1 /* $NetBSD: key.c,v 1.73 2011/06/09 19:54:18 drochner Exp $ */ 2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */ 3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 4 5 /* 6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the project nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.73 2011/06/09 19:54:18 drochner Exp $"); 36 37 /* 38 * This code is referd to RFC 2367 39 */ 40 41 #include "opt_inet.h" 42 #ifdef __FreeBSD__ 43 #include "opt_inet6.h" 44 #endif 45 #include "opt_ipsec.h" 46 #ifdef __NetBSD__ 47 #include "opt_gateway.h" 48 #endif 49 50 #include <sys/types.h> 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/callout.h> 54 #include <sys/kernel.h> 55 #include <sys/mbuf.h> 56 #include <sys/domain.h> 57 #include <sys/protosw.h> 58 #include <sys/malloc.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sysctl.h> 62 #include <sys/errno.h> 63 #include <sys/proc.h> 64 #include <sys/queue.h> 65 #include <sys/syslog.h> 66 #include <sys/once.h> 67 68 #include <net/if.h> 69 #include <net/route.h> 70 #include <net/raw_cb.h> 71 72 #include <netinet/in.h> 73 #include <netinet/in_systm.h> 74 #include <netinet/ip.h> 75 #include <netinet/in_var.h> 76 #ifdef INET 77 #include <netinet/ip_var.h> 78 #endif 79 80 #ifdef INET6 81 #include <netinet/ip6.h> 82 #include <netinet6/in6_var.h> 83 #include <netinet6/ip6_var.h> 84 #endif /* INET6 */ 85 86 #ifdef INET 87 #include <netinet/in_pcb.h> 88 #endif 89 #ifdef INET6 90 #include <netinet6/in6_pcb.h> 91 #endif /* INET6 */ 92 93 #include <net/pfkeyv2.h> 94 #include <netipsec/keydb.h> 95 #include <netipsec/key.h> 96 #include <netipsec/keysock.h> 97 #include <netipsec/key_debug.h> 98 99 #include <netipsec/ipsec.h> 100 #ifdef INET6 101 #include <netipsec/ipsec6.h> 102 #endif 103 #include <netipsec/ipsec_private.h> 104 105 #include <netipsec/xform.h> 106 #include <netipsec/ipsec_osdep.h> 107 #include <netipsec/ipcomp.h> 108 109 110 #include <machine/stdarg.h> 111 112 113 #include <net/net_osdep.h> 114 115 #define FULLMASK 0xff 116 #define _BITS(bytes) ((bytes) << 3) 117 118 percpu_t *pfkeystat_percpu; 119 120 /* 121 * Note on SA reference counting: 122 * - SAs that are not in DEAD state will have (total external reference + 1) 123 * following value in reference count field. they cannot be freed and are 124 * referenced from SA header. 125 * - SAs that are in DEAD state will have (total external reference) 126 * in reference count field. they are ready to be freed. reference from 127 * SA header will be removed in key_delsav(), when the reference count 128 * field hits 0 (= no external reference other than from SA header. 129 */ 130 131 u_int32_t key_debug_level = 0; 132 static u_int key_spi_trycnt = 1000; 133 static u_int32_t key_spi_minval = 0x100; 134 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ 135 static u_int32_t policy_id = 0; 136 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ 137 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 138 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 139 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 140 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/ 141 142 static u_int32_t acq_seq = 0; 143 static int key_tick_init_random = 0; 144 145 static LIST_HEAD(_sptree, secpolicy) sptree[IPSEC_DIR_MAX]; /* SPD */ 146 static LIST_HEAD(_sahtree, secashead) sahtree; /* SAD */ 147 static LIST_HEAD(_regtree, secreg) regtree[SADB_SATYPE_MAX + 1]; 148 /* registed list */ 149 #ifndef IPSEC_NONBLOCK_ACQUIRE 150 static LIST_HEAD(_acqtree, secacq) acqtree; /* acquiring list */ 151 #endif 152 static LIST_HEAD(_spacqtree, secspacq) spacqtree; /* SP acquiring list */ 153 154 /* search order for SAs */ 155 /* 156 * This order is important because we must select the oldest SA 157 * for outbound processing. For inbound, This is not important. 158 */ 159 static const u_int saorder_state_valid_prefer_old[] = { 160 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 161 }; 162 static const u_int saorder_state_valid_prefer_new[] = { 163 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 164 }; 165 166 static const u_int saorder_state_alive[] = { 167 /* except DEAD */ 168 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 169 }; 170 static const u_int saorder_state_any[] = { 171 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 172 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 173 }; 174 175 static const int minsize[] = { 176 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 177 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 178 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 179 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 180 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 181 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 182 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 183 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 184 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 185 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 186 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 187 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 188 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 189 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 190 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 191 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 192 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 193 0, /* SADB_X_EXT_KMPRIVATE */ 194 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 195 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 196 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 197 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 198 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 199 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 200 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 201 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 202 }; 203 static const int maxsize[] = { 204 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 205 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 206 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 207 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 208 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 209 0, /* SADB_EXT_ADDRESS_SRC */ 210 0, /* SADB_EXT_ADDRESS_DST */ 211 0, /* SADB_EXT_ADDRESS_PROXY */ 212 0, /* SADB_EXT_KEY_AUTH */ 213 0, /* SADB_EXT_KEY_ENCRYPT */ 214 0, /* SADB_EXT_IDENTITY_SRC */ 215 0, /* SADB_EXT_IDENTITY_DST */ 216 0, /* SADB_EXT_SENSITIVITY */ 217 0, /* SADB_EXT_PROPOSAL */ 218 0, /* SADB_EXT_SUPPORTED_AUTH */ 219 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 220 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 221 0, /* SADB_X_EXT_KMPRIVATE */ 222 0, /* SADB_X_EXT_POLICY */ 223 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 224 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 225 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 226 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 227 0, /* SADB_X_EXT_NAT_T_OAI */ 228 0, /* SADB_X_EXT_NAT_T_OAR */ 229 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 230 }; 231 232 static int ipsec_esp_keymin = 256; 233 static int ipsec_esp_auth = 0; 234 static int ipsec_ah_keymin = 128; 235 236 #ifdef SYSCTL_DECL 237 SYSCTL_DECL(_net_key); 238 #endif 239 240 #ifdef SYSCTL_INT 241 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \ 242 &key_debug_level, 0, ""); 243 244 /* max count of trial for the decision of spi value */ 245 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \ 246 &key_spi_trycnt, 0, ""); 247 248 /* minimum spi value to allocate automatically. */ 249 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \ 250 &key_spi_minval, 0, ""); 251 252 /* maximun spi value to allocate automatically. */ 253 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \ 254 &key_spi_maxval, 0, ""); 255 256 /* interval to initialize randseed */ 257 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \ 258 &key_int_random, 0, ""); 259 260 /* lifetime for larval SA */ 261 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \ 262 &key_larval_lifetime, 0, ""); 263 264 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 265 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \ 266 &key_blockacq_count, 0, ""); 267 268 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 269 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \ 270 &key_blockacq_lifetime, 0, ""); 271 272 /* ESP auth */ 273 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \ 274 &ipsec_esp_auth, 0, ""); 275 276 /* minimum ESP key length */ 277 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \ 278 &ipsec_esp_keymin, 0, ""); 279 280 /* minimum AH key length */ 281 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \ 282 &ipsec_ah_keymin, 0, ""); 283 284 /* perfered old SA rather than new SA */ 285 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\ 286 &key_prefered_oldsa, 0, ""); 287 #endif /* SYSCTL_INT */ 288 289 #ifndef LIST_FOREACH 290 #define LIST_FOREACH(elm, head, field) \ 291 for (elm = LIST_FIRST(head); elm; elm = LIST_NEXT(elm, field)) 292 #endif 293 #define __LIST_CHAINED(elm) \ 294 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 295 #define LIST_INSERT_TAIL(head, elm, type, field) \ 296 do {\ 297 struct type *curelm = LIST_FIRST(head); \ 298 if (curelm == NULL) {\ 299 LIST_INSERT_HEAD(head, elm, field); \ 300 } else { \ 301 while (LIST_NEXT(curelm, field)) \ 302 curelm = LIST_NEXT(curelm, field);\ 303 LIST_INSERT_AFTER(curelm, elm, field);\ 304 }\ 305 } while (0) 306 307 #define KEY_CHKSASTATE(head, sav, name) \ 308 /* do */ { \ 309 if ((head) != (sav)) { \ 310 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 311 (name), (head), (sav))); \ 312 continue; \ 313 } \ 314 } /* while (0) */ 315 316 #define KEY_CHKSPDIR(head, sp, name) \ 317 do { \ 318 if ((head) != (sp)) { \ 319 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 320 "anyway continue.\n", \ 321 (name), (head), (sp))); \ 322 } \ 323 } while (0) 324 325 MALLOC_DEFINE(M_SECA, "key mgmt", "security associations, key management"); 326 327 #if 1 328 #define KMALLOC(p, t, n) \ 329 ((p) = (t) malloc((unsigned long)(n), M_SECA, M_NOWAIT)) 330 #define KFREE(p) \ 331 free((p), M_SECA) 332 #else 333 #define KMALLOC(p, t, n) \ 334 do { \ 335 ((p) = (t)malloc((unsigned long)(n), M_SECA, M_NOWAIT)); \ 336 printf("%s %d: %p <- KMALLOC(%s, %d)\n", \ 337 __FILE__, __LINE__, (p), #t, n); \ 338 } while (0) 339 340 #define KFREE(p) \ 341 do { \ 342 printf("%s %d: %p -> KFREE()\n", __FILE__, __LINE__, (p)); \ 343 free((p), M_SECA); \ 344 } while (0) 345 #endif 346 347 /* 348 * set parameters into secpolicyindex buffer. 349 * Must allocate secpolicyindex buffer passed to this function. 350 */ 351 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 352 do { \ 353 memset((idx), 0, sizeof(struct secpolicyindex)); \ 354 (idx)->dir = (_dir); \ 355 (idx)->prefs = (ps); \ 356 (idx)->prefd = (pd); \ 357 (idx)->ul_proto = (ulp); \ 358 memcpy(&(idx)->src, (s), ((const struct sockaddr *)(s))->sa_len); \ 359 memcpy(&(idx)->dst, (d), ((const struct sockaddr *)(d))->sa_len); \ 360 } while (0) 361 362 /* 363 * set parameters into secasindex buffer. 364 * Must allocate secasindex buffer before calling this function. 365 */ 366 static int 367 key_setsecasidx (int, int, int, const struct sadb_address *, 368 const struct sadb_address *, struct secasindex *); 369 370 /* key statistics */ 371 struct _keystat { 372 u_long getspi_count; /* the avarage of count to try to get new SPI */ 373 } keystat; 374 375 struct sadb_msghdr { 376 struct sadb_msg *msg; 377 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 378 int extoff[SADB_EXT_MAX + 1]; 379 int extlen[SADB_EXT_MAX + 1]; 380 }; 381 382 static struct secasvar *key_allocsa_policy (const struct secasindex *); 383 static void key_freesp_so (struct secpolicy **); 384 static struct secasvar *key_do_allocsa_policy (struct secashead *, u_int); 385 static void key_delsp (struct secpolicy *); 386 static struct secpolicy *key_getsp (const struct secpolicyindex *); 387 static struct secpolicy *key_getspbyid (u_int32_t); 388 static u_int16_t key_newreqid (void); 389 static struct mbuf *key_gather_mbuf (struct mbuf *, 390 const struct sadb_msghdr *, int, int, ...); 391 static int key_spdadd (struct socket *, struct mbuf *, 392 const struct sadb_msghdr *); 393 static u_int32_t key_getnewspid (void); 394 static int key_spddelete (struct socket *, struct mbuf *, 395 const struct sadb_msghdr *); 396 static int key_spddelete2 (struct socket *, struct mbuf *, 397 const struct sadb_msghdr *); 398 static int key_spdget (struct socket *, struct mbuf *, 399 const struct sadb_msghdr *); 400 static int key_spdflush (struct socket *, struct mbuf *, 401 const struct sadb_msghdr *); 402 static int key_spddump (struct socket *, struct mbuf *, 403 const struct sadb_msghdr *); 404 static struct mbuf * key_setspddump (int *errorp, pid_t); 405 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid); 406 #ifdef IPSEC_NAT_T 407 static int key_nat_map (struct socket *, struct mbuf *, 408 const struct sadb_msghdr *); 409 #endif 410 static struct mbuf *key_setdumpsp (struct secpolicy *, 411 u_int8_t, u_int32_t, pid_t); 412 static u_int key_getspreqmsglen (const struct secpolicy *); 413 static int key_spdexpire (struct secpolicy *); 414 static struct secashead *key_newsah (const struct secasindex *); 415 static void key_delsah (struct secashead *); 416 static struct secasvar *key_newsav (struct mbuf *, 417 const struct sadb_msghdr *, struct secashead *, int *, 418 const char*, int); 419 #define KEY_NEWSAV(m, sadb, sah, e) \ 420 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 421 static void key_delsav (struct secasvar *); 422 static struct secashead *key_getsah (const struct secasindex *); 423 static struct secasvar *key_checkspidup (const struct secasindex *, u_int32_t); 424 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t); 425 static int key_setsaval (struct secasvar *, struct mbuf *, 426 const struct sadb_msghdr *); 427 static int key_mature (struct secasvar *); 428 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t, 429 u_int8_t, u_int32_t, u_int32_t); 430 #ifdef IPSEC_NAT_T 431 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t); 432 static struct mbuf *key_setsadbxtype (u_int16_t); 433 #endif 434 static void key_porttosaddr (union sockaddr_union *, u_int16_t); 435 static int key_checksalen (const union sockaddr_union *); 436 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t, 437 u_int32_t, pid_t, u_int16_t); 438 static struct mbuf *key_setsadbsa (struct secasvar *); 439 static struct mbuf *key_setsadbaddr (u_int16_t, 440 const struct sockaddr *, u_int8_t, u_int16_t); 441 #if 0 442 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *, 443 int, u_int64_t); 444 #endif 445 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t); 446 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t, 447 u_int32_t); 448 static void *key_newbuf (const void *, u_int); 449 #ifdef INET6 450 static int key_ismyaddr6 (const struct sockaddr_in6 *); 451 #endif 452 453 /* flags for key_cmpsaidx() */ 454 #define CMP_HEAD 1 /* protocol, addresses. */ 455 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 456 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 457 #define CMP_EXACTLY 4 /* all elements. */ 458 static int key_cmpsaidx 459 (const struct secasindex *, const struct secasindex *, int); 460 461 static int key_sockaddrcmp (const struct sockaddr *, const struct sockaddr *, int); 462 static int key_bbcmp (const void *, const void *, u_int); 463 static void key_srandom (void); 464 static u_int16_t key_satype2proto (u_int8_t); 465 static u_int8_t key_proto2satype (u_int16_t); 466 467 static int key_getspi (struct socket *, struct mbuf *, 468 const struct sadb_msghdr *); 469 static u_int32_t key_do_getnewspi (const struct sadb_spirange *, 470 const struct secasindex *); 471 #ifdef IPSEC_NAT_T 472 static int key_handle_natt_info (struct secasvar *, 473 const struct sadb_msghdr *); 474 static int key_set_natt_ports (union sockaddr_union *, 475 union sockaddr_union *, 476 const struct sadb_msghdr *); 477 #endif 478 static int key_update (struct socket *, struct mbuf *, 479 const struct sadb_msghdr *); 480 #ifdef IPSEC_DOSEQCHECK 481 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t); 482 #endif 483 static int key_add (struct socket *, struct mbuf *, 484 const struct sadb_msghdr *); 485 static int key_setident (struct secashead *, struct mbuf *, 486 const struct sadb_msghdr *); 487 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *, 488 const struct sadb_msghdr *); 489 static int key_delete (struct socket *, struct mbuf *, 490 const struct sadb_msghdr *); 491 static int key_get (struct socket *, struct mbuf *, 492 const struct sadb_msghdr *); 493 494 static void key_getcomb_setlifetime (struct sadb_comb *); 495 static struct mbuf *key_getcomb_esp (void); 496 static struct mbuf *key_getcomb_ah (void); 497 static struct mbuf *key_getcomb_ipcomp (void); 498 static struct mbuf *key_getprop (const struct secasindex *); 499 500 static int key_acquire (const struct secasindex *, struct secpolicy *); 501 #ifndef IPSEC_NONBLOCK_ACQUIRE 502 static struct secacq *key_newacq (const struct secasindex *); 503 static struct secacq *key_getacq (const struct secasindex *); 504 static struct secacq *key_getacqbyseq (u_int32_t); 505 #endif 506 static struct secspacq *key_newspacq (const struct secpolicyindex *); 507 static struct secspacq *key_getspacq (const struct secpolicyindex *); 508 static int key_acquire2 (struct socket *, struct mbuf *, 509 const struct sadb_msghdr *); 510 static int key_register (struct socket *, struct mbuf *, 511 const struct sadb_msghdr *); 512 static int key_expire (struct secasvar *); 513 static int key_flush (struct socket *, struct mbuf *, 514 const struct sadb_msghdr *); 515 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp, 516 int *lenp, pid_t pid); 517 static int key_dump (struct socket *, struct mbuf *, 518 const struct sadb_msghdr *); 519 static int key_promisc (struct socket *, struct mbuf *, 520 const struct sadb_msghdr *); 521 static int key_senderror (struct socket *, struct mbuf *, int); 522 static int key_validate_ext (const struct sadb_ext *, int); 523 static int key_align (struct mbuf *, struct sadb_msghdr *); 524 #if 0 525 static const char *key_getfqdn (void); 526 static const char *key_getuserfqdn (void); 527 #endif 528 static void key_sa_chgstate (struct secasvar *, u_int8_t); 529 static inline void key_sp_dead (struct secpolicy *); 530 static void key_sp_unlink (struct secpolicy *sp); 531 532 static struct mbuf *key_alloc_mbuf (int); 533 struct callout key_timehandler_ch; 534 535 #define SA_ADDREF(p) do { \ 536 (p)->refcnt++; \ 537 IPSEC_ASSERT((p)->refcnt != 0, \ 538 ("SA refcnt overflow at %s:%u", __FILE__, __LINE__)); \ 539 } while (0) 540 #define SA_DELREF(p) do { \ 541 IPSEC_ASSERT((p)->refcnt > 0, \ 542 ("SA refcnt underflow at %s:%u", __FILE__, __LINE__)); \ 543 (p)->refcnt--; \ 544 } while (0) 545 546 #define SP_ADDREF(p) do { \ 547 (p)->refcnt++; \ 548 IPSEC_ASSERT((p)->refcnt != 0, \ 549 ("SP refcnt overflow at %s:%u", __FILE__, __LINE__)); \ 550 } while (0) 551 #define SP_DELREF(p) do { \ 552 IPSEC_ASSERT((p)->refcnt > 0, \ 553 ("SP refcnt underflow at %s:%u", __FILE__, __LINE__)); \ 554 (p)->refcnt--; \ 555 } while (0) 556 557 558 static inline void 559 key_sp_dead(struct secpolicy *sp) 560 { 561 562 /* mark the SP dead */ 563 sp->state = IPSEC_SPSTATE_DEAD; 564 } 565 566 static void 567 key_sp_unlink(struct secpolicy *sp) 568 { 569 570 /* remove from SP index */ 571 if (__LIST_CHAINED(sp)) { 572 LIST_REMOVE(sp, chain); 573 /* Release refcount held just for being on chain */ 574 KEY_FREESP(&sp); 575 } 576 } 577 578 579 /* 580 * Return 0 when there are known to be no SP's for the specified 581 * direction. Otherwise return 1. This is used by IPsec code 582 * to optimize performance. 583 */ 584 int 585 key_havesp(u_int dir) 586 { 587 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 588 LIST_FIRST(&sptree[dir]) != NULL : 1); 589 } 590 591 /* %%% IPsec policy management */ 592 /* 593 * allocating a SP for OUTBOUND or INBOUND packet. 594 * Must call key_freesp() later. 595 * OUT: NULL: not found 596 * others: found and return the pointer. 597 */ 598 struct secpolicy * 599 key_allocsp(const struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 600 { 601 struct secpolicy *sp; 602 int s; 603 604 IPSEC_ASSERT(spidx != NULL, ("key_allocsp: null spidx")); 605 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 606 ("key_allocsp: invalid direction %u", dir)); 607 608 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 609 printf("DP key_allocsp from %s:%u\n", where, tag)); 610 611 /* get a SP entry */ 612 s = splsoftnet(); /*called from softclock()*/ 613 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 614 printf("*** objects\n"); 615 kdebug_secpolicyindex(spidx)); 616 617 LIST_FOREACH(sp, &sptree[dir], chain) { 618 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 619 printf("*** in SPD\n"); 620 kdebug_secpolicyindex(&sp->spidx)); 621 622 if (sp->state == IPSEC_SPSTATE_DEAD) 623 continue; 624 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 625 goto found; 626 } 627 sp = NULL; 628 found: 629 if (sp) { 630 /* sanity check */ 631 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp"); 632 633 /* found a SPD entry */ 634 sp->lastused = time_uptime; 635 SP_ADDREF(sp); 636 } 637 splx(s); 638 639 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 640 printf("DP key_allocsp return SP:%p (ID=%u) refcnt %u\n", 641 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 642 return sp; 643 } 644 645 /* 646 * allocating a SP for OUTBOUND or INBOUND packet. 647 * Must call key_freesp() later. 648 * OUT: NULL: not found 649 * others: found and return the pointer. 650 */ 651 struct secpolicy * 652 key_allocsp2(u_int32_t spi, 653 const union sockaddr_union *dst, 654 u_int8_t proto, 655 u_int dir, 656 const char* where, int tag) 657 { 658 struct secpolicy *sp; 659 int s; 660 661 IPSEC_ASSERT(dst != NULL, ("key_allocsp2: null dst")); 662 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 663 ("key_allocsp2: invalid direction %u", dir)); 664 665 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 666 printf("DP key_allocsp2 from %s:%u\n", where, tag)); 667 668 /* get a SP entry */ 669 s = splsoftnet(); /*called from softclock()*/ 670 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 671 printf("*** objects\n"); 672 printf("spi %u proto %u dir %u\n", spi, proto, dir); 673 kdebug_sockaddr(&dst->sa)); 674 675 LIST_FOREACH(sp, &sptree[dir], chain) { 676 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 677 printf("*** in SPD\n"); 678 kdebug_secpolicyindex(&sp->spidx)); 679 680 if (sp->state == IPSEC_SPSTATE_DEAD) 681 continue; 682 /* compare simple values, then dst address */ 683 if (sp->spidx.ul_proto != proto) 684 continue; 685 /* NB: spi's must exist and match */ 686 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 687 continue; 688 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 689 goto found; 690 } 691 sp = NULL; 692 found: 693 if (sp) { 694 /* sanity check */ 695 KEY_CHKSPDIR(sp->spidx.dir, dir, "key_allocsp2"); 696 697 /* found a SPD entry */ 698 sp->lastused = time_uptime; 699 SP_ADDREF(sp); 700 } 701 splx(s); 702 703 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 704 printf("DP key_allocsp2 return SP:%p (ID=%u) refcnt %u\n", 705 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 706 return sp; 707 } 708 709 /* 710 * return a policy that matches this particular inbound packet. 711 * XXX slow 712 */ 713 struct secpolicy * 714 key_gettunnel(const struct sockaddr *osrc, 715 const struct sockaddr *odst, 716 const struct sockaddr *isrc, 717 const struct sockaddr *idst, 718 const char* where, int tag) 719 { 720 struct secpolicy *sp; 721 const int dir = IPSEC_DIR_INBOUND; 722 int s; 723 struct ipsecrequest *r1, *r2, *p; 724 struct secpolicyindex spidx; 725 726 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 727 printf("DP key_gettunnel from %s:%u\n", where, tag)); 728 729 if (isrc->sa_family != idst->sa_family) { 730 ipseclog((LOG_ERR, "protocol family mismatched %d != %d\n.", 731 isrc->sa_family, idst->sa_family)); 732 sp = NULL; 733 goto done; 734 } 735 736 s = splsoftnet(); /*called from softclock()*/ 737 LIST_FOREACH(sp, &sptree[dir], chain) { 738 if (sp->state == IPSEC_SPSTATE_DEAD) 739 continue; 740 741 r1 = r2 = NULL; 742 for (p = sp->req; p; p = p->next) { 743 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 744 continue; 745 746 r1 = r2; 747 r2 = p; 748 749 if (!r1) { 750 /* here we look at address matches only */ 751 spidx = sp->spidx; 752 if (isrc->sa_len > sizeof(spidx.src) || 753 idst->sa_len > sizeof(spidx.dst)) 754 continue; 755 memcpy(&spidx.src, isrc, isrc->sa_len); 756 memcpy(&spidx.dst, idst, idst->sa_len); 757 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 758 continue; 759 } else { 760 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 761 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 762 continue; 763 } 764 765 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 766 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 767 continue; 768 769 goto found; 770 } 771 } 772 sp = NULL; 773 found: 774 if (sp) { 775 sp->lastused = time_uptime; 776 SP_ADDREF(sp); 777 } 778 splx(s); 779 done: 780 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 781 printf("DP key_gettunnel return SP:%p (ID=%u) refcnt %u\n", 782 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 783 return sp; 784 } 785 786 /* 787 * allocating an SA entry for an *OUTBOUND* packet. 788 * checking each request entries in SP, and acquire an SA if need. 789 * OUT: 0: there are valid requests. 790 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 791 */ 792 int 793 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 794 { 795 u_int level; 796 int error; 797 798 IPSEC_ASSERT(isr != NULL, ("key_checkrequest: null isr")); 799 IPSEC_ASSERT(saidx != NULL, ("key_checkrequest: null saidx")); 800 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 801 saidx->mode == IPSEC_MODE_TUNNEL, 802 ("key_checkrequest: unexpected policy %u", saidx->mode)); 803 804 /* get current level */ 805 level = ipsec_get_reqlevel(isr); 806 807 /* 808 * XXX guard against protocol callbacks from the crypto 809 * thread as they reference ipsecrequest.sav which we 810 * temporarily null out below. Need to rethink how we 811 * handle bundled SA's in the callback thread. 812 */ 813 IPSEC_SPLASSERT_SOFTNET("key_checkrequest"); 814 #if 0 815 /* 816 * We do allocate new SA only if the state of SA in the holder is 817 * SADB_SASTATE_DEAD. The SA for outbound must be the oldest. 818 */ 819 if (isr->sav != NULL) { 820 if (isr->sav->sah == NULL) 821 panic("key_checkrequest: sah is null"); 822 if (isr->sav == (struct secasvar *)LIST_FIRST( 823 &isr->sav->sah->savtree[SADB_SASTATE_DEAD])) { 824 KEY_FREESAV(&isr->sav); 825 isr->sav = NULL; 826 } 827 } 828 #else 829 /* 830 * we free any SA stashed in the IPsec request because a different 831 * SA may be involved each time this request is checked, either 832 * because new SAs are being configured, or this request is 833 * associated with an unconnected datagram socket, or this request 834 * is associated with a system default policy. 835 * 836 * The operation may have negative impact to performance. We may 837 * want to check cached SA carefully, rather than picking new SA 838 * every time. 839 */ 840 if (isr->sav != NULL) { 841 KEY_FREESAV(&isr->sav); 842 isr->sav = NULL; 843 } 844 #endif 845 846 /* 847 * new SA allocation if no SA found. 848 * key_allocsa_policy should allocate the oldest SA available. 849 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 850 */ 851 if (isr->sav == NULL) 852 isr->sav = key_allocsa_policy(saidx); 853 854 /* When there is SA. */ 855 if (isr->sav != NULL) { 856 if (isr->sav->state != SADB_SASTATE_MATURE && 857 isr->sav->state != SADB_SASTATE_DYING) 858 return EINVAL; 859 return 0; 860 } 861 862 /* there is no SA */ 863 error = key_acquire(saidx, isr->sp); 864 if (error != 0) { 865 /* XXX What should I do ? */ 866 ipseclog((LOG_DEBUG, "key_checkrequest: error %d returned " 867 "from key_acquire.\n", error)); 868 return error; 869 } 870 871 if (level != IPSEC_LEVEL_REQUIRE) { 872 /* XXX sigh, the interface to this routine is botched */ 873 IPSEC_ASSERT(isr->sav == NULL, ("key_checkrequest: unexpected SA")); 874 return 0; 875 } else { 876 return ENOENT; 877 } 878 } 879 880 /* 881 * allocating a SA for policy entry from SAD. 882 * NOTE: searching SAD of aliving state. 883 * OUT: NULL: not found. 884 * others: found and return the pointer. 885 */ 886 static struct secasvar * 887 key_allocsa_policy(const struct secasindex *saidx) 888 { 889 struct secashead *sah; 890 struct secasvar *sav; 891 u_int stateidx, state; 892 const u_int *saorder_state_valid; 893 int arraysize; 894 895 LIST_FOREACH(sah, &sahtree, chain) { 896 if (sah->state == SADB_SASTATE_DEAD) 897 continue; 898 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) 899 goto found; 900 } 901 902 return NULL; 903 904 found: 905 906 /* 907 * search a valid state list for outbound packet. 908 * This search order is important. 909 */ 910 if (key_prefered_oldsa) { 911 saorder_state_valid = saorder_state_valid_prefer_old; 912 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 913 } else { 914 saorder_state_valid = saorder_state_valid_prefer_new; 915 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 916 } 917 918 /* search valid state */ 919 for (stateidx = 0; 920 stateidx < arraysize; 921 stateidx++) { 922 923 state = saorder_state_valid[stateidx]; 924 925 sav = key_do_allocsa_policy(sah, state); 926 if (sav != NULL) 927 return sav; 928 } 929 930 return NULL; 931 } 932 933 /* 934 * searching SAD with direction, protocol, mode and state. 935 * called by key_allocsa_policy(). 936 * OUT: 937 * NULL : not found 938 * others : found, pointer to a SA. 939 */ 940 static struct secasvar * 941 key_do_allocsa_policy(struct secashead *sah, u_int state) 942 { 943 struct secasvar *sav, *nextsav, *candidate, *d; 944 945 /* initilize */ 946 candidate = NULL; 947 948 for (sav = LIST_FIRST(&sah->savtree[state]); 949 sav != NULL; 950 sav = nextsav) { 951 952 nextsav = LIST_NEXT(sav, chain); 953 954 /* sanity check */ 955 KEY_CHKSASTATE(sav->state, state, "key_do_allocsa_policy"); 956 957 /* initialize */ 958 if (candidate == NULL) { 959 candidate = sav; 960 continue; 961 } 962 963 /* Which SA is the better ? */ 964 965 /* sanity check 2 */ 966 if (candidate->lft_c == NULL || sav->lft_c == NULL) 967 panic("key_do_allocsa_policy: " 968 "lifetime_current is NULL"); 969 970 /* What the best method is to compare ? */ 971 if (key_prefered_oldsa) { 972 if (candidate->lft_c->sadb_lifetime_addtime > 973 sav->lft_c->sadb_lifetime_addtime) { 974 candidate = sav; 975 } 976 continue; 977 /*NOTREACHED*/ 978 } 979 980 /* prefered new sa rather than old sa */ 981 if (candidate->lft_c->sadb_lifetime_addtime < 982 sav->lft_c->sadb_lifetime_addtime) { 983 d = candidate; 984 candidate = sav; 985 } else 986 d = sav; 987 988 /* 989 * prepared to delete the SA when there is more 990 * suitable candidate and the lifetime of the SA is not 991 * permanent. 992 */ 993 if (d->lft_c->sadb_lifetime_addtime != 0) { 994 struct mbuf *m, *result = 0; 995 uint8_t satype; 996 997 key_sa_chgstate(d, SADB_SASTATE_DEAD); 998 999 IPSEC_ASSERT(d->refcnt > 0, 1000 ("key_do_allocsa_policy: bogus ref count")); 1001 1002 satype = key_proto2satype(d->sah->saidx.proto); 1003 if (satype == 0) 1004 goto msgfail; 1005 1006 m = key_setsadbmsg(SADB_DELETE, 0, 1007 satype, 0, 0, d->refcnt - 1); 1008 if (!m) 1009 goto msgfail; 1010 result = m; 1011 1012 /* set sadb_address for saidx's. */ 1013 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 1014 &d->sah->saidx.src.sa, 1015 d->sah->saidx.src.sa.sa_len << 3, 1016 IPSEC_ULPROTO_ANY); 1017 if (!m) 1018 goto msgfail; 1019 m_cat(result, m); 1020 1021 /* set sadb_address for saidx's. */ 1022 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 1023 &d->sah->saidx.src.sa, 1024 d->sah->saidx.src.sa.sa_len << 3, 1025 IPSEC_ULPROTO_ANY); 1026 if (!m) 1027 goto msgfail; 1028 m_cat(result, m); 1029 1030 /* create SA extension */ 1031 m = key_setsadbsa(d); 1032 if (!m) 1033 goto msgfail; 1034 m_cat(result, m); 1035 1036 if (result->m_len < sizeof(struct sadb_msg)) { 1037 result = m_pullup(result, 1038 sizeof(struct sadb_msg)); 1039 if (result == NULL) 1040 goto msgfail; 1041 } 1042 1043 result->m_pkthdr.len = 0; 1044 for (m = result; m; m = m->m_next) 1045 result->m_pkthdr.len += m->m_len; 1046 mtod(result, struct sadb_msg *)->sadb_msg_len = 1047 PFKEY_UNIT64(result->m_pkthdr.len); 1048 1049 key_sendup_mbuf(NULL, result, 1050 KEY_SENDUP_REGISTERED); 1051 result = 0; 1052 msgfail: 1053 if (result) 1054 m_freem(result); 1055 KEY_FREESAV(&d); 1056 } 1057 } 1058 1059 if (candidate) { 1060 SA_ADDREF(candidate); 1061 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1062 printf("DP allocsa_policy cause " 1063 "refcnt++:%d SA:%p\n", 1064 candidate->refcnt, candidate)); 1065 } 1066 return candidate; 1067 } 1068 1069 /* 1070 * allocating a usable SA entry for a *INBOUND* packet. 1071 * Must call key_freesav() later. 1072 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1073 * NULL: not found, or error occurred. 1074 * 1075 * In the comparison, no source address is used--for RFC2401 conformance. 1076 * To quote, from section 4.1: 1077 * A security association is uniquely identified by a triple consisting 1078 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1079 * security protocol (AH or ESP) identifier. 1080 * Note that, however, we do need to keep source address in IPsec SA. 1081 * IKE specification and PF_KEY specification do assume that we 1082 * keep source address in IPsec SA. We see a tricky situation here. 1083 * 1084 * sport and dport are used for NAT-T. network order is always used. 1085 */ 1086 struct secasvar * 1087 key_allocsa( 1088 const union sockaddr_union *dst, 1089 u_int proto, 1090 u_int32_t spi, 1091 u_int16_t sport, 1092 u_int16_t dport, 1093 const char* where, int tag) 1094 { 1095 struct secashead *sah; 1096 struct secasvar *sav; 1097 u_int stateidx, state; 1098 const u_int *saorder_state_valid; 1099 int arraysize; 1100 int s; 1101 int chkport = 0; 1102 1103 int must_check_spi = 1; 1104 int must_check_alg = 0; 1105 u_int16_t cpi = 0; 1106 u_int8_t algo = 0; 1107 1108 #ifdef IPSEC_NAT_T 1109 if ((sport != 0) && (dport != 0)) 1110 chkport = 1; 1111 #endif 1112 1113 IPSEC_ASSERT(dst != NULL, ("key_allocsa: null dst address")); 1114 1115 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1116 printf("DP key_allocsa from %s:%u\n", where, tag)); 1117 1118 /* 1119 * XXX IPCOMP case 1120 * We use cpi to define spi here. In the case where cpi <= 1121 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not 1122 * the real spi. In this case, don't check the spi but check the 1123 * algorithm 1124 */ 1125 1126 if (proto == IPPROTO_IPCOMP) { 1127 u_int32_t tmp; 1128 tmp = ntohl(spi); 1129 cpi = (u_int16_t) tmp; 1130 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) { 1131 algo = (u_int8_t) cpi; 1132 must_check_spi = 0; 1133 must_check_alg = 1; 1134 } 1135 } 1136 1137 /* 1138 * searching SAD. 1139 * XXX: to be checked internal IP header somewhere. Also when 1140 * IPsec tunnel packet is received. But ESP tunnel mode is 1141 * encrypted so we can't check internal IP header. 1142 */ 1143 s = splsoftnet(); /*called from softclock()*/ 1144 if (key_prefered_oldsa) { 1145 saorder_state_valid = saorder_state_valid_prefer_old; 1146 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1147 } else { 1148 saorder_state_valid = saorder_state_valid_prefer_new; 1149 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1150 } 1151 LIST_FOREACH(sah, &sahtree, chain) { 1152 /* search valid state */ 1153 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1154 state = saorder_state_valid[stateidx]; 1155 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1156 /* sanity check */ 1157 KEY_CHKSASTATE(sav->state, state, "key_allocsav"); 1158 /* do not return entries w/ unusable state */ 1159 if (sav->state != SADB_SASTATE_MATURE && 1160 sav->state != SADB_SASTATE_DYING) 1161 continue; 1162 if (proto != sav->sah->saidx.proto) 1163 continue; 1164 if (must_check_spi && spi != sav->spi) 1165 continue; 1166 /* XXX only on the ipcomp case */ 1167 if (must_check_alg && algo != sav->alg_comp) 1168 continue; 1169 1170 #if 0 /* don't check src */ 1171 /* Fix port in src->sa */ 1172 1173 /* check src address */ 1174 if (key_sockaddrcmp(&src->sa, &sav->sah->saidx.src.sa, 0) != 0) 1175 continue; 1176 #endif 1177 /* fix port of dst address XXX*/ 1178 key_porttosaddr(__UNCONST(dst), dport); 1179 /* check dst address */ 1180 if (key_sockaddrcmp(&dst->sa, &sav->sah->saidx.dst.sa, chkport) != 0) 1181 continue; 1182 SA_ADDREF(sav); 1183 goto done; 1184 } 1185 } 1186 } 1187 sav = NULL; 1188 done: 1189 splx(s); 1190 1191 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1192 printf("DP key_allocsa return SA:%p; refcnt %u\n", 1193 sav, sav ? sav->refcnt : 0)); 1194 return sav; 1195 } 1196 1197 /* 1198 * Must be called after calling key_allocsp(). 1199 * For both the packet without socket and key_freeso(). 1200 */ 1201 void 1202 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1203 { 1204 struct secpolicy *sp = *spp; 1205 1206 IPSEC_ASSERT(sp != NULL, ("key_freesp: null sp")); 1207 1208 SP_DELREF(sp); 1209 1210 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1211 printf("DP key_freesp SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1212 sp, sp->id, where, tag, sp->refcnt)); 1213 1214 if (sp->refcnt == 0) { 1215 *spp = NULL; 1216 key_delsp(sp); 1217 } 1218 } 1219 1220 /* 1221 * Must be called after calling key_allocsp(). 1222 * For the packet with socket. 1223 */ 1224 void 1225 key_freeso(struct socket *so) 1226 { 1227 /* sanity check */ 1228 IPSEC_ASSERT(so != NULL, ("key_freeso: null so")); 1229 1230 switch (so->so_proto->pr_domain->dom_family) { 1231 #ifdef INET 1232 case PF_INET: 1233 { 1234 struct inpcb *pcb = sotoinpcb(so); 1235 1236 /* Does it have a PCB ? */ 1237 if (pcb == NULL) 1238 return; 1239 key_freesp_so(&pcb->inp_sp->sp_in); 1240 key_freesp_so(&pcb->inp_sp->sp_out); 1241 } 1242 break; 1243 #endif 1244 #ifdef INET6 1245 case PF_INET6: 1246 { 1247 #ifdef HAVE_NRL_INPCB 1248 struct inpcb *pcb = sotoinpcb(so); 1249 1250 /* Does it have a PCB ? */ 1251 if (pcb == NULL) 1252 return; 1253 key_freesp_so(&pcb->inp_sp->sp_in); 1254 key_freesp_so(&pcb->inp_sp->sp_out); 1255 #else 1256 struct in6pcb *pcb = sotoin6pcb(so); 1257 1258 /* Does it have a PCB ? */ 1259 if (pcb == NULL) 1260 return; 1261 key_freesp_so(&pcb->in6p_sp->sp_in); 1262 key_freesp_so(&pcb->in6p_sp->sp_out); 1263 #endif 1264 } 1265 break; 1266 #endif /* INET6 */ 1267 default: 1268 ipseclog((LOG_DEBUG, "key_freeso: unknown address family=%d.\n", 1269 so->so_proto->pr_domain->dom_family)); 1270 return; 1271 } 1272 } 1273 1274 static void 1275 key_freesp_so(struct secpolicy **sp) 1276 { 1277 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("key_freesp_so: null sp")); 1278 1279 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1280 (*sp)->policy == IPSEC_POLICY_BYPASS) 1281 return; 1282 1283 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1284 ("key_freesp_so: invalid policy %u", (*sp)->policy)); 1285 KEY_FREESP(sp); 1286 } 1287 1288 /* 1289 * Must be called after calling key_allocsa(). 1290 * This function is called by key_freesp() to free some SA allocated 1291 * for a policy. 1292 */ 1293 void 1294 key_freesav(struct secasvar **psav, const char* where, int tag) 1295 { 1296 struct secasvar *sav = *psav; 1297 1298 IPSEC_ASSERT(sav != NULL, ("key_freesav: null sav")); 1299 1300 SA_DELREF(sav); 1301 1302 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1303 printf("DP key_freesav SA:%p (SPI %lu) from %s:%u; refcnt now %u\n", 1304 sav, (u_long)ntohl(sav->spi), 1305 where, tag, sav->refcnt)); 1306 1307 if (sav->refcnt == 0) { 1308 *psav = NULL; 1309 key_delsav(sav); 1310 } 1311 } 1312 1313 /* %%% SPD management */ 1314 /* 1315 * free security policy entry. 1316 */ 1317 static void 1318 key_delsp(struct secpolicy *sp) 1319 { 1320 int s; 1321 1322 IPSEC_ASSERT(sp != NULL, ("key_delsp: null sp")); 1323 1324 key_sp_dead(sp); 1325 1326 IPSEC_ASSERT(sp->refcnt == 0, 1327 ("key_delsp: SP with references deleted (refcnt %u)", 1328 sp->refcnt)); 1329 1330 s = splsoftnet(); /*called from softclock()*/ 1331 1332 { 1333 struct ipsecrequest *isr = sp->req, *nextisr; 1334 1335 while (isr != NULL) { 1336 if (isr->sav != NULL) { 1337 KEY_FREESAV(&isr->sav); 1338 isr->sav = NULL; 1339 } 1340 1341 nextisr = isr->next; 1342 KFREE(isr); 1343 isr = nextisr; 1344 } 1345 } 1346 1347 KFREE(sp); 1348 1349 splx(s); 1350 } 1351 1352 /* 1353 * search SPD 1354 * OUT: NULL : not found 1355 * others : found, pointer to a SP. 1356 */ 1357 static struct secpolicy * 1358 key_getsp(const struct secpolicyindex *spidx) 1359 { 1360 struct secpolicy *sp; 1361 1362 IPSEC_ASSERT(spidx != NULL, ("key_getsp: null spidx")); 1363 1364 LIST_FOREACH(sp, &sptree[spidx->dir], chain) { 1365 if (sp->state == IPSEC_SPSTATE_DEAD) 1366 continue; 1367 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1368 SP_ADDREF(sp); 1369 return sp; 1370 } 1371 } 1372 1373 return NULL; 1374 } 1375 1376 /* 1377 * get SP by index. 1378 * OUT: NULL : not found 1379 * others : found, pointer to a SP. 1380 */ 1381 static struct secpolicy * 1382 key_getspbyid(u_int32_t id) 1383 { 1384 struct secpolicy *sp; 1385 1386 LIST_FOREACH(sp, &sptree[IPSEC_DIR_INBOUND], chain) { 1387 if (sp->state == IPSEC_SPSTATE_DEAD) 1388 continue; 1389 if (sp->id == id) { 1390 SP_ADDREF(sp); 1391 return sp; 1392 } 1393 } 1394 1395 LIST_FOREACH(sp, &sptree[IPSEC_DIR_OUTBOUND], chain) { 1396 if (sp->state == IPSEC_SPSTATE_DEAD) 1397 continue; 1398 if (sp->id == id) { 1399 SP_ADDREF(sp); 1400 return sp; 1401 } 1402 } 1403 1404 return NULL; 1405 } 1406 1407 struct secpolicy * 1408 key_newsp(const char* where, int tag) 1409 { 1410 struct secpolicy *newsp = NULL; 1411 1412 newsp = (struct secpolicy *) 1413 malloc(sizeof(struct secpolicy), M_SECA, M_NOWAIT|M_ZERO); 1414 if (newsp) { 1415 newsp->refcnt = 1; 1416 newsp->req = NULL; 1417 } 1418 1419 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1420 printf("DP key_newsp from %s:%u return SP:%p\n", 1421 where, tag, newsp)); 1422 return newsp; 1423 } 1424 1425 /* 1426 * create secpolicy structure from sadb_x_policy structure. 1427 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1428 * so must be set properly later. 1429 */ 1430 struct secpolicy * 1431 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error) 1432 { 1433 struct secpolicy *newsp; 1434 1435 /* sanity check */ 1436 if (xpl0 == NULL) 1437 panic("key_msg2sp: NULL pointer was passed"); 1438 if (len < sizeof(*xpl0)) 1439 panic("key_msg2sp: invalid length"); 1440 if (len != PFKEY_EXTLEN(xpl0)) { 1441 ipseclog((LOG_DEBUG, "key_msg2sp: Invalid msg length.\n")); 1442 *error = EINVAL; 1443 return NULL; 1444 } 1445 1446 if ((newsp = KEY_NEWSP()) == NULL) { 1447 *error = ENOBUFS; 1448 return NULL; 1449 } 1450 1451 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1452 newsp->policy = xpl0->sadb_x_policy_type; 1453 1454 /* check policy */ 1455 switch (xpl0->sadb_x_policy_type) { 1456 case IPSEC_POLICY_DISCARD: 1457 case IPSEC_POLICY_NONE: 1458 case IPSEC_POLICY_ENTRUST: 1459 case IPSEC_POLICY_BYPASS: 1460 newsp->req = NULL; 1461 break; 1462 1463 case IPSEC_POLICY_IPSEC: 1464 { 1465 int tlen; 1466 const struct sadb_x_ipsecrequest *xisr; 1467 uint16_t xisr_reqid; 1468 struct ipsecrequest **p_isr = &newsp->req; 1469 1470 /* validity check */ 1471 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1472 ipseclog((LOG_DEBUG, 1473 "key_msg2sp: Invalid msg length.\n")); 1474 KEY_FREESP(&newsp); 1475 *error = EINVAL; 1476 return NULL; 1477 } 1478 1479 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1480 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1); 1481 1482 while (tlen > 0) { 1483 /* length check */ 1484 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1485 ipseclog((LOG_DEBUG, "key_msg2sp: " 1486 "invalid ipsecrequest length.\n")); 1487 KEY_FREESP(&newsp); 1488 *error = EINVAL; 1489 return NULL; 1490 } 1491 1492 /* allocate request buffer */ 1493 KMALLOC(*p_isr, struct ipsecrequest *, sizeof(**p_isr)); 1494 if ((*p_isr) == NULL) { 1495 ipseclog((LOG_DEBUG, 1496 "key_msg2sp: No more memory.\n")); 1497 KEY_FREESP(&newsp); 1498 *error = ENOBUFS; 1499 return NULL; 1500 } 1501 memset(*p_isr, 0, sizeof(**p_isr)); 1502 1503 /* set values */ 1504 (*p_isr)->next = NULL; 1505 1506 switch (xisr->sadb_x_ipsecrequest_proto) { 1507 case IPPROTO_ESP: 1508 case IPPROTO_AH: 1509 case IPPROTO_IPCOMP: 1510 break; 1511 default: 1512 ipseclog((LOG_DEBUG, 1513 "key_msg2sp: invalid proto type=%u\n", 1514 xisr->sadb_x_ipsecrequest_proto)); 1515 KEY_FREESP(&newsp); 1516 *error = EPROTONOSUPPORT; 1517 return NULL; 1518 } 1519 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1520 1521 switch (xisr->sadb_x_ipsecrequest_mode) { 1522 case IPSEC_MODE_TRANSPORT: 1523 case IPSEC_MODE_TUNNEL: 1524 break; 1525 case IPSEC_MODE_ANY: 1526 default: 1527 ipseclog((LOG_DEBUG, 1528 "key_msg2sp: invalid mode=%u\n", 1529 xisr->sadb_x_ipsecrequest_mode)); 1530 KEY_FREESP(&newsp); 1531 *error = EINVAL; 1532 return NULL; 1533 } 1534 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1535 1536 switch (xisr->sadb_x_ipsecrequest_level) { 1537 case IPSEC_LEVEL_DEFAULT: 1538 case IPSEC_LEVEL_USE: 1539 case IPSEC_LEVEL_REQUIRE: 1540 break; 1541 case IPSEC_LEVEL_UNIQUE: 1542 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid; 1543 /* validity check */ 1544 /* 1545 * If range violation of reqid, kernel will 1546 * update it, don't refuse it. 1547 */ 1548 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) { 1549 ipseclog((LOG_DEBUG, 1550 "key_msg2sp: reqid=%d range " 1551 "violation, updated by kernel.\n", 1552 xisr_reqid)); 1553 xisr_reqid = 0; 1554 } 1555 1556 /* allocate new reqid id if reqid is zero. */ 1557 if (xisr_reqid == 0) { 1558 u_int16_t reqid; 1559 if ((reqid = key_newreqid()) == 0) { 1560 KEY_FREESP(&newsp); 1561 *error = ENOBUFS; 1562 return NULL; 1563 } 1564 (*p_isr)->saidx.reqid = reqid; 1565 } else { 1566 /* set it for manual keying. */ 1567 (*p_isr)->saidx.reqid = xisr_reqid; 1568 } 1569 break; 1570 1571 default: 1572 ipseclog((LOG_DEBUG, "key_msg2sp: invalid level=%u\n", 1573 xisr->sadb_x_ipsecrequest_level)); 1574 KEY_FREESP(&newsp); 1575 *error = EINVAL; 1576 return NULL; 1577 } 1578 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1579 1580 /* set IP addresses if there */ 1581 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1582 const struct sockaddr *paddr; 1583 1584 paddr = (const struct sockaddr *)(xisr + 1); 1585 1586 /* validity check */ 1587 if (paddr->sa_len 1588 > sizeof((*p_isr)->saidx.src)) { 1589 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " 1590 "address length.\n")); 1591 KEY_FREESP(&newsp); 1592 *error = EINVAL; 1593 return NULL; 1594 } 1595 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len); 1596 1597 paddr = (const struct sockaddr *)((const char *)paddr 1598 + paddr->sa_len); 1599 1600 /* validity check */ 1601 if (paddr->sa_len 1602 > sizeof((*p_isr)->saidx.dst)) { 1603 ipseclog((LOG_DEBUG, "key_msg2sp: invalid request " 1604 "address length.\n")); 1605 KEY_FREESP(&newsp); 1606 *error = EINVAL; 1607 return NULL; 1608 } 1609 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len); 1610 } 1611 1612 (*p_isr)->sav = NULL; 1613 (*p_isr)->sp = newsp; 1614 1615 /* initialization for the next. */ 1616 p_isr = &(*p_isr)->next; 1617 tlen -= xisr->sadb_x_ipsecrequest_len; 1618 1619 /* validity check */ 1620 if (tlen < 0) { 1621 ipseclog((LOG_DEBUG, "key_msg2sp: becoming tlen < 0.\n")); 1622 KEY_FREESP(&newsp); 1623 *error = EINVAL; 1624 return NULL; 1625 } 1626 1627 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr 1628 + xisr->sadb_x_ipsecrequest_len); 1629 } 1630 } 1631 break; 1632 default: 1633 ipseclog((LOG_DEBUG, "key_msg2sp: invalid policy type.\n")); 1634 KEY_FREESP(&newsp); 1635 *error = EINVAL; 1636 return NULL; 1637 } 1638 1639 *error = 0; 1640 return newsp; 1641 } 1642 1643 static u_int16_t 1644 key_newreqid(void) 1645 { 1646 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1647 1648 auto_reqid = (auto_reqid == 0xffff 1649 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1650 1651 /* XXX should be unique check */ 1652 1653 return auto_reqid; 1654 } 1655 1656 /* 1657 * copy secpolicy struct to sadb_x_policy structure indicated. 1658 */ 1659 struct mbuf * 1660 key_sp2msg(const struct secpolicy *sp) 1661 { 1662 struct sadb_x_policy *xpl; 1663 int tlen; 1664 char *p; 1665 struct mbuf *m; 1666 1667 /* sanity check. */ 1668 if (sp == NULL) 1669 panic("key_sp2msg: NULL pointer was passed"); 1670 1671 tlen = key_getspreqmsglen(sp); 1672 1673 m = key_alloc_mbuf(tlen); 1674 if (!m || m->m_next) { /*XXX*/ 1675 if (m) 1676 m_freem(m); 1677 return NULL; 1678 } 1679 1680 m->m_len = tlen; 1681 m->m_next = NULL; 1682 xpl = mtod(m, struct sadb_x_policy *); 1683 memset(xpl, 0, tlen); 1684 1685 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1686 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1687 xpl->sadb_x_policy_type = sp->policy; 1688 xpl->sadb_x_policy_dir = sp->spidx.dir; 1689 xpl->sadb_x_policy_id = sp->id; 1690 p = (char *)xpl + sizeof(*xpl); 1691 1692 /* if is the policy for ipsec ? */ 1693 if (sp->policy == IPSEC_POLICY_IPSEC) { 1694 struct sadb_x_ipsecrequest *xisr; 1695 struct ipsecrequest *isr; 1696 1697 for (isr = sp->req; isr != NULL; isr = isr->next) { 1698 1699 xisr = (struct sadb_x_ipsecrequest *)p; 1700 1701 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1702 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1703 xisr->sadb_x_ipsecrequest_level = isr->level; 1704 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1705 1706 p += sizeof(*xisr); 1707 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len); 1708 p += isr->saidx.src.sa.sa_len; 1709 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len); 1710 p += isr->saidx.src.sa.sa_len; 1711 1712 xisr->sadb_x_ipsecrequest_len = 1713 PFKEY_ALIGN8(sizeof(*xisr) 1714 + isr->saidx.src.sa.sa_len 1715 + isr->saidx.dst.sa.sa_len); 1716 } 1717 } 1718 1719 return m; 1720 } 1721 1722 /* m will not be freed nor modified */ 1723 static struct mbuf * 1724 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1725 int ndeep, int nitem, ...) 1726 { 1727 va_list ap; 1728 int idx; 1729 int i; 1730 struct mbuf *result = NULL, *n; 1731 int len; 1732 1733 if (m == NULL || mhp == NULL) 1734 panic("null pointer passed to key_gather"); 1735 1736 va_start(ap, nitem); 1737 for (i = 0; i < nitem; i++) { 1738 idx = va_arg(ap, int); 1739 if (idx < 0 || idx > SADB_EXT_MAX) 1740 goto fail; 1741 /* don't attempt to pull empty extension */ 1742 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1743 continue; 1744 if (idx != SADB_EXT_RESERVED && 1745 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1746 continue; 1747 1748 if (idx == SADB_EXT_RESERVED) { 1749 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1750 #ifdef DIAGNOSTIC 1751 if (len > MHLEN) 1752 panic("assumption failed"); 1753 #endif 1754 MGETHDR(n, M_DONTWAIT, MT_DATA); 1755 if (!n) 1756 goto fail; 1757 n->m_len = len; 1758 n->m_next = NULL; 1759 m_copydata(m, 0, sizeof(struct sadb_msg), 1760 mtod(n, void *)); 1761 } else if (i < ndeep) { 1762 len = mhp->extlen[idx]; 1763 n = key_alloc_mbuf(len); 1764 if (!n || n->m_next) { /*XXX*/ 1765 if (n) 1766 m_freem(n); 1767 goto fail; 1768 } 1769 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1770 mtod(n, void *)); 1771 } else { 1772 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1773 M_DONTWAIT); 1774 } 1775 if (n == NULL) 1776 goto fail; 1777 1778 if (result) 1779 m_cat(result, n); 1780 else 1781 result = n; 1782 } 1783 va_end(ap); 1784 1785 if ((result->m_flags & M_PKTHDR) != 0) { 1786 result->m_pkthdr.len = 0; 1787 for (n = result; n; n = n->m_next) 1788 result->m_pkthdr.len += n->m_len; 1789 } 1790 1791 return result; 1792 1793 fail: 1794 va_end(ap); 1795 m_freem(result); 1796 return NULL; 1797 } 1798 1799 /* 1800 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1801 * add an entry to SP database, when received 1802 * <base, address(SD), (lifetime(H),) policy> 1803 * from the user(?). 1804 * Adding to SP database, 1805 * and send 1806 * <base, address(SD), (lifetime(H),) policy> 1807 * to the socket which was send. 1808 * 1809 * SPDADD set a unique policy entry. 1810 * SPDSETIDX like SPDADD without a part of policy requests. 1811 * SPDUPDATE replace a unique policy entry. 1812 * 1813 * m will always be freed. 1814 */ 1815 static int 1816 key_spdadd(struct socket *so, struct mbuf *m, 1817 const struct sadb_msghdr *mhp) 1818 { 1819 const struct sadb_address *src0, *dst0; 1820 const struct sadb_x_policy *xpl0; 1821 struct sadb_x_policy *xpl; 1822 const struct sadb_lifetime *lft = NULL; 1823 struct secpolicyindex spidx; 1824 struct secpolicy *newsp; 1825 int error; 1826 1827 /* sanity check */ 1828 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 1829 panic("key_spdadd: NULL pointer is passed"); 1830 1831 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1832 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1833 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1834 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1835 return key_senderror(so, m, EINVAL); 1836 } 1837 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1838 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1839 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1840 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1841 return key_senderror(so, m, EINVAL); 1842 } 1843 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1844 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1845 < sizeof(struct sadb_lifetime)) { 1846 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1847 return key_senderror(so, m, EINVAL); 1848 } 1849 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1850 } 1851 1852 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1853 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1854 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1855 1856 /* make secindex */ 1857 /* XXX boundary check against sa_len */ 1858 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1859 src0 + 1, 1860 dst0 + 1, 1861 src0->sadb_address_prefixlen, 1862 dst0->sadb_address_prefixlen, 1863 src0->sadb_address_proto, 1864 &spidx); 1865 1866 /* checking the direciton. */ 1867 switch (xpl0->sadb_x_policy_dir) { 1868 case IPSEC_DIR_INBOUND: 1869 case IPSEC_DIR_OUTBOUND: 1870 break; 1871 default: 1872 ipseclog((LOG_DEBUG, "key_spdadd: Invalid SP direction.\n")); 1873 mhp->msg->sadb_msg_errno = EINVAL; 1874 return 0; 1875 } 1876 1877 /* check policy */ 1878 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1879 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1880 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1881 ipseclog((LOG_DEBUG, "key_spdadd: Invalid policy type.\n")); 1882 return key_senderror(so, m, EINVAL); 1883 } 1884 1885 /* policy requests are mandatory when action is ipsec. */ 1886 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1887 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1888 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1889 ipseclog((LOG_DEBUG, "key_spdadd: some policy requests part required.\n")); 1890 return key_senderror(so, m, EINVAL); 1891 } 1892 1893 /* 1894 * checking there is SP already or not. 1895 * SPDUPDATE doesn't depend on whether there is a SP or not. 1896 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1897 * then error. 1898 */ 1899 newsp = key_getsp(&spidx); 1900 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1901 if (newsp) { 1902 key_sp_dead(newsp); 1903 key_sp_unlink(newsp); /* XXX jrs ordering */ 1904 KEY_FREESP(&newsp); 1905 newsp = NULL; 1906 } 1907 } else { 1908 if (newsp != NULL) { 1909 KEY_FREESP(&newsp); 1910 ipseclog((LOG_DEBUG, "key_spdadd: a SP entry exists already.\n")); 1911 return key_senderror(so, m, EEXIST); 1912 } 1913 } 1914 1915 /* allocation new SP entry */ 1916 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1917 return key_senderror(so, m, error); 1918 } 1919 1920 if ((newsp->id = key_getnewspid()) == 0) { 1921 KFREE(newsp); 1922 return key_senderror(so, m, ENOBUFS); 1923 } 1924 1925 /* XXX boundary check against sa_len */ 1926 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1927 src0 + 1, 1928 dst0 + 1, 1929 src0->sadb_address_prefixlen, 1930 dst0->sadb_address_prefixlen, 1931 src0->sadb_address_proto, 1932 &newsp->spidx); 1933 1934 /* sanity check on addr pair */ 1935 if (((const struct sockaddr *)(src0 + 1))->sa_family != 1936 ((const struct sockaddr *)(dst0+ 1))->sa_family) { 1937 KFREE(newsp); 1938 return key_senderror(so, m, EINVAL); 1939 } 1940 if (((const struct sockaddr *)(src0 + 1))->sa_len != 1941 ((const struct sockaddr *)(dst0+ 1))->sa_len) { 1942 KFREE(newsp); 1943 return key_senderror(so, m, EINVAL); 1944 } 1945 1946 newsp->created = time_uptime; 1947 newsp->lastused = newsp->created; 1948 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1949 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1950 1951 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1952 newsp->state = IPSEC_SPSTATE_ALIVE; 1953 LIST_INSERT_TAIL(&sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1954 1955 /* delete the entry in spacqtree */ 1956 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1957 struct secspacq *spacq; 1958 if ((spacq = key_getspacq(&spidx)) != NULL) { 1959 /* reset counter in order to deletion by timehandler. */ 1960 spacq->created = time_uptime; 1961 spacq->count = 0; 1962 } 1963 } 1964 1965 #if defined(__NetBSD__) 1966 /* Invalidate all cached SPD pointers in the PCBs. */ 1967 ipsec_invalpcbcacheall(); 1968 1969 #if defined(GATEWAY) 1970 /* Invalidate the ipflow cache, as well. */ 1971 ipflow_invalidate_all(0); 1972 #ifdef INET6 1973 ip6flow_invalidate_all(0); 1974 #endif /* INET6 */ 1975 #endif /* GATEWAY */ 1976 #endif /* __NetBSD__ */ 1977 1978 { 1979 struct mbuf *n, *mpolicy; 1980 struct sadb_msg *newmsg; 1981 int off; 1982 1983 /* create new sadb_msg to reply. */ 1984 if (lft) { 1985 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1986 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1987 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1988 } else { 1989 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1990 SADB_X_EXT_POLICY, 1991 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1992 } 1993 if (!n) 1994 return key_senderror(so, m, ENOBUFS); 1995 1996 if (n->m_len < sizeof(*newmsg)) { 1997 n = m_pullup(n, sizeof(*newmsg)); 1998 if (!n) 1999 return key_senderror(so, m, ENOBUFS); 2000 } 2001 newmsg = mtod(n, struct sadb_msg *); 2002 newmsg->sadb_msg_errno = 0; 2003 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2004 2005 off = 0; 2006 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 2007 sizeof(*xpl), &off); 2008 if (mpolicy == NULL) { 2009 /* n is already freed */ 2010 return key_senderror(so, m, ENOBUFS); 2011 } 2012 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off); 2013 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 2014 m_freem(n); 2015 return key_senderror(so, m, EINVAL); 2016 } 2017 xpl->sadb_x_policy_id = newsp->id; 2018 2019 m_freem(m); 2020 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2021 } 2022 } 2023 2024 /* 2025 * get new policy id. 2026 * OUT: 2027 * 0: failure. 2028 * others: success. 2029 */ 2030 static u_int32_t 2031 key_getnewspid(void) 2032 { 2033 u_int32_t newid = 0; 2034 int count = key_spi_trycnt; /* XXX */ 2035 struct secpolicy *sp; 2036 2037 /* when requesting to allocate spi ranged */ 2038 while (count--) { 2039 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); 2040 2041 if ((sp = key_getspbyid(newid)) == NULL) 2042 break; 2043 2044 KEY_FREESP(&sp); 2045 } 2046 2047 if (count == 0 || newid == 0) { 2048 ipseclog((LOG_DEBUG, "key_getnewspid: to allocate policy id is failed.\n")); 2049 return 0; 2050 } 2051 2052 return newid; 2053 } 2054 2055 /* 2056 * SADB_SPDDELETE processing 2057 * receive 2058 * <base, address(SD), policy(*)> 2059 * from the user(?), and set SADB_SASTATE_DEAD, 2060 * and send, 2061 * <base, address(SD), policy(*)> 2062 * to the ikmpd. 2063 * policy(*) including direction of policy. 2064 * 2065 * m will always be freed. 2066 */ 2067 static int 2068 key_spddelete(struct socket *so, struct mbuf *m, 2069 const struct sadb_msghdr *mhp) 2070 { 2071 struct sadb_address *src0, *dst0; 2072 struct sadb_x_policy *xpl0; 2073 struct secpolicyindex spidx; 2074 struct secpolicy *sp; 2075 2076 /* sanity check */ 2077 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 2078 panic("key_spddelete: NULL pointer is passed"); 2079 2080 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2081 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2082 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2083 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n")); 2084 return key_senderror(so, m, EINVAL); 2085 } 2086 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2087 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2088 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2089 ipseclog((LOG_DEBUG, "key_spddelete: invalid message is passed.\n")); 2090 return key_senderror(so, m, EINVAL); 2091 } 2092 2093 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2094 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2095 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2096 2097 /* make secindex */ 2098 /* XXX boundary check against sa_len */ 2099 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2100 src0 + 1, 2101 dst0 + 1, 2102 src0->sadb_address_prefixlen, 2103 dst0->sadb_address_prefixlen, 2104 src0->sadb_address_proto, 2105 &spidx); 2106 2107 /* checking the direciton. */ 2108 switch (xpl0->sadb_x_policy_dir) { 2109 case IPSEC_DIR_INBOUND: 2110 case IPSEC_DIR_OUTBOUND: 2111 break; 2112 default: 2113 ipseclog((LOG_DEBUG, "key_spddelete: Invalid SP direction.\n")); 2114 return key_senderror(so, m, EINVAL); 2115 } 2116 2117 /* Is there SP in SPD ? */ 2118 if ((sp = key_getsp(&spidx)) == NULL) { 2119 ipseclog((LOG_DEBUG, "key_spddelete: no SP found.\n")); 2120 return key_senderror(so, m, EINVAL); 2121 } 2122 2123 /* save policy id to buffer to be returned. */ 2124 xpl0->sadb_x_policy_id = sp->id; 2125 2126 key_sp_dead(sp); 2127 key_sp_unlink(sp); /* XXX jrs ordering */ 2128 KEY_FREESP(&sp); /* ref gained by key_getspbyid */ 2129 2130 #if defined(__NetBSD__) 2131 /* Invalidate all cached SPD pointers in the PCBs. */ 2132 ipsec_invalpcbcacheall(); 2133 2134 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2135 #endif /* __NetBSD__ */ 2136 2137 { 2138 struct mbuf *n; 2139 struct sadb_msg *newmsg; 2140 2141 /* create new sadb_msg to reply. */ 2142 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2143 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2144 if (!n) 2145 return key_senderror(so, m, ENOBUFS); 2146 2147 newmsg = mtod(n, struct sadb_msg *); 2148 newmsg->sadb_msg_errno = 0; 2149 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2150 2151 m_freem(m); 2152 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2153 } 2154 } 2155 2156 /* 2157 * SADB_SPDDELETE2 processing 2158 * receive 2159 * <base, policy(*)> 2160 * from the user(?), and set SADB_SASTATE_DEAD, 2161 * and send, 2162 * <base, policy(*)> 2163 * to the ikmpd. 2164 * policy(*) including direction of policy. 2165 * 2166 * m will always be freed. 2167 */ 2168 static int 2169 key_spddelete2(struct socket *so, struct mbuf *m, 2170 const struct sadb_msghdr *mhp) 2171 { 2172 u_int32_t id; 2173 struct secpolicy *sp; 2174 2175 /* sanity check */ 2176 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 2177 panic("key_spddelete2: NULL pointer is passed"); 2178 2179 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2180 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2181 ipseclog((LOG_DEBUG, "key_spddelete2: invalid message is passed.\n")); 2182 key_senderror(so, m, EINVAL); 2183 return 0; 2184 } 2185 2186 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2187 2188 /* Is there SP in SPD ? */ 2189 if ((sp = key_getspbyid(id)) == NULL) { 2190 ipseclog((LOG_DEBUG, "key_spddelete2: no SP found id:%u.\n", id)); 2191 return key_senderror(so, m, EINVAL); 2192 } 2193 2194 key_sp_dead(sp); 2195 key_sp_unlink(sp); /* XXX jrs ordering */ 2196 KEY_FREESP(&sp); /* ref gained by key_getsp */ 2197 sp = NULL; 2198 2199 #if defined(__NetBSD__) 2200 /* Invalidate all cached SPD pointers in the PCBs. */ 2201 ipsec_invalpcbcacheall(); 2202 2203 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2204 #endif /* __NetBSD__ */ 2205 2206 { 2207 struct mbuf *n, *nn; 2208 struct sadb_msg *newmsg; 2209 int off, len; 2210 2211 /* create new sadb_msg to reply. */ 2212 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2213 2214 if (len > MCLBYTES) 2215 return key_senderror(so, m, ENOBUFS); 2216 MGETHDR(n, M_DONTWAIT, MT_DATA); 2217 if (n && len > MHLEN) { 2218 MCLGET(n, M_DONTWAIT); 2219 if ((n->m_flags & M_EXT) == 0) { 2220 m_freem(n); 2221 n = NULL; 2222 } 2223 } 2224 if (!n) 2225 return key_senderror(so, m, ENOBUFS); 2226 2227 n->m_len = len; 2228 n->m_next = NULL; 2229 off = 0; 2230 2231 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 2232 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2233 2234 #ifdef DIAGNOSTIC 2235 if (off != len) 2236 panic("length inconsistency in key_spddelete2"); 2237 #endif 2238 2239 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2240 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT); 2241 if (!n->m_next) { 2242 m_freem(n); 2243 return key_senderror(so, m, ENOBUFS); 2244 } 2245 2246 n->m_pkthdr.len = 0; 2247 for (nn = n; nn; nn = nn->m_next) 2248 n->m_pkthdr.len += nn->m_len; 2249 2250 newmsg = mtod(n, struct sadb_msg *); 2251 newmsg->sadb_msg_errno = 0; 2252 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2253 2254 m_freem(m); 2255 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2256 } 2257 } 2258 2259 /* 2260 * SADB_X_GET processing 2261 * receive 2262 * <base, policy(*)> 2263 * from the user(?), 2264 * and send, 2265 * <base, address(SD), policy> 2266 * to the ikmpd. 2267 * policy(*) including direction of policy. 2268 * 2269 * m will always be freed. 2270 */ 2271 static int 2272 key_spdget(struct socket *so, struct mbuf *m, 2273 const struct sadb_msghdr *mhp) 2274 { 2275 u_int32_t id; 2276 struct secpolicy *sp; 2277 struct mbuf *n; 2278 2279 /* sanity check */ 2280 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 2281 panic("key_spdget: NULL pointer is passed"); 2282 2283 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2284 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2285 ipseclog((LOG_DEBUG, "key_spdget: invalid message is passed.\n")); 2286 return key_senderror(so, m, EINVAL); 2287 } 2288 2289 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2290 2291 /* Is there SP in SPD ? */ 2292 if ((sp = key_getspbyid(id)) == NULL) { 2293 ipseclog((LOG_DEBUG, "key_spdget: no SP found id:%u.\n", id)); 2294 return key_senderror(so, m, ENOENT); 2295 } 2296 2297 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, 2298 mhp->msg->sadb_msg_pid); 2299 KEY_FREESP(&sp); /* ref gained by key_getspbyid */ 2300 if (n != NULL) { 2301 m_freem(m); 2302 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2303 } else 2304 return key_senderror(so, m, ENOBUFS); 2305 } 2306 2307 /* 2308 * SADB_X_SPDACQUIRE processing. 2309 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2310 * send 2311 * <base, policy(*)> 2312 * to KMD, and expect to receive 2313 * <base> with SADB_X_SPDACQUIRE if error occurred, 2314 * or 2315 * <base, policy> 2316 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2317 * policy(*) is without policy requests. 2318 * 2319 * 0 : succeed 2320 * others: error number 2321 */ 2322 int 2323 key_spdacquire(const struct secpolicy *sp) 2324 { 2325 struct mbuf *result = NULL, *m; 2326 struct secspacq *newspacq; 2327 int error; 2328 2329 /* sanity check */ 2330 if (sp == NULL) 2331 panic("key_spdacquire: NULL pointer is passed"); 2332 if (sp->req != NULL) 2333 panic("key_spdacquire: called but there is request"); 2334 if (sp->policy != IPSEC_POLICY_IPSEC) 2335 panic("key_spdacquire: policy mismathed. IPsec is expected"); 2336 2337 /* Get an entry to check whether sent message or not. */ 2338 if ((newspacq = key_getspacq(&sp->spidx)) != NULL) { 2339 if (key_blockacq_count < newspacq->count) { 2340 /* reset counter and do send message. */ 2341 newspacq->count = 0; 2342 } else { 2343 /* increment counter and do nothing. */ 2344 newspacq->count++; 2345 return 0; 2346 } 2347 } else { 2348 /* make new entry for blocking to send SADB_ACQUIRE. */ 2349 if ((newspacq = key_newspacq(&sp->spidx)) == NULL) 2350 return ENOBUFS; 2351 2352 /* add to acqtree */ 2353 LIST_INSERT_HEAD(&spacqtree, newspacq, chain); 2354 } 2355 2356 /* create new sadb_msg to reply. */ 2357 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2358 if (!m) { 2359 error = ENOBUFS; 2360 goto fail; 2361 } 2362 result = m; 2363 2364 result->m_pkthdr.len = 0; 2365 for (m = result; m; m = m->m_next) 2366 result->m_pkthdr.len += m->m_len; 2367 2368 mtod(result, struct sadb_msg *)->sadb_msg_len = 2369 PFKEY_UNIT64(result->m_pkthdr.len); 2370 2371 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2372 2373 fail: 2374 if (result) 2375 m_freem(result); 2376 return error; 2377 } 2378 2379 /* 2380 * SADB_SPDFLUSH processing 2381 * receive 2382 * <base> 2383 * from the user, and free all entries in secpctree. 2384 * and send, 2385 * <base> 2386 * to the user. 2387 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2388 * 2389 * m will always be freed. 2390 */ 2391 static int 2392 key_spdflush(struct socket *so, struct mbuf *m, 2393 const struct sadb_msghdr *mhp) 2394 { 2395 struct sadb_msg *newmsg; 2396 struct secpolicy *sp; 2397 u_int dir; 2398 2399 /* sanity check */ 2400 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 2401 panic("key_spdflush: NULL pointer is passed"); 2402 2403 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2404 return key_senderror(so, m, EINVAL); 2405 2406 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2407 struct secpolicy * nextsp; 2408 for (sp = LIST_FIRST(&sptree[dir]); 2409 sp != NULL; 2410 sp = nextsp) { 2411 2412 nextsp = LIST_NEXT(sp, chain); 2413 if (sp->state == IPSEC_SPSTATE_DEAD) 2414 continue; 2415 key_sp_dead(sp); 2416 key_sp_unlink(sp); 2417 /* 'sp' dead; continue transfers to 'sp = nextsp' */ 2418 continue; 2419 } 2420 } 2421 2422 #if defined(__NetBSD__) 2423 /* Invalidate all cached SPD pointers in the PCBs. */ 2424 ipsec_invalpcbcacheall(); 2425 2426 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2427 #endif /* __NetBSD__ */ 2428 2429 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2430 ipseclog((LOG_DEBUG, "key_spdflush: No more memory.\n")); 2431 return key_senderror(so, m, ENOBUFS); 2432 } 2433 2434 if (m->m_next) 2435 m_freem(m->m_next); 2436 m->m_next = NULL; 2437 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2438 newmsg = mtod(m, struct sadb_msg *); 2439 newmsg->sadb_msg_errno = 0; 2440 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2441 2442 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2443 } 2444 2445 static struct sockaddr key_src = { 2446 .sa_len = 2, 2447 .sa_family = PF_KEY, 2448 }; 2449 2450 static struct mbuf * 2451 key_setspddump_chain(int *errorp, int *lenp, pid_t pid) 2452 { 2453 struct secpolicy *sp; 2454 int cnt; 2455 u_int dir; 2456 struct mbuf *m, *n, *prev; 2457 int totlen; 2458 2459 *lenp = 0; 2460 2461 /* search SPD entry and get buffer size. */ 2462 cnt = 0; 2463 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2464 LIST_FOREACH(sp, &sptree[dir], chain) { 2465 cnt++; 2466 } 2467 } 2468 2469 if (cnt == 0) { 2470 *errorp = ENOENT; 2471 return (NULL); 2472 } 2473 2474 m = NULL; 2475 prev = m; 2476 totlen = 0; 2477 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2478 LIST_FOREACH(sp, &sptree[dir], chain) { 2479 --cnt; 2480 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 2481 2482 if (!n) { 2483 *errorp = ENOBUFS; 2484 if (m) m_freem(m); 2485 return (NULL); 2486 } 2487 2488 totlen += n->m_pkthdr.len; 2489 if (!m) { 2490 m = n; 2491 } else { 2492 prev->m_nextpkt = n; 2493 } 2494 prev = n; 2495 } 2496 } 2497 2498 *lenp = totlen; 2499 *errorp = 0; 2500 return (m); 2501 } 2502 2503 /* 2504 * SADB_SPDDUMP processing 2505 * receive 2506 * <base> 2507 * from the user, and dump all SP leaves 2508 * and send, 2509 * <base> ..... 2510 * to the ikmpd. 2511 * 2512 * m will always be freed. 2513 */ 2514 static int 2515 key_spddump(struct socket *so, struct mbuf *m0, 2516 const struct sadb_msghdr *mhp) 2517 { 2518 struct mbuf *n; 2519 int error, len; 2520 int ok, s; 2521 pid_t pid; 2522 2523 /* sanity check */ 2524 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL) 2525 panic("key_spddump: NULL pointer is passed"); 2526 2527 2528 pid = mhp->msg->sadb_msg_pid; 2529 /* 2530 * If the requestor has insufficient socket-buffer space 2531 * for the entire chain, nobody gets any response to the DUMP. 2532 * XXX For now, only the requestor ever gets anything. 2533 * Moreover, if the requestor has any space at all, they receive 2534 * the entire chain, otherwise the request is refused with ENOBUFS. 2535 */ 2536 if (sbspace(&so->so_rcv) <= 0) { 2537 return key_senderror(so, m0, ENOBUFS); 2538 } 2539 2540 s = splsoftnet(); 2541 n = key_setspddump_chain(&error, &len, pid); 2542 splx(s); 2543 2544 if (n == NULL) { 2545 return key_senderror(so, m0, ENOENT); 2546 } 2547 { 2548 uint64_t *ps = PFKEY_STAT_GETREF(); 2549 ps[PFKEY_STAT_IN_TOTAL]++; 2550 ps[PFKEY_STAT_IN_BYTES] += len; 2551 PFKEY_STAT_PUTREF(); 2552 } 2553 2554 /* 2555 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 2556 * The requestor receives either the entire chain, or an 2557 * error message with ENOBUFS. 2558 */ 2559 2560 /* 2561 * sbappendchainwith record takes the chain of entries, one 2562 * packet-record per SPD entry, prepends the key_src sockaddr 2563 * to each packet-record, links the sockaddr mbufs into a new 2564 * list of records, then appends the entire resulting 2565 * list to the requesting socket. 2566 */ 2567 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, 2568 n, SB_PRIO_ONESHOT_OVERFLOW); 2569 2570 if (!ok) { 2571 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 2572 m_freem(n); 2573 return key_senderror(so, m0, ENOBUFS); 2574 } 2575 2576 m_freem(m0); 2577 return error; 2578 } 2579 2580 #ifdef IPSEC_NAT_T 2581 /* 2582 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23 2583 */ 2584 static int 2585 key_nat_map(struct socket *so, struct mbuf *m, 2586 const struct sadb_msghdr *mhp) 2587 { 2588 struct sadb_x_nat_t_type *type; 2589 struct sadb_x_nat_t_port *sport; 2590 struct sadb_x_nat_t_port *dport; 2591 struct sadb_address *iaddr, *raddr; 2592 struct sadb_x_nat_t_frag *frag; 2593 2594 /* sanity check */ 2595 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 2596 panic("key_nat_map: NULL pointer is passed."); 2597 2598 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 2599 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 2600 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) { 2601 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n")); 2602 return key_senderror(so, m, EINVAL); 2603 } 2604 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 2605 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 2606 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 2607 ipseclog((LOG_DEBUG, "key_nat_map: invalid message.\n")); 2608 return key_senderror(so, m, EINVAL); 2609 } 2610 2611 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) && 2612 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) { 2613 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n")); 2614 return key_senderror(so, m, EINVAL); 2615 } 2616 2617 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) && 2618 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) { 2619 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n")); 2620 return key_senderror(so, m, EINVAL); 2621 } 2622 2623 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) && 2624 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) { 2625 ipseclog((LOG_DEBUG, "key_nat_map: invalid message\n")); 2626 return key_senderror(so, m, EINVAL); 2627 } 2628 2629 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 2630 sport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 2631 dport = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 2632 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 2633 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 2634 frag = (struct sadb_x_nat_t_frag *) mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 2635 2636 printf("sadb_nat_map called\n"); 2637 2638 /* 2639 * XXX handle that, it should also contain a SA, or anything 2640 * that enable to update the SA information. 2641 */ 2642 2643 return 0; 2644 } 2645 #endif /* IPSEC_NAT_T */ 2646 2647 static struct mbuf * 2648 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid) 2649 { 2650 struct mbuf *result = NULL, *m; 2651 2652 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2653 if (!m) 2654 goto fail; 2655 result = m; 2656 2657 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2658 &sp->spidx.src.sa, sp->spidx.prefs, 2659 sp->spidx.ul_proto); 2660 if (!m) 2661 goto fail; 2662 m_cat(result, m); 2663 2664 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2665 &sp->spidx.dst.sa, sp->spidx.prefd, 2666 sp->spidx.ul_proto); 2667 if (!m) 2668 goto fail; 2669 m_cat(result, m); 2670 2671 m = key_sp2msg(sp); 2672 if (!m) 2673 goto fail; 2674 m_cat(result, m); 2675 2676 if ((result->m_flags & M_PKTHDR) == 0) 2677 goto fail; 2678 2679 if (result->m_len < sizeof(struct sadb_msg)) { 2680 result = m_pullup(result, sizeof(struct sadb_msg)); 2681 if (result == NULL) 2682 goto fail; 2683 } 2684 2685 result->m_pkthdr.len = 0; 2686 for (m = result; m; m = m->m_next) 2687 result->m_pkthdr.len += m->m_len; 2688 2689 mtod(result, struct sadb_msg *)->sadb_msg_len = 2690 PFKEY_UNIT64(result->m_pkthdr.len); 2691 2692 return result; 2693 2694 fail: 2695 m_freem(result); 2696 return NULL; 2697 } 2698 2699 /* 2700 * get PFKEY message length for security policy and request. 2701 */ 2702 static u_int 2703 key_getspreqmsglen(const struct secpolicy *sp) 2704 { 2705 u_int tlen; 2706 2707 tlen = sizeof(struct sadb_x_policy); 2708 2709 /* if is the policy for ipsec ? */ 2710 if (sp->policy != IPSEC_POLICY_IPSEC) 2711 return tlen; 2712 2713 /* get length of ipsec requests */ 2714 { 2715 const struct ipsecrequest *isr; 2716 int len; 2717 2718 for (isr = sp->req; isr != NULL; isr = isr->next) { 2719 len = sizeof(struct sadb_x_ipsecrequest) 2720 + isr->saidx.src.sa.sa_len 2721 + isr->saidx.dst.sa.sa_len; 2722 2723 tlen += PFKEY_ALIGN8(len); 2724 } 2725 } 2726 2727 return tlen; 2728 } 2729 2730 /* 2731 * SADB_SPDEXPIRE processing 2732 * send 2733 * <base, address(SD), lifetime(CH), policy> 2734 * to KMD by PF_KEY. 2735 * 2736 * OUT: 0 : succeed 2737 * others : error number 2738 */ 2739 static int 2740 key_spdexpire(struct secpolicy *sp) 2741 { 2742 int s; 2743 struct mbuf *result = NULL, *m; 2744 int len; 2745 int error = -1; 2746 struct sadb_lifetime *lt; 2747 2748 /* XXX: Why do we lock ? */ 2749 s = splsoftnet(); /*called from softclock()*/ 2750 2751 /* sanity check */ 2752 if (sp == NULL) 2753 panic("key_spdexpire: NULL pointer is passed"); 2754 2755 /* set msg header */ 2756 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2757 if (!m) { 2758 error = ENOBUFS; 2759 goto fail; 2760 } 2761 result = m; 2762 2763 /* create lifetime extension (current and hard) */ 2764 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2765 m = key_alloc_mbuf(len); 2766 if (!m || m->m_next) { /*XXX*/ 2767 if (m) 2768 m_freem(m); 2769 error = ENOBUFS; 2770 goto fail; 2771 } 2772 memset(mtod(m, void *), 0, len); 2773 lt = mtod(m, struct sadb_lifetime *); 2774 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2775 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2776 lt->sadb_lifetime_allocations = 0; 2777 lt->sadb_lifetime_bytes = 0; 2778 lt->sadb_lifetime_addtime = sp->created + time_second - time_uptime; 2779 lt->sadb_lifetime_usetime = sp->lastused + time_second - time_uptime; 2780 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 2781 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2782 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2783 lt->sadb_lifetime_allocations = 0; 2784 lt->sadb_lifetime_bytes = 0; 2785 lt->sadb_lifetime_addtime = sp->lifetime; 2786 lt->sadb_lifetime_usetime = sp->validtime; 2787 m_cat(result, m); 2788 2789 /* set sadb_address for source */ 2790 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2791 &sp->spidx.src.sa, 2792 sp->spidx.prefs, sp->spidx.ul_proto); 2793 if (!m) { 2794 error = ENOBUFS; 2795 goto fail; 2796 } 2797 m_cat(result, m); 2798 2799 /* set sadb_address for destination */ 2800 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2801 &sp->spidx.dst.sa, 2802 sp->spidx.prefd, sp->spidx.ul_proto); 2803 if (!m) { 2804 error = ENOBUFS; 2805 goto fail; 2806 } 2807 m_cat(result, m); 2808 2809 /* set secpolicy */ 2810 m = key_sp2msg(sp); 2811 if (!m) { 2812 error = ENOBUFS; 2813 goto fail; 2814 } 2815 m_cat(result, m); 2816 2817 if ((result->m_flags & M_PKTHDR) == 0) { 2818 error = EINVAL; 2819 goto fail; 2820 } 2821 2822 if (result->m_len < sizeof(struct sadb_msg)) { 2823 result = m_pullup(result, sizeof(struct sadb_msg)); 2824 if (result == NULL) { 2825 error = ENOBUFS; 2826 goto fail; 2827 } 2828 } 2829 2830 result->m_pkthdr.len = 0; 2831 for (m = result; m; m = m->m_next) 2832 result->m_pkthdr.len += m->m_len; 2833 2834 mtod(result, struct sadb_msg *)->sadb_msg_len = 2835 PFKEY_UNIT64(result->m_pkthdr.len); 2836 2837 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2838 2839 fail: 2840 if (result) 2841 m_freem(result); 2842 splx(s); 2843 return error; 2844 } 2845 2846 /* %%% SAD management */ 2847 /* 2848 * allocating a memory for new SA head, and copy from the values of mhp. 2849 * OUT: NULL : failure due to the lack of memory. 2850 * others : pointer to new SA head. 2851 */ 2852 static struct secashead * 2853 key_newsah(const struct secasindex *saidx) 2854 { 2855 struct secashead *newsah; 2856 2857 IPSEC_ASSERT(saidx != NULL, ("key_newsaidx: null saidx")); 2858 2859 newsah = (struct secashead *) 2860 malloc(sizeof(struct secashead), M_SECA, M_NOWAIT|M_ZERO); 2861 if (newsah != NULL) { 2862 int i; 2863 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2864 LIST_INIT(&newsah->savtree[i]); 2865 newsah->saidx = *saidx; 2866 2867 /* add to saidxtree */ 2868 newsah->state = SADB_SASTATE_MATURE; 2869 LIST_INSERT_HEAD(&sahtree, newsah, chain); 2870 } 2871 return(newsah); 2872 } 2873 2874 /* 2875 * delete SA index and all SA registerd. 2876 */ 2877 static void 2878 key_delsah(struct secashead *sah) 2879 { 2880 struct secasvar *sav, *nextsav; 2881 u_int stateidx, state; 2882 int s; 2883 int zombie = 0; 2884 2885 /* sanity check */ 2886 if (sah == NULL) 2887 panic("key_delsah: NULL pointer is passed"); 2888 2889 s = splsoftnet(); /*called from softclock()*/ 2890 2891 /* searching all SA registerd in the secindex. */ 2892 for (stateidx = 0; 2893 stateidx < _ARRAYLEN(saorder_state_any); 2894 stateidx++) { 2895 2896 state = saorder_state_any[stateidx]; 2897 for (sav = (struct secasvar *)LIST_FIRST(&sah->savtree[state]); 2898 sav != NULL; 2899 sav = nextsav) { 2900 2901 nextsav = LIST_NEXT(sav, chain); 2902 2903 if (sav->refcnt == 0) { 2904 /* sanity check */ 2905 KEY_CHKSASTATE(state, sav->state, "key_delsah"); 2906 KEY_FREESAV(&sav); 2907 } else { 2908 /* give up to delete this sa */ 2909 zombie++; 2910 } 2911 } 2912 } 2913 2914 /* don't delete sah only if there are savs. */ 2915 if (zombie) { 2916 splx(s); 2917 return; 2918 } 2919 2920 rtcache_free(&sah->sa_route); 2921 2922 /* remove from tree of SA index */ 2923 if (__LIST_CHAINED(sah)) 2924 LIST_REMOVE(sah, chain); 2925 2926 KFREE(sah); 2927 2928 splx(s); 2929 return; 2930 } 2931 2932 /* 2933 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2934 * and copy the values of mhp into new buffer. 2935 * When SAD message type is GETSPI: 2936 * to set sequence number from acq_seq++, 2937 * to set zero to SPI. 2938 * not to call key_setsava(). 2939 * OUT: NULL : fail 2940 * others : pointer to new secasvar. 2941 * 2942 * does not modify mbuf. does not free mbuf on error. 2943 */ 2944 static struct secasvar * 2945 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp, 2946 struct secashead *sah, int *errp, 2947 const char* where, int tag) 2948 { 2949 struct secasvar *newsav; 2950 const struct sadb_sa *xsa; 2951 2952 /* sanity check */ 2953 if (m == NULL || mhp == NULL || mhp->msg == NULL || sah == NULL) 2954 panic("key_newsa: NULL pointer is passed"); 2955 2956 KMALLOC(newsav, struct secasvar *, sizeof(struct secasvar)); 2957 if (newsav == NULL) { 2958 ipseclog((LOG_DEBUG, "key_newsa: No more memory.\n")); 2959 *errp = ENOBUFS; 2960 goto done; 2961 } 2962 memset(newsav, 0, sizeof(struct secasvar)); 2963 2964 switch (mhp->msg->sadb_msg_type) { 2965 case SADB_GETSPI: 2966 newsav->spi = 0; 2967 2968 #ifdef IPSEC_DOSEQCHECK 2969 /* sync sequence number */ 2970 if (mhp->msg->sadb_msg_seq == 0) 2971 newsav->seq = 2972 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 2973 else 2974 #endif 2975 newsav->seq = mhp->msg->sadb_msg_seq; 2976 break; 2977 2978 case SADB_ADD: 2979 /* sanity check */ 2980 if (mhp->ext[SADB_EXT_SA] == NULL) { 2981 KFREE(newsav), newsav = NULL; 2982 ipseclog((LOG_DEBUG, "key_newsa: invalid message is passed.\n")); 2983 *errp = EINVAL; 2984 goto done; 2985 } 2986 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2987 newsav->spi = xsa->sadb_sa_spi; 2988 newsav->seq = mhp->msg->sadb_msg_seq; 2989 break; 2990 default: 2991 KFREE(newsav), newsav = NULL; 2992 *errp = EINVAL; 2993 goto done; 2994 } 2995 2996 /* copy sav values */ 2997 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2998 *errp = key_setsaval(newsav, m, mhp); 2999 if (*errp) { 3000 KFREE(newsav), newsav = NULL; 3001 goto done; 3002 } 3003 } 3004 3005 /* reset created */ 3006 newsav->created = time_uptime; 3007 newsav->pid = mhp->msg->sadb_msg_pid; 3008 3009 /* add to satree */ 3010 newsav->sah = sah; 3011 newsav->refcnt = 1; 3012 newsav->state = SADB_SASTATE_LARVAL; 3013 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 3014 secasvar, chain); 3015 done: 3016 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 3017 printf("DP key_newsav from %s:%u return SP:%p\n", 3018 where, tag, newsav)); 3019 3020 return newsav; 3021 } 3022 3023 /* 3024 * free() SA variable entry. 3025 */ 3026 static void 3027 key_delsav(struct secasvar *sav) 3028 { 3029 IPSEC_ASSERT(sav != NULL, ("key_delsav: null sav")); 3030 IPSEC_ASSERT(sav->refcnt == 0, 3031 ("key_delsav: reference count %u > 0", sav->refcnt)); 3032 3033 /* remove from SA header */ 3034 if (__LIST_CHAINED(sav)) 3035 LIST_REMOVE(sav, chain); 3036 3037 /* 3038 * Cleanup xform state. Note that zeroize'ing causes the 3039 * keys to be cleared; otherwise we must do it ourself. 3040 */ 3041 if (sav->tdb_xform != NULL) { 3042 sav->tdb_xform->xf_zeroize(sav); 3043 sav->tdb_xform = NULL; 3044 } else { 3045 if (sav->key_auth != NULL) 3046 memset(_KEYBUF(sav->key_auth), 0, _KEYLEN(sav->key_auth)); 3047 if (sav->key_enc != NULL) 3048 memset(_KEYBUF(sav->key_enc), 0, _KEYLEN(sav->key_enc)); 3049 } 3050 if (sav->key_auth != NULL) { 3051 KFREE(sav->key_auth); 3052 sav->key_auth = NULL; 3053 } 3054 if (sav->key_enc != NULL) { 3055 KFREE(sav->key_enc); 3056 sav->key_enc = NULL; 3057 } 3058 if (sav->sched) { 3059 memset(sav->sched, 0, sav->schedlen); 3060 KFREE(sav->sched); 3061 sav->sched = NULL; 3062 } 3063 if (sav->replay != NULL) { 3064 KFREE(sav->replay); 3065 sav->replay = NULL; 3066 } 3067 if (sav->lft_c != NULL) { 3068 KFREE(sav->lft_c); 3069 sav->lft_c = NULL; 3070 } 3071 if (sav->lft_h != NULL) { 3072 KFREE(sav->lft_h); 3073 sav->lft_h = NULL; 3074 } 3075 if (sav->lft_s != NULL) { 3076 KFREE(sav->lft_s); 3077 sav->lft_s = NULL; 3078 } 3079 3080 KFREE(sav); 3081 3082 return; 3083 } 3084 3085 /* 3086 * search SAD. 3087 * OUT: 3088 * NULL : not found 3089 * others : found, pointer to a SA. 3090 */ 3091 static struct secashead * 3092 key_getsah(const struct secasindex *saidx) 3093 { 3094 struct secashead *sah; 3095 3096 LIST_FOREACH(sah, &sahtree, chain) { 3097 if (sah->state == SADB_SASTATE_DEAD) 3098 continue; 3099 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 3100 return sah; 3101 } 3102 3103 return NULL; 3104 } 3105 3106 /* 3107 * check not to be duplicated SPI. 3108 * NOTE: this function is too slow due to searching all SAD. 3109 * OUT: 3110 * NULL : not found 3111 * others : found, pointer to a SA. 3112 */ 3113 static struct secasvar * 3114 key_checkspidup(const struct secasindex *saidx, u_int32_t spi) 3115 { 3116 struct secashead *sah; 3117 struct secasvar *sav; 3118 3119 /* check address family */ 3120 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 3121 ipseclog((LOG_DEBUG, "key_checkspidup: address family mismatched.\n")); 3122 return NULL; 3123 } 3124 3125 /* check all SAD */ 3126 LIST_FOREACH(sah, &sahtree, chain) { 3127 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 3128 continue; 3129 sav = key_getsavbyspi(sah, spi); 3130 if (sav != NULL) 3131 return sav; 3132 } 3133 3134 return NULL; 3135 } 3136 3137 /* 3138 * search SAD litmited alive SA, protocol, SPI. 3139 * OUT: 3140 * NULL : not found 3141 * others : found, pointer to a SA. 3142 */ 3143 static struct secasvar * 3144 key_getsavbyspi(struct secashead *sah, u_int32_t spi) 3145 { 3146 struct secasvar *sav; 3147 u_int stateidx, state; 3148 3149 /* search all status */ 3150 for (stateidx = 0; 3151 stateidx < _ARRAYLEN(saorder_state_alive); 3152 stateidx++) { 3153 3154 state = saorder_state_alive[stateidx]; 3155 LIST_FOREACH(sav, &sah->savtree[state], chain) { 3156 3157 /* sanity check */ 3158 if (sav->state != state) { 3159 ipseclog((LOG_DEBUG, "key_getsavbyspi: " 3160 "invalid sav->state (queue: %d SA: %d)\n", 3161 state, sav->state)); 3162 continue; 3163 } 3164 3165 if (sav->spi == spi) 3166 return sav; 3167 } 3168 } 3169 3170 return NULL; 3171 } 3172 3173 /* 3174 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3175 * You must update these if need. 3176 * OUT: 0: success. 3177 * !0: failure. 3178 * 3179 * does not modify mbuf. does not free mbuf on error. 3180 */ 3181 static int 3182 key_setsaval(struct secasvar *sav, struct mbuf *m, 3183 const struct sadb_msghdr *mhp) 3184 { 3185 int error = 0; 3186 3187 /* sanity check */ 3188 if (m == NULL || mhp == NULL || mhp->msg == NULL) 3189 panic("key_setsaval: NULL pointer is passed"); 3190 3191 /* initialization */ 3192 sav->replay = NULL; 3193 sav->key_auth = NULL; 3194 sav->key_enc = NULL; 3195 sav->sched = NULL; 3196 sav->schedlen = 0; 3197 sav->lft_c = NULL; 3198 sav->lft_h = NULL; 3199 sav->lft_s = NULL; 3200 sav->tdb_xform = NULL; /* transform */ 3201 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3202 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3203 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3204 #ifdef IPSEC_NAT_T 3205 sav->natt_type = 0; 3206 sav->esp_frag = 0; 3207 #endif 3208 3209 /* SA */ 3210 if (mhp->ext[SADB_EXT_SA] != NULL) { 3211 const struct sadb_sa *sa0; 3212 3213 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3214 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3215 error = EINVAL; 3216 goto fail; 3217 } 3218 3219 sav->alg_auth = sa0->sadb_sa_auth; 3220 sav->alg_enc = sa0->sadb_sa_encrypt; 3221 sav->flags = sa0->sadb_sa_flags; 3222 3223 /* replay window */ 3224 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3225 sav->replay = (struct secreplay *) 3226 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_SECA, M_NOWAIT|M_ZERO); 3227 if (sav->replay == NULL) { 3228 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); 3229 error = ENOBUFS; 3230 goto fail; 3231 } 3232 if (sa0->sadb_sa_replay != 0) 3233 sav->replay->bitmap = (char*)(sav->replay+1); 3234 sav->replay->wsize = sa0->sadb_sa_replay; 3235 } 3236 } 3237 3238 /* Authentication keys */ 3239 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3240 const struct sadb_key *key0; 3241 int len; 3242 3243 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3244 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3245 3246 error = 0; 3247 if (len < sizeof(*key0)) { 3248 error = EINVAL; 3249 goto fail; 3250 } 3251 switch (mhp->msg->sadb_msg_satype) { 3252 case SADB_SATYPE_AH: 3253 case SADB_SATYPE_ESP: 3254 case SADB_X_SATYPE_TCPSIGNATURE: 3255 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3256 sav->alg_auth != SADB_X_AALG_NULL) 3257 error = EINVAL; 3258 break; 3259 case SADB_X_SATYPE_IPCOMP: 3260 default: 3261 error = EINVAL; 3262 break; 3263 } 3264 if (error) { 3265 ipseclog((LOG_DEBUG, "key_setsaval: invalid key_auth values.\n")); 3266 goto fail; 3267 } 3268 3269 sav->key_auth = (struct sadb_key *)key_newbuf(key0, len); 3270 if (sav->key_auth == NULL) { 3271 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); 3272 error = ENOBUFS; 3273 goto fail; 3274 } 3275 } 3276 3277 /* Encryption key */ 3278 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3279 const struct sadb_key *key0; 3280 int len; 3281 3282 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3283 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3284 3285 error = 0; 3286 if (len < sizeof(*key0)) { 3287 error = EINVAL; 3288 goto fail; 3289 } 3290 switch (mhp->msg->sadb_msg_satype) { 3291 case SADB_SATYPE_ESP: 3292 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3293 sav->alg_enc != SADB_EALG_NULL) { 3294 error = EINVAL; 3295 break; 3296 } 3297 sav->key_enc = (struct sadb_key *)key_newbuf(key0, len); 3298 if (sav->key_enc == NULL) { 3299 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); 3300 error = ENOBUFS; 3301 goto fail; 3302 } 3303 break; 3304 case SADB_X_SATYPE_IPCOMP: 3305 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3306 error = EINVAL; 3307 sav->key_enc = NULL; /*just in case*/ 3308 break; 3309 case SADB_SATYPE_AH: 3310 case SADB_X_SATYPE_TCPSIGNATURE: 3311 default: 3312 error = EINVAL; 3313 break; 3314 } 3315 if (error) { 3316 ipseclog((LOG_DEBUG, "key_setsatval: invalid key_enc value.\n")); 3317 goto fail; 3318 } 3319 } 3320 3321 /* set iv */ 3322 sav->ivlen = 0; 3323 3324 switch (mhp->msg->sadb_msg_satype) { 3325 case SADB_SATYPE_AH: 3326 error = xform_init(sav, XF_AH); 3327 break; 3328 case SADB_SATYPE_ESP: 3329 error = xform_init(sav, XF_ESP); 3330 break; 3331 case SADB_X_SATYPE_IPCOMP: 3332 error = xform_init(sav, XF_IPCOMP); 3333 break; 3334 case SADB_X_SATYPE_TCPSIGNATURE: 3335 error = xform_init(sav, XF_TCPSIGNATURE); 3336 break; 3337 } 3338 if (error) { 3339 ipseclog((LOG_DEBUG, 3340 "key_setsaval: unable to initialize SA type %u.\n", 3341 mhp->msg->sadb_msg_satype)); 3342 goto fail; 3343 } 3344 3345 /* reset created */ 3346 sav->created = time_uptime; 3347 3348 /* make lifetime for CURRENT */ 3349 KMALLOC(sav->lft_c, struct sadb_lifetime *, 3350 sizeof(struct sadb_lifetime)); 3351 if (sav->lft_c == NULL) { 3352 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); 3353 error = ENOBUFS; 3354 goto fail; 3355 } 3356 3357 sav->lft_c->sadb_lifetime_len = 3358 PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3359 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3360 sav->lft_c->sadb_lifetime_allocations = 0; 3361 sav->lft_c->sadb_lifetime_bytes = 0; 3362 sav->lft_c->sadb_lifetime_addtime = time_uptime; 3363 sav->lft_c->sadb_lifetime_usetime = 0; 3364 3365 /* lifetimes for HARD and SOFT */ 3366 { 3367 const struct sadb_lifetime *lft0; 3368 3369 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3370 if (lft0 != NULL) { 3371 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3372 error = EINVAL; 3373 goto fail; 3374 } 3375 sav->lft_h = (struct sadb_lifetime *)key_newbuf(lft0, 3376 sizeof(*lft0)); 3377 if (sav->lft_h == NULL) { 3378 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); 3379 error = ENOBUFS; 3380 goto fail; 3381 } 3382 /* to be initialize ? */ 3383 } 3384 3385 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3386 if (lft0 != NULL) { 3387 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3388 error = EINVAL; 3389 goto fail; 3390 } 3391 sav->lft_s = (struct sadb_lifetime *)key_newbuf(lft0, 3392 sizeof(*lft0)); 3393 if (sav->lft_s == NULL) { 3394 ipseclog((LOG_DEBUG, "key_setsaval: No more memory.\n")); 3395 error = ENOBUFS; 3396 goto fail; 3397 } 3398 /* to be initialize ? */ 3399 } 3400 } 3401 3402 return 0; 3403 3404 fail: 3405 /* initialization */ 3406 if (sav->replay != NULL) { 3407 KFREE(sav->replay); 3408 sav->replay = NULL; 3409 } 3410 if (sav->key_auth != NULL) { 3411 KFREE(sav->key_auth); 3412 sav->key_auth = NULL; 3413 } 3414 if (sav->key_enc != NULL) { 3415 KFREE(sav->key_enc); 3416 sav->key_enc = NULL; 3417 } 3418 if (sav->sched) { 3419 KFREE(sav->sched); 3420 sav->sched = NULL; 3421 } 3422 if (sav->lft_c != NULL) { 3423 KFREE(sav->lft_c); 3424 sav->lft_c = NULL; 3425 } 3426 if (sav->lft_h != NULL) { 3427 KFREE(sav->lft_h); 3428 sav->lft_h = NULL; 3429 } 3430 if (sav->lft_s != NULL) { 3431 KFREE(sav->lft_s); 3432 sav->lft_s = NULL; 3433 } 3434 3435 return error; 3436 } 3437 3438 /* 3439 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3440 * OUT: 0: valid 3441 * other: errno 3442 */ 3443 static int 3444 key_mature(struct secasvar *sav) 3445 { 3446 int error; 3447 3448 /* check SPI value */ 3449 switch (sav->sah->saidx.proto) { 3450 case IPPROTO_ESP: 3451 case IPPROTO_AH: 3452 if (ntohl(sav->spi) <= 255) { 3453 ipseclog((LOG_DEBUG, 3454 "key_mature: illegal range of SPI %u.\n", 3455 (u_int32_t)ntohl(sav->spi))); 3456 return EINVAL; 3457 } 3458 break; 3459 } 3460 3461 /* check satype */ 3462 switch (sav->sah->saidx.proto) { 3463 case IPPROTO_ESP: 3464 /* check flags */ 3465 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3466 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3467 ipseclog((LOG_DEBUG, "key_mature: " 3468 "invalid flag (derived) given to old-esp.\n")); 3469 return EINVAL; 3470 } 3471 error = xform_init(sav, XF_ESP); 3472 break; 3473 case IPPROTO_AH: 3474 /* check flags */ 3475 if (sav->flags & SADB_X_EXT_DERIV) { 3476 ipseclog((LOG_DEBUG, "key_mature: " 3477 "invalid flag (derived) given to AH SA.\n")); 3478 return EINVAL; 3479 } 3480 if (sav->alg_enc != SADB_EALG_NONE) { 3481 ipseclog((LOG_DEBUG, "key_mature: " 3482 "protocol and algorithm mismated.\n")); 3483 return(EINVAL); 3484 } 3485 error = xform_init(sav, XF_AH); 3486 break; 3487 case IPPROTO_IPCOMP: 3488 if (sav->alg_auth != SADB_AALG_NONE) { 3489 ipseclog((LOG_DEBUG, "key_mature: " 3490 "protocol and algorithm mismated.\n")); 3491 return(EINVAL); 3492 } 3493 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3494 && ntohl(sav->spi) >= 0x10000) { 3495 ipseclog((LOG_DEBUG, "key_mature: invalid cpi for IPComp.\n")); 3496 return(EINVAL); 3497 } 3498 error = xform_init(sav, XF_IPCOMP); 3499 break; 3500 case IPPROTO_TCP: 3501 if (sav->alg_enc != SADB_EALG_NONE) { 3502 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3503 "mismated.\n", __func__)); 3504 return(EINVAL); 3505 } 3506 error = xform_init(sav, XF_TCPSIGNATURE); 3507 break; 3508 default: 3509 ipseclog((LOG_DEBUG, "key_mature: Invalid satype.\n")); 3510 error = EPROTONOSUPPORT; 3511 break; 3512 } 3513 if (error == 0) 3514 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3515 return (error); 3516 } 3517 3518 /* 3519 * subroutine for SADB_GET and SADB_DUMP. 3520 */ 3521 static struct mbuf * 3522 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3523 u_int32_t seq, u_int32_t pid) 3524 { 3525 struct mbuf *result = NULL, *tres = NULL, *m; 3526 int l = 0; 3527 int i; 3528 void *p; 3529 struct sadb_lifetime lt; 3530 int dumporder[] = { 3531 SADB_EXT_SA, SADB_X_EXT_SA2, 3532 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3533 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3534 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3535 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3536 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3537 #ifdef IPSEC_NAT_T 3538 SADB_X_EXT_NAT_T_TYPE, 3539 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3540 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3541 SADB_X_EXT_NAT_T_FRAG, 3542 #endif 3543 3544 }; 3545 3546 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3547 if (m == NULL) 3548 goto fail; 3549 result = m; 3550 3551 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3552 m = NULL; 3553 p = NULL; 3554 switch (dumporder[i]) { 3555 case SADB_EXT_SA: 3556 m = key_setsadbsa(sav); 3557 break; 3558 3559 case SADB_X_EXT_SA2: 3560 m = key_setsadbxsa2(sav->sah->saidx.mode, 3561 sav->replay ? sav->replay->count : 0, 3562 sav->sah->saidx.reqid); 3563 break; 3564 3565 case SADB_EXT_ADDRESS_SRC: 3566 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3567 &sav->sah->saidx.src.sa, 3568 FULLMASK, IPSEC_ULPROTO_ANY); 3569 break; 3570 3571 case SADB_EXT_ADDRESS_DST: 3572 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3573 &sav->sah->saidx.dst.sa, 3574 FULLMASK, IPSEC_ULPROTO_ANY); 3575 break; 3576 3577 case SADB_EXT_KEY_AUTH: 3578 if (!sav->key_auth) 3579 continue; 3580 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len); 3581 p = sav->key_auth; 3582 break; 3583 3584 case SADB_EXT_KEY_ENCRYPT: 3585 if (!sav->key_enc) 3586 continue; 3587 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len); 3588 p = sav->key_enc; 3589 break; 3590 3591 case SADB_EXT_LIFETIME_CURRENT: 3592 if (!sav->lft_c) 3593 continue; 3594 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len); 3595 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime)); 3596 lt.sadb_lifetime_addtime += time_second - time_uptime; 3597 lt.sadb_lifetime_usetime += time_second - time_uptime; 3598 p = < 3599 break; 3600 3601 case SADB_EXT_LIFETIME_HARD: 3602 if (!sav->lft_h) 3603 continue; 3604 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len); 3605 p = sav->lft_h; 3606 break; 3607 3608 case SADB_EXT_LIFETIME_SOFT: 3609 if (!sav->lft_s) 3610 continue; 3611 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len); 3612 p = sav->lft_s; 3613 break; 3614 3615 #ifdef IPSEC_NAT_T 3616 case SADB_X_EXT_NAT_T_TYPE: 3617 m = key_setsadbxtype(sav->natt_type); 3618 break; 3619 3620 case SADB_X_EXT_NAT_T_DPORT: 3621 if (sav->natt_type == 0) 3622 continue; 3623 m = key_setsadbxport( 3624 key_portfromsaddr(&sav->sah->saidx.dst), 3625 SADB_X_EXT_NAT_T_DPORT); 3626 break; 3627 3628 case SADB_X_EXT_NAT_T_SPORT: 3629 if (sav->natt_type == 0) 3630 continue; 3631 m = key_setsadbxport( 3632 key_portfromsaddr(&sav->sah->saidx.src), 3633 SADB_X_EXT_NAT_T_SPORT); 3634 break; 3635 3636 case SADB_X_EXT_NAT_T_OAI: 3637 case SADB_X_EXT_NAT_T_OAR: 3638 case SADB_X_EXT_NAT_T_FRAG: 3639 continue; 3640 #endif 3641 3642 case SADB_EXT_ADDRESS_PROXY: 3643 case SADB_EXT_IDENTITY_SRC: 3644 case SADB_EXT_IDENTITY_DST: 3645 /* XXX: should we brought from SPD ? */ 3646 case SADB_EXT_SENSITIVITY: 3647 default: 3648 continue; 3649 } 3650 3651 KASSERT(!(m && p)); 3652 if (!m && !p) 3653 goto fail; 3654 if (p && tres) { 3655 M_PREPEND(tres, l, M_DONTWAIT); 3656 if (!tres) 3657 goto fail; 3658 memcpy(mtod(tres, void *), p, l); 3659 continue; 3660 } 3661 if (p) { 3662 m = key_alloc_mbuf(l); 3663 if (!m) 3664 goto fail; 3665 m_copyback(m, 0, l, p); 3666 } 3667 3668 if (tres) 3669 m_cat(m, tres); 3670 tres = m; 3671 } 3672 3673 m_cat(result, tres); 3674 tres = NULL; /* avoid free on error below */ 3675 3676 if (result->m_len < sizeof(struct sadb_msg)) { 3677 result = m_pullup(result, sizeof(struct sadb_msg)); 3678 if (result == NULL) 3679 goto fail; 3680 } 3681 3682 result->m_pkthdr.len = 0; 3683 for (m = result; m; m = m->m_next) 3684 result->m_pkthdr.len += m->m_len; 3685 3686 mtod(result, struct sadb_msg *)->sadb_msg_len = 3687 PFKEY_UNIT64(result->m_pkthdr.len); 3688 3689 return result; 3690 3691 fail: 3692 m_freem(result); 3693 m_freem(tres); 3694 return NULL; 3695 } 3696 3697 3698 #ifdef IPSEC_NAT_T 3699 /* 3700 * set a type in sadb_x_nat_t_type 3701 */ 3702 static struct mbuf * 3703 key_setsadbxtype(u_int16_t type) 3704 { 3705 struct mbuf *m; 3706 size_t len; 3707 struct sadb_x_nat_t_type *p; 3708 3709 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3710 3711 m = key_alloc_mbuf(len); 3712 if (!m || m->m_next) { /*XXX*/ 3713 if (m) 3714 m_freem(m); 3715 return NULL; 3716 } 3717 3718 p = mtod(m, struct sadb_x_nat_t_type *); 3719 3720 memset(p, 0, len); 3721 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3722 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3723 p->sadb_x_nat_t_type_type = type; 3724 3725 return m; 3726 } 3727 /* 3728 * set a port in sadb_x_nat_t_port. port is in network order 3729 */ 3730 static struct mbuf * 3731 key_setsadbxport(u_int16_t port, u_int16_t type) 3732 { 3733 struct mbuf *m; 3734 size_t len; 3735 struct sadb_x_nat_t_port *p; 3736 3737 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3738 3739 m = key_alloc_mbuf(len); 3740 if (!m || m->m_next) { /*XXX*/ 3741 if (m) 3742 m_freem(m); 3743 return NULL; 3744 } 3745 3746 p = mtod(m, struct sadb_x_nat_t_port *); 3747 3748 memset(p, 0, len); 3749 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3750 p->sadb_x_nat_t_port_exttype = type; 3751 p->sadb_x_nat_t_port_port = port; 3752 3753 return m; 3754 } 3755 3756 /* 3757 * Get port from sockaddr, port is in network order 3758 */ 3759 u_int16_t 3760 key_portfromsaddr(const union sockaddr_union *saddr) 3761 { 3762 u_int16_t port; 3763 3764 switch (saddr->sa.sa_family) { 3765 case AF_INET: { 3766 port = saddr->sin.sin_port; 3767 break; 3768 } 3769 #ifdef INET6 3770 case AF_INET6: { 3771 port = saddr->sin6.sin6_port; 3772 break; 3773 } 3774 #endif 3775 default: 3776 printf("key_portfromsaddr: unexpected address family\n"); 3777 port = 0; 3778 break; 3779 } 3780 3781 return port; 3782 } 3783 3784 #endif /* IPSEC_NAT_T */ 3785 3786 /* 3787 * Set port is struct sockaddr. port is in network order 3788 */ 3789 static void 3790 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port) 3791 { 3792 switch (saddr->sa.sa_family) { 3793 case AF_INET: { 3794 saddr->sin.sin_port = port; 3795 break; 3796 } 3797 #ifdef INET6 3798 case AF_INET6: { 3799 saddr->sin6.sin6_port = port; 3800 break; 3801 } 3802 #endif 3803 default: 3804 printf("key_porttosaddr: unexpected address family %d\n", 3805 saddr->sa.sa_family); 3806 break; 3807 } 3808 3809 return; 3810 } 3811 3812 /* 3813 * Safety check sa_len 3814 */ 3815 static int 3816 key_checksalen(const union sockaddr_union *saddr) 3817 { 3818 switch (saddr->sa.sa_family) { 3819 case AF_INET: 3820 if (saddr->sa.sa_len != sizeof(struct sockaddr_in)) 3821 return -1; 3822 break; 3823 #ifdef INET6 3824 case AF_INET6: 3825 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6)) 3826 return -1; 3827 break; 3828 #endif 3829 default: 3830 printf("key_checksalen: unexpected sa_family %d\n", 3831 saddr->sa.sa_family); 3832 return -1; 3833 break; 3834 } 3835 return 0; 3836 } 3837 3838 3839 /* 3840 * set data into sadb_msg. 3841 */ 3842 static struct mbuf * 3843 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, 3844 u_int32_t seq, pid_t pid, u_int16_t reserved) 3845 { 3846 struct mbuf *m; 3847 struct sadb_msg *p; 3848 int len; 3849 3850 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3851 if (len > MCLBYTES) 3852 return NULL; 3853 MGETHDR(m, M_DONTWAIT, MT_DATA); 3854 if (m && len > MHLEN) { 3855 MCLGET(m, M_DONTWAIT); 3856 if ((m->m_flags & M_EXT) == 0) { 3857 m_freem(m); 3858 m = NULL; 3859 } 3860 } 3861 if (!m) 3862 return NULL; 3863 m->m_pkthdr.len = m->m_len = len; 3864 m->m_next = NULL; 3865 3866 p = mtod(m, struct sadb_msg *); 3867 3868 memset(p, 0, len); 3869 p->sadb_msg_version = PF_KEY_V2; 3870 p->sadb_msg_type = type; 3871 p->sadb_msg_errno = 0; 3872 p->sadb_msg_satype = satype; 3873 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3874 p->sadb_msg_reserved = reserved; 3875 p->sadb_msg_seq = seq; 3876 p->sadb_msg_pid = (u_int32_t)pid; 3877 3878 return m; 3879 } 3880 3881 /* 3882 * copy secasvar data into sadb_address. 3883 */ 3884 static struct mbuf * 3885 key_setsadbsa(struct secasvar *sav) 3886 { 3887 struct mbuf *m; 3888 struct sadb_sa *p; 3889 int len; 3890 3891 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3892 m = key_alloc_mbuf(len); 3893 if (!m || m->m_next) { /*XXX*/ 3894 if (m) 3895 m_freem(m); 3896 return NULL; 3897 } 3898 3899 p = mtod(m, struct sadb_sa *); 3900 3901 memset(p, 0, len); 3902 p->sadb_sa_len = PFKEY_UNIT64(len); 3903 p->sadb_sa_exttype = SADB_EXT_SA; 3904 p->sadb_sa_spi = sav->spi; 3905 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3906 p->sadb_sa_state = sav->state; 3907 p->sadb_sa_auth = sav->alg_auth; 3908 p->sadb_sa_encrypt = sav->alg_enc; 3909 p->sadb_sa_flags = sav->flags; 3910 3911 return m; 3912 } 3913 3914 /* 3915 * set data into sadb_address. 3916 */ 3917 static struct mbuf * 3918 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 3919 u_int8_t prefixlen, u_int16_t ul_proto) 3920 { 3921 struct mbuf *m; 3922 struct sadb_address *p; 3923 size_t len; 3924 3925 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3926 PFKEY_ALIGN8(saddr->sa_len); 3927 m = key_alloc_mbuf(len); 3928 if (!m || m->m_next) { /*XXX*/ 3929 if (m) 3930 m_freem(m); 3931 return NULL; 3932 } 3933 3934 p = mtod(m, struct sadb_address *); 3935 3936 memset(p, 0, len); 3937 p->sadb_address_len = PFKEY_UNIT64(len); 3938 p->sadb_address_exttype = exttype; 3939 p->sadb_address_proto = ul_proto; 3940 if (prefixlen == FULLMASK) { 3941 switch (saddr->sa_family) { 3942 case AF_INET: 3943 prefixlen = sizeof(struct in_addr) << 3; 3944 break; 3945 case AF_INET6: 3946 prefixlen = sizeof(struct in6_addr) << 3; 3947 break; 3948 default: 3949 ; /*XXX*/ 3950 } 3951 } 3952 p->sadb_address_prefixlen = prefixlen; 3953 p->sadb_address_reserved = 0; 3954 3955 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3956 saddr, saddr->sa_len); 3957 3958 return m; 3959 } 3960 3961 #if 0 3962 /* 3963 * set data into sadb_ident. 3964 */ 3965 static struct mbuf * 3966 key_setsadbident(u_int16_t exttype, u_int16_t idtype, 3967 void *string, int stringlen, u_int64_t id) 3968 { 3969 struct mbuf *m; 3970 struct sadb_ident *p; 3971 size_t len; 3972 3973 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen); 3974 m = key_alloc_mbuf(len); 3975 if (!m || m->m_next) { /*XXX*/ 3976 if (m) 3977 m_freem(m); 3978 return NULL; 3979 } 3980 3981 p = mtod(m, struct sadb_ident *); 3982 3983 memset(p, 0, len); 3984 p->sadb_ident_len = PFKEY_UNIT64(len); 3985 p->sadb_ident_exttype = exttype; 3986 p->sadb_ident_type = idtype; 3987 p->sadb_ident_reserved = 0; 3988 p->sadb_ident_id = id; 3989 3990 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)), 3991 string, stringlen); 3992 3993 return m; 3994 } 3995 #endif 3996 3997 /* 3998 * set data into sadb_x_sa2. 3999 */ 4000 static struct mbuf * 4001 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid) 4002 { 4003 struct mbuf *m; 4004 struct sadb_x_sa2 *p; 4005 size_t len; 4006 4007 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 4008 m = key_alloc_mbuf(len); 4009 if (!m || m->m_next) { /*XXX*/ 4010 if (m) 4011 m_freem(m); 4012 return NULL; 4013 } 4014 4015 p = mtod(m, struct sadb_x_sa2 *); 4016 4017 memset(p, 0, len); 4018 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 4019 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 4020 p->sadb_x_sa2_mode = mode; 4021 p->sadb_x_sa2_reserved1 = 0; 4022 p->sadb_x_sa2_reserved2 = 0; 4023 p->sadb_x_sa2_sequence = seq; 4024 p->sadb_x_sa2_reqid = reqid; 4025 4026 return m; 4027 } 4028 4029 /* 4030 * set data into sadb_x_policy 4031 */ 4032 static struct mbuf * 4033 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id) 4034 { 4035 struct mbuf *m; 4036 struct sadb_x_policy *p; 4037 size_t len; 4038 4039 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 4040 m = key_alloc_mbuf(len); 4041 if (!m || m->m_next) { /*XXX*/ 4042 if (m) 4043 m_freem(m); 4044 return NULL; 4045 } 4046 4047 p = mtod(m, struct sadb_x_policy *); 4048 4049 memset(p, 0, len); 4050 p->sadb_x_policy_len = PFKEY_UNIT64(len); 4051 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 4052 p->sadb_x_policy_type = type; 4053 p->sadb_x_policy_dir = dir; 4054 p->sadb_x_policy_id = id; 4055 4056 return m; 4057 } 4058 4059 /* %%% utilities */ 4060 /* 4061 * copy a buffer into the new buffer allocated. 4062 */ 4063 static void * 4064 key_newbuf(const void *src, u_int len) 4065 { 4066 void *new; 4067 4068 KMALLOC(new, void *, len); 4069 if (new == NULL) { 4070 ipseclog((LOG_DEBUG, "key_newbuf: No more memory.\n")); 4071 return NULL; 4072 } 4073 memcpy(new, src, len); 4074 4075 return new; 4076 } 4077 4078 /* compare my own address 4079 * OUT: 1: true, i.e. my address. 4080 * 0: false 4081 */ 4082 int 4083 key_ismyaddr(const struct sockaddr *sa) 4084 { 4085 #ifdef INET 4086 const struct sockaddr_in *sin; 4087 const struct in_ifaddr *ia; 4088 #endif 4089 4090 /* sanity check */ 4091 if (sa == NULL) 4092 panic("key_ismyaddr: NULL pointer is passed"); 4093 4094 switch (sa->sa_family) { 4095 #ifdef INET 4096 case AF_INET: 4097 sin = (const struct sockaddr_in *)sa; 4098 for (ia = in_ifaddrhead.tqh_first; ia; 4099 ia = ia->ia_link.tqe_next) 4100 { 4101 if (sin->sin_family == ia->ia_addr.sin_family && 4102 sin->sin_len == ia->ia_addr.sin_len && 4103 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 4104 { 4105 return 1; 4106 } 4107 } 4108 break; 4109 #endif 4110 #ifdef INET6 4111 case AF_INET6: 4112 return key_ismyaddr6((const struct sockaddr_in6 *)sa); 4113 #endif 4114 } 4115 4116 return 0; 4117 } 4118 4119 #ifdef INET6 4120 /* 4121 * compare my own address for IPv6. 4122 * 1: ours 4123 * 0: other 4124 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 4125 */ 4126 #include <netinet6/in6_var.h> 4127 4128 static int 4129 key_ismyaddr6(const struct sockaddr_in6 *sin6) 4130 { 4131 const struct in6_ifaddr *ia; 4132 const struct in6_multi *in6m; 4133 4134 for (ia = in6_ifaddr; ia; ia = ia->ia_next) { 4135 if (key_sockaddrcmp((const struct sockaddr *)&sin6, 4136 (const struct sockaddr *)&ia->ia_addr, 0) == 0) 4137 return 1; 4138 4139 /* 4140 * XXX Multicast 4141 * XXX why do we care about multlicast here while we don't care 4142 * about IPv4 multicast?? 4143 * XXX scope 4144 */ 4145 in6m = NULL; 4146 #ifdef __FreeBSD__ 4147 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 4148 #else 4149 for ((in6m) = ia->ia6_multiaddrs.lh_first; 4150 (in6m) != NULL && 4151 !IN6_ARE_ADDR_EQUAL(&(in6m)->in6m_addr, &sin6->sin6_addr); 4152 (in6m) = in6m->in6m_entry.le_next) 4153 continue; 4154 #endif 4155 if (in6m) 4156 return 1; 4157 } 4158 4159 /* loopback, just for safety */ 4160 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 4161 return 1; 4162 4163 return 0; 4164 } 4165 #endif /*INET6*/ 4166 4167 /* 4168 * compare two secasindex structure. 4169 * flag can specify to compare 2 saidxes. 4170 * compare two secasindex structure without both mode and reqid. 4171 * don't compare port. 4172 * IN: 4173 * saidx0: source, it can be in SAD. 4174 * saidx1: object. 4175 * OUT: 4176 * 1 : equal 4177 * 0 : not equal 4178 */ 4179 static int 4180 key_cmpsaidx( 4181 const struct secasindex *saidx0, 4182 const struct secasindex *saidx1, 4183 int flag) 4184 { 4185 int chkport = 0; 4186 4187 /* sanity */ 4188 if (saidx0 == NULL && saidx1 == NULL) 4189 return 1; 4190 4191 if (saidx0 == NULL || saidx1 == NULL) 4192 return 0; 4193 4194 if (saidx0->proto != saidx1->proto) 4195 return 0; 4196 4197 if (flag == CMP_EXACTLY) { 4198 if (saidx0->mode != saidx1->mode) 4199 return 0; 4200 if (saidx0->reqid != saidx1->reqid) 4201 return 0; 4202 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4203 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4204 return 0; 4205 } else { 4206 4207 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4208 if (flag == CMP_MODE_REQID 4209 ||flag == CMP_REQID) { 4210 /* 4211 * If reqid of SPD is non-zero, unique SA is required. 4212 * The result must be of same reqid in this case. 4213 */ 4214 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4215 return 0; 4216 } 4217 4218 if (flag == CMP_MODE_REQID) { 4219 if (saidx0->mode != IPSEC_MODE_ANY 4220 && saidx0->mode != saidx1->mode) 4221 return 0; 4222 } 4223 4224 /* 4225 * If NAT-T is enabled, check ports for tunnel mode. 4226 * Don't do it for transport mode, as there is no 4227 * port information available in the SP. 4228 * Also don't check ports if they are set to zero 4229 * in the SPD: This means we have a non-generated 4230 * SPD which can't know UDP ports. 4231 */ 4232 #ifdef IPSEC_NAT_T 4233 if (saidx1->mode == IPSEC_MODE_TUNNEL && 4234 ((((const struct sockaddr *)(&saidx1->src))->sa_family == AF_INET && 4235 ((const struct sockaddr *)(&saidx1->dst))->sa_family == AF_INET && 4236 ((const struct sockaddr_in *)(&saidx1->src))->sin_port && 4237 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) || 4238 (((const struct sockaddr *)(&saidx1->src))->sa_family == AF_INET6 && 4239 ((const struct sockaddr *)(&saidx1->dst))->sa_family == AF_INET6 && 4240 ((const struct sockaddr_in6 *)(&saidx1->src))->sin6_port && 4241 ((const struct sockaddr_in6 *)(&saidx1->dst))->sin6_port))) 4242 chkport = 1; 4243 #endif 4244 4245 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) { 4246 return 0; 4247 } 4248 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) { 4249 return 0; 4250 } 4251 } 4252 4253 return 1; 4254 } 4255 4256 /* 4257 * compare two secindex structure exactly. 4258 * IN: 4259 * spidx0: source, it is often in SPD. 4260 * spidx1: object, it is often from PFKEY message. 4261 * OUT: 4262 * 1 : equal 4263 * 0 : not equal 4264 */ 4265 int 4266 key_cmpspidx_exactly( 4267 const struct secpolicyindex *spidx0, 4268 const struct secpolicyindex *spidx1) 4269 { 4270 /* sanity */ 4271 if (spidx0 == NULL && spidx1 == NULL) 4272 return 1; 4273 4274 if (spidx0 == NULL || spidx1 == NULL) 4275 return 0; 4276 4277 if (spidx0->prefs != spidx1->prefs 4278 || spidx0->prefd != spidx1->prefd 4279 || spidx0->ul_proto != spidx1->ul_proto) 4280 return 0; 4281 4282 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4283 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4284 } 4285 4286 /* 4287 * compare two secindex structure with mask. 4288 * IN: 4289 * spidx0: source, it is often in SPD. 4290 * spidx1: object, it is often from IP header. 4291 * OUT: 4292 * 1 : equal 4293 * 0 : not equal 4294 */ 4295 int 4296 key_cmpspidx_withmask( 4297 const struct secpolicyindex *spidx0, 4298 const struct secpolicyindex *spidx1) 4299 { 4300 /* sanity */ 4301 if (spidx0 == NULL && spidx1 == NULL) 4302 return 1; 4303 4304 if (spidx0 == NULL || spidx1 == NULL) 4305 return 0; 4306 4307 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4308 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4309 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4310 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4311 return 0; 4312 4313 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4314 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4315 && spidx0->ul_proto != spidx1->ul_proto) 4316 return 0; 4317 4318 switch (spidx0->src.sa.sa_family) { 4319 case AF_INET: 4320 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4321 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4322 return 0; 4323 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4324 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4325 return 0; 4326 break; 4327 case AF_INET6: 4328 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4329 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4330 return 0; 4331 /* 4332 * scope_id check. if sin6_scope_id is 0, we regard it 4333 * as a wildcard scope, which matches any scope zone ID. 4334 */ 4335 if (spidx0->src.sin6.sin6_scope_id && 4336 spidx1->src.sin6.sin6_scope_id && 4337 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4338 return 0; 4339 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4340 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4341 return 0; 4342 break; 4343 default: 4344 /* XXX */ 4345 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4346 return 0; 4347 break; 4348 } 4349 4350 switch (spidx0->dst.sa.sa_family) { 4351 case AF_INET: 4352 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4353 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4354 return 0; 4355 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4356 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4357 return 0; 4358 break; 4359 case AF_INET6: 4360 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4361 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4362 return 0; 4363 /* 4364 * scope_id check. if sin6_scope_id is 0, we regard it 4365 * as a wildcard scope, which matches any scope zone ID. 4366 */ 4367 if (spidx0->src.sin6.sin6_scope_id && 4368 spidx1->src.sin6.sin6_scope_id && 4369 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4370 return 0; 4371 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4372 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4373 return 0; 4374 break; 4375 default: 4376 /* XXX */ 4377 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4378 return 0; 4379 break; 4380 } 4381 4382 /* XXX Do we check other field ? e.g. flowinfo */ 4383 4384 return 1; 4385 } 4386 4387 /* returns 0 on match */ 4388 static int 4389 key_sockaddrcmp( 4390 const struct sockaddr *sa1, 4391 const struct sockaddr *sa2, 4392 int port) 4393 { 4394 #ifdef satosin 4395 #undef satosin 4396 #endif 4397 #define satosin(s) ((const struct sockaddr_in *)s) 4398 #ifdef satosin6 4399 #undef satosin6 4400 #endif 4401 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4402 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4403 return 1; 4404 4405 switch (sa1->sa_family) { 4406 case AF_INET: 4407 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4408 return 1; 4409 if (satosin(sa1)->sin_addr.s_addr != 4410 satosin(sa2)->sin_addr.s_addr) { 4411 return 1; 4412 } 4413 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4414 return 1; 4415 break; 4416 case AF_INET6: 4417 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4418 return 1; /*EINVAL*/ 4419 if (satosin6(sa1)->sin6_scope_id != 4420 satosin6(sa2)->sin6_scope_id) { 4421 return 1; 4422 } 4423 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4424 &satosin6(sa2)->sin6_addr)) { 4425 return 1; 4426 } 4427 if (port && 4428 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4429 return 1; 4430 } 4431 break; 4432 default: 4433 if (memcmp(sa1, sa2, sa1->sa_len) != 0) 4434 return 1; 4435 break; 4436 } 4437 4438 return 0; 4439 #undef satosin 4440 #undef satosin6 4441 } 4442 4443 /* 4444 * compare two buffers with mask. 4445 * IN: 4446 * addr1: source 4447 * addr2: object 4448 * bits: Number of bits to compare 4449 * OUT: 4450 * 1 : equal 4451 * 0 : not equal 4452 */ 4453 static int 4454 key_bbcmp(const void *a1, const void *a2, u_int bits) 4455 { 4456 const unsigned char *p1 = a1; 4457 const unsigned char *p2 = a2; 4458 4459 /* XXX: This could be considerably faster if we compare a word 4460 * at a time, but it is complicated on LSB Endian machines */ 4461 4462 /* Handle null pointers */ 4463 if (p1 == NULL || p2 == NULL) 4464 return (p1 == p2); 4465 4466 while (bits >= 8) { 4467 if (*p1++ != *p2++) 4468 return 0; 4469 bits -= 8; 4470 } 4471 4472 if (bits > 0) { 4473 u_int8_t mask = ~((1<<(8-bits))-1); 4474 if ((*p1 & mask) != (*p2 & mask)) 4475 return 0; 4476 } 4477 return 1; /* Match! */ 4478 } 4479 4480 /* 4481 * time handler. 4482 * scanning SPD and SAD to check status for each entries, 4483 * and do to remove or to expire. 4484 */ 4485 void 4486 key_timehandler(void* arg) 4487 { 4488 u_int dir; 4489 int s; 4490 time_t now = time_uptime; 4491 4492 s = splsoftnet(); /*called from softclock()*/ 4493 mutex_enter(softnet_lock); 4494 4495 /* SPD */ 4496 { 4497 struct secpolicy *sp, *nextsp; 4498 4499 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4500 for (sp = LIST_FIRST(&sptree[dir]); 4501 sp != NULL; 4502 sp = nextsp) { 4503 4504 nextsp = LIST_NEXT(sp, chain); 4505 4506 if (sp->state == IPSEC_SPSTATE_DEAD) { 4507 key_sp_unlink(sp); /*XXX*/ 4508 4509 /* 'sp' dead; continue transfers to 4510 * 'sp = nextsp' 4511 */ 4512 continue; 4513 } 4514 4515 if (sp->lifetime == 0 && sp->validtime == 0) 4516 continue; 4517 4518 /* the deletion will occur next time */ 4519 if ((sp->lifetime && now - sp->created > sp->lifetime) 4520 || (sp->validtime && now - sp->lastused > sp->validtime)) { 4521 key_sp_dead(sp); 4522 key_spdexpire(sp); 4523 continue; 4524 } 4525 } 4526 } 4527 } 4528 4529 /* SAD */ 4530 { 4531 struct secashead *sah, *nextsah; 4532 struct secasvar *sav, *nextsav; 4533 4534 for (sah = LIST_FIRST(&sahtree); 4535 sah != NULL; 4536 sah = nextsah) { 4537 4538 nextsah = LIST_NEXT(sah, chain); 4539 4540 /* if sah has been dead, then delete it and process next sah. */ 4541 if (sah->state == SADB_SASTATE_DEAD) { 4542 key_delsah(sah); 4543 continue; 4544 } 4545 4546 /* if LARVAL entry doesn't become MATURE, delete it. */ 4547 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_LARVAL]); 4548 sav != NULL; 4549 sav = nextsav) { 4550 4551 nextsav = LIST_NEXT(sav, chain); 4552 4553 if (now - sav->created > key_larval_lifetime) { 4554 KEY_FREESAV(&sav); 4555 } 4556 } 4557 4558 /* 4559 * check MATURE entry to start to send expire message 4560 * whether or not. 4561 */ 4562 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_MATURE]); 4563 sav != NULL; 4564 sav = nextsav) { 4565 4566 nextsav = LIST_NEXT(sav, chain); 4567 4568 /* we don't need to check. */ 4569 if (sav->lft_s == NULL) 4570 continue; 4571 4572 /* sanity check */ 4573 if (sav->lft_c == NULL) { 4574 ipseclog((LOG_DEBUG,"key_timehandler: " 4575 "There is no CURRENT time, why?\n")); 4576 continue; 4577 } 4578 4579 /* check SOFT lifetime */ 4580 if (sav->lft_s->sadb_lifetime_addtime != 0 4581 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 4582 /* 4583 * check SA to be used whether or not. 4584 * when SA hasn't been used, delete it. 4585 */ 4586 if (sav->lft_c->sadb_lifetime_usetime == 0) { 4587 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4588 KEY_FREESAV(&sav); 4589 } else { 4590 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4591 /* 4592 * XXX If we keep to send expire 4593 * message in the status of 4594 * DYING. Do remove below code. 4595 */ 4596 key_expire(sav); 4597 } 4598 } 4599 /* check SOFT lifetime by bytes */ 4600 /* 4601 * XXX I don't know the way to delete this SA 4602 * when new SA is installed. Caution when it's 4603 * installed too big lifetime by time. 4604 */ 4605 else if (sav->lft_s->sadb_lifetime_bytes != 0 4606 && sav->lft_s->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) { 4607 4608 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4609 /* 4610 * XXX If we keep to send expire 4611 * message in the status of 4612 * DYING. Do remove below code. 4613 */ 4614 key_expire(sav); 4615 } 4616 } 4617 4618 /* check DYING entry to change status to DEAD. */ 4619 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DYING]); 4620 sav != NULL; 4621 sav = nextsav) { 4622 4623 nextsav = LIST_NEXT(sav, chain); 4624 4625 /* we don't need to check. */ 4626 if (sav->lft_h == NULL) 4627 continue; 4628 4629 /* sanity check */ 4630 if (sav->lft_c == NULL) { 4631 ipseclog((LOG_DEBUG, "key_timehandler: " 4632 "There is no CURRENT time, why?\n")); 4633 continue; 4634 } 4635 4636 if (sav->lft_h->sadb_lifetime_addtime != 0 4637 && now - sav->created > sav->lft_h->sadb_lifetime_addtime) { 4638 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4639 KEY_FREESAV(&sav); 4640 } 4641 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4642 else if (sav->lft_s != NULL 4643 && sav->lft_s->sadb_lifetime_addtime != 0 4644 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 4645 /* 4646 * XXX: should be checked to be 4647 * installed the valid SA. 4648 */ 4649 4650 /* 4651 * If there is no SA then sending 4652 * expire message. 4653 */ 4654 key_expire(sav); 4655 } 4656 #endif 4657 /* check HARD lifetime by bytes */ 4658 else if (sav->lft_h->sadb_lifetime_bytes != 0 4659 && sav->lft_h->sadb_lifetime_bytes < sav->lft_c->sadb_lifetime_bytes) { 4660 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4661 KEY_FREESAV(&sav); 4662 } 4663 } 4664 4665 /* delete entry in DEAD */ 4666 for (sav = LIST_FIRST(&sah->savtree[SADB_SASTATE_DEAD]); 4667 sav != NULL; 4668 sav = nextsav) { 4669 4670 nextsav = LIST_NEXT(sav, chain); 4671 4672 /* sanity check */ 4673 if (sav->state != SADB_SASTATE_DEAD) { 4674 ipseclog((LOG_DEBUG, "key_timehandler: " 4675 "invalid sav->state " 4676 "(queue: %d SA: %d): " 4677 "kill it anyway\n", 4678 SADB_SASTATE_DEAD, sav->state)); 4679 } 4680 4681 /* 4682 * do not call key_freesav() here. 4683 * sav should already be freed, and sav->refcnt 4684 * shows other references to sav 4685 * (such as from SPD). 4686 */ 4687 } 4688 } 4689 } 4690 4691 #ifndef IPSEC_NONBLOCK_ACQUIRE 4692 /* ACQ tree */ 4693 { 4694 struct secacq *acq, *nextacq; 4695 4696 for (acq = LIST_FIRST(&acqtree); 4697 acq != NULL; 4698 acq = nextacq) { 4699 4700 nextacq = LIST_NEXT(acq, chain); 4701 4702 if (now - acq->created > key_blockacq_lifetime 4703 && __LIST_CHAINED(acq)) { 4704 LIST_REMOVE(acq, chain); 4705 KFREE(acq); 4706 } 4707 } 4708 } 4709 #endif 4710 4711 /* SP ACQ tree */ 4712 { 4713 struct secspacq *acq, *nextacq; 4714 4715 for (acq = LIST_FIRST(&spacqtree); 4716 acq != NULL; 4717 acq = nextacq) { 4718 4719 nextacq = LIST_NEXT(acq, chain); 4720 4721 if (now - acq->created > key_blockacq_lifetime 4722 && __LIST_CHAINED(acq)) { 4723 LIST_REMOVE(acq, chain); 4724 KFREE(acq); 4725 } 4726 } 4727 } 4728 4729 /* initialize random seed */ 4730 if (key_tick_init_random++ > key_int_random) { 4731 key_tick_init_random = 0; 4732 key_srandom(); 4733 } 4734 4735 #ifndef IPSEC_DEBUG2 4736 /* do exchange to tick time !! */ 4737 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 4738 #endif /* IPSEC_DEBUG2 */ 4739 4740 mutex_exit(softnet_lock); 4741 splx(s); 4742 return; 4743 } 4744 4745 #ifdef __NetBSD__ 4746 void srandom(int); 4747 void srandom(int arg) {return;} 4748 #endif 4749 4750 /* 4751 * to initialize a seed for random() 4752 */ 4753 static void 4754 key_srandom(void) 4755 { 4756 srandom(time_second); 4757 } 4758 4759 u_long 4760 key_random(void) 4761 { 4762 u_long value; 4763 4764 key_randomfill(&value, sizeof(value)); 4765 return value; 4766 } 4767 4768 void 4769 key_randomfill(void *p, size_t l) 4770 { 4771 size_t n; 4772 u_long v; 4773 static int warn = 1; 4774 4775 n = 0; 4776 n = (size_t)read_random(p, (u_int)l); 4777 /* last resort */ 4778 while (n < l) { 4779 v = random(); 4780 memcpy((u_int8_t *)p + n, &v, 4781 l - n < sizeof(v) ? l - n : sizeof(v)); 4782 n += sizeof(v); 4783 4784 if (warn) { 4785 printf("WARNING: pseudo-random number generator " 4786 "used for IPsec processing\n"); 4787 warn = 0; 4788 } 4789 } 4790 } 4791 4792 /* 4793 * map SADB_SATYPE_* to IPPROTO_*. 4794 * if satype == SADB_SATYPE then satype is mapped to ~0. 4795 * OUT: 4796 * 0: invalid satype. 4797 */ 4798 static u_int16_t 4799 key_satype2proto(u_int8_t satype) 4800 { 4801 switch (satype) { 4802 case SADB_SATYPE_UNSPEC: 4803 return IPSEC_PROTO_ANY; 4804 case SADB_SATYPE_AH: 4805 return IPPROTO_AH; 4806 case SADB_SATYPE_ESP: 4807 return IPPROTO_ESP; 4808 case SADB_X_SATYPE_IPCOMP: 4809 return IPPROTO_IPCOMP; 4810 case SADB_X_SATYPE_TCPSIGNATURE: 4811 return IPPROTO_TCP; 4812 default: 4813 return 0; 4814 } 4815 /* NOTREACHED */ 4816 } 4817 4818 /* 4819 * map IPPROTO_* to SADB_SATYPE_* 4820 * OUT: 4821 * 0: invalid protocol type. 4822 */ 4823 static u_int8_t 4824 key_proto2satype(u_int16_t proto) 4825 { 4826 switch (proto) { 4827 case IPPROTO_AH: 4828 return SADB_SATYPE_AH; 4829 case IPPROTO_ESP: 4830 return SADB_SATYPE_ESP; 4831 case IPPROTO_IPCOMP: 4832 return SADB_X_SATYPE_IPCOMP; 4833 case IPPROTO_TCP: 4834 return SADB_X_SATYPE_TCPSIGNATURE; 4835 default: 4836 return 0; 4837 } 4838 /* NOTREACHED */ 4839 } 4840 4841 static int 4842 key_setsecasidx(int proto, int mode, int reqid, 4843 const struct sadb_address * src, 4844 const struct sadb_address * dst, 4845 struct secasindex * saidx) 4846 { 4847 const union sockaddr_union * src_u = 4848 (const union sockaddr_union *) src; 4849 const union sockaddr_union * dst_u = 4850 (const union sockaddr_union *) dst; 4851 4852 /* sa len safety check */ 4853 if (key_checksalen(src_u) != 0) 4854 return -1; 4855 if (key_checksalen(dst_u) != 0) 4856 return -1; 4857 4858 memset(saidx, 0, sizeof(*saidx)); 4859 saidx->proto = proto; 4860 saidx->mode = mode; 4861 saidx->reqid = reqid; 4862 memcpy(&saidx->src, src_u, src_u->sa.sa_len); 4863 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len); 4864 4865 #ifndef IPSEC_NAT_T 4866 key_porttosaddr(&((saidx)->src),0); 4867 key_porttosaddr(&((saidx)->dst),0); 4868 #endif 4869 return 0; 4870 } 4871 4872 /* %%% PF_KEY */ 4873 /* 4874 * SADB_GETSPI processing is to receive 4875 * <base, (SA2), src address, dst address, (SPI range)> 4876 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4877 * tree with the status of LARVAL, and send 4878 * <base, SA(*), address(SD)> 4879 * to the IKMPd. 4880 * 4881 * IN: mhp: pointer to the pointer to each header. 4882 * OUT: NULL if fail. 4883 * other if success, return pointer to the message to send. 4884 */ 4885 static int 4886 key_getspi(struct socket *so, struct mbuf *m, 4887 const struct sadb_msghdr *mhp) 4888 { 4889 struct sadb_address *src0, *dst0; 4890 struct secasindex saidx; 4891 struct secashead *newsah; 4892 struct secasvar *newsav; 4893 u_int8_t proto; 4894 u_int32_t spi; 4895 u_int8_t mode; 4896 u_int16_t reqid; 4897 int error; 4898 4899 /* sanity check */ 4900 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 4901 panic("key_getspi: NULL pointer is passed"); 4902 4903 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4904 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4905 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n")); 4906 return key_senderror(so, m, EINVAL); 4907 } 4908 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4909 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4910 ipseclog((LOG_DEBUG, "key_getspi: invalid message is passed.\n")); 4911 return key_senderror(so, m, EINVAL); 4912 } 4913 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4914 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4915 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4916 } else { 4917 mode = IPSEC_MODE_ANY; 4918 reqid = 0; 4919 } 4920 4921 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4922 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4923 4924 /* map satype to proto */ 4925 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4926 ipseclog((LOG_DEBUG, "key_getspi: invalid satype is passed.\n")); 4927 return key_senderror(so, m, EINVAL); 4928 } 4929 4930 4931 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1, 4932 dst0 + 1, &saidx)) != 0) 4933 return key_senderror(so, m, EINVAL); 4934 4935 #ifdef IPSEC_NAT_T 4936 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0) 4937 return key_senderror(so, m, EINVAL); 4938 #endif 4939 4940 /* SPI allocation */ 4941 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4942 &saidx); 4943 if (spi == 0) 4944 return key_senderror(so, m, EINVAL); 4945 4946 /* get a SA index */ 4947 if ((newsah = key_getsah(&saidx)) == NULL) { 4948 /* create a new SA index */ 4949 if ((newsah = key_newsah(&saidx)) == NULL) { 4950 ipseclog((LOG_DEBUG, "key_getspi: No more memory.\n")); 4951 return key_senderror(so, m, ENOBUFS); 4952 } 4953 } 4954 4955 /* get a new SA */ 4956 /* XXX rewrite */ 4957 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4958 if (newsav == NULL) { 4959 /* XXX don't free new SA index allocated in above. */ 4960 return key_senderror(so, m, error); 4961 } 4962 4963 /* set spi */ 4964 newsav->spi = htonl(spi); 4965 4966 #ifndef IPSEC_NONBLOCK_ACQUIRE 4967 /* delete the entry in acqtree */ 4968 if (mhp->msg->sadb_msg_seq != 0) { 4969 struct secacq *acq; 4970 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4971 /* reset counter in order to deletion by timehandler. */ 4972 acq->created = time_uptime; 4973 acq->count = 0; 4974 } 4975 } 4976 #endif 4977 4978 { 4979 struct mbuf *n, *nn; 4980 struct sadb_sa *m_sa; 4981 struct sadb_msg *newmsg; 4982 int off, len; 4983 4984 /* create new sadb_msg to reply. */ 4985 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4986 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4987 if (len > MCLBYTES) 4988 return key_senderror(so, m, ENOBUFS); 4989 4990 MGETHDR(n, M_DONTWAIT, MT_DATA); 4991 if (len > MHLEN) { 4992 MCLGET(n, M_DONTWAIT); 4993 if ((n->m_flags & M_EXT) == 0) { 4994 m_freem(n); 4995 n = NULL; 4996 } 4997 } 4998 if (!n) 4999 return key_senderror(so, m, ENOBUFS); 5000 5001 n->m_len = len; 5002 n->m_next = NULL; 5003 off = 0; 5004 5005 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 5006 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 5007 5008 m_sa = (struct sadb_sa *)(mtod(n, char *) + off); 5009 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 5010 m_sa->sadb_sa_exttype = SADB_EXT_SA; 5011 m_sa->sadb_sa_spi = htonl(spi); 5012 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5013 5014 #ifdef DIAGNOSTIC 5015 if (off != len) 5016 panic("length inconsistency in key_getspi"); 5017 #endif 5018 5019 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 5020 SADB_EXT_ADDRESS_DST); 5021 if (!n->m_next) { 5022 m_freem(n); 5023 return key_senderror(so, m, ENOBUFS); 5024 } 5025 5026 if (n->m_len < sizeof(struct sadb_msg)) { 5027 n = m_pullup(n, sizeof(struct sadb_msg)); 5028 if (n == NULL) 5029 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 5030 } 5031 5032 n->m_pkthdr.len = 0; 5033 for (nn = n; nn; nn = nn->m_next) 5034 n->m_pkthdr.len += nn->m_len; 5035 5036 newmsg = mtod(n, struct sadb_msg *); 5037 newmsg->sadb_msg_seq = newsav->seq; 5038 newmsg->sadb_msg_errno = 0; 5039 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5040 5041 m_freem(m); 5042 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5043 } 5044 } 5045 5046 /* 5047 * allocating new SPI 5048 * called by key_getspi(). 5049 * OUT: 5050 * 0: failure. 5051 * others: success. 5052 */ 5053 static u_int32_t 5054 key_do_getnewspi(const struct sadb_spirange *spirange, 5055 const struct secasindex *saidx) 5056 { 5057 u_int32_t newspi; 5058 u_int32_t spmin, spmax; 5059 int count = key_spi_trycnt; 5060 5061 /* set spi range to allocate */ 5062 if (spirange != NULL) { 5063 spmin = spirange->sadb_spirange_min; 5064 spmax = spirange->sadb_spirange_max; 5065 } else { 5066 spmin = key_spi_minval; 5067 spmax = key_spi_maxval; 5068 } 5069 /* IPCOMP needs 2-byte SPI */ 5070 if (saidx->proto == IPPROTO_IPCOMP) { 5071 u_int32_t t; 5072 if (spmin >= 0x10000) 5073 spmin = 0xffff; 5074 if (spmax >= 0x10000) 5075 spmax = 0xffff; 5076 if (spmin > spmax) { 5077 t = spmin; spmin = spmax; spmax = t; 5078 } 5079 } 5080 5081 if (spmin == spmax) { 5082 if (key_checkspidup(saidx, htonl(spmin)) != NULL) { 5083 ipseclog((LOG_DEBUG, "key_do_getnewspi: SPI %u exists already.\n", spmin)); 5084 return 0; 5085 } 5086 5087 count--; /* taking one cost. */ 5088 newspi = spmin; 5089 5090 } else { 5091 5092 /* init SPI */ 5093 newspi = 0; 5094 5095 /* when requesting to allocate spi ranged */ 5096 while (count--) { 5097 /* generate pseudo-random SPI value ranged. */ 5098 newspi = spmin + (key_random() % (spmax - spmin + 1)); 5099 5100 if (key_checkspidup(saidx, htonl(newspi)) == NULL) 5101 break; 5102 } 5103 5104 if (count == 0 || newspi == 0) { 5105 ipseclog((LOG_DEBUG, "key_do_getnewspi: to allocate spi is failed.\n")); 5106 return 0; 5107 } 5108 } 5109 5110 /* statistics */ 5111 keystat.getspi_count = 5112 (keystat.getspi_count + key_spi_trycnt - count) / 2; 5113 5114 return newspi; 5115 } 5116 5117 #ifdef IPSEC_NAT_T 5118 /* Handle IPSEC_NAT_T info if present */ 5119 static int 5120 key_handle_natt_info(struct secasvar *sav, 5121 const struct sadb_msghdr *mhp) 5122 { 5123 5124 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 5125 ipseclog((LOG_DEBUG,"update: NAT-T OAi present\n")); 5126 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 5127 ipseclog((LOG_DEBUG,"update: NAT-T OAr present\n")); 5128 5129 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) && 5130 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) && 5131 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) { 5132 struct sadb_x_nat_t_type *type; 5133 struct sadb_x_nat_t_port *sport; 5134 struct sadb_x_nat_t_port *dport; 5135 struct sadb_address *iaddr, *raddr; 5136 struct sadb_x_nat_t_frag *frag; 5137 5138 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 5139 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 5140 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 5141 ipseclog((LOG_DEBUG, "key_update: " 5142 "invalid message.\n")); 5143 return -1; 5144 } 5145 5146 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) && 5147 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) { 5148 ipseclog((LOG_DEBUG, "key_update: invalid message\n")); 5149 return -1; 5150 } 5151 5152 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) && 5153 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) { 5154 ipseclog((LOG_DEBUG, "key_update: invalid message\n")); 5155 return -1; 5156 } 5157 5158 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) && 5159 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) { 5160 ipseclog((LOG_DEBUG, "key_update: invalid message\n")); 5161 return -1; 5162 } 5163 5164 type = (struct sadb_x_nat_t_type *) 5165 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5166 sport = (struct sadb_x_nat_t_port *) 5167 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5168 dport = (struct sadb_x_nat_t_port *) 5169 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5170 iaddr = (struct sadb_address *) 5171 mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5172 raddr = (struct sadb_address *) 5173 mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5174 frag = (struct sadb_x_nat_t_frag *) 5175 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5176 5177 ipseclog((LOG_DEBUG, 5178 "key_update: type %d, sport = %d, dport = %d\n", 5179 type->sadb_x_nat_t_type_type, 5180 sport->sadb_x_nat_t_port_port, 5181 dport->sadb_x_nat_t_port_port)); 5182 5183 if (type) 5184 sav->natt_type = type->sadb_x_nat_t_type_type; 5185 if (sport) 5186 key_porttosaddr(&sav->sah->saidx.src, 5187 sport->sadb_x_nat_t_port_port); 5188 if (dport) 5189 key_porttosaddr(&sav->sah->saidx.dst, 5190 dport->sadb_x_nat_t_port_port); 5191 if (frag) 5192 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen; 5193 else 5194 sav->esp_frag = IP_MAXPACKET; 5195 } 5196 5197 return 0; 5198 } 5199 5200 /* Just update the IPSEC_NAT_T ports if present */ 5201 static int 5202 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst, 5203 const struct sadb_msghdr *mhp) 5204 { 5205 5206 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 5207 ipseclog((LOG_DEBUG,"update: NAT-T OAi present\n")); 5208 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 5209 ipseclog((LOG_DEBUG,"update: NAT-T OAr present\n")); 5210 5211 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) && 5212 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) && 5213 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) { 5214 struct sadb_x_nat_t_type *type; 5215 struct sadb_x_nat_t_port *sport; 5216 struct sadb_x_nat_t_port *dport; 5217 5218 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 5219 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 5220 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 5221 ipseclog((LOG_DEBUG, "key_update: " 5222 "invalid message.\n")); 5223 return -1; 5224 } 5225 5226 sport = (struct sadb_x_nat_t_port *) 5227 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5228 dport = (struct sadb_x_nat_t_port *) 5229 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5230 5231 if (sport) 5232 key_porttosaddr(src, 5233 sport->sadb_x_nat_t_port_port); 5234 if (dport) 5235 key_porttosaddr(dst, 5236 dport->sadb_x_nat_t_port_port); 5237 } 5238 5239 return 0; 5240 } 5241 #endif 5242 5243 5244 /* 5245 * SADB_UPDATE processing 5246 * receive 5247 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5248 * key(AE), (identity(SD),) (sensitivity)> 5249 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 5250 * and send 5251 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5252 * (identity(SD),) (sensitivity)> 5253 * to the ikmpd. 5254 * 5255 * m will always be freed. 5256 */ 5257 static int 5258 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5259 { 5260 struct sadb_sa *sa0; 5261 struct sadb_address *src0, *dst0; 5262 struct secasindex saidx; 5263 struct secashead *sah; 5264 struct secasvar *sav; 5265 u_int16_t proto; 5266 u_int8_t mode; 5267 u_int16_t reqid; 5268 int error; 5269 5270 /* sanity check */ 5271 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 5272 panic("key_update: NULL pointer is passed"); 5273 5274 /* map satype to proto */ 5275 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5276 ipseclog((LOG_DEBUG, "key_update: invalid satype is passed.\n")); 5277 return key_senderror(so, m, EINVAL); 5278 } 5279 5280 if (mhp->ext[SADB_EXT_SA] == NULL || 5281 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5282 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5283 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5284 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5285 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5286 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5287 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5288 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5289 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5290 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5291 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n")); 5292 return key_senderror(so, m, EINVAL); 5293 } 5294 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5295 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5296 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5297 ipseclog((LOG_DEBUG, "key_update: invalid message is passed.\n")); 5298 return key_senderror(so, m, EINVAL); 5299 } 5300 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5301 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5302 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5303 } else { 5304 mode = IPSEC_MODE_ANY; 5305 reqid = 0; 5306 } 5307 /* XXX boundary checking for other extensions */ 5308 5309 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5310 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5311 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5312 5313 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1, 5314 dst0 + 1, &saidx)) != 0) 5315 return key_senderror(so, m, EINVAL); 5316 5317 #ifdef IPSEC_NAT_T 5318 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0) 5319 return key_senderror(so, m, EINVAL); 5320 #endif 5321 5322 /* get a SA header */ 5323 if ((sah = key_getsah(&saidx)) == NULL) { 5324 ipseclog((LOG_DEBUG, "key_update: no SA index found.\n")); 5325 return key_senderror(so, m, ENOENT); 5326 } 5327 5328 /* set spidx if there */ 5329 /* XXX rewrite */ 5330 error = key_setident(sah, m, mhp); 5331 if (error) 5332 return key_senderror(so, m, error); 5333 5334 /* find a SA with sequence number. */ 5335 #ifdef IPSEC_DOSEQCHECK 5336 if (mhp->msg->sadb_msg_seq != 0 5337 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 5338 ipseclog((LOG_DEBUG, 5339 "key_update: no larval SA with sequence %u exists.\n", 5340 mhp->msg->sadb_msg_seq)); 5341 return key_senderror(so, m, ENOENT); 5342 } 5343 #else 5344 if ((sav = key_getsavbyspi(sah, sa0->sadb_sa_spi)) == NULL) { 5345 ipseclog((LOG_DEBUG, 5346 "key_update: no such a SA found (spi:%u)\n", 5347 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5348 return key_senderror(so, m, EINVAL); 5349 } 5350 #endif 5351 5352 /* validity check */ 5353 if (sav->sah->saidx.proto != proto) { 5354 ipseclog((LOG_DEBUG, 5355 "key_update: protocol mismatched (DB=%u param=%u)\n", 5356 sav->sah->saidx.proto, proto)); 5357 return key_senderror(so, m, EINVAL); 5358 } 5359 #ifdef IPSEC_DOSEQCHECK 5360 if (sav->spi != sa0->sadb_sa_spi) { 5361 ipseclog((LOG_DEBUG, 5362 "key_update: SPI mismatched (DB:%u param:%u)\n", 5363 (u_int32_t)ntohl(sav->spi), 5364 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5365 return key_senderror(so, m, EINVAL); 5366 } 5367 #endif 5368 if (sav->pid != mhp->msg->sadb_msg_pid) { 5369 ipseclog((LOG_DEBUG, 5370 "key_update: pid mismatched (DB:%u param:%u)\n", 5371 sav->pid, mhp->msg->sadb_msg_pid)); 5372 return key_senderror(so, m, EINVAL); 5373 } 5374 5375 /* copy sav values */ 5376 error = key_setsaval(sav, m, mhp); 5377 if (error) { 5378 KEY_FREESAV(&sav); 5379 return key_senderror(so, m, error); 5380 } 5381 5382 #ifdef IPSEC_NAT_T 5383 if ((error = key_handle_natt_info(sav,mhp)) != 0) 5384 return key_senderror(so, m, EINVAL); 5385 #endif /* IPSEC_NAT_T */ 5386 5387 /* check SA values to be mature. */ 5388 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 5389 KEY_FREESAV(&sav); 5390 return key_senderror(so, m, 0); 5391 } 5392 5393 { 5394 struct mbuf *n; 5395 5396 /* set msg buf from mhp */ 5397 n = key_getmsgbuf_x1(m, mhp); 5398 if (n == NULL) { 5399 ipseclog((LOG_DEBUG, "key_update: No more memory.\n")); 5400 return key_senderror(so, m, ENOBUFS); 5401 } 5402 5403 m_freem(m); 5404 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5405 } 5406 } 5407 5408 /* 5409 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5410 * only called by key_update(). 5411 * OUT: 5412 * NULL : not found 5413 * others : found, pointer to a SA. 5414 */ 5415 #ifdef IPSEC_DOSEQCHECK 5416 static struct secasvar * 5417 key_getsavbyseq(struct secashead *sah, u_int32_t seq) 5418 { 5419 struct secasvar *sav; 5420 u_int state; 5421 5422 state = SADB_SASTATE_LARVAL; 5423 5424 /* search SAD with sequence number ? */ 5425 LIST_FOREACH(sav, &sah->savtree[state], chain) { 5426 5427 KEY_CHKSASTATE(state, sav->state, "key_getsabyseq"); 5428 5429 if (sav->seq == seq) { 5430 SA_ADDREF(sav); 5431 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 5432 printf("DP key_getsavbyseq cause " 5433 "refcnt++:%d SA:%p\n", 5434 sav->refcnt, sav)); 5435 return sav; 5436 } 5437 } 5438 5439 return NULL; 5440 } 5441 #endif 5442 5443 /* 5444 * SADB_ADD processing 5445 * add an entry to SA database, when received 5446 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5447 * key(AE), (identity(SD),) (sensitivity)> 5448 * from the ikmpd, 5449 * and send 5450 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5451 * (identity(SD),) (sensitivity)> 5452 * to the ikmpd. 5453 * 5454 * IGNORE identity and sensitivity messages. 5455 * 5456 * m will always be freed. 5457 */ 5458 static int 5459 key_add(struct socket *so, struct mbuf *m, 5460 const struct sadb_msghdr *mhp) 5461 { 5462 struct sadb_sa *sa0; 5463 struct sadb_address *src0, *dst0; 5464 struct secasindex saidx; 5465 struct secashead *newsah; 5466 struct secasvar *newsav; 5467 u_int16_t proto; 5468 u_int8_t mode; 5469 u_int16_t reqid; 5470 int error; 5471 5472 /* sanity check */ 5473 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 5474 panic("key_add: NULL pointer is passed"); 5475 5476 /* map satype to proto */ 5477 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5478 ipseclog((LOG_DEBUG, "key_add: invalid satype is passed.\n")); 5479 return key_senderror(so, m, EINVAL); 5480 } 5481 5482 if (mhp->ext[SADB_EXT_SA] == NULL || 5483 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5484 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5485 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5486 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5487 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5488 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5489 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5490 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5491 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5492 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5493 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n")); 5494 return key_senderror(so, m, EINVAL); 5495 } 5496 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5497 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5498 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5499 /* XXX need more */ 5500 ipseclog((LOG_DEBUG, "key_add: invalid message is passed.\n")); 5501 return key_senderror(so, m, EINVAL); 5502 } 5503 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5504 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5505 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5506 } else { 5507 mode = IPSEC_MODE_ANY; 5508 reqid = 0; 5509 } 5510 5511 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5512 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5513 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5514 5515 if ((error = key_setsecasidx(proto, mode, reqid, src0 + 1, 5516 dst0 + 1, &saidx)) != 0) 5517 return key_senderror(so, m, EINVAL); 5518 5519 #ifdef IPSEC_NAT_T 5520 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0) 5521 return key_senderror(so, m, EINVAL); 5522 #endif 5523 5524 /* get a SA header */ 5525 if ((newsah = key_getsah(&saidx)) == NULL) { 5526 /* create a new SA header */ 5527 if ((newsah = key_newsah(&saidx)) == NULL) { 5528 ipseclog((LOG_DEBUG, "key_add: No more memory.\n")); 5529 return key_senderror(so, m, ENOBUFS); 5530 } 5531 } 5532 5533 /* set spidx if there */ 5534 /* XXX rewrite */ 5535 error = key_setident(newsah, m, mhp); 5536 if (error) { 5537 return key_senderror(so, m, error); 5538 } 5539 5540 /* create new SA entry. */ 5541 /* We can create new SA only if SPI is differenct. */ 5542 if (key_getsavbyspi(newsah, sa0->sadb_sa_spi)) { 5543 ipseclog((LOG_DEBUG, "key_add: SA already exists.\n")); 5544 return key_senderror(so, m, EEXIST); 5545 } 5546 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5547 if (newsav == NULL) { 5548 return key_senderror(so, m, error); 5549 } 5550 5551 #ifdef IPSEC_NAT_T 5552 if ((error = key_handle_natt_info(newsav, mhp)) != 0) 5553 return key_senderror(so, m, EINVAL); 5554 #endif /* IPSEC_NAT_T */ 5555 5556 /* check SA values to be mature. */ 5557 if ((error = key_mature(newsav)) != 0) { 5558 KEY_FREESAV(&newsav); 5559 return key_senderror(so, m, error); 5560 } 5561 5562 /* 5563 * don't call key_freesav() here, as we would like to keep the SA 5564 * in the database on success. 5565 */ 5566 5567 { 5568 struct mbuf *n; 5569 5570 /* set msg buf from mhp */ 5571 n = key_getmsgbuf_x1(m, mhp); 5572 if (n == NULL) { 5573 ipseclog((LOG_DEBUG, "key_update: No more memory.\n")); 5574 return key_senderror(so, m, ENOBUFS); 5575 } 5576 5577 m_freem(m); 5578 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5579 } 5580 } 5581 5582 /* m is retained */ 5583 static int 5584 key_setident(struct secashead *sah, struct mbuf *m, 5585 const struct sadb_msghdr *mhp) 5586 { 5587 const struct sadb_ident *idsrc, *iddst; 5588 int idsrclen, iddstlen; 5589 5590 /* sanity check */ 5591 if (sah == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 5592 panic("key_setident: NULL pointer is passed"); 5593 5594 /* don't make buffer if not there */ 5595 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5596 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5597 sah->idents = NULL; 5598 sah->identd = NULL; 5599 return 0; 5600 } 5601 5602 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5603 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5604 ipseclog((LOG_DEBUG, "key_setident: invalid identity.\n")); 5605 return EINVAL; 5606 } 5607 5608 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5609 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5610 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5611 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5612 5613 /* validity check */ 5614 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5615 ipseclog((LOG_DEBUG, "key_setident: ident type mismatch.\n")); 5616 return EINVAL; 5617 } 5618 5619 switch (idsrc->sadb_ident_type) { 5620 case SADB_IDENTTYPE_PREFIX: 5621 case SADB_IDENTTYPE_FQDN: 5622 case SADB_IDENTTYPE_USERFQDN: 5623 default: 5624 /* XXX do nothing */ 5625 sah->idents = NULL; 5626 sah->identd = NULL; 5627 return 0; 5628 } 5629 5630 /* make structure */ 5631 KMALLOC(sah->idents, struct sadb_ident *, idsrclen); 5632 if (sah->idents == NULL) { 5633 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n")); 5634 return ENOBUFS; 5635 } 5636 KMALLOC(sah->identd, struct sadb_ident *, iddstlen); 5637 if (sah->identd == NULL) { 5638 KFREE(sah->idents); 5639 sah->idents = NULL; 5640 ipseclog((LOG_DEBUG, "key_setident: No more memory.\n")); 5641 return ENOBUFS; 5642 } 5643 memcpy(sah->idents, idsrc, idsrclen); 5644 memcpy(sah->identd, iddst, iddstlen); 5645 5646 return 0; 5647 } 5648 5649 /* 5650 * m will not be freed on return. 5651 * it is caller's responsibility to free the result. 5652 */ 5653 static struct mbuf * 5654 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 5655 { 5656 struct mbuf *n; 5657 5658 /* sanity check */ 5659 if (m == NULL || mhp == NULL || mhp->msg == NULL) 5660 panic("key_getmsgbuf_x1: NULL pointer is passed"); 5661 5662 /* create new sadb_msg to reply. */ 5663 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5664 SADB_EXT_SA, SADB_X_EXT_SA2, 5665 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5666 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5667 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5668 if (!n) 5669 return NULL; 5670 5671 if (n->m_len < sizeof(struct sadb_msg)) { 5672 n = m_pullup(n, sizeof(struct sadb_msg)); 5673 if (n == NULL) 5674 return NULL; 5675 } 5676 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5677 mtod(n, struct sadb_msg *)->sadb_msg_len = 5678 PFKEY_UNIT64(n->m_pkthdr.len); 5679 5680 return n; 5681 } 5682 5683 static int key_delete_all (struct socket *, struct mbuf *, 5684 const struct sadb_msghdr *, u_int16_t); 5685 5686 /* 5687 * SADB_DELETE processing 5688 * receive 5689 * <base, SA(*), address(SD)> 5690 * from the ikmpd, and set SADB_SASTATE_DEAD, 5691 * and send, 5692 * <base, SA(*), address(SD)> 5693 * to the ikmpd. 5694 * 5695 * m will always be freed. 5696 */ 5697 static int 5698 key_delete(struct socket *so, struct mbuf *m, 5699 const struct sadb_msghdr *mhp) 5700 { 5701 struct sadb_sa *sa0; 5702 struct sadb_address *src0, *dst0; 5703 struct secasindex saidx; 5704 struct secashead *sah; 5705 struct secasvar *sav = NULL; 5706 u_int16_t proto; 5707 int error; 5708 5709 /* sanity check */ 5710 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 5711 panic("key_delete: NULL pointer is passed"); 5712 5713 /* map satype to proto */ 5714 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5715 ipseclog((LOG_DEBUG, "key_delete: invalid satype is passed.\n")); 5716 return key_senderror(so, m, EINVAL); 5717 } 5718 5719 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5720 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5721 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n")); 5722 return key_senderror(so, m, EINVAL); 5723 } 5724 5725 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5726 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5727 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n")); 5728 return key_senderror(so, m, EINVAL); 5729 } 5730 5731 if (mhp->ext[SADB_EXT_SA] == NULL) { 5732 /* 5733 * Caller wants us to delete all non-LARVAL SAs 5734 * that match the src/dst. This is used during 5735 * IKE INITIAL-CONTACT. 5736 */ 5737 ipseclog((LOG_DEBUG, "key_delete: doing delete all.\n")); 5738 return key_delete_all(so, m, mhp, proto); 5739 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5740 ipseclog((LOG_DEBUG, "key_delete: invalid message is passed.\n")); 5741 return key_senderror(so, m, EINVAL); 5742 } 5743 5744 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5745 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5746 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5747 5748 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1, 5749 dst0 + 1, &saidx)) != 0) 5750 return key_senderror(so, m, EINVAL); 5751 5752 #ifdef IPSEC_NAT_T 5753 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0) 5754 return key_senderror(so, m, EINVAL); 5755 #endif 5756 5757 /* get a SA header */ 5758 LIST_FOREACH(sah, &sahtree, chain) { 5759 if (sah->state == SADB_SASTATE_DEAD) 5760 continue; 5761 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5762 continue; 5763 5764 /* get a SA with SPI. */ 5765 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5766 if (sav) 5767 break; 5768 } 5769 if (sah == NULL) { 5770 ipseclog((LOG_DEBUG, "key_delete: no SA found.\n")); 5771 return key_senderror(so, m, ENOENT); 5772 } 5773 5774 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5775 KEY_FREESAV(&sav); 5776 5777 { 5778 struct mbuf *n; 5779 struct sadb_msg *newmsg; 5780 5781 /* create new sadb_msg to reply. */ 5782 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5783 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5784 if (!n) 5785 return key_senderror(so, m, ENOBUFS); 5786 5787 if (n->m_len < sizeof(struct sadb_msg)) { 5788 n = m_pullup(n, sizeof(struct sadb_msg)); 5789 if (n == NULL) 5790 return key_senderror(so, m, ENOBUFS); 5791 } 5792 newmsg = mtod(n, struct sadb_msg *); 5793 newmsg->sadb_msg_errno = 0; 5794 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5795 5796 m_freem(m); 5797 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5798 } 5799 } 5800 5801 /* 5802 * delete all SAs for src/dst. Called from key_delete(). 5803 */ 5804 static int 5805 key_delete_all(struct socket *so, struct mbuf *m, 5806 const struct sadb_msghdr *mhp, u_int16_t proto) 5807 { 5808 struct sadb_address *src0, *dst0; 5809 struct secasindex saidx; 5810 struct secashead *sah; 5811 struct secasvar *sav, *nextsav; 5812 u_int stateidx, state; 5813 int error; 5814 5815 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5816 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5817 5818 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1, 5819 dst0 + 1, &saidx)) != 0) 5820 return key_senderror(so, m, EINVAL); 5821 5822 #ifdef IPSEC_NAT_T 5823 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0) 5824 return key_senderror(so, m, EINVAL); 5825 #endif 5826 5827 LIST_FOREACH(sah, &sahtree, chain) { 5828 if (sah->state == SADB_SASTATE_DEAD) 5829 continue; 5830 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5831 continue; 5832 5833 /* Delete all non-LARVAL SAs. */ 5834 for (stateidx = 0; 5835 stateidx < _ARRAYLEN(saorder_state_alive); 5836 stateidx++) { 5837 state = saorder_state_alive[stateidx]; 5838 if (state == SADB_SASTATE_LARVAL) 5839 continue; 5840 for (sav = LIST_FIRST(&sah->savtree[state]); 5841 sav != NULL; sav = nextsav) { 5842 nextsav = LIST_NEXT(sav, chain); 5843 /* sanity check */ 5844 if (sav->state != state) { 5845 ipseclog((LOG_DEBUG, "key_delete_all: " 5846 "invalid sav->state " 5847 "(queue: %d SA: %d)\n", 5848 state, sav->state)); 5849 continue; 5850 } 5851 5852 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5853 KEY_FREESAV(&sav); 5854 } 5855 } 5856 } 5857 { 5858 struct mbuf *n; 5859 struct sadb_msg *newmsg; 5860 5861 /* create new sadb_msg to reply. */ 5862 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5863 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5864 if (!n) 5865 return key_senderror(so, m, ENOBUFS); 5866 5867 if (n->m_len < sizeof(struct sadb_msg)) { 5868 n = m_pullup(n, sizeof(struct sadb_msg)); 5869 if (n == NULL) 5870 return key_senderror(so, m, ENOBUFS); 5871 } 5872 newmsg = mtod(n, struct sadb_msg *); 5873 newmsg->sadb_msg_errno = 0; 5874 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5875 5876 m_freem(m); 5877 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5878 } 5879 } 5880 5881 /* 5882 * SADB_GET processing 5883 * receive 5884 * <base, SA(*), address(SD)> 5885 * from the ikmpd, and get a SP and a SA to respond, 5886 * and send, 5887 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5888 * (identity(SD),) (sensitivity)> 5889 * to the ikmpd. 5890 * 5891 * m will always be freed. 5892 */ 5893 static int 5894 key_get(struct socket *so, struct mbuf *m, 5895 const struct sadb_msghdr *mhp) 5896 { 5897 struct sadb_sa *sa0; 5898 struct sadb_address *src0, *dst0; 5899 struct secasindex saidx; 5900 struct secashead *sah; 5901 struct secasvar *sav = NULL; 5902 u_int16_t proto; 5903 int error; 5904 5905 /* sanity check */ 5906 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 5907 panic("key_get: NULL pointer is passed"); 5908 5909 /* map satype to proto */ 5910 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5911 ipseclog((LOG_DEBUG, "key_get: invalid satype is passed.\n")); 5912 return key_senderror(so, m, EINVAL); 5913 } 5914 5915 if (mhp->ext[SADB_EXT_SA] == NULL || 5916 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5917 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5918 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n")); 5919 return key_senderror(so, m, EINVAL); 5920 } 5921 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5922 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5923 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5924 ipseclog((LOG_DEBUG, "key_get: invalid message is passed.\n")); 5925 return key_senderror(so, m, EINVAL); 5926 } 5927 5928 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5929 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5930 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5931 5932 5933 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1, 5934 dst0 + 1, &saidx)) != 0) 5935 return key_senderror(so, m, EINVAL); 5936 5937 #ifdef IPSEC_NAT_T 5938 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0) 5939 return key_senderror(so, m, EINVAL); 5940 #endif 5941 5942 /* get a SA header */ 5943 LIST_FOREACH(sah, &sahtree, chain) { 5944 if (sah->state == SADB_SASTATE_DEAD) 5945 continue; 5946 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5947 continue; 5948 5949 /* get a SA with SPI. */ 5950 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5951 if (sav) 5952 break; 5953 } 5954 if (sah == NULL) { 5955 ipseclog((LOG_DEBUG, "key_get: no SA found.\n")); 5956 return key_senderror(so, m, ENOENT); 5957 } 5958 5959 { 5960 struct mbuf *n; 5961 u_int8_t satype; 5962 5963 /* map proto to satype */ 5964 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5965 ipseclog((LOG_DEBUG, "key_get: there was invalid proto in SAD.\n")); 5966 return key_senderror(so, m, EINVAL); 5967 } 5968 5969 /* create new sadb_msg to reply. */ 5970 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5971 mhp->msg->sadb_msg_pid); 5972 if (!n) 5973 return key_senderror(so, m, ENOBUFS); 5974 5975 m_freem(m); 5976 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5977 } 5978 } 5979 5980 /* XXX make it sysctl-configurable? */ 5981 static void 5982 key_getcomb_setlifetime(struct sadb_comb *comb) 5983 { 5984 5985 comb->sadb_comb_soft_allocations = 1; 5986 comb->sadb_comb_hard_allocations = 1; 5987 comb->sadb_comb_soft_bytes = 0; 5988 comb->sadb_comb_hard_bytes = 0; 5989 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5990 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5991 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5992 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5993 } 5994 5995 /* 5996 * XXX reorder combinations by preference 5997 * XXX no idea if the user wants ESP authentication or not 5998 */ 5999 static struct mbuf * 6000 key_getcomb_esp(void) 6001 { 6002 struct sadb_comb *comb; 6003 const struct enc_xform *algo; 6004 struct mbuf *result = NULL, *m, *n; 6005 int encmin; 6006 int i, off, o; 6007 int totlen; 6008 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6009 6010 m = NULL; 6011 for (i = 1; i <= SADB_EALG_MAX; i++) { 6012 algo = esp_algorithm_lookup(i); 6013 if (algo == NULL) 6014 continue; 6015 6016 /* discard algorithms with key size smaller than system min */ 6017 if (_BITS(algo->maxkey) < ipsec_esp_keymin) 6018 continue; 6019 if (_BITS(algo->minkey) < ipsec_esp_keymin) 6020 encmin = ipsec_esp_keymin; 6021 else 6022 encmin = _BITS(algo->minkey); 6023 6024 if (ipsec_esp_auth) 6025 m = key_getcomb_ah(); 6026 else { 6027 IPSEC_ASSERT(l <= MLEN, 6028 ("key_getcomb_esp: l=%u > MLEN=%lu", 6029 l, (u_long) MLEN)); 6030 MGET(m, M_DONTWAIT, MT_DATA); 6031 if (m) { 6032 M_ALIGN(m, l); 6033 m->m_len = l; 6034 m->m_next = NULL; 6035 memset(mtod(m, void *), 0, m->m_len); 6036 } 6037 } 6038 if (!m) 6039 goto fail; 6040 6041 totlen = 0; 6042 for (n = m; n; n = n->m_next) 6043 totlen += n->m_len; 6044 IPSEC_ASSERT((totlen % l) == 0, 6045 ("key_getcomb_esp: totlen=%u, l=%u", totlen, l)); 6046 6047 for (off = 0; off < totlen; off += l) { 6048 n = m_pulldown(m, off, l, &o); 6049 if (!n) { 6050 /* m is already freed */ 6051 goto fail; 6052 } 6053 comb = (struct sadb_comb *)(mtod(n, char *) + o); 6054 memset(comb, 0, sizeof(*comb)); 6055 key_getcomb_setlifetime(comb); 6056 comb->sadb_comb_encrypt = i; 6057 comb->sadb_comb_encrypt_minbits = encmin; 6058 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6059 } 6060 6061 if (!result) 6062 result = m; 6063 else 6064 m_cat(result, m); 6065 } 6066 6067 return result; 6068 6069 fail: 6070 if (result) 6071 m_freem(result); 6072 return NULL; 6073 } 6074 6075 static void 6076 key_getsizes_ah(const struct auth_hash *ah, int alg, 6077 u_int16_t* ksmin, u_int16_t* ksmax) 6078 { 6079 *ksmin = *ksmax = ah->keysize; 6080 if (ah->keysize == 0) { 6081 /* 6082 * Transform takes arbitrary key size but algorithm 6083 * key size is restricted. Enforce this here. 6084 */ 6085 switch (alg) { 6086 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break; 6087 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break; 6088 case SADB_X_AALG_NULL: *ksmin = 1; *ksmax = 256; break; 6089 default: 6090 DPRINTF(("key_getsizes_ah: unknown AH algorithm %u\n", 6091 alg)); 6092 break; 6093 } 6094 } 6095 } 6096 6097 /* 6098 * XXX reorder combinations by preference 6099 */ 6100 static struct mbuf * 6101 key_getcomb_ah(void) 6102 { 6103 struct sadb_comb *comb; 6104 const struct auth_hash *algo; 6105 struct mbuf *m; 6106 u_int16_t minkeysize, maxkeysize; 6107 int i; 6108 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6109 6110 m = NULL; 6111 for (i = 1; i <= SADB_AALG_MAX; i++) { 6112 #if 1 6113 /* we prefer HMAC algorithms, not old algorithms */ 6114 if (i != SADB_AALG_SHA1HMAC && 6115 i != SADB_AALG_MD5HMAC && 6116 i != SADB_X_AALG_SHA2_256 && 6117 i != SADB_X_AALG_SHA2_384 && 6118 i != SADB_X_AALG_SHA2_512) 6119 continue; 6120 #endif 6121 algo = ah_algorithm_lookup(i); 6122 if (!algo) 6123 continue; 6124 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6125 /* discard algorithms with key size smaller than system min */ 6126 if (_BITS(minkeysize) < ipsec_ah_keymin) 6127 continue; 6128 6129 if (!m) { 6130 IPSEC_ASSERT(l <= MLEN, 6131 ("key_getcomb_ah: l=%u > MLEN=%lu", 6132 l, (u_long) MLEN)); 6133 MGET(m, M_DONTWAIT, MT_DATA); 6134 if (m) { 6135 M_ALIGN(m, l); 6136 m->m_len = l; 6137 m->m_next = NULL; 6138 } 6139 } else 6140 M_PREPEND(m, l, M_DONTWAIT); 6141 if (!m) 6142 return NULL; 6143 6144 comb = mtod(m, struct sadb_comb *); 6145 memset(comb, 0, sizeof(*comb)); 6146 key_getcomb_setlifetime(comb); 6147 comb->sadb_comb_auth = i; 6148 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6149 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6150 } 6151 6152 return m; 6153 } 6154 6155 /* 6156 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6157 * XXX reorder combinations by preference 6158 */ 6159 static struct mbuf * 6160 key_getcomb_ipcomp(void) 6161 { 6162 struct sadb_comb *comb; 6163 const struct comp_algo *algo; 6164 struct mbuf *m; 6165 int i; 6166 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6167 6168 m = NULL; 6169 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6170 algo = ipcomp_algorithm_lookup(i); 6171 if (!algo) 6172 continue; 6173 6174 if (!m) { 6175 IPSEC_ASSERT(l <= MLEN, 6176 ("key_getcomb_ipcomp: l=%u > MLEN=%lu", 6177 l, (u_long) MLEN)); 6178 MGET(m, M_DONTWAIT, MT_DATA); 6179 if (m) { 6180 M_ALIGN(m, l); 6181 m->m_len = l; 6182 m->m_next = NULL; 6183 } 6184 } else 6185 M_PREPEND(m, l, M_DONTWAIT); 6186 if (!m) 6187 return NULL; 6188 6189 comb = mtod(m, struct sadb_comb *); 6190 memset(comb, 0, sizeof(*comb)); 6191 key_getcomb_setlifetime(comb); 6192 comb->sadb_comb_encrypt = i; 6193 /* what should we set into sadb_comb_*_{min,max}bits? */ 6194 } 6195 6196 return m; 6197 } 6198 6199 /* 6200 * XXX no way to pass mode (transport/tunnel) to userland 6201 * XXX replay checking? 6202 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6203 */ 6204 static struct mbuf * 6205 key_getprop(const struct secasindex *saidx) 6206 { 6207 struct sadb_prop *prop; 6208 struct mbuf *m, *n; 6209 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6210 int totlen; 6211 6212 switch (saidx->proto) { 6213 case IPPROTO_ESP: 6214 m = key_getcomb_esp(); 6215 break; 6216 case IPPROTO_AH: 6217 m = key_getcomb_ah(); 6218 break; 6219 case IPPROTO_IPCOMP: 6220 m = key_getcomb_ipcomp(); 6221 break; 6222 default: 6223 return NULL; 6224 } 6225 6226 if (!m) 6227 return NULL; 6228 M_PREPEND(m, l, M_DONTWAIT); 6229 if (!m) 6230 return NULL; 6231 6232 totlen = 0; 6233 for (n = m; n; n = n->m_next) 6234 totlen += n->m_len; 6235 6236 prop = mtod(m, struct sadb_prop *); 6237 memset(prop, 0, sizeof(*prop)); 6238 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6239 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6240 prop->sadb_prop_replay = 32; /* XXX */ 6241 6242 return m; 6243 } 6244 6245 /* 6246 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6247 * send 6248 * <base, SA, address(SD), (address(P)), x_policy, 6249 * (identity(SD),) (sensitivity,) proposal> 6250 * to KMD, and expect to receive 6251 * <base> with SADB_ACQUIRE if error occurred, 6252 * or 6253 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6254 * from KMD by PF_KEY. 6255 * 6256 * XXX x_policy is outside of RFC2367 (KAME extension). 6257 * XXX sensitivity is not supported. 6258 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6259 * see comment for key_getcomb_ipcomp(). 6260 * 6261 * OUT: 6262 * 0 : succeed 6263 * others: error number 6264 */ 6265 static int 6266 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6267 { 6268 struct mbuf *result = NULL, *m; 6269 #ifndef IPSEC_NONBLOCK_ACQUIRE 6270 struct secacq *newacq; 6271 #endif 6272 u_int8_t satype; 6273 int error = -1; 6274 u_int32_t seq; 6275 6276 /* sanity check */ 6277 IPSEC_ASSERT(saidx != NULL, ("key_acquire: null saidx")); 6278 satype = key_proto2satype(saidx->proto); 6279 IPSEC_ASSERT(satype != 0, 6280 ("key_acquire: null satype, protocol %u", saidx->proto)); 6281 6282 #ifndef IPSEC_NONBLOCK_ACQUIRE 6283 /* 6284 * We never do anything about acquirng SA. There is anather 6285 * solution that kernel blocks to send SADB_ACQUIRE message until 6286 * getting something message from IKEd. In later case, to be 6287 * managed with ACQUIRING list. 6288 */ 6289 /* Get an entry to check whether sending message or not. */ 6290 if ((newacq = key_getacq(saidx)) != NULL) { 6291 if (key_blockacq_count < newacq->count) { 6292 /* reset counter and do send message. */ 6293 newacq->count = 0; 6294 } else { 6295 /* increment counter and do nothing. */ 6296 newacq->count++; 6297 return 0; 6298 } 6299 } else { 6300 /* make new entry for blocking to send SADB_ACQUIRE. */ 6301 if ((newacq = key_newacq(saidx)) == NULL) 6302 return ENOBUFS; 6303 6304 /* add to acqtree */ 6305 LIST_INSERT_HEAD(&acqtree, newacq, chain); 6306 } 6307 #endif 6308 6309 6310 #ifndef IPSEC_NONBLOCK_ACQUIRE 6311 seq = newacq->seq; 6312 #else 6313 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 6314 #endif 6315 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6316 if (!m) { 6317 error = ENOBUFS; 6318 goto fail; 6319 } 6320 result = m; 6321 6322 /* set sadb_address for saidx's. */ 6323 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6324 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6325 if (!m) { 6326 error = ENOBUFS; 6327 goto fail; 6328 } 6329 m_cat(result, m); 6330 6331 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6332 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6333 if (!m) { 6334 error = ENOBUFS; 6335 goto fail; 6336 } 6337 m_cat(result, m); 6338 6339 /* XXX proxy address (optional) */ 6340 6341 /* set sadb_x_policy */ 6342 if (sp) { 6343 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 6344 if (!m) { 6345 error = ENOBUFS; 6346 goto fail; 6347 } 6348 m_cat(result, m); 6349 } 6350 6351 /* XXX identity (optional) */ 6352 #if 0 6353 if (idexttype && fqdn) { 6354 /* create identity extension (FQDN) */ 6355 struct sadb_ident *id; 6356 int fqdnlen; 6357 6358 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6359 id = (struct sadb_ident *)p; 6360 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6361 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6362 id->sadb_ident_exttype = idexttype; 6363 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6364 memcpy(id + 1, fqdn, fqdnlen); 6365 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6366 } 6367 6368 if (idexttype) { 6369 /* create identity extension (USERFQDN) */ 6370 struct sadb_ident *id; 6371 int userfqdnlen; 6372 6373 if (userfqdn) { 6374 /* +1 for terminating-NUL */ 6375 userfqdnlen = strlen(userfqdn) + 1; 6376 } else 6377 userfqdnlen = 0; 6378 id = (struct sadb_ident *)p; 6379 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6380 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6381 id->sadb_ident_exttype = idexttype; 6382 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6383 /* XXX is it correct? */ 6384 if (curlwp) 6385 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred); 6386 if (userfqdn && userfqdnlen) 6387 memcpy(id + 1, userfqdn, userfqdnlen); 6388 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6389 } 6390 #endif 6391 6392 /* XXX sensitivity (optional) */ 6393 6394 /* create proposal/combination extension */ 6395 m = key_getprop(saidx); 6396 #if 0 6397 /* 6398 * spec conformant: always attach proposal/combination extension, 6399 * the problem is that we have no way to attach it for ipcomp, 6400 * due to the way sadb_comb is declared in RFC2367. 6401 */ 6402 if (!m) { 6403 error = ENOBUFS; 6404 goto fail; 6405 } 6406 m_cat(result, m); 6407 #else 6408 /* 6409 * outside of spec; make proposal/combination extension optional. 6410 */ 6411 if (m) 6412 m_cat(result, m); 6413 #endif 6414 6415 if ((result->m_flags & M_PKTHDR) == 0) { 6416 error = EINVAL; 6417 goto fail; 6418 } 6419 6420 if (result->m_len < sizeof(struct sadb_msg)) { 6421 result = m_pullup(result, sizeof(struct sadb_msg)); 6422 if (result == NULL) { 6423 error = ENOBUFS; 6424 goto fail; 6425 } 6426 } 6427 6428 result->m_pkthdr.len = 0; 6429 for (m = result; m; m = m->m_next) 6430 result->m_pkthdr.len += m->m_len; 6431 6432 mtod(result, struct sadb_msg *)->sadb_msg_len = 6433 PFKEY_UNIT64(result->m_pkthdr.len); 6434 6435 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6436 6437 fail: 6438 if (result) 6439 m_freem(result); 6440 return error; 6441 } 6442 6443 #ifndef IPSEC_NONBLOCK_ACQUIRE 6444 static struct secacq * 6445 key_newacq(const struct secasindex *saidx) 6446 { 6447 struct secacq *newacq; 6448 6449 /* get new entry */ 6450 KMALLOC(newacq, struct secacq *, sizeof(struct secacq)); 6451 if (newacq == NULL) { 6452 ipseclog((LOG_DEBUG, "key_newacq: No more memory.\n")); 6453 return NULL; 6454 } 6455 memset(newacq, 0, sizeof(*newacq)); 6456 6457 /* copy secindex */ 6458 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx)); 6459 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); 6460 newacq->created = time_uptime; 6461 newacq->count = 0; 6462 6463 return newacq; 6464 } 6465 6466 static struct secacq * 6467 key_getacq(const struct secasindex *saidx) 6468 { 6469 struct secacq *acq; 6470 6471 LIST_FOREACH(acq, &acqtree, chain) { 6472 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 6473 return acq; 6474 } 6475 6476 return NULL; 6477 } 6478 6479 static struct secacq * 6480 key_getacqbyseq(u_int32_t seq) 6481 { 6482 struct secacq *acq; 6483 6484 LIST_FOREACH(acq, &acqtree, chain) { 6485 if (acq->seq == seq) 6486 return acq; 6487 } 6488 6489 return NULL; 6490 } 6491 #endif 6492 6493 static struct secspacq * 6494 key_newspacq(const struct secpolicyindex *spidx) 6495 { 6496 struct secspacq *acq; 6497 6498 /* get new entry */ 6499 KMALLOC(acq, struct secspacq *, sizeof(struct secspacq)); 6500 if (acq == NULL) { 6501 ipseclog((LOG_DEBUG, "key_newspacq: No more memory.\n")); 6502 return NULL; 6503 } 6504 memset(acq, 0, sizeof(*acq)); 6505 6506 /* copy secindex */ 6507 memcpy(&acq->spidx, spidx, sizeof(acq->spidx)); 6508 acq->created = time_uptime; 6509 acq->count = 0; 6510 6511 return acq; 6512 } 6513 6514 static struct secspacq * 6515 key_getspacq(const struct secpolicyindex *spidx) 6516 { 6517 struct secspacq *acq; 6518 6519 LIST_FOREACH(acq, &spacqtree, chain) { 6520 if (key_cmpspidx_exactly(spidx, &acq->spidx)) 6521 return acq; 6522 } 6523 6524 return NULL; 6525 } 6526 6527 /* 6528 * SADB_ACQUIRE processing, 6529 * in first situation, is receiving 6530 * <base> 6531 * from the ikmpd, and clear sequence of its secasvar entry. 6532 * 6533 * In second situation, is receiving 6534 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6535 * from a user land process, and return 6536 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6537 * to the socket. 6538 * 6539 * m will always be freed. 6540 */ 6541 static int 6542 key_acquire2(struct socket *so, struct mbuf *m, 6543 const struct sadb_msghdr *mhp) 6544 { 6545 const struct sadb_address *src0, *dst0; 6546 struct secasindex saidx; 6547 struct secashead *sah; 6548 u_int16_t proto; 6549 int error; 6550 6551 /* sanity check */ 6552 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 6553 panic("key_acquire2: NULL pointer is passed"); 6554 6555 /* 6556 * Error message from KMd. 6557 * We assume that if error was occurred in IKEd, the length of PFKEY 6558 * message is equal to the size of sadb_msg structure. 6559 * We do not raise error even if error occurred in this function. 6560 */ 6561 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6562 #ifndef IPSEC_NONBLOCK_ACQUIRE 6563 struct secacq *acq; 6564 6565 /* check sequence number */ 6566 if (mhp->msg->sadb_msg_seq == 0) { 6567 ipseclog((LOG_DEBUG, "key_acquire2: must specify sequence number.\n")); 6568 m_freem(m); 6569 return 0; 6570 } 6571 6572 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6573 /* 6574 * the specified larval SA is already gone, or we got 6575 * a bogus sequence number. we can silently ignore it. 6576 */ 6577 m_freem(m); 6578 return 0; 6579 } 6580 6581 /* reset acq counter in order to deletion by timehander. */ 6582 acq->created = time_uptime; 6583 acq->count = 0; 6584 #endif 6585 m_freem(m); 6586 return 0; 6587 } 6588 6589 /* 6590 * This message is from user land. 6591 */ 6592 6593 /* map satype to proto */ 6594 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6595 ipseclog((LOG_DEBUG, "key_acquire2: invalid satype is passed.\n")); 6596 return key_senderror(so, m, EINVAL); 6597 } 6598 6599 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6600 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6601 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6602 /* error */ 6603 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n")); 6604 return key_senderror(so, m, EINVAL); 6605 } 6606 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6607 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6608 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6609 /* error */ 6610 ipseclog((LOG_DEBUG, "key_acquire2: invalid message is passed.\n")); 6611 return key_senderror(so, m, EINVAL); 6612 } 6613 6614 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6615 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6616 6617 if ((error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src0 + 1, 6618 dst0 + 1, &saidx)) != 0) 6619 return key_senderror(so, m, EINVAL); 6620 6621 #ifdef IPSEC_NAT_T 6622 if ((error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp)) != 0) 6623 return key_senderror(so, m, EINVAL); 6624 #endif 6625 6626 /* get a SA index */ 6627 LIST_FOREACH(sah, &sahtree, chain) { 6628 if (sah->state == SADB_SASTATE_DEAD) 6629 continue; 6630 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6631 break; 6632 } 6633 if (sah != NULL) { 6634 ipseclog((LOG_DEBUG, "key_acquire2: a SA exists already.\n")); 6635 return key_senderror(so, m, EEXIST); 6636 } 6637 6638 error = key_acquire(&saidx, NULL); 6639 if (error != 0) { 6640 ipseclog((LOG_DEBUG, "key_acquire2: error %d returned " 6641 "from key_acquire.\n", mhp->msg->sadb_msg_errno)); 6642 return key_senderror(so, m, error); 6643 } 6644 6645 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6646 } 6647 6648 /* 6649 * SADB_REGISTER processing. 6650 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6651 * receive 6652 * <base> 6653 * from the ikmpd, and register a socket to send PF_KEY messages, 6654 * and send 6655 * <base, supported> 6656 * to KMD by PF_KEY. 6657 * If socket is detached, must free from regnode. 6658 * 6659 * m will always be freed. 6660 */ 6661 static int 6662 key_register(struct socket *so, struct mbuf *m, 6663 const struct sadb_msghdr *mhp) 6664 { 6665 struct secreg *reg, *newreg = 0; 6666 6667 /* sanity check */ 6668 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 6669 panic("key_register: NULL pointer is passed"); 6670 6671 /* check for invalid register message */ 6672 if (mhp->msg->sadb_msg_satype >= sizeof(regtree)/sizeof(regtree[0])) 6673 return key_senderror(so, m, EINVAL); 6674 6675 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6676 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6677 goto setmsg; 6678 6679 /* check whether existing or not */ 6680 LIST_FOREACH(reg, ®tree[mhp->msg->sadb_msg_satype], chain) { 6681 if (reg->so == so) { 6682 ipseclog((LOG_DEBUG, "key_register: socket exists already.\n")); 6683 return key_senderror(so, m, EEXIST); 6684 } 6685 } 6686 6687 /* create regnode */ 6688 KMALLOC(newreg, struct secreg *, sizeof(*newreg)); 6689 if (newreg == NULL) { 6690 ipseclog((LOG_DEBUG, "key_register: No more memory.\n")); 6691 return key_senderror(so, m, ENOBUFS); 6692 } 6693 memset(newreg, 0, sizeof(*newreg)); 6694 6695 newreg->so = so; 6696 ((struct keycb *)sotorawcb(so))->kp_registered++; 6697 6698 /* add regnode to regtree. */ 6699 LIST_INSERT_HEAD(®tree[mhp->msg->sadb_msg_satype], newreg, chain); 6700 6701 setmsg: 6702 { 6703 struct mbuf *n; 6704 struct sadb_msg *newmsg; 6705 struct sadb_supported *sup; 6706 u_int len, alen, elen; 6707 int off; 6708 int i; 6709 struct sadb_alg *alg; 6710 6711 /* create new sadb_msg to reply. */ 6712 alen = 0; 6713 for (i = 1; i <= SADB_AALG_MAX; i++) { 6714 if (ah_algorithm_lookup(i)) 6715 alen += sizeof(struct sadb_alg); 6716 } 6717 if (alen) 6718 alen += sizeof(struct sadb_supported); 6719 elen = 0; 6720 for (i = 1; i <= SADB_EALG_MAX; i++) { 6721 if (esp_algorithm_lookup(i)) 6722 elen += sizeof(struct sadb_alg); 6723 } 6724 if (elen) 6725 elen += sizeof(struct sadb_supported); 6726 6727 len = sizeof(struct sadb_msg) + alen + elen; 6728 6729 if (len > MCLBYTES) 6730 return key_senderror(so, m, ENOBUFS); 6731 6732 MGETHDR(n, M_DONTWAIT, MT_DATA); 6733 if (len > MHLEN) { 6734 MCLGET(n, M_DONTWAIT); 6735 if ((n->m_flags & M_EXT) == 0) { 6736 m_freem(n); 6737 n = NULL; 6738 } 6739 } 6740 if (!n) 6741 return key_senderror(so, m, ENOBUFS); 6742 6743 n->m_pkthdr.len = n->m_len = len; 6744 n->m_next = NULL; 6745 off = 0; 6746 6747 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 6748 newmsg = mtod(n, struct sadb_msg *); 6749 newmsg->sadb_msg_errno = 0; 6750 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6751 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6752 6753 /* for authentication algorithm */ 6754 if (alen) { 6755 sup = (struct sadb_supported *)(mtod(n, char *) + off); 6756 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6757 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6758 off += PFKEY_ALIGN8(sizeof(*sup)); 6759 6760 for (i = 1; i <= SADB_AALG_MAX; i++) { 6761 const struct auth_hash *aalgo; 6762 u_int16_t minkeysize, maxkeysize; 6763 6764 aalgo = ah_algorithm_lookup(i); 6765 if (!aalgo) 6766 continue; 6767 alg = (struct sadb_alg *)(mtod(n, char *) + off); 6768 alg->sadb_alg_id = i; 6769 alg->sadb_alg_ivlen = 0; 6770 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6771 alg->sadb_alg_minbits = _BITS(minkeysize); 6772 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6773 off += PFKEY_ALIGN8(sizeof(*alg)); 6774 } 6775 } 6776 6777 /* for encryption algorithm */ 6778 if (elen) { 6779 sup = (struct sadb_supported *)(mtod(n, char *) + off); 6780 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6781 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6782 off += PFKEY_ALIGN8(sizeof(*sup)); 6783 6784 for (i = 1; i <= SADB_EALG_MAX; i++) { 6785 const struct enc_xform *ealgo; 6786 6787 ealgo = esp_algorithm_lookup(i); 6788 if (!ealgo) 6789 continue; 6790 alg = (struct sadb_alg *)(mtod(n, char *) + off); 6791 alg->sadb_alg_id = i; 6792 alg->sadb_alg_ivlen = ealgo->blocksize; 6793 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6794 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6795 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6796 } 6797 } 6798 6799 #ifdef DIAGNOSTIC 6800 if (off != len) 6801 panic("length assumption failed in key_register"); 6802 #endif 6803 6804 m_freem(m); 6805 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6806 } 6807 } 6808 6809 /* 6810 * free secreg entry registered. 6811 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6812 */ 6813 void 6814 key_freereg(struct socket *so) 6815 { 6816 struct secreg *reg; 6817 int i; 6818 6819 /* sanity check */ 6820 if (so == NULL) 6821 panic("key_freereg: NULL pointer is passed"); 6822 6823 /* 6824 * check whether existing or not. 6825 * check all type of SA, because there is a potential that 6826 * one socket is registered to multiple type of SA. 6827 */ 6828 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6829 LIST_FOREACH(reg, ®tree[i], chain) { 6830 if (reg->so == so 6831 && __LIST_CHAINED(reg)) { 6832 LIST_REMOVE(reg, chain); 6833 KFREE(reg); 6834 break; 6835 } 6836 } 6837 } 6838 6839 return; 6840 } 6841 6842 /* 6843 * SADB_EXPIRE processing 6844 * send 6845 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6846 * to KMD by PF_KEY. 6847 * NOTE: We send only soft lifetime extension. 6848 * 6849 * OUT: 0 : succeed 6850 * others : error number 6851 */ 6852 static int 6853 key_expire(struct secasvar *sav) 6854 { 6855 int s; 6856 int satype; 6857 struct mbuf *result = NULL, *m; 6858 int len; 6859 int error = -1; 6860 struct sadb_lifetime *lt; 6861 6862 /* XXX: Why do we lock ? */ 6863 s = splsoftnet(); /*called from softclock()*/ 6864 6865 /* sanity check */ 6866 if (sav == NULL) 6867 panic("key_expire: NULL pointer is passed"); 6868 if (sav->sah == NULL) 6869 panic("key_expire: Why was SA index in SA NULL"); 6870 if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) 6871 panic("key_expire: invalid proto is passed"); 6872 6873 /* set msg header */ 6874 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6875 if (!m) { 6876 error = ENOBUFS; 6877 goto fail; 6878 } 6879 result = m; 6880 6881 /* create SA extension */ 6882 m = key_setsadbsa(sav); 6883 if (!m) { 6884 error = ENOBUFS; 6885 goto fail; 6886 } 6887 m_cat(result, m); 6888 6889 /* create SA extension */ 6890 m = key_setsadbxsa2(sav->sah->saidx.mode, 6891 sav->replay ? sav->replay->count : 0, 6892 sav->sah->saidx.reqid); 6893 if (!m) { 6894 error = ENOBUFS; 6895 goto fail; 6896 } 6897 m_cat(result, m); 6898 6899 /* create lifetime extension (current and soft) */ 6900 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6901 m = key_alloc_mbuf(len); 6902 if (!m || m->m_next) { /*XXX*/ 6903 if (m) 6904 m_freem(m); 6905 error = ENOBUFS; 6906 goto fail; 6907 } 6908 memset(mtod(m, void *), 0, len); 6909 lt = mtod(m, struct sadb_lifetime *); 6910 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6911 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6912 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations; 6913 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes; 6914 lt->sadb_lifetime_addtime = sav->lft_c->sadb_lifetime_addtime 6915 + time_second - time_uptime; 6916 lt->sadb_lifetime_usetime = sav->lft_c->sadb_lifetime_usetime 6917 + time_second - time_uptime; 6918 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 6919 memcpy(lt, sav->lft_s, sizeof(*lt)); 6920 m_cat(result, m); 6921 6922 /* set sadb_address for source */ 6923 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6924 &sav->sah->saidx.src.sa, 6925 FULLMASK, IPSEC_ULPROTO_ANY); 6926 if (!m) { 6927 error = ENOBUFS; 6928 goto fail; 6929 } 6930 m_cat(result, m); 6931 6932 /* set sadb_address for destination */ 6933 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6934 &sav->sah->saidx.dst.sa, 6935 FULLMASK, IPSEC_ULPROTO_ANY); 6936 if (!m) { 6937 error = ENOBUFS; 6938 goto fail; 6939 } 6940 m_cat(result, m); 6941 6942 if ((result->m_flags & M_PKTHDR) == 0) { 6943 error = EINVAL; 6944 goto fail; 6945 } 6946 6947 if (result->m_len < sizeof(struct sadb_msg)) { 6948 result = m_pullup(result, sizeof(struct sadb_msg)); 6949 if (result == NULL) { 6950 error = ENOBUFS; 6951 goto fail; 6952 } 6953 } 6954 6955 result->m_pkthdr.len = 0; 6956 for (m = result; m; m = m->m_next) 6957 result->m_pkthdr.len += m->m_len; 6958 6959 mtod(result, struct sadb_msg *)->sadb_msg_len = 6960 PFKEY_UNIT64(result->m_pkthdr.len); 6961 6962 splx(s); 6963 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6964 6965 fail: 6966 if (result) 6967 m_freem(result); 6968 splx(s); 6969 return error; 6970 } 6971 6972 /* 6973 * SADB_FLUSH processing 6974 * receive 6975 * <base> 6976 * from the ikmpd, and free all entries in secastree. 6977 * and send, 6978 * <base> 6979 * to the ikmpd. 6980 * NOTE: to do is only marking SADB_SASTATE_DEAD. 6981 * 6982 * m will always be freed. 6983 */ 6984 static int 6985 key_flush(struct socket *so, struct mbuf *m, 6986 const struct sadb_msghdr *mhp) 6987 { 6988 struct sadb_msg *newmsg; 6989 struct secashead *sah, *nextsah; 6990 struct secasvar *sav, *nextsav; 6991 u_int16_t proto; 6992 u_int8_t state; 6993 u_int stateidx; 6994 6995 /* sanity check */ 6996 if (so == NULL || mhp == NULL || mhp->msg == NULL) 6997 panic("key_flush: NULL pointer is passed"); 6998 6999 /* map satype to proto */ 7000 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7001 ipseclog((LOG_DEBUG, "key_flush: invalid satype is passed.\n")); 7002 return key_senderror(so, m, EINVAL); 7003 } 7004 7005 /* no SATYPE specified, i.e. flushing all SA. */ 7006 for (sah = LIST_FIRST(&sahtree); 7007 sah != NULL; 7008 sah = nextsah) { 7009 nextsah = LIST_NEXT(sah, chain); 7010 7011 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7012 && proto != sah->saidx.proto) 7013 continue; 7014 7015 for (stateidx = 0; 7016 stateidx < _ARRAYLEN(saorder_state_alive); 7017 stateidx++) { 7018 state = saorder_state_any[stateidx]; 7019 for (sav = LIST_FIRST(&sah->savtree[state]); 7020 sav != NULL; 7021 sav = nextsav) { 7022 7023 nextsav = LIST_NEXT(sav, chain); 7024 7025 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 7026 KEY_FREESAV(&sav); 7027 } 7028 } 7029 7030 sah->state = SADB_SASTATE_DEAD; 7031 } 7032 7033 if (m->m_len < sizeof(struct sadb_msg) || 7034 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7035 ipseclog((LOG_DEBUG, "key_flush: No more memory.\n")); 7036 return key_senderror(so, m, ENOBUFS); 7037 } 7038 7039 if (m->m_next) 7040 m_freem(m->m_next); 7041 m->m_next = NULL; 7042 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7043 newmsg = mtod(m, struct sadb_msg *); 7044 newmsg->sadb_msg_errno = 0; 7045 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7046 7047 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7048 } 7049 7050 7051 static struct mbuf * 7052 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid) 7053 { 7054 struct secashead *sah; 7055 struct secasvar *sav; 7056 u_int16_t proto; 7057 u_int stateidx; 7058 u_int8_t satype; 7059 u_int8_t state; 7060 int cnt; 7061 struct mbuf *m, *n, *prev; 7062 int totlen; 7063 7064 *lenp = 0; 7065 7066 /* map satype to proto */ 7067 if ((proto = key_satype2proto(req_satype)) == 0) { 7068 *errorp = EINVAL; 7069 return (NULL); 7070 } 7071 7072 /* count sav entries to be sent to userland. */ 7073 cnt = 0; 7074 LIST_FOREACH(sah, &sahtree, chain) { 7075 if (req_satype != SADB_SATYPE_UNSPEC && 7076 proto != sah->saidx.proto) 7077 continue; 7078 7079 for (stateidx = 0; 7080 stateidx < _ARRAYLEN(saorder_state_any); 7081 stateidx++) { 7082 state = saorder_state_any[stateidx]; 7083 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7084 cnt++; 7085 } 7086 } 7087 } 7088 7089 if (cnt == 0) { 7090 *errorp = ENOENT; 7091 return (NULL); 7092 } 7093 7094 /* send this to the userland, one at a time. */ 7095 m = NULL; 7096 prev = m; 7097 LIST_FOREACH(sah, &sahtree, chain) { 7098 if (req_satype != SADB_SATYPE_UNSPEC && 7099 proto != sah->saidx.proto) 7100 continue; 7101 7102 /* map proto to satype */ 7103 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7104 m_freem(m); 7105 *errorp = EINVAL; 7106 return (NULL); 7107 } 7108 7109 for (stateidx = 0; 7110 stateidx < _ARRAYLEN(saorder_state_any); 7111 stateidx++) { 7112 state = saorder_state_any[stateidx]; 7113 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7114 n = key_setdumpsa(sav, SADB_DUMP, satype, 7115 --cnt, pid); 7116 if (!n) { 7117 m_freem(m); 7118 *errorp = ENOBUFS; 7119 return (NULL); 7120 } 7121 7122 totlen += n->m_pkthdr.len; 7123 if (!m) 7124 m = n; 7125 else 7126 prev->m_nextpkt = n; 7127 prev = n; 7128 } 7129 } 7130 } 7131 7132 if (!m) { 7133 *errorp = EINVAL; 7134 return (NULL); 7135 } 7136 7137 if ((m->m_flags & M_PKTHDR) != 0) { 7138 m->m_pkthdr.len = 0; 7139 for (n = m; n; n = n->m_next) 7140 m->m_pkthdr.len += n->m_len; 7141 } 7142 7143 *errorp = 0; 7144 return (m); 7145 } 7146 7147 /* 7148 * SADB_DUMP processing 7149 * dump all entries including status of DEAD in SAD. 7150 * receive 7151 * <base> 7152 * from the ikmpd, and dump all secasvar leaves 7153 * and send, 7154 * <base> ..... 7155 * to the ikmpd. 7156 * 7157 * m will always be freed. 7158 */ 7159 static int 7160 key_dump(struct socket *so, struct mbuf *m0, 7161 const struct sadb_msghdr *mhp) 7162 { 7163 u_int16_t proto; 7164 u_int8_t satype; 7165 struct mbuf *n; 7166 int s; 7167 int error, len, ok; 7168 7169 /* sanity check */ 7170 if (so == NULL || m0 == NULL || mhp == NULL || mhp->msg == NULL) 7171 panic("key_dump: NULL pointer is passed"); 7172 7173 /* map satype to proto */ 7174 satype = mhp->msg->sadb_msg_satype; 7175 if ((proto = key_satype2proto(satype)) == 0) { 7176 ipseclog((LOG_DEBUG, "key_dump: invalid satype is passed.\n")); 7177 return key_senderror(so, m0, EINVAL); 7178 } 7179 7180 /* 7181 * If the requestor has insufficient socket-buffer space 7182 * for the entire chain, nobody gets any response to the DUMP. 7183 * XXX For now, only the requestor ever gets anything. 7184 * Moreover, if the requestor has any space at all, they receive 7185 * the entire chain, otherwise the request is refused with ENOBUFS. 7186 */ 7187 if (sbspace(&so->so_rcv) <= 0) { 7188 return key_senderror(so, m0, ENOBUFS); 7189 } 7190 7191 s = splsoftnet(); 7192 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid); 7193 splx(s); 7194 7195 if (n == NULL) { 7196 return key_senderror(so, m0, ENOENT); 7197 } 7198 { 7199 uint64_t *ps = PFKEY_STAT_GETREF(); 7200 ps[PFKEY_STAT_IN_TOTAL]++; 7201 ps[PFKEY_STAT_IN_BYTES] += len; 7202 PFKEY_STAT_PUTREF(); 7203 } 7204 7205 /* 7206 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 7207 * The requestor receives either the entire chain, or an 7208 * error message with ENOBUFS. 7209 * 7210 * sbappendaddrchain() takes the chain of entries, one 7211 * packet-record per SPD entry, prepends the key_src sockaddr 7212 * to each packet-record, links the sockaddr mbufs into a new 7213 * list of records, then appends the entire resulting 7214 * list to the requesting socket. 7215 */ 7216 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, 7217 n, SB_PRIO_ONESHOT_OVERFLOW); 7218 7219 if (!ok) { 7220 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 7221 m_freem(n); 7222 return key_senderror(so, m0, ENOBUFS); 7223 } 7224 7225 m_freem(m0); 7226 return 0; 7227 } 7228 7229 /* 7230 * SADB_X_PROMISC processing 7231 * 7232 * m will always be freed. 7233 */ 7234 static int 7235 key_promisc(struct socket *so, struct mbuf *m, 7236 const struct sadb_msghdr *mhp) 7237 { 7238 int olen; 7239 7240 /* sanity check */ 7241 if (so == NULL || m == NULL || mhp == NULL || mhp->msg == NULL) 7242 panic("key_promisc: NULL pointer is passed"); 7243 7244 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7245 7246 if (olen < sizeof(struct sadb_msg)) { 7247 #if 1 7248 return key_senderror(so, m, EINVAL); 7249 #else 7250 m_freem(m); 7251 return 0; 7252 #endif 7253 } else if (olen == sizeof(struct sadb_msg)) { 7254 /* enable/disable promisc mode */ 7255 struct keycb *kp; 7256 7257 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7258 return key_senderror(so, m, EINVAL); 7259 mhp->msg->sadb_msg_errno = 0; 7260 switch (mhp->msg->sadb_msg_satype) { 7261 case 0: 7262 case 1: 7263 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7264 break; 7265 default: 7266 return key_senderror(so, m, EINVAL); 7267 } 7268 7269 /* send the original message back to everyone */ 7270 mhp->msg->sadb_msg_errno = 0; 7271 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7272 } else { 7273 /* send packet as is */ 7274 7275 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7276 7277 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7278 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7279 } 7280 } 7281 7282 static int (*key_typesw[]) (struct socket *, struct mbuf *, 7283 const struct sadb_msghdr *) = { 7284 NULL, /* SADB_RESERVED */ 7285 key_getspi, /* SADB_GETSPI */ 7286 key_update, /* SADB_UPDATE */ 7287 key_add, /* SADB_ADD */ 7288 key_delete, /* SADB_DELETE */ 7289 key_get, /* SADB_GET */ 7290 key_acquire2, /* SADB_ACQUIRE */ 7291 key_register, /* SADB_REGISTER */ 7292 NULL, /* SADB_EXPIRE */ 7293 key_flush, /* SADB_FLUSH */ 7294 key_dump, /* SADB_DUMP */ 7295 key_promisc, /* SADB_X_PROMISC */ 7296 NULL, /* SADB_X_PCHANGE */ 7297 key_spdadd, /* SADB_X_SPDUPDATE */ 7298 key_spdadd, /* SADB_X_SPDADD */ 7299 key_spddelete, /* SADB_X_SPDDELETE */ 7300 key_spdget, /* SADB_X_SPDGET */ 7301 NULL, /* SADB_X_SPDACQUIRE */ 7302 key_spddump, /* SADB_X_SPDDUMP */ 7303 key_spdflush, /* SADB_X_SPDFLUSH */ 7304 key_spdadd, /* SADB_X_SPDSETIDX */ 7305 NULL, /* SADB_X_SPDEXPIRE */ 7306 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7307 #ifdef IPSEC_NAT_T 7308 key_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */ 7309 #endif 7310 }; 7311 7312 /* 7313 * parse sadb_msg buffer to process PFKEYv2, 7314 * and create a data to response if needed. 7315 * I think to be dealed with mbuf directly. 7316 * IN: 7317 * msgp : pointer to pointer to a received buffer pulluped. 7318 * This is rewrited to response. 7319 * so : pointer to socket. 7320 * OUT: 7321 * length for buffer to send to user process. 7322 */ 7323 int 7324 key_parse(struct mbuf *m, struct socket *so) 7325 { 7326 struct sadb_msg *msg; 7327 struct sadb_msghdr mh; 7328 u_int orglen; 7329 int error; 7330 int target; 7331 7332 /* sanity check */ 7333 if (m == NULL || so == NULL) 7334 panic("key_parse: NULL pointer is passed"); 7335 7336 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7337 KEYDEBUG(KEYDEBUG_KEY_DUMP, 7338 ipseclog((LOG_DEBUG, "key_parse: passed sadb_msg\n")); 7339 kdebug_sadb(msg)); 7340 #endif 7341 7342 if (m->m_len < sizeof(struct sadb_msg)) { 7343 m = m_pullup(m, sizeof(struct sadb_msg)); 7344 if (!m) 7345 return ENOBUFS; 7346 } 7347 msg = mtod(m, struct sadb_msg *); 7348 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7349 target = KEY_SENDUP_ONE; 7350 7351 if ((m->m_flags & M_PKTHDR) == 0 || 7352 m->m_pkthdr.len != m->m_pkthdr.len) { 7353 ipseclog((LOG_DEBUG, "key_parse: invalid message length.\n")); 7354 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7355 error = EINVAL; 7356 goto senderror; 7357 } 7358 7359 if (msg->sadb_msg_version != PF_KEY_V2) { 7360 ipseclog((LOG_DEBUG, 7361 "key_parse: PF_KEY version %u is mismatched.\n", 7362 msg->sadb_msg_version)); 7363 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER); 7364 error = EINVAL; 7365 goto senderror; 7366 } 7367 7368 if (msg->sadb_msg_type > SADB_MAX) { 7369 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n", 7370 msg->sadb_msg_type)); 7371 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 7372 error = EINVAL; 7373 goto senderror; 7374 } 7375 7376 /* for old-fashioned code - should be nuked */ 7377 if (m->m_pkthdr.len > MCLBYTES) { 7378 m_freem(m); 7379 return ENOBUFS; 7380 } 7381 if (m->m_next) { 7382 struct mbuf *n; 7383 7384 MGETHDR(n, M_DONTWAIT, MT_DATA); 7385 if (n && m->m_pkthdr.len > MHLEN) { 7386 MCLGET(n, M_DONTWAIT); 7387 if ((n->m_flags & M_EXT) == 0) { 7388 m_free(n); 7389 n = NULL; 7390 } 7391 } 7392 if (!n) { 7393 m_freem(m); 7394 return ENOBUFS; 7395 } 7396 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *)); 7397 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7398 n->m_next = NULL; 7399 m_freem(m); 7400 m = n; 7401 } 7402 7403 /* align the mbuf chain so that extensions are in contiguous region. */ 7404 error = key_align(m, &mh); 7405 if (error) 7406 return error; 7407 7408 if (m->m_next) { /*XXX*/ 7409 m_freem(m); 7410 return ENOBUFS; 7411 } 7412 7413 msg = mh.msg; 7414 7415 /* check SA type */ 7416 switch (msg->sadb_msg_satype) { 7417 case SADB_SATYPE_UNSPEC: 7418 switch (msg->sadb_msg_type) { 7419 case SADB_GETSPI: 7420 case SADB_UPDATE: 7421 case SADB_ADD: 7422 case SADB_DELETE: 7423 case SADB_GET: 7424 case SADB_ACQUIRE: 7425 case SADB_EXPIRE: 7426 ipseclog((LOG_DEBUG, "key_parse: must specify satype " 7427 "when msg type=%u.\n", msg->sadb_msg_type)); 7428 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7429 error = EINVAL; 7430 goto senderror; 7431 } 7432 break; 7433 case SADB_SATYPE_AH: 7434 case SADB_SATYPE_ESP: 7435 case SADB_X_SATYPE_IPCOMP: 7436 case SADB_X_SATYPE_TCPSIGNATURE: 7437 switch (msg->sadb_msg_type) { 7438 case SADB_X_SPDADD: 7439 case SADB_X_SPDDELETE: 7440 case SADB_X_SPDGET: 7441 case SADB_X_SPDDUMP: 7442 case SADB_X_SPDFLUSH: 7443 case SADB_X_SPDSETIDX: 7444 case SADB_X_SPDUPDATE: 7445 case SADB_X_SPDDELETE2: 7446 ipseclog((LOG_DEBUG, "key_parse: illegal satype=%u\n", 7447 msg->sadb_msg_type)); 7448 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7449 error = EINVAL; 7450 goto senderror; 7451 } 7452 break; 7453 case SADB_SATYPE_RSVP: 7454 case SADB_SATYPE_OSPFV2: 7455 case SADB_SATYPE_RIPV2: 7456 case SADB_SATYPE_MIP: 7457 ipseclog((LOG_DEBUG, "key_parse: type %u isn't supported.\n", 7458 msg->sadb_msg_satype)); 7459 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7460 error = EOPNOTSUPP; 7461 goto senderror; 7462 case 1: /* XXX: What does it do? */ 7463 if (msg->sadb_msg_type == SADB_X_PROMISC) 7464 break; 7465 /*FALLTHROUGH*/ 7466 default: 7467 ipseclog((LOG_DEBUG, "key_parse: invalid type %u is passed.\n", 7468 msg->sadb_msg_satype)); 7469 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7470 error = EINVAL; 7471 goto senderror; 7472 } 7473 7474 /* check field of upper layer protocol and address family */ 7475 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7476 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7477 struct sadb_address *src0, *dst0; 7478 u_int plen; 7479 7480 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7481 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7482 7483 /* check upper layer protocol */ 7484 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7485 ipseclog((LOG_DEBUG, "key_parse: upper layer protocol mismatched.\n")); 7486 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 7487 error = EINVAL; 7488 goto senderror; 7489 } 7490 7491 /* check family */ 7492 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7493 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7494 ipseclog((LOG_DEBUG, "key_parse: address family mismatched.\n")); 7495 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 7496 error = EINVAL; 7497 goto senderror; 7498 } 7499 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7500 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7501 ipseclog((LOG_DEBUG, 7502 "key_parse: address struct size mismatched.\n")); 7503 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 7504 error = EINVAL; 7505 goto senderror; 7506 } 7507 7508 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7509 case AF_INET: 7510 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7511 sizeof(struct sockaddr_in)) { 7512 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 7513 error = EINVAL; 7514 goto senderror; 7515 } 7516 break; 7517 case AF_INET6: 7518 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7519 sizeof(struct sockaddr_in6)) { 7520 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 7521 error = EINVAL; 7522 goto senderror; 7523 } 7524 break; 7525 default: 7526 ipseclog((LOG_DEBUG, 7527 "key_parse: unsupported address family.\n")); 7528 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 7529 error = EAFNOSUPPORT; 7530 goto senderror; 7531 } 7532 7533 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7534 case AF_INET: 7535 plen = sizeof(struct in_addr) << 3; 7536 break; 7537 case AF_INET6: 7538 plen = sizeof(struct in6_addr) << 3; 7539 break; 7540 default: 7541 plen = 0; /*fool gcc*/ 7542 break; 7543 } 7544 7545 /* check max prefix length */ 7546 if (src0->sadb_address_prefixlen > plen || 7547 dst0->sadb_address_prefixlen > plen) { 7548 ipseclog((LOG_DEBUG, 7549 "key_parse: illegal prefixlen.\n")); 7550 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 7551 error = EINVAL; 7552 goto senderror; 7553 } 7554 7555 /* 7556 * prefixlen == 0 is valid because there can be a case when 7557 * all addresses are matched. 7558 */ 7559 } 7560 7561 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 7562 key_typesw[msg->sadb_msg_type] == NULL) { 7563 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 7564 error = EINVAL; 7565 goto senderror; 7566 } 7567 7568 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 7569 7570 senderror: 7571 msg->sadb_msg_errno = error; 7572 return key_sendup_mbuf(so, m, target); 7573 } 7574 7575 static int 7576 key_senderror(struct socket *so, struct mbuf *m, int code) 7577 { 7578 struct sadb_msg *msg; 7579 7580 if (m->m_len < sizeof(struct sadb_msg)) 7581 panic("invalid mbuf passed to key_senderror"); 7582 7583 msg = mtod(m, struct sadb_msg *); 7584 msg->sadb_msg_errno = code; 7585 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7586 } 7587 7588 /* 7589 * set the pointer to each header into message buffer. 7590 * m will be freed on error. 7591 * XXX larger-than-MCLBYTES extension? 7592 */ 7593 static int 7594 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 7595 { 7596 struct mbuf *n; 7597 struct sadb_ext *ext; 7598 size_t off, end; 7599 int extlen; 7600 int toff; 7601 7602 /* sanity check */ 7603 if (m == NULL || mhp == NULL) 7604 panic("key_align: NULL pointer is passed"); 7605 if (m->m_len < sizeof(struct sadb_msg)) 7606 panic("invalid mbuf passed to key_align"); 7607 7608 /* initialize */ 7609 memset(mhp, 0, sizeof(*mhp)); 7610 7611 mhp->msg = mtod(m, struct sadb_msg *); 7612 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7613 7614 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7615 extlen = end; /*just in case extlen is not updated*/ 7616 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7617 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7618 if (!n) { 7619 /* m is already freed */ 7620 return ENOBUFS; 7621 } 7622 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 7623 7624 /* set pointer */ 7625 switch (ext->sadb_ext_type) { 7626 case SADB_EXT_SA: 7627 case SADB_EXT_ADDRESS_SRC: 7628 case SADB_EXT_ADDRESS_DST: 7629 case SADB_EXT_ADDRESS_PROXY: 7630 case SADB_EXT_LIFETIME_CURRENT: 7631 case SADB_EXT_LIFETIME_HARD: 7632 case SADB_EXT_LIFETIME_SOFT: 7633 case SADB_EXT_KEY_AUTH: 7634 case SADB_EXT_KEY_ENCRYPT: 7635 case SADB_EXT_IDENTITY_SRC: 7636 case SADB_EXT_IDENTITY_DST: 7637 case SADB_EXT_SENSITIVITY: 7638 case SADB_EXT_PROPOSAL: 7639 case SADB_EXT_SUPPORTED_AUTH: 7640 case SADB_EXT_SUPPORTED_ENCRYPT: 7641 case SADB_EXT_SPIRANGE: 7642 case SADB_X_EXT_POLICY: 7643 case SADB_X_EXT_SA2: 7644 #ifdef IPSEC_NAT_T 7645 case SADB_X_EXT_NAT_T_TYPE: 7646 case SADB_X_EXT_NAT_T_SPORT: 7647 case SADB_X_EXT_NAT_T_DPORT: 7648 case SADB_X_EXT_NAT_T_OAI: 7649 case SADB_X_EXT_NAT_T_OAR: 7650 case SADB_X_EXT_NAT_T_FRAG: 7651 #endif 7652 /* duplicate check */ 7653 /* 7654 * XXX Are there duplication payloads of either 7655 * KEY_AUTH or KEY_ENCRYPT ? 7656 */ 7657 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7658 ipseclog((LOG_DEBUG, 7659 "key_align: duplicate ext_type %u " 7660 "is passed.\n", ext->sadb_ext_type)); 7661 m_freem(m); 7662 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT); 7663 return EINVAL; 7664 } 7665 break; 7666 default: 7667 ipseclog((LOG_DEBUG, 7668 "key_align: invalid ext_type %u is passed.\n", 7669 ext->sadb_ext_type)); 7670 m_freem(m); 7671 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE); 7672 return EINVAL; 7673 } 7674 7675 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7676 7677 if (key_validate_ext(ext, extlen)) { 7678 m_freem(m); 7679 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7680 return EINVAL; 7681 } 7682 7683 n = m_pulldown(m, off, extlen, &toff); 7684 if (!n) { 7685 /* m is already freed */ 7686 return ENOBUFS; 7687 } 7688 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 7689 7690 mhp->ext[ext->sadb_ext_type] = ext; 7691 mhp->extoff[ext->sadb_ext_type] = off; 7692 mhp->extlen[ext->sadb_ext_type] = extlen; 7693 } 7694 7695 if (off != end) { 7696 m_freem(m); 7697 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7698 return EINVAL; 7699 } 7700 7701 return 0; 7702 } 7703 7704 static int 7705 key_validate_ext(const struct sadb_ext *ext, int len) 7706 { 7707 const struct sockaddr *sa; 7708 enum { NONE, ADDR } checktype = NONE; 7709 int baselen = 0; 7710 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7711 7712 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7713 return EINVAL; 7714 7715 /* if it does not match minimum/maximum length, bail */ 7716 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7717 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7718 return EINVAL; 7719 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7720 return EINVAL; 7721 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7722 return EINVAL; 7723 7724 /* more checks based on sadb_ext_type XXX need more */ 7725 switch (ext->sadb_ext_type) { 7726 case SADB_EXT_ADDRESS_SRC: 7727 case SADB_EXT_ADDRESS_DST: 7728 case SADB_EXT_ADDRESS_PROXY: 7729 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7730 checktype = ADDR; 7731 break; 7732 case SADB_EXT_IDENTITY_SRC: 7733 case SADB_EXT_IDENTITY_DST: 7734 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7735 SADB_X_IDENTTYPE_ADDR) { 7736 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7737 checktype = ADDR; 7738 } else 7739 checktype = NONE; 7740 break; 7741 default: 7742 checktype = NONE; 7743 break; 7744 } 7745 7746 switch (checktype) { 7747 case NONE: 7748 break; 7749 case ADDR: 7750 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7751 if (len < baselen + sal) 7752 return EINVAL; 7753 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7754 return EINVAL; 7755 break; 7756 } 7757 7758 return 0; 7759 } 7760 7761 static int 7762 key_do_init(void) 7763 { 7764 int i; 7765 7766 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS); 7767 7768 callout_init(&key_timehandler_ch, 0); 7769 7770 for (i = 0; i < IPSEC_DIR_MAX; i++) { 7771 LIST_INIT(&sptree[i]); 7772 } 7773 7774 LIST_INIT(&sahtree); 7775 7776 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7777 LIST_INIT(®tree[i]); 7778 } 7779 7780 #ifndef IPSEC_NONBLOCK_ACQUIRE 7781 LIST_INIT(&acqtree); 7782 #endif 7783 LIST_INIT(&spacqtree); 7784 7785 /* system default */ 7786 ip4_def_policy.policy = IPSEC_POLICY_NONE; 7787 ip4_def_policy.refcnt++; /*never reclaim this*/ 7788 7789 #ifdef INET6 7790 ip6_def_policy.policy = IPSEC_POLICY_NONE; 7791 ip6_def_policy.refcnt++; /*never reclaim this*/ 7792 #endif 7793 7794 7795 #ifndef IPSEC_DEBUG2 7796 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 7797 #endif /*IPSEC_DEBUG2*/ 7798 7799 /* initialize key statistics */ 7800 keystat.getspi_count = 1; 7801 7802 aprint_verbose("IPsec: Initialized Security Association Processing.\n"); 7803 7804 return (0); 7805 } 7806 7807 void 7808 key_init(void) 7809 { 7810 static ONCE_DECL(key_init_once); 7811 7812 RUN_ONCE(&key_init_once, key_do_init); 7813 } 7814 7815 /* 7816 * XXX: maybe This function is called after INBOUND IPsec processing. 7817 * 7818 * Special check for tunnel-mode packets. 7819 * We must make some checks for consistency between inner and outer IP header. 7820 * 7821 * xxx more checks to be provided 7822 */ 7823 int 7824 key_checktunnelsanity( 7825 struct secasvar *sav, 7826 u_int family, 7827 void *src, 7828 void *dst 7829 ) 7830 { 7831 /* sanity check */ 7832 if (sav->sah == NULL) 7833 panic("sav->sah == NULL at key_checktunnelsanity"); 7834 7835 /* XXX: check inner IP header */ 7836 7837 return 1; 7838 } 7839 7840 #if 0 7841 #define hostnamelen strlen(hostname) 7842 7843 /* 7844 * Get FQDN for the host. 7845 * If the administrator configured hostname (by hostname(1)) without 7846 * domain name, returns nothing. 7847 */ 7848 static const char * 7849 key_getfqdn(void) 7850 { 7851 int i; 7852 int hasdot; 7853 static char fqdn[MAXHOSTNAMELEN + 1]; 7854 7855 if (!hostnamelen) 7856 return NULL; 7857 7858 /* check if it comes with domain name. */ 7859 hasdot = 0; 7860 for (i = 0; i < hostnamelen; i++) { 7861 if (hostname[i] == '.') 7862 hasdot++; 7863 } 7864 if (!hasdot) 7865 return NULL; 7866 7867 /* NOTE: hostname may not be NUL-terminated. */ 7868 memset(fqdn, 0, sizeof(fqdn)); 7869 memcpy(fqdn, hostname, hostnamelen); 7870 fqdn[hostnamelen] = '\0'; 7871 return fqdn; 7872 } 7873 7874 /* 7875 * get username@FQDN for the host/user. 7876 */ 7877 static const char * 7878 key_getuserfqdn(void) 7879 { 7880 const char *host; 7881 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2]; 7882 struct proc *p = curproc; 7883 char *q; 7884 7885 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session) 7886 return NULL; 7887 if (!(host = key_getfqdn())) 7888 return NULL; 7889 7890 /* NOTE: s_login may not be-NUL terminated. */ 7891 memset(userfqdn, 0, sizeof(userfqdn)); 7892 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME); 7893 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */ 7894 q = userfqdn + strlen(userfqdn); 7895 *q++ = '@'; 7896 memcpy(q, host, strlen(host)); 7897 q += strlen(host); 7898 *q++ = '\0'; 7899 7900 return userfqdn; 7901 } 7902 #endif 7903 7904 /* record data transfer on SA, and update timestamps */ 7905 void 7906 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 7907 { 7908 IPSEC_ASSERT(sav != NULL, ("key_sa_recordxfer: Null secasvar")); 7909 IPSEC_ASSERT(m != NULL, ("key_sa_recordxfer: Null mbuf")); 7910 if (!sav->lft_c) 7911 return; 7912 7913 /* 7914 * XXX Currently, there is a difference of bytes size 7915 * between inbound and outbound processing. 7916 */ 7917 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len; 7918 /* to check bytes lifetime is done in key_timehandler(). */ 7919 7920 /* 7921 * We use the number of packets as the unit of 7922 * sadb_lifetime_allocations. We increment the variable 7923 * whenever {esp,ah}_{in,out}put is called. 7924 */ 7925 sav->lft_c->sadb_lifetime_allocations++; 7926 /* XXX check for expires? */ 7927 7928 /* 7929 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock, 7930 * in seconds. HARD and SOFT lifetime are measured by the time 7931 * difference (again in seconds) from sadb_lifetime_usetime. 7932 * 7933 * usetime 7934 * v expire expire 7935 * -----+-----+--------+---> t 7936 * <--------------> HARD 7937 * <-----> SOFT 7938 */ 7939 sav->lft_c->sadb_lifetime_usetime = time_uptime; 7940 /* XXX check for expires? */ 7941 7942 return; 7943 } 7944 7945 /* dumb version */ 7946 void 7947 key_sa_routechange(struct sockaddr *dst) 7948 { 7949 struct secashead *sah; 7950 struct route *ro; 7951 const struct sockaddr *sa; 7952 7953 LIST_FOREACH(sah, &sahtree, chain) { 7954 ro = &sah->sa_route; 7955 sa = rtcache_getdst(ro); 7956 if (sa != NULL && dst->sa_len == sa->sa_len && 7957 memcmp(dst, sa, dst->sa_len) == 0) 7958 rtcache_free(ro); 7959 } 7960 7961 return; 7962 } 7963 7964 static void 7965 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 7966 { 7967 if (sav == NULL) 7968 panic("key_sa_chgstate called with sav == NULL"); 7969 7970 if (sav->state == state) 7971 return; 7972 7973 if (__LIST_CHAINED(sav)) 7974 LIST_REMOVE(sav, chain); 7975 7976 sav->state = state; 7977 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7978 } 7979 7980 /* XXX too much? */ 7981 static struct mbuf * 7982 key_alloc_mbuf(int l) 7983 { 7984 struct mbuf *m = NULL, *n; 7985 int len, t; 7986 7987 len = l; 7988 while (len > 0) { 7989 MGET(n, M_DONTWAIT, MT_DATA); 7990 if (n && len > MLEN) 7991 MCLGET(n, M_DONTWAIT); 7992 if (!n) { 7993 m_freem(m); 7994 return NULL; 7995 } 7996 7997 n->m_next = NULL; 7998 n->m_len = 0; 7999 n->m_len = M_TRAILINGSPACE(n); 8000 /* use the bottom of mbuf, hoping we can prepend afterwards */ 8001 if (n->m_len > len) { 8002 t = (n->m_len - len) & ~(sizeof(long) - 1); 8003 n->m_data += t; 8004 n->m_len = len; 8005 } 8006 8007 len -= n->m_len; 8008 8009 if (m) 8010 m_cat(m, n); 8011 else 8012 m = n; 8013 } 8014 8015 return m; 8016 } 8017 8018 static struct mbuf * 8019 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid) 8020 { 8021 struct secashead *sah; 8022 struct secasvar *sav; 8023 u_int16_t proto; 8024 u_int stateidx; 8025 u_int8_t satype; 8026 u_int8_t state; 8027 int cnt; 8028 struct mbuf *m, *n; 8029 8030 /* map satype to proto */ 8031 if ((proto = key_satype2proto(req_satype)) == 0) { 8032 *errorp = EINVAL; 8033 return (NULL); 8034 } 8035 8036 /* count sav entries to be sent to the userland. */ 8037 cnt = 0; 8038 LIST_FOREACH(sah, &sahtree, chain) { 8039 if (req_satype != SADB_SATYPE_UNSPEC && 8040 proto != sah->saidx.proto) 8041 continue; 8042 8043 for (stateidx = 0; 8044 stateidx < _ARRAYLEN(saorder_state_any); 8045 stateidx++) { 8046 state = saorder_state_any[stateidx]; 8047 LIST_FOREACH(sav, &sah->savtree[state], chain) { 8048 cnt++; 8049 } 8050 } 8051 } 8052 8053 if (cnt == 0) { 8054 *errorp = ENOENT; 8055 return (NULL); 8056 } 8057 8058 /* send this to the userland, one at a time. */ 8059 m = NULL; 8060 LIST_FOREACH(sah, &sahtree, chain) { 8061 if (req_satype != SADB_SATYPE_UNSPEC && 8062 proto != sah->saidx.proto) 8063 continue; 8064 8065 /* map proto to satype */ 8066 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 8067 m_freem(m); 8068 *errorp = EINVAL; 8069 return (NULL); 8070 } 8071 8072 for (stateidx = 0; 8073 stateidx < _ARRAYLEN(saorder_state_any); 8074 stateidx++) { 8075 state = saorder_state_any[stateidx]; 8076 LIST_FOREACH(sav, &sah->savtree[state], chain) { 8077 n = key_setdumpsa(sav, SADB_DUMP, satype, 8078 --cnt, pid); 8079 if (!n) { 8080 m_freem(m); 8081 *errorp = ENOBUFS; 8082 return (NULL); 8083 } 8084 8085 if (!m) 8086 m = n; 8087 else 8088 m_cat(m, n); 8089 } 8090 } 8091 } 8092 8093 if (!m) { 8094 *errorp = EINVAL; 8095 return (NULL); 8096 } 8097 8098 if ((m->m_flags & M_PKTHDR) != 0) { 8099 m->m_pkthdr.len = 0; 8100 for (n = m; n; n = n->m_next) 8101 m->m_pkthdr.len += n->m_len; 8102 } 8103 8104 *errorp = 0; 8105 return (m); 8106 } 8107 8108 static struct mbuf * 8109 key_setspddump(int *errorp, pid_t pid) 8110 { 8111 struct secpolicy *sp; 8112 int cnt; 8113 u_int dir; 8114 struct mbuf *m, *n; 8115 8116 /* search SPD entry and get buffer size. */ 8117 cnt = 0; 8118 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8119 LIST_FOREACH(sp, &sptree[dir], chain) { 8120 cnt++; 8121 } 8122 } 8123 8124 if (cnt == 0) { 8125 *errorp = ENOENT; 8126 return (NULL); 8127 } 8128 8129 m = NULL; 8130 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8131 LIST_FOREACH(sp, &sptree[dir], chain) { 8132 --cnt; 8133 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 8134 8135 if (!n) { 8136 *errorp = ENOBUFS; 8137 m_freem(m); 8138 return (NULL); 8139 } 8140 if (!m) 8141 m = n; 8142 else { 8143 m->m_pkthdr.len += n->m_pkthdr.len; 8144 m_cat(m, n); 8145 } 8146 } 8147 } 8148 8149 *errorp = 0; 8150 return (m); 8151 } 8152 8153 static int 8154 sysctl_net_key_dumpsa(SYSCTLFN_ARGS) 8155 { 8156 struct mbuf *m, *n; 8157 int err2 = 0; 8158 char *p, *ep; 8159 size_t len; 8160 int s, error; 8161 8162 if (newp) 8163 return (EPERM); 8164 if (namelen != 1) 8165 return (EINVAL); 8166 8167 s = splsoftnet(); 8168 m = key_setdump(name[0], &error, l->l_proc->p_pid); 8169 splx(s); 8170 if (!m) 8171 return (error); 8172 if (!oldp) 8173 *oldlenp = m->m_pkthdr.len; 8174 else { 8175 p = oldp; 8176 if (*oldlenp < m->m_pkthdr.len) { 8177 err2 = ENOMEM; 8178 ep = p + *oldlenp; 8179 } else { 8180 *oldlenp = m->m_pkthdr.len; 8181 ep = p + m->m_pkthdr.len; 8182 } 8183 for (n = m; n; n = n->m_next) { 8184 len = (ep - p < n->m_len) ? 8185 ep - p : n->m_len; 8186 error = copyout(mtod(n, const void *), p, len); 8187 p += len; 8188 if (error) 8189 break; 8190 } 8191 if (error == 0) 8192 error = err2; 8193 } 8194 m_freem(m); 8195 8196 return (error); 8197 } 8198 8199 static int 8200 sysctl_net_key_dumpsp(SYSCTLFN_ARGS) 8201 { 8202 struct mbuf *m, *n; 8203 int err2 = 0; 8204 char *p, *ep; 8205 size_t len; 8206 int s, error; 8207 8208 if (newp) 8209 return (EPERM); 8210 if (namelen != 0) 8211 return (EINVAL); 8212 8213 s = splsoftnet(); 8214 m = key_setspddump(&error, l->l_proc->p_pid); 8215 splx(s); 8216 if (!m) 8217 return (error); 8218 if (!oldp) 8219 *oldlenp = m->m_pkthdr.len; 8220 else { 8221 p = oldp; 8222 if (*oldlenp < m->m_pkthdr.len) { 8223 err2 = ENOMEM; 8224 ep = p + *oldlenp; 8225 } else { 8226 *oldlenp = m->m_pkthdr.len; 8227 ep = p + m->m_pkthdr.len; 8228 } 8229 for (n = m; n; n = n->m_next) { 8230 len = (ep - p < n->m_len) ? 8231 ep - p : n->m_len; 8232 error = copyout(mtod(n, const void *), p, len); 8233 p += len; 8234 if (error) 8235 break; 8236 } 8237 if (error == 0) 8238 error = err2; 8239 } 8240 m_freem(m); 8241 8242 return (error); 8243 } 8244 8245 /* 8246 * Create sysctl tree for native FAST_IPSEC key knobs, originally 8247 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }. 8248 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 }; 8249 * and in any case the part of our sysctl namespace used for dumping the 8250 * SPD and SA database *HAS* to be compatible with the KAME sysctl 8251 * namespace, for API reasons. 8252 * 8253 * Pending a consensus on the right way to fix this, add a level of 8254 * indirection in how we number the `native' FAST_IPSEC key nodes; 8255 * and (as requested by Andrew Brown) move registration of the 8256 * KAME-compatible names to a separate function. 8257 */ 8258 #if 0 8259 # define FAST_IPSEC_PFKEY PF_KEY_V2 8260 # define FAST_IPSEC_PFKEY_NAME "keyv2" 8261 #else 8262 # define FAST_IPSEC_PFKEY PF_KEY 8263 # define FAST_IPSEC_PFKEY_NAME "key" 8264 #endif 8265 8266 static int 8267 sysctl_net_key_stats(SYSCTLFN_ARGS) 8268 { 8269 8270 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS)); 8271 } 8272 8273 SYSCTL_SETUP(sysctl_net_keyv2_setup, "sysctl net.keyv2 subtree setup") 8274 { 8275 8276 sysctl_createv(clog, 0, NULL, NULL, 8277 CTLFLAG_PERMANENT, 8278 CTLTYPE_NODE, "net", NULL, 8279 NULL, 0, NULL, 0, 8280 CTL_NET, CTL_EOL); 8281 sysctl_createv(clog, 0, NULL, NULL, 8282 CTLFLAG_PERMANENT, 8283 CTLTYPE_NODE, FAST_IPSEC_PFKEY_NAME, NULL, 8284 NULL, 0, NULL, 0, 8285 CTL_NET, FAST_IPSEC_PFKEY, CTL_EOL); 8286 8287 sysctl_createv(clog, 0, NULL, NULL, 8288 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8289 CTLTYPE_INT, "debug", NULL, 8290 NULL, 0, &key_debug_level, 0, 8291 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL); 8292 sysctl_createv(clog, 0, NULL, NULL, 8293 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8294 CTLTYPE_INT, "spi_try", NULL, 8295 NULL, 0, &key_spi_trycnt, 0, 8296 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL); 8297 sysctl_createv(clog, 0, NULL, NULL, 8298 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8299 CTLTYPE_INT, "spi_min_value", NULL, 8300 NULL, 0, &key_spi_minval, 0, 8301 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL); 8302 sysctl_createv(clog, 0, NULL, NULL, 8303 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8304 CTLTYPE_INT, "spi_max_value", NULL, 8305 NULL, 0, &key_spi_maxval, 0, 8306 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL); 8307 sysctl_createv(clog, 0, NULL, NULL, 8308 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8309 CTLTYPE_INT, "random_int", NULL, 8310 NULL, 0, &key_int_random, 0, 8311 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL); 8312 sysctl_createv(clog, 0, NULL, NULL, 8313 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8314 CTLTYPE_INT, "larval_lifetime", NULL, 8315 NULL, 0, &key_larval_lifetime, 0, 8316 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL); 8317 sysctl_createv(clog, 0, NULL, NULL, 8318 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8319 CTLTYPE_INT, "blockacq_count", NULL, 8320 NULL, 0, &key_blockacq_count, 0, 8321 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL); 8322 sysctl_createv(clog, 0, NULL, NULL, 8323 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8324 CTLTYPE_INT, "blockacq_lifetime", NULL, 8325 NULL, 0, &key_blockacq_lifetime, 0, 8326 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL); 8327 sysctl_createv(clog, 0, NULL, NULL, 8328 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8329 CTLTYPE_INT, "esp_keymin", NULL, 8330 NULL, 0, &ipsec_esp_keymin, 0, 8331 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL); 8332 sysctl_createv(clog, 0, NULL, NULL, 8333 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8334 CTLTYPE_INT, "prefered_oldsa", NULL, 8335 NULL, 0, &key_prefered_oldsa, 0, 8336 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL); 8337 sysctl_createv(clog, 0, NULL, NULL, 8338 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8339 CTLTYPE_INT, "esp_auth", NULL, 8340 NULL, 0, &ipsec_esp_auth, 0, 8341 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL); 8342 sysctl_createv(clog, 0, NULL, NULL, 8343 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8344 CTLTYPE_INT, "ah_keymin", NULL, 8345 NULL, 0, &ipsec_ah_keymin, 0, 8346 CTL_NET, FAST_IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL); 8347 sysctl_createv(clog, 0, NULL, NULL, 8348 CTLFLAG_PERMANENT, 8349 CTLTYPE_STRUCT, "stats", 8350 SYSCTL_DESCR("PF_KEY statistics"), 8351 sysctl_net_key_stats, 0, NULL, 0, 8352 CTL_NET, FAST_IPSEC_PFKEY, CTL_CREATE, CTL_EOL); 8353 } 8354 8355 /* 8356 * Register sysctl names used by setkey(8). For historical reasons, 8357 * and to share a single API, these names appear under { CTL_NET, PF_KEY } 8358 * for both FAST_IPSEC and KAME IPSEC. 8359 */ 8360 SYSCTL_SETUP(sysctl_net_key_compat_setup, "sysctl net.key subtree setup for FAST_IPSEC") 8361 { 8362 8363 /* Make sure net.key exists before we register nodes underneath it. */ 8364 sysctl_createv(clog, 0, NULL, NULL, 8365 CTLFLAG_PERMANENT, 8366 CTLTYPE_NODE, "net", NULL, 8367 NULL, 0, NULL, 0, 8368 CTL_NET, CTL_EOL); 8369 sysctl_createv(clog, 0, NULL, NULL, 8370 CTLFLAG_PERMANENT, 8371 CTLTYPE_NODE, "key", NULL, 8372 NULL, 0, NULL, 0, 8373 CTL_NET, PF_KEY, CTL_EOL); 8374 8375 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */ 8376 sysctl_createv(clog, 0, NULL, NULL, 8377 CTLFLAG_PERMANENT, 8378 CTLTYPE_STRUCT, "dumpsa", NULL, 8379 sysctl_net_key_dumpsa, 0, NULL, 0, 8380 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL); 8381 sysctl_createv(clog, 0, NULL, NULL, 8382 CTLFLAG_PERMANENT, 8383 CTLTYPE_STRUCT, "dumpsp", NULL, 8384 sysctl_net_key_dumpsp, 0, NULL, 0, 8385 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL); 8386 } 8387