1 /* $NetBSD: key.c,v 1.235 2017/11/08 10:35:30 ozaki-r Exp $ */ 2 /* $FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */ 3 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 4 5 /* 6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the project nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.235 2017/11/08 10:35:30 ozaki-r Exp $"); 36 37 /* 38 * This code is referred to RFC 2367 39 */ 40 41 #if defined(_KERNEL_OPT) 42 #include "opt_inet.h" 43 #include "opt_ipsec.h" 44 #include "opt_gateway.h" 45 #include "opt_net_mpsafe.h" 46 #endif 47 48 #include <sys/types.h> 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/callout.h> 52 #include <sys/kernel.h> 53 #include <sys/mbuf.h> 54 #include <sys/domain.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/errno.h> 59 #include <sys/proc.h> 60 #include <sys/queue.h> 61 #include <sys/syslog.h> 62 #include <sys/once.h> 63 #include <sys/cprng.h> 64 #include <sys/psref.h> 65 #include <sys/lwp.h> 66 #include <sys/workqueue.h> 67 #include <sys/kmem.h> 68 #include <sys/cpu.h> 69 #include <sys/atomic.h> 70 #include <sys/pslist.h> 71 #include <sys/mutex.h> 72 #include <sys/condvar.h> 73 #include <sys/localcount.h> 74 #include <sys/pserialize.h> 75 76 #include <net/if.h> 77 #include <net/route.h> 78 79 #include <netinet/in.h> 80 #include <netinet/in_systm.h> 81 #include <netinet/ip.h> 82 #include <netinet/in_var.h> 83 #ifdef INET 84 #include <netinet/ip_var.h> 85 #endif 86 87 #ifdef INET6 88 #include <netinet/ip6.h> 89 #include <netinet6/in6_var.h> 90 #include <netinet6/ip6_var.h> 91 #endif /* INET6 */ 92 93 #ifdef INET 94 #include <netinet/in_pcb.h> 95 #endif 96 #ifdef INET6 97 #include <netinet6/in6_pcb.h> 98 #endif /* INET6 */ 99 100 #include <net/pfkeyv2.h> 101 #include <netipsec/keydb.h> 102 #include <netipsec/key.h> 103 #include <netipsec/keysock.h> 104 #include <netipsec/key_debug.h> 105 106 #include <netipsec/ipsec.h> 107 #ifdef INET6 108 #include <netipsec/ipsec6.h> 109 #endif 110 #include <netipsec/ipsec_private.h> 111 112 #include <netipsec/xform.h> 113 #include <netipsec/ipcomp.h> 114 115 116 #include <net/net_osdep.h> 117 118 #define FULLMASK 0xff 119 #define _BITS(bytes) ((bytes) << 3) 120 121 #define PORT_NONE 0 122 #define PORT_LOOSE 1 123 #define PORT_STRICT 2 124 125 percpu_t *pfkeystat_percpu; 126 127 /* 128 * Note on SA reference counting: 129 * - SAs that are not in DEAD state will have (total external reference + 1) 130 * following value in reference count field. they cannot be freed and are 131 * referenced from SA header. 132 * - SAs that are in DEAD state will have (total external reference) 133 * in reference count field. they are ready to be freed. reference from 134 * SA header will be removed in key_delsav(), when the reference count 135 * field hits 0 (= no external reference other than from SA header. 136 */ 137 138 u_int32_t key_debug_level = 0; 139 static u_int key_spi_trycnt = 1000; 140 static u_int32_t key_spi_minval = 0x100; 141 static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */ 142 static u_int32_t policy_id = 0; 143 static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/ 144 static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/ 145 static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/ 146 static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/ 147 static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/ 148 149 static u_int32_t acq_seq = 0; 150 151 /* 152 * Locking order: there is no order for now; it means that any locks aren't 153 * overlapped. 154 */ 155 /* 156 * Locking notes on SPD: 157 * - Modifications to the key_spd.splist must be done with holding key_spd.lock 158 * which is a adaptive mutex 159 * - Read accesses to the key_spd.splist must be in pserialize(9) read sections 160 * - SP's lifetime is managed by localcount(9) 161 * - An SP that has been inserted to the key_spd.splist is initially referenced 162 * by none, i.e., a reference from the key_spd.splist isn't counted 163 * - When an SP is being destroyed, we change its state as DEAD, wait for 164 * references to the SP to be released, and then deallocate the SP 165 * (see key_unlink_sp) 166 * - Getting an SP 167 * - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx) 168 * - Must iterate the list and increment the reference count of a found SP 169 * (by key_sp_ref) in a pserialize read section 170 * - We can gain another reference from a held SP only if we check its state 171 * and take its reference in a pserialize read section 172 * (see esp_output for example) 173 * - We may get an SP from an SP cache. See below 174 * - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref) 175 * - Updating member variables of an SP 176 * - Most member variables of an SP are immutable 177 * - Only sp->state and sp->lastused can be changed 178 * - sp->state of an SP is updated only when destroying it under key_spd.lock 179 * - SP caches 180 * - SPs can be cached in PCBs 181 * - The lifetime of the caches is controlled by the global generation counter 182 * (ipsec_spdgen) 183 * - The global counter value is stored when an SP is cached 184 * - If the stored value is different from the global counter then the cache 185 * is considered invalidated 186 * - The counter is incremented when an SP is being destroyed 187 * - So checking the generation and taking a reference to an SP should be 188 * in a pserialize read section 189 * - Note that caching doesn't increment the reference counter of an SP 190 * - SPs in sockets 191 * - Userland programs can set a policy to a socket by 192 * setsockopt(IP_IPSEC_POLICY) 193 * - Such policies (SPs) are set to a socket (PCB) and also inserted to 194 * the key_spd.socksplist list (not the key_spd.splist) 195 * - Such a policy is destroyed when a corresponding socket is destroed, 196 * however, a socket can be destroyed in softint so we cannot destroy 197 * it directly instead we just mark it DEAD and delay the destruction 198 * until GC by the timer 199 */ 200 /* 201 * Locking notes on SAD: 202 * - Data structures 203 * - SAs are managed by the list called key_sad.sahlist and sav lists of sah 204 * entries 205 * - An sav is supposed to be an SA from a viewpoint of users 206 * - A sah has sav lists for each SA state 207 * - Multiple sahs with the same saidx can exist 208 * - Only one entry has MATURE state and others should be DEAD 209 * - DEAD entries are just ignored from searching 210 * - Modifications to the key_sad.sahlist and sah.savlist must be done with 211 * holding key_sad.lock which is a adaptive mutex 212 * - Read accesses to the key_sad.sahlist and sah.savlist must be in 213 * pserialize(9) read sections 214 * - sah's lifetime is managed by localcount(9) 215 * - Getting an sah entry 216 * - We get an sah from the key_sad.sahlist 217 * - Must iterate the list and increment the reference count of a found sah 218 * (by key_sah_ref) in a pserialize read section 219 * - A gotten sah must be released after use by key_sah_unref 220 * - An sah is destroyed when its state become DEAD and no sav is 221 * listed to the sah 222 * - The destruction is done only in the timer (see key_timehandler_sad) 223 * - sav's lifetime is managed by localcount(9) 224 * - Getting an sav entry 225 * - First get an sah by saidx and get an sav from either of sah's savlists 226 * - Must iterate the list and increment the reference count of a found sav 227 * (by key_sa_ref) in a pserialize read section 228 * - We can gain another reference from a held SA only if we check its state 229 * and take its reference in a pserialize read section 230 * (see esp_output for example) 231 * - A gotten sav must be released after use by key_sa_unref 232 * - An sav is destroyed when its state become DEAD 233 */ 234 /* 235 * Locking notes on misc data: 236 * - All lists of key_misc are protected by key_misc.lock 237 * - key_misc.lock must be held even for read accesses 238 */ 239 240 /* SPD */ 241 static struct { 242 kmutex_t lock; 243 kcondvar_t cv_lc; 244 struct pslist_head splist[IPSEC_DIR_MAX]; 245 /* 246 * The list has SPs that are set to a socket via 247 * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy. 248 */ 249 struct pslist_head socksplist; 250 251 pserialize_t psz; 252 kcondvar_t cv_psz; 253 bool psz_performing; 254 } key_spd __cacheline_aligned; 255 256 /* SAD */ 257 static struct { 258 kmutex_t lock; 259 kcondvar_t cv_lc; 260 struct pslist_head sahlist; 261 262 pserialize_t psz; 263 kcondvar_t cv_psz; 264 bool psz_performing; 265 } key_sad __cacheline_aligned; 266 267 /* Misc data */ 268 static struct { 269 kmutex_t lock; 270 /* registed list */ 271 LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1]; 272 #ifndef IPSEC_NONBLOCK_ACQUIRE 273 /* acquiring list */ 274 LIST_HEAD(_acqlist, secacq) acqlist; 275 #endif 276 #ifdef notyet 277 /* SP acquiring list */ 278 LIST_HEAD(_spacqlist, secspacq) spacqlist; 279 #endif 280 } key_misc __cacheline_aligned; 281 282 /* Macros for key_spd.splist */ 283 #define SPLIST_ENTRY_INIT(sp) \ 284 PSLIST_ENTRY_INIT((sp), pslist_entry) 285 #define SPLIST_ENTRY_DESTROY(sp) \ 286 PSLIST_ENTRY_DESTROY((sp), pslist_entry) 287 #define SPLIST_WRITER_REMOVE(sp) \ 288 PSLIST_WRITER_REMOVE((sp), pslist_entry) 289 #define SPLIST_READER_EMPTY(dir) \ 290 (PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ 291 pslist_entry) == NULL) 292 #define SPLIST_READER_FOREACH(sp, dir) \ 293 PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)], \ 294 struct secpolicy, pslist_entry) 295 #define SPLIST_WRITER_FOREACH(sp, dir) \ 296 PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)], \ 297 struct secpolicy, pslist_entry) 298 #define SPLIST_WRITER_INSERT_AFTER(sp, new) \ 299 PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry) 300 #define SPLIST_WRITER_EMPTY(dir) \ 301 (PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \ 302 pslist_entry) == NULL) 303 #define SPLIST_WRITER_INSERT_HEAD(dir, sp) \ 304 PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp), \ 305 pslist_entry) 306 #define SPLIST_WRITER_NEXT(sp) \ 307 PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry) 308 #define SPLIST_WRITER_INSERT_TAIL(dir, new) \ 309 do { \ 310 if (SPLIST_WRITER_EMPTY((dir))) { \ 311 SPLIST_WRITER_INSERT_HEAD((dir), (new)); \ 312 } else { \ 313 struct secpolicy *__sp; \ 314 SPLIST_WRITER_FOREACH(__sp, (dir)) { \ 315 if (SPLIST_WRITER_NEXT(__sp) == NULL) { \ 316 SPLIST_WRITER_INSERT_AFTER(__sp,\ 317 (new)); \ 318 break; \ 319 } \ 320 } \ 321 } \ 322 } while (0) 323 324 /* Macros for key_spd.socksplist */ 325 #define SOCKSPLIST_WRITER_FOREACH(sp) \ 326 PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist, \ 327 struct secpolicy, pslist_entry) 328 #define SOCKSPLIST_READER_EMPTY() \ 329 (PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy, \ 330 pslist_entry) == NULL) 331 332 /* Macros for key_sad.sahlist */ 333 #define SAHLIST_ENTRY_INIT(sah) \ 334 PSLIST_ENTRY_INIT((sah), pslist_entry) 335 #define SAHLIST_ENTRY_DESTROY(sah) \ 336 PSLIST_ENTRY_DESTROY((sah), pslist_entry) 337 #define SAHLIST_WRITER_REMOVE(sah) \ 338 PSLIST_WRITER_REMOVE((sah), pslist_entry) 339 #define SAHLIST_READER_FOREACH(sah) \ 340 PSLIST_READER_FOREACH((sah), &key_sad.sahlist, struct secashead,\ 341 pslist_entry) 342 #define SAHLIST_WRITER_FOREACH(sah) \ 343 PSLIST_WRITER_FOREACH((sah), &key_sad.sahlist, struct secashead,\ 344 pslist_entry) 345 #define SAHLIST_WRITER_INSERT_HEAD(sah) \ 346 PSLIST_WRITER_INSERT_HEAD(&key_sad.sahlist, (sah), pslist_entry) 347 348 /* Macros for key_sad.sahlist#savlist */ 349 #define SAVLIST_ENTRY_INIT(sav) \ 350 PSLIST_ENTRY_INIT((sav), pslist_entry) 351 #define SAVLIST_ENTRY_DESTROY(sav) \ 352 PSLIST_ENTRY_DESTROY((sav), pslist_entry) 353 #define SAVLIST_READER_FIRST(sah, state) \ 354 PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ 355 pslist_entry) 356 #define SAVLIST_WRITER_REMOVE(sav) \ 357 PSLIST_WRITER_REMOVE((sav), pslist_entry) 358 #define SAVLIST_READER_FOREACH(sav, sah, state) \ 359 PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)], \ 360 struct secasvar, pslist_entry) 361 #define SAVLIST_WRITER_FOREACH(sav, sah, state) \ 362 PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)], \ 363 struct secasvar, pslist_entry) 364 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \ 365 PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry) 366 #define SAVLIST_WRITER_INSERT_AFTER(sav, new) \ 367 PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry) 368 #define SAVLIST_WRITER_EMPTY(sah, state) \ 369 (PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar, \ 370 pslist_entry) == NULL) 371 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \ 372 PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav), \ 373 pslist_entry) 374 #define SAVLIST_WRITER_NEXT(sav) \ 375 PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry) 376 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \ 377 do { \ 378 if (SAVLIST_WRITER_EMPTY((sah), (state))) { \ 379 SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\ 380 } else { \ 381 struct secasvar *__sav; \ 382 SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \ 383 if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\ 384 SAVLIST_WRITER_INSERT_AFTER(__sav,\ 385 (new)); \ 386 break; \ 387 } \ 388 } \ 389 } \ 390 } while (0) 391 #define SAVLIST_READER_NEXT(sav) \ 392 PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry) 393 394 395 /* search order for SAs */ 396 /* 397 * This order is important because we must select the oldest SA 398 * for outbound processing. For inbound, This is not important. 399 */ 400 static const u_int saorder_state_valid_prefer_old[] = { 401 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 402 }; 403 static const u_int saorder_state_valid_prefer_new[] = { 404 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 405 }; 406 407 static const u_int saorder_state_alive[] = { 408 /* except DEAD */ 409 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 410 }; 411 static const u_int saorder_state_any[] = { 412 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 413 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 414 }; 415 416 #define SASTATE_ALIVE_FOREACH(s) \ 417 for (int _i = 0; \ 418 _i < __arraycount(saorder_state_alive) ? \ 419 (s) = saorder_state_alive[_i], true : false; \ 420 _i++) 421 #define SASTATE_ANY_FOREACH(s) \ 422 for (int _i = 0; \ 423 _i < __arraycount(saorder_state_any) ? \ 424 (s) = saorder_state_any[_i], true : false; \ 425 _i++) 426 427 static const int minsize[] = { 428 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 429 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 430 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 431 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 432 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 433 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 434 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 435 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 436 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 437 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 438 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 439 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 440 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 441 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 442 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 443 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 444 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 445 0, /* SADB_X_EXT_KMPRIVATE */ 446 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 447 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 448 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 449 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 450 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 451 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 452 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 453 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 454 }; 455 static const int maxsize[] = { 456 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 457 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 458 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 459 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 460 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 461 0, /* SADB_EXT_ADDRESS_SRC */ 462 0, /* SADB_EXT_ADDRESS_DST */ 463 0, /* SADB_EXT_ADDRESS_PROXY */ 464 0, /* SADB_EXT_KEY_AUTH */ 465 0, /* SADB_EXT_KEY_ENCRYPT */ 466 0, /* SADB_EXT_IDENTITY_SRC */ 467 0, /* SADB_EXT_IDENTITY_DST */ 468 0, /* SADB_EXT_SENSITIVITY */ 469 0, /* SADB_EXT_PROPOSAL */ 470 0, /* SADB_EXT_SUPPORTED_AUTH */ 471 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 472 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 473 0, /* SADB_X_EXT_KMPRIVATE */ 474 0, /* SADB_X_EXT_POLICY */ 475 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 476 sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */ 477 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */ 478 sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */ 479 0, /* SADB_X_EXT_NAT_T_OAI */ 480 0, /* SADB_X_EXT_NAT_T_OAR */ 481 sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */ 482 }; 483 484 static int ipsec_esp_keymin = 256; 485 static int ipsec_esp_auth = 0; 486 static int ipsec_ah_keymin = 128; 487 488 #ifdef SYSCTL_DECL 489 SYSCTL_DECL(_net_key); 490 #endif 491 492 #ifdef SYSCTL_INT 493 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \ 494 &key_debug_level, 0, ""); 495 496 /* max count of trial for the decision of spi value */ 497 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \ 498 &key_spi_trycnt, 0, ""); 499 500 /* minimum spi value to allocate automatically. */ 501 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \ 502 &key_spi_minval, 0, ""); 503 504 /* maximun spi value to allocate automatically. */ 505 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \ 506 &key_spi_maxval, 0, ""); 507 508 /* interval to initialize randseed */ 509 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \ 510 &key_int_random, 0, ""); 511 512 /* lifetime for larval SA */ 513 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \ 514 &key_larval_lifetime, 0, ""); 515 516 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 517 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \ 518 &key_blockacq_count, 0, ""); 519 520 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 521 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \ 522 &key_blockacq_lifetime, 0, ""); 523 524 /* ESP auth */ 525 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \ 526 &ipsec_esp_auth, 0, ""); 527 528 /* minimum ESP key length */ 529 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \ 530 &ipsec_esp_keymin, 0, ""); 531 532 /* minimum AH key length */ 533 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \ 534 &ipsec_ah_keymin, 0, ""); 535 536 /* perfered old SA rather than new SA */ 537 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\ 538 &key_prefered_oldsa, 0, ""); 539 #endif /* SYSCTL_INT */ 540 541 #define __LIST_CHAINED(elm) \ 542 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 543 #define LIST_INSERT_TAIL(head, elm, type, field) \ 544 do {\ 545 struct type *curelm = LIST_FIRST(head); \ 546 if (curelm == NULL) {\ 547 LIST_INSERT_HEAD(head, elm, field); \ 548 } else { \ 549 while (LIST_NEXT(curelm, field)) \ 550 curelm = LIST_NEXT(curelm, field);\ 551 LIST_INSERT_AFTER(curelm, elm, field);\ 552 }\ 553 } while (0) 554 555 #define KEY_CHKSASTATE(head, sav) \ 556 /* do */ { \ 557 if ((head) != (sav)) { \ 558 IPSECLOG(LOG_DEBUG, \ 559 "state mismatched (TREE=%d SA=%d)\n", \ 560 (head), (sav)); \ 561 continue; \ 562 } \ 563 } /* while (0) */ 564 565 #define KEY_CHKSPDIR(head, sp) \ 566 do { \ 567 if ((head) != (sp)) { \ 568 IPSECLOG(LOG_DEBUG, \ 569 "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\ 570 (head), (sp)); \ 571 } \ 572 } while (0) 573 574 /* 575 * set parameters into secasindex buffer. 576 * Must allocate secasindex buffer before calling this function. 577 */ 578 static int 579 key_setsecasidx(int, int, int, const struct sockaddr *, 580 const struct sockaddr *, struct secasindex *); 581 582 /* key statistics */ 583 struct _keystat { 584 u_long getspi_count; /* the avarage of count to try to get new SPI */ 585 } keystat; 586 587 struct sadb_msghdr { 588 struct sadb_msg *msg; 589 void *ext[SADB_EXT_MAX + 1]; 590 int extoff[SADB_EXT_MAX + 1]; 591 int extlen[SADB_EXT_MAX + 1]; 592 }; 593 594 static void 595 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *); 596 597 static const struct sockaddr * 598 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx) 599 { 600 601 return PFKEY_ADDR_SADDR(mhp->ext[idx]); 602 } 603 604 static struct mbuf * 605 key_fill_replymsg(struct mbuf *m, int seq) 606 { 607 struct sadb_msg *msg; 608 609 if (m->m_len < sizeof(*msg)) { 610 m = m_pullup(m, sizeof(*msg)); 611 if (m == NULL) 612 return NULL; 613 } 614 msg = mtod(m, struct sadb_msg *); 615 msg->sadb_msg_errno = 0; 616 msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 617 if (seq != 0) 618 msg->sadb_msg_seq = seq; 619 620 return m; 621 } 622 623 #if 0 624 static void key_freeso(struct socket *); 625 static void key_freesp_so(struct secpolicy **); 626 #endif 627 static struct secpolicy *key_getsp (const struct secpolicyindex *); 628 static struct secpolicy *key_getspbyid (u_int32_t); 629 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *); 630 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t); 631 static void key_destroy_sp(struct secpolicy *); 632 static u_int16_t key_newreqid (void); 633 static struct mbuf *key_gather_mbuf (struct mbuf *, 634 const struct sadb_msghdr *, int, int, ...); 635 static int key_api_spdadd(struct socket *, struct mbuf *, 636 const struct sadb_msghdr *); 637 static u_int32_t key_getnewspid (void); 638 static int key_api_spddelete(struct socket *, struct mbuf *, 639 const struct sadb_msghdr *); 640 static int key_api_spddelete2(struct socket *, struct mbuf *, 641 const struct sadb_msghdr *); 642 static int key_api_spdget(struct socket *, struct mbuf *, 643 const struct sadb_msghdr *); 644 static int key_api_spdflush(struct socket *, struct mbuf *, 645 const struct sadb_msghdr *); 646 static int key_api_spddump(struct socket *, struct mbuf *, 647 const struct sadb_msghdr *); 648 static struct mbuf * key_setspddump (int *errorp, pid_t); 649 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid); 650 static int key_api_nat_map(struct socket *, struct mbuf *, 651 const struct sadb_msghdr *); 652 static struct mbuf *key_setdumpsp (struct secpolicy *, 653 u_int8_t, u_int32_t, pid_t); 654 static u_int key_getspreqmsglen (const struct secpolicy *); 655 static int key_spdexpire (struct secpolicy *); 656 static struct secashead *key_newsah (const struct secasindex *); 657 static void key_unlink_sah(struct secashead *); 658 static void key_destroy_sah(struct secashead *); 659 static bool key_sah_has_sav(struct secashead *); 660 static void key_sah_ref(struct secashead *); 661 static void key_sah_unref(struct secashead *); 662 static void key_init_sav(struct secasvar *); 663 static void key_destroy_sav(struct secasvar *); 664 static void key_destroy_sav_with_ref(struct secasvar *); 665 static struct secasvar *key_newsav(struct mbuf *, 666 const struct sadb_msghdr *, int *, const char*, int); 667 #define KEY_NEWSAV(m, sadb, e) \ 668 key_newsav(m, sadb, e, __func__, __LINE__) 669 static void key_delsav (struct secasvar *); 670 static struct secashead *key_getsah(const struct secasindex *, int); 671 static struct secashead *key_getsah_ref(const struct secasindex *, int); 672 static bool key_checkspidup(const struct secasindex *, u_int32_t); 673 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t); 674 static int key_setsaval (struct secasvar *, struct mbuf *, 675 const struct sadb_msghdr *); 676 static void key_freesaval(struct secasvar *); 677 static int key_init_xform(struct secasvar *); 678 static void key_clear_xform(struct secasvar *); 679 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t, 680 u_int8_t, u_int32_t, u_int32_t); 681 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t); 682 static struct mbuf *key_setsadbxtype (u_int16_t); 683 static struct mbuf *key_setsadbxfrag (u_int16_t); 684 static void key_porttosaddr (union sockaddr_union *, u_int16_t); 685 static int key_checksalen (const union sockaddr_union *); 686 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t, 687 u_int32_t, pid_t, u_int16_t); 688 static struct mbuf *key_setsadbsa (struct secasvar *); 689 static struct mbuf *key_setsadbaddr (u_int16_t, 690 const struct sockaddr *, u_int8_t, u_int16_t); 691 #if 0 692 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *, 693 int, u_int64_t); 694 #endif 695 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t); 696 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t, 697 u_int32_t); 698 static void *key_newbuf (const void *, u_int); 699 #ifdef INET6 700 static int key_ismyaddr6 (const struct sockaddr_in6 *); 701 #endif 702 703 static void sysctl_net_keyv2_setup(struct sysctllog **); 704 static void sysctl_net_key_compat_setup(struct sysctllog **); 705 706 /* flags for key_saidx_match() */ 707 #define CMP_HEAD 1 /* protocol, addresses. */ 708 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 709 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 710 #define CMP_EXACTLY 4 /* all elements. */ 711 static int key_saidx_match(const struct secasindex *, 712 const struct secasindex *, int); 713 714 static int key_sockaddr_match(const struct sockaddr *, 715 const struct sockaddr *, int); 716 static int key_bb_match_withmask(const void *, const void *, u_int); 717 static u_int16_t key_satype2proto (u_int8_t); 718 static u_int8_t key_proto2satype (u_int16_t); 719 720 static int key_spidx_match_exactly(const struct secpolicyindex *, 721 const struct secpolicyindex *); 722 static int key_spidx_match_withmask(const struct secpolicyindex *, 723 const struct secpolicyindex *); 724 725 static int key_api_getspi(struct socket *, struct mbuf *, 726 const struct sadb_msghdr *); 727 static u_int32_t key_do_getnewspi (const struct sadb_spirange *, 728 const struct secasindex *); 729 static int key_handle_natt_info (struct secasvar *, 730 const struct sadb_msghdr *); 731 static int key_set_natt_ports (union sockaddr_union *, 732 union sockaddr_union *, 733 const struct sadb_msghdr *); 734 static int key_api_update(struct socket *, struct mbuf *, 735 const struct sadb_msghdr *); 736 #ifdef IPSEC_DOSEQCHECK 737 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t); 738 #endif 739 static int key_api_add(struct socket *, struct mbuf *, 740 const struct sadb_msghdr *); 741 static int key_setident (struct secashead *, struct mbuf *, 742 const struct sadb_msghdr *); 743 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *, 744 const struct sadb_msghdr *); 745 static int key_api_delete(struct socket *, struct mbuf *, 746 const struct sadb_msghdr *); 747 static int key_api_get(struct socket *, struct mbuf *, 748 const struct sadb_msghdr *); 749 750 static void key_getcomb_setlifetime (struct sadb_comb *); 751 static struct mbuf *key_getcomb_esp (void); 752 static struct mbuf *key_getcomb_ah (void); 753 static struct mbuf *key_getcomb_ipcomp (void); 754 static struct mbuf *key_getprop (const struct secasindex *); 755 756 static int key_acquire(const struct secasindex *, const struct secpolicy *); 757 static int key_acquire_sendup_mbuf_later(struct mbuf *); 758 static void key_acquire_sendup_pending_mbuf(void); 759 #ifndef IPSEC_NONBLOCK_ACQUIRE 760 static struct secacq *key_newacq (const struct secasindex *); 761 static struct secacq *key_getacq (const struct secasindex *); 762 static struct secacq *key_getacqbyseq (u_int32_t); 763 #endif 764 #ifdef notyet 765 static struct secspacq *key_newspacq (const struct secpolicyindex *); 766 static struct secspacq *key_getspacq (const struct secpolicyindex *); 767 #endif 768 static int key_api_acquire(struct socket *, struct mbuf *, 769 const struct sadb_msghdr *); 770 static int key_api_register(struct socket *, struct mbuf *, 771 const struct sadb_msghdr *); 772 static int key_expire (struct secasvar *); 773 static int key_api_flush(struct socket *, struct mbuf *, 774 const struct sadb_msghdr *); 775 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp, 776 int *lenp, pid_t pid); 777 static int key_api_dump(struct socket *, struct mbuf *, 778 const struct sadb_msghdr *); 779 static int key_api_promisc(struct socket *, struct mbuf *, 780 const struct sadb_msghdr *); 781 static int key_senderror (struct socket *, struct mbuf *, int); 782 static int key_validate_ext (const struct sadb_ext *, int); 783 static int key_align (struct mbuf *, struct sadb_msghdr *); 784 #if 0 785 static const char *key_getfqdn (void); 786 static const char *key_getuserfqdn (void); 787 #endif 788 static void key_sa_chgstate (struct secasvar *, u_int8_t); 789 790 static struct mbuf *key_alloc_mbuf (int); 791 792 static void key_timehandler(void *); 793 static void key_timehandler_work(struct work *, void *); 794 static struct callout key_timehandler_ch; 795 static struct workqueue *key_timehandler_wq; 796 static struct work key_timehandler_wk; 797 798 u_int 799 key_sp_refcnt(const struct secpolicy *sp) 800 { 801 802 /* FIXME */ 803 return 0; 804 } 805 806 #ifdef NET_MPSAFE 807 static void 808 key_spd_pserialize_perform(void) 809 { 810 811 KASSERT(mutex_owned(&key_spd.lock)); 812 813 while (key_spd.psz_performing) 814 cv_wait(&key_spd.cv_psz, &key_spd.lock); 815 key_spd.psz_performing = true; 816 mutex_exit(&key_spd.lock); 817 818 pserialize_perform(key_spd.psz); 819 820 mutex_enter(&key_spd.lock); 821 key_spd.psz_performing = false; 822 cv_broadcast(&key_spd.cv_psz); 823 } 824 #endif 825 826 /* 827 * Remove the sp from the key_spd.splist and wait for references to the sp 828 * to be released. key_spd.lock must be held. 829 */ 830 static void 831 key_unlink_sp(struct secpolicy *sp) 832 { 833 834 KASSERT(mutex_owned(&key_spd.lock)); 835 836 sp->state = IPSEC_SPSTATE_DEAD; 837 SPLIST_WRITER_REMOVE(sp); 838 839 /* Invalidate all cached SPD pointers in the PCBs. */ 840 ipsec_invalpcbcacheall(); 841 842 #ifdef NET_MPSAFE 843 KASSERT(mutex_ownable(softnet_lock)); 844 key_spd_pserialize_perform(); 845 #endif 846 847 localcount_drain(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); 848 } 849 850 /* 851 * Return 0 when there are known to be no SP's for the specified 852 * direction. Otherwise return 1. This is used by IPsec code 853 * to optimize performance. 854 */ 855 int 856 key_havesp(u_int dir) 857 { 858 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 859 !SPLIST_READER_EMPTY(dir) : 1); 860 } 861 862 /* %%% IPsec policy management */ 863 /* 864 * allocating a SP for OUTBOUND or INBOUND packet. 865 * Must call key_freesp() later. 866 * OUT: NULL: not found 867 * others: found and return the pointer. 868 */ 869 struct secpolicy * 870 key_lookup_sp_byspidx(const struct secpolicyindex *spidx, 871 u_int dir, const char* where, int tag) 872 { 873 struct secpolicy *sp; 874 int s; 875 876 KASSERT(spidx != NULL); 877 KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir); 878 879 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); 880 881 /* get a SP entry */ 882 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { 883 kdebug_secpolicyindex("objects", spidx); 884 } 885 886 s = pserialize_read_enter(); 887 SPLIST_READER_FOREACH(sp, dir) { 888 if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) { 889 kdebug_secpolicyindex("in SPD", &sp->spidx); 890 } 891 892 if (sp->state == IPSEC_SPSTATE_DEAD) 893 continue; 894 if (key_spidx_match_withmask(&sp->spidx, spidx)) 895 goto found; 896 } 897 sp = NULL; 898 found: 899 if (sp) { 900 /* sanity check */ 901 KEY_CHKSPDIR(sp->spidx.dir, dir); 902 903 /* found a SPD entry */ 904 sp->lastused = time_uptime; 905 key_sp_ref(sp, where, tag); 906 } 907 pserialize_read_exit(s); 908 909 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 910 "DP return SP:%p (ID=%u) refcnt %u\n", 911 sp, sp ? sp->id : 0, key_sp_refcnt(sp)); 912 return sp; 913 } 914 915 /* 916 * return a policy that matches this particular inbound packet. 917 * XXX slow 918 */ 919 struct secpolicy * 920 key_gettunnel(const struct sockaddr *osrc, 921 const struct sockaddr *odst, 922 const struct sockaddr *isrc, 923 const struct sockaddr *idst, 924 const char* where, int tag) 925 { 926 struct secpolicy *sp; 927 const int dir = IPSEC_DIR_INBOUND; 928 int s; 929 struct ipsecrequest *r1, *r2, *p; 930 struct secpolicyindex spidx; 931 932 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag); 933 934 if (isrc->sa_family != idst->sa_family) { 935 IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.", 936 isrc->sa_family, idst->sa_family); 937 sp = NULL; 938 goto done; 939 } 940 941 s = pserialize_read_enter(); 942 SPLIST_READER_FOREACH(sp, dir) { 943 if (sp->state == IPSEC_SPSTATE_DEAD) 944 continue; 945 946 r1 = r2 = NULL; 947 for (p = sp->req; p; p = p->next) { 948 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 949 continue; 950 951 r1 = r2; 952 r2 = p; 953 954 if (!r1) { 955 /* here we look at address matches only */ 956 spidx = sp->spidx; 957 if (isrc->sa_len > sizeof(spidx.src) || 958 idst->sa_len > sizeof(spidx.dst)) 959 continue; 960 memcpy(&spidx.src, isrc, isrc->sa_len); 961 memcpy(&spidx.dst, idst, idst->sa_len); 962 if (!key_spidx_match_withmask(&sp->spidx, &spidx)) 963 continue; 964 } else { 965 if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) || 966 !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE)) 967 continue; 968 } 969 970 if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) || 971 !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE)) 972 continue; 973 974 goto found; 975 } 976 } 977 sp = NULL; 978 found: 979 if (sp) { 980 sp->lastused = time_uptime; 981 key_sp_ref(sp, where, tag); 982 } 983 pserialize_read_exit(s); 984 done: 985 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 986 "DP return SP:%p (ID=%u) refcnt %u\n", 987 sp, sp ? sp->id : 0, key_sp_refcnt(sp)); 988 return sp; 989 } 990 991 /* 992 * allocating an SA entry for an *OUTBOUND* packet. 993 * checking each request entries in SP, and acquire an SA if need. 994 * OUT: 0: there are valid requests. 995 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 996 */ 997 int 998 key_checkrequest(const struct ipsecrequest *isr, const struct secasindex *saidx, 999 struct secasvar **ret) 1000 { 1001 u_int level; 1002 int error; 1003 struct secasvar *sav; 1004 1005 KASSERT(isr != NULL); 1006 KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT || 1007 saidx->mode == IPSEC_MODE_TUNNEL, 1008 "unexpected policy %u", saidx->mode); 1009 1010 /* get current level */ 1011 level = ipsec_get_reqlevel(isr); 1012 1013 /* 1014 * XXX guard against protocol callbacks from the crypto 1015 * thread as they reference ipsecrequest.sav which we 1016 * temporarily null out below. Need to rethink how we 1017 * handle bundled SA's in the callback thread. 1018 */ 1019 IPSEC_SPLASSERT_SOFTNET("key_checkrequest"); 1020 1021 sav = key_lookup_sa_bysaidx(saidx); 1022 if (sav != NULL) { 1023 *ret = sav; 1024 return 0; 1025 } 1026 1027 /* there is no SA */ 1028 error = key_acquire(saidx, isr->sp); 1029 if (error != 0) { 1030 /* XXX What should I do ? */ 1031 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", 1032 error); 1033 return error; 1034 } 1035 1036 if (level != IPSEC_LEVEL_REQUIRE) { 1037 /* XXX sigh, the interface to this routine is botched */ 1038 *ret = NULL; 1039 return 0; 1040 } else { 1041 return ENOENT; 1042 } 1043 } 1044 1045 /* 1046 * looking up a SA for policy entry from SAD. 1047 * NOTE: searching SAD of aliving state. 1048 * OUT: NULL: not found. 1049 * others: found and return the pointer. 1050 */ 1051 struct secasvar * 1052 key_lookup_sa_bysaidx(const struct secasindex *saidx) 1053 { 1054 struct secashead *sah; 1055 struct secasvar *sav = NULL; 1056 u_int stateidx, state; 1057 const u_int *saorder_state_valid; 1058 int arraysize; 1059 int s; 1060 1061 s = pserialize_read_enter(); 1062 sah = key_getsah(saidx, CMP_MODE_REQID); 1063 if (sah == NULL) 1064 goto out; 1065 1066 /* 1067 * search a valid state list for outbound packet. 1068 * This search order is important. 1069 */ 1070 if (key_prefered_oldsa) { 1071 saorder_state_valid = saorder_state_valid_prefer_old; 1072 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1073 } else { 1074 saorder_state_valid = saorder_state_valid_prefer_new; 1075 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1076 } 1077 1078 /* search valid state */ 1079 for (stateidx = 0; 1080 stateidx < arraysize; 1081 stateidx++) { 1082 1083 state = saorder_state_valid[stateidx]; 1084 1085 if (key_prefered_oldsa) 1086 sav = SAVLIST_READER_FIRST(sah, state); 1087 else { 1088 /* XXX need O(1) lookup */ 1089 struct secasvar *last = NULL; 1090 1091 SAVLIST_READER_FOREACH(sav, sah, state) 1092 last = sav; 1093 sav = last; 1094 } 1095 if (sav != NULL) { 1096 KEY_SA_REF(sav); 1097 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1098 "DP cause refcnt++:%d SA:%p\n", 1099 key_sa_refcnt(sav), sav); 1100 break; 1101 } 1102 } 1103 out: 1104 pserialize_read_exit(s); 1105 1106 return sav; 1107 } 1108 1109 #if 0 1110 static void 1111 key_sendup_message_delete(struct secasvar *sav) 1112 { 1113 struct mbuf *m, *result = 0; 1114 uint8_t satype; 1115 1116 satype = key_proto2satype(sav->sah->saidx.proto); 1117 if (satype == 0) 1118 goto msgfail; 1119 1120 m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1); 1121 if (m == NULL) 1122 goto msgfail; 1123 result = m; 1124 1125 /* set sadb_address for saidx's. */ 1126 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, 1127 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY); 1128 if (m == NULL) 1129 goto msgfail; 1130 m_cat(result, m); 1131 1132 /* set sadb_address for saidx's. */ 1133 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa, 1134 sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY); 1135 if (m == NULL) 1136 goto msgfail; 1137 m_cat(result, m); 1138 1139 /* create SA extension */ 1140 m = key_setsadbsa(sav); 1141 if (m == NULL) 1142 goto msgfail; 1143 m_cat(result, m); 1144 1145 if (result->m_len < sizeof(struct sadb_msg)) { 1146 result = m_pullup(result, sizeof(struct sadb_msg)); 1147 if (result == NULL) 1148 goto msgfail; 1149 } 1150 1151 result->m_pkthdr.len = 0; 1152 for (m = result; m; m = m->m_next) 1153 result->m_pkthdr.len += m->m_len; 1154 mtod(result, struct sadb_msg *)->sadb_msg_len = 1155 PFKEY_UNIT64(result->m_pkthdr.len); 1156 1157 key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 1158 result = NULL; 1159 msgfail: 1160 if (result) 1161 m_freem(result); 1162 } 1163 #endif 1164 1165 /* 1166 * allocating a usable SA entry for a *INBOUND* packet. 1167 * Must call key_freesav() later. 1168 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1169 * NULL: not found, or error occurred. 1170 * 1171 * In the comparison, no source address is used--for RFC2401 conformance. 1172 * To quote, from section 4.1: 1173 * A security association is uniquely identified by a triple consisting 1174 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1175 * security protocol (AH or ESP) identifier. 1176 * Note that, however, we do need to keep source address in IPsec SA. 1177 * IKE specification and PF_KEY specification do assume that we 1178 * keep source address in IPsec SA. We see a tricky situation here. 1179 * 1180 * sport and dport are used for NAT-T. network order is always used. 1181 */ 1182 struct secasvar * 1183 key_lookup_sa( 1184 const union sockaddr_union *dst, 1185 u_int proto, 1186 u_int32_t spi, 1187 u_int16_t sport, 1188 u_int16_t dport, 1189 const char* where, int tag) 1190 { 1191 struct secashead *sah; 1192 struct secasvar *sav; 1193 u_int stateidx, state; 1194 const u_int *saorder_state_valid; 1195 int arraysize, chkport; 1196 int s; 1197 1198 int must_check_spi = 1; 1199 int must_check_alg = 0; 1200 u_int16_t cpi = 0; 1201 u_int8_t algo = 0; 1202 1203 if ((sport != 0) && (dport != 0)) 1204 chkport = PORT_STRICT; 1205 else 1206 chkport = PORT_NONE; 1207 1208 KASSERT(dst != NULL); 1209 1210 /* 1211 * XXX IPCOMP case 1212 * We use cpi to define spi here. In the case where cpi <= 1213 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not 1214 * the real spi. In this case, don't check the spi but check the 1215 * algorithm 1216 */ 1217 1218 if (proto == IPPROTO_IPCOMP) { 1219 u_int32_t tmp; 1220 tmp = ntohl(spi); 1221 cpi = (u_int16_t) tmp; 1222 if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) { 1223 algo = (u_int8_t) cpi; 1224 must_check_spi = 0; 1225 must_check_alg = 1; 1226 } 1227 } 1228 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1229 "DP from %s:%u check_spi=%d, check_alg=%d\n", 1230 where, tag, must_check_spi, must_check_alg); 1231 1232 1233 /* 1234 * searching SAD. 1235 * XXX: to be checked internal IP header somewhere. Also when 1236 * IPsec tunnel packet is received. But ESP tunnel mode is 1237 * encrypted so we can't check internal IP header. 1238 */ 1239 if (key_prefered_oldsa) { 1240 saorder_state_valid = saorder_state_valid_prefer_old; 1241 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1242 } else { 1243 saorder_state_valid = saorder_state_valid_prefer_new; 1244 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1245 } 1246 s = pserialize_read_enter(); 1247 SAHLIST_READER_FOREACH(sah) { 1248 /* search valid state */ 1249 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1250 state = saorder_state_valid[stateidx]; 1251 SAVLIST_READER_FOREACH(sav, sah, state) { 1252 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1253 "try match spi %#x, %#x\n", 1254 ntohl(spi), ntohl(sav->spi)); 1255 /* sanity check */ 1256 KEY_CHKSASTATE(sav->state, state); 1257 /* do not return entries w/ unusable state */ 1258 if (!SADB_SASTATE_USABLE_P(sav)) { 1259 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1260 "bad state %d\n", sav->state); 1261 continue; 1262 } 1263 if (proto != sav->sah->saidx.proto) { 1264 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1265 "proto fail %d != %d\n", 1266 proto, sav->sah->saidx.proto); 1267 continue; 1268 } 1269 if (must_check_spi && spi != sav->spi) { 1270 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1271 "spi fail %#x != %#x\n", 1272 ntohl(spi), ntohl(sav->spi)); 1273 continue; 1274 } 1275 /* XXX only on the ipcomp case */ 1276 if (must_check_alg && algo != sav->alg_comp) { 1277 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 1278 "algo fail %d != %d\n", 1279 algo, sav->alg_comp); 1280 continue; 1281 } 1282 1283 #if 0 /* don't check src */ 1284 /* Fix port in src->sa */ 1285 1286 /* check src address */ 1287 if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE)) 1288 continue; 1289 #endif 1290 /* fix port of dst address XXX*/ 1291 key_porttosaddr(__UNCONST(dst), dport); 1292 /* check dst address */ 1293 if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport)) 1294 continue; 1295 key_sa_ref(sav, where, tag); 1296 goto done; 1297 } 1298 } 1299 } 1300 sav = NULL; 1301 done: 1302 pserialize_read_exit(s); 1303 1304 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1305 "DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav)); 1306 return sav; 1307 } 1308 1309 static void 1310 key_validate_savlist(const struct secashead *sah, const u_int state) 1311 { 1312 #ifdef DEBUG 1313 struct secasvar *sav, *next; 1314 int s; 1315 1316 /* 1317 * The list should be sorted by lft_c->sadb_lifetime_addtime 1318 * in ascending order. 1319 */ 1320 s = pserialize_read_enter(); 1321 SAVLIST_READER_FOREACH(sav, sah, state) { 1322 next = SAVLIST_READER_NEXT(sav); 1323 if (next != NULL && 1324 sav->lft_c != NULL && next->lft_c != NULL) { 1325 KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <= 1326 next->lft_c->sadb_lifetime_addtime, 1327 "savlist is not sorted: sah=%p, state=%d, " 1328 "sav=%" PRIu64 ", next=%" PRIu64, sah, state, 1329 sav->lft_c->sadb_lifetime_addtime, 1330 next->lft_c->sadb_lifetime_addtime); 1331 } 1332 } 1333 pserialize_read_exit(s); 1334 #endif 1335 } 1336 1337 void 1338 key_init_sp(struct secpolicy *sp) 1339 { 1340 1341 ASSERT_SLEEPABLE(); 1342 1343 sp->state = IPSEC_SPSTATE_ALIVE; 1344 if (sp->policy == IPSEC_POLICY_IPSEC) 1345 KASSERT(sp->req != NULL); 1346 localcount_init(&sp->localcount); 1347 SPLIST_ENTRY_INIT(sp); 1348 } 1349 1350 /* 1351 * Must be called in a pserialize read section. A held SP 1352 * must be released by key_sp_unref after use. 1353 */ 1354 void 1355 key_sp_ref(struct secpolicy *sp, const char* where, int tag) 1356 { 1357 1358 localcount_acquire(&sp->localcount); 1359 1360 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1361 "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n", 1362 sp, sp->id, where, tag, key_sp_refcnt(sp)); 1363 } 1364 1365 /* 1366 * Must be called without holding key_spd.lock because the lock 1367 * would be held in localcount_release. 1368 */ 1369 void 1370 key_sp_unref(struct secpolicy *sp, const char* where, int tag) 1371 { 1372 1373 KDASSERT(mutex_ownable(&key_spd.lock)); 1374 1375 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1376 "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n", 1377 sp, sp->id, where, tag, key_sp_refcnt(sp)); 1378 1379 localcount_release(&sp->localcount, &key_spd.cv_lc, &key_spd.lock); 1380 } 1381 1382 static void 1383 key_init_sav(struct secasvar *sav) 1384 { 1385 1386 ASSERT_SLEEPABLE(); 1387 1388 localcount_init(&sav->localcount); 1389 SAVLIST_ENTRY_INIT(sav); 1390 } 1391 1392 u_int 1393 key_sa_refcnt(const struct secasvar *sav) 1394 { 1395 1396 /* FIXME */ 1397 return 0; 1398 } 1399 1400 void 1401 key_sa_ref(struct secasvar *sav, const char* where, int tag) 1402 { 1403 1404 localcount_acquire(&sav->localcount); 1405 1406 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1407 "DP cause refcnt++: SA:%p from %s:%u\n", 1408 sav, where, tag); 1409 } 1410 1411 void 1412 key_sa_unref(struct secasvar *sav, const char* where, int tag) 1413 { 1414 1415 KDASSERT(mutex_ownable(&key_sad.lock)); 1416 1417 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1418 "DP cause refcnt--: SA:%p from %s:%u\n", 1419 sav, where, tag); 1420 1421 localcount_release(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1422 } 1423 1424 #if 0 1425 /* 1426 * Must be called after calling key_lookup_sp*(). 1427 * For the packet with socket. 1428 */ 1429 static void 1430 key_freeso(struct socket *so) 1431 { 1432 /* sanity check */ 1433 KASSERT(so != NULL); 1434 1435 switch (so->so_proto->pr_domain->dom_family) { 1436 #ifdef INET 1437 case PF_INET: 1438 { 1439 struct inpcb *pcb = sotoinpcb(so); 1440 1441 /* Does it have a PCB ? */ 1442 if (pcb == NULL) 1443 return; 1444 1445 struct inpcbpolicy *sp = pcb->inp_sp; 1446 key_freesp_so(&sp->sp_in); 1447 key_freesp_so(&sp->sp_out); 1448 } 1449 break; 1450 #endif 1451 #ifdef INET6 1452 case PF_INET6: 1453 { 1454 #ifdef HAVE_NRL_INPCB 1455 struct inpcb *pcb = sotoinpcb(so); 1456 struct inpcbpolicy *sp = pcb->inp_sp; 1457 1458 /* Does it have a PCB ? */ 1459 if (pcb == NULL) 1460 return; 1461 key_freesp_so(&sp->sp_in); 1462 key_freesp_so(&sp->sp_out); 1463 #else 1464 struct in6pcb *pcb = sotoin6pcb(so); 1465 1466 /* Does it have a PCB ? */ 1467 if (pcb == NULL) 1468 return; 1469 key_freesp_so(&pcb->in6p_sp->sp_in); 1470 key_freesp_so(&pcb->in6p_sp->sp_out); 1471 #endif 1472 } 1473 break; 1474 #endif /* INET6 */ 1475 default: 1476 IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n", 1477 so->so_proto->pr_domain->dom_family); 1478 return; 1479 } 1480 } 1481 1482 static void 1483 key_freesp_so(struct secpolicy **sp) 1484 { 1485 1486 KASSERT(sp != NULL); 1487 KASSERT(*sp != NULL); 1488 1489 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1490 (*sp)->policy == IPSEC_POLICY_BYPASS) 1491 return; 1492 1493 KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC, 1494 "invalid policy %u", (*sp)->policy); 1495 KEY_SP_UNREF(&sp); 1496 } 1497 #endif 1498 1499 #ifdef NET_MPSAFE 1500 static void 1501 key_sad_pserialize_perform(void) 1502 { 1503 1504 KASSERT(mutex_owned(&key_sad.lock)); 1505 1506 while (key_sad.psz_performing) 1507 cv_wait(&key_sad.cv_psz, &key_sad.lock); 1508 key_sad.psz_performing = true; 1509 mutex_exit(&key_sad.lock); 1510 1511 pserialize_perform(key_sad.psz); 1512 1513 mutex_enter(&key_sad.lock); 1514 key_sad.psz_performing = false; 1515 cv_broadcast(&key_sad.cv_psz); 1516 } 1517 #endif 1518 1519 /* 1520 * Remove the sav from the savlist of its sah and wait for references to the sav 1521 * to be released. key_sad.lock must be held. 1522 */ 1523 static void 1524 key_unlink_sav(struct secasvar *sav) 1525 { 1526 1527 KASSERT(mutex_owned(&key_sad.lock)); 1528 1529 SAVLIST_WRITER_REMOVE(sav); 1530 1531 #ifdef NET_MPSAFE 1532 KASSERT(mutex_ownable(softnet_lock)); 1533 key_sad_pserialize_perform(); 1534 #endif 1535 1536 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1537 } 1538 1539 /* 1540 * Destroy an sav where the sav must be unlinked from an sah 1541 * by say key_unlink_sav. 1542 */ 1543 static void 1544 key_destroy_sav(struct secasvar *sav) 1545 { 1546 1547 ASSERT_SLEEPABLE(); 1548 1549 localcount_fini(&sav->localcount); 1550 SAVLIST_ENTRY_DESTROY(sav); 1551 1552 key_delsav(sav); 1553 } 1554 1555 /* 1556 * Destroy sav with holding its reference. 1557 */ 1558 static void 1559 key_destroy_sav_with_ref(struct secasvar *sav) 1560 { 1561 1562 ASSERT_SLEEPABLE(); 1563 1564 mutex_enter(&key_sad.lock); 1565 sav->state = SADB_SASTATE_DEAD; 1566 SAVLIST_WRITER_REMOVE(sav); 1567 mutex_exit(&key_sad.lock); 1568 1569 /* We cannot unref with holding key_sad.lock */ 1570 KEY_SA_UNREF(&sav); 1571 1572 mutex_enter(&key_sad.lock); 1573 #ifdef NET_MPSAFE 1574 KASSERT(mutex_ownable(softnet_lock)); 1575 key_sad_pserialize_perform(); 1576 #endif 1577 localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock); 1578 mutex_exit(&key_sad.lock); 1579 1580 key_destroy_sav(sav); 1581 } 1582 1583 /* %%% SPD management */ 1584 /* 1585 * free security policy entry. 1586 */ 1587 static void 1588 key_destroy_sp(struct secpolicy *sp) 1589 { 1590 1591 SPLIST_ENTRY_DESTROY(sp); 1592 localcount_fini(&sp->localcount); 1593 1594 key_free_sp(sp); 1595 1596 key_update_used(); 1597 } 1598 1599 void 1600 key_free_sp(struct secpolicy *sp) 1601 { 1602 struct ipsecrequest *isr = sp->req, *nextisr; 1603 1604 while (isr != NULL) { 1605 nextisr = isr->next; 1606 kmem_free(isr, sizeof(*isr)); 1607 isr = nextisr; 1608 } 1609 1610 kmem_free(sp, sizeof(*sp)); 1611 } 1612 1613 void 1614 key_socksplist_add(struct secpolicy *sp) 1615 { 1616 1617 mutex_enter(&key_spd.lock); 1618 PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry); 1619 mutex_exit(&key_spd.lock); 1620 1621 key_update_used(); 1622 } 1623 1624 /* 1625 * search SPD 1626 * OUT: NULL : not found 1627 * others : found, pointer to a SP. 1628 */ 1629 static struct secpolicy * 1630 key_getsp(const struct secpolicyindex *spidx) 1631 { 1632 struct secpolicy *sp; 1633 int s; 1634 1635 KASSERT(spidx != NULL); 1636 1637 s = pserialize_read_enter(); 1638 SPLIST_READER_FOREACH(sp, spidx->dir) { 1639 if (sp->state == IPSEC_SPSTATE_DEAD) 1640 continue; 1641 if (key_spidx_match_exactly(spidx, &sp->spidx)) { 1642 KEY_SP_REF(sp); 1643 pserialize_read_exit(s); 1644 return sp; 1645 } 1646 } 1647 pserialize_read_exit(s); 1648 1649 return NULL; 1650 } 1651 1652 /* 1653 * search SPD and remove found SP 1654 * OUT: NULL : not found 1655 * others : found, pointer to a SP. 1656 */ 1657 static struct secpolicy * 1658 key_lookup_and_remove_sp(const struct secpolicyindex *spidx) 1659 { 1660 struct secpolicy *sp = NULL; 1661 1662 mutex_enter(&key_spd.lock); 1663 SPLIST_WRITER_FOREACH(sp, spidx->dir) { 1664 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 1665 1666 if (key_spidx_match_exactly(spidx, &sp->spidx)) { 1667 key_unlink_sp(sp); 1668 goto out; 1669 } 1670 } 1671 sp = NULL; 1672 out: 1673 mutex_exit(&key_spd.lock); 1674 1675 return sp; 1676 } 1677 1678 /* 1679 * get SP by index. 1680 * OUT: NULL : not found 1681 * others : found, pointer to a SP. 1682 */ 1683 static struct secpolicy * 1684 key_getspbyid(u_int32_t id) 1685 { 1686 struct secpolicy *sp; 1687 int s; 1688 1689 s = pserialize_read_enter(); 1690 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { 1691 if (sp->state == IPSEC_SPSTATE_DEAD) 1692 continue; 1693 if (sp->id == id) { 1694 KEY_SP_REF(sp); 1695 goto out; 1696 } 1697 } 1698 1699 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { 1700 if (sp->state == IPSEC_SPSTATE_DEAD) 1701 continue; 1702 if (sp->id == id) { 1703 KEY_SP_REF(sp); 1704 goto out; 1705 } 1706 } 1707 out: 1708 pserialize_read_exit(s); 1709 return sp; 1710 } 1711 1712 /* 1713 * get SP by index, remove and return it. 1714 * OUT: NULL : not found 1715 * others : found, pointer to a SP. 1716 */ 1717 static struct secpolicy * 1718 key_lookupbyid_and_remove_sp(u_int32_t id) 1719 { 1720 struct secpolicy *sp; 1721 1722 mutex_enter(&key_spd.lock); 1723 SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) { 1724 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 1725 if (sp->id == id) 1726 goto out; 1727 } 1728 1729 SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) { 1730 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 1731 if (sp->id == id) 1732 goto out; 1733 } 1734 out: 1735 if (sp != NULL) 1736 key_unlink_sp(sp); 1737 mutex_exit(&key_spd.lock); 1738 return sp; 1739 } 1740 1741 struct secpolicy * 1742 key_newsp(const char* where, int tag) 1743 { 1744 struct secpolicy *newsp = NULL; 1745 1746 newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP); 1747 1748 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 1749 "DP from %s:%u return SP:%p\n", where, tag, newsp); 1750 return newsp; 1751 } 1752 1753 /* 1754 * create secpolicy structure from sadb_x_policy structure. 1755 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1756 * so must be set properly later. 1757 */ 1758 struct secpolicy * 1759 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error) 1760 { 1761 struct secpolicy *newsp; 1762 1763 KASSERT(!cpu_softintr_p()); 1764 KASSERT(xpl0 != NULL); 1765 KASSERT(len >= sizeof(*xpl0)); 1766 1767 if (len != PFKEY_EXTLEN(xpl0)) { 1768 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); 1769 *error = EINVAL; 1770 return NULL; 1771 } 1772 1773 newsp = KEY_NEWSP(); 1774 if (newsp == NULL) { 1775 *error = ENOBUFS; 1776 return NULL; 1777 } 1778 1779 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1780 newsp->policy = xpl0->sadb_x_policy_type; 1781 1782 /* check policy */ 1783 switch (xpl0->sadb_x_policy_type) { 1784 case IPSEC_POLICY_DISCARD: 1785 case IPSEC_POLICY_NONE: 1786 case IPSEC_POLICY_ENTRUST: 1787 case IPSEC_POLICY_BYPASS: 1788 newsp->req = NULL; 1789 *error = 0; 1790 return newsp; 1791 1792 case IPSEC_POLICY_IPSEC: 1793 /* Continued */ 1794 break; 1795 default: 1796 IPSECLOG(LOG_DEBUG, "invalid policy type.\n"); 1797 key_free_sp(newsp); 1798 *error = EINVAL; 1799 return NULL; 1800 } 1801 1802 /* IPSEC_POLICY_IPSEC */ 1803 { 1804 int tlen; 1805 const struct sadb_x_ipsecrequest *xisr; 1806 uint16_t xisr_reqid; 1807 struct ipsecrequest **p_isr = &newsp->req; 1808 1809 /* validity check */ 1810 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1811 IPSECLOG(LOG_DEBUG, "Invalid msg length.\n"); 1812 *error = EINVAL; 1813 goto free_exit; 1814 } 1815 1816 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1817 xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1); 1818 1819 while (tlen > 0) { 1820 /* length check */ 1821 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1822 IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n"); 1823 *error = EINVAL; 1824 goto free_exit; 1825 } 1826 1827 /* allocate request buffer */ 1828 *p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP); 1829 1830 /* set values */ 1831 (*p_isr)->next = NULL; 1832 1833 switch (xisr->sadb_x_ipsecrequest_proto) { 1834 case IPPROTO_ESP: 1835 case IPPROTO_AH: 1836 case IPPROTO_IPCOMP: 1837 break; 1838 default: 1839 IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n", 1840 xisr->sadb_x_ipsecrequest_proto); 1841 *error = EPROTONOSUPPORT; 1842 goto free_exit; 1843 } 1844 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1845 1846 switch (xisr->sadb_x_ipsecrequest_mode) { 1847 case IPSEC_MODE_TRANSPORT: 1848 case IPSEC_MODE_TUNNEL: 1849 break; 1850 case IPSEC_MODE_ANY: 1851 default: 1852 IPSECLOG(LOG_DEBUG, "invalid mode=%u\n", 1853 xisr->sadb_x_ipsecrequest_mode); 1854 *error = EINVAL; 1855 goto free_exit; 1856 } 1857 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1858 1859 switch (xisr->sadb_x_ipsecrequest_level) { 1860 case IPSEC_LEVEL_DEFAULT: 1861 case IPSEC_LEVEL_USE: 1862 case IPSEC_LEVEL_REQUIRE: 1863 break; 1864 case IPSEC_LEVEL_UNIQUE: 1865 xisr_reqid = xisr->sadb_x_ipsecrequest_reqid; 1866 /* validity check */ 1867 /* 1868 * If range violation of reqid, kernel will 1869 * update it, don't refuse it. 1870 */ 1871 if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) { 1872 IPSECLOG(LOG_DEBUG, 1873 "reqid=%d range " 1874 "violation, updated by kernel.\n", 1875 xisr_reqid); 1876 xisr_reqid = 0; 1877 } 1878 1879 /* allocate new reqid id if reqid is zero. */ 1880 if (xisr_reqid == 0) { 1881 u_int16_t reqid = key_newreqid(); 1882 if (reqid == 0) { 1883 *error = ENOBUFS; 1884 goto free_exit; 1885 } 1886 (*p_isr)->saidx.reqid = reqid; 1887 } else { 1888 /* set it for manual keying. */ 1889 (*p_isr)->saidx.reqid = xisr_reqid; 1890 } 1891 break; 1892 1893 default: 1894 IPSECLOG(LOG_DEBUG, "invalid level=%u\n", 1895 xisr->sadb_x_ipsecrequest_level); 1896 *error = EINVAL; 1897 goto free_exit; 1898 } 1899 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1900 1901 /* set IP addresses if there */ 1902 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1903 const struct sockaddr *paddr; 1904 1905 paddr = (const struct sockaddr *)(xisr + 1); 1906 1907 /* validity check */ 1908 if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) { 1909 IPSECLOG(LOG_DEBUG, "invalid request " 1910 "address length.\n"); 1911 *error = EINVAL; 1912 goto free_exit; 1913 } 1914 memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len); 1915 1916 paddr = (const struct sockaddr *)((const char *)paddr 1917 + paddr->sa_len); 1918 1919 /* validity check */ 1920 if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) { 1921 IPSECLOG(LOG_DEBUG, "invalid request " 1922 "address length.\n"); 1923 *error = EINVAL; 1924 goto free_exit; 1925 } 1926 memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len); 1927 } 1928 1929 (*p_isr)->sp = newsp; 1930 1931 /* initialization for the next. */ 1932 p_isr = &(*p_isr)->next; 1933 tlen -= xisr->sadb_x_ipsecrequest_len; 1934 1935 /* validity check */ 1936 if (tlen < 0) { 1937 IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n"); 1938 *error = EINVAL; 1939 goto free_exit; 1940 } 1941 1942 xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr + 1943 xisr->sadb_x_ipsecrequest_len); 1944 } 1945 } 1946 1947 *error = 0; 1948 return newsp; 1949 1950 free_exit: 1951 key_free_sp(newsp); 1952 return NULL; 1953 } 1954 1955 static u_int16_t 1956 key_newreqid(void) 1957 { 1958 static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1959 1960 auto_reqid = (auto_reqid == 0xffff ? 1961 IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1962 1963 /* XXX should be unique check */ 1964 1965 return auto_reqid; 1966 } 1967 1968 /* 1969 * copy secpolicy struct to sadb_x_policy structure indicated. 1970 */ 1971 struct mbuf * 1972 key_sp2msg(const struct secpolicy *sp) 1973 { 1974 struct sadb_x_policy *xpl; 1975 int tlen; 1976 char *p; 1977 struct mbuf *m; 1978 1979 KASSERT(sp != NULL); 1980 1981 tlen = key_getspreqmsglen(sp); 1982 1983 m = key_alloc_mbuf(tlen); 1984 if (!m || m->m_next) { /*XXX*/ 1985 if (m) 1986 m_freem(m); 1987 return NULL; 1988 } 1989 1990 m->m_len = tlen; 1991 m->m_next = NULL; 1992 xpl = mtod(m, struct sadb_x_policy *); 1993 memset(xpl, 0, tlen); 1994 1995 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1996 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1997 xpl->sadb_x_policy_type = sp->policy; 1998 xpl->sadb_x_policy_dir = sp->spidx.dir; 1999 xpl->sadb_x_policy_id = sp->id; 2000 p = (char *)xpl + sizeof(*xpl); 2001 2002 /* if is the policy for ipsec ? */ 2003 if (sp->policy == IPSEC_POLICY_IPSEC) { 2004 struct sadb_x_ipsecrequest *xisr; 2005 struct ipsecrequest *isr; 2006 2007 for (isr = sp->req; isr != NULL; isr = isr->next) { 2008 2009 xisr = (struct sadb_x_ipsecrequest *)p; 2010 2011 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 2012 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 2013 xisr->sadb_x_ipsecrequest_level = isr->level; 2014 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 2015 2016 p += sizeof(*xisr); 2017 memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len); 2018 p += isr->saidx.src.sa.sa_len; 2019 memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len); 2020 p += isr->saidx.src.sa.sa_len; 2021 2022 xisr->sadb_x_ipsecrequest_len = 2023 PFKEY_ALIGN8(sizeof(*xisr) 2024 + isr->saidx.src.sa.sa_len 2025 + isr->saidx.dst.sa.sa_len); 2026 } 2027 } 2028 2029 return m; 2030 } 2031 2032 /* m will not be freed nor modified */ 2033 static struct mbuf * 2034 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 2035 int ndeep, int nitem, ...) 2036 { 2037 va_list ap; 2038 int idx; 2039 int i; 2040 struct mbuf *result = NULL, *n; 2041 int len; 2042 2043 KASSERT(m != NULL); 2044 KASSERT(mhp != NULL); 2045 2046 va_start(ap, nitem); 2047 for (i = 0; i < nitem; i++) { 2048 idx = va_arg(ap, int); 2049 if (idx < 0 || idx > SADB_EXT_MAX) 2050 goto fail; 2051 /* don't attempt to pull empty extension */ 2052 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 2053 continue; 2054 if (idx != SADB_EXT_RESERVED && 2055 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 2056 continue; 2057 2058 if (idx == SADB_EXT_RESERVED) { 2059 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN); 2060 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2061 MGETHDR(n, M_DONTWAIT, MT_DATA); 2062 if (!n) 2063 goto fail; 2064 n->m_len = len; 2065 n->m_next = NULL; 2066 m_copydata(m, 0, sizeof(struct sadb_msg), 2067 mtod(n, void *)); 2068 } else if (i < ndeep) { 2069 len = mhp->extlen[idx]; 2070 n = key_alloc_mbuf(len); 2071 if (!n || n->m_next) { /*XXX*/ 2072 if (n) 2073 m_freem(n); 2074 goto fail; 2075 } 2076 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 2077 mtod(n, void *)); 2078 } else { 2079 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 2080 M_DONTWAIT); 2081 } 2082 if (n == NULL) 2083 goto fail; 2084 2085 if (result) 2086 m_cat(result, n); 2087 else 2088 result = n; 2089 } 2090 va_end(ap); 2091 2092 if (result && (result->m_flags & M_PKTHDR) != 0) { 2093 result->m_pkthdr.len = 0; 2094 for (n = result; n; n = n->m_next) 2095 result->m_pkthdr.len += n->m_len; 2096 } 2097 2098 return result; 2099 2100 fail: 2101 va_end(ap); 2102 m_freem(result); 2103 return NULL; 2104 } 2105 2106 /* 2107 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 2108 * add an entry to SP database, when received 2109 * <base, address(SD), (lifetime(H),) policy> 2110 * from the user(?). 2111 * Adding to SP database, 2112 * and send 2113 * <base, address(SD), (lifetime(H),) policy> 2114 * to the socket which was send. 2115 * 2116 * SPDADD set a unique policy entry. 2117 * SPDSETIDX like SPDADD without a part of policy requests. 2118 * SPDUPDATE replace a unique policy entry. 2119 * 2120 * m will always be freed. 2121 */ 2122 static int 2123 key_api_spdadd(struct socket *so, struct mbuf *m, 2124 const struct sadb_msghdr *mhp) 2125 { 2126 const struct sockaddr *src, *dst; 2127 const struct sadb_x_policy *xpl0; 2128 struct sadb_x_policy *xpl; 2129 const struct sadb_lifetime *lft = NULL; 2130 struct secpolicyindex spidx; 2131 struct secpolicy *newsp; 2132 int error; 2133 2134 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2135 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2136 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2137 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2138 return key_senderror(so, m, EINVAL); 2139 } 2140 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2141 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2142 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2143 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2144 return key_senderror(so, m, EINVAL); 2145 } 2146 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 2147 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < 2148 sizeof(struct sadb_lifetime)) { 2149 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2150 return key_senderror(so, m, EINVAL); 2151 } 2152 lft = mhp->ext[SADB_EXT_LIFETIME_HARD]; 2153 } 2154 2155 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 2156 2157 /* checking the direciton. */ 2158 switch (xpl0->sadb_x_policy_dir) { 2159 case IPSEC_DIR_INBOUND: 2160 case IPSEC_DIR_OUTBOUND: 2161 break; 2162 default: 2163 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); 2164 return key_senderror(so, m, EINVAL); 2165 } 2166 2167 /* check policy */ 2168 /* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */ 2169 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST || 2170 xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 2171 IPSECLOG(LOG_DEBUG, "Invalid policy type.\n"); 2172 return key_senderror(so, m, EINVAL); 2173 } 2174 2175 /* policy requests are mandatory when action is ipsec. */ 2176 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX && 2177 xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 2178 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 2179 IPSECLOG(LOG_DEBUG, "some policy requests part required.\n"); 2180 return key_senderror(so, m, EINVAL); 2181 } 2182 2183 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 2184 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 2185 2186 /* sanity check on addr pair */ 2187 if (src->sa_family != dst->sa_family) 2188 return key_senderror(so, m, EINVAL); 2189 if (src->sa_len != dst->sa_len) 2190 return key_senderror(so, m, EINVAL); 2191 2192 key_init_spidx_bymsghdr(&spidx, mhp); 2193 2194 /* 2195 * checking there is SP already or not. 2196 * SPDUPDATE doesn't depend on whether there is a SP or not. 2197 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 2198 * then error. 2199 */ 2200 { 2201 struct secpolicy *sp; 2202 2203 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2204 sp = key_lookup_and_remove_sp(&spidx); 2205 if (sp != NULL) 2206 key_destroy_sp(sp); 2207 } else { 2208 sp = key_getsp(&spidx); 2209 if (sp != NULL) { 2210 KEY_SP_UNREF(&sp); 2211 IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n"); 2212 return key_senderror(so, m, EEXIST); 2213 } 2214 } 2215 } 2216 2217 /* allocation new SP entry */ 2218 newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error); 2219 if (newsp == NULL) { 2220 return key_senderror(so, m, error); 2221 } 2222 2223 newsp->id = key_getnewspid(); 2224 if (newsp->id == 0) { 2225 kmem_free(newsp, sizeof(*newsp)); 2226 return key_senderror(so, m, ENOBUFS); 2227 } 2228 2229 newsp->spidx = spidx; 2230 newsp->created = time_uptime; 2231 newsp->lastused = newsp->created; 2232 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 2233 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 2234 2235 key_init_sp(newsp); 2236 2237 mutex_enter(&key_spd.lock); 2238 SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp); 2239 mutex_exit(&key_spd.lock); 2240 2241 #ifdef notyet 2242 /* delete the entry in key_misc.spacqlist */ 2243 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2244 struct secspacq *spacq = key_getspacq(&spidx); 2245 if (spacq != NULL) { 2246 /* reset counter in order to deletion by timehandler. */ 2247 spacq->created = time_uptime; 2248 spacq->count = 0; 2249 } 2250 } 2251 #endif 2252 2253 /* Invalidate all cached SPD pointers in the PCBs. */ 2254 ipsec_invalpcbcacheall(); 2255 2256 #if defined(GATEWAY) 2257 /* Invalidate the ipflow cache, as well. */ 2258 ipflow_invalidate_all(0); 2259 #ifdef INET6 2260 if (in6_present) 2261 ip6flow_invalidate_all(0); 2262 #endif /* INET6 */ 2263 #endif /* GATEWAY */ 2264 2265 key_update_used(); 2266 2267 { 2268 struct mbuf *n, *mpolicy; 2269 int off; 2270 2271 /* create new sadb_msg to reply. */ 2272 if (lft) { 2273 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 2274 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 2275 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2276 } else { 2277 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 2278 SADB_X_EXT_POLICY, 2279 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2280 } 2281 if (!n) 2282 return key_senderror(so, m, ENOBUFS); 2283 2284 n = key_fill_replymsg(n, 0); 2285 if (n == NULL) 2286 return key_senderror(so, m, ENOBUFS); 2287 2288 off = 0; 2289 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 2290 sizeof(*xpl), &off); 2291 if (mpolicy == NULL) { 2292 /* n is already freed */ 2293 return key_senderror(so, m, ENOBUFS); 2294 } 2295 xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off); 2296 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 2297 m_freem(n); 2298 return key_senderror(so, m, EINVAL); 2299 } 2300 xpl->sadb_x_policy_id = newsp->id; 2301 2302 m_freem(m); 2303 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2304 } 2305 } 2306 2307 /* 2308 * get new policy id. 2309 * OUT: 2310 * 0: failure. 2311 * others: success. 2312 */ 2313 static u_int32_t 2314 key_getnewspid(void) 2315 { 2316 u_int32_t newid = 0; 2317 int count = key_spi_trycnt; /* XXX */ 2318 struct secpolicy *sp; 2319 2320 /* when requesting to allocate spi ranged */ 2321 while (count--) { 2322 newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1)); 2323 2324 sp = key_getspbyid(newid); 2325 if (sp == NULL) 2326 break; 2327 2328 KEY_SP_UNREF(&sp); 2329 } 2330 2331 if (count == 0 || newid == 0) { 2332 IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n"); 2333 return 0; 2334 } 2335 2336 return newid; 2337 } 2338 2339 /* 2340 * SADB_SPDDELETE processing 2341 * receive 2342 * <base, address(SD), policy(*)> 2343 * from the user(?), and set SADB_SASTATE_DEAD, 2344 * and send, 2345 * <base, address(SD), policy(*)> 2346 * to the ikmpd. 2347 * policy(*) including direction of policy. 2348 * 2349 * m will always be freed. 2350 */ 2351 static int 2352 key_api_spddelete(struct socket *so, struct mbuf *m, 2353 const struct sadb_msghdr *mhp) 2354 { 2355 struct sadb_x_policy *xpl0; 2356 struct secpolicyindex spidx; 2357 struct secpolicy *sp; 2358 2359 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2360 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2361 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2362 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2363 return key_senderror(so, m, EINVAL); 2364 } 2365 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2366 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2367 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2368 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2369 return key_senderror(so, m, EINVAL); 2370 } 2371 2372 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 2373 2374 /* checking the directon. */ 2375 switch (xpl0->sadb_x_policy_dir) { 2376 case IPSEC_DIR_INBOUND: 2377 case IPSEC_DIR_OUTBOUND: 2378 break; 2379 default: 2380 IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n"); 2381 return key_senderror(so, m, EINVAL); 2382 } 2383 2384 /* make secindex */ 2385 key_init_spidx_bymsghdr(&spidx, mhp); 2386 2387 /* Is there SP in SPD ? */ 2388 sp = key_lookup_and_remove_sp(&spidx); 2389 if (sp == NULL) { 2390 IPSECLOG(LOG_DEBUG, "no SP found.\n"); 2391 return key_senderror(so, m, EINVAL); 2392 } 2393 2394 /* save policy id to buffer to be returned. */ 2395 xpl0->sadb_x_policy_id = sp->id; 2396 2397 key_destroy_sp(sp); 2398 2399 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2400 2401 { 2402 struct mbuf *n; 2403 2404 /* create new sadb_msg to reply. */ 2405 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2406 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2407 if (!n) 2408 return key_senderror(so, m, ENOBUFS); 2409 2410 n = key_fill_replymsg(n, 0); 2411 if (n == NULL) 2412 return key_senderror(so, m, ENOBUFS); 2413 2414 m_freem(m); 2415 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2416 } 2417 } 2418 2419 /* 2420 * SADB_SPDDELETE2 processing 2421 * receive 2422 * <base, policy(*)> 2423 * from the user(?), and set SADB_SASTATE_DEAD, 2424 * and send, 2425 * <base, policy(*)> 2426 * to the ikmpd. 2427 * policy(*) including direction of policy. 2428 * 2429 * m will always be freed. 2430 */ 2431 static int 2432 key_api_spddelete2(struct socket *so, struct mbuf *m, 2433 const struct sadb_msghdr *mhp) 2434 { 2435 u_int32_t id; 2436 struct secpolicy *sp; 2437 const struct sadb_x_policy *xpl; 2438 2439 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2440 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2441 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2442 return key_senderror(so, m, EINVAL); 2443 } 2444 2445 xpl = mhp->ext[SADB_X_EXT_POLICY]; 2446 id = xpl->sadb_x_policy_id; 2447 2448 /* Is there SP in SPD ? */ 2449 sp = key_lookupbyid_and_remove_sp(id); 2450 if (sp == NULL) { 2451 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); 2452 return key_senderror(so, m, EINVAL); 2453 } 2454 2455 key_destroy_sp(sp); 2456 2457 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2458 2459 { 2460 struct mbuf *n, *nn; 2461 int off, len; 2462 2463 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); 2464 2465 /* create new sadb_msg to reply. */ 2466 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2467 2468 MGETHDR(n, M_DONTWAIT, MT_DATA); 2469 if (n && len > MHLEN) { 2470 MCLGET(n, M_DONTWAIT); 2471 if ((n->m_flags & M_EXT) == 0) { 2472 m_freem(n); 2473 n = NULL; 2474 } 2475 } 2476 if (!n) 2477 return key_senderror(so, m, ENOBUFS); 2478 2479 n->m_len = len; 2480 n->m_next = NULL; 2481 off = 0; 2482 2483 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 2484 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2485 2486 KASSERTMSG(off == len, "length inconsistency"); 2487 2488 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2489 mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT); 2490 if (!n->m_next) { 2491 m_freem(n); 2492 return key_senderror(so, m, ENOBUFS); 2493 } 2494 2495 n->m_pkthdr.len = 0; 2496 for (nn = n; nn; nn = nn->m_next) 2497 n->m_pkthdr.len += nn->m_len; 2498 2499 n = key_fill_replymsg(n, 0); 2500 if (n == NULL) 2501 return key_senderror(so, m, ENOBUFS); 2502 2503 m_freem(m); 2504 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2505 } 2506 } 2507 2508 /* 2509 * SADB_X_GET processing 2510 * receive 2511 * <base, policy(*)> 2512 * from the user(?), 2513 * and send, 2514 * <base, address(SD), policy> 2515 * to the ikmpd. 2516 * policy(*) including direction of policy. 2517 * 2518 * m will always be freed. 2519 */ 2520 static int 2521 key_api_spdget(struct socket *so, struct mbuf *m, 2522 const struct sadb_msghdr *mhp) 2523 { 2524 u_int32_t id; 2525 struct secpolicy *sp; 2526 struct mbuf *n; 2527 const struct sadb_x_policy *xpl; 2528 2529 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2530 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2531 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 2532 return key_senderror(so, m, EINVAL); 2533 } 2534 2535 xpl = mhp->ext[SADB_X_EXT_POLICY]; 2536 id = xpl->sadb_x_policy_id; 2537 2538 /* Is there SP in SPD ? */ 2539 sp = key_getspbyid(id); 2540 if (sp == NULL) { 2541 IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id); 2542 return key_senderror(so, m, ENOENT); 2543 } 2544 2545 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, 2546 mhp->msg->sadb_msg_pid); 2547 KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */ 2548 if (n != NULL) { 2549 m_freem(m); 2550 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2551 } else 2552 return key_senderror(so, m, ENOBUFS); 2553 } 2554 2555 #ifdef notyet 2556 /* 2557 * SADB_X_SPDACQUIRE processing. 2558 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2559 * send 2560 * <base, policy(*)> 2561 * to KMD, and expect to receive 2562 * <base> with SADB_X_SPDACQUIRE if error occurred, 2563 * or 2564 * <base, policy> 2565 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2566 * policy(*) is without policy requests. 2567 * 2568 * 0 : succeed 2569 * others: error number 2570 */ 2571 int 2572 key_spdacquire(const struct secpolicy *sp) 2573 { 2574 struct mbuf *result = NULL, *m; 2575 struct secspacq *newspacq; 2576 int error; 2577 2578 KASSERT(sp != NULL); 2579 KASSERTMSG(sp->req == NULL, "called but there is request"); 2580 KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC, 2581 "policy mismathed. IPsec is expected"); 2582 2583 /* Get an entry to check whether sent message or not. */ 2584 newspacq = key_getspacq(&sp->spidx); 2585 if (newspacq != NULL) { 2586 if (key_blockacq_count < newspacq->count) { 2587 /* reset counter and do send message. */ 2588 newspacq->count = 0; 2589 } else { 2590 /* increment counter and do nothing. */ 2591 newspacq->count++; 2592 return 0; 2593 } 2594 } else { 2595 /* make new entry for blocking to send SADB_ACQUIRE. */ 2596 newspacq = key_newspacq(&sp->spidx); 2597 if (newspacq == NULL) 2598 return ENOBUFS; 2599 2600 /* add to key_misc.acqlist */ 2601 LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain); 2602 } 2603 2604 /* create new sadb_msg to reply. */ 2605 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2606 if (!m) { 2607 error = ENOBUFS; 2608 goto fail; 2609 } 2610 result = m; 2611 2612 result->m_pkthdr.len = 0; 2613 for (m = result; m; m = m->m_next) 2614 result->m_pkthdr.len += m->m_len; 2615 2616 mtod(result, struct sadb_msg *)->sadb_msg_len = 2617 PFKEY_UNIT64(result->m_pkthdr.len); 2618 2619 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2620 2621 fail: 2622 if (result) 2623 m_freem(result); 2624 return error; 2625 } 2626 #endif /* notyet */ 2627 2628 /* 2629 * SADB_SPDFLUSH processing 2630 * receive 2631 * <base> 2632 * from the user, and free all entries in secpctree. 2633 * and send, 2634 * <base> 2635 * to the user. 2636 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2637 * 2638 * m will always be freed. 2639 */ 2640 static int 2641 key_api_spdflush(struct socket *so, struct mbuf *m, 2642 const struct sadb_msghdr *mhp) 2643 { 2644 struct sadb_msg *newmsg; 2645 struct secpolicy *sp; 2646 u_int dir; 2647 2648 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2649 return key_senderror(so, m, EINVAL); 2650 2651 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2652 retry: 2653 mutex_enter(&key_spd.lock); 2654 SPLIST_WRITER_FOREACH(sp, dir) { 2655 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 2656 key_unlink_sp(sp); 2657 mutex_exit(&key_spd.lock); 2658 key_destroy_sp(sp); 2659 goto retry; 2660 } 2661 mutex_exit(&key_spd.lock); 2662 } 2663 2664 /* We're deleting policy; no need to invalidate the ipflow cache. */ 2665 2666 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2667 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 2668 return key_senderror(so, m, ENOBUFS); 2669 } 2670 2671 if (m->m_next) 2672 m_freem(m->m_next); 2673 m->m_next = NULL; 2674 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2675 newmsg = mtod(m, struct sadb_msg *); 2676 newmsg->sadb_msg_errno = 0; 2677 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2678 2679 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2680 } 2681 2682 static struct sockaddr key_src = { 2683 .sa_len = 2, 2684 .sa_family = PF_KEY, 2685 }; 2686 2687 static struct mbuf * 2688 key_setspddump_chain(int *errorp, int *lenp, pid_t pid) 2689 { 2690 struct secpolicy *sp; 2691 int cnt; 2692 u_int dir; 2693 struct mbuf *m, *n, *prev; 2694 int totlen; 2695 2696 KASSERT(mutex_owned(&key_spd.lock)); 2697 2698 *lenp = 0; 2699 2700 /* search SPD entry and get buffer size. */ 2701 cnt = 0; 2702 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2703 SPLIST_WRITER_FOREACH(sp, dir) { 2704 cnt++; 2705 } 2706 } 2707 2708 if (cnt == 0) { 2709 *errorp = ENOENT; 2710 return (NULL); 2711 } 2712 2713 m = NULL; 2714 prev = m; 2715 totlen = 0; 2716 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2717 SPLIST_WRITER_FOREACH(sp, dir) { 2718 --cnt; 2719 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 2720 2721 if (!n) { 2722 *errorp = ENOBUFS; 2723 if (m) 2724 m_freem(m); 2725 return (NULL); 2726 } 2727 2728 totlen += n->m_pkthdr.len; 2729 if (!m) { 2730 m = n; 2731 } else { 2732 prev->m_nextpkt = n; 2733 } 2734 prev = n; 2735 } 2736 } 2737 2738 *lenp = totlen; 2739 *errorp = 0; 2740 return (m); 2741 } 2742 2743 /* 2744 * SADB_SPDDUMP processing 2745 * receive 2746 * <base> 2747 * from the user, and dump all SP leaves 2748 * and send, 2749 * <base> ..... 2750 * to the ikmpd. 2751 * 2752 * m will always be freed. 2753 */ 2754 static int 2755 key_api_spddump(struct socket *so, struct mbuf *m0, 2756 const struct sadb_msghdr *mhp) 2757 { 2758 struct mbuf *n; 2759 int error, len; 2760 int ok; 2761 pid_t pid; 2762 2763 pid = mhp->msg->sadb_msg_pid; 2764 /* 2765 * If the requestor has insufficient socket-buffer space 2766 * for the entire chain, nobody gets any response to the DUMP. 2767 * XXX For now, only the requestor ever gets anything. 2768 * Moreover, if the requestor has any space at all, they receive 2769 * the entire chain, otherwise the request is refused with ENOBUFS. 2770 */ 2771 if (sbspace(&so->so_rcv) <= 0) { 2772 return key_senderror(so, m0, ENOBUFS); 2773 } 2774 2775 mutex_enter(&key_spd.lock); 2776 n = key_setspddump_chain(&error, &len, pid); 2777 mutex_exit(&key_spd.lock); 2778 2779 if (n == NULL) { 2780 return key_senderror(so, m0, ENOENT); 2781 } 2782 { 2783 uint64_t *ps = PFKEY_STAT_GETREF(); 2784 ps[PFKEY_STAT_IN_TOTAL]++; 2785 ps[PFKEY_STAT_IN_BYTES] += len; 2786 PFKEY_STAT_PUTREF(); 2787 } 2788 2789 /* 2790 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 2791 * The requestor receives either the entire chain, or an 2792 * error message with ENOBUFS. 2793 */ 2794 2795 /* 2796 * sbappendchainwith record takes the chain of entries, one 2797 * packet-record per SPD entry, prepends the key_src sockaddr 2798 * to each packet-record, links the sockaddr mbufs into a new 2799 * list of records, then appends the entire resulting 2800 * list to the requesting socket. 2801 */ 2802 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, 2803 SB_PRIO_ONESHOT_OVERFLOW); 2804 2805 if (!ok) { 2806 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 2807 m_freem(n); 2808 return key_senderror(so, m0, ENOBUFS); 2809 } 2810 2811 m_freem(m0); 2812 return error; 2813 } 2814 2815 /* 2816 * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23 2817 */ 2818 static int 2819 key_api_nat_map(struct socket *so, struct mbuf *m, 2820 const struct sadb_msghdr *mhp) 2821 { 2822 struct sadb_x_nat_t_type *type; 2823 struct sadb_x_nat_t_port *sport; 2824 struct sadb_x_nat_t_port *dport; 2825 struct sadb_address *iaddr, *raddr; 2826 struct sadb_x_nat_t_frag *frag; 2827 2828 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 2829 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 2830 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) { 2831 IPSECLOG(LOG_DEBUG, "invalid message.\n"); 2832 return key_senderror(so, m, EINVAL); 2833 } 2834 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 2835 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 2836 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 2837 IPSECLOG(LOG_DEBUG, "invalid message.\n"); 2838 return key_senderror(so, m, EINVAL); 2839 } 2840 2841 if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) && 2842 (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) { 2843 IPSECLOG(LOG_DEBUG, "invalid message\n"); 2844 return key_senderror(so, m, EINVAL); 2845 } 2846 2847 if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) && 2848 (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) { 2849 IPSECLOG(LOG_DEBUG, "invalid message\n"); 2850 return key_senderror(so, m, EINVAL); 2851 } 2852 2853 if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) && 2854 (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) { 2855 IPSECLOG(LOG_DEBUG, "invalid message\n"); 2856 return key_senderror(so, m, EINVAL); 2857 } 2858 2859 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 2860 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 2861 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 2862 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; 2863 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; 2864 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 2865 2866 /* 2867 * XXX handle that, it should also contain a SA, or anything 2868 * that enable to update the SA information. 2869 */ 2870 2871 return 0; 2872 } 2873 2874 static struct mbuf * 2875 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid) 2876 { 2877 struct mbuf *result = NULL, *m; 2878 2879 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, 2880 key_sp_refcnt(sp)); 2881 if (!m) 2882 goto fail; 2883 result = m; 2884 2885 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2886 &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto); 2887 if (!m) 2888 goto fail; 2889 m_cat(result, m); 2890 2891 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2892 &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto); 2893 if (!m) 2894 goto fail; 2895 m_cat(result, m); 2896 2897 m = key_sp2msg(sp); 2898 if (!m) 2899 goto fail; 2900 m_cat(result, m); 2901 2902 if ((result->m_flags & M_PKTHDR) == 0) 2903 goto fail; 2904 2905 if (result->m_len < sizeof(struct sadb_msg)) { 2906 result = m_pullup(result, sizeof(struct sadb_msg)); 2907 if (result == NULL) 2908 goto fail; 2909 } 2910 2911 result->m_pkthdr.len = 0; 2912 for (m = result; m; m = m->m_next) 2913 result->m_pkthdr.len += m->m_len; 2914 2915 mtod(result, struct sadb_msg *)->sadb_msg_len = 2916 PFKEY_UNIT64(result->m_pkthdr.len); 2917 2918 return result; 2919 2920 fail: 2921 m_freem(result); 2922 return NULL; 2923 } 2924 2925 /* 2926 * get PFKEY message length for security policy and request. 2927 */ 2928 static u_int 2929 key_getspreqmsglen(const struct secpolicy *sp) 2930 { 2931 u_int tlen; 2932 2933 tlen = sizeof(struct sadb_x_policy); 2934 2935 /* if is the policy for ipsec ? */ 2936 if (sp->policy != IPSEC_POLICY_IPSEC) 2937 return tlen; 2938 2939 /* get length of ipsec requests */ 2940 { 2941 const struct ipsecrequest *isr; 2942 int len; 2943 2944 for (isr = sp->req; isr != NULL; isr = isr->next) { 2945 len = sizeof(struct sadb_x_ipsecrequest) 2946 + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len; 2947 2948 tlen += PFKEY_ALIGN8(len); 2949 } 2950 } 2951 2952 return tlen; 2953 } 2954 2955 /* 2956 * SADB_SPDEXPIRE processing 2957 * send 2958 * <base, address(SD), lifetime(CH), policy> 2959 * to KMD by PF_KEY. 2960 * 2961 * OUT: 0 : succeed 2962 * others : error number 2963 */ 2964 static int 2965 key_spdexpire(struct secpolicy *sp) 2966 { 2967 int s; 2968 struct mbuf *result = NULL, *m; 2969 int len; 2970 int error = -1; 2971 struct sadb_lifetime *lt; 2972 2973 /* XXX: Why do we lock ? */ 2974 s = splsoftnet(); /*called from softclock()*/ 2975 2976 KASSERT(sp != NULL); 2977 2978 /* set msg header */ 2979 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2980 if (!m) { 2981 error = ENOBUFS; 2982 goto fail; 2983 } 2984 result = m; 2985 2986 /* create lifetime extension (current and hard) */ 2987 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2988 m = key_alloc_mbuf(len); 2989 if (!m || m->m_next) { /*XXX*/ 2990 if (m) 2991 m_freem(m); 2992 error = ENOBUFS; 2993 goto fail; 2994 } 2995 memset(mtod(m, void *), 0, len); 2996 lt = mtod(m, struct sadb_lifetime *); 2997 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2998 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2999 lt->sadb_lifetime_allocations = 0; 3000 lt->sadb_lifetime_bytes = 0; 3001 lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created); 3002 lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused); 3003 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 3004 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3005 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 3006 lt->sadb_lifetime_allocations = 0; 3007 lt->sadb_lifetime_bytes = 0; 3008 lt->sadb_lifetime_addtime = sp->lifetime; 3009 lt->sadb_lifetime_usetime = sp->validtime; 3010 m_cat(result, m); 3011 3012 /* set sadb_address for source */ 3013 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa, 3014 sp->spidx.prefs, sp->spidx.ul_proto); 3015 if (!m) { 3016 error = ENOBUFS; 3017 goto fail; 3018 } 3019 m_cat(result, m); 3020 3021 /* set sadb_address for destination */ 3022 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa, 3023 sp->spidx.prefd, sp->spidx.ul_proto); 3024 if (!m) { 3025 error = ENOBUFS; 3026 goto fail; 3027 } 3028 m_cat(result, m); 3029 3030 /* set secpolicy */ 3031 m = key_sp2msg(sp); 3032 if (!m) { 3033 error = ENOBUFS; 3034 goto fail; 3035 } 3036 m_cat(result, m); 3037 3038 if ((result->m_flags & M_PKTHDR) == 0) { 3039 error = EINVAL; 3040 goto fail; 3041 } 3042 3043 if (result->m_len < sizeof(struct sadb_msg)) { 3044 result = m_pullup(result, sizeof(struct sadb_msg)); 3045 if (result == NULL) { 3046 error = ENOBUFS; 3047 goto fail; 3048 } 3049 } 3050 3051 result->m_pkthdr.len = 0; 3052 for (m = result; m; m = m->m_next) 3053 result->m_pkthdr.len += m->m_len; 3054 3055 mtod(result, struct sadb_msg *)->sadb_msg_len = 3056 PFKEY_UNIT64(result->m_pkthdr.len); 3057 3058 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 3059 3060 fail: 3061 if (result) 3062 m_freem(result); 3063 splx(s); 3064 return error; 3065 } 3066 3067 /* %%% SAD management */ 3068 /* 3069 * allocating a memory for new SA head, and copy from the values of mhp. 3070 * OUT: NULL : failure due to the lack of memory. 3071 * others : pointer to new SA head. 3072 */ 3073 static struct secashead * 3074 key_newsah(const struct secasindex *saidx) 3075 { 3076 struct secashead *newsah; 3077 int i; 3078 3079 KASSERT(saidx != NULL); 3080 3081 newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP); 3082 for (i = 0; i < __arraycount(newsah->savlist); i++) 3083 PSLIST_INIT(&newsah->savlist[i]); 3084 newsah->saidx = *saidx; 3085 3086 localcount_init(&newsah->localcount); 3087 /* Take a reference for the caller */ 3088 localcount_acquire(&newsah->localcount); 3089 3090 /* Add to the sah list */ 3091 SAHLIST_ENTRY_INIT(newsah); 3092 newsah->state = SADB_SASTATE_MATURE; 3093 mutex_enter(&key_sad.lock); 3094 SAHLIST_WRITER_INSERT_HEAD(newsah); 3095 mutex_exit(&key_sad.lock); 3096 3097 return newsah; 3098 } 3099 3100 static bool 3101 key_sah_has_sav(struct secashead *sah) 3102 { 3103 u_int state; 3104 3105 KASSERT(mutex_owned(&key_sad.lock)); 3106 3107 SASTATE_ANY_FOREACH(state) { 3108 if (!SAVLIST_WRITER_EMPTY(sah, state)) 3109 return true; 3110 } 3111 3112 return false; 3113 } 3114 3115 static void 3116 key_unlink_sah(struct secashead *sah) 3117 { 3118 3119 KASSERT(!cpu_softintr_p()); 3120 KASSERT(mutex_owned(&key_sad.lock)); 3121 KASSERT(sah->state == SADB_SASTATE_DEAD); 3122 3123 /* Remove from the sah list */ 3124 SAHLIST_WRITER_REMOVE(sah); 3125 3126 #ifdef NET_MPSAFE 3127 KASSERT(mutex_ownable(softnet_lock)); 3128 key_sad_pserialize_perform(); 3129 #endif 3130 3131 localcount_drain(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); 3132 } 3133 3134 static void 3135 key_destroy_sah(struct secashead *sah) 3136 { 3137 3138 rtcache_free(&sah->sa_route); 3139 3140 SAHLIST_ENTRY_DESTROY(sah); 3141 localcount_fini(&sah->localcount); 3142 3143 if (sah->idents != NULL) 3144 kmem_free(sah->idents, sah->idents_len); 3145 if (sah->identd != NULL) 3146 kmem_free(sah->identd, sah->identd_len); 3147 3148 kmem_free(sah, sizeof(*sah)); 3149 } 3150 3151 /* 3152 * allocating a new SA with LARVAL state. 3153 * key_api_add() and key_api_getspi() call, 3154 * and copy the values of mhp into new buffer. 3155 * When SAD message type is GETSPI: 3156 * to set sequence number from acq_seq++, 3157 * to set zero to SPI. 3158 * not to call key_setsava(). 3159 * OUT: NULL : fail 3160 * others : pointer to new secasvar. 3161 * 3162 * does not modify mbuf. does not free mbuf on error. 3163 */ 3164 static struct secasvar * 3165 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp, 3166 int *errp, const char* where, int tag) 3167 { 3168 struct secasvar *newsav; 3169 const struct sadb_sa *xsa; 3170 3171 KASSERT(!cpu_softintr_p()); 3172 KASSERT(m != NULL); 3173 KASSERT(mhp != NULL); 3174 KASSERT(mhp->msg != NULL); 3175 3176 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); 3177 3178 switch (mhp->msg->sadb_msg_type) { 3179 case SADB_GETSPI: 3180 newsav->spi = 0; 3181 3182 #ifdef IPSEC_DOSEQCHECK 3183 /* sync sequence number */ 3184 if (mhp->msg->sadb_msg_seq == 0) 3185 newsav->seq = 3186 (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 3187 else 3188 #endif 3189 newsav->seq = mhp->msg->sadb_msg_seq; 3190 break; 3191 3192 case SADB_ADD: 3193 /* sanity check */ 3194 if (mhp->ext[SADB_EXT_SA] == NULL) { 3195 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 3196 *errp = EINVAL; 3197 goto error; 3198 } 3199 xsa = mhp->ext[SADB_EXT_SA]; 3200 newsav->spi = xsa->sadb_sa_spi; 3201 newsav->seq = mhp->msg->sadb_msg_seq; 3202 break; 3203 default: 3204 *errp = EINVAL; 3205 goto error; 3206 } 3207 3208 /* copy sav values */ 3209 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 3210 *errp = key_setsaval(newsav, m, mhp); 3211 if (*errp) 3212 goto error; 3213 } else { 3214 /* We don't allow lft_c to be NULL */ 3215 newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime), 3216 KM_SLEEP); 3217 } 3218 3219 /* reset created */ 3220 newsav->created = time_uptime; 3221 newsav->pid = mhp->msg->sadb_msg_pid; 3222 3223 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 3224 "DP from %s:%u return SA:%p\n", where, tag, newsav); 3225 return newsav; 3226 3227 error: 3228 KASSERT(*errp != 0); 3229 kmem_free(newsav, sizeof(*newsav)); 3230 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 3231 "DP from %s:%u return SA:NULL\n", where, tag); 3232 return NULL; 3233 } 3234 3235 3236 static void 3237 key_clear_xform(struct secasvar *sav) 3238 { 3239 3240 /* 3241 * Cleanup xform state. Note that zeroize'ing causes the 3242 * keys to be cleared; otherwise we must do it ourself. 3243 */ 3244 if (sav->tdb_xform != NULL) { 3245 sav->tdb_xform->xf_zeroize(sav); 3246 sav->tdb_xform = NULL; 3247 } else { 3248 if (sav->key_auth != NULL) 3249 explicit_memset(_KEYBUF(sav->key_auth), 0, 3250 _KEYLEN(sav->key_auth)); 3251 if (sav->key_enc != NULL) 3252 explicit_memset(_KEYBUF(sav->key_enc), 0, 3253 _KEYLEN(sav->key_enc)); 3254 } 3255 } 3256 3257 /* 3258 * free() SA variable entry. 3259 */ 3260 static void 3261 key_delsav(struct secasvar *sav) 3262 { 3263 3264 key_clear_xform(sav); 3265 key_freesaval(sav); 3266 kmem_free(sav, sizeof(*sav)); 3267 } 3268 3269 /* 3270 * Must be called in a pserialize read section. A held sah 3271 * must be released by key_sah_unref after use. 3272 */ 3273 static void 3274 key_sah_ref(struct secashead *sah) 3275 { 3276 3277 localcount_acquire(&sah->localcount); 3278 } 3279 3280 /* 3281 * Must be called without holding key_sad.lock because the lock 3282 * would be held in localcount_release. 3283 */ 3284 static void 3285 key_sah_unref(struct secashead *sah) 3286 { 3287 3288 KDASSERT(mutex_ownable(&key_sad.lock)); 3289 3290 localcount_release(&sah->localcount, &key_sad.cv_lc, &key_sad.lock); 3291 } 3292 3293 /* 3294 * Search SAD and return sah. Must be called in a pserialize 3295 * read section. 3296 * OUT: 3297 * NULL : not found 3298 * others : found, pointer to a SA. 3299 */ 3300 static struct secashead * 3301 key_getsah(const struct secasindex *saidx, int flag) 3302 { 3303 struct secashead *sah; 3304 3305 SAHLIST_READER_FOREACH(sah) { 3306 if (sah->state == SADB_SASTATE_DEAD) 3307 continue; 3308 if (key_saidx_match(&sah->saidx, saidx, flag)) 3309 return sah; 3310 } 3311 3312 return NULL; 3313 } 3314 3315 /* 3316 * Search SAD and return sah. If sah is returned, the caller must call 3317 * key_sah_unref to releaset a reference. 3318 * OUT: 3319 * NULL : not found 3320 * others : found, pointer to a SA. 3321 */ 3322 static struct secashead * 3323 key_getsah_ref(const struct secasindex *saidx, int flag) 3324 { 3325 struct secashead *sah; 3326 int s; 3327 3328 s = pserialize_read_enter(); 3329 sah = key_getsah(saidx, flag); 3330 if (sah != NULL) 3331 key_sah_ref(sah); 3332 pserialize_read_exit(s); 3333 3334 return sah; 3335 } 3336 3337 /* 3338 * check not to be duplicated SPI. 3339 * NOTE: this function is too slow due to searching all SAD. 3340 * OUT: 3341 * NULL : not found 3342 * others : found, pointer to a SA. 3343 */ 3344 static bool 3345 key_checkspidup(const struct secasindex *saidx, u_int32_t spi) 3346 { 3347 struct secashead *sah; 3348 struct secasvar *sav; 3349 int s; 3350 3351 /* check address family */ 3352 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 3353 IPSECLOG(LOG_DEBUG, "address family mismatched.\n"); 3354 return false; 3355 } 3356 3357 /* check all SAD */ 3358 s = pserialize_read_enter(); 3359 SAHLIST_READER_FOREACH(sah) { 3360 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 3361 continue; 3362 sav = key_getsavbyspi(sah, spi); 3363 if (sav != NULL) { 3364 pserialize_read_exit(s); 3365 KEY_SA_UNREF(&sav); 3366 return true; 3367 } 3368 } 3369 pserialize_read_exit(s); 3370 3371 return false; 3372 } 3373 3374 /* 3375 * search SAD litmited alive SA, protocol, SPI. 3376 * OUT: 3377 * NULL : not found 3378 * others : found, pointer to a SA. 3379 */ 3380 static struct secasvar * 3381 key_getsavbyspi(struct secashead *sah, u_int32_t spi) 3382 { 3383 struct secasvar *sav = NULL; 3384 u_int state; 3385 int s; 3386 3387 /* search all status */ 3388 s = pserialize_read_enter(); 3389 SASTATE_ALIVE_FOREACH(state) { 3390 SAVLIST_READER_FOREACH(sav, sah, state) { 3391 /* sanity check */ 3392 if (sav->state != state) { 3393 IPSECLOG(LOG_DEBUG, 3394 "invalid sav->state (queue: %d SA: %d)\n", 3395 state, sav->state); 3396 continue; 3397 } 3398 3399 if (sav->spi == spi) { 3400 KEY_SA_REF(sav); 3401 goto out; 3402 } 3403 } 3404 } 3405 out: 3406 pserialize_read_exit(s); 3407 3408 return sav; 3409 } 3410 3411 /* 3412 * Free allocated data to member variables of sav: 3413 * sav->replay, sav->key_* and sav->lft_*. 3414 */ 3415 static void 3416 key_freesaval(struct secasvar *sav) 3417 { 3418 3419 KASSERT(key_sa_refcnt(sav) == 0); 3420 3421 if (sav->replay != NULL) 3422 kmem_intr_free(sav->replay, sav->replay_len); 3423 if (sav->key_auth != NULL) 3424 kmem_intr_free(sav->key_auth, sav->key_auth_len); 3425 if (sav->key_enc != NULL) 3426 kmem_intr_free(sav->key_enc, sav->key_enc_len); 3427 if (sav->lft_c != NULL) 3428 kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c))); 3429 if (sav->lft_h != NULL) 3430 kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h))); 3431 if (sav->lft_s != NULL) 3432 kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s))); 3433 } 3434 3435 /* 3436 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3437 * You must update these if need. 3438 * OUT: 0: success. 3439 * !0: failure. 3440 * 3441 * does not modify mbuf. does not free mbuf on error. 3442 */ 3443 static int 3444 key_setsaval(struct secasvar *sav, struct mbuf *m, 3445 const struct sadb_msghdr *mhp) 3446 { 3447 int error = 0; 3448 3449 KASSERT(!cpu_softintr_p()); 3450 KASSERT(m != NULL); 3451 KASSERT(mhp != NULL); 3452 KASSERT(mhp->msg != NULL); 3453 3454 /* We shouldn't initialize sav variables while someone uses it. */ 3455 KASSERT(key_sa_refcnt(sav) == 0); 3456 3457 /* SA */ 3458 if (mhp->ext[SADB_EXT_SA] != NULL) { 3459 const struct sadb_sa *sa0; 3460 3461 sa0 = mhp->ext[SADB_EXT_SA]; 3462 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3463 error = EINVAL; 3464 goto fail; 3465 } 3466 3467 sav->alg_auth = sa0->sadb_sa_auth; 3468 sav->alg_enc = sa0->sadb_sa_encrypt; 3469 sav->flags = sa0->sadb_sa_flags; 3470 3471 /* replay window */ 3472 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3473 size_t len = sizeof(struct secreplay) + 3474 sa0->sadb_sa_replay; 3475 sav->replay = kmem_zalloc(len, KM_SLEEP); 3476 sav->replay_len = len; 3477 if (sa0->sadb_sa_replay != 0) 3478 sav->replay->bitmap = (char*)(sav->replay+1); 3479 sav->replay->wsize = sa0->sadb_sa_replay; 3480 } 3481 } 3482 3483 /* Authentication keys */ 3484 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3485 const struct sadb_key *key0; 3486 int len; 3487 3488 key0 = mhp->ext[SADB_EXT_KEY_AUTH]; 3489 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3490 3491 error = 0; 3492 if (len < sizeof(*key0)) { 3493 error = EINVAL; 3494 goto fail; 3495 } 3496 switch (mhp->msg->sadb_msg_satype) { 3497 case SADB_SATYPE_AH: 3498 case SADB_SATYPE_ESP: 3499 case SADB_X_SATYPE_TCPSIGNATURE: 3500 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3501 sav->alg_auth != SADB_X_AALG_NULL) 3502 error = EINVAL; 3503 break; 3504 case SADB_X_SATYPE_IPCOMP: 3505 default: 3506 error = EINVAL; 3507 break; 3508 } 3509 if (error) { 3510 IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n"); 3511 goto fail; 3512 } 3513 3514 sav->key_auth = key_newbuf(key0, len); 3515 sav->key_auth_len = len; 3516 } 3517 3518 /* Encryption key */ 3519 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3520 const struct sadb_key *key0; 3521 int len; 3522 3523 key0 = mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3524 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3525 3526 error = 0; 3527 if (len < sizeof(*key0)) { 3528 error = EINVAL; 3529 goto fail; 3530 } 3531 switch (mhp->msg->sadb_msg_satype) { 3532 case SADB_SATYPE_ESP: 3533 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3534 sav->alg_enc != SADB_EALG_NULL) { 3535 error = EINVAL; 3536 break; 3537 } 3538 sav->key_enc = key_newbuf(key0, len); 3539 sav->key_enc_len = len; 3540 break; 3541 case SADB_X_SATYPE_IPCOMP: 3542 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3543 error = EINVAL; 3544 sav->key_enc = NULL; /*just in case*/ 3545 break; 3546 case SADB_SATYPE_AH: 3547 case SADB_X_SATYPE_TCPSIGNATURE: 3548 default: 3549 error = EINVAL; 3550 break; 3551 } 3552 if (error) { 3553 IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n"); 3554 goto fail; 3555 } 3556 } 3557 3558 /* set iv */ 3559 sav->ivlen = 0; 3560 3561 switch (mhp->msg->sadb_msg_satype) { 3562 case SADB_SATYPE_AH: 3563 error = xform_init(sav, XF_AH); 3564 break; 3565 case SADB_SATYPE_ESP: 3566 error = xform_init(sav, XF_ESP); 3567 break; 3568 case SADB_X_SATYPE_IPCOMP: 3569 error = xform_init(sav, XF_IPCOMP); 3570 break; 3571 case SADB_X_SATYPE_TCPSIGNATURE: 3572 error = xform_init(sav, XF_TCPSIGNATURE); 3573 break; 3574 } 3575 if (error) { 3576 IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n", 3577 mhp->msg->sadb_msg_satype); 3578 goto fail; 3579 } 3580 3581 /* reset created */ 3582 sav->created = time_uptime; 3583 3584 /* make lifetime for CURRENT */ 3585 sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP); 3586 3587 sav->lft_c->sadb_lifetime_len = 3588 PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 3589 sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 3590 sav->lft_c->sadb_lifetime_allocations = 0; 3591 sav->lft_c->sadb_lifetime_bytes = 0; 3592 sav->lft_c->sadb_lifetime_addtime = time_uptime; 3593 sav->lft_c->sadb_lifetime_usetime = 0; 3594 3595 /* lifetimes for HARD and SOFT */ 3596 { 3597 const struct sadb_lifetime *lft0; 3598 3599 lft0 = mhp->ext[SADB_EXT_LIFETIME_HARD]; 3600 if (lft0 != NULL) { 3601 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3602 error = EINVAL; 3603 goto fail; 3604 } 3605 sav->lft_h = key_newbuf(lft0, sizeof(*lft0)); 3606 } 3607 3608 lft0 = mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3609 if (lft0 != NULL) { 3610 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3611 error = EINVAL; 3612 goto fail; 3613 } 3614 sav->lft_s = key_newbuf(lft0, sizeof(*lft0)); 3615 /* to be initialize ? */ 3616 } 3617 } 3618 3619 return 0; 3620 3621 fail: 3622 key_clear_xform(sav); 3623 key_freesaval(sav); 3624 3625 return error; 3626 } 3627 3628 /* 3629 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3630 * OUT: 0: valid 3631 * other: errno 3632 */ 3633 static int 3634 key_init_xform(struct secasvar *sav) 3635 { 3636 int error; 3637 3638 /* We shouldn't initialize sav variables while someone uses it. */ 3639 KASSERT(key_sa_refcnt(sav) == 0); 3640 3641 /* check SPI value */ 3642 switch (sav->sah->saidx.proto) { 3643 case IPPROTO_ESP: 3644 case IPPROTO_AH: 3645 if (ntohl(sav->spi) <= 255) { 3646 IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n", 3647 (u_int32_t)ntohl(sav->spi)); 3648 return EINVAL; 3649 } 3650 break; 3651 } 3652 3653 /* check satype */ 3654 switch (sav->sah->saidx.proto) { 3655 case IPPROTO_ESP: 3656 /* check flags */ 3657 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3658 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3659 IPSECLOG(LOG_DEBUG, 3660 "invalid flag (derived) given to old-esp.\n"); 3661 return EINVAL; 3662 } 3663 error = xform_init(sav, XF_ESP); 3664 break; 3665 case IPPROTO_AH: 3666 /* check flags */ 3667 if (sav->flags & SADB_X_EXT_DERIV) { 3668 IPSECLOG(LOG_DEBUG, 3669 "invalid flag (derived) given to AH SA.\n"); 3670 return EINVAL; 3671 } 3672 if (sav->alg_enc != SADB_EALG_NONE) { 3673 IPSECLOG(LOG_DEBUG, 3674 "protocol and algorithm mismated.\n"); 3675 return(EINVAL); 3676 } 3677 error = xform_init(sav, XF_AH); 3678 break; 3679 case IPPROTO_IPCOMP: 3680 if (sav->alg_auth != SADB_AALG_NONE) { 3681 IPSECLOG(LOG_DEBUG, 3682 "protocol and algorithm mismated.\n"); 3683 return(EINVAL); 3684 } 3685 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3686 && ntohl(sav->spi) >= 0x10000) { 3687 IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n"); 3688 return(EINVAL); 3689 } 3690 error = xform_init(sav, XF_IPCOMP); 3691 break; 3692 case IPPROTO_TCP: 3693 if (sav->alg_enc != SADB_EALG_NONE) { 3694 IPSECLOG(LOG_DEBUG, 3695 "protocol and algorithm mismated.\n"); 3696 return(EINVAL); 3697 } 3698 error = xform_init(sav, XF_TCPSIGNATURE); 3699 break; 3700 default: 3701 IPSECLOG(LOG_DEBUG, "Invalid satype.\n"); 3702 error = EPROTONOSUPPORT; 3703 break; 3704 } 3705 3706 return error; 3707 } 3708 3709 /* 3710 * subroutine for SADB_GET and SADB_DUMP. 3711 */ 3712 static struct mbuf * 3713 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3714 u_int32_t seq, u_int32_t pid) 3715 { 3716 struct mbuf *result = NULL, *tres = NULL, *m; 3717 int l = 0; 3718 int i; 3719 void *p; 3720 struct sadb_lifetime lt; 3721 int dumporder[] = { 3722 SADB_EXT_SA, SADB_X_EXT_SA2, 3723 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3724 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3725 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3726 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3727 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3728 SADB_X_EXT_NAT_T_TYPE, 3729 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3730 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3731 SADB_X_EXT_NAT_T_FRAG, 3732 3733 }; 3734 3735 m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav)); 3736 if (m == NULL) 3737 goto fail; 3738 result = m; 3739 3740 for (i = __arraycount(dumporder) - 1; i >= 0; i--) { 3741 m = NULL; 3742 p = NULL; 3743 switch (dumporder[i]) { 3744 case SADB_EXT_SA: 3745 m = key_setsadbsa(sav); 3746 break; 3747 3748 case SADB_X_EXT_SA2: 3749 m = key_setsadbxsa2(sav->sah->saidx.mode, 3750 sav->replay ? sav->replay->count : 0, 3751 sav->sah->saidx.reqid); 3752 break; 3753 3754 case SADB_EXT_ADDRESS_SRC: 3755 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3756 &sav->sah->saidx.src.sa, 3757 FULLMASK, IPSEC_ULPROTO_ANY); 3758 break; 3759 3760 case SADB_EXT_ADDRESS_DST: 3761 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3762 &sav->sah->saidx.dst.sa, 3763 FULLMASK, IPSEC_ULPROTO_ANY); 3764 break; 3765 3766 case SADB_EXT_KEY_AUTH: 3767 if (!sav->key_auth) 3768 continue; 3769 l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len); 3770 p = sav->key_auth; 3771 break; 3772 3773 case SADB_EXT_KEY_ENCRYPT: 3774 if (!sav->key_enc) 3775 continue; 3776 l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len); 3777 p = sav->key_enc; 3778 break; 3779 3780 case SADB_EXT_LIFETIME_CURRENT: 3781 KASSERT(sav->lft_c != NULL); 3782 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len); 3783 memcpy(<, sav->lft_c, sizeof(struct sadb_lifetime)); 3784 lt.sadb_lifetime_addtime = 3785 time_mono_to_wall(lt.sadb_lifetime_addtime); 3786 lt.sadb_lifetime_usetime = 3787 time_mono_to_wall(lt.sadb_lifetime_usetime); 3788 p = < 3789 break; 3790 3791 case SADB_EXT_LIFETIME_HARD: 3792 if (!sav->lft_h) 3793 continue; 3794 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len); 3795 p = sav->lft_h; 3796 break; 3797 3798 case SADB_EXT_LIFETIME_SOFT: 3799 if (!sav->lft_s) 3800 continue; 3801 l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len); 3802 p = sav->lft_s; 3803 break; 3804 3805 case SADB_X_EXT_NAT_T_TYPE: 3806 m = key_setsadbxtype(sav->natt_type); 3807 break; 3808 3809 case SADB_X_EXT_NAT_T_DPORT: 3810 if (sav->natt_type == 0) 3811 continue; 3812 m = key_setsadbxport( 3813 key_portfromsaddr(&sav->sah->saidx.dst), 3814 SADB_X_EXT_NAT_T_DPORT); 3815 break; 3816 3817 case SADB_X_EXT_NAT_T_SPORT: 3818 if (sav->natt_type == 0) 3819 continue; 3820 m = key_setsadbxport( 3821 key_portfromsaddr(&sav->sah->saidx.src), 3822 SADB_X_EXT_NAT_T_SPORT); 3823 break; 3824 3825 case SADB_X_EXT_NAT_T_FRAG: 3826 /* don't send frag info if not set */ 3827 if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET) 3828 continue; 3829 m = key_setsadbxfrag(sav->esp_frag); 3830 break; 3831 3832 case SADB_X_EXT_NAT_T_OAI: 3833 case SADB_X_EXT_NAT_T_OAR: 3834 continue; 3835 3836 case SADB_EXT_ADDRESS_PROXY: 3837 case SADB_EXT_IDENTITY_SRC: 3838 case SADB_EXT_IDENTITY_DST: 3839 /* XXX: should we brought from SPD ? */ 3840 case SADB_EXT_SENSITIVITY: 3841 default: 3842 continue; 3843 } 3844 3845 KASSERT(!(m && p)); 3846 if (!m && !p) 3847 goto fail; 3848 if (p && tres) { 3849 M_PREPEND(tres, l, M_DONTWAIT); 3850 if (!tres) 3851 goto fail; 3852 memcpy(mtod(tres, void *), p, l); 3853 continue; 3854 } 3855 if (p) { 3856 m = key_alloc_mbuf(l); 3857 if (!m) 3858 goto fail; 3859 m_copyback(m, 0, l, p); 3860 } 3861 3862 if (tres) 3863 m_cat(m, tres); 3864 tres = m; 3865 } 3866 3867 m_cat(result, tres); 3868 tres = NULL; /* avoid free on error below */ 3869 3870 if (result->m_len < sizeof(struct sadb_msg)) { 3871 result = m_pullup(result, sizeof(struct sadb_msg)); 3872 if (result == NULL) 3873 goto fail; 3874 } 3875 3876 result->m_pkthdr.len = 0; 3877 for (m = result; m; m = m->m_next) 3878 result->m_pkthdr.len += m->m_len; 3879 3880 mtod(result, struct sadb_msg *)->sadb_msg_len = 3881 PFKEY_UNIT64(result->m_pkthdr.len); 3882 3883 return result; 3884 3885 fail: 3886 m_freem(result); 3887 m_freem(tres); 3888 return NULL; 3889 } 3890 3891 3892 /* 3893 * set a type in sadb_x_nat_t_type 3894 */ 3895 static struct mbuf * 3896 key_setsadbxtype(u_int16_t type) 3897 { 3898 struct mbuf *m; 3899 size_t len; 3900 struct sadb_x_nat_t_type *p; 3901 3902 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3903 3904 m = key_alloc_mbuf(len); 3905 if (!m || m->m_next) { /*XXX*/ 3906 if (m) 3907 m_freem(m); 3908 return NULL; 3909 } 3910 3911 p = mtod(m, struct sadb_x_nat_t_type *); 3912 3913 memset(p, 0, len); 3914 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3915 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3916 p->sadb_x_nat_t_type_type = type; 3917 3918 return m; 3919 } 3920 /* 3921 * set a port in sadb_x_nat_t_port. port is in network order 3922 */ 3923 static struct mbuf * 3924 key_setsadbxport(u_int16_t port, u_int16_t type) 3925 { 3926 struct mbuf *m; 3927 size_t len; 3928 struct sadb_x_nat_t_port *p; 3929 3930 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3931 3932 m = key_alloc_mbuf(len); 3933 if (!m || m->m_next) { /*XXX*/ 3934 if (m) 3935 m_freem(m); 3936 return NULL; 3937 } 3938 3939 p = mtod(m, struct sadb_x_nat_t_port *); 3940 3941 memset(p, 0, len); 3942 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3943 p->sadb_x_nat_t_port_exttype = type; 3944 p->sadb_x_nat_t_port_port = port; 3945 3946 return m; 3947 } 3948 3949 /* 3950 * set fragmentation info in sadb_x_nat_t_frag 3951 */ 3952 static struct mbuf * 3953 key_setsadbxfrag(u_int16_t flen) 3954 { 3955 struct mbuf *m; 3956 size_t len; 3957 struct sadb_x_nat_t_frag *p; 3958 3959 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag)); 3960 3961 m = key_alloc_mbuf(len); 3962 if (!m || m->m_next) { /*XXX*/ 3963 if (m) 3964 m_freem(m); 3965 return NULL; 3966 } 3967 3968 p = mtod(m, struct sadb_x_nat_t_frag *); 3969 3970 memset(p, 0, len); 3971 p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len); 3972 p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG; 3973 p->sadb_x_nat_t_frag_fraglen = flen; 3974 3975 return m; 3976 } 3977 3978 /* 3979 * Get port from sockaddr, port is in network order 3980 */ 3981 u_int16_t 3982 key_portfromsaddr(const union sockaddr_union *saddr) 3983 { 3984 u_int16_t port; 3985 3986 switch (saddr->sa.sa_family) { 3987 case AF_INET: { 3988 port = saddr->sin.sin_port; 3989 break; 3990 } 3991 #ifdef INET6 3992 case AF_INET6: { 3993 port = saddr->sin6.sin6_port; 3994 break; 3995 } 3996 #endif 3997 default: 3998 printf("%s: unexpected address family\n", __func__); 3999 port = 0; 4000 break; 4001 } 4002 4003 return port; 4004 } 4005 4006 4007 /* 4008 * Set port is struct sockaddr. port is in network order 4009 */ 4010 static void 4011 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port) 4012 { 4013 switch (saddr->sa.sa_family) { 4014 case AF_INET: { 4015 saddr->sin.sin_port = port; 4016 break; 4017 } 4018 #ifdef INET6 4019 case AF_INET6: { 4020 saddr->sin6.sin6_port = port; 4021 break; 4022 } 4023 #endif 4024 default: 4025 printf("%s: unexpected address family %d\n", __func__, 4026 saddr->sa.sa_family); 4027 break; 4028 } 4029 4030 return; 4031 } 4032 4033 /* 4034 * Safety check sa_len 4035 */ 4036 static int 4037 key_checksalen(const union sockaddr_union *saddr) 4038 { 4039 switch (saddr->sa.sa_family) { 4040 case AF_INET: 4041 if (saddr->sa.sa_len != sizeof(struct sockaddr_in)) 4042 return -1; 4043 break; 4044 #ifdef INET6 4045 case AF_INET6: 4046 if (saddr->sa.sa_len != sizeof(struct sockaddr_in6)) 4047 return -1; 4048 break; 4049 #endif 4050 default: 4051 printf("%s: unexpected sa_family %d\n", __func__, 4052 saddr->sa.sa_family); 4053 return -1; 4054 break; 4055 } 4056 return 0; 4057 } 4058 4059 4060 /* 4061 * set data into sadb_msg. 4062 */ 4063 static struct mbuf * 4064 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, 4065 u_int32_t seq, pid_t pid, u_int16_t reserved) 4066 { 4067 struct mbuf *m; 4068 struct sadb_msg *p; 4069 int len; 4070 4071 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES); 4072 4073 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4074 4075 MGETHDR(m, M_DONTWAIT, MT_DATA); 4076 if (m && len > MHLEN) { 4077 MCLGET(m, M_DONTWAIT); 4078 if ((m->m_flags & M_EXT) == 0) { 4079 m_freem(m); 4080 m = NULL; 4081 } 4082 } 4083 if (!m) 4084 return NULL; 4085 m->m_pkthdr.len = m->m_len = len; 4086 m->m_next = NULL; 4087 4088 p = mtod(m, struct sadb_msg *); 4089 4090 memset(p, 0, len); 4091 p->sadb_msg_version = PF_KEY_V2; 4092 p->sadb_msg_type = type; 4093 p->sadb_msg_errno = 0; 4094 p->sadb_msg_satype = satype; 4095 p->sadb_msg_len = PFKEY_UNIT64(tlen); 4096 p->sadb_msg_reserved = reserved; 4097 p->sadb_msg_seq = seq; 4098 p->sadb_msg_pid = (u_int32_t)pid; 4099 4100 return m; 4101 } 4102 4103 /* 4104 * copy secasvar data into sadb_address. 4105 */ 4106 static struct mbuf * 4107 key_setsadbsa(struct secasvar *sav) 4108 { 4109 struct mbuf *m; 4110 struct sadb_sa *p; 4111 int len; 4112 4113 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4114 m = key_alloc_mbuf(len); 4115 if (!m || m->m_next) { /*XXX*/ 4116 if (m) 4117 m_freem(m); 4118 return NULL; 4119 } 4120 4121 p = mtod(m, struct sadb_sa *); 4122 4123 memset(p, 0, len); 4124 p->sadb_sa_len = PFKEY_UNIT64(len); 4125 p->sadb_sa_exttype = SADB_EXT_SA; 4126 p->sadb_sa_spi = sav->spi; 4127 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 4128 p->sadb_sa_state = sav->state; 4129 p->sadb_sa_auth = sav->alg_auth; 4130 p->sadb_sa_encrypt = sav->alg_enc; 4131 p->sadb_sa_flags = sav->flags; 4132 4133 return m; 4134 } 4135 4136 /* 4137 * set data into sadb_address. 4138 */ 4139 static struct mbuf * 4140 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 4141 u_int8_t prefixlen, u_int16_t ul_proto) 4142 { 4143 struct mbuf *m; 4144 struct sadb_address *p; 4145 size_t len; 4146 4147 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 4148 PFKEY_ALIGN8(saddr->sa_len); 4149 m = key_alloc_mbuf(len); 4150 if (!m || m->m_next) { /*XXX*/ 4151 if (m) 4152 m_freem(m); 4153 return NULL; 4154 } 4155 4156 p = mtod(m, struct sadb_address *); 4157 4158 memset(p, 0, len); 4159 p->sadb_address_len = PFKEY_UNIT64(len); 4160 p->sadb_address_exttype = exttype; 4161 p->sadb_address_proto = ul_proto; 4162 if (prefixlen == FULLMASK) { 4163 switch (saddr->sa_family) { 4164 case AF_INET: 4165 prefixlen = sizeof(struct in_addr) << 3; 4166 break; 4167 case AF_INET6: 4168 prefixlen = sizeof(struct in6_addr) << 3; 4169 break; 4170 default: 4171 ; /*XXX*/ 4172 } 4173 } 4174 p->sadb_address_prefixlen = prefixlen; 4175 p->sadb_address_reserved = 0; 4176 4177 memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 4178 saddr, saddr->sa_len); 4179 4180 return m; 4181 } 4182 4183 #if 0 4184 /* 4185 * set data into sadb_ident. 4186 */ 4187 static struct mbuf * 4188 key_setsadbident(u_int16_t exttype, u_int16_t idtype, 4189 void *string, int stringlen, u_int64_t id) 4190 { 4191 struct mbuf *m; 4192 struct sadb_ident *p; 4193 size_t len; 4194 4195 len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen); 4196 m = key_alloc_mbuf(len); 4197 if (!m || m->m_next) { /*XXX*/ 4198 if (m) 4199 m_freem(m); 4200 return NULL; 4201 } 4202 4203 p = mtod(m, struct sadb_ident *); 4204 4205 memset(p, 0, len); 4206 p->sadb_ident_len = PFKEY_UNIT64(len); 4207 p->sadb_ident_exttype = exttype; 4208 p->sadb_ident_type = idtype; 4209 p->sadb_ident_reserved = 0; 4210 p->sadb_ident_id = id; 4211 4212 memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)), 4213 string, stringlen); 4214 4215 return m; 4216 } 4217 #endif 4218 4219 /* 4220 * set data into sadb_x_sa2. 4221 */ 4222 static struct mbuf * 4223 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid) 4224 { 4225 struct mbuf *m; 4226 struct sadb_x_sa2 *p; 4227 size_t len; 4228 4229 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 4230 m = key_alloc_mbuf(len); 4231 if (!m || m->m_next) { /*XXX*/ 4232 if (m) 4233 m_freem(m); 4234 return NULL; 4235 } 4236 4237 p = mtod(m, struct sadb_x_sa2 *); 4238 4239 memset(p, 0, len); 4240 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 4241 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 4242 p->sadb_x_sa2_mode = mode; 4243 p->sadb_x_sa2_reserved1 = 0; 4244 p->sadb_x_sa2_reserved2 = 0; 4245 p->sadb_x_sa2_sequence = seq; 4246 p->sadb_x_sa2_reqid = reqid; 4247 4248 return m; 4249 } 4250 4251 /* 4252 * set data into sadb_x_policy 4253 */ 4254 static struct mbuf * 4255 key_setsadbxpolicy(const u_int16_t type, const u_int8_t dir, const u_int32_t id) 4256 { 4257 struct mbuf *m; 4258 struct sadb_x_policy *p; 4259 size_t len; 4260 4261 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 4262 m = key_alloc_mbuf(len); 4263 if (!m || m->m_next) { /*XXX*/ 4264 if (m) 4265 m_freem(m); 4266 return NULL; 4267 } 4268 4269 p = mtod(m, struct sadb_x_policy *); 4270 4271 memset(p, 0, len); 4272 p->sadb_x_policy_len = PFKEY_UNIT64(len); 4273 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 4274 p->sadb_x_policy_type = type; 4275 p->sadb_x_policy_dir = dir; 4276 p->sadb_x_policy_id = id; 4277 4278 return m; 4279 } 4280 4281 /* %%% utilities */ 4282 /* 4283 * copy a buffer into the new buffer allocated. 4284 */ 4285 static void * 4286 key_newbuf(const void *src, u_int len) 4287 { 4288 void *new; 4289 4290 new = kmem_alloc(len, KM_SLEEP); 4291 memcpy(new, src, len); 4292 4293 return new; 4294 } 4295 4296 /* compare my own address 4297 * OUT: 1: true, i.e. my address. 4298 * 0: false 4299 */ 4300 int 4301 key_ismyaddr(const struct sockaddr *sa) 4302 { 4303 #ifdef INET 4304 const struct sockaddr_in *sin; 4305 const struct in_ifaddr *ia; 4306 int s; 4307 #endif 4308 4309 KASSERT(sa != NULL); 4310 4311 switch (sa->sa_family) { 4312 #ifdef INET 4313 case AF_INET: 4314 sin = (const struct sockaddr_in *)sa; 4315 s = pserialize_read_enter(); 4316 IN_ADDRLIST_READER_FOREACH(ia) { 4317 if (sin->sin_family == ia->ia_addr.sin_family && 4318 sin->sin_len == ia->ia_addr.sin_len && 4319 sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) 4320 { 4321 pserialize_read_exit(s); 4322 return 1; 4323 } 4324 } 4325 pserialize_read_exit(s); 4326 break; 4327 #endif 4328 #ifdef INET6 4329 case AF_INET6: 4330 return key_ismyaddr6((const struct sockaddr_in6 *)sa); 4331 #endif 4332 } 4333 4334 return 0; 4335 } 4336 4337 #ifdef INET6 4338 /* 4339 * compare my own address for IPv6. 4340 * 1: ours 4341 * 0: other 4342 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 4343 */ 4344 #include <netinet6/in6_var.h> 4345 4346 static int 4347 key_ismyaddr6(const struct sockaddr_in6 *sin6) 4348 { 4349 struct in6_ifaddr *ia; 4350 int s; 4351 struct psref psref; 4352 int bound; 4353 int ours = 1; 4354 4355 bound = curlwp_bind(); 4356 s = pserialize_read_enter(); 4357 IN6_ADDRLIST_READER_FOREACH(ia) { 4358 bool ingroup; 4359 4360 if (key_sockaddr_match((const struct sockaddr *)&sin6, 4361 (const struct sockaddr *)&ia->ia_addr, 0)) { 4362 pserialize_read_exit(s); 4363 goto ours; 4364 } 4365 ia6_acquire(ia, &psref); 4366 pserialize_read_exit(s); 4367 4368 /* 4369 * XXX Multicast 4370 * XXX why do we care about multlicast here while we don't care 4371 * about IPv4 multicast?? 4372 * XXX scope 4373 */ 4374 ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp); 4375 if (ingroup) { 4376 ia6_release(ia, &psref); 4377 goto ours; 4378 } 4379 4380 s = pserialize_read_enter(); 4381 ia6_release(ia, &psref); 4382 } 4383 pserialize_read_exit(s); 4384 4385 /* loopback, just for safety */ 4386 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 4387 goto ours; 4388 4389 ours = 0; 4390 ours: 4391 curlwp_bindx(bound); 4392 4393 return ours; 4394 } 4395 #endif /*INET6*/ 4396 4397 /* 4398 * compare two secasindex structure. 4399 * flag can specify to compare 2 saidxes. 4400 * compare two secasindex structure without both mode and reqid. 4401 * don't compare port. 4402 * IN: 4403 * saidx0: source, it can be in SAD. 4404 * saidx1: object. 4405 * OUT: 4406 * 1 : equal 4407 * 0 : not equal 4408 */ 4409 static int 4410 key_saidx_match( 4411 const struct secasindex *saidx0, 4412 const struct secasindex *saidx1, 4413 int flag) 4414 { 4415 int chkport; 4416 const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst; 4417 4418 KASSERT(saidx0 != NULL); 4419 KASSERT(saidx1 != NULL); 4420 4421 /* sanity */ 4422 if (saidx0->proto != saidx1->proto) 4423 return 0; 4424 4425 if (flag == CMP_EXACTLY) { 4426 if (saidx0->mode != saidx1->mode) 4427 return 0; 4428 if (saidx0->reqid != saidx1->reqid) 4429 return 0; 4430 if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4431 memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4432 return 0; 4433 } else { 4434 4435 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4436 if (flag == CMP_MODE_REQID ||flag == CMP_REQID) { 4437 /* 4438 * If reqid of SPD is non-zero, unique SA is required. 4439 * The result must be of same reqid in this case. 4440 */ 4441 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4442 return 0; 4443 } 4444 4445 if (flag == CMP_MODE_REQID) { 4446 if (saidx0->mode != IPSEC_MODE_ANY && 4447 saidx0->mode != saidx1->mode) 4448 return 0; 4449 } 4450 4451 4452 sa0src = &saidx0->src.sa; 4453 sa0dst = &saidx0->dst.sa; 4454 sa1src = &saidx1->src.sa; 4455 sa1dst = &saidx1->dst.sa; 4456 /* 4457 * If NAT-T is enabled, check ports for tunnel mode. 4458 * Don't do it for transport mode, as there is no 4459 * port information available in the SP. 4460 * Also don't check ports if they are set to zero 4461 * in the SPD: This means we have a non-generated 4462 * SPD which can't know UDP ports. 4463 */ 4464 if (saidx1->mode == IPSEC_MODE_TUNNEL) 4465 chkport = PORT_LOOSE; 4466 else 4467 chkport = PORT_NONE; 4468 4469 if (!key_sockaddr_match(sa0src, sa1src, chkport)) { 4470 return 0; 4471 } 4472 if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) { 4473 return 0; 4474 } 4475 } 4476 4477 return 1; 4478 } 4479 4480 /* 4481 * compare two secindex structure exactly. 4482 * IN: 4483 * spidx0: source, it is often in SPD. 4484 * spidx1: object, it is often from PFKEY message. 4485 * OUT: 4486 * 1 : equal 4487 * 0 : not equal 4488 */ 4489 static int 4490 key_spidx_match_exactly( 4491 const struct secpolicyindex *spidx0, 4492 const struct secpolicyindex *spidx1) 4493 { 4494 4495 KASSERT(spidx0 != NULL); 4496 KASSERT(spidx1 != NULL); 4497 4498 /* sanity */ 4499 if (spidx0->prefs != spidx1->prefs || 4500 spidx0->prefd != spidx1->prefd || 4501 spidx0->ul_proto != spidx1->ul_proto) 4502 return 0; 4503 4504 return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) && 4505 key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT); 4506 } 4507 4508 /* 4509 * compare two secindex structure with mask. 4510 * IN: 4511 * spidx0: source, it is often in SPD. 4512 * spidx1: object, it is often from IP header. 4513 * OUT: 4514 * 1 : equal 4515 * 0 : not equal 4516 */ 4517 static int 4518 key_spidx_match_withmask( 4519 const struct secpolicyindex *spidx0, 4520 const struct secpolicyindex *spidx1) 4521 { 4522 4523 KASSERT(spidx0 != NULL); 4524 KASSERT(spidx1 != NULL); 4525 4526 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4527 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4528 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4529 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4530 return 0; 4531 4532 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4533 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY && 4534 spidx0->ul_proto != spidx1->ul_proto) 4535 return 0; 4536 4537 switch (spidx0->src.sa.sa_family) { 4538 case AF_INET: 4539 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY && 4540 spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4541 return 0; 4542 if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr, 4543 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4544 return 0; 4545 break; 4546 case AF_INET6: 4547 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY && 4548 spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4549 return 0; 4550 /* 4551 * scope_id check. if sin6_scope_id is 0, we regard it 4552 * as a wildcard scope, which matches any scope zone ID. 4553 */ 4554 if (spidx0->src.sin6.sin6_scope_id && 4555 spidx1->src.sin6.sin6_scope_id && 4556 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4557 return 0; 4558 if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr, 4559 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4560 return 0; 4561 break; 4562 default: 4563 /* XXX */ 4564 if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4565 return 0; 4566 break; 4567 } 4568 4569 switch (spidx0->dst.sa.sa_family) { 4570 case AF_INET: 4571 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY && 4572 spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4573 return 0; 4574 if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr, 4575 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4576 return 0; 4577 break; 4578 case AF_INET6: 4579 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY && 4580 spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4581 return 0; 4582 /* 4583 * scope_id check. if sin6_scope_id is 0, we regard it 4584 * as a wildcard scope, which matches any scope zone ID. 4585 */ 4586 if (spidx0->src.sin6.sin6_scope_id && 4587 spidx1->src.sin6.sin6_scope_id && 4588 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4589 return 0; 4590 if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr, 4591 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4592 return 0; 4593 break; 4594 default: 4595 /* XXX */ 4596 if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4597 return 0; 4598 break; 4599 } 4600 4601 /* XXX Do we check other field ? e.g. flowinfo */ 4602 4603 return 1; 4604 } 4605 4606 /* returns 0 on match */ 4607 static int 4608 key_portcomp(in_port_t port1, in_port_t port2, int howport) 4609 { 4610 switch (howport) { 4611 case PORT_NONE: 4612 return 0; 4613 case PORT_LOOSE: 4614 if (port1 == 0 || port2 == 0) 4615 return 0; 4616 /*FALLTHROUGH*/ 4617 case PORT_STRICT: 4618 if (port1 != port2) { 4619 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4620 "port fail %d != %d\n", port1, port2); 4621 return 1; 4622 } 4623 return 0; 4624 default: 4625 KASSERT(0); 4626 return 1; 4627 } 4628 } 4629 4630 /* returns 1 on match */ 4631 static int 4632 key_sockaddr_match( 4633 const struct sockaddr *sa1, 4634 const struct sockaddr *sa2, 4635 int howport) 4636 { 4637 const struct sockaddr_in *sin1, *sin2; 4638 const struct sockaddr_in6 *sin61, *sin62; 4639 char s1[IPSEC_ADDRSTRLEN], s2[IPSEC_ADDRSTRLEN]; 4640 4641 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) { 4642 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4643 "fam/len fail %d != %d || %d != %d\n", 4644 sa1->sa_family, sa2->sa_family, sa1->sa_len, 4645 sa2->sa_len); 4646 return 0; 4647 } 4648 4649 switch (sa1->sa_family) { 4650 case AF_INET: 4651 if (sa1->sa_len != sizeof(struct sockaddr_in)) { 4652 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4653 "len fail %d != %zu\n", 4654 sa1->sa_len, sizeof(struct sockaddr_in)); 4655 return 0; 4656 } 4657 sin1 = (const struct sockaddr_in *)sa1; 4658 sin2 = (const struct sockaddr_in *)sa2; 4659 if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) { 4660 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4661 "addr fail %s != %s\n", 4662 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), 4663 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2)); 4664 return 0; 4665 } 4666 if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) { 4667 return 0; 4668 } 4669 KEYDEBUG_PRINTF(KEYDEBUG_MATCH, 4670 "addr success %s[%d] == %s[%d]\n", 4671 (in_print(s1, sizeof(s1), &sin1->sin_addr), s1), 4672 sin1->sin_port, 4673 (in_print(s2, sizeof(s2), &sin2->sin_addr), s2), 4674 sin2->sin_port); 4675 break; 4676 case AF_INET6: 4677 sin61 = (const struct sockaddr_in6 *)sa1; 4678 sin62 = (const struct sockaddr_in6 *)sa2; 4679 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4680 return 0; /*EINVAL*/ 4681 4682 if (sin61->sin6_scope_id != sin62->sin6_scope_id) { 4683 return 0; 4684 } 4685 if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) { 4686 return 0; 4687 } 4688 if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) { 4689 return 0; 4690 } 4691 break; 4692 default: 4693 if (memcmp(sa1, sa2, sa1->sa_len) != 0) 4694 return 0; 4695 break; 4696 } 4697 4698 return 1; 4699 } 4700 4701 /* 4702 * compare two buffers with mask. 4703 * IN: 4704 * addr1: source 4705 * addr2: object 4706 * bits: Number of bits to compare 4707 * OUT: 4708 * 1 : equal 4709 * 0 : not equal 4710 */ 4711 static int 4712 key_bb_match_withmask(const void *a1, const void *a2, u_int bits) 4713 { 4714 const unsigned char *p1 = a1; 4715 const unsigned char *p2 = a2; 4716 4717 /* XXX: This could be considerably faster if we compare a word 4718 * at a time, but it is complicated on LSB Endian machines */ 4719 4720 /* Handle null pointers */ 4721 if (p1 == NULL || p2 == NULL) 4722 return (p1 == p2); 4723 4724 while (bits >= 8) { 4725 if (*p1++ != *p2++) 4726 return 0; 4727 bits -= 8; 4728 } 4729 4730 if (bits > 0) { 4731 u_int8_t mask = ~((1<<(8-bits))-1); 4732 if ((*p1 & mask) != (*p2 & mask)) 4733 return 0; 4734 } 4735 return 1; /* Match! */ 4736 } 4737 4738 static void 4739 key_timehandler_spd(time_t now) 4740 { 4741 u_int dir; 4742 struct secpolicy *sp; 4743 4744 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4745 retry: 4746 mutex_enter(&key_spd.lock); 4747 SPLIST_WRITER_FOREACH(sp, dir) { 4748 KASSERT(sp->state != IPSEC_SPSTATE_DEAD); 4749 4750 if (sp->lifetime == 0 && sp->validtime == 0) 4751 continue; 4752 4753 if ((sp->lifetime && now - sp->created > sp->lifetime) || 4754 (sp->validtime && now - sp->lastused > sp->validtime)) { 4755 key_unlink_sp(sp); 4756 mutex_exit(&key_spd.lock); 4757 key_spdexpire(sp); 4758 key_destroy_sp(sp); 4759 goto retry; 4760 } 4761 } 4762 mutex_exit(&key_spd.lock); 4763 } 4764 4765 retry_socksplist: 4766 mutex_enter(&key_spd.lock); 4767 SOCKSPLIST_WRITER_FOREACH(sp) { 4768 if (sp->state != IPSEC_SPSTATE_DEAD) 4769 continue; 4770 4771 key_unlink_sp(sp); 4772 mutex_exit(&key_spd.lock); 4773 key_destroy_sp(sp); 4774 goto retry_socksplist; 4775 } 4776 mutex_exit(&key_spd.lock); 4777 } 4778 4779 static void 4780 key_timehandler_sad(time_t now) 4781 { 4782 struct secashead *sah; 4783 int s; 4784 4785 restart: 4786 mutex_enter(&key_sad.lock); 4787 SAHLIST_WRITER_FOREACH(sah) { 4788 /* If sah has been dead and has no sav, then delete it */ 4789 if (sah->state == SADB_SASTATE_DEAD && 4790 !key_sah_has_sav(sah)) { 4791 key_unlink_sah(sah); 4792 mutex_exit(&key_sad.lock); 4793 key_destroy_sah(sah); 4794 goto restart; 4795 } 4796 } 4797 mutex_exit(&key_sad.lock); 4798 4799 s = pserialize_read_enter(); 4800 SAHLIST_READER_FOREACH(sah) { 4801 struct secasvar *sav; 4802 4803 key_sah_ref(sah); 4804 pserialize_read_exit(s); 4805 4806 /* if LARVAL entry doesn't become MATURE, delete it. */ 4807 mutex_enter(&key_sad.lock); 4808 restart_sav_LARVAL: 4809 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) { 4810 if (now - sav->created > key_larval_lifetime) { 4811 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4812 goto restart_sav_LARVAL; 4813 } 4814 } 4815 mutex_exit(&key_sad.lock); 4816 4817 /* 4818 * check MATURE entry to start to send expire message 4819 * whether or not. 4820 */ 4821 restart_sav_MATURE: 4822 mutex_enter(&key_sad.lock); 4823 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_MATURE) { 4824 /* we don't need to check. */ 4825 if (sav->lft_s == NULL) 4826 continue; 4827 4828 /* sanity check */ 4829 KASSERT(sav->lft_c != NULL); 4830 4831 /* check SOFT lifetime */ 4832 if (sav->lft_s->sadb_lifetime_addtime != 0 && 4833 now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 4834 /* 4835 * check SA to be used whether or not. 4836 * when SA hasn't been used, delete it. 4837 */ 4838 if (sav->lft_c->sadb_lifetime_usetime == 0) { 4839 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4840 mutex_exit(&key_sad.lock); 4841 } else { 4842 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4843 mutex_exit(&key_sad.lock); 4844 /* 4845 * XXX If we keep to send expire 4846 * message in the status of 4847 * DYING. Do remove below code. 4848 */ 4849 key_expire(sav); 4850 } 4851 goto restart_sav_MATURE; 4852 } 4853 /* check SOFT lifetime by bytes */ 4854 /* 4855 * XXX I don't know the way to delete this SA 4856 * when new SA is installed. Caution when it's 4857 * installed too big lifetime by time. 4858 */ 4859 else if (sav->lft_s->sadb_lifetime_bytes != 0 && 4860 sav->lft_s->sadb_lifetime_bytes < 4861 sav->lft_c->sadb_lifetime_bytes) { 4862 4863 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4864 mutex_exit(&key_sad.lock); 4865 /* 4866 * XXX If we keep to send expire 4867 * message in the status of 4868 * DYING. Do remove below code. 4869 */ 4870 key_expire(sav); 4871 goto restart_sav_MATURE; 4872 } 4873 } 4874 mutex_exit(&key_sad.lock); 4875 4876 /* check DYING entry to change status to DEAD. */ 4877 mutex_enter(&key_sad.lock); 4878 restart_sav_DYING: 4879 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DYING) { 4880 /* we don't need to check. */ 4881 if (sav->lft_h == NULL) 4882 continue; 4883 4884 /* sanity check */ 4885 KASSERT(sav->lft_c != NULL); 4886 4887 if (sav->lft_h->sadb_lifetime_addtime != 0 && 4888 now - sav->created > sav->lft_h->sadb_lifetime_addtime) { 4889 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4890 goto restart_sav_DYING; 4891 } 4892 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4893 else if (sav->lft_s != NULL 4894 && sav->lft_s->sadb_lifetime_addtime != 0 4895 && now - sav->created > sav->lft_s->sadb_lifetime_addtime) { 4896 /* 4897 * XXX: should be checked to be 4898 * installed the valid SA. 4899 */ 4900 4901 /* 4902 * If there is no SA then sending 4903 * expire message. 4904 */ 4905 key_expire(sav); 4906 } 4907 #endif 4908 /* check HARD lifetime by bytes */ 4909 else if (sav->lft_h->sadb_lifetime_bytes != 0 && 4910 sav->lft_h->sadb_lifetime_bytes < 4911 sav->lft_c->sadb_lifetime_bytes) { 4912 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4913 goto restart_sav_DYING; 4914 } 4915 } 4916 mutex_exit(&key_sad.lock); 4917 4918 /* delete entry in DEAD */ 4919 restart_sav_DEAD: 4920 mutex_enter(&key_sad.lock); 4921 SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DEAD) { 4922 key_unlink_sav(sav); 4923 mutex_exit(&key_sad.lock); 4924 key_destroy_sav(sav); 4925 goto restart_sav_DEAD; 4926 } 4927 mutex_exit(&key_sad.lock); 4928 4929 s = pserialize_read_enter(); 4930 key_sah_unref(sah); 4931 } 4932 pserialize_read_exit(s); 4933 } 4934 4935 static void 4936 key_timehandler_acq(time_t now) 4937 { 4938 #ifndef IPSEC_NONBLOCK_ACQUIRE 4939 struct secacq *acq, *nextacq; 4940 4941 restart: 4942 mutex_enter(&key_misc.lock); 4943 LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) { 4944 if (now - acq->created > key_blockacq_lifetime) { 4945 LIST_REMOVE(acq, chain); 4946 mutex_exit(&key_misc.lock); 4947 kmem_free(acq, sizeof(*acq)); 4948 goto restart; 4949 } 4950 } 4951 mutex_exit(&key_misc.lock); 4952 #endif 4953 } 4954 4955 static void 4956 key_timehandler_spacq(time_t now) 4957 { 4958 #ifdef notyet 4959 struct secspacq *acq, *nextacq; 4960 4961 LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) { 4962 if (now - acq->created > key_blockacq_lifetime) { 4963 KASSERT(__LIST_CHAINED(acq)); 4964 LIST_REMOVE(acq, chain); 4965 kmem_free(acq, sizeof(*acq)); 4966 } 4967 } 4968 #endif 4969 } 4970 4971 static unsigned int key_timehandler_work_enqueued = 0; 4972 4973 /* 4974 * time handler. 4975 * scanning SPD and SAD to check status for each entries, 4976 * and do to remove or to expire. 4977 */ 4978 static void 4979 key_timehandler_work(struct work *wk, void *arg) 4980 { 4981 time_t now = time_uptime; 4982 IPSEC_DECLARE_LOCK_VARIABLE; 4983 4984 /* We can allow enqueuing another work at this point */ 4985 atomic_swap_uint(&key_timehandler_work_enqueued, 0); 4986 4987 IPSEC_ACQUIRE_GLOBAL_LOCKS(); 4988 4989 key_timehandler_spd(now); 4990 key_timehandler_sad(now); 4991 key_timehandler_acq(now); 4992 key_timehandler_spacq(now); 4993 4994 key_acquire_sendup_pending_mbuf(); 4995 4996 /* do exchange to tick time !! */ 4997 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 4998 4999 IPSEC_RELEASE_GLOBAL_LOCKS(); 5000 return; 5001 } 5002 5003 static void 5004 key_timehandler(void *arg) 5005 { 5006 5007 /* Avoid enqueuing another work when one is already enqueued */ 5008 if (atomic_swap_uint(&key_timehandler_work_enqueued, 1) == 1) 5009 return; 5010 5011 workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL); 5012 } 5013 5014 u_long 5015 key_random(void) 5016 { 5017 u_long value; 5018 5019 key_randomfill(&value, sizeof(value)); 5020 return value; 5021 } 5022 5023 void 5024 key_randomfill(void *p, size_t l) 5025 { 5026 5027 cprng_fast(p, l); 5028 } 5029 5030 /* 5031 * map SADB_SATYPE_* to IPPROTO_*. 5032 * if satype == SADB_SATYPE then satype is mapped to ~0. 5033 * OUT: 5034 * 0: invalid satype. 5035 */ 5036 static u_int16_t 5037 key_satype2proto(u_int8_t satype) 5038 { 5039 switch (satype) { 5040 case SADB_SATYPE_UNSPEC: 5041 return IPSEC_PROTO_ANY; 5042 case SADB_SATYPE_AH: 5043 return IPPROTO_AH; 5044 case SADB_SATYPE_ESP: 5045 return IPPROTO_ESP; 5046 case SADB_X_SATYPE_IPCOMP: 5047 return IPPROTO_IPCOMP; 5048 case SADB_X_SATYPE_TCPSIGNATURE: 5049 return IPPROTO_TCP; 5050 default: 5051 return 0; 5052 } 5053 /* NOTREACHED */ 5054 } 5055 5056 /* 5057 * map IPPROTO_* to SADB_SATYPE_* 5058 * OUT: 5059 * 0: invalid protocol type. 5060 */ 5061 static u_int8_t 5062 key_proto2satype(u_int16_t proto) 5063 { 5064 switch (proto) { 5065 case IPPROTO_AH: 5066 return SADB_SATYPE_AH; 5067 case IPPROTO_ESP: 5068 return SADB_SATYPE_ESP; 5069 case IPPROTO_IPCOMP: 5070 return SADB_X_SATYPE_IPCOMP; 5071 case IPPROTO_TCP: 5072 return SADB_X_SATYPE_TCPSIGNATURE; 5073 default: 5074 return 0; 5075 } 5076 /* NOTREACHED */ 5077 } 5078 5079 static int 5080 key_setsecasidx(int proto, int mode, int reqid, 5081 const struct sockaddr *src, const struct sockaddr *dst, 5082 struct secasindex * saidx) 5083 { 5084 const union sockaddr_union *src_u = (const union sockaddr_union *)src; 5085 const union sockaddr_union *dst_u = (const union sockaddr_union *)dst; 5086 5087 /* sa len safety check */ 5088 if (key_checksalen(src_u) != 0) 5089 return -1; 5090 if (key_checksalen(dst_u) != 0) 5091 return -1; 5092 5093 memset(saidx, 0, sizeof(*saidx)); 5094 saidx->proto = proto; 5095 saidx->mode = mode; 5096 saidx->reqid = reqid; 5097 memcpy(&saidx->src, src_u, src_u->sa.sa_len); 5098 memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len); 5099 5100 key_porttosaddr(&((saidx)->src), 0); 5101 key_porttosaddr(&((saidx)->dst), 0); 5102 return 0; 5103 } 5104 5105 static void 5106 key_init_spidx_bymsghdr(struct secpolicyindex *spidx, 5107 const struct sadb_msghdr *mhp) 5108 { 5109 const struct sadb_address *src0, *dst0; 5110 const struct sockaddr *src, *dst; 5111 const struct sadb_x_policy *xpl0; 5112 5113 src0 = mhp->ext[SADB_EXT_ADDRESS_SRC]; 5114 dst0 = mhp->ext[SADB_EXT_ADDRESS_DST]; 5115 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5116 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5117 xpl0 = mhp->ext[SADB_X_EXT_POLICY]; 5118 5119 memset(spidx, 0, sizeof(*spidx)); 5120 spidx->dir = xpl0->sadb_x_policy_dir; 5121 spidx->prefs = src0->sadb_address_prefixlen; 5122 spidx->prefd = dst0->sadb_address_prefixlen; 5123 spidx->ul_proto = src0->sadb_address_proto; 5124 /* XXX boundary check against sa_len */ 5125 memcpy(&spidx->src, src, src->sa_len); 5126 memcpy(&spidx->dst, dst, dst->sa_len); 5127 } 5128 5129 /* %%% PF_KEY */ 5130 /* 5131 * SADB_GETSPI processing is to receive 5132 * <base, (SA2), src address, dst address, (SPI range)> 5133 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 5134 * tree with the status of LARVAL, and send 5135 * <base, SA(*), address(SD)> 5136 * to the IKMPd. 5137 * 5138 * IN: mhp: pointer to the pointer to each header. 5139 * OUT: NULL if fail. 5140 * other if success, return pointer to the message to send. 5141 */ 5142 static int 5143 key_api_getspi(struct socket *so, struct mbuf *m, 5144 const struct sadb_msghdr *mhp) 5145 { 5146 const struct sockaddr *src, *dst; 5147 struct secasindex saidx; 5148 struct secashead *sah; 5149 struct secasvar *newsav; 5150 u_int8_t proto; 5151 u_int32_t spi; 5152 u_int8_t mode; 5153 u_int16_t reqid; 5154 int error; 5155 5156 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5157 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5158 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5159 return key_senderror(so, m, EINVAL); 5160 } 5161 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5162 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5163 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5164 return key_senderror(so, m, EINVAL); 5165 } 5166 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5167 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5168 mode = sa2->sadb_x_sa2_mode; 5169 reqid = sa2->sadb_x_sa2_reqid; 5170 } else { 5171 mode = IPSEC_MODE_ANY; 5172 reqid = 0; 5173 } 5174 5175 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5176 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5177 5178 /* map satype to proto */ 5179 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5180 if (proto == 0) { 5181 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5182 return key_senderror(so, m, EINVAL); 5183 } 5184 5185 5186 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5187 if (error != 0) 5188 return key_senderror(so, m, EINVAL); 5189 5190 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5191 if (error != 0) 5192 return key_senderror(so, m, EINVAL); 5193 5194 /* SPI allocation */ 5195 spi = key_do_getnewspi(mhp->ext[SADB_EXT_SPIRANGE], &saidx); 5196 if (spi == 0) 5197 return key_senderror(so, m, EINVAL); 5198 5199 /* get a SA index */ 5200 sah = key_getsah_ref(&saidx, CMP_REQID); 5201 if (sah == NULL) { 5202 /* create a new SA index */ 5203 sah = key_newsah(&saidx); 5204 if (sah == NULL) { 5205 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5206 return key_senderror(so, m, ENOBUFS); 5207 } 5208 } 5209 5210 /* get a new SA */ 5211 /* XXX rewrite */ 5212 newsav = KEY_NEWSAV(m, mhp, &error); 5213 if (newsav == NULL) { 5214 key_sah_unref(sah); 5215 /* XXX don't free new SA index allocated in above. */ 5216 return key_senderror(so, m, error); 5217 } 5218 5219 /* set spi */ 5220 newsav->spi = htonl(spi); 5221 5222 /* Add to sah#savlist */ 5223 key_init_sav(newsav); 5224 newsav->sah = sah; 5225 newsav->state = SADB_SASTATE_LARVAL; 5226 mutex_enter(&key_sad.lock); 5227 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav); 5228 mutex_exit(&key_sad.lock); 5229 key_validate_savlist(sah, SADB_SASTATE_LARVAL); 5230 5231 key_sah_unref(sah); 5232 5233 #ifndef IPSEC_NONBLOCK_ACQUIRE 5234 /* delete the entry in key_misc.acqlist */ 5235 if (mhp->msg->sadb_msg_seq != 0) { 5236 struct secacq *acq; 5237 mutex_enter(&key_misc.lock); 5238 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); 5239 if (acq != NULL) { 5240 /* reset counter in order to deletion by timehandler. */ 5241 acq->created = time_uptime; 5242 acq->count = 0; 5243 } 5244 mutex_exit(&key_misc.lock); 5245 } 5246 #endif 5247 5248 { 5249 struct mbuf *n, *nn; 5250 struct sadb_sa *m_sa; 5251 int off, len; 5252 5253 CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 5254 PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES); 5255 5256 /* create new sadb_msg to reply. */ 5257 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 5258 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5259 5260 MGETHDR(n, M_DONTWAIT, MT_DATA); 5261 if (len > MHLEN) { 5262 MCLGET(n, M_DONTWAIT); 5263 if ((n->m_flags & M_EXT) == 0) { 5264 m_freem(n); 5265 n = NULL; 5266 } 5267 } 5268 if (!n) 5269 return key_senderror(so, m, ENOBUFS); 5270 5271 n->m_len = len; 5272 n->m_next = NULL; 5273 off = 0; 5274 5275 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 5276 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 5277 5278 m_sa = (struct sadb_sa *)(mtod(n, char *) + off); 5279 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 5280 m_sa->sadb_sa_exttype = SADB_EXT_SA; 5281 m_sa->sadb_sa_spi = htonl(spi); 5282 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5283 5284 KASSERTMSG(off == len, "length inconsistency"); 5285 5286 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 5287 SADB_EXT_ADDRESS_DST); 5288 if (!n->m_next) { 5289 m_freem(n); 5290 return key_senderror(so, m, ENOBUFS); 5291 } 5292 5293 if (n->m_len < sizeof(struct sadb_msg)) { 5294 n = m_pullup(n, sizeof(struct sadb_msg)); 5295 if (n == NULL) 5296 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 5297 } 5298 5299 n->m_pkthdr.len = 0; 5300 for (nn = n; nn; nn = nn->m_next) 5301 n->m_pkthdr.len += nn->m_len; 5302 5303 key_fill_replymsg(n, newsav->seq); 5304 5305 m_freem(m); 5306 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5307 } 5308 } 5309 5310 /* 5311 * allocating new SPI 5312 * called by key_api_getspi(). 5313 * OUT: 5314 * 0: failure. 5315 * others: success. 5316 */ 5317 static u_int32_t 5318 key_do_getnewspi(const struct sadb_spirange *spirange, 5319 const struct secasindex *saidx) 5320 { 5321 u_int32_t newspi; 5322 u_int32_t spmin, spmax; 5323 int count = key_spi_trycnt; 5324 5325 /* set spi range to allocate */ 5326 if (spirange != NULL) { 5327 spmin = spirange->sadb_spirange_min; 5328 spmax = spirange->sadb_spirange_max; 5329 } else { 5330 spmin = key_spi_minval; 5331 spmax = key_spi_maxval; 5332 } 5333 /* IPCOMP needs 2-byte SPI */ 5334 if (saidx->proto == IPPROTO_IPCOMP) { 5335 u_int32_t t; 5336 if (spmin >= 0x10000) 5337 spmin = 0xffff; 5338 if (spmax >= 0x10000) 5339 spmax = 0xffff; 5340 if (spmin > spmax) { 5341 t = spmin; spmin = spmax; spmax = t; 5342 } 5343 } 5344 5345 if (spmin == spmax) { 5346 if (key_checkspidup(saidx, htonl(spmin))) { 5347 IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin); 5348 return 0; 5349 } 5350 5351 count--; /* taking one cost. */ 5352 newspi = spmin; 5353 5354 } else { 5355 5356 /* init SPI */ 5357 newspi = 0; 5358 5359 /* when requesting to allocate spi ranged */ 5360 while (count--) { 5361 /* generate pseudo-random SPI value ranged. */ 5362 newspi = spmin + (key_random() % (spmax - spmin + 1)); 5363 5364 if (!key_checkspidup(saidx, htonl(newspi))) 5365 break; 5366 } 5367 5368 if (count == 0 || newspi == 0) { 5369 IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n"); 5370 return 0; 5371 } 5372 } 5373 5374 /* statistics */ 5375 keystat.getspi_count = 5376 (keystat.getspi_count + key_spi_trycnt - count) / 2; 5377 5378 return newspi; 5379 } 5380 5381 static int 5382 key_handle_natt_info(struct secasvar *sav, 5383 const struct sadb_msghdr *mhp) 5384 { 5385 const char *msg = "?" ; 5386 struct sadb_x_nat_t_type *type; 5387 struct sadb_x_nat_t_port *sport, *dport; 5388 struct sadb_address *iaddr, *raddr; 5389 struct sadb_x_nat_t_frag *frag; 5390 5391 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL || 5392 mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL || 5393 mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) 5394 return 0; 5395 5396 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) { 5397 msg = "TYPE"; 5398 goto bad; 5399 } 5400 5401 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) { 5402 msg = "SPORT"; 5403 goto bad; 5404 } 5405 5406 if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5407 msg = "DPORT"; 5408 goto bad; 5409 } 5410 5411 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) { 5412 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); 5413 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) { 5414 msg = "OAI"; 5415 goto bad; 5416 } 5417 } 5418 5419 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5420 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); 5421 if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5422 msg = "OAR"; 5423 goto bad; 5424 } 5425 } 5426 5427 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5428 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5429 msg = "FRAG"; 5430 goto bad; 5431 } 5432 } 5433 5434 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5435 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5436 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5437 iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5438 raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5439 frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5440 5441 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", 5442 type->sadb_x_nat_t_type_type, 5443 ntohs(sport->sadb_x_nat_t_port_port), 5444 ntohs(dport->sadb_x_nat_t_port_port)); 5445 5446 sav->natt_type = type->sadb_x_nat_t_type_type; 5447 key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port); 5448 key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port); 5449 if (frag) 5450 sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen; 5451 else 5452 sav->esp_frag = IP_MAXPACKET; 5453 5454 return 0; 5455 bad: 5456 IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg); 5457 __USE(msg); 5458 return -1; 5459 } 5460 5461 /* Just update the IPSEC_NAT_T ports if present */ 5462 static int 5463 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst, 5464 const struct sadb_msghdr *mhp) 5465 { 5466 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 5467 IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n"); 5468 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 5469 IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n"); 5470 5471 if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) && 5472 (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) && 5473 (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) { 5474 struct sadb_x_nat_t_type *type; 5475 struct sadb_x_nat_t_port *sport; 5476 struct sadb_x_nat_t_port *dport; 5477 5478 if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) || 5479 (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) || 5480 (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) { 5481 IPSECLOG(LOG_DEBUG, "invalid message\n"); 5482 return -1; 5483 } 5484 5485 type = mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5486 sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5487 dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5488 5489 key_porttosaddr(src, sport->sadb_x_nat_t_port_port); 5490 key_porttosaddr(dst, dport->sadb_x_nat_t_port_port); 5491 5492 IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n", 5493 type->sadb_x_nat_t_type_type, 5494 ntohs(sport->sadb_x_nat_t_port_port), 5495 ntohs(dport->sadb_x_nat_t_port_port)); 5496 } 5497 5498 return 0; 5499 } 5500 5501 5502 /* 5503 * SADB_UPDATE processing 5504 * receive 5505 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5506 * key(AE), (identity(SD),) (sensitivity)> 5507 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 5508 * and send 5509 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5510 * (identity(SD),) (sensitivity)> 5511 * to the ikmpd. 5512 * 5513 * m will always be freed. 5514 */ 5515 static int 5516 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5517 { 5518 struct sadb_sa *sa0; 5519 const struct sockaddr *src, *dst; 5520 struct secasindex saidx; 5521 struct secashead *sah; 5522 struct secasvar *sav, *newsav; 5523 u_int16_t proto; 5524 u_int8_t mode; 5525 u_int16_t reqid; 5526 int error; 5527 5528 /* map satype to proto */ 5529 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5530 if (proto == 0) { 5531 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5532 return key_senderror(so, m, EINVAL); 5533 } 5534 5535 if (mhp->ext[SADB_EXT_SA] == NULL || 5536 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5537 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5538 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5539 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5540 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5541 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5542 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5543 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5544 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5545 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5546 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5547 return key_senderror(so, m, EINVAL); 5548 } 5549 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5550 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5551 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5552 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5553 return key_senderror(so, m, EINVAL); 5554 } 5555 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5556 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5557 mode = sa2->sadb_x_sa2_mode; 5558 reqid = sa2->sadb_x_sa2_reqid; 5559 } else { 5560 mode = IPSEC_MODE_ANY; 5561 reqid = 0; 5562 } 5563 /* XXX boundary checking for other extensions */ 5564 5565 sa0 = mhp->ext[SADB_EXT_SA]; 5566 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5567 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5568 5569 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5570 if (error != 0) 5571 return key_senderror(so, m, EINVAL); 5572 5573 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5574 if (error != 0) 5575 return key_senderror(so, m, EINVAL); 5576 5577 /* get a SA header */ 5578 sah = key_getsah_ref(&saidx, CMP_REQID); 5579 if (sah == NULL) { 5580 IPSECLOG(LOG_DEBUG, "no SA index found.\n"); 5581 return key_senderror(so, m, ENOENT); 5582 } 5583 5584 /* set spidx if there */ 5585 /* XXX rewrite */ 5586 error = key_setident(sah, m, mhp); 5587 if (error) 5588 goto error_sah; 5589 5590 /* find a SA with sequence number. */ 5591 #ifdef IPSEC_DOSEQCHECK 5592 if (mhp->msg->sadb_msg_seq != 0) { 5593 sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq); 5594 if (sav == NULL) { 5595 IPSECLOG(LOG_DEBUG, 5596 "no larval SA with sequence %u exists.\n", 5597 mhp->msg->sadb_msg_seq); 5598 error = ENOENT; 5599 goto error_sah; 5600 } 5601 } 5602 #else 5603 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5604 if (sav == NULL) { 5605 IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n", 5606 (u_int32_t)ntohl(sa0->sadb_sa_spi)); 5607 error = EINVAL; 5608 goto error_sah; 5609 } 5610 #endif 5611 5612 /* validity check */ 5613 if (sav->sah->saidx.proto != proto) { 5614 IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n", 5615 sav->sah->saidx.proto, proto); 5616 error = EINVAL; 5617 goto error; 5618 } 5619 #ifdef IPSEC_DOSEQCHECK 5620 if (sav->spi != sa0->sadb_sa_spi) { 5621 IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n", 5622 (u_int32_t)ntohl(sav->spi), 5623 (u_int32_t)ntohl(sa0->sadb_sa_spi)); 5624 error = EINVAL; 5625 goto error; 5626 } 5627 #endif 5628 if (sav->pid != mhp->msg->sadb_msg_pid) { 5629 IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n", 5630 sav->pid, mhp->msg->sadb_msg_pid); 5631 error = EINVAL; 5632 goto error; 5633 } 5634 5635 /* 5636 * Allocate a new SA instead of modifying the existing SA directly 5637 * to avoid race conditions. 5638 */ 5639 newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP); 5640 5641 /* copy sav values */ 5642 newsav->spi = sav->spi; 5643 newsav->seq = sav->seq; 5644 newsav->created = sav->created; 5645 newsav->pid = sav->pid; 5646 newsav->sah = sav->sah; 5647 5648 error = key_setsaval(newsav, m, mhp); 5649 if (error) { 5650 key_delsav(newsav); 5651 goto error; 5652 } 5653 5654 error = key_handle_natt_info(newsav, mhp); 5655 if (error != 0) { 5656 key_delsav(newsav); 5657 goto error; 5658 } 5659 5660 error = key_init_xform(newsav); 5661 if (error != 0) { 5662 key_delsav(newsav); 5663 goto error; 5664 } 5665 5666 /* Add to sah#savlist */ 5667 key_init_sav(newsav); 5668 newsav->state = SADB_SASTATE_MATURE; 5669 mutex_enter(&key_sad.lock); 5670 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); 5671 mutex_exit(&key_sad.lock); 5672 key_validate_savlist(sah, SADB_SASTATE_MATURE); 5673 5674 key_sah_unref(sah); 5675 sah = NULL; 5676 5677 key_destroy_sav_with_ref(sav); 5678 sav = NULL; 5679 5680 { 5681 struct mbuf *n; 5682 5683 /* set msg buf from mhp */ 5684 n = key_getmsgbuf_x1(m, mhp); 5685 if (n == NULL) { 5686 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5687 return key_senderror(so, m, ENOBUFS); 5688 } 5689 5690 m_freem(m); 5691 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5692 } 5693 error: 5694 KEY_SA_UNREF(&sav); 5695 error_sah: 5696 key_sah_unref(sah); 5697 return key_senderror(so, m, error); 5698 } 5699 5700 /* 5701 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5702 * only called by key_api_update(). 5703 * OUT: 5704 * NULL : not found 5705 * others : found, pointer to a SA. 5706 */ 5707 #ifdef IPSEC_DOSEQCHECK 5708 static struct secasvar * 5709 key_getsavbyseq(struct secashead *sah, u_int32_t seq) 5710 { 5711 struct secasvar *sav; 5712 u_int state; 5713 int s; 5714 5715 state = SADB_SASTATE_LARVAL; 5716 5717 /* search SAD with sequence number ? */ 5718 s = pserialize_read_enter(); 5719 SAVLIST_READER_FOREACH(sav, sah, state) { 5720 KEY_CHKSASTATE(state, sav->state); 5721 5722 if (sav->seq == seq) { 5723 SA_ADDREF(sav); 5724 KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, 5725 "DP cause refcnt++:%d SA:%p\n", 5726 key_sa_refcnt(sav), sav); 5727 break; 5728 } 5729 } 5730 pserialize_read_exit(s); 5731 5732 return sav; 5733 } 5734 #endif 5735 5736 /* 5737 * SADB_ADD processing 5738 * add an entry to SA database, when received 5739 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5740 * key(AE), (identity(SD),) (sensitivity)> 5741 * from the ikmpd, 5742 * and send 5743 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5744 * (identity(SD),) (sensitivity)> 5745 * to the ikmpd. 5746 * 5747 * IGNORE identity and sensitivity messages. 5748 * 5749 * m will always be freed. 5750 */ 5751 static int 5752 key_api_add(struct socket *so, struct mbuf *m, 5753 const struct sadb_msghdr *mhp) 5754 { 5755 struct sadb_sa *sa0; 5756 const struct sockaddr *src, *dst; 5757 struct secasindex saidx; 5758 struct secashead *sah; 5759 struct secasvar *newsav; 5760 u_int16_t proto; 5761 u_int8_t mode; 5762 u_int16_t reqid; 5763 int error; 5764 5765 /* map satype to proto */ 5766 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 5767 if (proto == 0) { 5768 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 5769 return key_senderror(so, m, EINVAL); 5770 } 5771 5772 if (mhp->ext[SADB_EXT_SA] == NULL || 5773 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5774 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5775 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5776 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5777 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5778 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5779 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5780 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5781 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5782 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5783 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5784 return key_senderror(so, m, EINVAL); 5785 } 5786 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5787 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5788 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5789 /* XXX need more */ 5790 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 5791 return key_senderror(so, m, EINVAL); 5792 } 5793 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5794 const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2]; 5795 mode = sa2->sadb_x_sa2_mode; 5796 reqid = sa2->sadb_x_sa2_reqid; 5797 } else { 5798 mode = IPSEC_MODE_ANY; 5799 reqid = 0; 5800 } 5801 5802 sa0 = mhp->ext[SADB_EXT_SA]; 5803 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 5804 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 5805 5806 error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx); 5807 if (error != 0) 5808 return key_senderror(so, m, EINVAL); 5809 5810 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 5811 if (error != 0) 5812 return key_senderror(so, m, EINVAL); 5813 5814 /* get a SA header */ 5815 sah = key_getsah_ref(&saidx, CMP_REQID); 5816 if (sah == NULL) { 5817 /* create a new SA header */ 5818 sah = key_newsah(&saidx); 5819 if (sah == NULL) { 5820 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5821 return key_senderror(so, m, ENOBUFS); 5822 } 5823 } 5824 5825 /* set spidx if there */ 5826 /* XXX rewrite */ 5827 error = key_setident(sah, m, mhp); 5828 if (error) 5829 goto error; 5830 5831 { 5832 struct secasvar *sav; 5833 5834 /* We can create new SA only if SPI is differenct. */ 5835 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5836 if (sav != NULL) { 5837 KEY_SA_UNREF(&sav); 5838 IPSECLOG(LOG_DEBUG, "SA already exists.\n"); 5839 error = EEXIST; 5840 goto error; 5841 } 5842 } 5843 5844 /* create new SA entry. */ 5845 newsav = KEY_NEWSAV(m, mhp, &error); 5846 if (newsav == NULL) 5847 goto error; 5848 newsav->sah = sah; 5849 5850 error = key_handle_natt_info(newsav, mhp); 5851 if (error != 0) { 5852 key_delsav(newsav); 5853 error = EINVAL; 5854 goto error; 5855 } 5856 5857 error = key_init_xform(newsav); 5858 if (error != 0) { 5859 key_delsav(newsav); 5860 goto error; 5861 } 5862 5863 /* Add to sah#savlist */ 5864 key_init_sav(newsav); 5865 newsav->state = SADB_SASTATE_MATURE; 5866 mutex_enter(&key_sad.lock); 5867 SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav); 5868 mutex_exit(&key_sad.lock); 5869 key_validate_savlist(sah, SADB_SASTATE_MATURE); 5870 5871 key_sah_unref(sah); 5872 sah = NULL; 5873 5874 /* 5875 * don't call key_freesav() here, as we would like to keep the SA 5876 * in the database on success. 5877 */ 5878 5879 { 5880 struct mbuf *n; 5881 5882 /* set msg buf from mhp */ 5883 n = key_getmsgbuf_x1(m, mhp); 5884 if (n == NULL) { 5885 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 5886 return key_senderror(so, m, ENOBUFS); 5887 } 5888 5889 m_freem(m); 5890 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5891 } 5892 error: 5893 key_sah_unref(sah); 5894 return key_senderror(so, m, error); 5895 } 5896 5897 /* m is retained */ 5898 static int 5899 key_setident(struct secashead *sah, struct mbuf *m, 5900 const struct sadb_msghdr *mhp) 5901 { 5902 const struct sadb_ident *idsrc, *iddst; 5903 int idsrclen, iddstlen; 5904 5905 KASSERT(!cpu_softintr_p()); 5906 KASSERT(sah != NULL); 5907 KASSERT(m != NULL); 5908 KASSERT(mhp != NULL); 5909 KASSERT(mhp->msg != NULL); 5910 5911 /* 5912 * Can be called with an existing sah from key_api_update(). 5913 */ 5914 if (sah->idents != NULL) { 5915 kmem_free(sah->idents, sah->idents_len); 5916 sah->idents = NULL; 5917 sah->idents_len = 0; 5918 } 5919 if (sah->identd != NULL) { 5920 kmem_free(sah->identd, sah->identd_len); 5921 sah->identd = NULL; 5922 sah->identd_len = 0; 5923 } 5924 5925 /* don't make buffer if not there */ 5926 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5927 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5928 sah->idents = NULL; 5929 sah->identd = NULL; 5930 return 0; 5931 } 5932 5933 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5934 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5935 IPSECLOG(LOG_DEBUG, "invalid identity.\n"); 5936 return EINVAL; 5937 } 5938 5939 idsrc = mhp->ext[SADB_EXT_IDENTITY_SRC]; 5940 iddst = mhp->ext[SADB_EXT_IDENTITY_DST]; 5941 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5942 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5943 5944 /* validity check */ 5945 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5946 IPSECLOG(LOG_DEBUG, "ident type mismatch.\n"); 5947 return EINVAL; 5948 } 5949 5950 switch (idsrc->sadb_ident_type) { 5951 case SADB_IDENTTYPE_PREFIX: 5952 case SADB_IDENTTYPE_FQDN: 5953 case SADB_IDENTTYPE_USERFQDN: 5954 default: 5955 /* XXX do nothing */ 5956 sah->idents = NULL; 5957 sah->identd = NULL; 5958 return 0; 5959 } 5960 5961 /* make structure */ 5962 sah->idents = kmem_alloc(idsrclen, KM_SLEEP); 5963 sah->idents_len = idsrclen; 5964 sah->identd = kmem_alloc(iddstlen, KM_SLEEP); 5965 sah->identd_len = iddstlen; 5966 memcpy(sah->idents, idsrc, idsrclen); 5967 memcpy(sah->identd, iddst, iddstlen); 5968 5969 return 0; 5970 } 5971 5972 /* 5973 * m will not be freed on return. 5974 * it is caller's responsibility to free the result. 5975 */ 5976 static struct mbuf * 5977 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 5978 { 5979 struct mbuf *n; 5980 5981 KASSERT(m != NULL); 5982 KASSERT(mhp != NULL); 5983 KASSERT(mhp->msg != NULL); 5984 5985 /* create new sadb_msg to reply. */ 5986 n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED, 5987 SADB_EXT_SA, SADB_X_EXT_SA2, 5988 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5989 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5990 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, 5991 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, 5992 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, 5993 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG); 5994 if (!n) 5995 return NULL; 5996 5997 if (n->m_len < sizeof(struct sadb_msg)) { 5998 n = m_pullup(n, sizeof(struct sadb_msg)); 5999 if (n == NULL) 6000 return NULL; 6001 } 6002 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 6003 mtod(n, struct sadb_msg *)->sadb_msg_len = 6004 PFKEY_UNIT64(n->m_pkthdr.len); 6005 6006 return n; 6007 } 6008 6009 static int key_delete_all (struct socket *, struct mbuf *, 6010 const struct sadb_msghdr *, u_int16_t); 6011 6012 /* 6013 * SADB_DELETE processing 6014 * receive 6015 * <base, SA(*), address(SD)> 6016 * from the ikmpd, and set SADB_SASTATE_DEAD, 6017 * and send, 6018 * <base, SA(*), address(SD)> 6019 * to the ikmpd. 6020 * 6021 * m will always be freed. 6022 */ 6023 static int 6024 key_api_delete(struct socket *so, struct mbuf *m, 6025 const struct sadb_msghdr *mhp) 6026 { 6027 struct sadb_sa *sa0; 6028 const struct sockaddr *src, *dst; 6029 struct secasindex saidx; 6030 struct secashead *sah; 6031 struct secasvar *sav = NULL; 6032 u_int16_t proto; 6033 int error; 6034 6035 /* map satype to proto */ 6036 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 6037 if (proto == 0) { 6038 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6039 return key_senderror(so, m, EINVAL); 6040 } 6041 6042 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6043 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 6044 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6045 return key_senderror(so, m, EINVAL); 6046 } 6047 6048 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6049 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6050 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6051 return key_senderror(so, m, EINVAL); 6052 } 6053 6054 if (mhp->ext[SADB_EXT_SA] == NULL) { 6055 /* 6056 * Caller wants us to delete all non-LARVAL SAs 6057 * that match the src/dst. This is used during 6058 * IKE INITIAL-CONTACT. 6059 */ 6060 IPSECLOG(LOG_DEBUG, "doing delete all.\n"); 6061 return key_delete_all(so, m, mhp, proto); 6062 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 6063 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6064 return key_senderror(so, m, EINVAL); 6065 } 6066 6067 sa0 = mhp->ext[SADB_EXT_SA]; 6068 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6069 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6070 6071 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6072 if (error != 0) 6073 return key_senderror(so, m, EINVAL); 6074 6075 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6076 if (error != 0) 6077 return key_senderror(so, m, EINVAL); 6078 6079 /* get a SA header */ 6080 sah = key_getsah_ref(&saidx, CMP_HEAD); 6081 if (sah != NULL) { 6082 /* get a SA with SPI. */ 6083 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 6084 key_sah_unref(sah); 6085 } 6086 6087 if (sav == NULL) { 6088 IPSECLOG(LOG_DEBUG, "no SA found.\n"); 6089 return key_senderror(so, m, ENOENT); 6090 } 6091 6092 key_destroy_sav_with_ref(sav); 6093 sav = NULL; 6094 6095 { 6096 struct mbuf *n; 6097 6098 /* create new sadb_msg to reply. */ 6099 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 6100 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6101 if (!n) 6102 return key_senderror(so, m, ENOBUFS); 6103 6104 n = key_fill_replymsg(n, 0); 6105 if (n == NULL) 6106 return key_senderror(so, m, ENOBUFS); 6107 6108 m_freem(m); 6109 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6110 } 6111 } 6112 6113 /* 6114 * delete all SAs for src/dst. Called from key_api_delete(). 6115 */ 6116 static int 6117 key_delete_all(struct socket *so, struct mbuf *m, 6118 const struct sadb_msghdr *mhp, u_int16_t proto) 6119 { 6120 const struct sockaddr *src, *dst; 6121 struct secasindex saidx; 6122 struct secashead *sah; 6123 struct secasvar *sav; 6124 u_int state; 6125 int error; 6126 6127 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6128 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6129 6130 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6131 if (error != 0) 6132 return key_senderror(so, m, EINVAL); 6133 6134 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6135 if (error != 0) 6136 return key_senderror(so, m, EINVAL); 6137 6138 sah = key_getsah_ref(&saidx, CMP_HEAD); 6139 if (sah != NULL) { 6140 /* Delete all non-LARVAL SAs. */ 6141 SASTATE_ALIVE_FOREACH(state) { 6142 if (state == SADB_SASTATE_LARVAL) 6143 continue; 6144 restart: 6145 mutex_enter(&key_sad.lock); 6146 SAVLIST_WRITER_FOREACH(sav, sah, state) { 6147 sav->state = SADB_SASTATE_DEAD; 6148 key_unlink_sav(sav); 6149 mutex_exit(&key_sad.lock); 6150 key_destroy_sav(sav); 6151 goto restart; 6152 } 6153 mutex_exit(&key_sad.lock); 6154 } 6155 key_sah_unref(sah); 6156 } 6157 { 6158 struct mbuf *n; 6159 6160 /* create new sadb_msg to reply. */ 6161 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 6162 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6163 if (!n) 6164 return key_senderror(so, m, ENOBUFS); 6165 6166 n = key_fill_replymsg(n, 0); 6167 if (n == NULL) 6168 return key_senderror(so, m, ENOBUFS); 6169 6170 m_freem(m); 6171 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6172 } 6173 } 6174 6175 /* 6176 * SADB_GET processing 6177 * receive 6178 * <base, SA(*), address(SD)> 6179 * from the ikmpd, and get a SP and a SA to respond, 6180 * and send, 6181 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 6182 * (identity(SD),) (sensitivity)> 6183 * to the ikmpd. 6184 * 6185 * m will always be freed. 6186 */ 6187 static int 6188 key_api_get(struct socket *so, struct mbuf *m, 6189 const struct sadb_msghdr *mhp) 6190 { 6191 struct sadb_sa *sa0; 6192 const struct sockaddr *src, *dst; 6193 struct secasindex saidx; 6194 struct secasvar *sav = NULL; 6195 u_int16_t proto; 6196 int error; 6197 6198 /* map satype to proto */ 6199 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6200 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6201 return key_senderror(so, m, EINVAL); 6202 } 6203 6204 if (mhp->ext[SADB_EXT_SA] == NULL || 6205 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6206 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 6207 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6208 return key_senderror(so, m, EINVAL); 6209 } 6210 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 6211 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6212 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 6213 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6214 return key_senderror(so, m, EINVAL); 6215 } 6216 6217 sa0 = mhp->ext[SADB_EXT_SA]; 6218 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6219 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6220 6221 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6222 if (error != 0) 6223 return key_senderror(so, m, EINVAL); 6224 6225 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 6226 if (error != 0) 6227 return key_senderror(so, m, EINVAL); 6228 6229 /* get a SA header */ 6230 { 6231 struct secashead *sah; 6232 int s = pserialize_read_enter(); 6233 6234 sah = key_getsah(&saidx, CMP_HEAD); 6235 if (sah != NULL) { 6236 /* get a SA with SPI. */ 6237 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 6238 } 6239 pserialize_read_exit(s); 6240 } 6241 if (sav == NULL) { 6242 IPSECLOG(LOG_DEBUG, "no SA found.\n"); 6243 return key_senderror(so, m, ENOENT); 6244 } 6245 6246 { 6247 struct mbuf *n; 6248 u_int8_t satype; 6249 6250 /* map proto to satype */ 6251 satype = key_proto2satype(sav->sah->saidx.proto); 6252 if (satype == 0) { 6253 KEY_SA_UNREF(&sav); 6254 IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n"); 6255 return key_senderror(so, m, EINVAL); 6256 } 6257 6258 /* create new sadb_msg to reply. */ 6259 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 6260 mhp->msg->sadb_msg_pid); 6261 KEY_SA_UNREF(&sav); 6262 if (!n) 6263 return key_senderror(so, m, ENOBUFS); 6264 6265 m_freem(m); 6266 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6267 } 6268 } 6269 6270 /* XXX make it sysctl-configurable? */ 6271 static void 6272 key_getcomb_setlifetime(struct sadb_comb *comb) 6273 { 6274 6275 comb->sadb_comb_soft_allocations = 1; 6276 comb->sadb_comb_hard_allocations = 1; 6277 comb->sadb_comb_soft_bytes = 0; 6278 comb->sadb_comb_hard_bytes = 0; 6279 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 6280 comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100; 6281 comb->sadb_comb_hard_usetime = 28800; /* 8 hours */ 6282 comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 6283 } 6284 6285 /* 6286 * XXX reorder combinations by preference 6287 * XXX no idea if the user wants ESP authentication or not 6288 */ 6289 static struct mbuf * 6290 key_getcomb_esp(void) 6291 { 6292 struct sadb_comb *comb; 6293 const struct enc_xform *algo; 6294 struct mbuf *result = NULL, *m, *n; 6295 int encmin; 6296 int i, off, o; 6297 int totlen; 6298 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6299 6300 m = NULL; 6301 for (i = 1; i <= SADB_EALG_MAX; i++) { 6302 algo = esp_algorithm_lookup(i); 6303 if (algo == NULL) 6304 continue; 6305 6306 /* discard algorithms with key size smaller than system min */ 6307 if (_BITS(algo->maxkey) < ipsec_esp_keymin) 6308 continue; 6309 if (_BITS(algo->minkey) < ipsec_esp_keymin) 6310 encmin = ipsec_esp_keymin; 6311 else 6312 encmin = _BITS(algo->minkey); 6313 6314 if (ipsec_esp_auth) 6315 m = key_getcomb_ah(); 6316 else { 6317 KASSERTMSG(l <= MLEN, 6318 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6319 MGET(m, M_DONTWAIT, MT_DATA); 6320 if (m) { 6321 M_ALIGN(m, l); 6322 m->m_len = l; 6323 m->m_next = NULL; 6324 memset(mtod(m, void *), 0, m->m_len); 6325 } 6326 } 6327 if (!m) 6328 goto fail; 6329 6330 totlen = 0; 6331 for (n = m; n; n = n->m_next) 6332 totlen += n->m_len; 6333 KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l); 6334 6335 for (off = 0; off < totlen; off += l) { 6336 n = m_pulldown(m, off, l, &o); 6337 if (!n) { 6338 /* m is already freed */ 6339 goto fail; 6340 } 6341 comb = (struct sadb_comb *)(mtod(n, char *) + o); 6342 memset(comb, 0, sizeof(*comb)); 6343 key_getcomb_setlifetime(comb); 6344 comb->sadb_comb_encrypt = i; 6345 comb->sadb_comb_encrypt_minbits = encmin; 6346 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6347 } 6348 6349 if (!result) 6350 result = m; 6351 else 6352 m_cat(result, m); 6353 } 6354 6355 return result; 6356 6357 fail: 6358 if (result) 6359 m_freem(result); 6360 return NULL; 6361 } 6362 6363 static void 6364 key_getsizes_ah(const struct auth_hash *ah, int alg, 6365 u_int16_t* ksmin, u_int16_t* ksmax) 6366 { 6367 *ksmin = *ksmax = ah->keysize; 6368 if (ah->keysize == 0) { 6369 /* 6370 * Transform takes arbitrary key size but algorithm 6371 * key size is restricted. Enforce this here. 6372 */ 6373 switch (alg) { 6374 case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break; 6375 case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break; 6376 case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break; 6377 default: 6378 IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg); 6379 break; 6380 } 6381 } 6382 } 6383 6384 /* 6385 * XXX reorder combinations by preference 6386 */ 6387 static struct mbuf * 6388 key_getcomb_ah(void) 6389 { 6390 struct sadb_comb *comb; 6391 const struct auth_hash *algo; 6392 struct mbuf *m; 6393 u_int16_t minkeysize, maxkeysize; 6394 int i; 6395 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6396 6397 m = NULL; 6398 for (i = 1; i <= SADB_AALG_MAX; i++) { 6399 #if 1 6400 /* we prefer HMAC algorithms, not old algorithms */ 6401 if (i != SADB_AALG_SHA1HMAC && 6402 i != SADB_AALG_MD5HMAC && 6403 i != SADB_X_AALG_SHA2_256 && 6404 i != SADB_X_AALG_SHA2_384 && 6405 i != SADB_X_AALG_SHA2_512) 6406 continue; 6407 #endif 6408 algo = ah_algorithm_lookup(i); 6409 if (!algo) 6410 continue; 6411 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6412 /* discard algorithms with key size smaller than system min */ 6413 if (_BITS(minkeysize) < ipsec_ah_keymin) 6414 continue; 6415 6416 if (!m) { 6417 KASSERTMSG(l <= MLEN, 6418 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6419 MGET(m, M_DONTWAIT, MT_DATA); 6420 if (m) { 6421 M_ALIGN(m, l); 6422 m->m_len = l; 6423 m->m_next = NULL; 6424 } 6425 } else 6426 M_PREPEND(m, l, M_DONTWAIT); 6427 if (!m) 6428 return NULL; 6429 6430 if (m->m_len < sizeof(struct sadb_comb)) { 6431 m = m_pullup(m, sizeof(struct sadb_comb)); 6432 if (m == NULL) 6433 return NULL; 6434 } 6435 6436 comb = mtod(m, struct sadb_comb *); 6437 memset(comb, 0, sizeof(*comb)); 6438 key_getcomb_setlifetime(comb); 6439 comb->sadb_comb_auth = i; 6440 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6441 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6442 } 6443 6444 return m; 6445 } 6446 6447 /* 6448 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6449 * XXX reorder combinations by preference 6450 */ 6451 static struct mbuf * 6452 key_getcomb_ipcomp(void) 6453 { 6454 struct sadb_comb *comb; 6455 const struct comp_algo *algo; 6456 struct mbuf *m; 6457 int i; 6458 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6459 6460 m = NULL; 6461 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6462 algo = ipcomp_algorithm_lookup(i); 6463 if (!algo) 6464 continue; 6465 6466 if (!m) { 6467 KASSERTMSG(l <= MLEN, 6468 "l=%u > MLEN=%lu", l, (u_long) MLEN); 6469 MGET(m, M_DONTWAIT, MT_DATA); 6470 if (m) { 6471 M_ALIGN(m, l); 6472 m->m_len = l; 6473 m->m_next = NULL; 6474 } 6475 } else 6476 M_PREPEND(m, l, M_DONTWAIT); 6477 if (!m) 6478 return NULL; 6479 6480 if (m->m_len < sizeof(struct sadb_comb)) { 6481 m = m_pullup(m, sizeof(struct sadb_comb)); 6482 if (m == NULL) 6483 return NULL; 6484 } 6485 6486 comb = mtod(m, struct sadb_comb *); 6487 memset(comb, 0, sizeof(*comb)); 6488 key_getcomb_setlifetime(comb); 6489 comb->sadb_comb_encrypt = i; 6490 /* what should we set into sadb_comb_*_{min,max}bits? */ 6491 } 6492 6493 return m; 6494 } 6495 6496 /* 6497 * XXX no way to pass mode (transport/tunnel) to userland 6498 * XXX replay checking? 6499 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6500 */ 6501 static struct mbuf * 6502 key_getprop(const struct secasindex *saidx) 6503 { 6504 struct sadb_prop *prop; 6505 struct mbuf *m, *n; 6506 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6507 int totlen; 6508 6509 switch (saidx->proto) { 6510 case IPPROTO_ESP: 6511 m = key_getcomb_esp(); 6512 break; 6513 case IPPROTO_AH: 6514 m = key_getcomb_ah(); 6515 break; 6516 case IPPROTO_IPCOMP: 6517 m = key_getcomb_ipcomp(); 6518 break; 6519 default: 6520 return NULL; 6521 } 6522 6523 if (!m) 6524 return NULL; 6525 M_PREPEND(m, l, M_DONTWAIT); 6526 if (!m) 6527 return NULL; 6528 6529 totlen = 0; 6530 for (n = m; n; n = n->m_next) 6531 totlen += n->m_len; 6532 6533 prop = mtod(m, struct sadb_prop *); 6534 memset(prop, 0, sizeof(*prop)); 6535 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6536 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6537 prop->sadb_prop_replay = 32; /* XXX */ 6538 6539 return m; 6540 } 6541 6542 /* 6543 * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire(). 6544 * send 6545 * <base, SA, address(SD), (address(P)), x_policy, 6546 * (identity(SD),) (sensitivity,) proposal> 6547 * to KMD, and expect to receive 6548 * <base> with SADB_ACQUIRE if error occurred, 6549 * or 6550 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6551 * from KMD by PF_KEY. 6552 * 6553 * XXX x_policy is outside of RFC2367 (KAME extension). 6554 * XXX sensitivity is not supported. 6555 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6556 * see comment for key_getcomb_ipcomp(). 6557 * 6558 * OUT: 6559 * 0 : succeed 6560 * others: error number 6561 */ 6562 static int 6563 key_acquire(const struct secasindex *saidx, const struct secpolicy *sp) 6564 { 6565 struct mbuf *result = NULL, *m; 6566 #ifndef IPSEC_NONBLOCK_ACQUIRE 6567 struct secacq *newacq; 6568 #endif 6569 u_int8_t satype; 6570 int error = -1; 6571 u_int32_t seq; 6572 6573 /* sanity check */ 6574 KASSERT(saidx != NULL); 6575 satype = key_proto2satype(saidx->proto); 6576 KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto); 6577 6578 #ifndef IPSEC_NONBLOCK_ACQUIRE 6579 /* 6580 * We never do anything about acquirng SA. There is anather 6581 * solution that kernel blocks to send SADB_ACQUIRE message until 6582 * getting something message from IKEd. In later case, to be 6583 * managed with ACQUIRING list. 6584 */ 6585 /* Get an entry to check whether sending message or not. */ 6586 mutex_enter(&key_misc.lock); 6587 newacq = key_getacq(saidx); 6588 if (newacq != NULL) { 6589 if (key_blockacq_count < newacq->count) { 6590 /* reset counter and do send message. */ 6591 newacq->count = 0; 6592 } else { 6593 /* increment counter and do nothing. */ 6594 newacq->count++; 6595 mutex_exit(&key_misc.lock); 6596 return 0; 6597 } 6598 } else { 6599 /* make new entry for blocking to send SADB_ACQUIRE. */ 6600 newacq = key_newacq(saidx); 6601 if (newacq == NULL) { 6602 mutex_exit(&key_misc.lock); 6603 return ENOBUFS; 6604 } 6605 6606 /* add to key_misc.acqlist */ 6607 LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain); 6608 } 6609 6610 seq = newacq->seq; 6611 mutex_exit(&key_misc.lock); 6612 #else 6613 seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq)); 6614 #endif 6615 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6616 if (!m) { 6617 error = ENOBUFS; 6618 goto fail; 6619 } 6620 result = m; 6621 6622 /* set sadb_address for saidx's. */ 6623 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK, 6624 IPSEC_ULPROTO_ANY); 6625 if (!m) { 6626 error = ENOBUFS; 6627 goto fail; 6628 } 6629 m_cat(result, m); 6630 6631 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK, 6632 IPSEC_ULPROTO_ANY); 6633 if (!m) { 6634 error = ENOBUFS; 6635 goto fail; 6636 } 6637 m_cat(result, m); 6638 6639 /* XXX proxy address (optional) */ 6640 6641 /* set sadb_x_policy */ 6642 if (sp) { 6643 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 6644 if (!m) { 6645 error = ENOBUFS; 6646 goto fail; 6647 } 6648 m_cat(result, m); 6649 } 6650 6651 /* XXX identity (optional) */ 6652 #if 0 6653 if (idexttype && fqdn) { 6654 /* create identity extension (FQDN) */ 6655 struct sadb_ident *id; 6656 int fqdnlen; 6657 6658 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6659 id = (struct sadb_ident *)p; 6660 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6661 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6662 id->sadb_ident_exttype = idexttype; 6663 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6664 memcpy(id + 1, fqdn, fqdnlen); 6665 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6666 } 6667 6668 if (idexttype) { 6669 /* create identity extension (USERFQDN) */ 6670 struct sadb_ident *id; 6671 int userfqdnlen; 6672 6673 if (userfqdn) { 6674 /* +1 for terminating-NUL */ 6675 userfqdnlen = strlen(userfqdn) + 1; 6676 } else 6677 userfqdnlen = 0; 6678 id = (struct sadb_ident *)p; 6679 memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6680 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6681 id->sadb_ident_exttype = idexttype; 6682 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6683 /* XXX is it correct? */ 6684 if (curlwp) 6685 id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred); 6686 if (userfqdn && userfqdnlen) 6687 memcpy(id + 1, userfqdn, userfqdnlen); 6688 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6689 } 6690 #endif 6691 6692 /* XXX sensitivity (optional) */ 6693 6694 /* create proposal/combination extension */ 6695 m = key_getprop(saidx); 6696 #if 0 6697 /* 6698 * spec conformant: always attach proposal/combination extension, 6699 * the problem is that we have no way to attach it for ipcomp, 6700 * due to the way sadb_comb is declared in RFC2367. 6701 */ 6702 if (!m) { 6703 error = ENOBUFS; 6704 goto fail; 6705 } 6706 m_cat(result, m); 6707 #else 6708 /* 6709 * outside of spec; make proposal/combination extension optional. 6710 */ 6711 if (m) 6712 m_cat(result, m); 6713 #endif 6714 6715 if ((result->m_flags & M_PKTHDR) == 0) { 6716 error = EINVAL; 6717 goto fail; 6718 } 6719 6720 if (result->m_len < sizeof(struct sadb_msg)) { 6721 result = m_pullup(result, sizeof(struct sadb_msg)); 6722 if (result == NULL) { 6723 error = ENOBUFS; 6724 goto fail; 6725 } 6726 } 6727 6728 result->m_pkthdr.len = 0; 6729 for (m = result; m; m = m->m_next) 6730 result->m_pkthdr.len += m->m_len; 6731 6732 mtod(result, struct sadb_msg *)->sadb_msg_len = 6733 PFKEY_UNIT64(result->m_pkthdr.len); 6734 6735 /* 6736 * XXX we cannot call key_sendup_mbuf directly here because 6737 * it can cause a deadlock: 6738 * - We have a reference to an SP (and an SA) here 6739 * - key_sendup_mbuf will try to take key_so_mtx 6740 * - Some other thread may try to localcount_drain to the SP with 6741 * holding key_so_mtx in say key_api_spdflush 6742 * - In this case localcount_drain never return because key_sendup_mbuf 6743 * that has stuck on key_so_mtx never release a reference to the SP 6744 * 6745 * So defer key_sendup_mbuf to the timer. 6746 */ 6747 return key_acquire_sendup_mbuf_later(result); 6748 6749 fail: 6750 if (result) 6751 m_freem(result); 6752 return error; 6753 } 6754 6755 static struct mbuf *key_acquire_mbuf_head = NULL; 6756 static unsigned key_acquire_mbuf_count = 0; 6757 #define KEY_ACQUIRE_MBUF_MAX 10 6758 6759 static void 6760 key_acquire_sendup_pending_mbuf(void) 6761 { 6762 struct mbuf *m, *prev; 6763 int error; 6764 6765 again: 6766 prev = NULL; 6767 mutex_enter(&key_misc.lock); 6768 m = key_acquire_mbuf_head; 6769 /* Get an earliest mbuf (one at the tail of the list) */ 6770 while (m != NULL) { 6771 if (m->m_nextpkt == NULL) { 6772 if (prev != NULL) 6773 prev->m_nextpkt = NULL; 6774 if (m == key_acquire_mbuf_head) 6775 key_acquire_mbuf_head = NULL; 6776 key_acquire_mbuf_count--; 6777 break; 6778 } 6779 prev = m; 6780 m = m->m_nextpkt; 6781 } 6782 mutex_exit(&key_misc.lock); 6783 6784 if (m == NULL) 6785 return; 6786 6787 m->m_nextpkt = NULL; 6788 error = key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 6789 if (error != 0) 6790 IPSECLOG(LOG_WARNING, "key_sendup_mbuf failed (error=%d)\n", 6791 error); 6792 6793 if (prev != NULL) 6794 goto again; 6795 } 6796 6797 static int 6798 key_acquire_sendup_mbuf_later(struct mbuf *m) 6799 { 6800 6801 mutex_enter(&key_misc.lock); 6802 /* Avoid queuing too much mbufs */ 6803 if (key_acquire_mbuf_count >= KEY_ACQUIRE_MBUF_MAX) { 6804 mutex_exit(&key_misc.lock); 6805 m_freem(m); 6806 return ENOBUFS; /* XXX */ 6807 } 6808 /* Enqueue mbuf at the head of the list */ 6809 m->m_nextpkt = key_acquire_mbuf_head; 6810 key_acquire_mbuf_head = m; 6811 key_acquire_mbuf_count++; 6812 mutex_exit(&key_misc.lock); 6813 6814 /* Kick the timer */ 6815 key_timehandler(NULL); 6816 6817 return 0; 6818 } 6819 6820 #ifndef IPSEC_NONBLOCK_ACQUIRE 6821 static struct secacq * 6822 key_newacq(const struct secasindex *saidx) 6823 { 6824 struct secacq *newacq; 6825 6826 /* get new entry */ 6827 newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP); 6828 if (newacq == NULL) { 6829 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 6830 return NULL; 6831 } 6832 6833 /* copy secindex */ 6834 memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx)); 6835 newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq); 6836 newacq->created = time_uptime; 6837 newacq->count = 0; 6838 6839 return newacq; 6840 } 6841 6842 static struct secacq * 6843 key_getacq(const struct secasindex *saidx) 6844 { 6845 struct secacq *acq; 6846 6847 KASSERT(mutex_owned(&key_misc.lock)); 6848 6849 LIST_FOREACH(acq, &key_misc.acqlist, chain) { 6850 if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY)) 6851 return acq; 6852 } 6853 6854 return NULL; 6855 } 6856 6857 static struct secacq * 6858 key_getacqbyseq(u_int32_t seq) 6859 { 6860 struct secacq *acq; 6861 6862 KASSERT(mutex_owned(&key_misc.lock)); 6863 6864 LIST_FOREACH(acq, &key_misc.acqlist, chain) { 6865 if (acq->seq == seq) 6866 return acq; 6867 } 6868 6869 return NULL; 6870 } 6871 #endif 6872 6873 #ifdef notyet 6874 static struct secspacq * 6875 key_newspacq(const struct secpolicyindex *spidx) 6876 { 6877 struct secspacq *acq; 6878 6879 /* get new entry */ 6880 acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP); 6881 if (acq == NULL) { 6882 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 6883 return NULL; 6884 } 6885 6886 /* copy secindex */ 6887 memcpy(&acq->spidx, spidx, sizeof(acq->spidx)); 6888 acq->created = time_uptime; 6889 acq->count = 0; 6890 6891 return acq; 6892 } 6893 6894 static struct secspacq * 6895 key_getspacq(const struct secpolicyindex *spidx) 6896 { 6897 struct secspacq *acq; 6898 6899 LIST_FOREACH(acq, &key_misc.spacqlist, chain) { 6900 if (key_spidx_match_exactly(spidx, &acq->spidx)) 6901 return acq; 6902 } 6903 6904 return NULL; 6905 } 6906 #endif /* notyet */ 6907 6908 /* 6909 * SADB_ACQUIRE processing, 6910 * in first situation, is receiving 6911 * <base> 6912 * from the ikmpd, and clear sequence of its secasvar entry. 6913 * 6914 * In second situation, is receiving 6915 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6916 * from a user land process, and return 6917 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6918 * to the socket. 6919 * 6920 * m will always be freed. 6921 */ 6922 static int 6923 key_api_acquire(struct socket *so, struct mbuf *m, 6924 const struct sadb_msghdr *mhp) 6925 { 6926 const struct sockaddr *src, *dst; 6927 struct secasindex saidx; 6928 u_int16_t proto; 6929 int error; 6930 6931 /* 6932 * Error message from KMd. 6933 * We assume that if error was occurred in IKEd, the length of PFKEY 6934 * message is equal to the size of sadb_msg structure. 6935 * We do not raise error even if error occurred in this function. 6936 */ 6937 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6938 #ifndef IPSEC_NONBLOCK_ACQUIRE 6939 struct secacq *acq; 6940 6941 /* check sequence number */ 6942 if (mhp->msg->sadb_msg_seq == 0) { 6943 IPSECLOG(LOG_DEBUG, "must specify sequence number.\n"); 6944 m_freem(m); 6945 return 0; 6946 } 6947 6948 mutex_enter(&key_misc.lock); 6949 acq = key_getacqbyseq(mhp->msg->sadb_msg_seq); 6950 if (acq == NULL) { 6951 mutex_exit(&key_misc.lock); 6952 /* 6953 * the specified larval SA is already gone, or we got 6954 * a bogus sequence number. we can silently ignore it. 6955 */ 6956 m_freem(m); 6957 return 0; 6958 } 6959 6960 /* reset acq counter in order to deletion by timehander. */ 6961 acq->created = time_uptime; 6962 acq->count = 0; 6963 mutex_exit(&key_misc.lock); 6964 #endif 6965 m_freem(m); 6966 return 0; 6967 } 6968 6969 /* 6970 * This message is from user land. 6971 */ 6972 6973 /* map satype to proto */ 6974 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 6975 if (proto == 0) { 6976 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 6977 return key_senderror(so, m, EINVAL); 6978 } 6979 6980 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6981 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6982 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6983 /* error */ 6984 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6985 return key_senderror(so, m, EINVAL); 6986 } 6987 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6988 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6989 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6990 /* error */ 6991 IPSECLOG(LOG_DEBUG, "invalid message is passed.\n"); 6992 return key_senderror(so, m, EINVAL); 6993 } 6994 6995 src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC); 6996 dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST); 6997 6998 error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx); 6999 if (error != 0) 7000 return key_senderror(so, m, EINVAL); 7001 7002 error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp); 7003 if (error != 0) 7004 return key_senderror(so, m, EINVAL); 7005 7006 /* get a SA index */ 7007 { 7008 struct secashead *sah; 7009 int s = pserialize_read_enter(); 7010 7011 sah = key_getsah(&saidx, CMP_MODE_REQID); 7012 if (sah != NULL) { 7013 pserialize_read_exit(s); 7014 IPSECLOG(LOG_DEBUG, "a SA exists already.\n"); 7015 return key_senderror(so, m, EEXIST); 7016 } 7017 pserialize_read_exit(s); 7018 } 7019 7020 error = key_acquire(&saidx, NULL); 7021 if (error != 0) { 7022 IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n", 7023 error); 7024 return key_senderror(so, m, error); 7025 } 7026 7027 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 7028 } 7029 7030 /* 7031 * SADB_REGISTER processing. 7032 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 7033 * receive 7034 * <base> 7035 * from the ikmpd, and register a socket to send PF_KEY messages, 7036 * and send 7037 * <base, supported> 7038 * to KMD by PF_KEY. 7039 * If socket is detached, must free from regnode. 7040 * 7041 * m will always be freed. 7042 */ 7043 static int 7044 key_api_register(struct socket *so, struct mbuf *m, 7045 const struct sadb_msghdr *mhp) 7046 { 7047 struct secreg *reg, *newreg = 0; 7048 7049 /* check for invalid register message */ 7050 if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist)) 7051 return key_senderror(so, m, EINVAL); 7052 7053 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 7054 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 7055 goto setmsg; 7056 7057 /* Allocate regnode in advance, out of mutex */ 7058 newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP); 7059 7060 /* check whether existing or not */ 7061 mutex_enter(&key_misc.lock); 7062 LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) { 7063 if (reg->so == so) { 7064 IPSECLOG(LOG_DEBUG, "socket exists already.\n"); 7065 mutex_exit(&key_misc.lock); 7066 kmem_free(newreg, sizeof(*newreg)); 7067 return key_senderror(so, m, EEXIST); 7068 } 7069 } 7070 7071 newreg->so = so; 7072 ((struct keycb *)sotorawcb(so))->kp_registered++; 7073 7074 /* add regnode to key_misc.reglist. */ 7075 LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain); 7076 mutex_exit(&key_misc.lock); 7077 7078 setmsg: 7079 { 7080 struct mbuf *n; 7081 struct sadb_supported *sup; 7082 u_int len, alen, elen; 7083 int off; 7084 int i; 7085 struct sadb_alg *alg; 7086 7087 /* create new sadb_msg to reply. */ 7088 alen = 0; 7089 for (i = 1; i <= SADB_AALG_MAX; i++) { 7090 if (ah_algorithm_lookup(i)) 7091 alen += sizeof(struct sadb_alg); 7092 } 7093 if (alen) 7094 alen += sizeof(struct sadb_supported); 7095 elen = 0; 7096 for (i = 1; i <= SADB_EALG_MAX; i++) { 7097 if (esp_algorithm_lookup(i)) 7098 elen += sizeof(struct sadb_alg); 7099 } 7100 if (elen) 7101 elen += sizeof(struct sadb_supported); 7102 7103 len = sizeof(struct sadb_msg) + alen + elen; 7104 7105 if (len > MCLBYTES) 7106 return key_senderror(so, m, ENOBUFS); 7107 7108 MGETHDR(n, M_DONTWAIT, MT_DATA); 7109 if (len > MHLEN) { 7110 MCLGET(n, M_DONTWAIT); 7111 if ((n->m_flags & M_EXT) == 0) { 7112 m_freem(n); 7113 n = NULL; 7114 } 7115 } 7116 if (!n) 7117 return key_senderror(so, m, ENOBUFS); 7118 7119 n->m_pkthdr.len = n->m_len = len; 7120 n->m_next = NULL; 7121 off = 0; 7122 7123 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off); 7124 n = key_fill_replymsg(n, 0); 7125 if (n == NULL) 7126 return key_senderror(so, m, ENOBUFS); 7127 7128 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 7129 7130 /* for authentication algorithm */ 7131 if (alen) { 7132 sup = (struct sadb_supported *)(mtod(n, char *) + off); 7133 sup->sadb_supported_len = PFKEY_UNIT64(alen); 7134 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 7135 off += PFKEY_ALIGN8(sizeof(*sup)); 7136 7137 for (i = 1; i <= SADB_AALG_MAX; i++) { 7138 const struct auth_hash *aalgo; 7139 u_int16_t minkeysize, maxkeysize; 7140 7141 aalgo = ah_algorithm_lookup(i); 7142 if (!aalgo) 7143 continue; 7144 alg = (struct sadb_alg *)(mtod(n, char *) + off); 7145 alg->sadb_alg_id = i; 7146 alg->sadb_alg_ivlen = 0; 7147 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 7148 alg->sadb_alg_minbits = _BITS(minkeysize); 7149 alg->sadb_alg_maxbits = _BITS(maxkeysize); 7150 off += PFKEY_ALIGN8(sizeof(*alg)); 7151 } 7152 } 7153 7154 /* for encryption algorithm */ 7155 if (elen) { 7156 sup = (struct sadb_supported *)(mtod(n, char *) + off); 7157 sup->sadb_supported_len = PFKEY_UNIT64(elen); 7158 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 7159 off += PFKEY_ALIGN8(sizeof(*sup)); 7160 7161 for (i = 1; i <= SADB_EALG_MAX; i++) { 7162 const struct enc_xform *ealgo; 7163 7164 ealgo = esp_algorithm_lookup(i); 7165 if (!ealgo) 7166 continue; 7167 alg = (struct sadb_alg *)(mtod(n, char *) + off); 7168 alg->sadb_alg_id = i; 7169 alg->sadb_alg_ivlen = ealgo->blocksize; 7170 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 7171 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 7172 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 7173 } 7174 } 7175 7176 KASSERTMSG(off == len, "length inconsistency"); 7177 7178 m_freem(m); 7179 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 7180 } 7181 } 7182 7183 /* 7184 * free secreg entry registered. 7185 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 7186 */ 7187 void 7188 key_freereg(struct socket *so) 7189 { 7190 struct secreg *reg; 7191 int i; 7192 7193 KASSERT(!cpu_softintr_p()); 7194 KASSERT(so != NULL); 7195 7196 /* 7197 * check whether existing or not. 7198 * check all type of SA, because there is a potential that 7199 * one socket is registered to multiple type of SA. 7200 */ 7201 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7202 mutex_enter(&key_misc.lock); 7203 LIST_FOREACH(reg, &key_misc.reglist[i], chain) { 7204 if (reg->so == so) { 7205 LIST_REMOVE(reg, chain); 7206 break; 7207 } 7208 } 7209 mutex_exit(&key_misc.lock); 7210 if (reg != NULL) 7211 kmem_free(reg, sizeof(*reg)); 7212 } 7213 7214 return; 7215 } 7216 7217 /* 7218 * SADB_EXPIRE processing 7219 * send 7220 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 7221 * to KMD by PF_KEY. 7222 * NOTE: We send only soft lifetime extension. 7223 * 7224 * OUT: 0 : succeed 7225 * others : error number 7226 */ 7227 static int 7228 key_expire(struct secasvar *sav) 7229 { 7230 int s; 7231 int satype; 7232 struct mbuf *result = NULL, *m; 7233 int len; 7234 int error = -1; 7235 struct sadb_lifetime *lt; 7236 7237 /* XXX: Why do we lock ? */ 7238 s = splsoftnet(); /*called from softclock()*/ 7239 7240 KASSERT(sav != NULL); 7241 7242 satype = key_proto2satype(sav->sah->saidx.proto); 7243 KASSERTMSG(satype != 0, "invalid proto is passed"); 7244 7245 /* set msg header */ 7246 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav)); 7247 if (!m) { 7248 error = ENOBUFS; 7249 goto fail; 7250 } 7251 result = m; 7252 7253 /* create SA extension */ 7254 m = key_setsadbsa(sav); 7255 if (!m) { 7256 error = ENOBUFS; 7257 goto fail; 7258 } 7259 m_cat(result, m); 7260 7261 /* create SA extension */ 7262 m = key_setsadbxsa2(sav->sah->saidx.mode, 7263 sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid); 7264 if (!m) { 7265 error = ENOBUFS; 7266 goto fail; 7267 } 7268 m_cat(result, m); 7269 7270 /* create lifetime extension (current and soft) */ 7271 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 7272 m = key_alloc_mbuf(len); 7273 if (!m || m->m_next) { /*XXX*/ 7274 if (m) 7275 m_freem(m); 7276 error = ENOBUFS; 7277 goto fail; 7278 } 7279 memset(mtod(m, void *), 0, len); 7280 lt = mtod(m, struct sadb_lifetime *); 7281 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7282 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 7283 lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations; 7284 lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes; 7285 lt->sadb_lifetime_addtime = 7286 time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime); 7287 lt->sadb_lifetime_usetime = 7288 time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime); 7289 lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2); 7290 memcpy(lt, sav->lft_s, sizeof(*lt)); 7291 m_cat(result, m); 7292 7293 /* set sadb_address for source */ 7294 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa, 7295 FULLMASK, IPSEC_ULPROTO_ANY); 7296 if (!m) { 7297 error = ENOBUFS; 7298 goto fail; 7299 } 7300 m_cat(result, m); 7301 7302 /* set sadb_address for destination */ 7303 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa, 7304 FULLMASK, IPSEC_ULPROTO_ANY); 7305 if (!m) { 7306 error = ENOBUFS; 7307 goto fail; 7308 } 7309 m_cat(result, m); 7310 7311 if ((result->m_flags & M_PKTHDR) == 0) { 7312 error = EINVAL; 7313 goto fail; 7314 } 7315 7316 if (result->m_len < sizeof(struct sadb_msg)) { 7317 result = m_pullup(result, sizeof(struct sadb_msg)); 7318 if (result == NULL) { 7319 error = ENOBUFS; 7320 goto fail; 7321 } 7322 } 7323 7324 result->m_pkthdr.len = 0; 7325 for (m = result; m; m = m->m_next) 7326 result->m_pkthdr.len += m->m_len; 7327 7328 mtod(result, struct sadb_msg *)->sadb_msg_len = 7329 PFKEY_UNIT64(result->m_pkthdr.len); 7330 7331 splx(s); 7332 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7333 7334 fail: 7335 if (result) 7336 m_freem(result); 7337 splx(s); 7338 return error; 7339 } 7340 7341 /* 7342 * SADB_FLUSH processing 7343 * receive 7344 * <base> 7345 * from the ikmpd, and free all entries in secastree. 7346 * and send, 7347 * <base> 7348 * to the ikmpd. 7349 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7350 * 7351 * m will always be freed. 7352 */ 7353 static int 7354 key_api_flush(struct socket *so, struct mbuf *m, 7355 const struct sadb_msghdr *mhp) 7356 { 7357 struct sadb_msg *newmsg; 7358 struct secashead *sah; 7359 struct secasvar *sav; 7360 u_int16_t proto; 7361 u_int8_t state; 7362 int s; 7363 7364 /* map satype to proto */ 7365 proto = key_satype2proto(mhp->msg->sadb_msg_satype); 7366 if (proto == 0) { 7367 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7368 return key_senderror(so, m, EINVAL); 7369 } 7370 7371 /* no SATYPE specified, i.e. flushing all SA. */ 7372 s = pserialize_read_enter(); 7373 SAHLIST_READER_FOREACH(sah) { 7374 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && 7375 proto != sah->saidx.proto) 7376 continue; 7377 7378 key_sah_ref(sah); 7379 pserialize_read_exit(s); 7380 7381 SASTATE_ALIVE_FOREACH(state) { 7382 restart: 7383 mutex_enter(&key_sad.lock); 7384 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7385 sav->state = SADB_SASTATE_DEAD; 7386 key_unlink_sav(sav); 7387 mutex_exit(&key_sad.lock); 7388 key_destroy_sav(sav); 7389 goto restart; 7390 } 7391 mutex_exit(&key_sad.lock); 7392 } 7393 7394 s = pserialize_read_enter(); 7395 sah->state = SADB_SASTATE_DEAD; 7396 key_sah_unref(sah); 7397 } 7398 pserialize_read_exit(s); 7399 7400 if (m->m_len < sizeof(struct sadb_msg) || 7401 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7402 IPSECLOG(LOG_DEBUG, "No more memory.\n"); 7403 return key_senderror(so, m, ENOBUFS); 7404 } 7405 7406 if (m->m_next) 7407 m_freem(m->m_next); 7408 m->m_next = NULL; 7409 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7410 newmsg = mtod(m, struct sadb_msg *); 7411 newmsg->sadb_msg_errno = 0; 7412 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7413 7414 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7415 } 7416 7417 7418 static struct mbuf * 7419 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid) 7420 { 7421 struct secashead *sah; 7422 struct secasvar *sav; 7423 u_int16_t proto; 7424 u_int8_t satype; 7425 u_int8_t state; 7426 int cnt; 7427 struct mbuf *m, *n, *prev; 7428 7429 KASSERT(mutex_owned(&key_sad.lock)); 7430 7431 *lenp = 0; 7432 7433 /* map satype to proto */ 7434 proto = key_satype2proto(req_satype); 7435 if (proto == 0) { 7436 *errorp = EINVAL; 7437 return (NULL); 7438 } 7439 7440 /* count sav entries to be sent to userland. */ 7441 cnt = 0; 7442 SAHLIST_WRITER_FOREACH(sah) { 7443 if (req_satype != SADB_SATYPE_UNSPEC && 7444 proto != sah->saidx.proto) 7445 continue; 7446 7447 SASTATE_ANY_FOREACH(state) { 7448 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7449 cnt++; 7450 } 7451 } 7452 } 7453 7454 if (cnt == 0) { 7455 *errorp = ENOENT; 7456 return (NULL); 7457 } 7458 7459 /* send this to the userland, one at a time. */ 7460 m = NULL; 7461 prev = m; 7462 SAHLIST_WRITER_FOREACH(sah) { 7463 if (req_satype != SADB_SATYPE_UNSPEC && 7464 proto != sah->saidx.proto) 7465 continue; 7466 7467 /* map proto to satype */ 7468 satype = key_proto2satype(sah->saidx.proto); 7469 if (satype == 0) { 7470 m_freem(m); 7471 *errorp = EINVAL; 7472 return (NULL); 7473 } 7474 7475 SASTATE_ANY_FOREACH(state) { 7476 SAVLIST_WRITER_FOREACH(sav, sah, state) { 7477 n = key_setdumpsa(sav, SADB_DUMP, satype, 7478 --cnt, pid); 7479 if (!n) { 7480 m_freem(m); 7481 *errorp = ENOBUFS; 7482 return (NULL); 7483 } 7484 7485 if (!m) 7486 m = n; 7487 else 7488 prev->m_nextpkt = n; 7489 prev = n; 7490 } 7491 } 7492 } 7493 7494 if (!m) { 7495 *errorp = EINVAL; 7496 return (NULL); 7497 } 7498 7499 if ((m->m_flags & M_PKTHDR) != 0) { 7500 m->m_pkthdr.len = 0; 7501 for (n = m; n; n = n->m_next) 7502 m->m_pkthdr.len += n->m_len; 7503 } 7504 7505 *errorp = 0; 7506 return (m); 7507 } 7508 7509 /* 7510 * SADB_DUMP processing 7511 * dump all entries including status of DEAD in SAD. 7512 * receive 7513 * <base> 7514 * from the ikmpd, and dump all secasvar leaves 7515 * and send, 7516 * <base> ..... 7517 * to the ikmpd. 7518 * 7519 * m will always be freed. 7520 */ 7521 static int 7522 key_api_dump(struct socket *so, struct mbuf *m0, 7523 const struct sadb_msghdr *mhp) 7524 { 7525 u_int16_t proto; 7526 u_int8_t satype; 7527 struct mbuf *n; 7528 int error, len, ok; 7529 7530 /* map satype to proto */ 7531 satype = mhp->msg->sadb_msg_satype; 7532 proto = key_satype2proto(satype); 7533 if (proto == 0) { 7534 IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n"); 7535 return key_senderror(so, m0, EINVAL); 7536 } 7537 7538 /* 7539 * If the requestor has insufficient socket-buffer space 7540 * for the entire chain, nobody gets any response to the DUMP. 7541 * XXX For now, only the requestor ever gets anything. 7542 * Moreover, if the requestor has any space at all, they receive 7543 * the entire chain, otherwise the request is refused with ENOBUFS. 7544 */ 7545 if (sbspace(&so->so_rcv) <= 0) { 7546 return key_senderror(so, m0, ENOBUFS); 7547 } 7548 7549 mutex_enter(&key_sad.lock); 7550 n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid); 7551 mutex_exit(&key_sad.lock); 7552 7553 if (n == NULL) { 7554 return key_senderror(so, m0, ENOENT); 7555 } 7556 { 7557 uint64_t *ps = PFKEY_STAT_GETREF(); 7558 ps[PFKEY_STAT_IN_TOTAL]++; 7559 ps[PFKEY_STAT_IN_BYTES] += len; 7560 PFKEY_STAT_PUTREF(); 7561 } 7562 7563 /* 7564 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets. 7565 * The requestor receives either the entire chain, or an 7566 * error message with ENOBUFS. 7567 * 7568 * sbappendaddrchain() takes the chain of entries, one 7569 * packet-record per SPD entry, prepends the key_src sockaddr 7570 * to each packet-record, links the sockaddr mbufs into a new 7571 * list of records, then appends the entire resulting 7572 * list to the requesting socket. 7573 */ 7574 ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n, 7575 SB_PRIO_ONESHOT_OVERFLOW); 7576 7577 if (!ok) { 7578 PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); 7579 m_freem(n); 7580 return key_senderror(so, m0, ENOBUFS); 7581 } 7582 7583 m_freem(m0); 7584 return 0; 7585 } 7586 7587 /* 7588 * SADB_X_PROMISC processing 7589 * 7590 * m will always be freed. 7591 */ 7592 static int 7593 key_api_promisc(struct socket *so, struct mbuf *m, 7594 const struct sadb_msghdr *mhp) 7595 { 7596 int olen; 7597 7598 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7599 7600 if (olen < sizeof(struct sadb_msg)) { 7601 #if 1 7602 return key_senderror(so, m, EINVAL); 7603 #else 7604 m_freem(m); 7605 return 0; 7606 #endif 7607 } else if (olen == sizeof(struct sadb_msg)) { 7608 /* enable/disable promisc mode */ 7609 struct keycb *kp = (struct keycb *)sotorawcb(so); 7610 if (kp == NULL) 7611 return key_senderror(so, m, EINVAL); 7612 mhp->msg->sadb_msg_errno = 0; 7613 switch (mhp->msg->sadb_msg_satype) { 7614 case 0: 7615 case 1: 7616 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7617 break; 7618 default: 7619 return key_senderror(so, m, EINVAL); 7620 } 7621 7622 /* send the original message back to everyone */ 7623 mhp->msg->sadb_msg_errno = 0; 7624 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7625 } else { 7626 /* send packet as is */ 7627 7628 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7629 7630 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7631 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7632 } 7633 } 7634 7635 static int (*key_api_typesw[]) (struct socket *, struct mbuf *, 7636 const struct sadb_msghdr *) = { 7637 NULL, /* SADB_RESERVED */ 7638 key_api_getspi, /* SADB_GETSPI */ 7639 key_api_update, /* SADB_UPDATE */ 7640 key_api_add, /* SADB_ADD */ 7641 key_api_delete, /* SADB_DELETE */ 7642 key_api_get, /* SADB_GET */ 7643 key_api_acquire, /* SADB_ACQUIRE */ 7644 key_api_register, /* SADB_REGISTER */ 7645 NULL, /* SADB_EXPIRE */ 7646 key_api_flush, /* SADB_FLUSH */ 7647 key_api_dump, /* SADB_DUMP */ 7648 key_api_promisc, /* SADB_X_PROMISC */ 7649 NULL, /* SADB_X_PCHANGE */ 7650 key_api_spdadd, /* SADB_X_SPDUPDATE */ 7651 key_api_spdadd, /* SADB_X_SPDADD */ 7652 key_api_spddelete, /* SADB_X_SPDDELETE */ 7653 key_api_spdget, /* SADB_X_SPDGET */ 7654 NULL, /* SADB_X_SPDACQUIRE */ 7655 key_api_spddump, /* SADB_X_SPDDUMP */ 7656 key_api_spdflush, /* SADB_X_SPDFLUSH */ 7657 key_api_spdadd, /* SADB_X_SPDSETIDX */ 7658 NULL, /* SADB_X_SPDEXPIRE */ 7659 key_api_spddelete2, /* SADB_X_SPDDELETE2 */ 7660 key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */ 7661 }; 7662 7663 /* 7664 * parse sadb_msg buffer to process PFKEYv2, 7665 * and create a data to response if needed. 7666 * I think to be dealed with mbuf directly. 7667 * IN: 7668 * msgp : pointer to pointer to a received buffer pulluped. 7669 * This is rewrited to response. 7670 * so : pointer to socket. 7671 * OUT: 7672 * length for buffer to send to user process. 7673 */ 7674 int 7675 key_parse(struct mbuf *m, struct socket *so) 7676 { 7677 struct sadb_msg *msg; 7678 struct sadb_msghdr mh; 7679 u_int orglen; 7680 int error; 7681 7682 KASSERT(m != NULL); 7683 KASSERT(so != NULL); 7684 7685 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7686 if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) { 7687 kdebug_sadb("passed sadb_msg", msg); 7688 } 7689 #endif 7690 7691 if (m->m_len < sizeof(struct sadb_msg)) { 7692 m = m_pullup(m, sizeof(struct sadb_msg)); 7693 if (!m) 7694 return ENOBUFS; 7695 } 7696 msg = mtod(m, struct sadb_msg *); 7697 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7698 7699 if ((m->m_flags & M_PKTHDR) == 0 || 7700 m->m_pkthdr.len != orglen) { 7701 IPSECLOG(LOG_DEBUG, "invalid message length.\n"); 7702 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 7703 error = EINVAL; 7704 goto senderror; 7705 } 7706 7707 if (msg->sadb_msg_version != PF_KEY_V2) { 7708 IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n", 7709 msg->sadb_msg_version); 7710 PFKEY_STATINC(PFKEY_STAT_OUT_INVVER); 7711 error = EINVAL; 7712 goto senderror; 7713 } 7714 7715 if (msg->sadb_msg_type > SADB_MAX) { 7716 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", 7717 msg->sadb_msg_type); 7718 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 7719 error = EINVAL; 7720 goto senderror; 7721 } 7722 7723 /* for old-fashioned code - should be nuked */ 7724 if (m->m_pkthdr.len > MCLBYTES) { 7725 m_freem(m); 7726 return ENOBUFS; 7727 } 7728 if (m->m_next) { 7729 struct mbuf *n; 7730 7731 MGETHDR(n, M_DONTWAIT, MT_DATA); 7732 if (n && m->m_pkthdr.len > MHLEN) { 7733 MCLGET(n, M_DONTWAIT); 7734 if ((n->m_flags & M_EXT) == 0) { 7735 m_free(n); 7736 n = NULL; 7737 } 7738 } 7739 if (!n) { 7740 m_freem(m); 7741 return ENOBUFS; 7742 } 7743 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *)); 7744 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7745 n->m_next = NULL; 7746 m_freem(m); 7747 m = n; 7748 } 7749 7750 /* align the mbuf chain so that extensions are in contiguous region. */ 7751 error = key_align(m, &mh); 7752 if (error) 7753 return error; 7754 7755 if (m->m_next) { /*XXX*/ 7756 m_freem(m); 7757 return ENOBUFS; 7758 } 7759 7760 msg = mh.msg; 7761 7762 /* check SA type */ 7763 switch (msg->sadb_msg_satype) { 7764 case SADB_SATYPE_UNSPEC: 7765 switch (msg->sadb_msg_type) { 7766 case SADB_GETSPI: 7767 case SADB_UPDATE: 7768 case SADB_ADD: 7769 case SADB_DELETE: 7770 case SADB_GET: 7771 case SADB_ACQUIRE: 7772 case SADB_EXPIRE: 7773 IPSECLOG(LOG_DEBUG, 7774 "must specify satype when msg type=%u.\n", 7775 msg->sadb_msg_type); 7776 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7777 error = EINVAL; 7778 goto senderror; 7779 } 7780 break; 7781 case SADB_SATYPE_AH: 7782 case SADB_SATYPE_ESP: 7783 case SADB_X_SATYPE_IPCOMP: 7784 case SADB_X_SATYPE_TCPSIGNATURE: 7785 switch (msg->sadb_msg_type) { 7786 case SADB_X_SPDADD: 7787 case SADB_X_SPDDELETE: 7788 case SADB_X_SPDGET: 7789 case SADB_X_SPDDUMP: 7790 case SADB_X_SPDFLUSH: 7791 case SADB_X_SPDSETIDX: 7792 case SADB_X_SPDUPDATE: 7793 case SADB_X_SPDDELETE2: 7794 IPSECLOG(LOG_DEBUG, "illegal satype=%u\n", 7795 msg->sadb_msg_type); 7796 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7797 error = EINVAL; 7798 goto senderror; 7799 } 7800 break; 7801 case SADB_SATYPE_RSVP: 7802 case SADB_SATYPE_OSPFV2: 7803 case SADB_SATYPE_RIPV2: 7804 case SADB_SATYPE_MIP: 7805 IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n", 7806 msg->sadb_msg_satype); 7807 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7808 error = EOPNOTSUPP; 7809 goto senderror; 7810 case 1: /* XXX: What does it do? */ 7811 if (msg->sadb_msg_type == SADB_X_PROMISC) 7812 break; 7813 /*FALLTHROUGH*/ 7814 default: 7815 IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n", 7816 msg->sadb_msg_satype); 7817 PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE); 7818 error = EINVAL; 7819 goto senderror; 7820 } 7821 7822 /* check field of upper layer protocol and address family */ 7823 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL && 7824 mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7825 const struct sadb_address *src0, *dst0; 7826 const struct sockaddr *sa0, *da0; 7827 u_int plen; 7828 7829 src0 = mh.ext[SADB_EXT_ADDRESS_SRC]; 7830 dst0 = mh.ext[SADB_EXT_ADDRESS_DST]; 7831 sa0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_SRC); 7832 da0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_DST); 7833 7834 /* check upper layer protocol */ 7835 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7836 IPSECLOG(LOG_DEBUG, 7837 "upper layer protocol mismatched.\n"); 7838 goto invaddr; 7839 } 7840 7841 /* check family */ 7842 if (sa0->sa_family != da0->sa_family) { 7843 IPSECLOG(LOG_DEBUG, "address family mismatched.\n"); 7844 goto invaddr; 7845 } 7846 if (sa0->sa_len != da0->sa_len) { 7847 IPSECLOG(LOG_DEBUG, 7848 "address struct size mismatched.\n"); 7849 goto invaddr; 7850 } 7851 7852 switch (sa0->sa_family) { 7853 case AF_INET: 7854 if (sa0->sa_len != sizeof(struct sockaddr_in)) 7855 goto invaddr; 7856 break; 7857 case AF_INET6: 7858 if (sa0->sa_len != sizeof(struct sockaddr_in6)) 7859 goto invaddr; 7860 break; 7861 default: 7862 IPSECLOG(LOG_DEBUG, "unsupported address family.\n"); 7863 error = EAFNOSUPPORT; 7864 goto senderror; 7865 } 7866 7867 switch (sa0->sa_family) { 7868 case AF_INET: 7869 plen = sizeof(struct in_addr) << 3; 7870 break; 7871 case AF_INET6: 7872 plen = sizeof(struct in6_addr) << 3; 7873 break; 7874 default: 7875 plen = 0; /*fool gcc*/ 7876 break; 7877 } 7878 7879 /* check max prefix length */ 7880 if (src0->sadb_address_prefixlen > plen || 7881 dst0->sadb_address_prefixlen > plen) { 7882 IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n"); 7883 goto invaddr; 7884 } 7885 7886 /* 7887 * prefixlen == 0 is valid because there can be a case when 7888 * all addresses are matched. 7889 */ 7890 } 7891 7892 if (msg->sadb_msg_type >= __arraycount(key_api_typesw) || 7893 key_api_typesw[msg->sadb_msg_type] == NULL) { 7894 PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE); 7895 error = EINVAL; 7896 goto senderror; 7897 } 7898 7899 return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh); 7900 7901 invaddr: 7902 error = EINVAL; 7903 senderror: 7904 PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR); 7905 return key_senderror(so, m, error); 7906 } 7907 7908 static int 7909 key_senderror(struct socket *so, struct mbuf *m, int code) 7910 { 7911 struct sadb_msg *msg; 7912 7913 KASSERT(m->m_len >= sizeof(struct sadb_msg)); 7914 7915 msg = mtod(m, struct sadb_msg *); 7916 msg->sadb_msg_errno = code; 7917 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7918 } 7919 7920 /* 7921 * set the pointer to each header into message buffer. 7922 * m will be freed on error. 7923 * XXX larger-than-MCLBYTES extension? 7924 */ 7925 static int 7926 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 7927 { 7928 struct mbuf *n; 7929 struct sadb_ext *ext; 7930 size_t off, end; 7931 int extlen; 7932 int toff; 7933 7934 KASSERT(m != NULL); 7935 KASSERT(mhp != NULL); 7936 KASSERT(m->m_len >= sizeof(struct sadb_msg)); 7937 7938 /* initialize */ 7939 memset(mhp, 0, sizeof(*mhp)); 7940 7941 mhp->msg = mtod(m, struct sadb_msg *); 7942 mhp->ext[0] = mhp->msg; /*XXX backward compat */ 7943 7944 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7945 extlen = end; /*just in case extlen is not updated*/ 7946 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7947 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7948 if (!n) { 7949 /* m is already freed */ 7950 return ENOBUFS; 7951 } 7952 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 7953 7954 /* set pointer */ 7955 switch (ext->sadb_ext_type) { 7956 case SADB_EXT_SA: 7957 case SADB_EXT_ADDRESS_SRC: 7958 case SADB_EXT_ADDRESS_DST: 7959 case SADB_EXT_ADDRESS_PROXY: 7960 case SADB_EXT_LIFETIME_CURRENT: 7961 case SADB_EXT_LIFETIME_HARD: 7962 case SADB_EXT_LIFETIME_SOFT: 7963 case SADB_EXT_KEY_AUTH: 7964 case SADB_EXT_KEY_ENCRYPT: 7965 case SADB_EXT_IDENTITY_SRC: 7966 case SADB_EXT_IDENTITY_DST: 7967 case SADB_EXT_SENSITIVITY: 7968 case SADB_EXT_PROPOSAL: 7969 case SADB_EXT_SUPPORTED_AUTH: 7970 case SADB_EXT_SUPPORTED_ENCRYPT: 7971 case SADB_EXT_SPIRANGE: 7972 case SADB_X_EXT_POLICY: 7973 case SADB_X_EXT_SA2: 7974 case SADB_X_EXT_NAT_T_TYPE: 7975 case SADB_X_EXT_NAT_T_SPORT: 7976 case SADB_X_EXT_NAT_T_DPORT: 7977 case SADB_X_EXT_NAT_T_OAI: 7978 case SADB_X_EXT_NAT_T_OAR: 7979 case SADB_X_EXT_NAT_T_FRAG: 7980 /* duplicate check */ 7981 /* 7982 * XXX Are there duplication payloads of either 7983 * KEY_AUTH or KEY_ENCRYPT ? 7984 */ 7985 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7986 IPSECLOG(LOG_DEBUG, 7987 "duplicate ext_type %u is passed.\n", 7988 ext->sadb_ext_type); 7989 m_freem(m); 7990 PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT); 7991 return EINVAL; 7992 } 7993 break; 7994 default: 7995 IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n", 7996 ext->sadb_ext_type); 7997 m_freem(m); 7998 PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE); 7999 return EINVAL; 8000 } 8001 8002 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 8003 8004 if (key_validate_ext(ext, extlen)) { 8005 m_freem(m); 8006 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 8007 return EINVAL; 8008 } 8009 8010 n = m_pulldown(m, off, extlen, &toff); 8011 if (!n) { 8012 /* m is already freed */ 8013 return ENOBUFS; 8014 } 8015 ext = (struct sadb_ext *)(mtod(n, char *) + toff); 8016 8017 mhp->ext[ext->sadb_ext_type] = ext; 8018 mhp->extoff[ext->sadb_ext_type] = off; 8019 mhp->extlen[ext->sadb_ext_type] = extlen; 8020 } 8021 8022 if (off != end) { 8023 m_freem(m); 8024 PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); 8025 return EINVAL; 8026 } 8027 8028 return 0; 8029 } 8030 8031 static int 8032 key_validate_ext(const struct sadb_ext *ext, int len) 8033 { 8034 const struct sockaddr *sa; 8035 enum { NONE, ADDR } checktype = NONE; 8036 int baselen = 0; 8037 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 8038 8039 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 8040 return EINVAL; 8041 8042 /* if it does not match minimum/maximum length, bail */ 8043 if (ext->sadb_ext_type >= __arraycount(minsize) || 8044 ext->sadb_ext_type >= __arraycount(maxsize)) 8045 return EINVAL; 8046 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 8047 return EINVAL; 8048 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 8049 return EINVAL; 8050 8051 /* more checks based on sadb_ext_type XXX need more */ 8052 switch (ext->sadb_ext_type) { 8053 case SADB_EXT_ADDRESS_SRC: 8054 case SADB_EXT_ADDRESS_DST: 8055 case SADB_EXT_ADDRESS_PROXY: 8056 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 8057 checktype = ADDR; 8058 break; 8059 case SADB_EXT_IDENTITY_SRC: 8060 case SADB_EXT_IDENTITY_DST: 8061 if (((const struct sadb_ident *)ext)->sadb_ident_type == 8062 SADB_X_IDENTTYPE_ADDR) { 8063 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 8064 checktype = ADDR; 8065 } else 8066 checktype = NONE; 8067 break; 8068 default: 8069 checktype = NONE; 8070 break; 8071 } 8072 8073 switch (checktype) { 8074 case NONE: 8075 break; 8076 case ADDR: 8077 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 8078 if (len < baselen + sal) 8079 return EINVAL; 8080 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 8081 return EINVAL; 8082 break; 8083 } 8084 8085 return 0; 8086 } 8087 8088 static int 8089 key_do_init(void) 8090 { 8091 int i, error; 8092 8093 mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE); 8094 8095 mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE); 8096 cv_init(&key_spd.cv_lc, "key_sp_lc"); 8097 key_spd.psz = pserialize_create(); 8098 cv_init(&key_spd.cv_psz, "key_sp_psz"); 8099 key_spd.psz_performing = false; 8100 8101 mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE); 8102 cv_init(&key_sad.cv_lc, "key_sa_lc"); 8103 key_sad.psz = pserialize_create(); 8104 cv_init(&key_sad.cv_psz, "key_sa_psz"); 8105 key_sad.psz_performing = false; 8106 8107 pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS); 8108 8109 callout_init(&key_timehandler_ch, CALLOUT_MPSAFE); 8110 error = workqueue_create(&key_timehandler_wq, "key_timehandler", 8111 key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE); 8112 if (error != 0) 8113 panic("%s: workqueue_create failed (%d)\n", __func__, error); 8114 8115 for (i = 0; i < IPSEC_DIR_MAX; i++) { 8116 PSLIST_INIT(&key_spd.splist[i]); 8117 } 8118 8119 PSLIST_INIT(&key_spd.socksplist); 8120 8121 PSLIST_INIT(&key_sad.sahlist); 8122 8123 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 8124 LIST_INIT(&key_misc.reglist[i]); 8125 } 8126 8127 #ifndef IPSEC_NONBLOCK_ACQUIRE 8128 LIST_INIT(&key_misc.acqlist); 8129 #endif 8130 #ifdef notyet 8131 LIST_INIT(&key_misc.spacqlist); 8132 #endif 8133 8134 /* system default */ 8135 ip4_def_policy.policy = IPSEC_POLICY_NONE; 8136 ip4_def_policy.state = IPSEC_SPSTATE_ALIVE; 8137 localcount_init(&ip4_def_policy.localcount); 8138 8139 #ifdef INET6 8140 ip6_def_policy.policy = IPSEC_POLICY_NONE; 8141 ip6_def_policy.state = IPSEC_SPSTATE_ALIVE; 8142 localcount_init(&ip6_def_policy.localcount); 8143 #endif 8144 8145 callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL); 8146 8147 /* initialize key statistics */ 8148 keystat.getspi_count = 1; 8149 8150 aprint_verbose("IPsec: Initialized Security Association Processing.\n"); 8151 8152 return (0); 8153 } 8154 8155 void 8156 key_init(void) 8157 { 8158 static ONCE_DECL(key_init_once); 8159 8160 sysctl_net_keyv2_setup(NULL); 8161 sysctl_net_key_compat_setup(NULL); 8162 8163 RUN_ONCE(&key_init_once, key_do_init); 8164 8165 key_init_so(); 8166 } 8167 8168 /* 8169 * XXX: maybe This function is called after INBOUND IPsec processing. 8170 * 8171 * Special check for tunnel-mode packets. 8172 * We must make some checks for consistency between inner and outer IP header. 8173 * 8174 * xxx more checks to be provided 8175 */ 8176 int 8177 key_checktunnelsanity( 8178 struct secasvar *sav, 8179 u_int family, 8180 void *src, 8181 void *dst 8182 ) 8183 { 8184 8185 /* XXX: check inner IP header */ 8186 8187 return 1; 8188 } 8189 8190 #if 0 8191 #define hostnamelen strlen(hostname) 8192 8193 /* 8194 * Get FQDN for the host. 8195 * If the administrator configured hostname (by hostname(1)) without 8196 * domain name, returns nothing. 8197 */ 8198 static const char * 8199 key_getfqdn(void) 8200 { 8201 int i; 8202 int hasdot; 8203 static char fqdn[MAXHOSTNAMELEN + 1]; 8204 8205 if (!hostnamelen) 8206 return NULL; 8207 8208 /* check if it comes with domain name. */ 8209 hasdot = 0; 8210 for (i = 0; i < hostnamelen; i++) { 8211 if (hostname[i] == '.') 8212 hasdot++; 8213 } 8214 if (!hasdot) 8215 return NULL; 8216 8217 /* NOTE: hostname may not be NUL-terminated. */ 8218 memset(fqdn, 0, sizeof(fqdn)); 8219 memcpy(fqdn, hostname, hostnamelen); 8220 fqdn[hostnamelen] = '\0'; 8221 return fqdn; 8222 } 8223 8224 /* 8225 * get username@FQDN for the host/user. 8226 */ 8227 static const char * 8228 key_getuserfqdn(void) 8229 { 8230 const char *host; 8231 static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2]; 8232 struct proc *p = curproc; 8233 char *q; 8234 8235 if (!p || !p->p_pgrp || !p->p_pgrp->pg_session) 8236 return NULL; 8237 if (!(host = key_getfqdn())) 8238 return NULL; 8239 8240 /* NOTE: s_login may not be-NUL terminated. */ 8241 memset(userfqdn, 0, sizeof(userfqdn)); 8242 memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME); 8243 userfqdn[MAXLOGNAME] = '\0'; /* safeguard */ 8244 q = userfqdn + strlen(userfqdn); 8245 *q++ = '@'; 8246 memcpy(q, host, strlen(host)); 8247 q += strlen(host); 8248 *q++ = '\0'; 8249 8250 return userfqdn; 8251 } 8252 #endif 8253 8254 /* record data transfer on SA, and update timestamps */ 8255 void 8256 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 8257 { 8258 8259 KASSERT(sav != NULL); 8260 KASSERT(sav->lft_c != NULL); 8261 KASSERT(m != NULL); 8262 8263 /* 8264 * XXX Currently, there is a difference of bytes size 8265 * between inbound and outbound processing. 8266 */ 8267 sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len; 8268 /* to check bytes lifetime is done in key_timehandler(). */ 8269 8270 /* 8271 * We use the number of packets as the unit of 8272 * sadb_lifetime_allocations. We increment the variable 8273 * whenever {esp,ah}_{in,out}put is called. 8274 */ 8275 sav->lft_c->sadb_lifetime_allocations++; 8276 /* XXX check for expires? */ 8277 8278 /* 8279 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock, 8280 * in seconds. HARD and SOFT lifetime are measured by the time 8281 * difference (again in seconds) from sadb_lifetime_usetime. 8282 * 8283 * usetime 8284 * v expire expire 8285 * -----+-----+--------+---> t 8286 * <--------------> HARD 8287 * <-----> SOFT 8288 */ 8289 sav->lft_c->sadb_lifetime_usetime = time_uptime; 8290 /* XXX check for expires? */ 8291 8292 return; 8293 } 8294 8295 /* dumb version */ 8296 void 8297 key_sa_routechange(struct sockaddr *dst) 8298 { 8299 struct secashead *sah; 8300 int s; 8301 8302 s = pserialize_read_enter(); 8303 SAHLIST_READER_FOREACH(sah) { 8304 struct route *ro; 8305 const struct sockaddr *sa; 8306 8307 key_sah_ref(sah); 8308 pserialize_read_exit(s); 8309 8310 ro = &sah->sa_route; 8311 sa = rtcache_getdst(ro); 8312 if (sa != NULL && dst->sa_len == sa->sa_len && 8313 memcmp(dst, sa, dst->sa_len) == 0) 8314 rtcache_free(ro); 8315 8316 s = pserialize_read_enter(); 8317 key_sah_unref(sah); 8318 } 8319 pserialize_read_exit(s); 8320 8321 return; 8322 } 8323 8324 static void 8325 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 8326 { 8327 struct secasvar *_sav; 8328 8329 ASSERT_SLEEPABLE(); 8330 KASSERT(mutex_owned(&key_sad.lock)); 8331 8332 if (sav->state == state) 8333 return; 8334 8335 key_unlink_sav(sav); 8336 localcount_fini(&sav->localcount); 8337 SAVLIST_ENTRY_DESTROY(sav); 8338 key_init_sav(sav); 8339 8340 sav->state = state; 8341 if (!SADB_SASTATE_USABLE_P(sav)) { 8342 /* We don't need to care about the order */ 8343 SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav); 8344 return; 8345 } 8346 /* 8347 * Sort the list by lft_c->sadb_lifetime_addtime 8348 * in ascending order. 8349 */ 8350 SAVLIST_READER_FOREACH(_sav, sav->sah, state) { 8351 if (_sav->lft_c->sadb_lifetime_addtime > 8352 sav->lft_c->sadb_lifetime_addtime) { 8353 SAVLIST_WRITER_INSERT_BEFORE(_sav, sav); 8354 break; 8355 } 8356 } 8357 if (_sav == NULL) { 8358 SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav); 8359 } 8360 key_validate_savlist(sav->sah, state); 8361 } 8362 8363 /* XXX too much? */ 8364 static struct mbuf * 8365 key_alloc_mbuf(int l) 8366 { 8367 struct mbuf *m = NULL, *n; 8368 int len, t; 8369 8370 len = l; 8371 while (len > 0) { 8372 MGET(n, M_DONTWAIT, MT_DATA); 8373 if (n && len > MLEN) 8374 MCLGET(n, M_DONTWAIT); 8375 if (!n) { 8376 m_freem(m); 8377 return NULL; 8378 } 8379 8380 n->m_next = NULL; 8381 n->m_len = 0; 8382 n->m_len = M_TRAILINGSPACE(n); 8383 /* use the bottom of mbuf, hoping we can prepend afterwards */ 8384 if (n->m_len > len) { 8385 t = (n->m_len - len) & ~(sizeof(long) - 1); 8386 n->m_data += t; 8387 n->m_len = len; 8388 } 8389 8390 len -= n->m_len; 8391 8392 if (m) 8393 m_cat(m, n); 8394 else 8395 m = n; 8396 } 8397 8398 return m; 8399 } 8400 8401 static struct mbuf * 8402 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid) 8403 { 8404 struct secashead *sah; 8405 struct secasvar *sav; 8406 u_int16_t proto; 8407 u_int8_t satype; 8408 u_int8_t state; 8409 int cnt; 8410 struct mbuf *m, *n; 8411 8412 KASSERT(mutex_owned(&key_sad.lock)); 8413 8414 /* map satype to proto */ 8415 proto = key_satype2proto(req_satype); 8416 if (proto == 0) { 8417 *errorp = EINVAL; 8418 return (NULL); 8419 } 8420 8421 /* count sav entries to be sent to the userland. */ 8422 cnt = 0; 8423 SAHLIST_WRITER_FOREACH(sah) { 8424 if (req_satype != SADB_SATYPE_UNSPEC && 8425 proto != sah->saidx.proto) 8426 continue; 8427 8428 SASTATE_ANY_FOREACH(state) { 8429 SAVLIST_WRITER_FOREACH(sav, sah, state) { 8430 cnt++; 8431 } 8432 } 8433 } 8434 8435 if (cnt == 0) { 8436 *errorp = ENOENT; 8437 return (NULL); 8438 } 8439 8440 /* send this to the userland, one at a time. */ 8441 m = NULL; 8442 SAHLIST_WRITER_FOREACH(sah) { 8443 if (req_satype != SADB_SATYPE_UNSPEC && 8444 proto != sah->saidx.proto) 8445 continue; 8446 8447 /* map proto to satype */ 8448 satype = key_proto2satype(sah->saidx.proto); 8449 if (satype == 0) { 8450 m_freem(m); 8451 *errorp = EINVAL; 8452 return (NULL); 8453 } 8454 8455 SASTATE_ANY_FOREACH(state) { 8456 SAVLIST_WRITER_FOREACH(sav, sah, state) { 8457 n = key_setdumpsa(sav, SADB_DUMP, satype, 8458 --cnt, pid); 8459 if (!n) { 8460 m_freem(m); 8461 *errorp = ENOBUFS; 8462 return (NULL); 8463 } 8464 8465 if (!m) 8466 m = n; 8467 else 8468 m_cat(m, n); 8469 } 8470 } 8471 } 8472 8473 if (!m) { 8474 *errorp = EINVAL; 8475 return (NULL); 8476 } 8477 8478 if ((m->m_flags & M_PKTHDR) != 0) { 8479 m->m_pkthdr.len = 0; 8480 for (n = m; n; n = n->m_next) 8481 m->m_pkthdr.len += n->m_len; 8482 } 8483 8484 *errorp = 0; 8485 return (m); 8486 } 8487 8488 static struct mbuf * 8489 key_setspddump(int *errorp, pid_t pid) 8490 { 8491 struct secpolicy *sp; 8492 int cnt; 8493 u_int dir; 8494 struct mbuf *m, *n; 8495 8496 KASSERT(mutex_owned(&key_spd.lock)); 8497 8498 /* search SPD entry and get buffer size. */ 8499 cnt = 0; 8500 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8501 SPLIST_WRITER_FOREACH(sp, dir) { 8502 cnt++; 8503 } 8504 } 8505 8506 if (cnt == 0) { 8507 *errorp = ENOENT; 8508 return (NULL); 8509 } 8510 8511 m = NULL; 8512 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 8513 SPLIST_WRITER_FOREACH(sp, dir) { 8514 --cnt; 8515 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid); 8516 8517 if (!n) { 8518 *errorp = ENOBUFS; 8519 m_freem(m); 8520 return (NULL); 8521 } 8522 if (!m) 8523 m = n; 8524 else { 8525 m->m_pkthdr.len += n->m_pkthdr.len; 8526 m_cat(m, n); 8527 } 8528 } 8529 } 8530 8531 *errorp = 0; 8532 return (m); 8533 } 8534 8535 int 8536 key_get_used(void) { 8537 return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) || 8538 !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) || 8539 !SOCKSPLIST_READER_EMPTY(); 8540 } 8541 8542 void 8543 key_update_used(void) 8544 { 8545 switch (ipsec_enabled) { 8546 default: 8547 case 0: 8548 #ifdef notyet 8549 /* XXX: racy */ 8550 ipsec_used = 0; 8551 #endif 8552 break; 8553 case 1: 8554 #ifndef notyet 8555 /* XXX: racy */ 8556 if (!ipsec_used) 8557 #endif 8558 ipsec_used = key_get_used(); 8559 break; 8560 case 2: 8561 ipsec_used = 1; 8562 break; 8563 } 8564 } 8565 8566 static int 8567 sysctl_net_key_dumpsa(SYSCTLFN_ARGS) 8568 { 8569 struct mbuf *m, *n; 8570 int err2 = 0; 8571 char *p, *ep; 8572 size_t len; 8573 int error; 8574 8575 if (newp) 8576 return (EPERM); 8577 if (namelen != 1) 8578 return (EINVAL); 8579 8580 mutex_enter(&key_sad.lock); 8581 m = key_setdump(name[0], &error, l->l_proc->p_pid); 8582 mutex_exit(&key_sad.lock); 8583 if (!m) 8584 return (error); 8585 if (!oldp) 8586 *oldlenp = m->m_pkthdr.len; 8587 else { 8588 p = oldp; 8589 if (*oldlenp < m->m_pkthdr.len) { 8590 err2 = ENOMEM; 8591 ep = p + *oldlenp; 8592 } else { 8593 *oldlenp = m->m_pkthdr.len; 8594 ep = p + m->m_pkthdr.len; 8595 } 8596 for (n = m; n; n = n->m_next) { 8597 len = (ep - p < n->m_len) ? 8598 ep - p : n->m_len; 8599 error = copyout(mtod(n, const void *), p, len); 8600 p += len; 8601 if (error) 8602 break; 8603 } 8604 if (error == 0) 8605 error = err2; 8606 } 8607 m_freem(m); 8608 8609 return (error); 8610 } 8611 8612 static int 8613 sysctl_net_key_dumpsp(SYSCTLFN_ARGS) 8614 { 8615 struct mbuf *m, *n; 8616 int err2 = 0; 8617 char *p, *ep; 8618 size_t len; 8619 int error; 8620 8621 if (newp) 8622 return (EPERM); 8623 if (namelen != 0) 8624 return (EINVAL); 8625 8626 mutex_enter(&key_spd.lock); 8627 m = key_setspddump(&error, l->l_proc->p_pid); 8628 mutex_exit(&key_spd.lock); 8629 if (!m) 8630 return (error); 8631 if (!oldp) 8632 *oldlenp = m->m_pkthdr.len; 8633 else { 8634 p = oldp; 8635 if (*oldlenp < m->m_pkthdr.len) { 8636 err2 = ENOMEM; 8637 ep = p + *oldlenp; 8638 } else { 8639 *oldlenp = m->m_pkthdr.len; 8640 ep = p + m->m_pkthdr.len; 8641 } 8642 for (n = m; n; n = n->m_next) { 8643 len = (ep - p < n->m_len) ? ep - p : n->m_len; 8644 error = copyout(mtod(n, const void *), p, len); 8645 p += len; 8646 if (error) 8647 break; 8648 } 8649 if (error == 0) 8650 error = err2; 8651 } 8652 m_freem(m); 8653 8654 return (error); 8655 } 8656 8657 /* 8658 * Create sysctl tree for native IPSEC key knobs, originally 8659 * under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }. 8660 * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 }; 8661 * and in any case the part of our sysctl namespace used for dumping the 8662 * SPD and SA database *HAS* to be compatible with the KAME sysctl 8663 * namespace, for API reasons. 8664 * 8665 * Pending a consensus on the right way to fix this, add a level of 8666 * indirection in how we number the `native' IPSEC key nodes; 8667 * and (as requested by Andrew Brown) move registration of the 8668 * KAME-compatible names to a separate function. 8669 */ 8670 #if 0 8671 # define IPSEC_PFKEY PF_KEY_V2 8672 # define IPSEC_PFKEY_NAME "keyv2" 8673 #else 8674 # define IPSEC_PFKEY PF_KEY 8675 # define IPSEC_PFKEY_NAME "key" 8676 #endif 8677 8678 static int 8679 sysctl_net_key_stats(SYSCTLFN_ARGS) 8680 { 8681 8682 return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS)); 8683 } 8684 8685 static void 8686 sysctl_net_keyv2_setup(struct sysctllog **clog) 8687 { 8688 8689 sysctl_createv(clog, 0, NULL, NULL, 8690 CTLFLAG_PERMANENT, 8691 CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL, 8692 NULL, 0, NULL, 0, 8693 CTL_NET, IPSEC_PFKEY, CTL_EOL); 8694 8695 sysctl_createv(clog, 0, NULL, NULL, 8696 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8697 CTLTYPE_INT, "debug", NULL, 8698 NULL, 0, &key_debug_level, 0, 8699 CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL); 8700 sysctl_createv(clog, 0, NULL, NULL, 8701 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8702 CTLTYPE_INT, "spi_try", NULL, 8703 NULL, 0, &key_spi_trycnt, 0, 8704 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL); 8705 sysctl_createv(clog, 0, NULL, NULL, 8706 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8707 CTLTYPE_INT, "spi_min_value", NULL, 8708 NULL, 0, &key_spi_minval, 0, 8709 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL); 8710 sysctl_createv(clog, 0, NULL, NULL, 8711 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8712 CTLTYPE_INT, "spi_max_value", NULL, 8713 NULL, 0, &key_spi_maxval, 0, 8714 CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL); 8715 sysctl_createv(clog, 0, NULL, NULL, 8716 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8717 CTLTYPE_INT, "random_int", NULL, 8718 NULL, 0, &key_int_random, 0, 8719 CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL); 8720 sysctl_createv(clog, 0, NULL, NULL, 8721 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8722 CTLTYPE_INT, "larval_lifetime", NULL, 8723 NULL, 0, &key_larval_lifetime, 0, 8724 CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL); 8725 sysctl_createv(clog, 0, NULL, NULL, 8726 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8727 CTLTYPE_INT, "blockacq_count", NULL, 8728 NULL, 0, &key_blockacq_count, 0, 8729 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL); 8730 sysctl_createv(clog, 0, NULL, NULL, 8731 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8732 CTLTYPE_INT, "blockacq_lifetime", NULL, 8733 NULL, 0, &key_blockacq_lifetime, 0, 8734 CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL); 8735 sysctl_createv(clog, 0, NULL, NULL, 8736 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8737 CTLTYPE_INT, "esp_keymin", NULL, 8738 NULL, 0, &ipsec_esp_keymin, 0, 8739 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL); 8740 sysctl_createv(clog, 0, NULL, NULL, 8741 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8742 CTLTYPE_INT, "prefered_oldsa", NULL, 8743 NULL, 0, &key_prefered_oldsa, 0, 8744 CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL); 8745 sysctl_createv(clog, 0, NULL, NULL, 8746 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8747 CTLTYPE_INT, "esp_auth", NULL, 8748 NULL, 0, &ipsec_esp_auth, 0, 8749 CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL); 8750 sysctl_createv(clog, 0, NULL, NULL, 8751 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 8752 CTLTYPE_INT, "ah_keymin", NULL, 8753 NULL, 0, &ipsec_ah_keymin, 0, 8754 CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL); 8755 sysctl_createv(clog, 0, NULL, NULL, 8756 CTLFLAG_PERMANENT, 8757 CTLTYPE_STRUCT, "stats", 8758 SYSCTL_DESCR("PF_KEY statistics"), 8759 sysctl_net_key_stats, 0, NULL, 0, 8760 CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL); 8761 } 8762 8763 /* 8764 * Register sysctl names used by setkey(8). For historical reasons, 8765 * and to share a single API, these names appear under { CTL_NET, PF_KEY } 8766 * for both IPSEC and KAME IPSEC. 8767 */ 8768 static void 8769 sysctl_net_key_compat_setup(struct sysctllog **clog) 8770 { 8771 8772 sysctl_createv(clog, 0, NULL, NULL, 8773 CTLFLAG_PERMANENT, 8774 CTLTYPE_NODE, "key", NULL, 8775 NULL, 0, NULL, 0, 8776 CTL_NET, PF_KEY, CTL_EOL); 8777 8778 /* Register the net.key.dump{sa,sp} nodes used by setkey(8). */ 8779 sysctl_createv(clog, 0, NULL, NULL, 8780 CTLFLAG_PERMANENT, 8781 CTLTYPE_STRUCT, "dumpsa", NULL, 8782 sysctl_net_key_dumpsa, 0, NULL, 0, 8783 CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL); 8784 sysctl_createv(clog, 0, NULL, NULL, 8785 CTLFLAG_PERMANENT, 8786 CTLTYPE_STRUCT, "dumpsp", NULL, 8787 sysctl_net_key_dumpsp, 0, NULL, 0, 8788 CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL); 8789 } 8790