1438 SAVLUT_ENTRY_INIT(sav); 1439 } 1440 1441 u_int 1442 key_sa_refcnt(const struct secasvar *sav) 1443 { 1444 1445 /* FIXME */ 1446 return 0; 1447 } 1448 1449 void 1450 key_sa_ref(struct secasvar *sav, const char* where, int tag) 1451 { 1452 1453 localcount_acquire(&sav->localcount); 1454 1455 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1456 "DP cause refcnt++: SA:%p from %s:%u\n", 1457 sav, where, tag); 1458 } 1459 1460 void 1461 key_sa_unref(struct secasvar *sav, const char* where, int tag) 1462 { 1463 1464 KDASSERT(mutex_ownable(&key_sad.lock)); 1465 1466 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1467 "DP cause refcnt--: SA:%p from %s:%u\n", 1468 sav, where, tag); 1469 1470 localcount_release(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1471 } 1472 1473 #if 0 1474 /* 1475 * Must be called after calling key_lookup_sp*(). 1476 * For the packet with socket. 1477 */ 1478 static void 1479 key_freeso(struct socket *so) 1480 { 1481 /* sanity check */ 1482 KASSERT(so != NULL); 1483 1484 switch (so->so_proto->pr_domain->dom_family) { 1485 #ifdef INET 1486 case PF_INET: 1487 { 1488 struct inpcb *pcb = sotoinpcb(so); 1489 1490 /* Does it have a PCB ? */ 1491 if (pcb == NULL) 1492 return; 1493 1494 struct inpcbpolicy *sp = pcb->inp_sp; 1495 key_freesp_so(&sp->sp_in); 1496 key_freesp_so(&sp->sp_out); 1497 } 1498 break; 1499 #endif 1500 #ifdef INET6 1501 case PF_INET6: 1502 { 1503 #ifdef HAVE_NRL_INPCB 1504 struct inpcb *pcb = sotoinpcb(so); 1505 struct inpcbpolicy *sp = pcb->inp_sp; 1506 1507 /* Does it have a PCB ? */ 1508 if (pcb == NULL) 1509 return; 1510 key_freesp_so(&sp->sp_in); 1511 key_freesp_so(&sp->sp_out); 1512 #else 1513 struct in6pcb *pcb = sotoin6pcb(so); 1514 1515 /* Does it have a PCB ? */ 1516 if (pcb == NULL) 1517 return; 1518 key_freesp_so(&pcb->in6p_sp->sp_in); 1519 key_freesp_so(&pcb->in6p_sp->sp_out); 1520 #endif 1521 } 1522 break; 1523 #endif /* INET6 */ 1524 default: 1525 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n", 1526 so->so_proto->pr_domain->dom_family); 1527 return; 1528 } 1529 } 1530 1531 static void 1532 key_freesp_so(struct secpolicy **sp) 1533 { 1534 1535 KASSERT(sp != NULL); 1536 KASSERT(*sp != NULL); 1537 1538 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1539 (*sp)->policy == IPSEC_POLICY_BYPASS) 1540 return; 1541 1542 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC, 1543 "invalid policy %u", (*sp)->policy); 1544 KEY_SP_UNREF(&sp); 1545 } 1546 #endif 1547 1548 static void 1549 key_sad_pserialize_perform(void) 1550 { 1551 1552 KASSERT(mutex_owned(&key_sad.lock)); 1553 1554 while (key_sad.psz_performing) 1555 cv_wait(&key_sad.cv_psz, &key_sad.lock); 1556 key_sad.psz_performing = true; 1557 mutex_exit(&key_sad.lock); 1558 1559 pserialize_perform(key_sad.psz); 1560 1561 mutex_enter(&key_sad.lock); 1562 key_sad.psz_performing = false; 1563 cv_broadcast(&key_sad.cv_psz); 1564 } 1565 1566 /* 1567 * Remove the sav from the savlist of its sah and wait for references to the sav 1568 * to be released. key_sad.lock must be held. 1569 */ 1570 static void 1571 key_unlink_sav(struct secasvar *sav) 1572 { 1573 1574 KASSERT(mutex_owned(&key_sad.lock)); 1575 1576 SAVLIST_WRITER_REMOVE(sav); 1577 SAVLUT_WRITER_REMOVE(sav); 1578 1579 KDASSERT(mutex_ownable(softnet_lock)); 1580 key_sad_pserialize_perform(); 1581 1582 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1583 } 1584 1585 /* 1586 * Destroy an sav where the sav must be unlinked from an sah 1587 * by say key_unlink_sav. 1588 */ 1589 static void 1590 key_destroy_sav(struct secasvar *sav) 1591 { 1592 1593 ASSERT_SLEEPABLE(); 1594 1595 localcount_fini(&sav->localcount); 1596 SAVLIST_ENTRY_DESTROY(sav); 1597 1598 key_delsav(sav); 1599 } 1600 1601 /* 1602 * Wait for references of a passed sav to go away. 1603 */ 1604 static void 1605 key_wait_sav(struct secasvar *sav) 1606 { 1607 1608 ASSERT_SLEEPABLE(); 1609 1610 mutex_enter(&key_sad.lock); 1611 KASSERT(sav->state == SADB_SASTATE_DEAD); 1612 KDASSERT(mutex_ownable(softnet_lock)); 1613 key_sad_pserialize_perform(); 1614 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1615 mutex_exit(&key_sad.lock); 1616 } 1617 1618 /* %%% SPD management */ 1619 /* 1620 * free security policy entry. 1621 */ 1622 static void 1623 key_destroy_sp(struct secpolicy *sp) 1624 { 1625 1626 SPLIST_ENTRY_DESTROY(sp); 1627 localcount_fini(&sp->localcount); 1628 1629 key_free_sp(sp); 1630 1631 key_update_used(); 1632 } 1633 1634 void 1635 key_free_sp(struct secpolicy *sp) 1636 { 1637 struct ipsecrequest *isr = sp->req, *nextisr; 1638 1639 while (isr != NULL) { 1640 nextisr = isr->next; 1641 kmem_free(isr, sizeof(*isr)); 1642 isr = nextisr; 1643 } 1644 1645 kmem_free(sp, sizeof(*sp)); 1646 } 1647 1648 void 1649 key_socksplist_add(struct secpolicy *sp) 1650 { 1651 1652 mutex_enter(&key_spd.lock); 1653 PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry); 1654 mutex_exit(&key_spd.lock); 1655 1656 key_update_used(); 1657 } 1658 1659 /* 1660 * search SPD 1661 * OUT: NULL : not found 1662 * others : found, pointer to a SP. 1663 */ 1664 static struct secpolicy * 1665 key_getsp(const struct secpolicyindex *spidx) 1666 { 1667 struct secpolicy *sp; 1668 int s; 1669 1670 KASSERT(spidx != NULL); 1671 1672 s = pserialize_read_enter(); 1673 SPLIST_READER_FOREACH(sp, spidx->dir) { 1674 if (sp->state == IPSEC_SPSTATE_DEAD) 1675 continue; 1676 if (key_spidx_match_exactly(spidx, &sp->spidx)) { 1677 KEY_SP_REF(sp); 1678 pserialize_read_exit(s); 1679 return sp; 1680 } 1681 } 1682 pserialize_read_exit(s); 1683 1684 return NULL; 1685 } 1686 1687 /* 1688 * search SPD and remove found SP 1689 * OUT: NULL : not found 1690 * others : found, pointer to a SP. 1691 */ 1692 static struct secpolicy * 1693 key_lookup_and_remove_sp(const struct secpolicyindex *spidx, bool from_kernel) 1694 { 1695 struct secpolicy *sp = NULL; 1696 1697 mutex_enter(&key_spd.lock); 1698 SPLIST_WRITER_FOREACH(sp, spidx->dir) { 1699 KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, "sp->state=%u", 1700 sp->state); 1701 /* 1702 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1703 * removed by userland programs. 1704 */ 1705 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1706 continue; 1707 if (key_spidx_match_exactly(spidx, &sp->spidx)) { 1708 key_unlink_sp(sp); 1709 goto out; 1710 } 1711 } 1712 sp = NULL; 1713 out: 1714 mutex_exit(&key_spd.lock); 1715 1716 return sp; 1717 } 1718 1719 /* 1720 * get SP by index. 1721 * OUT: NULL : not found 1722 * others : found, pointer to a SP. 1723 */ 1724 static struct secpolicy * 1725 key_getspbyid(u_int32_t id) 1726 { 1727 struct secpolicy *sp; 1728 int s; 1729 1730 s = pserialize_read_enter(); 1731 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { 1732 if (sp->state == IPSEC_SPSTATE_DEAD) 1733 continue; 1734 if (sp->id == id) { 1735 KEY_SP_REF(sp); 1736 goto out; 1737 } 1738 } 1739 1740 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { 1741 if (sp->state == IPSEC_SPSTATE_DEAD) 1742 continue; 1743 if (sp->id == id) { 1744 KEY_SP_REF(sp); 1745 goto out; 1746 } 1747 } 1748 out: 1749 pserialize_read_exit(s); 1750 return sp; 1751 } 1752 1753 /* 1754 * get SP by index, remove and return it. 1755 * OUT: NULL : not found 1756 * others : found, pointer to a SP. 1757 */ 1758 static struct secpolicy * 1759 key_lookupbyid_and_remove_sp(u_int32_t id, bool from_kernel) 1760 { 1761 struct secpolicy *sp; 1762 1763 mutex_enter(&key_spd.lock); 1764 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { 1765 KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, "sp->state=%u", 1766 sp->state); 1767 /* 1768 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1769 * removed by userland programs. 1770 */ 1771 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1772 continue; 1773 if (sp->id == id) 1774 goto out; 1775 } 1776 1777 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { 1778 KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, "sp->state=%u", 1779 sp->state); 1780 /* 1781 * SPs created in kernel(e.g. ipsec(4) I/F) must not be 1782 * removed by userland programs. 1783 */ 1784 if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL) 1785 continue; 1786 if (sp->id == id) 1787 goto out; 1788 } 1789 out: 1790 if (sp != NULL) 1791 key_unlink_sp(sp); 1792 mutex_exit(&key_spd.lock); 1793 return sp; 1794 } 1795 1796 struct secpolicy * 1797 key_newsp(const char* where, int tag) 1798 { 1799 struct secpolicy *newsp = NULL; 1800 1801 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP); 1802 1803 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1804 "DP from %s:%u return SP:%p\n", where, tag, newsp); 1805 return newsp; 1806 } 1807 1808 /* 1809 * create secpolicy structure from sadb_x_policy structure. 1810 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1811 * so must be set properly later. 1812 */ 1813 static struct secpolicy * 1814 _key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error, 1815 bool from_kernel) 1816 { 1817 struct secpolicy *newsp; 1818 1819 KASSERT(!cpu_softintr_p()); 1820 KASSERT(xpl0 != NULL); 1821 KASSERT(len >= sizeof(*xpl0)); 1822 1823 if (len != PFKEY_EXTLEN(xpl0)) { 1824 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); 1825 *error = EINVAL; 1826 return NULL; 1827 } 1828 1829 newsp = KEY_NEWSP(); 1830 if (newsp == NULL) { 1831 *error = ENOBUFS; 1832 return NULL; 1833 } 1834 1835 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1836 newsp->policy = xpl0->sadb_x_policy_type; 1837 1838 /* check policy */ 1839 switch (xpl0->sadb_x_policy_type) { 1840 case IPSEC_POLICY_DISCARD: 1841 case IPSEC_POLICY_NONE: 1842 case IPSEC_POLICY_ENTRUST: 1843 case IPSEC_POLICY_BYPASS: 1844 newsp->req = NULL; 1845 *error = 0; 1846 return newsp; 1847 1848 case IPSEC_POLICY_IPSEC: 1849 /* Continued */ 1850 break; 1851 default: 1852 IPSECLOG(LOG_DEBUG, "invalid policy type.\n"); 1853 key_free_sp(newsp); 1854 *error = EINVAL; 1855 return NULL; 1856 } 1857 1858 /* IPSEC_POLICY_IPSEC */ 1859 { 1860 int tlen; 1861 const struct sadb_x_ipsecrequest *xisr; 1862 uint16_t xisr_reqid; 1863 struct ipsecrequest **p_isr = &newsp->req; 1864 1865 /* validity check */ 1866 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1867 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); 1868 *error = EINVAL; 1869 goto free_exit; 1870 } 1871 1872 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1873 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1); 1874 1875 while (tlen > 0) { 1876 /* length check */ 1877 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1878 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n"); 1879 *error = EINVAL; 1880 goto free_exit; 1881 } 1882 1883 /* allocate request buffer */ 1884 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP); 1885 1886 /* set values */ 1887 (*p_isr)->next = NULL; 1888 1889 switch (xisr->sadb_x_ipsecrequest_proto) { 1890 case IPPROTO_ESP: 1891 case IPPROTO_AH: 1892 case IPPROTO_IPCOMP: 1893 break; 1894 default: 1895 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n", 1896 xisr->sadb_x_ipsecrequest_proto); 1897 *error = EPROTONOSUPPORT; 1898 goto free_exit; 1899 } 1900 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1901 1902 switch (xisr->sadb_x_ipsecrequest_mode) { 1903 case IPSEC_MODE_TRANSPORT: 1904 case IPSEC_MODE_TUNNEL: 1905 break; 1906 case IPSEC_MODE_ANY: 1907 default: 1908 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n", 1909 xisr->sadb_x_ipsecrequest_mode); 1910 *error = EINVAL; 1911 goto free_exit; 1912 } 1913 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1914 1915 switch (xisr->sadb_x_ipsecrequest_level) { 1916 case IPSEC_LEVEL_DEFAULT: 1917 case IPSEC_LEVEL_USE: 1918 case IPSEC_LEVEL_REQUIRE: 1919 break; 1920 case IPSEC_LEVEL_UNIQUE: 1921 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid; 1922 /* validity check */ 1923 /* 1924 * case 1) from_kernel == false 1925 * That means the request comes from userland. 1926 * If range violation of reqid, kernel will 1927 * update it, don't refuse it. 1928 * 1929 * case 2) from_kernel == true 1930 * That means the request comes from kernel 1931 * (e.g. ipsec(4) I/F). 1932 * Use thre requested reqid to avoid inconsistency 1933 * between kernel's reqid and the reqid in pf_key 1934 * message sent to userland. The pf_key message is 1935 * built by diverting request mbuf. 1936 */ 1937 if (!from_kernel && 1938 xisr_reqid > IPSEC_MANUAL_REQID_MAX) { 1939 IPSECLOG(LOG_DEBUG, 1940 "reqid=%d range " 1941 "violation, updated by kernel.\n", 1942 xisr_reqid); 1943 xisr_reqid = 0; 1944 } 1945 1946 /* allocate new reqid id if reqid is zero. */ 1947 if (xisr_reqid == 0) { 1948 u_int16_t reqid = key_newreqid(); 1949 if (reqid == 0) { 1950 *error = ENOBUFS; 1951 goto free_exit; 1952 } 1953 (*p_isr)->saidx.reqid = reqid; 1954 } else { 1955 /* set it for manual keying. */ 1956 (*p_isr)->saidx.reqid = xisr_reqid; 1957 } 1958 break; 1959 1960 default: 1961 IPSECLOG(LOG_DEBUG, "invalid level=%u\n", 1962 xisr->sadb_x_ipsecrequest_level); 1963 *error = EINVAL; 1964 goto free_exit; 1965 } 1966 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1967 1968 /* set IP addresses if there */ 1969 /* 1970 * NOTE: 1971 * MOBIKE Extensions for PF_KEY draft says: 1972 * If tunnel mode is specified, the sadb_x_ipsecrequest 1973 * structure is followed by two sockaddr structures that 1974 * define the tunnel endpoint addresses. In the case that 1975 * transport mode is used, no additional addresses are 1976 * specified. 1977 * see: https://tools.ietf.org/html/draft-schilcher-mobike-pfkey-extension-01 1978 * 1979 * And then, the IP addresses will be set by 1980 * ipsec_fill_saidx_bymbuf() from packet in transport mode. 1981 * This behavior is used by NAT-T enabled ipsecif(4). 1982 */ 1983 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1984 const struct sockaddr *paddr; 1985 1986 paddr = (const struct sockaddr *)(xisr + 1); 1987 1988 /* validity check */ 1989 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) { 1990 IPSECLOG(LOG_DEBUG, "invalid request " 1991 "address length.\n"); 1992 *error = EINVAL; 1993 goto free_exit; 1994 } 1995 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len); 1996 1997 paddr = (const struct sockaddr *)((const char *)paddr 1998 + paddr->sa_len); 1999 2000 /* validity check */ 2001 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) { 2002 IPSECLOG(LOG_DEBUG, "invalid request " 2003 "address length.\n"); 2004 *error = EINVAL; 2005 goto free_exit; 2006 } 2007 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len); 2008 } 2009 2010 (*p_isr)->sp = newsp; 2011 2012 /* initialization for the next. */ 2013 p_isr = &(*p_isr)->next; 2014 tlen -= xisr->sadb_x_ipsecrequest_len; 2015 2016 /* validity check */ 2017 if (tlen < 0) { 2018 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n"); 2019 *error = EINVAL; 2020 goto free_exit; 2021 } 2022 2023 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr + 2024 xisr->sadb_x_ipsecrequest_len); 2025 } 2026 } 2027 2028 *error = 0; 2029 return newsp; 2030 2031 free_exit: 2032 key_free_sp(newsp); 2033 return NULL; 2034 } 2035 2036 struct secpolicy * 2037 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error) 2038 { 2039 2040 return _key_msg2sp(xpl0, len, error, false); 2041 } 2042 2043 u_int16_t 2044 key_newreqid(void) 2045 { 2046 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 2047 2048 auto_reqid = (auto_reqid == 0xffff ? 2049 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 2050 2051 /* XXX should be unique check */ 2052 2053 return auto_reqid; 2054 } 2055 2056 /* 2057 * copy secpolicy struct to sadb_x_policy structure indicated. 2058 */ 2059 struct mbuf * 2060 key_sp2msg(const struct secpolicy *sp, int mflag) 2061 { 2062 struct sadb_x_policy *xpl; 2063 int tlen; 2064 char *p; 2065 struct mbuf *m; 2066 2067 KASSERT(sp != NULL); 2068 2069 tlen = key_getspreqmsglen(sp); 2070 2071 m = key_alloc_mbuf(tlen, mflag); 2072 if (!m || m->m_next) { /*XXX*/ 2073 if (m) 2074 m_freem(m); 2075 return NULL; 2076 } 2077 2078 m->m_len = tlen; 2079 m->m_next = NULL; 2080 xpl = mtod(m, struct sadb_x_policy *); 2081 memset(xpl, 0, tlen); 2082 2083 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 2084 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 2085 xpl->sadb_x_policy_type = sp->policy; 2086 xpl->sadb_x_policy_dir = sp->spidx.dir; 2087 xpl->sadb_x_policy_id = sp->id; 2088 p = (char *)xpl + sizeof(*xpl); 2089 2090 /* if is the policy for ipsec ? */ 2091 if (sp->policy == IPSEC_POLICY_IPSEC) { 2092 struct sadb_x_ipsecrequest *xisr; 2093 struct ipsecrequest *isr; 2094 2095 for (isr = sp->req; isr != NULL; isr = isr->next) { 2096 2097 xisr = (struct sadb_x_ipsecrequest *)p; 2098 2099 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 2100 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 2101 xisr->sadb_x_ipsecrequest_level = isr->level; 2102 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 2103 2104 p += sizeof(*xisr); 2105 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len); 2106 p += isr->saidx.src.sa.sa_len; 2107 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len); 2108 p += isr->saidx.src.sa.sa_len; 2109 2110 xisr->sadb_x_ipsecrequest_len = 2111 PFKEY_ALIGN8(sizeof(*xisr) 2112 + isr->saidx.src.sa.sa_len 2113 + isr->saidx.dst.sa.sa_len); 2114 } 2115 } 2116 2117 return m; 2118 } 2119 2120 /* 2121 * m will not be freed nor modified. It never return NULL. 2122 * If it returns a mbuf of M_PKTHDR, the mbuf ensures to have 2123 * contiguous length at least sizeof(struct sadb_msg). 2124 */ 2125 static struct mbuf * 2126 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 2127 int ndeep, int nitem, ...) 2128 { 2129 va_list ap; 2130 int idx; 2131 int i; 2132 struct mbuf *result = NULL, *n; 2133 int len; 2134 2135 KASSERT(m != NULL); 2136 KASSERT(mhp != NULL); 2137 KASSERT(!cpu_softintr_p()); 2138 2139 va_start(ap, nitem); 2140 for (i = 0; i < nitem; i++) { 2141 idx = va_arg(ap, int); 2142 KASSERT(idx >= 0); 2143 KASSERT(idx <= SADB_EXT_MAX); 2144 /* don't attempt to pull empty extension */ 2145 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 2146 continue; 2147 if (idx != SADB_EXT_RESERVED && 2148 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 2149 continue; 2150 2151 if (idx == SADB_EXT_RESERVED) { 2152 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN); 2153 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2154 MGETHDR(n, M_WAITOK, MT_DATA); 2155 n->m_len = len; 2156 n->m_next = NULL; 2157 m_copydata(m, 0, sizeof(struct sadb_msg), 2158 mtod(n, void *)); 2159 } else if (i < ndeep) { 2160 len = mhp->extlen[idx]; 2161 n = key_alloc_mbuf(len, M_WAITOK); 2162 KASSERT(n->m_next == NULL); 2163 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 2164 mtod(n, void *)); 2165 } else { 2166 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 2167 M_WAITOK); 2168 } 2169 KASSERT(n != NULL); 2170 2171 if (result) 2172 m_cat(result, n); 2173 else 2174 result = n; 2175 } 2176 va_end(ap); 2177 2178 KASSERT(result != NULL); 2179 if ((result->m_flags & M_PKTHDR) != 0) { 2180 result->m_pkthdr.len = 0; 2181 for (n = result; n; n = n->m_next) 2182 result->m_pkthdr.len += n->m_len; 2183 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 2184 } 2185 2186 return result; 2187 } 2188 2189 /* 2190 * The argument _sp must not overwrite until SP is created and registered 2191 * successfully. 2192 */ 2193 static int 2194 key_spdadd(struct socket *so, struct mbuf *m, 2195 const struct sadb_msghdr *mhp, struct secpolicy **_sp, 2196 bool from_kernel) 2197 { 2198 const struct sockaddr *src, *dst; 2199 const struct sadb_x_policy *xpl0; 2200 struct sadb_x_policy *xpl; 2201 const struct sadb_lifetime *lft = NULL; 2202 struct secpolicyindex spidx; 2203 struct secpolicy *newsp; 2204 int error; 2205 uint32_t sadb_x_policy_id; 2206 2207 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2208 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2209 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2210 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2211 return key_senderror(so, m, EINVAL); 2212 } 2213 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2214 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2215 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2216 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2217 return key_senderror(so, m, EINVAL); 2218 } 2219 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 2220 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < 2221 sizeof(struct sadb_lifetime)) { 2222 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2223 return key_senderror(so, m, EINVAL); 2224 } 2225 lft = mhp->ext[SADB_EXT_LIFETIME_HARD]; 2226 } 2227 2228 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 2229 2230 /* checking the direciton. */ 2231 switch (xpl0->sadb_x_policy_dir) { 2232 case IPSEC_DIR_INBOUND: 2233 case IPSEC_DIR_OUTBOUND: 2234 break; 2235 default: 2236 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); 2237 return key_senderror(so, m, EINVAL); 2238 } 2239 2240 /* check policy */ 2241 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */ 2242 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST || 2243 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 2244 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n"); 2245 return key_senderror(so, m, EINVAL); 2246 } 2247 2248 /* policy requests are mandatory when action is ipsec. */ 2249 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX && 2250 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 2251 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 2252 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n"); 2253 return key_senderror(so, m, EINVAL); 2254 } 2255 2256 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 2257 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 2258 2259 /* sanity check on addr pair */ 2260 if (src->sa_family != dst->sa_family) 2261 return key_senderror(so, m, EINVAL); 2262 if (src->sa_len != dst->sa_len) 2263 return key_senderror(so, m, EINVAL); 2264 2265 key_init_spidx_bymsghdr(&spidx, mhp); 2266 2267 /* 2268 * checking there is SP already or not. 2269 * SPDUPDATE doesn't depend on whether there is a SP or not. 2270 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 2271 * then error. 2272 */ 2273 { 2274 struct secpolicy *sp; 2275 2276 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2277 sp = key_lookup_and_remove_sp(&spidx, from_kernel); 2278 if (sp != NULL) 2279 key_destroy_sp(sp); 2280 } else { 2281 sp = key_getsp(&spidx); 2282 if (sp != NULL) { 2283 KEY_SP_UNREF(&sp); 2284 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n"); 2285 return key_senderror(so, m, EEXIST); 2286 } 2287 } 2288 } 2289 2290 /* allocation new SP entry */ 2291 newsp = _key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error, from_kernel); 2292 if (newsp == NULL) { 2293 return key_senderror(so, m, error); 2294 } 2295 2296 newsp->id = key_getnewspid(); 2297 if (newsp->id == 0) { 2298 kmem_free(newsp, sizeof(*newsp)); 2299 return key_senderror(so, m, ENOBUFS); 2300 } 2301 2302 newsp->spidx = spidx; 2303 newsp->created = time_uptime; 2304 newsp->lastused = newsp->created; 2305 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 2306 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 2307 if (from_kernel) 2308 newsp->origin = IPSEC_SPORIGIN_KERNEL; 2309 else 2310 newsp->origin = IPSEC_SPORIGIN_USER; 2311 2312 key_init_sp(newsp); 2313 if (from_kernel) 2314 KEY_SP_REF(newsp); 2315 2316 sadb_x_policy_id = newsp->id; 2317 2318 if (_sp != NULL) 2319 *_sp = newsp; 2320 2321 mutex_enter(&key_spd.lock); 2322 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp); 2323 mutex_exit(&key_spd.lock); 2324 /* 2325 * We don't have a reference to newsp, so we must not touch newsp from 2326 * now on. If you want to do, you must take a reference beforehand. 2327 */ 2328 newsp = NULL; 2329 2330 #ifdef notyet 2331 /* delete the entry in key_misc.spacqlist */ 2332 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2333 struct secspacq *spacq = key_getspacq(&spidx); 2334 if (spacq != NULL) { 2335 /* reset counter in order to deletion by timehandler. */ 2336 spacq->created = time_uptime; 2337 spacq->count = 0; 2338 } 2339 } 2340 #endif 2341 2342 /* Invalidate all cached SPD pointers in the PCBs. */ 2343 ipsec_invalpcbcacheall(); 2344 2345 #if defined(GATEWAY) 2346 /* Invalidate the ipflow cache, as well. */ 2347 ipflow_invalidate_all(0); 2348 #ifdef INET6 2349 if (in6_present) 2350 ip6flow_invalidate_all(0); 2351 #endif /* INET6 */ 2352 #endif /* GATEWAY */ 2353 2354 key_update_used(); 2355 2356 { 2357 struct mbuf *n, *mpolicy; 2358 int off; 2359 2360 /* create new sadb_msg to reply. */ 2361 if (lft) { 2362 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 2363 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 2364 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2365 } else { 2366 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 2367 SADB_X_EXT_POLICY, 2368 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2369 } 2370 2371 key_fill_replymsg(n, 0); 2372 off = 0; 2373 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 2374 sizeof(*xpl), &off); 2375 if (mpolicy == NULL) { 2376 /* n is already freed */ 2377 /* 2378 * valid sp has been created, so we does not overwrite _sp 2379 * NULL here. let caller decide to use the sp or not. 2380 */ 2381 return key_senderror(so, m, ENOBUFS); 2382 } 2383 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off); 2384 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 2385 m_freem(n); 2386 /* ditto */ 2387 return key_senderror(so, m, EINVAL); 2388 } 2389 2390 xpl->sadb_x_policy_id = sadb_x_policy_id; 2391 2392 m_freem(m); 2393 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2394 } 2395 } 2396 2397 /* 2398 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 2399 * add an entry to SP database, when received 2400 * <base, address(SD), (lifetime(H),) policy> 2401 * from the user(?). 2402 * Adding to SP database, 2403 * and send 2404 * <base, address(SD), (lifetime(H),) policy> 2405 * to the socket which was send. 2406 * 2407 * SPDADD set a unique policy entry. 2408 * SPDSETIDX like SPDADD without a part of policy requests. 2409 * SPDUPDATE replace a unique policy entry. 2410 * 2411 * m will always be freed. 2412 */ 2413 static int 2414 key_api_spdadd(struct socket *so, struct mbuf *m, 2415 const struct sadb_msghdr *mhp) 2416 { 2417 2418 return key_spdadd(so, m, mhp, NULL, false); 2419 } 2420 2421 struct secpolicy * 2422 key_kpi_spdadd(struct mbuf *m) 2423 { 2424 struct sadb_msghdr mh; 2425 int error; 2426 struct secpolicy *sp = NULL; 2427 2428 error = key_align(m, &mh); 2429 if (error) 2430 return NULL; 2431 2432 error = key_spdadd(NULL, m, &mh, &sp, true); 2433 if (error) { 2434 /* 2435 * Currently, when key_spdadd() cannot send a PFKEY message 2436 * which means SP has been created, key_spdadd() returns error 2437 * although SP is created successfully. 2438 * Kernel components would not care PFKEY messages, so return 2439 * the "sp" regardless of error code. key_spdadd() overwrites 2440 * the argument only if SP is created successfully. 2441 */ 2442 } 2443 return sp; 2444 } 2445 2446 /* 2447 * get new policy id. 2448 * OUT: 2449 * 0: failure. 2450 * others: success. 2451 */ 2452 static u_int32_t 2453 key_getnewspid(void) 2454 { 2455 u_int32_t newid = 0; 2456 int count = key_spi_trycnt; /* XXX */ 2457 struct secpolicy *sp; 2458 2459 /* when requesting to allocate spi ranged */ 2460 while (count--) { 2461 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); 2462 2463 sp = key_getspbyid(newid); 2464 if (sp == NULL) 2465 break; 2466 2467 KEY_SP_UNREF(&sp); 2468 } 2469 2470 if (count == 0 || newid == 0) { 2471 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n"); 2472 return 0; 2473 } 2474 2475 return newid; 2476 } 2477 2478 /* 2479 * SADB_SPDDELETE processing 2480 * receive 2481 * <base, address(SD), policy(*)> 2482 * from the user(?), and set SADB_SASTATE_DEAD, 2483 * and send, 2484 * <base, address(SD), policy(*)> 2485 * to the ikmpd. 2486 * policy(*) including direction of policy. 2487 * 2488 * m will always be freed. 2489 */ 2490 static int 2491 key_api_spddelete(struct socket *so, struct mbuf *m, 2492 const struct sadb_msghdr *mhp) 2493 { 2494 struct sadb_x_policy *xpl0; 2495 struct secpolicyindex spidx; 2496 struct secpolicy *sp; 2497 2498 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2499 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2500 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2501 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2502 return key_senderror(so, m, EINVAL); 2503 } 2504 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2505 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2506 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2507 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2508 return key_senderror(so, m, EINVAL); 2509 } 2510 2511 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 2512 2513 /* checking the directon. */ 2514 switch (xpl0->sadb_x_policy_dir) { 2515 case IPSEC_DIR_INBOUND: 2516 case IPSEC_DIR_OUTBOUND: 2517 break; 2518 default: 2519 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); 2520 return key_senderror(so, m, EINVAL); 2521 } 2522 2523 /* make secindex */ 2524 key_init_spidx_bymsghdr(&spidx, mhp); 2525 2526 /* Is there SP in SPD ? */ 2527 sp = key_lookup_and_remove_sp(&spidx, false); 2528 if (sp == NULL) { 2529 IPSECLOG(LOG_DEBUG, "no SP found.\n"); 2530 return key_senderror(so, m, EINVAL); 2531 } 2532 2533 /* save policy id to buffer to be returned. */ 2534 xpl0->sadb_x_policy_id = sp->id; 2535 2536 key_destroy_sp(sp); 2537 2538 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2539 2540 { 2541 struct mbuf *n; 2542 2543 /* create new sadb_msg to reply. */ 2544 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2545 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2546 key_fill_replymsg(n, 0); 2547 m_freem(m); 2548 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2549 } 2550 } 2551 2552 static struct mbuf * 2553 key_alloc_mbuf_simple(int len, int mflag) 2554 { 2555 struct mbuf *n; 2556 2557 KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p())); 2558 2559 MGETHDR(n, mflag, MT_DATA); 2560 if (n && len > MHLEN) { 2561 MCLGET(n, mflag); 2562 if ((n->m_flags & M_EXT) == 0) { 2563 m_freem(n); 2564 n = NULL; 2565 } 2566 } 2567 return n; 2568 } 2569 2570 /* 2571 * SADB_SPDDELETE2 processing 2572 * receive 2573 * <base, policy(*)> 2574 * from the user(?), and set SADB_SASTATE_DEAD, 2575 * and send, 2576 * <base, policy(*)> 2577 * to the ikmpd. 2578 * policy(*) including direction of policy. 2579 * 2580 * m will always be freed. 2581 */ 2582 static int 2583 key_spddelete2(struct socket *so, struct mbuf *m, 2584 const struct sadb_msghdr *mhp, bool from_kernel) 2585 { 2586 u_int32_t id; 2587 struct secpolicy *sp; 2588 const struct sadb_x_policy *xpl; 2589 2590 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2591 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2592 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2593 return key_senderror(so, m, EINVAL); 2594 } 2595 2596 xpl = mhp->ext[SADB_X_EXT_POLICY]; 2597 id = xpl->sadb_x_policy_id; 2598 2599 /* Is there SP in SPD ? */ 2600 sp = key_lookupbyid_and_remove_sp(id, from_kernel); 2601 if (sp == NULL) { 2602 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); 2603 return key_senderror(so, m, EINVAL); 2604 } 2605 2606 key_destroy_sp(sp); 2607 2608 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2609 2610 { 2611 struct mbuf *n, *nn; 2612 int off, len; 2613 2614 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); 2615 2616 /* create new sadb_msg to reply. */ 2617 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2618 2619 n = key_alloc_mbuf_simple(len, M_WAITOK); 2620 n->m_len = len; 2621 n->m_next = NULL; 2622 off = 0; 2623 2624 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 2625 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2626 2627 KASSERTMSG(off == len, "length inconsistency"); 2628 2629 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2630 mhp->extlen[SADB_X_EXT_POLICY], M_WAITOK); 2631 2632 n->m_pkthdr.len = 0; 2633 for (nn = n; nn; nn = nn->m_next) 2634 n->m_pkthdr.len += nn->m_len; 2635 2636 key_fill_replymsg(n, 0); 2637 m_freem(m); 2638 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2639 } 2640 } 2641 2642 /* 2643 * SADB_SPDDELETE2 processing 2644 * receive 2645 * <base, policy(*)> 2646 * from the user(?), and set SADB_SASTATE_DEAD, 2647 * and send, 2648 * <base, policy(*)> 2649 * to the ikmpd. 2650 * policy(*) including direction of policy. 2651 * 2652 * m will always be freed. 2653 */ 2654 static int 2655 key_api_spddelete2(struct socket *so, struct mbuf *m, 2656 const struct sadb_msghdr *mhp) 2657 { 2658 2659 return key_spddelete2(so, m, mhp, false); 2660 } 2661 2662 int 2663 key_kpi_spddelete2(struct mbuf *m) 2664 { 2665 struct sadb_msghdr mh; 2666 int error; 2667 2668 error = key_align(m, &mh); 2669 if (error) 2670 return EINVAL; 2671 2672 return key_spddelete2(NULL, m, &mh, true); 2673 } 2674 2675 /* 2676 * SADB_X_GET processing 2677 * receive 2678 * <base, policy(*)> 2679 * from the user(?), 2680 * and send, 2681 * <base, address(SD), policy> 2682 * to the ikmpd. 2683 * policy(*) including direction of policy. 2684 * 2685 * m will always be freed. 2686 */ 2687 static int 2688 key_api_spdget(struct socket *so, struct mbuf *m, 2689 const struct sadb_msghdr *mhp) 2690 { 2691 u_int32_t id; 2692 struct secpolicy *sp; 2693 struct mbuf *n; 2694 const struct sadb_x_policy *xpl; 2695 2696 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2697 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2698 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2699 return key_senderror(so, m, EINVAL); 2700 } 2701 2702 xpl = mhp->ext[SADB_X_EXT_POLICY]; 2703 id = xpl->sadb_x_policy_id; 2704 2705 /* Is there SP in SPD ? */ 2706 sp = key_getspbyid(id); 2707 if (sp == NULL) { 2708 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); 2709 return key_senderror(so, m, ENOENT); 2710 } 2711 2712 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, 2713 mhp->msg->sadb_msg_pid); 2714 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */ 2715 m_freem(m); 2716 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2717 } 2718 2719 #ifdef notyet 2720 /* 2721 * SADB_X_SPDACQUIRE processing. 2722 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2723 * send 2724 * <base, policy(*)> 2725 * to KMD, and expect to receive 2726 * <base> with SADB_X_SPDACQUIRE if error occurred, 2727 * or 2728 * <base, policy> 2729 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2730 * policy(*) is without policy requests. 2731 * 2732 * 0 : succeed 2733 * others: error number 2734 */ 2735 int 2736 key_spdacquire(const struct secpolicy *sp) 2737 { 2738 struct mbuf *result = NULL, *m; 2739 struct secspacq *newspacq; 2740 int error; 2741 2742 KASSERT(sp != NULL); 2743 KASSERTMSG(sp->req == NULL, "called but there is request"); 2744 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC, 2745 "policy mismathed. IPsec is expected"); 2746 2747 /* Get an entry to check whether sent message or not. */ 2748 newspacq = key_getspacq(&sp->spidx); 2749 if (newspacq != NULL) { 2750 if (key_blockacq_count < newspacq->count) { 2751 /* reset counter and do send message. */ 2752 newspacq->count = 0; 2753 } else { 2754 /* increment counter and do nothing. */ 2755 newspacq->count++; 2756 return 0; 2757 } 2758 } else { 2759 /* make new entry for blocking to send SADB_ACQUIRE. */ 2760 newspacq = key_newspacq(&sp->spidx); 2761 if (newspacq == NULL) 2762 return ENOBUFS; 2763 2764 /* add to key_misc.acqlist */ 2765 LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain); 2766 } 2767 2768 /* create new sadb_msg to reply. */ 2769 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2770 if (!m) { 2771 error = ENOBUFS; 2772 goto fail; 2773 } 2774 result = m; 2775 2776 result->m_pkthdr.len = 0; 2777 for (m = result; m; m = m->m_next) 2778 result->m_pkthdr.len += m->m_len; 2779 2780 mtod(result, struct sadb_msg *)->sadb_msg_len = 2781 PFKEY_UNIT64(result->m_pkthdr.len); 2782 2783 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2784 2785 fail: 2786 if (result) 2787 m_freem(result); 2788 return error; 2789 } 2790 #endif /* notyet */ 2791 2792 /* 2793 * SADB_SPDFLUSH processing 2794 * receive 2795 * <base> 2796 * from the user, and free all entries in secpctree. 2797 * and send, 2798 * <base> 2799 * to the user. 2800 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2801 * 2802 * m will always be freed. 2803 */ 2804 static int 2805 key_api_spdflush(struct socket *so, struct mbuf *m, 2806 const struct sadb_msghdr *mhp) 2807 { 2808 struct sadb_msg *newmsg; 2809 struct secpolicy *sp; 2810 u_int dir; 2811 2812 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2813 return key_senderror(so, m, EINVAL); 2814 2815 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2816 retry: 2817 mutex_enter(&key_spd.lock); 2818 SPLIST_WRITER_FOREACH(sp, dir) { 2819 KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, 2820 "sp->state=%u", sp->state); 2821 /* 2822 * Userlang programs can remove SPs created by userland 2823 * probrams only, that is, they cannot remove SPs 2824 * created in kernel(e.g. ipsec(4) I/F). 2825 */ 2826 if (sp->origin == IPSEC_SPORIGIN_USER) { 2827 key_unlink_sp(sp); 2828 mutex_exit(&key_spd.lock); 2829 key_destroy_sp(sp); 2830 goto retry; 2831 } 2832 } 2833 mutex_exit(&key_spd.lock); 2834 } 2835 2836 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2837 2838 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2839 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 2840 return key_senderror(so, m, ENOBUFS); 2841 } 2842 2843 if (m->m_next) 2844 m_freem(m->m_next); 2845 m->m_next = NULL; 2846 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2847 newmsg = mtod(m, struct sadb_msg *); 2848 newmsg->sadb_msg_errno = 0; 2849 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2850 2851 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2852 } 2853 2854 static struct sockaddr key_src = { 2855 .sa_len = 2, 2856 .sa_family = PF_KEY, 2857 }; 2858 2859 static struct mbuf * 2860 key_setspddump_chain(int *errorp, int *lenp, pid_t pid) 2861 { 2862 struct secpolicy *sp; 2863 int cnt; 2864 u_int dir; 2865 struct mbuf *m, *n, *prev; 2866 int totlen; 2867 2868 KASSERT(mutex_owned(&key_spd.lock)); 2869 2870 *lenp = 0; 2871 2872 /* search SPD entry and get buffer size. */ 2873 cnt = 0; 2874 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2875 SPLIST_WRITER_FOREACH(sp, dir) { 2876 cnt++; 2877 } 2878 } 2879 2880 if (cnt == 0) { 2881 *errorp = ENOENT; 2882 return (NULL); 2883 } 2884 2885 m = NULL; 2886 prev = m; 2887 totlen = 0; 2888 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2889 SPLIST_WRITER_FOREACH(sp, dir) { 2890 --cnt; 2891 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 2892 2893 totlen += n->m_pkthdr.len; 2894 if (!m) { 2895 m = n; 2896 } else { 2897 prev->m_nextpkt = n; 2898 } 2899 prev = n; 2900 } 2901 } 2902 2903 *lenp = totlen; 2904 *errorp = 0; 2905 return (m); 2906 } 2907 2908 /* 2909 * SADB_SPDDUMP processing 2910 * receive 2911 * <base> 2912 * from the user, and dump all SP leaves 2913 * and send, 2914 * <base> ..... 2915 * to the ikmpd. 2916 * 2917 * m will always be freed. 2918 */ 2919 static int 2920 key_api_spddump(struct socket *so, struct mbuf *m0, 2921 const struct sadb_msghdr *mhp) 2922 { 2923 struct mbuf *n; 2924 int error, len; 2925 int ok; 2926 pid_t pid; 2927 2928 pid = mhp->msg->sadb_msg_pid; 2929 /* 2930 * If the requestor has insufficient socket-buffer space 2931 * for the entire chain, nobody gets any response to the DUMP. 2932 * XXX For now, only the requestor ever gets anything. 2933 * Moreover, if the requestor has any space at all, they receive 2934 * the entire chain, otherwise the request is refused with ENOBUFS. 2935 */ 2936 if (sbspace(&so->so_rcv) <= 0) { 2937 return key_senderror(so, m0, ENOBUFS); 2938 } 2939 2940 mutex_enter(&key_spd.lock); 2941 n = key_setspddump_chain(&error, &len, pid); 2942 mutex_exit(&key_spd.lock); 2943 2944 if (n == NULL) { 2945 return key_senderror(so, m0, ENOENT); 2946 } 2947 { 2948 uint64_t *ps = PFKEY_STAT_GETREF(); 2949 ps[PFKEY_STAT_IN_TOTAL]++; 2950 ps[PFKEY_STAT_IN_BYTES] += len; 2951 PFKEY_STAT_PUTREF(); 2952 } 2953 2954 /* 2955 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 2956 * The requestor receives either the entire chain, or an 2957 * error message with ENOBUFS. 2958 */ 2959 2960 /* 2961 * sbappendchainwith record takes the chain of entries, one 2962 * packet-record per SPD entry, prepends the key_src sockaddr 2963 * to each packet-record, links the sockaddr mbufs into a new 2964 * list of records, then appends the entire resulting 2965 * list to the requesting socket. 2966 */ 2967 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, 2968 SB_PRIO_ONESHOT_OVERFLOW); 2969 2970 if (!ok) { 2971 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 2972 m_freem(n); 2973 return key_senderror(so, m0, ENOBUFS); 2974 } 2975 2976 m_freem(m0); 2977 return error; 2978 } 2979 2980 /* 2981 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23 2982 */ 2983 static int 2984 key_api_nat_map(struct socket *so, struct mbuf *m, 2985 const struct sadb_msghdr *mhp) 2986 { 2987 struct sadb_x_nat_t_type *type; 2988 struct sadb_x_nat_t_port *sport; 2989 struct sadb_x_nat_t_port *dport; 2990 struct sadb_address *iaddr, *raddr; 2991 struct sadb_x_nat_t_frag *frag; 2992 2993 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 2994 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 2995 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) { 2996 IPSECLOG(LOG_DEBUG, "invalid message.\n"); 2997 return key_senderror(so, m, EINVAL); 2998 } 2999 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 3000 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 3001 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 3002 IPSECLOG(LOG_DEBUG, "invalid message.\n"); 3003 return key_senderror(so, m, EINVAL); 3004 } 3005 3006 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) && 3007 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) { 3008 IPSECLOG(LOG_DEBUG, "invalid message\n"); 3009 return key_senderror(so, m, EINVAL); 3010 } 3011 3012 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) && 3013 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) { 3014 IPSECLOG(LOG_DEBUG, "invalid message\n"); 3015 return key_senderror(so, m, EINVAL); 3016 } 3017 3018 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) && 3019 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) { 3020 IPSECLOG(LOG_DEBUG, "invalid message\n"); 3021 return key_senderror(so, m, EINVAL); 3022 } 3023 3024 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 3025 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 3026 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 3027 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; 3028 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; 3029 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 3030 3031 /* 3032 * XXX handle that, it should also contain a SA, or anything 3033 * that enable to update the SA information. 3034 */ 3035 3036 return 0; 3037 } 3038 3039 /* 3040 * Never return NULL. 3041 */ 3042 static struct mbuf * 3043 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid) 3044 { 3045 struct mbuf *result = NULL, *m; 3046 3047 KASSERT(!cpu_softintr_p()); 3048 3049 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, 3050 key_sp_refcnt(sp), M_WAITOK); 3051 result = m; 3052 3053 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3054 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK); 3055 m_cat(result, m); 3056 3057 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3058 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK); 3059 m_cat(result, m); 3060 3061 m = key_sp2msg(sp, M_WAITOK); 3062 m_cat(result, m); 3063 3064 KASSERT(result->m_flags & M_PKTHDR); 3065 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 3066 3067 result->m_pkthdr.len = 0; 3068 for (m = result; m; m = m->m_next) 3069 result->m_pkthdr.len += m->m_len; 3070 3071 mtod(result, struct sadb_msg *)->sadb_msg_len = 3072 PFKEY_UNIT64(result->m_pkthdr.len); 3073 3074 return result; 3075 } 3076 3077 /* 3078 * get PFKEY message length for security policy and request. 3079 */ 3080 static u_int 3081 key_getspreqmsglen(const struct secpolicy *sp) 3082 { 3083 u_int tlen; 3084 3085 tlen = sizeof(struct sadb_x_policy); 3086 3087 /* if is the policy for ipsec ? */ 3088 if (sp->policy != IPSEC_POLICY_IPSEC) 3089 return tlen; 3090 3091 /* get length of ipsec requests */ 3092 { 3093 const struct ipsecrequest *isr; 3094 int len; 3095 3096 for (isr = sp->req; isr != NULL; isr = isr->next) { 3097 len = sizeof(struct sadb_x_ipsecrequest) 3098 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len; 3099 3100 tlen += PFKEY_ALIGN8(len); 3101 } 3102 } 3103 3104 return tlen; 3105 } 3106 3107 /* 3108 * SADB_SPDEXPIRE processing 3109 * send 3110 * <base, address(SD), lifetime(CH), policy> 3111 * to KMD by PF_KEY. 3112 * 3113 * OUT: 0 : succeed 3114 * others : error number 3115 */ 3116 static int 3117 key_spdexpire(struct secpolicy *sp) 3118 { 3119 int s; 3120 struct mbuf *result = NULL, *m; 3121 int len; 3122 int error = -1; 3123 struct sadb_lifetime *lt; 3124 3125 /* XXX: Why do we lock ? */ 3126 s = splsoftnet(); /*called from softclock()*/ 3127 3128 KASSERT(sp != NULL); 3129 3130 /* set msg header */ 3131 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0, M_WAITOK); 3132 result = m; 3133 3134 /* create lifetime extension (current and hard) */ 3135 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 3136 m = key_alloc_mbuf(len, M_WAITOK); 3137 KASSERT(m->m_next == NULL); 3138 3139 memset(mtod(m, void *), 0, len); 3140 lt = mtod(m, struct sadb_lifetime *); 3141 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3142 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3143 lt->sadb_lifetime_allocations = 0; 3144 lt->sadb_lifetime_bytes = 0; 3145 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created); 3146 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused); 3147 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 3148 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3149 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 3150 lt->sadb_lifetime_allocations = 0; 3151 lt->sadb_lifetime_bytes = 0; 3152 lt->sadb_lifetime_addtime = sp->lifetime; 3153 lt->sadb_lifetime_usetime = sp->validtime; 3154 m_cat(result, m); 3155 3156 /* set sadb_address for source */ 3157 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa, 3158 sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK); 3159 m_cat(result, m); 3160 3161 /* set sadb_address for destination */ 3162 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa, 3163 sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK); 3164 m_cat(result, m); 3165 3166 /* set secpolicy */ 3167 m = key_sp2msg(sp, M_WAITOK); 3168 m_cat(result, m); 3169 3170 KASSERT(result->m_flags & M_PKTHDR); 3171 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 3172 3173 result->m_pkthdr.len = 0; 3174 for (m = result; m; m = m->m_next) 3175 result->m_pkthdr.len += m->m_len; 3176 3177 mtod(result, struct sadb_msg *)->sadb_msg_len = 3178 PFKEY_UNIT64(result->m_pkthdr.len); 3179 3180 error = key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 3181 splx(s); 3182 return error; 3183 } 3184 3185 /* %%% SAD management */ 3186 /* 3187 * allocating a memory for new SA head, and copy from the values of mhp. 3188 * OUT: NULL : failure due to the lack of memory. 3189 * others : pointer to new SA head. 3190 */ 3191 static struct secashead * 3192 key_newsah(const struct secasindex *saidx) 3193 { 3194 struct secashead *newsah; 3195 int i; 3196 3197 KASSERT(saidx != NULL); 3198 3199 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP); 3200 for (i = 0; i < __arraycount(newsah->savlist); i++) 3201 PSLIST_INIT(&newsah->savlist[i]); 3202 newsah->saidx = *saidx; 3203 3204 localcount_init(&newsah->localcount); 3205 /* Take a reference for the caller */ 3206 localcount_acquire(&newsah->localcount); 3207 3208 /* Add to the sah list */ 3209 SAHLIST_ENTRY_INIT(newsah); 3210 newsah->state = SADB_SASTATE_MATURE; 3211 mutex_enter(&key_sad.lock); 3212 SAHLIST_WRITER_INSERT_HEAD(newsah); 3213 mutex_exit(&key_sad.lock); 3214 3215 return newsah; 3216 } 3217 3218 static bool 3219 key_sah_has_sav(struct secashead *sah) 3220 { 3221 u_int state; 3222 3223 KASSERT(mutex_owned(&key_sad.lock)); 3224 3225 SASTATE_ANY_FOREACH(state) { 3226 if (!SAVLIST_WRITER_EMPTY(sah, state)) 3227 return true; 3228 } 3229 3230 return false; 3231 } 3232 3233 static void 3234 key_unlink_sah(struct secashead *sah) 3235 { 3236 3237 KASSERT(!cpu_softintr_p()); 3238 KASSERT(mutex_owned(&key_sad.lock)); 3239 KASSERTMSG(sah->state == SADB_SASTATE_DEAD, "sah->state=%u", sah->state); 3240 3241 /* Remove from the sah list */ 3242 SAHLIST_WRITER_REMOVE(sah); 3243 3244 KDASSERT(mutex_ownable(softnet_lock)); 3245 key_sad_pserialize_perform(); 3246 3247 localcount_drain(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); 3248 } 3249 3250 static void 3251 key_destroy_sah(struct secashead *sah) 3252 { 3253 3254 rtcache_free(&sah->sa_route); 3255 3256 SAHLIST_ENTRY_DESTROY(sah); 3257 localcount_fini(&sah->localcount); 3258 3259 if (sah->idents != NULL) 3260 kmem_free(sah->idents, sah->idents_len); 3261 if (sah->identd != NULL) 3262 kmem_free(sah->identd, sah->identd_len); 3263 3264 kmem_free(sah, sizeof(*sah)); 3265 } 3266 3267 /* 3268 * allocating a new SA with LARVAL state. 3269 * key_api_add() and key_api_getspi() call, 3270 * and copy the values of mhp into new buffer. 3271 * When SAD message type is GETSPI: 3272 * to set sequence number from acq_seq++, 3273 * to set zero to SPI. 3274 * not to call key_setsaval(). 3275 * OUT: NULL : fail 3276 * others : pointer to new secasvar. 3277 * 3278 * does not modify mbuf. does not free mbuf on error. 3279 */ 3280 static struct secasvar * 3281 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp, 3282 int *errp, const char* where, int tag) 3283 { 3284 struct secasvar *newsav; 3285 const struct sadb_sa *xsa; 3286 3287 KASSERT(!cpu_softintr_p()); 3288 KASSERT(m != NULL); 3289 KASSERT(mhp != NULL); 3290 KASSERT(mhp->msg != NULL); 3291 3292 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); 3293 3294 switch (mhp->msg->sadb_msg_type) { 3295 case SADB_GETSPI: 3296 newsav->spi = 0; 3297 3298 #ifdef IPSEC_DOSEQCHECK 3299 /* sync sequence number */ 3300 if (mhp->msg->sadb_msg_seq == 0) 3301 newsav->seq = 3302 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 3303 else 3304 #endif 3305 newsav->seq = mhp->msg->sadb_msg_seq; 3306 break; 3307 3308 case SADB_ADD: 3309 /* sanity check */ 3310 if (mhp->ext[SADB_EXT_SA] == NULL) { 3311 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 3312 *errp = EINVAL; 3313 goto error; 3314 } 3315 xsa = mhp->ext[SADB_EXT_SA]; 3316 newsav->spi = xsa->sadb_sa_spi; 3317 newsav->seq = mhp->msg->sadb_msg_seq; 3318 break; 3319 default: 3320 *errp = EINVAL; 3321 goto error; 3322 } 3323 3324 /* copy sav values */ 3325 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 3326 *errp = key_setsaval(newsav, m, mhp); 3327 if (*errp) 3328 goto error; 3329 } else { 3330 /* We don't allow lft_c to be NULL */ 3331 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime), 3332 KM_SLEEP); 3333 newsav->lft_c_counters_percpu = 3334 percpu_alloc(sizeof(lifetime_counters_t)); 3335 } 3336 3337 /* reset created */ 3338 newsav->created = time_uptime; 3339 newsav->pid = mhp->msg->sadb_msg_pid; 3340 3341 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 3342 "DP from %s:%u return SA:%p\n", where, tag, newsav); 3343 return newsav; 3344 3345 error: 3346 KASSERT(*errp != 0); 3347 kmem_free(newsav, sizeof(*newsav)); 3348 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 3349 "DP from %s:%u return SA:NULL\n", where, tag); 3350 return NULL; 3351 } 3352 3353 3354 static void 3355 key_clear_xform(struct secasvar *sav) 3356 { 3357 3358 /* 3359 * Cleanup xform state. Note that zeroize'ing causes the 3360 * keys to be cleared; otherwise we must do it ourself. 3361 */ 3362 if (sav->tdb_xform != NULL) { 3363 sav->tdb_xform->xf_zeroize(sav); 3364 sav->tdb_xform = NULL; 3365 } else { 3366 if (sav->key_auth != NULL) 3367 explicit_memset(_KEYBUF(sav->key_auth), 0, 3368 _KEYLEN(sav->key_auth)); 3369 if (sav->key_enc != NULL) 3370 explicit_memset(_KEYBUF(sav->key_enc), 0, 3371 _KEYLEN(sav->key_enc)); 3372 } 3373 } 3374 3375 /* 3376 * free() SA variable entry. 3377 */ 3378 static void 3379 key_delsav(struct secasvar *sav) 3380 { 3381 3382 key_clear_xform(sav); 3383 key_freesaval(sav); 3384 kmem_free(sav, sizeof(*sav)); 3385 } 3386 3387 /* 3388 * Must be called in a pserialize read section. A held sah 3389 * must be released by key_sah_unref after use. 3390 */ 3391 static void 3392 key_sah_ref(struct secashead *sah) 3393 { 3394 3395 localcount_acquire(&sah->localcount); 3396 } 3397 3398 /* 3399 * Must be called without holding key_sad.lock because the lock 3400 * would be held in localcount_release. 3401 */ 3402 static void 3403 key_sah_unref(struct secashead *sah) 3404 { 3405 3406 KDASSERT(mutex_ownable(&key_sad.lock)); 3407 3408 localcount_release(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); 3409 } 3410 3411 /* 3412 * Search SAD and return sah. Must be called in a pserialize 3413 * read section. 3414 * OUT: 3415 * NULL : not found 3416 * others : found, pointer to a SA. 3417 */ 3418 static struct secashead * 3419 key_getsah(const struct secasindex *saidx, int flag) 3420 { 3421 struct secashead *sah; 3422 3423 SAHLIST_READER_FOREACH_SAIDX(sah, saidx) { 3424 if (sah->state == SADB_SASTATE_DEAD) 3425 continue; 3426 if (key_saidx_match(&sah->saidx, saidx, flag)) 3427 return sah; 3428 } 3429 3430 return NULL; 3431 } 3432 3433 /* 3434 * Search SAD and return sah. If sah is returned, the caller must call 3435 * key_sah_unref to releaset a reference. 3436 * OUT: 3437 * NULL : not found 3438 * others : found, pointer to a SA. 3439 */ 3440 static struct secashead * 3441 key_getsah_ref(const struct secasindex *saidx, int flag) 3442 { 3443 struct secashead *sah; 3444 int s; 3445 3446 s = pserialize_read_enter(); 3447 sah = key_getsah(saidx, flag); 3448 if (sah != NULL) 3449 key_sah_ref(sah); 3450 pserialize_read_exit(s); 3451 3452 return sah; 3453 } 3454 3455 /* 3456 * check not to be duplicated SPI. 3457 * NOTE: this function is too slow due to searching all SAD. 3458 * OUT: 3459 * NULL : not found 3460 * others : found, pointer to a SA. 3461 */ 3462 static bool 3463 key_checkspidup(const struct secasindex *saidx, u_int32_t spi) 3464 { 3465 struct secashead *sah; 3466 struct secasvar *sav; 3467 3468 /* check address family */ 3469 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 3470 IPSECLOG(LOG_DEBUG, 3471 "address family mismatched src %u, dst %u.\n", 3472 saidx->src.sa.sa_family, saidx->dst.sa.sa_family); 3473 return false; 3474 } 3475 3476 /* check all SAD */ 3477 /* key_ismyaddr may sleep, so use mutex, not pserialize, here. */ 3478 mutex_enter(&key_sad.lock); 3479 SAHLIST_WRITER_FOREACH(sah) { 3480 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 3481 continue; 3482 sav = key_getsavbyspi(sah, spi); 3483 if (sav != NULL) { 3484 KEY_SA_UNREF(&sav); 3485 mutex_exit(&key_sad.lock); 3486 return true; 3487 } 3488 } 3489 mutex_exit(&key_sad.lock); 3490 3491 return false; 3492 } 3493 3494 /* 3495 * search SAD litmited alive SA, protocol, SPI. 3496 * OUT: 3497 * NULL : not found 3498 * others : found, pointer to a SA. 3499 */ 3500 static struct secasvar * 3501 key_getsavbyspi(struct secashead *sah, u_int32_t spi) 3502 { 3503 struct secasvar *sav = NULL; 3504 u_int state; 3505 int s; 3506 3507 /* search all status */ 3508 s = pserialize_read_enter(); 3509 SASTATE_ALIVE_FOREACH(state) { 3510 SAVLIST_READER_FOREACH(sav, sah, state) { 3511 /* sanity check */ 3512 if (sav->state != state) { 3513 IPSECLOG(LOG_DEBUG, 3514 "invalid sav->state (queue: %d SA: %d)\n", 3515 state, sav->state); 3516 continue; 3517 } 3518 3519 if (sav->spi == spi) { 3520 KEY_SA_REF(sav); 3521 goto out; 3522 } 3523 } 3524 } 3525 out: 3526 pserialize_read_exit(s); 3527 3528 return sav; 3529 } 3530 3531 /* 3532 * Search SAD litmited alive SA by an SPI and remove it from a list. 3533 * OUT: 3534 * NULL : not found 3535 * others : found, pointer to a SA. 3536 */ 3537 static struct secasvar * 3538 key_lookup_and_remove_sav(struct secashead *sah, u_int32_t spi, 3539 const struct secasvar *hint) 3540 { 3541 struct secasvar *sav = NULL; 3542 u_int state; 3543 3544 /* search all status */ 3545 mutex_enter(&key_sad.lock); 3546 SASTATE_ALIVE_FOREACH(state) { 3547 SAVLIST_WRITER_FOREACH(sav, sah, state) { 3548 KASSERT(sav->state == state); 3549 3550 if (sav->spi == spi) { 3551 if (hint != NULL && hint != sav) 3552 continue; 3553 sav->state = SADB_SASTATE_DEAD; 3554 SAVLIST_WRITER_REMOVE(sav); 3555 SAVLUT_WRITER_REMOVE(sav); 3556 goto out; 3557 } 3558 } 3559 } 3560 out: 3561 mutex_exit(&key_sad.lock); 3562 3563 return sav; 3564 } 3565 3566 /* 3567 * Free allocated data to member variables of sav: 3568 * sav->replay, sav->key_* and sav->lft_*. 3569 */ 3570 static void 3571 key_freesaval(struct secasvar *sav) 3572 { 3573 3574 KASSERTMSG(key_sa_refcnt(sav) == 0, "key_sa_refcnt(sav)=%u", 3575 key_sa_refcnt(sav)); 3576 3577 if (sav->replay != NULL) 3578 kmem_intr_free(sav->replay, sav->replay_len); 3579 if (sav->key_auth != NULL) 3580 kmem_intr_free(sav->key_auth, sav->key_auth_len); 3581 if (sav->key_enc != NULL) 3582 kmem_intr_free(sav->key_enc, sav->key_enc_len); 3583 if (sav->lft_c_counters_percpu != NULL) { 3584 percpu_free(sav->lft_c_counters_percpu, 3585 sizeof(lifetime_counters_t)); 3586 } 3587 if (sav->lft_c != NULL) 3588 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c))); 3589 if (sav->lft_h != NULL) 3590 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h))); 3591 if (sav->lft_s != NULL) 3592 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s))); 3593 } 3594 3595 /* 3596 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3597 * You must update these if need. 3598 * OUT: 0: success. 3599 * !0: failure. 3600 * 3601 * does not modify mbuf. does not free mbuf on error. 3602 */ 3603 static int 3604 key_setsaval(struct secasvar *sav, struct mbuf *m, 3605 const struct sadb_msghdr *mhp) 3606 { 3607 int error = 0; 3608 3609 KASSERT(!cpu_softintr_p()); 3610 KASSERT(m != NULL); 3611 KASSERT(mhp != NULL); 3612 KASSERT(mhp->msg != NULL); 3613 3614 /* We shouldn't initialize sav variables while someone uses it. */ 3615 KASSERTMSG(key_sa_refcnt(sav) == 0, "key_sa_refcnt(sav)=%u", 3616 key_sa_refcnt(sav)); 3617 3618 /* SA */ 3619 if (mhp->ext[SADB_EXT_SA] != NULL) { 3620 const struct sadb_sa *sa0; 3621 3622 sa0 = mhp->ext[SADB_EXT_SA]; 3623 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3624 error = EINVAL; 3625 goto fail; 3626 } 3627 3628 sav->alg_auth = sa0->sadb_sa_auth; 3629 sav->alg_enc = sa0->sadb_sa_encrypt; 3630 sav->flags = sa0->sadb_sa_flags; 3631 3632 /* replay window */ 3633 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3634 size_t len = sizeof(struct secreplay) + 3635 sa0->sadb_sa_replay; 3636 sav->replay = kmem_zalloc(len, KM_SLEEP); 3637 sav->replay_len = len; 3638 if (sa0->sadb_sa_replay != 0) 3639 sav->replay->bitmap = (char*)(sav->replay+1); 3640 sav->replay->wsize = sa0->sadb_sa_replay; 3641 } 3642 } 3643 3644 /* Authentication keys */ 3645 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3646 const struct sadb_key *key0; 3647 int len; 3648 3649 key0 = mhp->ext[SADB_EXT_KEY_AUTH]; 3650 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3651 3652 error = 0; 3653 if (len < sizeof(*key0)) { 3654 error = EINVAL; 3655 goto fail; 3656 } 3657 switch (mhp->msg->sadb_msg_satype) { 3658 case SADB_SATYPE_AH: 3659 case SADB_SATYPE_ESP: 3660 case SADB_X_SATYPE_TCPSIGNATURE: 3661 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3662 sav->alg_auth != SADB_X_AALG_NULL) 3663 error = EINVAL; 3664 break; 3665 case SADB_X_SATYPE_IPCOMP: 3666 default: 3667 error = EINVAL; 3668 break; 3669 } 3670 if (error) { 3671 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n"); 3672 goto fail; 3673 } 3674 3675 sav->key_auth = key_newbuf(key0, len); 3676 sav->key_auth_len = len; 3677 } 3678 3679 /* Encryption key */ 3680 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3681 const struct sadb_key *key0; 3682 int len; 3683 3684 key0 = mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3685 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3686 3687 error = 0; 3688 if (len < sizeof(*key0)) { 3689 error = EINVAL; 3690 goto fail; 3691 } 3692 switch (mhp->msg->sadb_msg_satype) { 3693 case SADB_SATYPE_ESP: 3694 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3695 sav->alg_enc != SADB_EALG_NULL) { 3696 error = EINVAL; 3697 break; 3698 } 3699 sav->key_enc = key_newbuf(key0, len); 3700 sav->key_enc_len = len; 3701 break; 3702 case SADB_X_SATYPE_IPCOMP: 3703 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3704 error = EINVAL; 3705 sav->key_enc = NULL; /*just in case*/ 3706 break; 3707 case SADB_SATYPE_AH: 3708 case SADB_X_SATYPE_TCPSIGNATURE: 3709 default: 3710 error = EINVAL; 3711 break; 3712 } 3713 if (error) { 3714 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n"); 3715 goto fail; 3716 } 3717 } 3718 3719 /* set iv */ 3720 sav->ivlen = 0; 3721 3722 switch (mhp->msg->sadb_msg_satype) { 3723 case SADB_SATYPE_AH: 3724 error = xform_init(sav, XF_AH); 3725 break; 3726 case SADB_SATYPE_ESP: 3727 error = xform_init(sav, XF_ESP); 3728 break; 3729 case SADB_X_SATYPE_IPCOMP: 3730 error = xform_init(sav, XF_IPCOMP); 3731 break; 3732 case SADB_X_SATYPE_TCPSIGNATURE: 3733 error = xform_init(sav, XF_TCPSIGNATURE); 3734 break; 3735 default: 3736 error = EOPNOTSUPP; 3737 break; 3738 } 3739 if (error) { 3740 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u (%d)\n", 3741 mhp->msg->sadb_msg_satype, error); 3742 goto fail; 3743 } 3744 3745 /* reset created */ 3746 sav->created = time_uptime; 3747 3748 /* make lifetime for CURRENT */ 3749 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP); 3750 3751 sav->lft_c->sadb_lifetime_len = 3752 PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3753 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3754 sav->lft_c->sadb_lifetime_allocations = 0; 3755 sav->lft_c->sadb_lifetime_bytes = 0; 3756 sav->lft_c->sadb_lifetime_addtime = time_uptime; 3757 sav->lft_c->sadb_lifetime_usetime = 0; 3758 3759 sav->lft_c_counters_percpu = percpu_alloc(sizeof(lifetime_counters_t)); 3760 3761 /* lifetimes for HARD and SOFT */ 3762 { 3763 const struct sadb_lifetime *lft0; 3764 3765 lft0 = mhp->ext[SADB_EXT_LIFETIME_HARD]; 3766 if (lft0 != NULL) { 3767 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3768 error = EINVAL; 3769 goto fail; 3770 } 3771 sav->lft_h = key_newbuf(lft0, sizeof(*lft0)); 3772 } 3773 3774 lft0 = mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3775 if (lft0 != NULL) { 3776 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3777 error = EINVAL; 3778 goto fail; 3779 } 3780 sav->lft_s = key_newbuf(lft0, sizeof(*lft0)); 3781 /* to be initialize ? */ 3782 } 3783 } 3784 3785 return 0; 3786 3787 fail: 3788 key_clear_xform(sav); 3789 key_freesaval(sav); 3790 3791 return error; 3792 } 3793 3794 /* 3795 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3796 * OUT: 0: valid 3797 * other: errno 3798 */ 3799 static int 3800 key_init_xform(struct secasvar *sav) 3801 { 3802 int error; 3803 3804 /* We shouldn't initialize sav variables while someone uses it. */ 3805 KASSERTMSG(key_sa_refcnt(sav) == 0, "key_sa_refcnt(sav)=%u", 3806 key_sa_refcnt(sav)); 3807 3808 /* check SPI value */ 3809 switch (sav->sah->saidx.proto) { 3810 case IPPROTO_ESP: 3811 case IPPROTO_AH: 3812 if (ntohl(sav->spi) <= 255) { 3813 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n", 3814 (u_int32_t)ntohl(sav->spi)); 3815 return EINVAL; 3816 } 3817 break; 3818 } 3819 3820 /* check algo */ 3821 switch (sav->sah->saidx.proto) { 3822 case IPPROTO_AH: 3823 case IPPROTO_TCP: 3824 if (sav->alg_enc != SADB_EALG_NONE) { 3825 IPSECLOG(LOG_DEBUG, 3826 "protocol %u and algorithm mismatched %u != %u.\n", 3827 sav->sah->saidx.proto, 3828 sav->alg_enc, SADB_EALG_NONE); 3829 return EINVAL; 3830 } 3831 break; 3832 case IPPROTO_IPCOMP: 3833 if (sav->alg_auth != SADB_AALG_NONE) { 3834 IPSECLOG(LOG_DEBUG, 3835 "protocol %u and algorithm mismatched %d != %d.\n", 3836 sav->sah->saidx.proto, 3837 sav->alg_auth, SADB_AALG_NONE); 3838 return(EINVAL); 3839 } 3840 break; 3841 default: 3842 break; 3843 } 3844 3845 /* check satype */ 3846 switch (sav->sah->saidx.proto) { 3847 case IPPROTO_ESP: 3848 /* check flags */ 3849 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3850 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3851 IPSECLOG(LOG_DEBUG, 3852 "invalid flag (derived) given to old-esp.\n"); 3853 return EINVAL; 3854 } 3855 error = xform_init(sav, XF_ESP); 3856 break; 3857 case IPPROTO_AH: 3858 /* check flags */ 3859 if (sav->flags & SADB_X_EXT_DERIV) { 3860 IPSECLOG(LOG_DEBUG, 3861 "invalid flag (derived) given to AH SA.\n"); 3862 return EINVAL; 3863 } 3864 error = xform_init(sav, XF_AH); 3865 break; 3866 case IPPROTO_IPCOMP: 3867 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3868 && ntohl(sav->spi) >= 0x10000) { 3869 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n"); 3870 return(EINVAL); 3871 } 3872 error = xform_init(sav, XF_IPCOMP); 3873 break; 3874 case IPPROTO_TCP: 3875 error = xform_init(sav, XF_TCPSIGNATURE); 3876 break; 3877 default: 3878 IPSECLOG(LOG_DEBUG, "Invalid satype.\n"); 3879 error = EPROTONOSUPPORT; 3880 break; 3881 } 3882 3883 return error; 3884 } 3885 3886 /* 3887 * subroutine for SADB_GET and SADB_DUMP. It never return NULL. 3888 */ 3889 static struct mbuf * 3890 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3891 u_int32_t seq, u_int32_t pid) 3892 { 3893 struct mbuf *result = NULL, *tres = NULL, *m; 3894 int l = 0; 3895 int i; 3896 void *p; 3897 struct sadb_lifetime lt; 3898 int dumporder[] = { 3899 SADB_EXT_SA, SADB_X_EXT_SA2, 3900 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3901 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3902 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3903 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3904 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3905 SADB_X_EXT_NAT_T_TYPE, 3906 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3907 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3908 SADB_X_EXT_NAT_T_FRAG, 3909 3910 }; 3911 3912 m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav), M_WAITOK); 3913 result = m; 3914 3915 for (i = __arraycount(dumporder) - 1; i >= 0; i--) { 3916 m = NULL; 3917 p = NULL; 3918 switch (dumporder[i]) { 3919 case SADB_EXT_SA: 3920 m = key_setsadbsa(sav); 3921 break; 3922 3923 case SADB_X_EXT_SA2: 3924 m = key_setsadbxsa2(sav->sah->saidx.mode, 3925 sav->replay ? sav->replay->count : 0, 3926 sav->sah->saidx.reqid); 3927 break; 3928 3929 case SADB_EXT_ADDRESS_SRC: 3930 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3931 &sav->sah->saidx.src.sa, 3932 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 3933 break; 3934 3935 case SADB_EXT_ADDRESS_DST: 3936 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3937 &sav->sah->saidx.dst.sa, 3938 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 3939 break; 3940 3941 case SADB_EXT_KEY_AUTH: 3942 if (!sav->key_auth) 3943 continue; 3944 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len); 3945 p = sav->key_auth; 3946 break; 3947 3948 case SADB_EXT_KEY_ENCRYPT: 3949 if (!sav->key_enc) 3950 continue; 3951 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len); 3952 p = sav->key_enc; 3953 break; 3954 3955 case SADB_EXT_LIFETIME_CURRENT: { 3956 lifetime_counters_t sum = {0}; 3957 3958 KASSERT(sav->lft_c != NULL); 3959 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len); 3960 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime)); 3961 lt.sadb_lifetime_addtime = 3962 time_mono_to_wall(lt.sadb_lifetime_addtime); 3963 lt.sadb_lifetime_usetime = 3964 time_mono_to_wall(lt.sadb_lifetime_usetime); 3965 percpu_foreach_xcall(sav->lft_c_counters_percpu, 3966 XC_HIGHPRI_IPL(IPL_SOFTNET), 3967 key_sum_lifetime_counters, sum); 3968 lt.sadb_lifetime_allocations = 3969 sum[LIFETIME_COUNTER_ALLOCATIONS]; 3970 lt.sadb_lifetime_bytes = 3971 sum[LIFETIME_COUNTER_BYTES]; 3972 p = < 3973 break; 3974 } 3975 3976 case SADB_EXT_LIFETIME_HARD: 3977 if (!sav->lft_h) 3978 continue; 3979 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len); 3980 p = sav->lft_h; 3981 break; 3982 3983 case SADB_EXT_LIFETIME_SOFT: 3984 if (!sav->lft_s) 3985 continue; 3986 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len); 3987 p = sav->lft_s; 3988 break; 3989 3990 case SADB_X_EXT_NAT_T_TYPE: 3991 m = key_setsadbxtype(sav->natt_type); 3992 break; 3993 3994 case SADB_X_EXT_NAT_T_DPORT: 3995 if (sav->natt_type == 0) 3996 continue; 3997 m = key_setsadbxport( 3998 key_portfromsaddr(&sav->sah->saidx.dst), 3999 SADB_X_EXT_NAT_T_DPORT); 4000 break; 4001 4002 case SADB_X_EXT_NAT_T_SPORT: 4003 if (sav->natt_type == 0) 4004 continue; 4005 m = key_setsadbxport( 4006 key_portfromsaddr(&sav->sah->saidx.src), 4007 SADB_X_EXT_NAT_T_SPORT); 4008 break; 4009 4010 case SADB_X_EXT_NAT_T_FRAG: 4011 /* don't send frag info if not set */ 4012 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET) 4013 continue; 4014 m = key_setsadbxfrag(sav->esp_frag); 4015 break; 4016 4017 case SADB_X_EXT_NAT_T_OAI: 4018 case SADB_X_EXT_NAT_T_OAR: 4019 continue; 4020 4021 case SADB_EXT_ADDRESS_PROXY: 4022 case SADB_EXT_IDENTITY_SRC: 4023 case SADB_EXT_IDENTITY_DST: 4024 /* XXX: should we brought from SPD ? */ 4025 case SADB_EXT_SENSITIVITY: 4026 default: 4027 continue; 4028 } 4029 4030 KASSERT(!(m && p)); 4031 KASSERT(m != NULL || p != NULL); 4032 if (p && tres) { 4033 M_PREPEND(tres, l, M_WAITOK); 4034 memcpy(mtod(tres, void *), p, l); 4035 continue; 4036 } 4037 if (p) { 4038 m = key_alloc_mbuf(l, M_WAITOK); 4039 m_copyback(m, 0, l, p); 4040 } 4041 4042 if (tres) 4043 m_cat(m, tres); 4044 tres = m; 4045 } 4046 4047 m_cat(result, tres); 4048 tres = NULL; /* avoid free on error below */ 4049 4050 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 4051 4052 result->m_pkthdr.len = 0; 4053 for (m = result; m; m = m->m_next) 4054 result->m_pkthdr.len += m->m_len; 4055 4056 mtod(result, struct sadb_msg *)->sadb_msg_len = 4057 PFKEY_UNIT64(result->m_pkthdr.len); 4058 4059 return result; 4060 } 4061 4062 4063 /* 4064 * set a type in sadb_x_nat_t_type 4065 */ 4066 static struct mbuf * 4067 key_setsadbxtype(u_int16_t type) 4068 { 4069 struct mbuf *m; 4070 size_t len; 4071 struct sadb_x_nat_t_type *p; 4072 4073 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 4074 4075 m = key_alloc_mbuf(len, M_WAITOK); 4076 KASSERT(m->m_next == NULL); 4077 4078 p = mtod(m, struct sadb_x_nat_t_type *); 4079 4080 memset(p, 0, len); 4081 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 4082 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 4083 p->sadb_x_nat_t_type_type = type; 4084 4085 return m; 4086 } 4087 /* 4088 * set a port in sadb_x_nat_t_port. port is in network order 4089 */ 4090 static struct mbuf * 4091 key_setsadbxport(u_int16_t port, u_int16_t type) 4092 { 4093 struct mbuf *m; 4094 size_t len; 4095 struct sadb_x_nat_t_port *p; 4096 4097 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 4098 4099 m = key_alloc_mbuf(len, M_WAITOK); 4100 KASSERT(m->m_next == NULL); 4101 4102 p = mtod(m, struct sadb_x_nat_t_port *); 4103 4104 memset(p, 0, len); 4105 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 4106 p->sadb_x_nat_t_port_exttype = type; 4107 p->sadb_x_nat_t_port_port = port; 4108 4109 return m; 4110 } 4111 4112 /* 4113 * set fragmentation info in sadb_x_nat_t_frag 4114 */ 4115 static struct mbuf * 4116 key_setsadbxfrag(u_int16_t flen) 4117 { 4118 struct mbuf *m; 4119 size_t len; 4120 struct sadb_x_nat_t_frag *p; 4121 4122 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag)); 4123 4124 m = key_alloc_mbuf(len, M_WAITOK); 4125 KASSERT(m->m_next == NULL); 4126 4127 p = mtod(m, struct sadb_x_nat_t_frag *); 4128 4129 memset(p, 0, len); 4130 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len); 4131 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG; 4132 p->sadb_x_nat_t_frag_fraglen = flen; 4133 4134 return m; 4135 } 4136 4137 /* 4138 * Get port from sockaddr, port is in network order 4139 */ 4140 u_int16_t 4141 key_portfromsaddr(const union sockaddr_union *saddr) 4142 { 4143 u_int16_t port; 4144 4145 switch (saddr->sa.sa_family) { 4146 case AF_INET: { 4147 port = saddr->sin.sin_port; 4148 break; 4149 } 4150 #ifdef INET6 4151 case AF_INET6: { 4152 port = saddr->sin6.sin6_port; 4153 break; 4154 } 4155 #endif 4156 default: 4157 printf("%s: unexpected address family\n", __func__); 4158 port = 0; 4159 break; 4160 } 4161 4162 return port; 4163 } 4164 4165 4166 /* 4167 * Set port is struct sockaddr. port is in network order 4168 */ 4169 static void 4170 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port) 4171 { 4172 switch (saddr->sa.sa_family) { 4173 case AF_INET: { 4174 saddr->sin.sin_port = port; 4175 break; 4176 } 4177 #ifdef INET6 4178 case AF_INET6: { 4179 saddr->sin6.sin6_port = port; 4180 break; 4181 } 4182 #endif 4183 default: 4184 printf("%s: unexpected address family %d\n", __func__, 4185 saddr->sa.sa_family); 4186 break; 4187 } 4188 4189 return; 4190 } 4191 4192 /* 4193 * Safety check sa_len 4194 */ 4195 static int 4196 key_checksalen(const union sockaddr_union *saddr) 4197 { 4198 switch (saddr->sa.sa_family) { 4199 case AF_INET: 4200 if (saddr->sa.sa_len != sizeof(struct sockaddr_in)) 4201 return -1; 4202 break; 4203 #ifdef INET6 4204 case AF_INET6: 4205 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6)) 4206 return -1; 4207 break; 4208 #endif 4209 default: 4210 printf("%s: unexpected sa_family %d\n", __func__, 4211 saddr->sa.sa_family); 4212 return -1; 4213 break; 4214 } 4215 return 0; 4216 } 4217 4218 4219 /* 4220 * set data into sadb_msg. 4221 */ 4222 static struct mbuf * 4223 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, 4224 u_int32_t seq, pid_t pid, u_int16_t reserved, int mflag) 4225 { 4226 struct mbuf *m; 4227 struct sadb_msg *p; 4228 int len; 4229 4230 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); 4231 4232 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4233 4234 m = key_alloc_mbuf_simple(len, mflag); 4235 if (!m) 4236 return NULL; 4237 m->m_pkthdr.len = m->m_len = len; 4238 m->m_next = NULL; 4239 4240 p = mtod(m, struct sadb_msg *); 4241 4242 memset(p, 0, len); 4243 p->sadb_msg_version = PF_KEY_V2; 4244 p->sadb_msg_type = type; 4245 p->sadb_msg_errno = 0; 4246 p->sadb_msg_satype = satype; 4247 p->sadb_msg_len = PFKEY_UNIT64(tlen); 4248 p->sadb_msg_reserved = reserved; 4249 p->sadb_msg_seq = seq; 4250 p->sadb_msg_pid = (u_int32_t)pid; 4251 4252 return m; 4253 } 4254 4255 /* 4256 * copy secasvar data into sadb_address. 4257 */ 4258 static struct mbuf * 4259 key_setsadbsa(struct secasvar *sav) 4260 { 4261 struct mbuf *m; 4262 struct sadb_sa *p; 4263 int len; 4264 4265 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4266 m = key_alloc_mbuf(len, M_WAITOK); 4267 KASSERT(m->m_next == NULL); 4268 4269 p = mtod(m, struct sadb_sa *); 4270 4271 memset(p, 0, len); 4272 p->sadb_sa_len = PFKEY_UNIT64(len); 4273 p->sadb_sa_exttype = SADB_EXT_SA; 4274 p->sadb_sa_spi = sav->spi; 4275 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 4276 p->sadb_sa_state = sav->state; 4277 p->sadb_sa_auth = sav->alg_auth; 4278 p->sadb_sa_encrypt = sav->alg_enc; 4279 p->sadb_sa_flags = sav->flags; 4280 4281 return m; 4282 } 4283 4284 static uint8_t 4285 key_sabits(const struct sockaddr *saddr) 4286 { 4287 switch (saddr->sa_family) { 4288 case AF_INET: 4289 return _BITS(sizeof(struct in_addr)); 4290 case AF_INET6: 4291 return _BITS(sizeof(struct in6_addr)); 4292 default: 4293 return FULLMASK; 4294 } 4295 } 4296 4297 /* 4298 * set data into sadb_address. 4299 */ 4300 static struct mbuf * 4301 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 4302 u_int8_t prefixlen, u_int16_t ul_proto, int mflag) 4303 { 4304 struct mbuf *m; 4305 struct sadb_address *p; 4306 size_t len; 4307 4308 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 4309 PFKEY_ALIGN8(saddr->sa_len); 4310 m = key_alloc_mbuf(len, mflag); 4311 if (!m || m->m_next) { /*XXX*/ 4312 if (m) 4313 m_freem(m); 4314 return NULL; 4315 } 4316 4317 p = mtod(m, struct sadb_address *); 4318 4319 memset(p, 0, len); 4320 p->sadb_address_len = PFKEY_UNIT64(len); 4321 p->sadb_address_exttype = exttype; 4322 p->sadb_address_proto = ul_proto; 4323 if (prefixlen == FULLMASK) { 4324 prefixlen = key_sabits(saddr); 4325 } 4326 p->sadb_address_prefixlen = prefixlen; 4327 p->sadb_address_reserved = 0; 4328 4329 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 4330 saddr, saddr->sa_len); 4331 4332 return m; 4333 } 4334 4335 #if 0 4336 /* 4337 * set data into sadb_ident. 4338 */ 4339 static struct mbuf * 4340 key_setsadbident(u_int16_t exttype, u_int16_t idtype, 4341 void *string, int stringlen, u_int64_t id) 4342 { 4343 struct mbuf *m; 4344 struct sadb_ident *p; 4345 size_t len; 4346 4347 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen); 4348 m = key_alloc_mbuf(len); 4349 if (!m || m->m_next) { /*XXX*/ 4350 if (m) 4351 m_freem(m); 4352 return NULL; 4353 } 4354 4355 p = mtod(m, struct sadb_ident *); 4356 4357 memset(p, 0, len); 4358 p->sadb_ident_len = PFKEY_UNIT64(len); 4359 p->sadb_ident_exttype = exttype; 4360 p->sadb_ident_type = idtype; 4361 p->sadb_ident_reserved = 0; 4362 p->sadb_ident_id = id; 4363 4364 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)), 4365 string, stringlen); 4366 4367 return m; 4368 } 4369 #endif 4370 4371 /* 4372 * set data into sadb_x_sa2. 4373 */ 4374 static struct mbuf * 4375 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid) 4376 { 4377 struct mbuf *m; 4378 struct sadb_x_sa2 *p; 4379 size_t len; 4380 4381 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 4382 m = key_alloc_mbuf(len, M_WAITOK); 4383 KASSERT(m->m_next == NULL); 4384 4385 p = mtod(m, struct sadb_x_sa2 *); 4386 4387 memset(p, 0, len); 4388 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 4389 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 4390 p->sadb_x_sa2_mode = mode; 4391 p->sadb_x_sa2_reserved1 = 0; 4392 p->sadb_x_sa2_reserved2 = 0; 4393 p->sadb_x_sa2_sequence = seq; 4394 p->sadb_x_sa2_reqid = reqid; 4395 4396 return m; 4397 } 4398 4399 /* 4400 * set data into sadb_x_policy 4401 */ 4402 static struct mbuf * 4403 key_setsadbxpolicy(const u_int16_t type, const u_int8_t dir, const u_int32_t id, 4404 int mflag) 4405 { 4406 struct mbuf *m; 4407 struct sadb_x_policy *p; 4408 size_t len; 4409 4410 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 4411 m = key_alloc_mbuf(len, mflag); 4412 if (!m || m->m_next) { /*XXX*/ 4413 if (m) 4414 m_freem(m); 4415 return NULL; 4416 } 4417 4418 p = mtod(m, struct sadb_x_policy *); 4419 4420 memset(p, 0, len); 4421 p->sadb_x_policy_len = PFKEY_UNIT64(len); 4422 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 4423 p->sadb_x_policy_type = type; 4424 p->sadb_x_policy_dir = dir; 4425 p->sadb_x_policy_id = id; 4426 4427 return m; 4428 } 4429 4430 /* %%% utilities */ 4431 /* 4432 * copy a buffer into the new buffer allocated. 4433 */ 4434 static void * 4435 key_newbuf(const void *src, u_int len) 4436 { 4437 void *new; 4438 4439 new = kmem_alloc(len, KM_SLEEP); 4440 memcpy(new, src, len); 4441 4442 return new; 4443 } 4444 4445 /* compare my own address 4446 * OUT: 1: true, i.e. my address. 4447 * 0: false 4448 */ 4449 int 4450 key_ismyaddr(const struct sockaddr *sa) 4451 { 4452 #ifdef INET 4453 const struct sockaddr_in *sin; 4454 const struct in_ifaddr *ia; 4455 int s; 4456 #endif 4457 4458 KASSERT(sa != NULL); 4459 4460 switch (sa->sa_family) { 4461 #ifdef INET 4462 case AF_INET: 4463 sin = (const struct sockaddr_in *)sa; 4464 s = pserialize_read_enter(); 4465 IN_ADDRLIST_READER_FOREACH(ia) { 4466 if (sin->sin_family == ia->ia_addr.sin_family && 4467 sin->sin_len == ia->ia_addr.sin_len && 4468 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 4469 { 4470 pserialize_read_exit(s); 4471 return 1; 4472 } 4473 } 4474 pserialize_read_exit(s); 4475 break; 4476 #endif 4477 #ifdef INET6 4478 case AF_INET6: 4479 return key_ismyaddr6((const struct sockaddr_in6 *)sa); 4480 #endif 4481 } 4482 4483 return 0; 4484 } 4485 4486 #ifdef INET6 4487 /* 4488 * compare my own address for IPv6. 4489 * 1: ours 4490 * 0: other 4491 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 4492 */ 4493 #include <netinet6/in6_var.h> 4494 4495 static int 4496 key_ismyaddr6(const struct sockaddr_in6 *sin6) 4497 { 4498 struct in6_ifaddr *ia; 4499 int s; 4500 struct psref psref; 4501 int bound; 4502 int ours = 1; 4503 4504 bound = curlwp_bind(); 4505 s = pserialize_read_enter(); 4506 IN6_ADDRLIST_READER_FOREACH(ia) { 4507 if (key_sockaddr_match((const struct sockaddr *)&sin6, 4508 (const struct sockaddr *)&ia->ia_addr, 0)) { 4509 pserialize_read_exit(s); 4510 goto ours; 4511 } 4512 4513 if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { 4514 bool ingroup; 4515 4516 ia6_acquire(ia, &psref); 4517 pserialize_read_exit(s); 4518 4519 /* 4520 * XXX Multicast 4521 * XXX why do we care about multlicast here while we don't care 4522 * about IPv4 multicast?? 4523 * XXX scope 4524 */ 4525 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp); 4526 if (ingroup) { 4527 ia6_release(ia, &psref); 4528 goto ours; 4529 } 4530 4531 s = pserialize_read_enter(); 4532 ia6_release(ia, &psref); 4533 } 4534 4535 } 4536 pserialize_read_exit(s); 4537 4538 /* loopback, just for safety */ 4539 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 4540 goto ours; 4541 4542 ours = 0; 4543 ours: 4544 curlwp_bindx(bound); 4545 4546 return ours; 4547 } 4548 #endif /*INET6*/ 4549 4550 /* 4551 * compare two secasindex structure. 4552 * flag can specify to compare 2 saidxes. 4553 * compare two secasindex structure without both mode and reqid. 4554 * don't compare port. 4555 * IN: 4556 * saidx0: source, it can be in SAD. 4557 * saidx1: object. 4558 * OUT: 4559 * 1 : equal 4560 * 0 : not equal 4561 */ 4562 static int 4563 key_saidx_match( 4564 const struct secasindex *saidx0, 4565 const struct secasindex *saidx1, 4566 int flag) 4567 { 4568 int chkport; 4569 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst; 4570 4571 KASSERT(saidx0 != NULL); 4572 KASSERT(saidx1 != NULL); 4573 4574 /* sanity */ 4575 if (saidx0->proto != saidx1->proto) 4576 return 0; 4577 4578 if (flag == CMP_EXACTLY) { 4579 if (saidx0->mode != saidx1->mode) 4580 return 0; 4581 if (saidx0->reqid != saidx1->reqid) 4582 return 0; 4583 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4584 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4585 return 0; 4586 } else { 4587 4588 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4589 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) { 4590 /* 4591 * If reqid of SPD is non-zero, unique SA is required. 4592 * The result must be of same reqid in this case. 4593 */ 4594 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4595 return 0; 4596 } 4597 4598 if (flag == CMP_MODE_REQID) { 4599 if (saidx0->mode != IPSEC_MODE_ANY && 4600 saidx0->mode != saidx1->mode) 4601 return 0; 4602 } 4603 4604 4605 sa0src = &saidx0->src.sa; 4606 sa0dst = &saidx0->dst.sa; 4607 sa1src = &saidx1->src.sa; 4608 sa1dst = &saidx1->dst.sa; 4609 /* 4610 * If NAT-T is enabled, check ports for tunnel mode. 4611 * For ipsecif(4), check ports for transport mode, too. 4612 * Don't check ports if they are set to zero 4613 * in the SPD: This means we have a non-generated 4614 * SPD which can't know UDP ports. 4615 */ 4616 if (saidx1->mode == IPSEC_MODE_TUNNEL || 4617 saidx1->mode == IPSEC_MODE_TRANSPORT) 4618 chkport = PORT_LOOSE; 4619 else 4620 chkport = PORT_NONE; 4621 4622 if (!key_sockaddr_match(sa0src, sa1src, chkport)) { 4623 return 0; 4624 } 4625 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) { 4626 return 0; 4627 } 4628 } 4629 4630 return 1; 4631 } 4632 4633 /* 4634 * compare two secindex structure exactly. 4635 * IN: 4636 * spidx0: source, it is often in SPD. 4637 * spidx1: object, it is often from PFKEY message. 4638 * OUT: 4639 * 1 : equal 4640 * 0 : not equal 4641 */ 4642 static int 4643 key_spidx_match_exactly( 4644 const struct secpolicyindex *spidx0, 4645 const struct secpolicyindex *spidx1) 4646 { 4647 4648 KASSERT(spidx0 != NULL); 4649 KASSERT(spidx1 != NULL); 4650 4651 /* sanity */ 4652 if (spidx0->prefs != spidx1->prefs || 4653 spidx0->prefd != spidx1->prefd || 4654 spidx0->ul_proto != spidx1->ul_proto) 4655 return 0; 4656 4657 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) && 4658 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT); 4659 } 4660 4661 /* 4662 * compare two secindex structure with mask. 4663 * IN: 4664 * spidx0: source, it is often in SPD. 4665 * spidx1: object, it is often from IP header. 4666 * OUT: 4667 * 1 : equal 4668 * 0 : not equal 4669 */ 4670 static int 4671 key_spidx_match_withmask( 4672 const struct secpolicyindex *spidx0, 4673 const struct secpolicyindex *spidx1) 4674 { 4675 4676 KASSERT(spidx0 != NULL); 4677 KASSERT(spidx1 != NULL); 4678 4679 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4680 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4681 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4682 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4683 return 0; 4684 4685 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4686 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY && 4687 spidx0->ul_proto != spidx1->ul_proto) 4688 return 0; 4689 4690 switch (spidx0->src.sa.sa_family) { 4691 case AF_INET: 4692 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY && 4693 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4694 return 0; 4695 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr, 4696 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4697 return 0; 4698 break; 4699 case AF_INET6: 4700 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY && 4701 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4702 return 0; 4703 /* 4704 * scope_id check. if sin6_scope_id is 0, we regard it 4705 * as a wildcard scope, which matches any scope zone ID. 4706 */ 4707 if (spidx0->src.sin6.sin6_scope_id && 4708 spidx1->src.sin6.sin6_scope_id && 4709 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4710 return 0; 4711 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr, 4712 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4713 return 0; 4714 break; 4715 default: 4716 /* XXX */ 4717 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4718 return 0; 4719 break; 4720 } 4721 4722 switch (spidx0->dst.sa.sa_family) { 4723 case AF_INET: 4724 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY && 4725 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4726 return 0; 4727 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr, 4728 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4729 return 0; 4730 break; 4731 case AF_INET6: 4732 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY && 4733 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4734 return 0; 4735 /* 4736 * scope_id check. if sin6_scope_id is 0, we regard it 4737 * as a wildcard scope, which matches any scope zone ID. 4738 */ 4739 if (spidx0->src.sin6.sin6_scope_id && 4740 spidx1->src.sin6.sin6_scope_id && 4741 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4742 return 0; 4743 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr, 4744 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4745 return 0; 4746 break; 4747 default: 4748 /* XXX */ 4749 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4750 return 0; 4751 break; 4752 } 4753 4754 /* XXX Do we check other field ? e.g. flowinfo */ 4755 4756 return 1; 4757 } 4758 4759 /* returns 0 on match */ 4760 static int 4761 key_portcomp(in_port_t port1, in_port_t port2, int howport) 4762 { 4763 switch (howport) { 4764 case PORT_NONE: 4765 return 0; 4766 case PORT_LOOSE: 4767 if (port1 == 0 || port2 == 0) 4768 return 0; 4769 /*FALLTHROUGH*/ 4770 case PORT_STRICT: 4771 if (port1 != port2) { 4772 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4773 "port fail %d != %d\n", ntohs(port1), ntohs(port2)); 4774 return 1; 4775 } 4776 return 0; 4777 default: 4778 KASSERT(0); 4779 return 1; 4780 } 4781 } 4782 4783 /* returns 1 on match */ 4784 static int 4785 key_sockaddr_match( 4786 const struct sockaddr *sa1, 4787 const struct sockaddr *sa2, 4788 int howport) 4789 { 4790 const struct sockaddr_in *sin1, *sin2; 4791 const struct sockaddr_in6 *sin61, *sin62; 4792 char s1[IPSEC_ADDRSTRLEN], s2[IPSEC_ADDRSTRLEN]; 4793 4794 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) { 4795 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4796 "fam/len fail %d != %d || %d != %d\n", 4797 sa1->sa_family, sa2->sa_family, sa1->sa_len, 4798 sa2->sa_len); 4799 return 0; 4800 } 4801 4802 switch (sa1->sa_family) { 4803 case AF_INET: 4804 if (sa1->sa_len != sizeof(struct sockaddr_in)) { 4805 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4806 "len fail %d != %zu\n", 4807 sa1->sa_len, sizeof(struct sockaddr_in)); 4808 return 0; 4809 } 4810 sin1 = (const struct sockaddr_in *)sa1; 4811 sin2 = (const struct sockaddr_in *)sa2; 4812 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) { 4813 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4814 "addr fail %s != %s\n", 4815 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), 4816 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2)); 4817 return 0; 4818 } 4819 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) { 4820 return 0; 4821 } 4822 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4823 "addr success %s[%d] == %s[%d]\n", 4824 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), 4825 ntohs(sin1->sin_port), 4826 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2), 4827 ntohs(sin2->sin_port)); 4828 break; 4829 case AF_INET6: 4830 sin61 = (const struct sockaddr_in6 *)sa1; 4831 sin62 = (const struct sockaddr_in6 *)sa2; 4832 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4833 return 0; /*EINVAL*/ 4834 4835 if (sin61->sin6_scope_id != sin62->sin6_scope_id) { 4836 return 0; 4837 } 4838 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) { 4839 return 0; 4840 } 4841 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) { 4842 return 0; 4843 } 4844 break; 4845 default: 4846 if (memcmp(sa1, sa2, sa1->sa_len) != 0) 4847 return 0; 4848 break; 4849 } 4850 4851 return 1; 4852 } 4853 4854 /* 4855 * compare two buffers with mask. 4856 * IN: 4857 * addr1: source 4858 * addr2: object 4859 * bits: Number of bits to compare 4860 * OUT: 4861 * 1 : equal 4862 * 0 : not equal 4863 */ 4864 static int 4865 key_bb_match_withmask(const void *a1, const void *a2, u_int bits) 4866 { 4867 const unsigned char *p1 = a1; 4868 const unsigned char *p2 = a2; 4869 4870 /* XXX: This could be considerably faster if we compare a word 4871 * at a time, but it is complicated on LSB Endian machines */ 4872 4873 /* Handle null pointers */ 4874 if (p1 == NULL || p2 == NULL) 4875 return (p1 == p2); 4876 4877 while (bits >= 8) { 4878 if (*p1++ != *p2++) 4879 return 0; 4880 bits -= 8; 4881 } 4882 4883 if (bits > 0) { 4884 u_int8_t mask = ~((1<<(8-bits))-1); 4885 if ((*p1 & mask) != (*p2 & mask)) 4886 return 0; 4887 } 4888 return 1; /* Match! */ 4889 } 4890 4891 static void 4892 key_timehandler_spd(void) 4893 { 4894 u_int dir; 4895 struct secpolicy *sp; 4896 volatile time_t now; 4897 4898 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4899 retry: 4900 mutex_enter(&key_spd.lock); 4901 /* 4902 * To avoid for sp->created to overtake "now" because of 4903 * waiting mutex, set time_uptime here. 4904 */ 4905 now = time_uptime; 4906 SPLIST_WRITER_FOREACH(sp, dir) { 4907 KASSERTMSG(sp->state != IPSEC_SPSTATE_DEAD, 4908 "sp->state=%u", sp->state); 4909 4910 if (sp->lifetime == 0 && sp->validtime == 0) 4911 continue; 4912 4913 if ((sp->lifetime && now - sp->created > sp->lifetime) || 4914 (sp->validtime && now - sp->lastused > sp->validtime)) { 4915 key_unlink_sp(sp); 4916 mutex_exit(&key_spd.lock); 4917 key_spdexpire(sp); 4918 key_destroy_sp(sp); 4919 goto retry; 4920 } 4921 } 4922 mutex_exit(&key_spd.lock); 4923 } 4924 4925 retry_socksplist: 4926 mutex_enter(&key_spd.lock); 4927 SOCKSPLIST_WRITER_FOREACH(sp) { 4928 if (sp->state != IPSEC_SPSTATE_DEAD) 4929 continue; 4930 4931 key_unlink_sp(sp); 4932 mutex_exit(&key_spd.lock); 4933 key_destroy_sp(sp); 4934 goto retry_socksplist; 4935 } 4936 mutex_exit(&key_spd.lock); 4937 } 4938 4939 static void 4940 key_timehandler_sad(void) 4941 { 4942 struct secashead *sah; 4943 int s; 4944 volatile time_t now; 4945 4946 restart: 4947 mutex_enter(&key_sad.lock); 4948 SAHLIST_WRITER_FOREACH(sah) { 4949 /* If sah has been dead and has no sav, then delete it */ 4950 if (sah->state == SADB_SASTATE_DEAD && 4951 !key_sah_has_sav(sah)) { 4952 key_unlink_sah(sah); 4953 mutex_exit(&key_sad.lock); 4954 key_destroy_sah(sah); 4955 goto restart; 4956 } 4957 } 4958 mutex_exit(&key_sad.lock); 4959 4960 s = pserialize_read_enter(); 4961 SAHLIST_READER_FOREACH(sah) { 4962 struct secasvar *sav; 4963 4964 key_sah_ref(sah); 4965 pserialize_read_exit(s); 4966 4967 /* if LARVAL entry doesn't become MATURE, delete it. */ 4968 mutex_enter(&key_sad.lock); 4969 restart_sav_LARVAL: 4970 /* 4971 * Same as key_timehandler_spd(), set time_uptime here. 4972 */ 4973 now = time_uptime; 4974 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) { 4975 if (now - sav->created > key_larval_lifetime) { 4976 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4977 goto restart_sav_LARVAL; 4978 } 4979 } 4980 mutex_exit(&key_sad.lock); 4981 4982 /* 4983 * check MATURE entry to start to send expire message 4984 * whether or not. 4985 */ 4986 restart_sav_MATURE: 4987 mutex_enter(&key_sad.lock); 4988 /* 4989 * ditto 4990 */ 4991 now = time_uptime; 4992 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_MATURE) { 4993 /* we don't need to check. */ 4994 if (sav->lft_s == NULL) 4995 continue; 4996 4997 /* sanity check */ 4998 KASSERT(sav->lft_c != NULL); 4999 5000 /* check SOFT lifetime */ 5001 if (sav->lft_s->sadb_lifetime_addtime != 0 && 5002 now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 5003 /* 5004 * check SA to be used whether or not. 5005 * when SA hasn't been used, delete it. 5006 */ 5007 if (sav->lft_c->sadb_lifetime_usetime == 0) { 5008 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5009 mutex_exit(&key_sad.lock); 5010 } else { 5011 key_sa_chgstate(sav, SADB_SASTATE_DYING); 5012 mutex_exit(&key_sad.lock); 5013 /* 5014 * XXX If we keep to send expire 5015 * message in the status of 5016 * DYING. Do remove below code. 5017 */ 5018 key_expire(sav); 5019 } 5020 goto restart_sav_MATURE; 5021 } 5022 /* check SOFT lifetime by bytes */ 5023 /* 5024 * XXX I don't know the way to delete this SA 5025 * when new SA is installed. Caution when it's 5026 * installed too big lifetime by time. 5027 */ 5028 else { 5029 uint64_t lft_c_bytes = 0; 5030 lifetime_counters_t sum = {0}; 5031 5032 percpu_foreach_xcall(sav->lft_c_counters_percpu, 5033 XC_HIGHPRI_IPL(IPL_SOFTNET), 5034 key_sum_lifetime_counters, sum); 5035 lft_c_bytes = sum[LIFETIME_COUNTER_BYTES]; 5036 5037 if (sav->lft_s->sadb_lifetime_bytes == 0 || 5038 sav->lft_s->sadb_lifetime_bytes >= lft_c_bytes) 5039 continue; 5040 5041 key_sa_chgstate(sav, SADB_SASTATE_DYING); 5042 mutex_exit(&key_sad.lock); 5043 /* 5044 * XXX If we keep to send expire 5045 * message in the status of 5046 * DYING. Do remove below code. 5047 */ 5048 key_expire(sav); 5049 goto restart_sav_MATURE; 5050 } 5051 } 5052 mutex_exit(&key_sad.lock); 5053 5054 /* check DYING entry to change status to DEAD. */ 5055 mutex_enter(&key_sad.lock); 5056 restart_sav_DYING: 5057 /* 5058 * ditto 5059 */ 5060 now = time_uptime; 5061 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DYING) { 5062 /* we don't need to check. */ 5063 if (sav->lft_h == NULL) 5064 continue; 5065 5066 /* sanity check */ 5067 KASSERT(sav->lft_c != NULL); 5068 5069 if (sav->lft_h->sadb_lifetime_addtime != 0 && 5070 now - sav->created > sav->lft_h->sadb_lifetime_addtime) { 5071 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5072 goto restart_sav_DYING; 5073 } 5074 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 5075 else if (sav->lft_s != NULL 5076 && sav->lft_s->sadb_lifetime_addtime != 0 5077 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 5078 /* 5079 * XXX: should be checked to be 5080 * installed the valid SA. 5081 */ 5082 5083 /* 5084 * If there is no SA then sending 5085 * expire message. 5086 */ 5087 key_expire(sav); 5088 } 5089 #endif 5090 /* check HARD lifetime by bytes */ 5091 else { 5092 uint64_t lft_c_bytes = 0; 5093 lifetime_counters_t sum = {0}; 5094 5095 percpu_foreach_xcall(sav->lft_c_counters_percpu, 5096 XC_HIGHPRI_IPL(IPL_SOFTNET), 5097 key_sum_lifetime_counters, sum); 5098 lft_c_bytes = sum[LIFETIME_COUNTER_BYTES]; 5099 5100 if (sav->lft_h->sadb_lifetime_bytes == 0 || 5101 sav->lft_h->sadb_lifetime_bytes >= lft_c_bytes) 5102 continue; 5103 5104 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5105 goto restart_sav_DYING; 5106 } 5107 } 5108 mutex_exit(&key_sad.lock); 5109 5110 /* delete entry in DEAD */ 5111 restart_sav_DEAD: 5112 mutex_enter(&key_sad.lock); 5113 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DEAD) { 5114 key_unlink_sav(sav); 5115 mutex_exit(&key_sad.lock); 5116 key_destroy_sav(sav); 5117 goto restart_sav_DEAD; 5118 } 5119 mutex_exit(&key_sad.lock); 5120 5121 s = pserialize_read_enter(); 5122 key_sah_unref(sah); 5123 } 5124 pserialize_read_exit(s); 5125 } 5126 5127 static void 5128 key_timehandler_acq(void) 5129 { 5130 #ifndef IPSEC_NONBLOCK_ACQUIRE 5131 struct secacq *acq, *nextacq; 5132 volatile time_t now; 5133 5134 restart: 5135 mutex_enter(&key_misc.lock); 5136 /* 5137 * Same as key_timehandler_spd(), set time_uptime here. 5138 */ 5139 now = time_uptime; 5140 LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) { 5141 if (now - acq->created > key_blockacq_lifetime) { 5142 LIST_REMOVE(acq, chain); 5143 mutex_exit(&key_misc.lock); 5144 kmem_free(acq, sizeof(*acq)); 5145 goto restart; 5146 } 5147 } 5148 mutex_exit(&key_misc.lock); 5149 #endif 5150 } 5151 5152 static void 5153 key_timehandler_spacq(void) 5154 { 5155 #ifdef notyet 5156 struct secspacq *acq, *nextacq; 5157 time_t now = time_uptime; 5158 5159 LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) { 5160 if (now - acq->created > key_blockacq_lifetime) { 5161 KASSERT(__LIST_CHAINED(acq)); 5162 LIST_REMOVE(acq, chain); 5163 kmem_free(acq, sizeof(*acq)); 5164 } 5165 } 5166 #endif 5167 } 5168 5169 static unsigned int key_timehandler_work_enqueued = 0; 5170 5171 /* 5172 * time handler. 5173 * scanning SPD and SAD to check status for each entries, 5174 * and do to remove or to expire. 5175 */ 5176 static void 5177 key_timehandler_work(struct work *wk, void *arg) 5178 { 5179 5180 /* We can allow enqueuing another work at this point */ 5181 atomic_swap_uint(&key_timehandler_work_enqueued, 0); 5182 5183 key_timehandler_spd(); 5184 key_timehandler_sad(); 5185 key_timehandler_acq(); 5186 key_timehandler_spacq(); 5187 5188 key_acquire_sendup_pending_mbuf(); 5189 5190 /* do exchange to tick time !! */ 5191 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 5192 5193 return; 5194 } 5195 5196 static void 5197 key_timehandler(void *arg) 5198 { 5199 5200 /* Avoid enqueuing another work when one is already enqueued */ 5201 if (atomic_swap_uint(&key_timehandler_work_enqueued, 1) == 1) 5202 return; 5203 5204 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL); 5205 } 5206 5207 u_long 5208 key_random(void) 5209 { 5210 u_long value; 5211 5212 key_randomfill(&value, sizeof(value)); 5213 return value; 5214 } 5215 5216 void 5217 key_randomfill(void *p, size_t l) 5218 { 5219 5220 cprng_fast(p, l); 5221 } 5222 5223 /* 5224 * map SADB_SATYPE_* to IPPROTO_*. 5225 * if satype == SADB_SATYPE then satype is mapped to ~0. 5226 * OUT: 5227 * 0: invalid satype. 5228 */ 5229 static u_int16_t 5230 key_satype2proto(u_int8_t satype) 5231 { 5232 switch (satype) { 5233 case SADB_SATYPE_UNSPEC: 5234 return IPSEC_PROTO_ANY; 5235 case SADB_SATYPE_AH: 5236 return IPPROTO_AH; 5237 case SADB_SATYPE_ESP: 5238 return IPPROTO_ESP; 5239 case SADB_X_SATYPE_IPCOMP: 5240 return IPPROTO_IPCOMP; 5241 case SADB_X_SATYPE_TCPSIGNATURE: 5242 return IPPROTO_TCP; 5243 default: 5244 return 0; 5245 } 5246 /* NOTREACHED */ 5247 } 5248 5249 /* 5250 * map IPPROTO_* to SADB_SATYPE_* 5251 * OUT: 5252 * 0: invalid protocol type. 5253 */ 5254 static u_int8_t 5255 key_proto2satype(u_int16_t proto) 5256 { 5257 switch (proto) { 5258 case IPPROTO_AH: 5259 return SADB_SATYPE_AH; 5260 case IPPROTO_ESP: 5261 return SADB_SATYPE_ESP; 5262 case IPPROTO_IPCOMP: 5263 return SADB_X_SATYPE_IPCOMP; 5264 case IPPROTO_TCP: 5265 return SADB_X_SATYPE_TCPSIGNATURE; 5266 default: 5267 return 0; 5268 } 5269 /* NOTREACHED */ 5270 } 5271 5272 static int 5273 key_setsecasidx(int proto, int mode, int reqid, 5274 const struct sockaddr *src, const struct sockaddr *dst, 5275 struct secasindex * saidx) 5276 { 5277 const union sockaddr_union *src_u = (const union sockaddr_union *)src; 5278 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst; 5279 5280 /* sa len safety check */ 5281 if (key_checksalen(src_u) != 0) 5282 return -1; 5283 if (key_checksalen(dst_u) != 0) 5284 return -1; 5285 5286 memset(saidx, 0, sizeof(*saidx)); 5287 saidx->proto = proto; 5288 saidx->mode = mode; 5289 saidx->reqid = reqid; 5290 memcpy(&saidx->src, src_u, src_u->sa.sa_len); 5291 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len); 5292 5293 key_porttosaddr(&((saidx)->src), 0); 5294 key_porttosaddr(&((saidx)->dst), 0); 5295 return 0; 5296 } 5297 5298 static void 5299 key_init_spidx_bymsghdr(struct secpolicyindex *spidx, 5300 const struct sadb_msghdr *mhp) 5301 { 5302 const struct sadb_address *src0, *dst0; 5303 const struct sockaddr *src, *dst; 5304 const struct sadb_x_policy *xpl0; 5305 5306 src0 = mhp->ext[SADB_EXT_ADDRESS_SRC]; 5307 dst0 = mhp->ext[SADB_EXT_ADDRESS_DST]; 5308 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5309 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5310 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 5311 5312 memset(spidx, 0, sizeof(*spidx)); 5313 spidx->dir = xpl0->sadb_x_policy_dir; 5314 spidx->prefs = src0->sadb_address_prefixlen; 5315 spidx->prefd = dst0->sadb_address_prefixlen; 5316 spidx->ul_proto = src0->sadb_address_proto; 5317 /* XXX boundary check against sa_len */ 5318 memcpy(&spidx->src, src, src->sa_len); 5319 memcpy(&spidx->dst, dst, dst->sa_len); 5320 } 5321 5322 /* %%% PF_KEY */ 5323 /* 5324 * SADB_GETSPI processing is to receive 5325 * <base, (SA2), src address, dst address, (SPI range)> 5326 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 5327 * tree with the status of LARVAL, and send 5328 * <base, SA(*), address(SD)> 5329 * to the IKMPd. 5330 * 5331 * IN: mhp: pointer to the pointer to each header. 5332 * OUT: NULL if fail. 5333 * other if success, return pointer to the message to send. 5334 */ 5335 static int 5336 key_api_getspi(struct socket *so, struct mbuf *m, 5337 const struct sadb_msghdr *mhp) 5338 { 5339 const struct sockaddr *src, *dst; 5340 struct secasindex saidx; 5341 struct secashead *sah; 5342 struct secasvar *newsav; 5343 u_int8_t proto; 5344 u_int32_t spi; 5345 u_int8_t mode; 5346 u_int16_t reqid; 5347 int error; 5348 5349 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5350 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5351 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5352 return key_senderror(so, m, EINVAL); 5353 } 5354 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5355 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5356 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5357 return key_senderror(so, m, EINVAL); 5358 } 5359 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5360 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5361 mode = sa2->sadb_x_sa2_mode; 5362 reqid = sa2->sadb_x_sa2_reqid; 5363 } else { 5364 mode = IPSEC_MODE_ANY; 5365 reqid = 0; 5366 } 5367 5368 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5369 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5370 5371 /* map satype to proto */ 5372 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5373 if (proto == 0) { 5374 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5375 return key_senderror(so, m, EINVAL); 5376 } 5377 5378 5379 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5380 if (error != 0) 5381 return key_senderror(so, m, EINVAL); 5382 5383 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5384 if (error != 0) 5385 return key_senderror(so, m, EINVAL); 5386 5387 /* SPI allocation */ 5388 spi = key_do_getnewspi(mhp->ext[SADB_EXT_SPIRANGE], &saidx); 5389 if (spi == 0) 5390 return key_senderror(so, m, EINVAL); 5391 5392 /* get a SA index */ 5393 sah = key_getsah_ref(&saidx, CMP_REQID); 5394 if (sah == NULL) { 5395 /* create a new SA index */ 5396 sah = key_newsah(&saidx); 5397 if (sah == NULL) { 5398 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5399 return key_senderror(so, m, ENOBUFS); 5400 } 5401 } 5402 5403 /* get a new SA */ 5404 /* XXX rewrite */ 5405 newsav = KEY_NEWSAV(m, mhp, &error); 5406 if (newsav == NULL) { 5407 key_sah_unref(sah); 5408 /* XXX don't free new SA index allocated in above. */ 5409 return key_senderror(so, m, error); 5410 } 5411 5412 /* set spi */ 5413 newsav->spi = htonl(spi); 5414 5415 /* Add to sah#savlist */ 5416 key_init_sav(newsav); 5417 newsav->sah = sah; 5418 newsav->state = SADB_SASTATE_LARVAL; 5419 mutex_enter(&key_sad.lock); 5420 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav); 5421 mutex_exit(&key_sad.lock); 5422 key_validate_savlist(sah, SADB_SASTATE_LARVAL); 5423 5424 key_sah_unref(sah); 5425 5426 #ifndef IPSEC_NONBLOCK_ACQUIRE 5427 /* delete the entry in key_misc.acqlist */ 5428 if (mhp->msg->sadb_msg_seq != 0) { 5429 struct secacq *acq; 5430 mutex_enter(&key_misc.lock); 5431 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); 5432 if (acq != NULL) { 5433 /* reset counter in order to deletion by timehandler. */ 5434 acq->created = time_uptime; 5435 acq->count = 0; 5436 } 5437 mutex_exit(&key_misc.lock); 5438 } 5439 #endif 5440 5441 { 5442 struct mbuf *n, *nn; 5443 struct sadb_sa *m_sa; 5444 int off, len; 5445 5446 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 5447 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES); 5448 5449 /* create new sadb_msg to reply. */ 5450 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 5451 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5452 5453 n = key_alloc_mbuf_simple(len, M_WAITOK); 5454 n->m_len = len; 5455 n->m_next = NULL; 5456 off = 0; 5457 5458 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 5459 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 5460 5461 m_sa = (struct sadb_sa *)(mtod(n, char *) + off); 5462 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 5463 m_sa->sadb_sa_exttype = SADB_EXT_SA; 5464 m_sa->sadb_sa_spi = htonl(spi); 5465 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5466 5467 KASSERTMSG(off == len, "length inconsistency"); 5468 5469 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 5470 SADB_EXT_ADDRESS_DST); 5471 5472 KASSERT(n->m_len >= sizeof(struct sadb_msg)); 5473 5474 n->m_pkthdr.len = 0; 5475 for (nn = n; nn; nn = nn->m_next) 5476 n->m_pkthdr.len += nn->m_len; 5477 5478 key_fill_replymsg(n, newsav->seq); 5479 m_freem(m); 5480 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5481 } 5482 } 5483 5484 /* 5485 * allocating new SPI 5486 * called by key_api_getspi(). 5487 * OUT: 5488 * 0: failure. 5489 * others: success. 5490 */ 5491 static u_int32_t 5492 key_do_getnewspi(const struct sadb_spirange *spirange, 5493 const struct secasindex *saidx) 5494 { 5495 u_int32_t newspi; 5496 u_int32_t spmin, spmax; 5497 int count = key_spi_trycnt; 5498 5499 /* set spi range to allocate */ 5500 if (spirange != NULL) { 5501 spmin = spirange->sadb_spirange_min; 5502 spmax = spirange->sadb_spirange_max; 5503 } else { 5504 spmin = key_spi_minval; 5505 spmax = key_spi_maxval; 5506 } 5507 /* IPCOMP needs 2-byte SPI */ 5508 if (saidx->proto == IPPROTO_IPCOMP) { 5509 u_int32_t t; 5510 if (spmin >= 0x10000) 5511 spmin = 0xffff; 5512 if (spmax >= 0x10000) 5513 spmax = 0xffff; 5514 if (spmin > spmax) { 5515 t = spmin; spmin = spmax; spmax = t; 5516 } 5517 } 5518 5519 if (spmin == spmax) { 5520 if (key_checkspidup(saidx, htonl(spmin))) { 5521 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin); 5522 return 0; 5523 } 5524 5525 count--; /* taking one cost. */ 5526 newspi = spmin; 5527 5528 } else { 5529 5530 /* init SPI */ 5531 newspi = 0; 5532 5533 /* when requesting to allocate spi ranged */ 5534 while (count--) { 5535 /* generate pseudo-random SPI value ranged. */ 5536 newspi = spmin + (key_random() % (spmax - spmin + 1)); 5537 5538 if (!key_checkspidup(saidx, htonl(newspi))) 5539 break; 5540 } 5541 5542 if (count == 0 || newspi == 0) { 5543 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n"); 5544 return 0; 5545 } 5546 } 5547 5548 /* statistics */ 5549 keystat.getspi_count = 5550 (keystat.getspi_count + key_spi_trycnt - count) / 2; 5551 5552 return newspi; 5553 } 5554 5555 static int 5556 key_handle_natt_info(struct secasvar *sav, 5557 const struct sadb_msghdr *mhp) 5558 { 5559 const char *msg = "?" ; 5560 struct sadb_x_nat_t_type *type; 5561 struct sadb_x_nat_t_port *sport, *dport; 5562 struct sadb_address *iaddr, *raddr; 5563 struct sadb_x_nat_t_frag *frag; 5564 5565 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 5566 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 5567 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) 5568 return 0; 5569 5570 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) { 5571 msg = "TYPE"; 5572 goto bad; 5573 } 5574 5575 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) { 5576 msg = "SPORT"; 5577 goto bad; 5578 } 5579 5580 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5581 msg = "DPORT"; 5582 goto bad; 5583 } 5584 5585 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) { 5586 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); 5587 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) { 5588 msg = "OAI"; 5589 goto bad; 5590 } 5591 } 5592 5593 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5594 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); 5595 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5596 msg = "OAR"; 5597 goto bad; 5598 } 5599 } 5600 5601 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5602 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5603 msg = "FRAG"; 5604 goto bad; 5605 } 5606 } 5607 5608 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5609 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5610 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5611 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5612 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5613 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5614 5615 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", 5616 type->sadb_x_nat_t_type_type, 5617 ntohs(sport->sadb_x_nat_t_port_port), 5618 ntohs(dport->sadb_x_nat_t_port_port)); 5619 5620 sav->natt_type = type->sadb_x_nat_t_type_type; 5621 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port); 5622 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port); 5623 if (frag) 5624 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen; 5625 else 5626 sav->esp_frag = IP_MAXPACKET; 5627 5628 return 0; 5629 bad: 5630 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg); 5631 __USE(msg); 5632 return -1; 5633 } 5634 5635 /* Just update the IPSEC_NAT_T ports if present */ 5636 static int 5637 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst, 5638 const struct sadb_msghdr *mhp) 5639 { 5640 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 5641 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); 5642 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 5643 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); 5644 5645 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) && 5646 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) && 5647 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) { 5648 struct sadb_x_nat_t_type *type; 5649 struct sadb_x_nat_t_port *sport; 5650 struct sadb_x_nat_t_port *dport; 5651 5652 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 5653 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 5654 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 5655 IPSECLOG(LOG_DEBUG, "invalid message\n"); 5656 return -1; 5657 } 5658 5659 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5660 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5661 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5662 5663 key_porttosaddr(src, sport->sadb_x_nat_t_port_port); 5664 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port); 5665 5666 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", 5667 type->sadb_x_nat_t_type_type, 5668 ntohs(sport->sadb_x_nat_t_port_port), 5669 ntohs(dport->sadb_x_nat_t_port_port)); 5670 } 5671 5672 return 0; 5673 } 5674 5675 5676 /* 5677 * SADB_UPDATE processing 5678 * receive 5679 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5680 * key(AE), (identity(SD),) (sensitivity)> 5681 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 5682 * and send 5683 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5684 * (identity(SD),) (sensitivity)> 5685 * to the ikmpd. 5686 * 5687 * m will always be freed. 5688 */ 5689 static int 5690 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5691 { 5692 struct sadb_sa *sa0; 5693 const struct sockaddr *src, *dst; 5694 struct secasindex saidx; 5695 struct secashead *sah; 5696 struct secasvar *sav, *newsav, *oldsav; 5697 u_int16_t proto; 5698 u_int8_t mode; 5699 u_int16_t reqid; 5700 int error; 5701 5702 /* map satype to proto */ 5703 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5704 if (proto == 0) { 5705 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5706 return key_senderror(so, m, EINVAL); 5707 } 5708 5709 if (mhp->ext[SADB_EXT_SA] == NULL || 5710 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5711 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5712 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5713 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5714 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5715 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5716 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5717 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5718 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5719 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5720 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5721 return key_senderror(so, m, EINVAL); 5722 } 5723 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5724 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5725 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5726 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5727 return key_senderror(so, m, EINVAL); 5728 } 5729 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5730 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5731 mode = sa2->sadb_x_sa2_mode; 5732 reqid = sa2->sadb_x_sa2_reqid; 5733 } else { 5734 mode = IPSEC_MODE_ANY; 5735 reqid = 0; 5736 } 5737 /* XXX boundary checking for other extensions */ 5738 5739 sa0 = mhp->ext[SADB_EXT_SA]; 5740 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5741 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5742 5743 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5744 if (error != 0) 5745 return key_senderror(so, m, EINVAL); 5746 5747 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5748 if (error != 0) 5749 return key_senderror(so, m, EINVAL); 5750 5751 /* get a SA header */ 5752 sah = key_getsah_ref(&saidx, CMP_REQID); 5753 if (sah == NULL) { 5754 IPSECLOG(LOG_DEBUG, "no SA index found.\n"); 5755 return key_senderror(so, m, ENOENT); 5756 } 5757 5758 /* set spidx if there */ 5759 /* XXX rewrite */ 5760 error = key_setident(sah, m, mhp); 5761 if (error) 5762 goto error_sah; 5763 5764 /* find a SA with sequence number. */ 5765 #ifdef IPSEC_DOSEQCHECK 5766 if (mhp->msg->sadb_msg_seq != 0) { 5767 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq); 5768 if (sav == NULL) { 5769 IPSECLOG(LOG_DEBUG, 5770 "no larval SA with sequence %u exists.\n", 5771 mhp->msg->sadb_msg_seq); 5772 error = ENOENT; 5773 goto error_sah; 5774 } 5775 } 5776 #else 5777 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5778 if (sav == NULL) { 5779 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n", 5780 (u_int32_t)ntohl(sa0->sadb_sa_spi)); 5781 error = EINVAL; 5782 goto error_sah; 5783 } 5784 #endif 5785 5786 /* validity check */ 5787 if (sav->sah->saidx.proto != proto) { 5788 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n", 5789 sav->sah->saidx.proto, proto); 5790 error = EINVAL; 5791 goto error; 5792 } 5793 #ifdef IPSEC_DOSEQCHECK 5794 if (sav->spi != sa0->sadb_sa_spi) { 5795 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n", 5796 (u_int32_t)ntohl(sav->spi), 5797 (u_int32_t)ntohl(sa0->sadb_sa_spi)); 5798 error = EINVAL; 5799 goto error; 5800 } 5801 #endif 5802 if (sav->pid != mhp->msg->sadb_msg_pid) { 5803 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n", 5804 sav->pid, mhp->msg->sadb_msg_pid); 5805 error = EINVAL; 5806 goto error; 5807 } 5808 5809 /* 5810 * Allocate a new SA instead of modifying the existing SA directly 5811 * to avoid race conditions. 5812 */ 5813 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); 5814 5815 /* copy sav values */ 5816 newsav->spi = sav->spi; 5817 newsav->seq = sav->seq; 5818 newsav->created = sav->created; 5819 newsav->pid = sav->pid; 5820 newsav->sah = sav->sah; 5821 5822 error = key_setsaval(newsav, m, mhp); 5823 if (error) { 5824 kmem_free(newsav, sizeof(*newsav)); 5825 goto error; 5826 } 5827 5828 error = key_handle_natt_info(newsav, mhp); 5829 if (error != 0) { 5830 key_delsav(newsav); 5831 goto error; 5832 } 5833 5834 error = key_init_xform(newsav); 5835 if (error != 0) { 5836 key_delsav(newsav); 5837 goto error; 5838 } 5839 5840 /* Add to sah#savlist */ 5841 key_init_sav(newsav); 5842 newsav->state = SADB_SASTATE_MATURE; 5843 mutex_enter(&key_sad.lock); 5844 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); 5845 SAVLUT_WRITER_INSERT_HEAD(newsav); 5846 mutex_exit(&key_sad.lock); 5847 key_validate_savlist(sah, SADB_SASTATE_MATURE); 5848 5849 /* 5850 * We need to lookup and remove the sav atomically, so get it again 5851 * here by a special API while we have a reference to it. 5852 */ 5853 oldsav = key_lookup_and_remove_sav(sah, sa0->sadb_sa_spi, sav); 5854 KASSERT(oldsav == NULL || oldsav == sav); 5855 /* We can release the reference because of oldsav */ 5856 KEY_SA_UNREF(&sav); 5857 if (oldsav == NULL) { 5858 /* Someone has already removed the sav. Nothing to do. */ 5859 } else { 5860 key_wait_sav(oldsav); 5861 key_destroy_sav(oldsav); 5862 oldsav = NULL; 5863 } 5864 sav = NULL; 5865 5866 key_sah_unref(sah); 5867 sah = NULL; 5868 5869 { 5870 struct mbuf *n; 5871 5872 /* set msg buf from mhp */ 5873 n = key_getmsgbuf_x1(m, mhp); 5874 if (n == NULL) { 5875 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5876 return key_senderror(so, m, ENOBUFS); 5877 } 5878 5879 m_freem(m); 5880 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5881 } 5882 error: 5883 KEY_SA_UNREF(&sav); 5884 error_sah: 5885 key_sah_unref(sah); 5886 return key_senderror(so, m, error); 5887 } 5888 5889 /* 5890 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5891 * only called by key_api_update(). 5892 * OUT: 5893 * NULL : not found 5894 * others : found, pointer to a SA. 5895 */ 5896 #ifdef IPSEC_DOSEQCHECK 5897 static struct secasvar * 5898 key_getsavbyseq(struct secashead *sah, u_int32_t seq) 5899 { 5900 struct secasvar *sav; 5901 u_int state; 5902 int s; 5903 5904 state = SADB_SASTATE_LARVAL; 5905 5906 /* search SAD with sequence number ? */ 5907 s = pserialize_read_enter(); 5908 SAVLIST_READER_FOREACH(sav, sah, state) { 5909 KEY_CHKSASTATE(state, sav->state); 5910 5911 if (sav->seq == seq) { 5912 SA_ADDREF(sav); 5913 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 5914 "DP cause refcnt++:%d SA:%p\n", 5915 key_sa_refcnt(sav), sav); 5916 break; 5917 } 5918 } 5919 pserialize_read_exit(s); 5920 5921 return sav; 5922 } 5923 #endif 5924 5925 /* 5926 * SADB_ADD processing 5927 * add an entry to SA database, when received 5928 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5929 * key(AE), (identity(SD),) (sensitivity)> 5930 * from the ikmpd, 5931 * and send 5932 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5933 * (identity(SD),) (sensitivity)> 5934 * to the ikmpd. 5935 * 5936 * IGNORE identity and sensitivity messages. 5937 * 5938 * m will always be freed. 5939 */ 5940 static int 5941 key_api_add(struct socket *so, struct mbuf *m, 5942 const struct sadb_msghdr *mhp) 5943 { 5944 struct sadb_sa *sa0; 5945 const struct sockaddr *src, *dst; 5946 struct secasindex saidx; 5947 struct secashead *sah; 5948 struct secasvar *newsav; 5949 u_int16_t proto; 5950 u_int8_t mode; 5951 u_int16_t reqid; 5952 int error; 5953 5954 /* map satype to proto */ 5955 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5956 if (proto == 0) { 5957 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5958 return key_senderror(so, m, EINVAL); 5959 } 5960 5961 if (mhp->ext[SADB_EXT_SA] == NULL || 5962 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5963 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5964 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5965 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5966 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5967 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5968 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5969 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5970 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5971 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5972 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5973 return key_senderror(so, m, EINVAL); 5974 } 5975 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5976 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5977 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5978 /* XXX need more */ 5979 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5980 return key_senderror(so, m, EINVAL); 5981 } 5982 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5983 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5984 mode = sa2->sadb_x_sa2_mode; 5985 reqid = sa2->sadb_x_sa2_reqid; 5986 } else { 5987 mode = IPSEC_MODE_ANY; 5988 reqid = 0; 5989 } 5990 5991 sa0 = mhp->ext[SADB_EXT_SA]; 5992 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5993 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5994 5995 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5996 if (error != 0) 5997 return key_senderror(so, m, EINVAL); 5998 5999 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6000 if (error != 0) 6001 return key_senderror(so, m, EINVAL); 6002 6003 /* get a SA header */ 6004 sah = key_getsah_ref(&saidx, CMP_REQID); 6005 if (sah == NULL) { 6006 /* create a new SA header */ 6007 sah = key_newsah(&saidx); 6008 if (sah == NULL) { 6009 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 6010 return key_senderror(so, m, ENOBUFS); 6011 } 6012 } 6013 6014 /* set spidx if there */ 6015 /* XXX rewrite */ 6016 error = key_setident(sah, m, mhp); 6017 if (error) 6018 goto error; 6019 6020 { 6021 struct secasvar *sav; 6022 6023 /* We can create new SA only if SPI is differenct. */ 6024 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 6025 if (sav != NULL) { 6026 KEY_SA_UNREF(&sav); 6027 IPSECLOG(LOG_DEBUG, "SA already exists.\n"); 6028 error = EEXIST; 6029 goto error; 6030 } 6031 } 6032 6033 /* create new SA entry. */ 6034 newsav = KEY_NEWSAV(m, mhp, &error); 6035 if (newsav == NULL) 6036 goto error; 6037 newsav->sah = sah; 6038 6039 error = key_handle_natt_info(newsav, mhp); 6040 if (error != 0) { 6041 key_delsav(newsav); 6042 error = EINVAL; 6043 goto error; 6044 } 6045 6046 error = key_init_xform(newsav); 6047 if (error != 0) { 6048 key_delsav(newsav); 6049 goto error; 6050 } 6051 6052 /* Add to sah#savlist */ 6053 key_init_sav(newsav); 6054 newsav->state = SADB_SASTATE_MATURE; 6055 mutex_enter(&key_sad.lock); 6056 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); 6057 SAVLUT_WRITER_INSERT_HEAD(newsav); 6058 mutex_exit(&key_sad.lock); 6059 key_validate_savlist(sah, SADB_SASTATE_MATURE); 6060 6061 key_sah_unref(sah); 6062 sah = NULL; 6063 6064 /* 6065 * don't call key_freesav() here, as we would like to keep the SA 6066 * in the database on success. 6067 */ 6068 6069 { 6070 struct mbuf *n; 6071 6072 /* set msg buf from mhp */ 6073 n = key_getmsgbuf_x1(m, mhp); 6074 if (n == NULL) { 6075 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 6076 return key_senderror(so, m, ENOBUFS); 6077 } 6078 6079 m_freem(m); 6080 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6081 } 6082 error: 6083 key_sah_unref(sah); 6084 return key_senderror(so, m, error); 6085 } 6086 6087 /* m is retained */ 6088 static int 6089 key_setident(struct secashead *sah, struct mbuf *m, 6090 const struct sadb_msghdr *mhp) 6091 { 6092 const struct sadb_ident *idsrc, *iddst; 6093 int idsrclen, iddstlen; 6094 6095 KASSERT(!cpu_softintr_p()); 6096 KASSERT(sah != NULL); 6097 KASSERT(m != NULL); 6098 KASSERT(mhp != NULL); 6099 KASSERT(mhp->msg != NULL); 6100 6101 /* 6102 * Can be called with an existing sah from key_api_update(). 6103 */ 6104 if (sah->idents != NULL) { 6105 kmem_free(sah->idents, sah->idents_len); 6106 sah->idents = NULL; 6107 sah->idents_len = 0; 6108 } 6109 if (sah->identd != NULL) { 6110 kmem_free(sah->identd, sah->identd_len); 6111 sah->identd = NULL; 6112 sah->identd_len = 0; 6113 } 6114 6115 /* don't make buffer if not there */ 6116 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 6117 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 6118 sah->idents = NULL; 6119 sah->identd = NULL; 6120 return 0; 6121 } 6122 6123 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 6124 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 6125 IPSECLOG(LOG_DEBUG, "invalid identity.\n"); 6126 return EINVAL; 6127 } 6128 6129 idsrc = mhp->ext[SADB_EXT_IDENTITY_SRC]; 6130 iddst = mhp->ext[SADB_EXT_IDENTITY_DST]; 6131 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 6132 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 6133 6134 /* validity check */ 6135 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 6136 IPSECLOG(LOG_DEBUG, "ident type mismatched src %u, dst %u.\n", 6137 idsrc->sadb_ident_type, iddst->sadb_ident_type); 6138 return EINVAL; 6139 } 6140 6141 switch (idsrc->sadb_ident_type) { 6142 case SADB_IDENTTYPE_PREFIX: 6143 case SADB_IDENTTYPE_FQDN: 6144 case SADB_IDENTTYPE_USERFQDN: 6145 default: 6146 /* XXX do nothing */ 6147 sah->idents = NULL; 6148 sah->identd = NULL; 6149 return 0; 6150 } 6151 6152 /* make structure */ 6153 sah->idents = kmem_alloc(idsrclen, KM_SLEEP); 6154 sah->idents_len = idsrclen; 6155 sah->identd = kmem_alloc(iddstlen, KM_SLEEP); 6156 sah->identd_len = iddstlen; 6157 memcpy(sah->idents, idsrc, idsrclen); 6158 memcpy(sah->identd, iddst, iddstlen); 6159 6160 return 0; 6161 } 6162 6163 /* 6164 * m will not be freed on return. It never return NULL. 6165 * it is caller's responsibility to free the result. 6166 */ 6167 static struct mbuf * 6168 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 6169 { 6170 struct mbuf *n; 6171 6172 KASSERT(m != NULL); 6173 KASSERT(mhp != NULL); 6174 KASSERT(mhp->msg != NULL); 6175 6176 /* create new sadb_msg to reply. */ 6177 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED, 6178 SADB_EXT_SA, SADB_X_EXT_SA2, 6179 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 6180 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 6181 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, 6182 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, 6183 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, 6184 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG); 6185 6186 KASSERT(n->m_len >= sizeof(struct sadb_msg)); 6187 6188 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 6189 mtod(n, struct sadb_msg *)->sadb_msg_len = 6190 PFKEY_UNIT64(n->m_pkthdr.len); 6191 6192 return n; 6193 } 6194 6195 static int key_delete_all (struct socket *, struct mbuf *, 6196 const struct sadb_msghdr *, u_int16_t); 6197 6198 /* 6199 * SADB_DELETE processing 6200 * receive 6201 * <base, SA(*), address(SD)> 6202 * from the ikmpd, and set SADB_SASTATE_DEAD, 6203 * and send, 6204 * <base, SA(*), address(SD)> 6205 * to the ikmpd. 6206 * 6207 * m will always be freed. 6208 */ 6209 static int 6210 key_api_delete(struct socket *so, struct mbuf *m, 6211 const struct sadb_msghdr *mhp) 6212 { 6213 struct sadb_sa *sa0; 6214 const struct sockaddr *src, *dst; 6215 struct secasindex saidx; 6216 struct secashead *sah; 6217 struct secasvar *sav = NULL; 6218 u_int16_t proto; 6219 int error; 6220 6221 /* map satype to proto */ 6222 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 6223 if (proto == 0) { 6224 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6225 return key_senderror(so, m, EINVAL); 6226 } 6227 6228 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6229 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 6230 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6231 return key_senderror(so, m, EINVAL); 6232 } 6233 6234 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6235 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6236 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6237 return key_senderror(so, m, EINVAL); 6238 } 6239 6240 if (mhp->ext[SADB_EXT_SA] == NULL) { 6241 /* 6242 * Caller wants us to delete all non-LARVAL SAs 6243 * that match the src/dst. This is used during 6244 * IKE INITIAL-CONTACT. 6245 */ 6246 IPSECLOG(LOG_DEBUG, "doing delete all.\n"); 6247 return key_delete_all(so, m, mhp, proto); 6248 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 6249 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6250 return key_senderror(so, m, EINVAL); 6251 } 6252 6253 sa0 = mhp->ext[SADB_EXT_SA]; 6254 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6255 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6256 6257 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6258 if (error != 0) 6259 return key_senderror(so, m, EINVAL); 6260 6261 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6262 if (error != 0) 6263 return key_senderror(so, m, EINVAL); 6264 6265 /* get a SA header */ 6266 sah = key_getsah_ref(&saidx, CMP_HEAD); 6267 if (sah != NULL) { 6268 /* get a SA with SPI. */ 6269 sav = key_lookup_and_remove_sav(sah, sa0->sadb_sa_spi, NULL); 6270 key_sah_unref(sah); 6271 } 6272 6273 if (sav == NULL) { 6274 IPSECLOG(LOG_DEBUG, "no SA found.\n"); 6275 return key_senderror(so, m, ENOENT); 6276 } 6277 6278 key_wait_sav(sav); 6279 key_destroy_sav(sav); 6280 sav = NULL; 6281 6282 { 6283 struct mbuf *n; 6284 6285 /* create new sadb_msg to reply. */ 6286 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 6287 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6288 6289 key_fill_replymsg(n, 0); 6290 m_freem(m); 6291 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6292 } 6293 } 6294 6295 /* 6296 * delete all SAs for src/dst. Called from key_api_delete(). 6297 */ 6298 static int 6299 key_delete_all(struct socket *so, struct mbuf *m, 6300 const struct sadb_msghdr *mhp, u_int16_t proto) 6301 { 6302 const struct sockaddr *src, *dst; 6303 struct secasindex saidx; 6304 struct secashead *sah; 6305 struct secasvar *sav; 6306 u_int state; 6307 int error; 6308 6309 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6310 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6311 6312 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6313 if (error != 0) 6314 return key_senderror(so, m, EINVAL); 6315 6316 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6317 if (error != 0) 6318 return key_senderror(so, m, EINVAL); 6319 6320 sah = key_getsah_ref(&saidx, CMP_HEAD); 6321 if (sah != NULL) { 6322 /* Delete all non-LARVAL SAs. */ 6323 SASTATE_ALIVE_FOREACH(state) { 6324 if (state == SADB_SASTATE_LARVAL) 6325 continue; 6326 restart: 6327 mutex_enter(&key_sad.lock); 6328 SAVLIST_WRITER_FOREACH(sav, sah, state) { 6329 sav->state = SADB_SASTATE_DEAD; 6330 key_unlink_sav(sav); 6331 mutex_exit(&key_sad.lock); 6332 key_destroy_sav(sav); 6333 goto restart; 6334 } 6335 mutex_exit(&key_sad.lock); 6336 } 6337 key_sah_unref(sah); 6338 } 6339 { 6340 struct mbuf *n; 6341 6342 /* create new sadb_msg to reply. */ 6343 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 6344 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6345 6346 key_fill_replymsg(n, 0); 6347 m_freem(m); 6348 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6349 } 6350 } 6351 6352 /* 6353 * SADB_GET processing 6354 * receive 6355 * <base, SA(*), address(SD)> 6356 * from the ikmpd, and get a SP and a SA to respond, 6357 * and send, 6358 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 6359 * (identity(SD),) (sensitivity)> 6360 * to the ikmpd. 6361 * 6362 * m will always be freed. 6363 */ 6364 static int 6365 key_api_get(struct socket *so, struct mbuf *m, 6366 const struct sadb_msghdr *mhp) 6367 { 6368 struct sadb_sa *sa0; 6369 const struct sockaddr *src, *dst; 6370 struct secasindex saidx; 6371 struct secasvar *sav = NULL; 6372 u_int16_t proto; 6373 int error; 6374 6375 /* map satype to proto */ 6376 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6377 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6378 return key_senderror(so, m, EINVAL); 6379 } 6380 6381 if (mhp->ext[SADB_EXT_SA] == NULL || 6382 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6383 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 6384 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6385 return key_senderror(so, m, EINVAL); 6386 } 6387 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 6388 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6389 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6390 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6391 return key_senderror(so, m, EINVAL); 6392 } 6393 6394 sa0 = mhp->ext[SADB_EXT_SA]; 6395 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6396 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6397 6398 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6399 if (error != 0) 6400 return key_senderror(so, m, EINVAL); 6401 6402 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6403 if (error != 0) 6404 return key_senderror(so, m, EINVAL); 6405 6406 /* get a SA header */ 6407 { 6408 struct secashead *sah; 6409 int s = pserialize_read_enter(); 6410 6411 sah = key_getsah(&saidx, CMP_HEAD); 6412 if (sah != NULL) { 6413 /* get a SA with SPI. */ 6414 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 6415 } 6416 pserialize_read_exit(s); 6417 } 6418 if (sav == NULL) { 6419 IPSECLOG(LOG_DEBUG, "no SA found.\n"); 6420 return key_senderror(so, m, ENOENT); 6421 } 6422 6423 { 6424 struct mbuf *n; 6425 u_int8_t satype; 6426 6427 /* map proto to satype */ 6428 satype = key_proto2satype(sav->sah->saidx.proto); 6429 if (satype == 0) { 6430 KEY_SA_UNREF(&sav); 6431 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n"); 6432 return key_senderror(so, m, EINVAL); 6433 } 6434 6435 /* create new sadb_msg to reply. */ 6436 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 6437 mhp->msg->sadb_msg_pid); 6438 KEY_SA_UNREF(&sav); 6439 m_freem(m); 6440 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6441 } 6442 } 6443 6444 /* XXX make it sysctl-configurable? */ 6445 static void 6446 key_getcomb_setlifetime(struct sadb_comb *comb) 6447 { 6448 6449 comb->sadb_comb_soft_allocations = 1; 6450 comb->sadb_comb_hard_allocations = 1; 6451 comb->sadb_comb_soft_bytes = 0; 6452 comb->sadb_comb_hard_bytes = 0; 6453 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 6454 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100; 6455 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */ 6456 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 6457 } 6458 6459 /* 6460 * XXX reorder combinations by preference 6461 * XXX no idea if the user wants ESP authentication or not 6462 */ 6463 static struct mbuf * 6464 key_getcomb_esp(int mflag) 6465 { 6466 struct sadb_comb *comb; 6467 const struct enc_xform *algo; 6468 struct mbuf *result = NULL, *m, *n; 6469 int encmin; 6470 int i, off, o; 6471 int totlen; 6472 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6473 6474 m = NULL; 6475 for (i = 1; i <= SADB_EALG_MAX; i++) { 6476 algo = esp_algorithm_lookup(i); 6477 if (algo == NULL) 6478 continue; 6479 6480 /* discard algorithms with key size smaller than system min */ 6481 if (_BITS(algo->maxkey) < ipsec_esp_keymin) 6482 continue; 6483 if (_BITS(algo->minkey) < ipsec_esp_keymin) 6484 encmin = ipsec_esp_keymin; 6485 else 6486 encmin = _BITS(algo->minkey); 6487 6488 if (ipsec_esp_auth) 6489 m = key_getcomb_ah(mflag); 6490 else { 6491 KASSERTMSG(l <= MLEN, 6492 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6493 MGET(m, mflag, MT_DATA); 6494 if (m) { 6495 m_align(m, l); 6496 m->m_len = l; 6497 m->m_next = NULL; 6498 memset(mtod(m, void *), 0, m->m_len); 6499 } 6500 } 6501 if (!m) 6502 goto fail; 6503 6504 totlen = 0; 6505 for (n = m; n; n = n->m_next) 6506 totlen += n->m_len; 6507 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l); 6508 6509 for (off = 0; off < totlen; off += l) { 6510 n = m_pulldown(m, off, l, &o); 6511 if (!n) { 6512 /* m is already freed */ 6513 goto fail; 6514 } 6515 comb = (struct sadb_comb *)(mtod(n, char *) + o); 6516 memset(comb, 0, sizeof(*comb)); 6517 key_getcomb_setlifetime(comb); 6518 comb->sadb_comb_encrypt = i; 6519 comb->sadb_comb_encrypt_minbits = encmin; 6520 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6521 } 6522 6523 if (!result) 6524 result = m; 6525 else 6526 m_cat(result, m); 6527 } 6528 6529 return result; 6530 6531 fail: 6532 if (result) 6533 m_freem(result); 6534 return NULL; 6535 } 6536 6537 static void 6538 key_getsizes_ah(const struct auth_hash *ah, int alg, 6539 u_int16_t* ksmin, u_int16_t* ksmax) 6540 { 6541 *ksmin = *ksmax = ah->keysize; 6542 if (ah->keysize == 0) { 6543 /* 6544 * Transform takes arbitrary key size but algorithm 6545 * key size is restricted. Enforce this here. 6546 */ 6547 switch (alg) { 6548 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break; 6549 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break; 6550 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break; 6551 default: 6552 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg); 6553 break; 6554 } 6555 } 6556 } 6557 6558 /* 6559 * XXX reorder combinations by preference 6560 */ 6561 static struct mbuf * 6562 key_getcomb_ah(int mflag) 6563 { 6564 struct sadb_comb *comb; 6565 const struct auth_hash *algo; 6566 struct mbuf *m; 6567 u_int16_t minkeysize, maxkeysize; 6568 int i; 6569 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6570 6571 m = NULL; 6572 for (i = 1; i <= SADB_AALG_MAX; i++) { 6573 #if 1 6574 /* we prefer HMAC algorithms, not old algorithms */ 6575 if (i != SADB_AALG_SHA1HMAC && 6576 i != SADB_AALG_MD5HMAC && 6577 i != SADB_X_AALG_SHA2_256 && 6578 i != SADB_X_AALG_SHA2_384 && 6579 i != SADB_X_AALG_SHA2_512) 6580 continue; 6581 #endif 6582 algo = ah_algorithm_lookup(i); 6583 if (!algo) 6584 continue; 6585 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6586 /* discard algorithms with key size smaller than system min */ 6587 if (_BITS(minkeysize) < ipsec_ah_keymin) 6588 continue; 6589 6590 if (!m) { 6591 KASSERTMSG(l <= MLEN, 6592 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6593 MGET(m, mflag, MT_DATA); 6594 if (m) { 6595 m_align(m, l); 6596 m->m_len = l; 6597 m->m_next = NULL; 6598 } 6599 } else 6600 M_PREPEND(m, l, mflag); 6601 if (!m) 6602 return NULL; 6603 6604 if (m->m_len < sizeof(struct sadb_comb)) { 6605 m = m_pullup(m, sizeof(struct sadb_comb)); 6606 if (m == NULL) 6607 return NULL; 6608 } 6609 6610 comb = mtod(m, struct sadb_comb *); 6611 memset(comb, 0, sizeof(*comb)); 6612 key_getcomb_setlifetime(comb); 6613 comb->sadb_comb_auth = i; 6614 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6615 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6616 } 6617 6618 return m; 6619 } 6620 6621 /* 6622 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6623 * XXX reorder combinations by preference 6624 */ 6625 static struct mbuf * 6626 key_getcomb_ipcomp(int mflag) 6627 { 6628 struct sadb_comb *comb; 6629 const struct comp_algo *algo; 6630 struct mbuf *m; 6631 int i; 6632 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6633 6634 m = NULL; 6635 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6636 algo = ipcomp_algorithm_lookup(i); 6637 if (!algo) 6638 continue; 6639 6640 if (!m) { 6641 KASSERTMSG(l <= MLEN, 6642 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6643 MGET(m, mflag, MT_DATA); 6644 if (m) { 6645 m_align(m, l); 6646 m->m_len = l; 6647 m->m_next = NULL; 6648 } 6649 } else 6650 M_PREPEND(m, l, mflag); 6651 if (!m) 6652 return NULL; 6653 6654 if (m->m_len < sizeof(struct sadb_comb)) { 6655 m = m_pullup(m, sizeof(struct sadb_comb)); 6656 if (m == NULL) 6657 return NULL; 6658 } 6659 6660 comb = mtod(m, struct sadb_comb *); 6661 memset(comb, 0, sizeof(*comb)); 6662 key_getcomb_setlifetime(comb); 6663 comb->sadb_comb_encrypt = i; 6664 /* what should we set into sadb_comb_*_{min,max}bits? */ 6665 } 6666 6667 return m; 6668 } 6669 6670 /* 6671 * XXX no way to pass mode (transport/tunnel) to userland 6672 * XXX replay checking? 6673 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6674 */ 6675 static struct mbuf * 6676 key_getprop(const struct secasindex *saidx, int mflag) 6677 { 6678 struct sadb_prop *prop; 6679 struct mbuf *m, *n; 6680 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6681 int totlen; 6682 6683 switch (saidx->proto) { 6684 case IPPROTO_ESP: 6685 m = key_getcomb_esp(mflag); 6686 break; 6687 case IPPROTO_AH: 6688 m = key_getcomb_ah(mflag); 6689 break; 6690 case IPPROTO_IPCOMP: 6691 m = key_getcomb_ipcomp(mflag); 6692 break; 6693 default: 6694 return NULL; 6695 } 6696 6697 if (!m) 6698 return NULL; 6699 M_PREPEND(m, l, mflag); 6700 if (!m) 6701 return NULL; 6702 6703 totlen = 0; 6704 for (n = m; n; n = n->m_next) 6705 totlen += n->m_len; 6706 6707 prop = mtod(m, struct sadb_prop *); 6708 memset(prop, 0, sizeof(*prop)); 6709 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6710 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6711 prop->sadb_prop_replay = 32; /* XXX */ 6712 6713 return m; 6714 } 6715 6716 /* 6717 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire(). 6718 * send 6719 * <base, SA, address(SD), (address(P)), x_policy, 6720 * (identity(SD),) (sensitivity,) proposal> 6721 * to KMD, and expect to receive 6722 * <base> with SADB_ACQUIRE if error occurred, 6723 * or 6724 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6725 * from KMD by PF_KEY. 6726 * 6727 * XXX x_policy is outside of RFC2367 (KAME extension). 6728 * XXX sensitivity is not supported. 6729 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6730 * see comment for key_getcomb_ipcomp(). 6731 * 6732 * OUT: 6733 * 0 : succeed 6734 * others: error number 6735 */ 6736 static int 6737 key_acquire(const struct secasindex *saidx, const struct secpolicy *sp, int mflag) 6738 { 6739 struct mbuf *result = NULL, *m; 6740 #ifndef IPSEC_NONBLOCK_ACQUIRE 6741 struct secacq *newacq; 6742 #endif 6743 u_int8_t satype; 6744 int error = -1; 6745 u_int32_t seq; 6746 6747 /* sanity check */ 6748 KASSERT(saidx != NULL); 6749 satype = key_proto2satype(saidx->proto); 6750 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto); 6751 6752 #ifndef IPSEC_NONBLOCK_ACQUIRE 6753 /* 6754 * We never do anything about acquirng SA. There is anather 6755 * solution that kernel blocks to send SADB_ACQUIRE message until 6756 * getting something message from IKEd. In later case, to be 6757 * managed with ACQUIRING list. 6758 */ 6759 /* Get an entry to check whether sending message or not. */ 6760 mutex_enter(&key_misc.lock); 6761 newacq = key_getacq(saidx); 6762 if (newacq != NULL) { 6763 if (key_blockacq_count < newacq->count) { 6764 /* reset counter and do send message. */ 6765 newacq->count = 0; 6766 } else { 6767 /* increment counter and do nothing. */ 6768 newacq->count++; 6769 mutex_exit(&key_misc.lock); 6770 return 0; 6771 } 6772 } else { 6773 /* make new entry for blocking to send SADB_ACQUIRE. */ 6774 newacq = key_newacq(saidx); 6775 if (newacq == NULL) { 6776 mutex_exit(&key_misc.lock); 6777 return ENOBUFS; 6778 } 6779 6780 /* add to key_misc.acqlist */ 6781 LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain); 6782 } 6783 6784 seq = newacq->seq; 6785 mutex_exit(&key_misc.lock); 6786 #else 6787 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 6788 #endif 6789 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0, mflag); 6790 if (!m) { 6791 error = ENOBUFS; 6792 goto fail; 6793 } 6794 result = m; 6795 6796 /* set sadb_address for saidx's. */ 6797 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK, 6798 IPSEC_ULPROTO_ANY, mflag); 6799 if (!m) { 6800 error = ENOBUFS; 6801 goto fail; 6802 } 6803 m_cat(result, m); 6804 6805 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK, 6806 IPSEC_ULPROTO_ANY, mflag); 6807 if (!m) { 6808 error = ENOBUFS; 6809 goto fail; 6810 } 6811 m_cat(result, m); 6812 6813 /* XXX proxy address (optional) */ 6814 6815 /* set sadb_x_policy */ 6816 if (sp) { 6817 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id, 6818 mflag); 6819 if (!m) { 6820 error = ENOBUFS; 6821 goto fail; 6822 } 6823 m_cat(result, m); 6824 } 6825 6826 /* XXX identity (optional) */ 6827 #if 0 6828 if (idexttype && fqdn) { 6829 /* create identity extension (FQDN) */ 6830 struct sadb_ident *id; 6831 int fqdnlen; 6832 6833 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6834 id = (struct sadb_ident *)p; 6835 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6836 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6837 id->sadb_ident_exttype = idexttype; 6838 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6839 memcpy(id + 1, fqdn, fqdnlen); 6840 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6841 } 6842 6843 if (idexttype) { 6844 /* create identity extension (USERFQDN) */ 6845 struct sadb_ident *id; 6846 int userfqdnlen; 6847 6848 if (userfqdn) { 6849 /* +1 for terminating-NUL */ 6850 userfqdnlen = strlen(userfqdn) + 1; 6851 } else 6852 userfqdnlen = 0; 6853 id = (struct sadb_ident *)p; 6854 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6855 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6856 id->sadb_ident_exttype = idexttype; 6857 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6858 /* XXX is it correct? */ 6859 if (curlwp) 6860 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred); 6861 if (userfqdn && userfqdnlen) 6862 memcpy(id + 1, userfqdn, userfqdnlen); 6863 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6864 } 6865 #endif 6866 6867 /* XXX sensitivity (optional) */ 6868 6869 /* create proposal/combination extension */ 6870 m = key_getprop(saidx, mflag); 6871 #if 0 6872 /* 6873 * spec conformant: always attach proposal/combination extension, 6874 * the problem is that we have no way to attach it for ipcomp, 6875 * due to the way sadb_comb is declared in RFC2367. 6876 */ 6877 if (!m) { 6878 error = ENOBUFS; 6879 goto fail; 6880 } 6881 m_cat(result, m); 6882 #else 6883 /* 6884 * outside of spec; make proposal/combination extension optional. 6885 */ 6886 if (m) 6887 m_cat(result, m); 6888 #endif 6889 6890 KASSERT(result->m_flags & M_PKTHDR); 6891 KASSERT(result->m_len >= sizeof(struct sadb_msg)); 6892 6893 result->m_pkthdr.len = 0; 6894 for (m = result; m; m = m->m_next) 6895 result->m_pkthdr.len += m->m_len; 6896 6897 mtod(result, struct sadb_msg *)->sadb_msg_len = 6898 PFKEY_UNIT64(result->m_pkthdr.len); 6899 6900 /* 6901 * Called from key_api_acquire that must come from userland, so 6902 * we can call key_sendup_mbuf immediately. 6903 */ 6904 if (mflag == M_WAITOK) 6905 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6906 /* 6907 * XXX we cannot call key_sendup_mbuf directly here because 6908 * it can cause a deadlock: 6909 * - We have a reference to an SP (and an SA) here 6910 * - key_sendup_mbuf will try to take key_so_mtx 6911 * - Some other thread may try to localcount_drain to the SP with 6912 * holding key_so_mtx in say key_api_spdflush 6913 * - In this case localcount_drain never return because key_sendup_mbuf 6914 * that has stuck on key_so_mtx never release a reference to the SP 6915 * 6916 * So defer key_sendup_mbuf to the timer. 6917 */ 6918 return key_acquire_sendup_mbuf_later(result); 6919 6920 fail: 6921 if (result) 6922 m_freem(result); 6923 return error; 6924 } 6925 6926 static struct mbuf *key_acquire_mbuf_head = NULL; 6927 static unsigned key_acquire_mbuf_count = 0; 6928 #define KEY_ACQUIRE_MBUF_MAX 10 6929 6930 static void 6931 key_acquire_sendup_pending_mbuf(void) 6932 { 6933 struct mbuf *m, *prev; 6934 int error; 6935 6936 again: 6937 prev = NULL; 6938 mutex_enter(&key_misc.lock); 6939 m = key_acquire_mbuf_head; 6940 /* Get an earliest mbuf (one at the tail of the list) */ 6941 while (m != NULL) { 6942 if (m->m_nextpkt == NULL) { 6943 if (prev != NULL) 6944 prev->m_nextpkt = NULL; 6945 if (m == key_acquire_mbuf_head) 6946 key_acquire_mbuf_head = NULL; 6947 key_acquire_mbuf_count--; 6948 break; 6949 } 6950 prev = m; 6951 m = m->m_nextpkt; 6952 } 6953 mutex_exit(&key_misc.lock); 6954 6955 if (m == NULL) 6956 return; 6957 6958 m->m_nextpkt = NULL; 6959 error = key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 6960 if (error != 0) 6961 IPSECLOG(LOG_WARNING, "key_sendup_mbuf failed (error=%d)\n", 6962 error); 6963 6964 if (prev != NULL) 6965 goto again; 6966 } 6967 6968 static int 6969 key_acquire_sendup_mbuf_later(struct mbuf *m) 6970 { 6971 6972 mutex_enter(&key_misc.lock); 6973 /* Avoid queuing too much mbufs */ 6974 if (key_acquire_mbuf_count >= KEY_ACQUIRE_MBUF_MAX) { 6975 mutex_exit(&key_misc.lock); 6976 m_freem(m); 6977 return ENOBUFS; /* XXX */ 6978 } 6979 /* Enqueue mbuf at the head of the list */ 6980 m->m_nextpkt = key_acquire_mbuf_head; 6981 key_acquire_mbuf_head = m; 6982 key_acquire_mbuf_count++; 6983 mutex_exit(&key_misc.lock); 6984 6985 /* Kick the timer */ 6986 key_timehandler(NULL); 6987 6988 return 0; 6989 } 6990 6991 #ifndef IPSEC_NONBLOCK_ACQUIRE 6992 static struct secacq * 6993 key_newacq(const struct secasindex *saidx) 6994 { 6995 struct secacq *newacq; 6996 6997 /* get new entry */ 6998 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP); 6999 if (newacq == NULL) { 7000 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 7001 return NULL; 7002 } 7003 7004 /* copy secindex */ 7005 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx)); 7006 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); 7007 newacq->created = time_uptime; 7008 newacq->count = 0; 7009 7010 return newacq; 7011 } 7012 7013 static struct secacq * 7014 key_getacq(const struct secasindex *saidx) 7015 { 7016 struct secacq *acq; 7017 7018 KASSERT(mutex_owned(&key_misc.lock)); 7019 7020 LIST_FOREACH(acq, &key_misc.acqlist, chain) { 7021 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY)) 7022 return acq; 7023 } 7024 7025 return NULL; 7026 } 7027 7028 static struct secacq * 7029 key_getacqbyseq(u_int32_t seq) 7030 { 7031 struct secacq *acq; 7032 7033 KASSERT(mutex_owned(&key_misc.lock)); 7034 7035 LIST_FOREACH(acq, &key_misc.acqlist, chain) { 7036 if (acq->seq == seq) 7037 return acq; 7038 } 7039 7040 return NULL; 7041 } 7042 #endif 7043 7044 #ifdef notyet 7045 static struct secspacq * 7046 key_newspacq(const struct secpolicyindex *spidx) 7047 { 7048 struct secspacq *acq; 7049 7050 /* get new entry */ 7051 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP); 7052 if (acq == NULL) { 7053 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 7054 return NULL; 7055 } 7056 7057 /* copy secindex */ 7058 memcpy(&acq->spidx, spidx, sizeof(acq->spidx)); 7059 acq->created = time_uptime; 7060 acq->count = 0; 7061 7062 return acq; 7063 } 7064 7065 static struct secspacq * 7066 key_getspacq(const struct secpolicyindex *spidx) 7067 { 7068 struct secspacq *acq; 7069 7070 LIST_FOREACH(acq, &key_misc.spacqlist, chain) { 7071 if (key_spidx_match_exactly(spidx, &acq->spidx)) 7072 return acq; 7073 } 7074 7075 return NULL; 7076 } 7077 #endif /* notyet */ 7078 7079 /* 7080 * SADB_ACQUIRE processing, 7081 * in first situation, is receiving 7082 * <base> 7083 * from the ikmpd, and clear sequence of its secasvar entry. 7084 * 7085 * In second situation, is receiving 7086 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 7087 * from a user land process, and return 7088 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 7089 * to the socket. 7090 * 7091 * m will always be freed. 7092 */ 7093 static int 7094 key_api_acquire(struct socket *so, struct mbuf *m, 7095 const struct sadb_msghdr *mhp) 7096 { 7097 const struct sockaddr *src, *dst; 7098 struct secasindex saidx; 7099 u_int16_t proto; 7100 int error; 7101 7102 /* 7103 * Error message from KMd. 7104 * We assume that if error was occurred in IKEd, the length of PFKEY 7105 * message is equal to the size of sadb_msg structure. 7106 * We do not raise error even if error occurred in this function. 7107 */ 7108 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 7109 #ifndef IPSEC_NONBLOCK_ACQUIRE 7110 struct secacq *acq; 7111 7112 /* check sequence number */ 7113 if (mhp->msg->sadb_msg_seq == 0) { 7114 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n"); 7115 m_freem(m); 7116 return 0; 7117 } 7118 7119 mutex_enter(&key_misc.lock); 7120 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); 7121 if (acq == NULL) { 7122 mutex_exit(&key_misc.lock); 7123 /* 7124 * the specified larval SA is already gone, or we got 7125 * a bogus sequence number. we can silently ignore it. 7126 */ 7127 m_freem(m); 7128 return 0; 7129 } 7130 7131 /* reset acq counter in order to deletion by timehander. */ 7132 acq->created = time_uptime; 7133 acq->count = 0; 7134 mutex_exit(&key_misc.lock); 7135 #endif 7136 m_freem(m); 7137 return 0; 7138 } 7139 7140 /* 7141 * This message is from user land. 7142 */ 7143 7144 /* map satype to proto */ 7145 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 7146 if (proto == 0) { 7147 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7148 return key_senderror(so, m, EINVAL); 7149 } 7150 7151 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 7152 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 7153 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 7154 /* error */ 7155 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 7156 return key_senderror(so, m, EINVAL); 7157 } 7158 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 7159 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 7160 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 7161 /* error */ 7162 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 7163 return key_senderror(so, m, EINVAL); 7164 } 7165 7166 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 7167 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 7168 7169 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 7170 if (error != 0) 7171 return key_senderror(so, m, EINVAL); 7172 7173 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 7174 if (error != 0) 7175 return key_senderror(so, m, EINVAL); 7176 7177 /* get a SA index */ 7178 { 7179 struct secashead *sah; 7180 int s = pserialize_read_enter(); 7181 7182 sah = key_getsah(&saidx, CMP_MODE_REQID); 7183 if (sah != NULL) { 7184 pserialize_read_exit(s); 7185 IPSECLOG(LOG_DEBUG, "a SA exists already.\n"); 7186 return key_senderror(so, m, EEXIST); 7187 } 7188 pserialize_read_exit(s); 7189 } 7190 7191 error = key_acquire(&saidx, NULL, M_WAITOK); 7192 if (error != 0) { 7193 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", 7194 error); 7195 return key_senderror(so, m, error); 7196 } 7197 7198 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 7199 } 7200 7201 /* 7202 * SADB_REGISTER processing. 7203 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 7204 * receive 7205 * <base> 7206 * from the ikmpd, and register a socket to send PF_KEY messages, 7207 * and send 7208 * <base, supported> 7209 * to KMD by PF_KEY. 7210 * If socket is detached, must free from regnode. 7211 * 7212 * m will always be freed. 7213 */ 7214 static int 7215 key_api_register(struct socket *so, struct mbuf *m, 7216 const struct sadb_msghdr *mhp) 7217 { 7218 struct secreg *reg, *newreg = 0; 7219 7220 /* check for invalid register message */ 7221 if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist)) 7222 return key_senderror(so, m, EINVAL); 7223 7224 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 7225 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 7226 goto setmsg; 7227 7228 /* Allocate regnode in advance, out of mutex */ 7229 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP); 7230 7231 /* check whether existing or not */ 7232 mutex_enter(&key_misc.lock); 7233 LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) { 7234 if (reg->so == so) { 7235 IPSECLOG(LOG_DEBUG, "socket exists already.\n"); 7236 mutex_exit(&key_misc.lock); 7237 kmem_free(newreg, sizeof(*newreg)); 7238 return key_senderror(so, m, EEXIST); 7239 } 7240 } 7241 7242 newreg->so = so; 7243 ((struct keycb *)sotorawcb(so))->kp_registered++; 7244 7245 /* add regnode to key_misc.reglist. */ 7246 LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain); 7247 mutex_exit(&key_misc.lock); 7248 7249 setmsg: 7250 { 7251 struct mbuf *n; 7252 struct sadb_supported *sup; 7253 u_int len, alen, elen; 7254 int off; 7255 int i; 7256 struct sadb_alg *alg; 7257 7258 /* create new sadb_msg to reply. */ 7259 alen = 0; 7260 for (i = 1; i <= SADB_AALG_MAX; i++) { 7261 if (ah_algorithm_lookup(i)) 7262 alen += sizeof(struct sadb_alg); 7263 } 7264 if (alen) 7265 alen += sizeof(struct sadb_supported); 7266 elen = 0; 7267 for (i = 1; i <= SADB_EALG_MAX; i++) { 7268 if (esp_algorithm_lookup(i)) 7269 elen += sizeof(struct sadb_alg); 7270 } 7271 if (elen) 7272 elen += sizeof(struct sadb_supported); 7273 7274 len = sizeof(struct sadb_msg) + alen + elen; 7275 7276 if (len > MCLBYTES) 7277 return key_senderror(so, m, ENOBUFS); 7278 7279 n = key_alloc_mbuf_simple(len, M_WAITOK); 7280 n->m_pkthdr.len = n->m_len = len; 7281 n->m_next = NULL; 7282 off = 0; 7283 7284 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 7285 key_fill_replymsg(n, 0); 7286 7287 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 7288 7289 /* for authentication algorithm */ 7290 if (alen) { 7291 sup = (struct sadb_supported *)(mtod(n, char *) + off); 7292 sup->sadb_supported_len = PFKEY_UNIT64(alen); 7293 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 7294 sup->sadb_supported_reserved = 0; 7295 off += PFKEY_ALIGN8(sizeof(*sup)); 7296 7297 for (i = 1; i <= SADB_AALG_MAX; i++) { 7298 const struct auth_hash *aalgo; 7299 u_int16_t minkeysize, maxkeysize; 7300 7301 aalgo = ah_algorithm_lookup(i); 7302 if (!aalgo) 7303 continue; 7304 alg = (struct sadb_alg *)(mtod(n, char *) + off); 7305 alg->sadb_alg_id = i; 7306 alg->sadb_alg_ivlen = 0; 7307 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 7308 alg->sadb_alg_minbits = _BITS(minkeysize); 7309 alg->sadb_alg_maxbits = _BITS(maxkeysize); 7310 alg->sadb_alg_reserved = 0; 7311 off += PFKEY_ALIGN8(sizeof(*alg)); 7312 } 7313 } 7314 7315 /* for encryption algorithm */ 7316 if (elen) { 7317 sup = (struct sadb_supported *)(mtod(n, char *) + off); 7318 sup->sadb_supported_len = PFKEY_UNIT64(elen); 7319 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 7320 sup->sadb_supported_reserved = 0; 7321 off += PFKEY_ALIGN8(sizeof(*sup)); 7322 7323 for (i = 1; i <= SADB_EALG_MAX; i++) { 7324 const struct enc_xform *ealgo; 7325 7326 ealgo = esp_algorithm_lookup(i); 7327 if (!ealgo) 7328 continue; 7329 alg = (struct sadb_alg *)(mtod(n, char *) + off); 7330 alg->sadb_alg_id = i; 7331 alg->sadb_alg_ivlen = ealgo->blocksize; 7332 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 7333 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 7334 alg->sadb_alg_reserved = 0; 7335 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 7336 } 7337 } 7338 7339 KASSERTMSG(off == len, "length inconsistency"); 7340 7341 m_freem(m); 7342 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 7343 } 7344 } 7345 7346 /* 7347 * free secreg entry registered. 7348 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 7349 */ 7350 void 7351 key_freereg(struct socket *so) 7352 { 7353 struct secreg *reg; 7354 int i; 7355 7356 KASSERT(!cpu_softintr_p()); 7357 KASSERT(so != NULL); 7358 7359 /* 7360 * check whether existing or not. 7361 * check all type of SA, because there is a potential that 7362 * one socket is registered to multiple type of SA. 7363 */ 7364 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7365 mutex_enter(&key_misc.lock); 7366 LIST_FOREACH(reg, &key_misc.reglist[i], chain) { 7367 if (reg->so == so) { 7368 LIST_REMOVE(reg, chain); 7369 break; 7370 } 7371 } 7372 mutex_exit(&key_misc.lock); 7373 if (reg != NULL) 7374 kmem_free(reg, sizeof(*reg)); 7375 } 7376 7377 return; 7378 } 7379 7380 /* 7381 * SADB_EXPIRE processing 7382 * send 7383 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 7384 * to KMD by PF_KEY. 7385 * NOTE: We send only soft lifetime extension. 7386 * 7387 * OUT: 0 : succeed 7388 * others : error number 7389 */ 7390 static int 7391 key_expire(struct secasvar *sav) 7392 { 7393 int s; 7394 int satype; 7395 struct mbuf *result = NULL, *m; 7396 int len; 7397 int error = -1; 7398 struct sadb_lifetime *lt; 7399 lifetime_counters_t sum = {0}; 7400 7401 /* XXX: Why do we lock ? */ 7402 s = splsoftnet(); /*called from softclock()*/ 7403 7404 KASSERT(sav != NULL); 7405 7406 satype = key_proto2satype(sav->sah->saidx.proto); 7407 KASSERTMSG(satype != 0, "invalid proto is passed"); 7408 7409 /* set msg header */ 7410 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav), 7411 M_WAITOK); 7412 result = m; 7413 7414 /* create SA extension */ 7415 m = key_setsadbsa(sav); 7416 m_cat(result, m); 7417 7418 /* create SA extension */ 7419 m = key_setsadbxsa2(sav->sah->saidx.mode, 7420 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid); 7421 m_cat(result, m); 7422 7423 /* create lifetime extension (current and soft) */ 7424 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 7425 m = key_alloc_mbuf(len, M_WAITOK); 7426 KASSERT(m->m_next == NULL); 7427 7428 memset(mtod(m, void *), 0, len); 7429 lt = mtod(m, struct sadb_lifetime *); 7430 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7431 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 7432 percpu_foreach_xcall(sav->lft_c_counters_percpu, 7433 XC_HIGHPRI_IPL(IPL_SOFTNET), key_sum_lifetime_counters, sum); 7434 lt->sadb_lifetime_allocations = sum[LIFETIME_COUNTER_ALLOCATIONS]; 7435 lt->sadb_lifetime_bytes = sum[LIFETIME_COUNTER_BYTES]; 7436 lt->sadb_lifetime_addtime = 7437 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime); 7438 lt->sadb_lifetime_usetime = 7439 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime); 7440 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 7441 memcpy(lt, sav->lft_s, sizeof(*lt)); 7442 m_cat(result, m); 7443 7444 /* set sadb_address for source */ 7445 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, 7446 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 7447 m_cat(result, m); 7448 7449 /* set sadb_address for destination */ 7450 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa, 7451 FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK); 7452 m_cat(result, m); 7453 7454 if ((result->m_flags & M_PKTHDR) == 0) { 7455 error = EINVAL; 7456 goto fail; 7457 } 7458 7459 if (result->m_len < sizeof(struct sadb_msg)) { 7460 result = m_pullup(result, sizeof(struct sadb_msg)); 7461 if (result == NULL) { 7462 error = ENOBUFS; 7463 goto fail; 7464 } 7465 } 7466 7467 result->m_pkthdr.len = 0; 7468 for (m = result; m; m = m->m_next) 7469 result->m_pkthdr.len += m->m_len; 7470 7471 mtod(result, struct sadb_msg *)->sadb_msg_len = 7472 PFKEY_UNIT64(result->m_pkthdr.len); 7473 7474 splx(s); 7475 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7476 7477 fail: 7478 if (result) 7479 m_freem(result); 7480 splx(s); 7481 return error; 7482 } 7483 7484 /* 7485 * SADB_FLUSH processing 7486 * receive 7487 * <base> 7488 * from the ikmpd, and free all entries in secastree. 7489 * and send, 7490 * <base> 7491 * to the ikmpd. 7492 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7493 * 7494 * m will always be freed. 7495 */ 7496 static int 7497 key_api_flush(struct socket *so, struct mbuf *m, 7498 const struct sadb_msghdr *mhp) 7499 { 7500 struct sadb_msg *newmsg; 7501 struct secashead *sah; 7502 struct secasvar *sav; 7503 u_int16_t proto; 7504 u_int8_t state; 7505 int s; 7506 7507 /* map satype to proto */ 7508 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 7509 if (proto == 0) { 7510 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7511 return key_senderror(so, m, EINVAL); 7512 } 7513 7514 /* no SATYPE specified, i.e. flushing all SA. */ 7515 s = pserialize_read_enter(); 7516 SAHLIST_READER_FOREACH(sah) { 7517 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && 7518 proto != sah->saidx.proto) 7519 continue; 7520 7521 key_sah_ref(sah); 7522 pserialize_read_exit(s); 7523 7524 SASTATE_ALIVE_FOREACH(state) { 7525 restart: 7526 mutex_enter(&key_sad.lock); 7527 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7528 sav->state = SADB_SASTATE_DEAD; 7529 key_unlink_sav(sav); 7530 mutex_exit(&key_sad.lock); 7531 key_destroy_sav(sav); 7532 goto restart; 7533 } 7534 mutex_exit(&key_sad.lock); 7535 } 7536 7537 s = pserialize_read_enter(); 7538 sah->state = SADB_SASTATE_DEAD; 7539 key_sah_unref(sah); 7540 } 7541 pserialize_read_exit(s); 7542 7543 if (m->m_len < sizeof(struct sadb_msg) || 7544 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7545 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 7546 return key_senderror(so, m, ENOBUFS); 7547 } 7548 7549 if (m->m_next) 7550 m_freem(m->m_next); 7551 m->m_next = NULL; 7552 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7553 newmsg = mtod(m, struct sadb_msg *); 7554 newmsg->sadb_msg_errno = 0; 7555 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7556 7557 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7558 } 7559 7560 7561 static struct mbuf * 7562 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid) 7563 { 7564 struct secashead *sah; 7565 struct secasvar *sav; 7566 u_int16_t proto; 7567 u_int8_t satype; 7568 u_int8_t state; 7569 int cnt; 7570 struct mbuf *m, *n, *prev; 7571 7572 KASSERT(mutex_owned(&key_sad.lock)); 7573 7574 *lenp = 0; 7575 7576 /* map satype to proto */ 7577 proto = key_satype2proto(req_satype); 7578 if (proto == 0) { 7579 *errorp = EINVAL; 7580 return (NULL); 7581 } 7582 7583 /* count sav entries to be sent to userland. */ 7584 cnt = 0; 7585 SAHLIST_WRITER_FOREACH(sah) { 7586 if (req_satype != SADB_SATYPE_UNSPEC && 7587 proto != sah->saidx.proto) 7588 continue; 7589 7590 SASTATE_ANY_FOREACH(state) { 7591 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7592 cnt++; 7593 } 7594 } 7595 } 7596 7597 if (cnt == 0) { 7598 *errorp = ENOENT; 7599 return (NULL); 7600 } 7601 7602 /* send this to the userland, one at a time. */ 7603 m = NULL; 7604 prev = m; 7605 SAHLIST_WRITER_FOREACH(sah) { 7606 if (req_satype != SADB_SATYPE_UNSPEC && 7607 proto != sah->saidx.proto) 7608 continue; 7609 7610 /* map proto to satype */ 7611 satype = key_proto2satype(sah->saidx.proto); 7612 if (satype == 0) { 7613 m_freem(m); 7614 *errorp = EINVAL; 7615 return (NULL); 7616 } 7617 7618 SASTATE_ANY_FOREACH(state) { 7619 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7620 n = key_setdumpsa(sav, SADB_DUMP, satype, 7621 --cnt, pid); 7622 if (!m) 7623 m = n; 7624 else 7625 prev->m_nextpkt = n; 7626 prev = n; 7627 } 7628 } 7629 } 7630 7631 if (!m) { 7632 *errorp = EINVAL; 7633 return (NULL); 7634 } 7635 7636 if ((m->m_flags & M_PKTHDR) != 0) { 7637 m->m_pkthdr.len = 0; 7638 for (n = m; n; n = n->m_next) 7639 m->m_pkthdr.len += n->m_len; 7640 } 7641 7642 *errorp = 0; 7643 return (m); 7644 } 7645 7646 /* 7647 * SADB_DUMP processing 7648 * dump all entries including status of DEAD in SAD. 7649 * receive 7650 * <base> 7651 * from the ikmpd, and dump all secasvar leaves 7652 * and send, 7653 * <base> ..... 7654 * to the ikmpd. 7655 * 7656 * m will always be freed. 7657 */ 7658 static int 7659 key_api_dump(struct socket *so, struct mbuf *m0, 7660 const struct sadb_msghdr *mhp) 7661 { 7662 u_int16_t proto; 7663 u_int8_t satype; 7664 struct mbuf *n; 7665 int error, len, ok; 7666 7667 /* map satype to proto */ 7668 satype = mhp->msg->sadb_msg_satype; 7669 proto = key_satype2proto(satype); 7670 if (proto == 0) { 7671 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7672 return key_senderror(so, m0, EINVAL); 7673 } 7674 7675 /* 7676 * If the requestor has insufficient socket-buffer space 7677 * for the entire chain, nobody gets any response to the DUMP. 7678 * XXX For now, only the requestor ever gets anything. 7679 * Moreover, if the requestor has any space at all, they receive 7680 * the entire chain, otherwise the request is refused with ENOBUFS. 7681 */ 7682 if (sbspace(&so->so_rcv) <= 0) { 7683 return key_senderror(so, m0, ENOBUFS); 7684 } 7685 7686 mutex_enter(&key_sad.lock); 7687 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid); 7688 mutex_exit(&key_sad.lock); 7689 7690 if (n == NULL) { 7691 return key_senderror(so, m0, ENOENT); 7692 } 7693 { 7694 uint64_t *ps = PFKEY_STAT_GETREF(); 7695 ps[PFKEY_STAT_IN_TOTAL]++; 7696 ps[PFKEY_STAT_IN_BYTES] += len; 7697 PFKEY_STAT_PUTREF(); 7698 } 7699 7700 /* 7701 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 7702 * The requestor receives either the entire chain, or an 7703 * error message with ENOBUFS. 7704 * 7705 * sbappendaddrchain() takes the chain of entries, one 7706 * packet-record per SPD entry, prepends the key_src sockaddr 7707 * to each packet-record, links the sockaddr mbufs into a new 7708 * list of records, then appends the entire resulting 7709 * list to the requesting socket. 7710 */ 7711 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, 7712 SB_PRIO_ONESHOT_OVERFLOW); 7713 7714 if (!ok) { 7715 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 7716 m_freem(n); 7717 return key_senderror(so, m0, ENOBUFS); 7718 } 7719 7720 m_freem(m0); 7721 return 0; 7722 } 7723 7724 /* 7725 * SADB_X_PROMISC processing 7726 * 7727 * m will always be freed. 7728 */ 7729 static int 7730 key_api_promisc(struct socket *so, struct mbuf *m, 7731 const struct sadb_msghdr *mhp) 7732 { 7733 int olen; 7734 7735 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7736 7737 if (olen < sizeof(struct sadb_msg)) { 7738 #if 1 7739 return key_senderror(so, m, EINVAL); 7740 #else 7741 m_freem(m); 7742 return 0; 7743 #endif 7744 } else if (olen == sizeof(struct sadb_msg)) { 7745 /* enable/disable promisc mode */ 7746 struct keycb *kp = (struct keycb *)sotorawcb(so); 7747 if (kp == NULL) 7748 return key_senderror(so, m, EINVAL); 7749 mhp->msg->sadb_msg_errno = 0; 7750 switch (mhp->msg->sadb_msg_satype) { 7751 case 0: 7752 case 1: 7753 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7754 break; 7755 default: 7756 return key_senderror(so, m, EINVAL); 7757 } 7758 7759 /* send the original message back to everyone */ 7760 mhp->msg->sadb_msg_errno = 0; 7761 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7762 } else { 7763 /* send packet as is */ 7764 7765 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7766 7767 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7768 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7769 } 7770 } 7771 7772 static int (*key_api_typesw[]) (struct socket *, struct mbuf *, 7773 const struct sadb_msghdr *) = { 7774 NULL, /* SADB_RESERVED */ 7775 key_api_getspi, /* SADB_GETSPI */ 7776 key_api_update, /* SADB_UPDATE */ 7777 key_api_add, /* SADB_ADD */ 7778 key_api_delete, /* SADB_DELETE */ 7779 key_api_get, /* SADB_GET */ 7780 key_api_acquire, /* SADB_ACQUIRE */ 7781 key_api_register, /* SADB_REGISTER */ 7782 NULL, /* SADB_EXPIRE */ 7783 key_api_flush, /* SADB_FLUSH */ 7784 key_api_dump, /* SADB_DUMP */ 7785 key_api_promisc, /* SADB_X_PROMISC */ 7786 NULL, /* SADB_X_PCHANGE */ 7787 key_api_spdadd, /* SADB_X_SPDUPDATE */ 7788 key_api_spdadd, /* SADB_X_SPDADD */ 7789 key_api_spddelete, /* SADB_X_SPDDELETE */ 7790 key_api_spdget, /* SADB_X_SPDGET */ 7791 NULL, /* SADB_X_SPDACQUIRE */ 7792 key_api_spddump, /* SADB_X_SPDDUMP */ 7793 key_api_spdflush, /* SADB_X_SPDFLUSH */ 7794 key_api_spdadd, /* SADB_X_SPDSETIDX */ 7795 NULL, /* SADB_X_SPDEXPIRE */ 7796 key_api_spddelete2, /* SADB_X_SPDDELETE2 */ 7797 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */ 7798 }; 7799 7800 /* 7801 * parse sadb_msg buffer to process PFKEYv2, 7802 * and create a data to response if needed. 7803 * I think to be dealed with mbuf directly. 7804 * IN: 7805 * msgp : pointer to pointer to a received buffer pulluped. 7806 * This is rewrited to response. 7807 * so : pointer to socket. 7808 * OUT: 7809 * length for buffer to send to user process. 7810 */ 7811 int 7812 key_parse(struct mbuf *m, struct socket *so) 7813 { 7814 struct sadb_msg *msg; 7815 struct sadb_msghdr mh; 7816 u_int orglen; 7817 int error; 7818 7819 KASSERT(m != NULL); 7820 KASSERT(so != NULL); 7821 7822 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7823 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) { 7824 kdebug_sadb("passed sadb_msg", msg); 7825 } 7826 #endif 7827 7828 if (m->m_len < sizeof(struct sadb_msg)) { 7829 m = m_pullup(m, sizeof(struct sadb_msg)); 7830 if (!m) 7831 return ENOBUFS; 7832 } 7833 msg = mtod(m, struct sadb_msg *); 7834 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7835 7836 if ((m->m_flags & M_PKTHDR) == 0 || 7837 m->m_pkthdr.len != orglen) { 7838 IPSECLOG(LOG_DEBUG, "invalid message length.\n"); 7839 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7840 error = EINVAL; 7841 goto senderror; 7842 } 7843 7844 if (msg->sadb_msg_version != PF_KEY_V2) { 7845 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n", 7846 msg->sadb_msg_version); 7847 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER); 7848 error = EINVAL; 7849 goto senderror; 7850 } 7851 7852 if (msg->sadb_msg_type > SADB_MAX) { 7853 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", 7854 msg->sadb_msg_type); 7855 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 7856 error = EINVAL; 7857 goto senderror; 7858 } 7859 7860 /* for old-fashioned code - should be nuked */ 7861 if (m->m_pkthdr.len > MCLBYTES) { 7862 m_freem(m); 7863 return ENOBUFS; 7864 } 7865 if (m->m_next) { 7866 struct mbuf *n; 7867 7868 n = key_alloc_mbuf_simple(m->m_pkthdr.len, M_WAITOK); 7869 7870 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *)); 7871 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7872 n->m_next = NULL; 7873 m_freem(m); 7874 m = n; 7875 } 7876 7877 /* align the mbuf chain so that extensions are in contiguous region. */ 7878 error = key_align(m, &mh); 7879 if (error) 7880 return error; 7881 7882 if (m->m_next) { /*XXX*/ 7883 m_freem(m); 7884 return ENOBUFS; 7885 } 7886 7887 msg = mh.msg; 7888 7889 /* check SA type */ 7890 switch (msg->sadb_msg_satype) { 7891 case SADB_SATYPE_UNSPEC: 7892 switch (msg->sadb_msg_type) { 7893 case SADB_GETSPI: 7894 case SADB_UPDATE: 7895 case SADB_ADD: 7896 case SADB_DELETE: 7897 case SADB_GET: 7898 case SADB_ACQUIRE: 7899 case SADB_EXPIRE: 7900 IPSECLOG(LOG_DEBUG, 7901 "must specify satype when msg type=%u.\n", 7902 msg->sadb_msg_type); 7903 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7904 error = EINVAL; 7905 goto senderror; 7906 } 7907 break; 7908 case SADB_SATYPE_AH: 7909 case SADB_SATYPE_ESP: 7910 case SADB_X_SATYPE_IPCOMP: 7911 case SADB_X_SATYPE_TCPSIGNATURE: 7912 switch (msg->sadb_msg_type) { 7913 case SADB_X_SPDADD: 7914 case SADB_X_SPDDELETE: 7915 case SADB_X_SPDGET: 7916 case SADB_X_SPDDUMP: 7917 case SADB_X_SPDFLUSH: 7918 case SADB_X_SPDSETIDX: 7919 case SADB_X_SPDUPDATE: 7920 case SADB_X_SPDDELETE2: 7921 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n", 7922 msg->sadb_msg_type); 7923 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7924 error = EINVAL; 7925 goto senderror; 7926 } 7927 break; 7928 case SADB_SATYPE_RSVP: 7929 case SADB_SATYPE_OSPFV2: 7930 case SADB_SATYPE_RIPV2: 7931 case SADB_SATYPE_MIP: 7932 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n", 7933 msg->sadb_msg_satype); 7934 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7935 error = EOPNOTSUPP; 7936 goto senderror; 7937 case 1: /* XXX: What does it do? */ 7938 if (msg->sadb_msg_type == SADB_X_PROMISC) 7939 break; 7940 /*FALLTHROUGH*/ 7941 default: 7942 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", 7943 msg->sadb_msg_satype); 7944 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7945 error = EINVAL; 7946 goto senderror; 7947 } 7948 7949 /* check field of upper layer protocol and address family */ 7950 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL && 7951 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7952 const struct sadb_address *src0, *dst0; 7953 const struct sockaddr *sa0, *da0; 7954 u_int plen; 7955 7956 src0 = mh.ext[SADB_EXT_ADDRESS_SRC]; 7957 dst0 = mh.ext[SADB_EXT_ADDRESS_DST]; 7958 sa0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_SRC); 7959 da0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_DST); 7960 7961 /* check upper layer protocol */ 7962 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7963 IPSECLOG(LOG_DEBUG, 7964 "upper layer protocol mismatched src %u, dst %u.\n", 7965 src0->sadb_address_proto, dst0->sadb_address_proto); 7966 7967 goto invaddr; 7968 } 7969 7970 /* check family */ 7971 if (sa0->sa_family != da0->sa_family) { 7972 IPSECLOG(LOG_DEBUG, 7973 "address family mismatched src %u, dst %u.\n", 7974 sa0->sa_family, da0->sa_family); 7975 goto invaddr; 7976 } 7977 if (sa0->sa_len != da0->sa_len) { 7978 IPSECLOG(LOG_DEBUG, 7979 "address size mismatched src %u, dst %u.\n", 7980 sa0->sa_len, da0->sa_len); 7981 goto invaddr; 7982 } 7983 7984 switch (sa0->sa_family) { 7985 case AF_INET: 7986 if (sa0->sa_len != sizeof(struct sockaddr_in)) { 7987 IPSECLOG(LOG_DEBUG, 7988 "address size mismatched %u != %zu.\n", 7989 sa0->sa_len, sizeof(struct sockaddr_in)); 7990 goto invaddr; 7991 } 7992 break; 7993 case AF_INET6: 7994 if (sa0->sa_len != sizeof(struct sockaddr_in6)) { 7995 IPSECLOG(LOG_DEBUG, 7996 "address size mismatched %u != %zu.\n", 7997 sa0->sa_len, sizeof(struct sockaddr_in6)); 7998 goto invaddr; 7999 } 8000 break; 8001 default: 8002 IPSECLOG(LOG_DEBUG, "unsupported address family %u.\n", 8003 sa0->sa_family); 8004 error = EAFNOSUPPORT; 8005 goto senderror; 8006 } 8007 plen = key_sabits(sa0); 8008 8009 /* check max prefix length */ 8010 if (src0->sadb_address_prefixlen > plen || 8011 dst0->sadb_address_prefixlen > plen) { 8012 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n"); 8013 goto invaddr; 8014 } 8015 8016 /* 8017 * prefixlen == 0 is valid because there can be a case when 8018 * all addresses are matched. 8019 */ 8020 } 8021 8022 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) || 8023 key_api_typesw[msg->sadb_msg_type] == NULL) { 8024 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 8025 error = EINVAL; 8026 goto senderror; 8027 } 8028 8029 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh); 8030 8031 invaddr: 8032 error = EINVAL; 8033 senderror: 8034 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 8035 return key_senderror(so, m, error); 8036 } 8037 8038 static int 8039 key_senderror(struct socket *so, struct mbuf *m, int code) 8040 { 8041 struct sadb_msg *msg; 8042 8043 KASSERT(m->m_len >= sizeof(struct sadb_msg)); 8044 8045 if (so == NULL) { 8046 /* 8047 * This means the request comes from kernel. 8048 * As the request comes from kernel, it is unnecessary to 8049 * send message to userland. Just return errcode directly. 8050 */ 8051 m_freem(m); 8052 return code; 8053 } 8054 8055 msg = mtod(m, struct sadb_msg *); 8056 msg->sadb_msg_errno = code; 8057 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 8058 } 8059 8060 /* 8061 * set the pointer to each header into message buffer. 8062 * m will be freed on error. 8063 * XXX larger-than-MCLBYTES extension? 8064 */ 8065 static int 8066 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 8067 { 8068 struct mbuf *n; 8069 struct sadb_ext *ext; 8070 size_t off, end; 8071 int extlen; 8072 int toff; 8073 8074 KASSERT(m != NULL); 8075 KASSERT(mhp != NULL); 8076 KASSERT(m->m_len >= sizeof(struct sadb_msg)); 8077 8078 /* initialize */ 8079 memset(mhp, 0, sizeof(*mhp)); 8080 8081 mhp->msg = mtod(m, struct sadb_msg *); 8082 mhp->ext[0] = mhp->msg; /*XXX backward compat */ 8083 8084 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 8085 extlen = end; /*just in case extlen is not updated*/ 8086 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 8087 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 8088 if (!n) { 8089 /* m is already freed */ 8090 return ENOBUFS; 8091 } 8092 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 8093 8094 /* set pointer */ 8095 switch (ext->sadb_ext_type) { 8096 case SADB_EXT_SA: 8097 case SADB_EXT_ADDRESS_SRC: 8098 case SADB_EXT_ADDRESS_DST: 8099 case SADB_EXT_ADDRESS_PROXY: 8100 case SADB_EXT_LIFETIME_CURRENT: 8101 case SADB_EXT_LIFETIME_HARD: 8102 case SADB_EXT_LIFETIME_SOFT: 8103 case SADB_EXT_KEY_AUTH: 8104 case SADB_EXT_KEY_ENCRYPT: 8105 case SADB_EXT_IDENTITY_SRC: 8106 case SADB_EXT_IDENTITY_DST: 8107 case SADB_EXT_SENSITIVITY: 8108 case SADB_EXT_PROPOSAL: 8109 case SADB_EXT_SUPPORTED_AUTH: 8110 case SADB_EXT_SUPPORTED_ENCRYPT: 8111 case SADB_EXT_SPIRANGE: 8112 case SADB_X_EXT_POLICY: 8113 case SADB_X_EXT_SA2: 8114 case SADB_X_EXT_NAT_T_TYPE: 8115 case SADB_X_EXT_NAT_T_SPORT: 8116 case SADB_X_EXT_NAT_T_DPORT: 8117 case SADB_X_EXT_NAT_T_OAI: 8118 case SADB_X_EXT_NAT_T_OAR: 8119 case SADB_X_EXT_NAT_T_FRAG: 8120 /* duplicate check */ 8121 /* 8122 * XXX Are there duplication payloads of either 8123 * KEY_AUTH or KEY_ENCRYPT ? 8124 */ 8125 if (mhp->ext[ext->sadb_ext_type] != NULL) { 8126 IPSECLOG(LOG_DEBUG, 8127 "duplicate ext_type %u is passed.\n", 8128 ext->sadb_ext_type); 8129 m_freem(m); 8130 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT); 8131 return EINVAL; 8132 } 8133 break; 8134 default: 8135 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n", 8136 ext->sadb_ext_type); 8137 m_freem(m); 8138 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE); 8139 return EINVAL; 8140 } 8141 8142 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 8143 8144 if (key_validate_ext(ext, extlen)) { 8145 m_freem(m); 8146 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 8147 return EINVAL; 8148 } 8149 8150 n = m_pulldown(m, off, extlen, &toff); 8151 if (!n) { 8152 /* m is already freed */ 8153 return ENOBUFS; 8154 } 8155 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 8156 8157 mhp->ext[ext->sadb_ext_type] = ext; 8158 mhp->extoff[ext->sadb_ext_type] = off; 8159 mhp->extlen[ext->sadb_ext_type] = extlen; 8160 } 8161 8162 if (off != end) { 8163 m_freem(m); 8164 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 8165 return EINVAL; 8166 } 8167 8168 return 0; 8169 } 8170 8171 static int 8172 key_validate_ext(const struct sadb_ext *ext, int len) 8173 { 8174 const struct sockaddr *sa; 8175 enum { NONE, ADDR } checktype = NONE; 8176 int baselen = 0; 8177 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 8178 8179 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 8180 return EINVAL; 8181 8182 /* if it does not match minimum/maximum length, bail */ 8183 if (ext->sadb_ext_type >= __arraycount(minsize) || 8184 ext->sadb_ext_type >= __arraycount(maxsize)) 8185 return EINVAL; 8186 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 8187 return EINVAL; 8188 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 8189 return EINVAL; 8190 8191 /* more checks based on sadb_ext_type XXX need more */ 8192 switch (ext->sadb_ext_type) { 8193 case SADB_EXT_ADDRESS_SRC: 8194 case SADB_EXT_ADDRESS_DST: 8195 case SADB_EXT_ADDRESS_PROXY: 8196 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 8197 checktype = ADDR; 8198 break; 8199 case SADB_EXT_IDENTITY_SRC: 8200 case SADB_EXT_IDENTITY_DST: 8201 if (((const struct sadb_ident *)ext)->sadb_ident_type == 8202 SADB_X_IDENTTYPE_ADDR) { 8203 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 8204 checktype = ADDR; 8205 } else 8206 checktype = NONE; 8207 break; 8208 default: 8209 checktype = NONE; 8210 break; 8211 } 8212 8213 switch (checktype) { 8214 case NONE: 8215 break; 8216 case ADDR: 8217 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 8218 if (len < baselen + sal) 8219 return EINVAL; 8220 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 8221 return EINVAL; 8222 break; 8223 } 8224 8225 return 0; 8226 } 8227 8228 static int 8229 key_do_init(void) 8230 { 8231 int i, error; 8232 8233 mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE); 8234 8235 mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE); 8236 cv_init(&key_spd.cv_lc, "key_sp_lc"); 8237 key_spd.psz = pserialize_create(); 8238 cv_init(&key_spd.cv_psz, "key_sp_psz"); 8239 key_spd.psz_performing = false; 8240 8241 mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE); 8242 cv_init(&key_sad.cv_lc, "key_sa_lc"); 8243 key_sad.psz = pserialize_create(); 8244 cv_init(&key_sad.cv_psz, "key_sa_psz"); 8245 key_sad.psz_performing = false; 8246 8247 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS); 8248 8249 callout_init(&key_timehandler_ch, CALLOUT_MPSAFE); 8250 error = workqueue_create(&key_timehandler_wq, "key_timehandler", 8251 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE); 8252 if (error != 0) 8253 panic("%s: workqueue_create failed (%d)\n", __func__, error); 8254 8255 for (i = 0; i < IPSEC_DIR_MAX; i++) { 8256 PSLIST_INIT(&key_spd.splist[i]); 8257 } 8258 8259 PSLIST_INIT(&key_spd.socksplist); 8260 8261 key_sad.sahlists = hashinit(SAHHASH_NHASH, HASH_PSLIST, true, 8262 &key_sad.sahlistmask); 8263 key_sad.savlut = hashinit(SAVLUT_NHASH, HASH_PSLIST, true, 8264 &key_sad.savlutmask); 8265 8266 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 8267 LIST_INIT(&key_misc.reglist[i]); 8268 } 8269 8270 #ifndef IPSEC_NONBLOCK_ACQUIRE 8271 LIST_INIT(&key_misc.acqlist); 8272 #endif 8273 #ifdef notyet 8274 LIST_INIT(&key_misc.spacqlist); 8275 #endif 8276 8277 /* system default */ 8278 ip4_def_policy.policy = IPSEC_POLICY_NONE; 8279 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE; 8280 localcount_init(&ip4_def_policy.localcount); 8281 8282 #ifdef INET6 8283 ip6_def_policy.policy = IPSEC_POLICY_NONE; 8284 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE; 8285 localcount_init(&ip6_def_policy.localcount); 8286 #endif 8287 8288 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 8289 8290 /* initialize key statistics */ 8291 keystat.getspi_count = 1; 8292 8293 aprint_verbose("IPsec: Initialized Security Association Processing.\n"); 8294 8295 return (0); 8296 } 8297 8298 void 8299 key_init(void) 8300 { 8301 static ONCE_DECL(key_init_once); 8302 8303 sysctl_net_keyv2_setup(NULL); 8304 sysctl_net_key_compat_setup(NULL); 8305 8306 RUN_ONCE(&key_init_once, key_do_init); 8307 8308 key_init_so(); 8309 } 8310 8311 /* 8312 * XXX: maybe This function is called after INBOUND IPsec processing. 8313 * 8314 * Special check for tunnel-mode packets. 8315 * We must make some checks for consistency between inner and outer IP header. 8316 * 8317 * xxx more checks to be provided 8318 */ 8319 int 8320 key_checktunnelsanity( 8321 struct secasvar *sav, 8322 u_int family, 8323 void *src, 8324 void *dst 8325 ) 8326 { 8327 8328 /* XXX: check inner IP header */ 8329 8330 return 1; 8331 } 8332 8333 #if 0 8334 #define hostnamelen strlen(hostname) 8335 8336 /* 8337 * Get FQDN for the host. 8338 * If the administrator configured hostname (by hostname(1)) without 8339 * domain name, returns nothing. 8340 */ 8341 static const char * 8342 key_getfqdn(void) 8343 { 8344 int i; 8345 int hasdot; 8346 static char fqdn[MAXHOSTNAMELEN + 1]; 8347 8348 if (!hostnamelen) 8349 return NULL; 8350 8351 /* check if it comes with domain name. */ 8352 hasdot = 0; 8353 for (i = 0; i < hostnamelen; i++) { 8354 if (hostname[i] == '.') 8355 hasdot++; 8356 } 8357 if (!hasdot) 8358 return NULL; 8359 8360 /* NOTE: hostname may not be NUL-terminated. */ 8361 memset(fqdn, 0, sizeof(fqdn)); 8362 memcpy(fqdn, hostname, hostnamelen); 8363 fqdn[hostnamelen] = '\0'; 8364 return fqdn; 8365 } 8366 8367 /* 8368 * get username@FQDN for the host/user. 8369 */ 8370 static const char * 8371 key_getuserfqdn(void) 8372 { 8373 const char *host; 8374 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2]; 8375 struct proc *p = curproc; 8376 char *q; 8377 8378 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session) 8379 return NULL; 8380 if (!(host = key_getfqdn())) 8381 return NULL; 8382 8383 /* NOTE: s_login may not be-NUL terminated. */ 8384 memset(userfqdn, 0, sizeof(userfqdn)); 8385 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME); 8386 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */ 8387 q = userfqdn + strlen(userfqdn); 8388 *q++ = '@'; 8389 memcpy(q, host, strlen(host)); 8390 q += strlen(host); 8391 *q++ = '\0'; 8392 8393 return userfqdn; 8394 } 8395 #endif 8396 8397 /* record data transfer on SA, and update timestamps */ 8398 void 8399 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 8400 { 8401 lifetime_counters_t *counters; 8402 8403 KASSERT(sav != NULL); 8404 KASSERT(sav->lft_c != NULL); 8405 KASSERT(m != NULL); 8406 8407 counters = percpu_getref(sav->lft_c_counters_percpu); 8408 8409 /* 8410 * XXX Currently, there is a difference of bytes size 8411 * between inbound and outbound processing. 8412 */ 8413 (*counters)[LIFETIME_COUNTER_BYTES] += m->m_pkthdr.len; 8414 /* to check bytes lifetime is done in key_timehandler(). */ 8415 8416 /* 8417 * We use the number of packets as the unit of 8418 * sadb_lifetime_allocations. We increment the variable 8419 * whenever {esp,ah}_{in,out}put is called. 8420 */ 8421 (*counters)[LIFETIME_COUNTER_ALLOCATIONS]++; 8422 /* XXX check for expires? */ 8423 8424 percpu_putref(sav->lft_c_counters_percpu); 8425 8426 /* 8427 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock, 8428 * in seconds. HARD and SOFT lifetime are measured by the time 8429 * difference (again in seconds) from sadb_lifetime_usetime. 8430 * 8431 * usetime 8432 * v expire expire 8433 * -----+-----+--------+---> t 8434 * <--------------> HARD 8435 * <-----> SOFT 8436 */ 8437 sav->lft_c->sadb_lifetime_usetime = time_uptime; 8438 /* XXX check for expires? */ 8439 8440 return; 8441 } 8442 8443 /* dumb version */ 8444 void 8445 key_sa_routechange(struct sockaddr *dst) 8446 { 8447 struct secashead *sah; 8448 int s; 8449 8450 s = pserialize_read_enter(); 8451 SAHLIST_READER_FOREACH(sah) { 8452 struct route *ro; 8453 const struct sockaddr *sa; 8454 8455 key_sah_ref(sah); 8456 pserialize_read_exit(s); 8457 8458 ro = &sah->sa_route; 8459 sa = rtcache_getdst(ro); 8460 if (sa != NULL && dst->sa_len == sa->sa_len && 8461 memcmp(dst, sa, dst->sa_len) == 0) 8462 rtcache_free(ro); 8463 8464 s = pserialize_read_enter(); 8465 key_sah_unref(sah); 8466 } 8467 pserialize_read_exit(s); 8468 8469 return; 8470 } 8471 8472 static void 8473 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 8474 { 8475 struct secasvar *_sav; 8476 8477 ASSERT_SLEEPABLE(); 8478 KASSERT(mutex_owned(&key_sad.lock)); 8479 8480 if (sav->state == state) 8481 return; 8482 8483 key_unlink_sav(sav); 8484 localcount_fini(&sav->localcount); 8485 SAVLIST_ENTRY_DESTROY(sav); 8486 key_init_sav(sav); 8487 8488 sav->state = state; 8489 if (!SADB_SASTATE_USABLE_P(sav)) { 8490 /* We don't need to care about the order */ 8491 SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav); 8492 return; 8493 } 8494 /* 8495 * Sort the list by lft_c->sadb_lifetime_addtime 8496 * in ascending order. 8497 */ 8498 SAVLIST_WRITER_FOREACH(_sav, sav->sah, state) { 8499 if (_sav->lft_c->sadb_lifetime_addtime > 8500 sav->lft_c->sadb_lifetime_addtime) { 8501 SAVLIST_WRITER_INSERT_BEFORE(_sav, sav); 8502 break; 8503 } 8504 } 8505 if (_sav == NULL) { 8506 SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav); 8507 } 8508 8509 SAVLUT_WRITER_INSERT_HEAD(sav); 8510 8511 key_validate_savlist(sav->sah, state); 8512 } 8513 8514 /* XXX too much? */ 8515 static struct mbuf * 8516 key_alloc_mbuf(int l, int mflag) 8517 { 8518 struct mbuf *m = NULL, *n; 8519 int len, t; 8520 8521 KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p())); 8522 8523 len = l; 8524 while (len > 0) { 8525 MGET(n, mflag, MT_DATA); 8526 if (n && len > MLEN) { 8527 MCLGET(n, mflag); 8528 if ((n->m_flags & M_EXT) == 0) { 8529 m_freem(n); 8530 n = NULL; 8531 } 8532 } 8533 if (!n) { 8534 m_freem(m); 8535 return NULL; 8536 } 8537 8538 n->m_next = NULL; 8539 n->m_len = 0; 8540 n->m_len = M_TRAILINGSPACE(n); 8541 /* use the bottom of mbuf, hoping we can prepend afterwards */ 8542 if (n->m_len > len) { 8543 t = (n->m_len - len) & ~(sizeof(long) - 1); 8544 n->m_data += t; 8545 n->m_len = len; 8546 } 8547 8548 len -= n->m_len; 8549 8550 if (m) 8551 m_cat(m, n); 8552 else 8553 m = n; 8554 } 8555 8556 return m; 8557 } 8558 8559 static struct mbuf * 8560 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid) 8561 { 8562 struct secashead *sah; 8563 struct secasvar *sav; 8564 u_int16_t proto; 8565 u_int8_t satype; 8566 u_int8_t state; 8567 int cnt; 8568 struct mbuf *m, *n; 8569 8570 KASSERT(mutex_owned(&key_sad.lock)); 8571 8572 /* map satype to proto */ 8573 proto = key_satype2proto(req_satype); 8574 if (proto == 0) { 8575 *errorp = EINVAL; 8576 return (NULL); 8577 } 8578 8579 /* count sav entries to be sent to the userland. */ 8580 cnt = 0; 8581 SAHLIST_WRITER_FOREACH(sah) { 8582 if (req_satype != SADB_SATYPE_UNSPEC && 8583 proto != sah->saidx.proto) 8584 continue; 8585 8586 SASTATE_ANY_FOREACH(state) { 8587 SAVLIST_WRITER_FOREACH(sav, sah, state) { 8588 cnt++; 8589 } 8590 } 8591 } 8592 8593 if (cnt == 0) { 8594 *errorp = ENOENT; 8595 return (NULL); 8596 } 8597 8598 /* send this to the userland, one at a time. */ 8599 m = NULL; 8600 SAHLIST_WRITER_FOREACH(sah) { 8601 if (req_satype != SADB_SATYPE_UNSPEC && 8602 proto != sah->saidx.proto) 8603 continue; 8604 8605 /* map proto to satype */ 8606 satype = key_proto2satype(sah->saidx.proto); 8607 if (satype == 0) { 8608 m_freem(m); 8609 *errorp = EINVAL; 8610 return (NULL); 8611 } 8612 8613 SASTATE_ANY_FOREACH(state) { 8614 SAVLIST_WRITER_FOREACH(sav, sah, state) { 8615 n = key_setdumpsa(sav, SADB_DUMP, satype, 8616 --cnt, pid); 8617 if (!m) 8618 m = n; 8619 else 8620 m_cat(m, n); 8621 } 8622 } 8623 } 8624 8625 if (!m) { 8626 *errorp = EINVAL; 8627 return (NULL); 8628 } 8629 8630 if ((m->m_flags & M_PKTHDR) != 0) { 8631 m->m_pkthdr.len = 0; 8632 for (n = m; n; n = n->m_next) 8633 m->m_pkthdr.len += n->m_len; 8634 } 8635 8636 *errorp = 0; 8637 return (m); 8638 } 8639 8640 static struct mbuf * 8641 key_setspddump(int *errorp, pid_t pid) 8642 { 8643 struct secpolicy *sp; 8644 int cnt; 8645 u_int dir; 8646 struct mbuf *m, *n; 8647 8648 KASSERT(mutex_owned(&key_spd.lock)); 8649 8650 /* search SPD entry and get buffer size. */ 8651 cnt = 0; 8652 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8653 SPLIST_WRITER_FOREACH(sp, dir) { 8654 cnt++; 8655 } 8656 } 8657 8658 if (cnt == 0) { 8659 *errorp = ENOENT; 8660 return (NULL); 8661 } 8662 8663 m = NULL; 8664 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8665 SPLIST_WRITER_FOREACH(sp, dir) { 8666 --cnt; 8667 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 8668 8669 if (!m) 8670 m = n; 8671 else { 8672 m->m_pkthdr.len += n->m_pkthdr.len; 8673 m_cat(m, n); 8674 } 8675 } 8676 } 8677 8678 *errorp = 0; 8679 return (m); 8680 } 8681 8682 int 8683 key_get_used(void) { 8684 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) || 8685 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) || 8686 !SOCKSPLIST_READER_EMPTY(); 8687 } 8688 8689 void 8690 key_update_used(void) 8691 { 8692 switch (ipsec_enabled) { 8693 default: 8694 case 0: 8695 #ifdef notyet 8696 /* XXX: racy */ 8697 ipsec_used = 0; 8698 #endif 8699 break; 8700 case 1: 8701 #ifndef notyet 8702 /* XXX: racy */ 8703 if (!ipsec_used) 8704 #endif 8705 ipsec_used = key_get_used(); 8706 break; 8707 case 2: 8708 ipsec_used = 1; 8709 break; 8710 } 8711 } 8712 8713 static inline void 8714 key_savlut_writer_insert_head(struct secasvar *sav) 8715 { 8716 uint32_t hash_key; 8717 uint32_t hash; 8718 8719 KASSERT(mutex_owned(&key_sad.lock)); 8720 KASSERT(!sav->savlut_added); 8721 8722 if (sav->sah->saidx.proto == IPPROTO_IPCOMP) 8723 hash_key = sav->alg_comp; 8724 else 8725 hash_key = sav->spi; 8726 8727 hash = key_savluthash(&sav->sah->saidx.dst.sa, 8728 sav->sah->saidx.proto, hash_key, key_sad.savlutmask); 8729 8730 PSLIST_WRITER_INSERT_HEAD(&key_sad.savlut[hash], sav, 8731 pslist_entry_savlut); 8732 sav->savlut_added = true; 8733 } 8734 8735 /* 8736 * Calculate hash using protocol, source address, 8737 * and destination address included in saidx. 8738 */ 8739 static inline uint32_t 8740 key_saidxhash(const struct secasindex *saidx, u_long mask) 8741 { 8742 uint32_t hash32; 8743 const struct sockaddr_in *sin; 8744 const struct sockaddr_in6 *sin6; 8745 8746 hash32 = saidx->proto; 8747 8748 switch (saidx->src.sa.sa_family) { 8749 case AF_INET: 8750 sin = &saidx->src.sin; 8751 hash32 = hash32_buf(&sin->sin_addr, 8752 sizeof(sin->sin_addr), hash32); 8753 sin = &saidx->dst.sin; 8754 hash32 = hash32_buf(&sin->sin_addr, 8755 sizeof(sin->sin_addr), hash32 << 1); 8756 break; 8757 case AF_INET6: 8758 sin6 = &saidx->src.sin6; 8759 hash32 = hash32_buf(&sin6->sin6_addr, 8760 sizeof(sin6->sin6_addr), hash32); 8761 sin6 = &saidx->dst.sin6; 8762 hash32 = hash32_buf(&sin6->sin6_addr, 8763 sizeof(sin6->sin6_addr), hash32 << 1); 8764 break; 8765 default: 8766 hash32 = 0; 8767 break; 8768 } 8769 8770 return hash32 & mask; 8771 } 8772 8773 /* 8774 * Calculate hash using destination address, protocol, 8775 * and spi. Those parameter depend on the search of 8776 * key_lookup_sa(). 8777 */ 8778 static uint32_t 8779 key_savluthash(const struct sockaddr *dst, uint32_t proto, 8780 uint32_t spi, u_long mask) 8781 { 8782 uint32_t hash32; 8783 const struct sockaddr_in *sin; 8784 const struct sockaddr_in6 *sin6; 8785 8786 hash32 = hash32_buf(&proto, sizeof(proto), spi); 8787 8788 switch(dst->sa_family) { 8789 case AF_INET: 8790 sin = satocsin(dst); 8791 hash32 = hash32_buf(&sin->sin_addr, 8792 sizeof(sin->sin_addr), hash32); 8793 break; 8794 case AF_INET6: 8795 sin6 = satocsin6(dst); 8796 hash32 = hash32_buf(&sin6->sin6_addr, 8797 sizeof(sin6->sin6_addr), hash32); 8798 break; 8799 default: 8800 hash32 = 0; 8801 } 8802 8803 return hash32 & mask; 8804 } 8805 8806 static int 8807 sysctl_net_key_dumpsa(SYSCTLFN_ARGS) 8808 { 8809 struct mbuf *m, *n; 8810 int err2 = 0; 8811 char *p, *ep; 8812 size_t len; 8813 int error; 8814 8815 if (newp) 8816 return (EPERM); 8817 if (namelen != 1) 8818 return (EINVAL); 8819 8820 mutex_enter(&key_sad.lock); 8821 m = key_setdump(name[0], &error, l->l_proc->p_pid); 8822 mutex_exit(&key_sad.lock); 8823 if (!m) 8824 return (error); 8825 if (!oldp) 8826 *oldlenp = m->m_pkthdr.len; 8827 else { 8828 p = oldp; 8829 if (*oldlenp < m->m_pkthdr.len) { 8830 err2 = ENOMEM; 8831 ep = p + *oldlenp; 8832 } else { 8833 *oldlenp = m->m_pkthdr.len; 8834 ep = p + m->m_pkthdr.len; 8835 } 8836 for (n = m; n; n = n->m_next) { 8837 len = (ep - p < n->m_len) ? 8838 ep - p : n->m_len; 8839 error = copyout(mtod(n, const void *), p, len); 8840 p += len; 8841 if (error) 8842 break; 8843 } 8844 if (error == 0) 8845 error = err2; 8846 } 8847 m_freem(m); 8848 8849 return (error); 8850 } 8851 8852 static int 8853 sysctl_net_key_dumpsp(SYSCTLFN_ARGS) 8854 { 8855 struct mbuf *m, *n; 8856 int err2 = 0; 8857 char *p, *ep; 8858 size_t len; 8859 int error; 8860 8861 if (newp) 8862 return (EPERM); 8863 if (namelen != 0) 8864 return (EINVAL); 8865 8866 mutex_enter(&key_spd.lock); 8867 m = key_setspddump(&error, l->l_proc->p_pid); 8868 mutex_exit(&key_spd.lock); 8869 if (!m) 8870 return (error); 8871 if (!oldp) 8872 *oldlenp = m->m_pkthdr.len; 8873 else { 8874 p = oldp; 8875 if (*oldlenp < m->m_pkthdr.len) { 8876 err2 = ENOMEM; 8877 ep = p + *oldlenp; 8878 } else { 8879 *oldlenp = m->m_pkthdr.len; 8880 ep = p + m->m_pkthdr.len; 8881 } 8882 for (n = m; n; n = n->m_next) { 8883 len = (ep - p < n->m_len) ? ep - p : n->m_len; 8884 error = copyout(mtod(n, const void *), p, len); 8885 p += len; 8886 if (error) 8887 break; 8888 } 8889 if (error == 0) 8890 error = err2; 8891 } 8892 m_freem(m); 8893 8894 return (error); 8895 } 8896 8897 /* 8898 * Create sysctl tree for native IPSEC key knobs, originally 8899 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }. 8900 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 }; 8901 * and in any case the part of our sysctl namespace used for dumping the 8902 * SPD and SA database *HAS* to be compatible with the KAME sysctl 8903 * namespace, for API reasons. 8904 * 8905 * Pending a consensus on the right way to fix this, add a level of 8906 * indirection in how we number the `native' IPSEC key nodes; 8907 * and (as requested by Andrew Brown) move registration of the 8908 * KAME-compatible names to a separate function. 8909 */ 8910 #if 0 8911 # define IPSEC_PFKEY PF_KEY_V2 8912 # define IPSEC_PFKEY_NAME "keyv2" 8913 #else 8914 # define IPSEC_PFKEY PF_KEY 8915 # define IPSEC_PFKEY_NAME "key" 8916 #endif 8917 8918 static int 8919 sysctl_net_key_stats(SYSCTLFN_ARGS) 8920 { 8921 8922 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS)); 8923 } 8924 8925 static void 8926 sysctl_net_keyv2_setup(struct sysctllog **clog) 8927 { 8928 8929 sysctl_createv(clog, 0, NULL, NULL, 8930 CTLFLAG_PERMANENT, 8931 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL, 8932 NULL, 0, NULL, 0, 8933 CTL_NET, IPSEC_PFKEY, CTL_EOL); 8934 8935 sysctl_createv(clog, 0, NULL, NULL, 8936 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8937 CTLTYPE_INT, "debug", NULL, 8938 NULL, 0, &key_debug_level, 0, 8939 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL); 8940 sysctl_createv(clog, 0, NULL, NULL, 8941 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8942 CTLTYPE_INT, "spi_try", NULL, 8943 NULL, 0, &key_spi_trycnt, 0, 8944 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL); 8945 sysctl_createv(clog, 0, NULL, NULL, 8946 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8947 CTLTYPE_INT, "spi_min_value", NULL, 8948 NULL, 0, &key_spi_minval, 0, 8949 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL); 8950 sysctl_createv(clog, 0, NULL, NULL, 8951 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8952 CTLTYPE_INT, "spi_max_value", NULL, 8953 NULL, 0, &key_spi_maxval, 0, 8954 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL); 8955 sysctl_createv(clog, 0, NULL, NULL, 8956 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8957 CTLTYPE_INT, "random_int", NULL, 8958 NULL, 0, &key_int_random, 0, 8959 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL); 8960 sysctl_createv(clog, 0, NULL, NULL, 8961 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8962 CTLTYPE_INT, "larval_lifetime", NULL, 8963 NULL, 0, &key_larval_lifetime, 0, 8964 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL); 8965 sysctl_createv(clog, 0, NULL, NULL, 8966 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8967 CTLTYPE_INT, "blockacq_count", NULL, 8968 NULL, 0, &key_blockacq_count, 0, 8969 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL); 8970 sysctl_createv(clog, 0, NULL, NULL, 8971 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8972 CTLTYPE_INT, "blockacq_lifetime", NULL, 8973 NULL, 0, &key_blockacq_lifetime, 0, 8974 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL); 8975 sysctl_createv(clog, 0, NULL, NULL, 8976 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8977 CTLTYPE_INT, "esp_keymin", NULL, 8978 NULL, 0, &ipsec_esp_keymin, 0, 8979 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL); 8980 sysctl_createv(clog, 0, NULL, NULL, 8981 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8982 CTLTYPE_INT, "prefered_oldsa", NULL, 8983 NULL, 0, &key_prefered_oldsa, 0, 8984 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL); 8985 sysctl_createv(clog, 0, NULL, NULL, 8986 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8987 CTLTYPE_INT, "esp_auth", NULL, 8988 NULL, 0, &ipsec_esp_auth, 0, 8989 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL); 8990 sysctl_createv(clog, 0, NULL, NULL, 8991 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8992 CTLTYPE_INT, "ah_keymin", NULL, 8993 NULL, 0, &ipsec_ah_keymin, 0, 8994 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL); 8995 sysctl_createv(clog, 0, NULL, NULL, 8996 CTLFLAG_PERMANENT, 8997 CTLTYPE_STRUCT, "stats", 8998 SYSCTL_DESCR("PF_KEY statistics"), 8999 sysctl_net_key_stats, 0, NULL, 0, 9000 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL); 9001 } 9002 9003 /* 9004 * Register sysctl names used by setkey(8). For historical reasons, 9005 * and to share a single API, these names appear under { CTL_NET, PF_KEY } 9006 * for both IPSEC and KAME IPSEC. 9007 */ 9008 static void 9009 sysctl_net_key_compat_setup(struct sysctllog **clog) 9010 { 9011 9012 sysctl_createv(clog, 0, NULL, NULL, 9013 CTLFLAG_PERMANENT, 9014 CTLTYPE_NODE, "key", NULL, 9015 NULL, 0, NULL, 0, 9016 CTL_NET, PF_KEY, CTL_EOL); 9017 9018 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */ 9019 sysctl_createv(clog, 0, NULL, NULL, 9020 CTLFLAG_PERMANENT, 9021 CTLTYPE_STRUCT, "dumpsa", NULL, 9022 sysctl_net_key_dumpsa, 0, NULL, 0, 9023 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL); 9024 sysctl_createv(clog, 0, NULL, NULL, 9025 CTLFLAG_PERMANENT, 9026 CTLTYPE_STRUCT, "dumpsp", NULL, 9027 sysctl_net_key_dumpsp, 0, NULL, 0, 9028 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL); 9029 } 9030