xref: /netbsd-src/sys/netipsec/key.c (revision 1580a27b92f58fcdcb23fdfbc04a7c2b54a0b7c8)
1 /*	$NetBSD: key.c,v 1.235 2017/11/08 10:35:30 ozaki-r Exp $	*/
2 /*	$FreeBSD: src/sys/netipsec/key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $	*/
3 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
4 
5 /*
6  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the project nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: key.c,v 1.235 2017/11/08 10:35:30 ozaki-r Exp $");
36 
37 /*
38  * This code is referred to RFC 2367
39  */
40 
41 #if defined(_KERNEL_OPT)
42 #include "opt_inet.h"
43 #include "opt_ipsec.h"
44 #include "opt_gateway.h"
45 #include "opt_net_mpsafe.h"
46 #endif
47 
48 #include <sys/types.h>
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/callout.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/domain.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/errno.h>
59 #include <sys/proc.h>
60 #include <sys/queue.h>
61 #include <sys/syslog.h>
62 #include <sys/once.h>
63 #include <sys/cprng.h>
64 #include <sys/psref.h>
65 #include <sys/lwp.h>
66 #include <sys/workqueue.h>
67 #include <sys/kmem.h>
68 #include <sys/cpu.h>
69 #include <sys/atomic.h>
70 #include <sys/pslist.h>
71 #include <sys/mutex.h>
72 #include <sys/condvar.h>
73 #include <sys/localcount.h>
74 #include <sys/pserialize.h>
75 
76 #include <net/if.h>
77 #include <net/route.h>
78 
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #include <netinet/in_var.h>
83 #ifdef INET
84 #include <netinet/ip_var.h>
85 #endif
86 
87 #ifdef INET6
88 #include <netinet/ip6.h>
89 #include <netinet6/in6_var.h>
90 #include <netinet6/ip6_var.h>
91 #endif /* INET6 */
92 
93 #ifdef INET
94 #include <netinet/in_pcb.h>
95 #endif
96 #ifdef INET6
97 #include <netinet6/in6_pcb.h>
98 #endif /* INET6 */
99 
100 #include <net/pfkeyv2.h>
101 #include <netipsec/keydb.h>
102 #include <netipsec/key.h>
103 #include <netipsec/keysock.h>
104 #include <netipsec/key_debug.h>
105 
106 #include <netipsec/ipsec.h>
107 #ifdef INET6
108 #include <netipsec/ipsec6.h>
109 #endif
110 #include <netipsec/ipsec_private.h>
111 
112 #include <netipsec/xform.h>
113 #include <netipsec/ipcomp.h>
114 
115 
116 #include <net/net_osdep.h>
117 
118 #define FULLMASK	0xff
119 #define	_BITS(bytes)	((bytes) << 3)
120 
121 #define PORT_NONE	0
122 #define PORT_LOOSE	1
123 #define PORT_STRICT	2
124 
125 percpu_t *pfkeystat_percpu;
126 
127 /*
128  * Note on SA reference counting:
129  * - SAs that are not in DEAD state will have (total external reference + 1)
130  *   following value in reference count field.  they cannot be freed and are
131  *   referenced from SA header.
132  * - SAs that are in DEAD state will have (total external reference)
133  *   in reference count field.  they are ready to be freed.  reference from
134  *   SA header will be removed in key_delsav(), when the reference count
135  *   field hits 0 (= no external reference other than from SA header.
136  */
137 
138 u_int32_t key_debug_level = 0;
139 static u_int key_spi_trycnt = 1000;
140 static u_int32_t key_spi_minval = 0x100;
141 static u_int32_t key_spi_maxval = 0x0fffffff;	/* XXX */
142 static u_int32_t policy_id = 0;
143 static u_int key_int_random = 60;	/*interval to initialize randseed,1(m)*/
144 static u_int key_larval_lifetime = 30;	/* interval to expire acquiring, 30(s)*/
145 static int key_blockacq_count = 10;	/* counter for blocking SADB_ACQUIRE.*/
146 static int key_blockacq_lifetime = 20;	/* lifetime for blocking SADB_ACQUIRE.*/
147 static int key_prefered_oldsa = 0;	/* prefered old sa rather than new sa.*/
148 
149 static u_int32_t acq_seq = 0;
150 
151 /*
152  * Locking order: there is no order for now; it means that any locks aren't
153  * overlapped.
154  */
155 /*
156  * Locking notes on SPD:
157  * - Modifications to the key_spd.splist must be done with holding key_spd.lock
158  *   which is a adaptive mutex
159  * - Read accesses to the key_spd.splist must be in pserialize(9) read sections
160  * - SP's lifetime is managed by localcount(9)
161  * - An SP that has been inserted to the key_spd.splist is initially referenced
162  *   by none, i.e., a reference from the key_spd.splist isn't counted
163  * - When an SP is being destroyed, we change its state as DEAD, wait for
164  *   references to the SP to be released, and then deallocate the SP
165  *   (see key_unlink_sp)
166  * - Getting an SP
167  *   - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx)
168  *     - Must iterate the list and increment the reference count of a found SP
169  *       (by key_sp_ref) in a pserialize read section
170  *   - We can gain another reference from a held SP only if we check its state
171  *     and take its reference in a pserialize read section
172  *     (see esp_output for example)
173  *   - We may get an SP from an SP cache. See below
174  *   - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref)
175  * - Updating member variables of an SP
176  *   - Most member variables of an SP are immutable
177  *   - Only sp->state and sp->lastused can be changed
178  *   - sp->state of an SP is updated only when destroying it under key_spd.lock
179  * - SP caches
180  *   - SPs can be cached in PCBs
181  *   - The lifetime of the caches is controlled by the global generation counter
182  *     (ipsec_spdgen)
183  *   - The global counter value is stored when an SP is cached
184  *   - If the stored value is different from the global counter then the cache
185  *     is considered invalidated
186  *   - The counter is incremented when an SP is being destroyed
187  *   - So checking the generation and taking a reference to an SP should be
188  *     in a pserialize read section
189  *   - Note that caching doesn't increment the reference counter of an SP
190  * - SPs in sockets
191  *   - Userland programs can set a policy to a socket by
192  *     setsockopt(IP_IPSEC_POLICY)
193  *   - Such policies (SPs) are set to a socket (PCB) and also inserted to
194  *     the key_spd.socksplist list (not the key_spd.splist)
195  *   - Such a policy is destroyed when a corresponding socket is destroed,
196  *     however, a socket can be destroyed in softint so we cannot destroy
197  *     it directly instead we just mark it DEAD and delay the destruction
198  *     until GC by the timer
199  */
200 /*
201  * Locking notes on SAD:
202  * - Data structures
203  *   - SAs are managed by the list called key_sad.sahlist and sav lists of sah
204  *     entries
205  *     - An sav is supposed to be an SA from a viewpoint of users
206  *   - A sah has sav lists for each SA state
207  *   - Multiple sahs with the same saidx can exist
208  *     - Only one entry has MATURE state and others should be DEAD
209  *     - DEAD entries are just ignored from searching
210  * - Modifications to the key_sad.sahlist and sah.savlist must be done with
211  *   holding key_sad.lock which is a adaptive mutex
212  * - Read accesses to the key_sad.sahlist and sah.savlist must be in
213  *   pserialize(9) read sections
214  * - sah's lifetime is managed by localcount(9)
215  * - Getting an sah entry
216  *   - We get an sah from the key_sad.sahlist
217  *     - Must iterate the list and increment the reference count of a found sah
218  *       (by key_sah_ref) in a pserialize read section
219  *   - A gotten sah must be released after use by key_sah_unref
220  * - An sah is destroyed when its state become DEAD and no sav is
221  *   listed to the sah
222  *   - The destruction is done only in the timer (see key_timehandler_sad)
223  * - sav's lifetime is managed by localcount(9)
224  * - Getting an sav entry
225  *   - First get an sah by saidx and get an sav from either of sah's savlists
226  *     - Must iterate the list and increment the reference count of a found sav
227  *       (by key_sa_ref) in a pserialize read section
228  *   - We can gain another reference from a held SA only if we check its state
229  *     and take its reference in a pserialize read section
230  *     (see esp_output for example)
231  *   - A gotten sav must be released after use by key_sa_unref
232  * - An sav is destroyed when its state become DEAD
233  */
234 /*
235  * Locking notes on misc data:
236  * - All lists of key_misc are protected by key_misc.lock
237  *   - key_misc.lock must be held even for read accesses
238  */
239 
240 /* SPD */
241 static struct {
242 	kmutex_t lock;
243 	kcondvar_t cv_lc;
244 	struct pslist_head splist[IPSEC_DIR_MAX];
245 	/*
246 	 * The list has SPs that are set to a socket via
247 	 * setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy.
248 	 */
249 	struct pslist_head socksplist;
250 
251 	pserialize_t psz;
252 	kcondvar_t cv_psz;
253 	bool psz_performing;
254 } key_spd __cacheline_aligned;
255 
256 /* SAD */
257 static struct {
258 	kmutex_t lock;
259 	kcondvar_t cv_lc;
260 	struct pslist_head sahlist;
261 
262 	pserialize_t psz;
263 	kcondvar_t cv_psz;
264 	bool psz_performing;
265 } key_sad __cacheline_aligned;
266 
267 /* Misc data */
268 static struct {
269 	kmutex_t lock;
270 	/* registed list */
271 	LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1];
272 #ifndef IPSEC_NONBLOCK_ACQUIRE
273 	/* acquiring list */
274 	LIST_HEAD(_acqlist, secacq) acqlist;
275 #endif
276 #ifdef notyet
277 	/* SP acquiring list */
278 	LIST_HEAD(_spacqlist, secspacq) spacqlist;
279 #endif
280 } key_misc __cacheline_aligned;
281 
282 /* Macros for key_spd.splist */
283 #define SPLIST_ENTRY_INIT(sp)						\
284 	PSLIST_ENTRY_INIT((sp), pslist_entry)
285 #define SPLIST_ENTRY_DESTROY(sp)					\
286 	PSLIST_ENTRY_DESTROY((sp), pslist_entry)
287 #define SPLIST_WRITER_REMOVE(sp)					\
288 	PSLIST_WRITER_REMOVE((sp), pslist_entry)
289 #define SPLIST_READER_EMPTY(dir)					\
290 	(PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy,	\
291 	                     pslist_entry) == NULL)
292 #define SPLIST_READER_FOREACH(sp, dir)					\
293 	PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)],		\
294 	                      struct secpolicy, pslist_entry)
295 #define SPLIST_WRITER_FOREACH(sp, dir)					\
296 	PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)],		\
297 	                      struct secpolicy, pslist_entry)
298 #define SPLIST_WRITER_INSERT_AFTER(sp, new)				\
299 	PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry)
300 #define SPLIST_WRITER_EMPTY(dir)					\
301 	(PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy,	\
302 	                     pslist_entry) == NULL)
303 #define SPLIST_WRITER_INSERT_HEAD(dir, sp)				\
304 	PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp),		\
305 	                          pslist_entry)
306 #define SPLIST_WRITER_NEXT(sp)						\
307 	PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry)
308 #define SPLIST_WRITER_INSERT_TAIL(dir, new)				\
309 	do {								\
310 		if (SPLIST_WRITER_EMPTY((dir))) {			\
311 			SPLIST_WRITER_INSERT_HEAD((dir), (new));	\
312 		} else {						\
313 			struct secpolicy *__sp;				\
314 			SPLIST_WRITER_FOREACH(__sp, (dir)) {		\
315 				if (SPLIST_WRITER_NEXT(__sp) == NULL) {	\
316 					SPLIST_WRITER_INSERT_AFTER(__sp,\
317 					    (new));			\
318 					break;				\
319 				}					\
320 			}						\
321 		}							\
322 	} while (0)
323 
324 /* Macros for key_spd.socksplist */
325 #define SOCKSPLIST_WRITER_FOREACH(sp)					\
326 	PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist,		\
327 	                      struct secpolicy,	pslist_entry)
328 #define SOCKSPLIST_READER_EMPTY()					\
329 	(PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy,	\
330 	                     pslist_entry) == NULL)
331 
332 /* Macros for key_sad.sahlist */
333 #define SAHLIST_ENTRY_INIT(sah)						\
334 	PSLIST_ENTRY_INIT((sah), pslist_entry)
335 #define SAHLIST_ENTRY_DESTROY(sah)					\
336 	PSLIST_ENTRY_DESTROY((sah), pslist_entry)
337 #define SAHLIST_WRITER_REMOVE(sah)					\
338 	PSLIST_WRITER_REMOVE((sah), pslist_entry)
339 #define SAHLIST_READER_FOREACH(sah)					\
340 	PSLIST_READER_FOREACH((sah), &key_sad.sahlist, struct secashead,\
341 	                      pslist_entry)
342 #define SAHLIST_WRITER_FOREACH(sah)					\
343 	PSLIST_WRITER_FOREACH((sah), &key_sad.sahlist, struct secashead,\
344 	                      pslist_entry)
345 #define SAHLIST_WRITER_INSERT_HEAD(sah)					\
346 	PSLIST_WRITER_INSERT_HEAD(&key_sad.sahlist, (sah), pslist_entry)
347 
348 /* Macros for key_sad.sahlist#savlist */
349 #define SAVLIST_ENTRY_INIT(sav)						\
350 	PSLIST_ENTRY_INIT((sav), pslist_entry)
351 #define SAVLIST_ENTRY_DESTROY(sav)					\
352 	PSLIST_ENTRY_DESTROY((sav), pslist_entry)
353 #define SAVLIST_READER_FIRST(sah, state)				\
354 	PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar,	\
355 	                    pslist_entry)
356 #define SAVLIST_WRITER_REMOVE(sav)					\
357 	PSLIST_WRITER_REMOVE((sav), pslist_entry)
358 #define SAVLIST_READER_FOREACH(sav, sah, state)				\
359 	PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)],		\
360 	                      struct secasvar, pslist_entry)
361 #define SAVLIST_WRITER_FOREACH(sav, sah, state)				\
362 	PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)],		\
363 	                      struct secasvar, pslist_entry)
364 #define SAVLIST_WRITER_INSERT_BEFORE(sav, new)				\
365 	PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry)
366 #define SAVLIST_WRITER_INSERT_AFTER(sav, new)				\
367 	PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry)
368 #define SAVLIST_WRITER_EMPTY(sah, state)				\
369 	(PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar,	\
370 	                     pslist_entry) == NULL)
371 #define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav)			\
372 	PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav),	\
373 	                          pslist_entry)
374 #define SAVLIST_WRITER_NEXT(sav)					\
375 	PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry)
376 #define SAVLIST_WRITER_INSERT_TAIL(sah, state, new)			\
377 	do {								\
378 		if (SAVLIST_WRITER_EMPTY((sah), (state))) {		\
379 			SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\
380 		} else {						\
381 			struct secasvar *__sav;				\
382 			SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) {	\
383 				if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\
384 					SAVLIST_WRITER_INSERT_AFTER(__sav,\
385 					    (new));			\
386 					break;				\
387 				}					\
388 			}						\
389 		}							\
390 	} while (0)
391 #define SAVLIST_READER_NEXT(sav)					\
392 	PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry)
393 
394 
395 /* search order for SAs */
396 	/*
397 	 * This order is important because we must select the oldest SA
398 	 * for outbound processing.  For inbound, This is not important.
399 	 */
400 static const u_int saorder_state_valid_prefer_old[] = {
401 	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
402 };
403 static const u_int saorder_state_valid_prefer_new[] = {
404 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
405 };
406 
407 static const u_int saorder_state_alive[] = {
408 	/* except DEAD */
409 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
410 };
411 static const u_int saorder_state_any[] = {
412 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
413 	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
414 };
415 
416 #define SASTATE_ALIVE_FOREACH(s)				\
417 	for (int _i = 0;					\
418 	    _i < __arraycount(saorder_state_alive) ?		\
419 	    (s) = saorder_state_alive[_i], true : false;	\
420 	    _i++)
421 #define SASTATE_ANY_FOREACH(s)					\
422 	for (int _i = 0;					\
423 	    _i < __arraycount(saorder_state_any) ?		\
424 	    (s) = saorder_state_any[_i], true : false;		\
425 	    _i++)
426 
427 static const int minsize[] = {
428 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
429 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
430 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
431 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
432 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
433 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
434 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
435 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
436 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
437 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
438 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
439 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
440 	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
441 	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
442 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
443 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
444 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
445 	0,				/* SADB_X_EXT_KMPRIVATE */
446 	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
447 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
448 	sizeof(struct sadb_x_nat_t_type),	/* SADB_X_EXT_NAT_T_TYPE */
449 	sizeof(struct sadb_x_nat_t_port),	/* SADB_X_EXT_NAT_T_SPORT */
450 	sizeof(struct sadb_x_nat_t_port),	/* SADB_X_EXT_NAT_T_DPORT */
451 	sizeof(struct sadb_address),		/* SADB_X_EXT_NAT_T_OAI */
452 	sizeof(struct sadb_address),		/* SADB_X_EXT_NAT_T_OAR */
453 	sizeof(struct sadb_x_nat_t_frag),	/* SADB_X_EXT_NAT_T_FRAG */
454 };
455 static const int maxsize[] = {
456 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
457 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
458 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
459 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
460 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
461 	0,				/* SADB_EXT_ADDRESS_SRC */
462 	0,				/* SADB_EXT_ADDRESS_DST */
463 	0,				/* SADB_EXT_ADDRESS_PROXY */
464 	0,				/* SADB_EXT_KEY_AUTH */
465 	0,				/* SADB_EXT_KEY_ENCRYPT */
466 	0,				/* SADB_EXT_IDENTITY_SRC */
467 	0,				/* SADB_EXT_IDENTITY_DST */
468 	0,				/* SADB_EXT_SENSITIVITY */
469 	0,				/* SADB_EXT_PROPOSAL */
470 	0,				/* SADB_EXT_SUPPORTED_AUTH */
471 	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
472 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
473 	0,				/* SADB_X_EXT_KMPRIVATE */
474 	0,				/* SADB_X_EXT_POLICY */
475 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
476 	sizeof(struct sadb_x_nat_t_type),	/* SADB_X_EXT_NAT_T_TYPE */
477 	sizeof(struct sadb_x_nat_t_port),	/* SADB_X_EXT_NAT_T_SPORT */
478 	sizeof(struct sadb_x_nat_t_port),	/* SADB_X_EXT_NAT_T_DPORT */
479 	0,					/* SADB_X_EXT_NAT_T_OAI */
480 	0,					/* SADB_X_EXT_NAT_T_OAR */
481 	sizeof(struct sadb_x_nat_t_frag),	/* SADB_X_EXT_NAT_T_FRAG */
482 };
483 
484 static int ipsec_esp_keymin = 256;
485 static int ipsec_esp_auth = 0;
486 static int ipsec_ah_keymin = 128;
487 
488 #ifdef SYSCTL_DECL
489 SYSCTL_DECL(_net_key);
490 #endif
491 
492 #ifdef SYSCTL_INT
493 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL,	debug,	CTLFLAG_RW, \
494 	&key_debug_level,	0,	"");
495 
496 /* max count of trial for the decision of spi value */
497 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY,		spi_trycnt,	CTLFLAG_RW, \
498 	&key_spi_trycnt,	0,	"");
499 
500 /* minimum spi value to allocate automatically. */
501 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE,	spi_minval,	CTLFLAG_RW, \
502 	&key_spi_minval,	0,	"");
503 
504 /* maximun spi value to allocate automatically. */
505 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE,	spi_maxval,	CTLFLAG_RW, \
506 	&key_spi_maxval,	0,	"");
507 
508 /* interval to initialize randseed */
509 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT,	int_random,	CTLFLAG_RW, \
510 	&key_int_random,	0,	"");
511 
512 /* lifetime for larval SA */
513 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME,	larval_lifetime, CTLFLAG_RW, \
514 	&key_larval_lifetime,	0,	"");
515 
516 /* counter for blocking to send SADB_ACQUIRE to IKEd */
517 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT,	blockacq_count,	CTLFLAG_RW, \
518 	&key_blockacq_count,	0,	"");
519 
520 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
521 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME,	blockacq_lifetime, CTLFLAG_RW, \
522 	&key_blockacq_lifetime,	0,	"");
523 
524 /* ESP auth */
525 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH,	esp_auth, CTLFLAG_RW, \
526 	&ipsec_esp_auth,	0,	"");
527 
528 /* minimum ESP key length */
529 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN,	esp_keymin, CTLFLAG_RW, \
530 	&ipsec_esp_keymin,	0,	"");
531 
532 /* minimum AH key length */
533 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN,	ah_keymin, CTLFLAG_RW, \
534 	&ipsec_ah_keymin,	0,	"");
535 
536 /* perfered old SA rather than new SA */
537 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA,	prefered_oldsa, CTLFLAG_RW,\
538 	&key_prefered_oldsa,	0,	"");
539 #endif /* SYSCTL_INT */
540 
541 #define __LIST_CHAINED(elm) \
542 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
543 #define LIST_INSERT_TAIL(head, elm, type, field) \
544 do {\
545 	struct type *curelm = LIST_FIRST(head); \
546 	if (curelm == NULL) {\
547 		LIST_INSERT_HEAD(head, elm, field); \
548 	} else { \
549 		while (LIST_NEXT(curelm, field)) \
550 			curelm = LIST_NEXT(curelm, field);\
551 		LIST_INSERT_AFTER(curelm, elm, field);\
552 	}\
553 } while (0)
554 
555 #define KEY_CHKSASTATE(head, sav) \
556 /* do */ { \
557 	if ((head) != (sav)) {						\
558 		IPSECLOG(LOG_DEBUG,					\
559 		    "state mismatched (TREE=%d SA=%d)\n",		\
560 		    (head), (sav));					\
561 		continue;						\
562 	}								\
563 } /* while (0) */
564 
565 #define KEY_CHKSPDIR(head, sp) \
566 do { \
567 	if ((head) != (sp)) {						\
568 		IPSECLOG(LOG_DEBUG,					\
569 		    "direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
570 		    (head), (sp));					\
571 	}								\
572 } while (0)
573 
574 /*
575  * set parameters into secasindex buffer.
576  * Must allocate secasindex buffer before calling this function.
577  */
578 static int
579 key_setsecasidx(int, int, int, const struct sockaddr *,
580     const struct sockaddr *, struct secasindex *);
581 
582 /* key statistics */
583 struct _keystat {
584 	u_long getspi_count; /* the avarage of count to try to get new SPI */
585 } keystat;
586 
587 struct sadb_msghdr {
588 	struct sadb_msg *msg;
589 	void *ext[SADB_EXT_MAX + 1];
590 	int extoff[SADB_EXT_MAX + 1];
591 	int extlen[SADB_EXT_MAX + 1];
592 };
593 
594 static void
595 key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
596 
597 static const struct sockaddr *
598 key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
599 {
600 
601 	return PFKEY_ADDR_SADDR(mhp->ext[idx]);
602 }
603 
604 static struct mbuf *
605 key_fill_replymsg(struct mbuf *m, int seq)
606 {
607 	struct sadb_msg *msg;
608 
609 	if (m->m_len < sizeof(*msg)) {
610 		m = m_pullup(m, sizeof(*msg));
611 		if (m == NULL)
612 			return NULL;
613 	}
614 	msg = mtod(m, struct sadb_msg *);
615 	msg->sadb_msg_errno = 0;
616 	msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
617 	if (seq != 0)
618 		msg->sadb_msg_seq = seq;
619 
620 	return m;
621 }
622 
623 #if 0
624 static void key_freeso(struct socket *);
625 static void key_freesp_so(struct secpolicy **);
626 #endif
627 static struct secpolicy *key_getsp (const struct secpolicyindex *);
628 static struct secpolicy *key_getspbyid (u_int32_t);
629 static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *);
630 static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t);
631 static void key_destroy_sp(struct secpolicy *);
632 static u_int16_t key_newreqid (void);
633 static struct mbuf *key_gather_mbuf (struct mbuf *,
634 	const struct sadb_msghdr *, int, int, ...);
635 static int key_api_spdadd(struct socket *, struct mbuf *,
636 	const struct sadb_msghdr *);
637 static u_int32_t key_getnewspid (void);
638 static int key_api_spddelete(struct socket *, struct mbuf *,
639 	const struct sadb_msghdr *);
640 static int key_api_spddelete2(struct socket *, struct mbuf *,
641 	const struct sadb_msghdr *);
642 static int key_api_spdget(struct socket *, struct mbuf *,
643 	const struct sadb_msghdr *);
644 static int key_api_spdflush(struct socket *, struct mbuf *,
645 	const struct sadb_msghdr *);
646 static int key_api_spddump(struct socket *, struct mbuf *,
647 	const struct sadb_msghdr *);
648 static struct mbuf * key_setspddump (int *errorp, pid_t);
649 static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
650 static int key_api_nat_map(struct socket *, struct mbuf *,
651 	const struct sadb_msghdr *);
652 static struct mbuf *key_setdumpsp (struct secpolicy *,
653 	u_int8_t, u_int32_t, pid_t);
654 static u_int key_getspreqmsglen (const struct secpolicy *);
655 static int key_spdexpire (struct secpolicy *);
656 static struct secashead *key_newsah (const struct secasindex *);
657 static void key_unlink_sah(struct secashead *);
658 static void key_destroy_sah(struct secashead *);
659 static bool key_sah_has_sav(struct secashead *);
660 static void key_sah_ref(struct secashead *);
661 static void key_sah_unref(struct secashead *);
662 static void key_init_sav(struct secasvar *);
663 static void key_destroy_sav(struct secasvar *);
664 static void key_destroy_sav_with_ref(struct secasvar *);
665 static struct secasvar *key_newsav(struct mbuf *,
666 	const struct sadb_msghdr *, int *, const char*, int);
667 #define	KEY_NEWSAV(m, sadb, e)				\
668 	key_newsav(m, sadb, e, __func__, __LINE__)
669 static void key_delsav (struct secasvar *);
670 static struct secashead *key_getsah(const struct secasindex *, int);
671 static struct secashead *key_getsah_ref(const struct secasindex *, int);
672 static bool key_checkspidup(const struct secasindex *, u_int32_t);
673 static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
674 static int key_setsaval (struct secasvar *, struct mbuf *,
675 	const struct sadb_msghdr *);
676 static void key_freesaval(struct secasvar *);
677 static int key_init_xform(struct secasvar *);
678 static void key_clear_xform(struct secasvar *);
679 static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
680 	u_int8_t, u_int32_t, u_int32_t);
681 static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
682 static struct mbuf *key_setsadbxtype (u_int16_t);
683 static struct mbuf *key_setsadbxfrag (u_int16_t);
684 static void key_porttosaddr (union sockaddr_union *, u_int16_t);
685 static int key_checksalen (const union sockaddr_union *);
686 static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
687 	u_int32_t, pid_t, u_int16_t);
688 static struct mbuf *key_setsadbsa (struct secasvar *);
689 static struct mbuf *key_setsadbaddr (u_int16_t,
690 	const struct sockaddr *, u_int8_t, u_int16_t);
691 #if 0
692 static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
693 	int, u_int64_t);
694 #endif
695 static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
696 static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
697 	u_int32_t);
698 static void *key_newbuf (const void *, u_int);
699 #ifdef INET6
700 static int key_ismyaddr6 (const struct sockaddr_in6 *);
701 #endif
702 
703 static void sysctl_net_keyv2_setup(struct sysctllog **);
704 static void sysctl_net_key_compat_setup(struct sysctllog **);
705 
706 /* flags for key_saidx_match() */
707 #define CMP_HEAD	1	/* protocol, addresses. */
708 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
709 #define CMP_REQID	3	/* additionally HEAD, reaid. */
710 #define CMP_EXACTLY	4	/* all elements. */
711 static int key_saidx_match(const struct secasindex *,
712     const struct secasindex *, int);
713 
714 static int key_sockaddr_match(const struct sockaddr *,
715     const struct sockaddr *, int);
716 static int key_bb_match_withmask(const void *, const void *, u_int);
717 static u_int16_t key_satype2proto (u_int8_t);
718 static u_int8_t key_proto2satype (u_int16_t);
719 
720 static int key_spidx_match_exactly(const struct secpolicyindex *,
721     const struct secpolicyindex *);
722 static int key_spidx_match_withmask(const struct secpolicyindex *,
723     const struct secpolicyindex *);
724 
725 static int key_api_getspi(struct socket *, struct mbuf *,
726 	const struct sadb_msghdr *);
727 static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
728 					const struct secasindex *);
729 static int key_handle_natt_info (struct secasvar *,
730 				     const struct sadb_msghdr *);
731 static int key_set_natt_ports (union sockaddr_union *,
732 			 	union sockaddr_union *,
733 				const struct sadb_msghdr *);
734 static int key_api_update(struct socket *, struct mbuf *,
735 	const struct sadb_msghdr *);
736 #ifdef IPSEC_DOSEQCHECK
737 static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
738 #endif
739 static int key_api_add(struct socket *, struct mbuf *,
740 	const struct sadb_msghdr *);
741 static int key_setident (struct secashead *, struct mbuf *,
742 	const struct sadb_msghdr *);
743 static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
744 	const struct sadb_msghdr *);
745 static int key_api_delete(struct socket *, struct mbuf *,
746 	const struct sadb_msghdr *);
747 static int key_api_get(struct socket *, struct mbuf *,
748 	const struct sadb_msghdr *);
749 
750 static void key_getcomb_setlifetime (struct sadb_comb *);
751 static struct mbuf *key_getcomb_esp (void);
752 static struct mbuf *key_getcomb_ah (void);
753 static struct mbuf *key_getcomb_ipcomp (void);
754 static struct mbuf *key_getprop (const struct secasindex *);
755 
756 static int key_acquire(const struct secasindex *, const struct secpolicy *);
757 static int key_acquire_sendup_mbuf_later(struct mbuf *);
758 static void key_acquire_sendup_pending_mbuf(void);
759 #ifndef IPSEC_NONBLOCK_ACQUIRE
760 static struct secacq *key_newacq (const struct secasindex *);
761 static struct secacq *key_getacq (const struct secasindex *);
762 static struct secacq *key_getacqbyseq (u_int32_t);
763 #endif
764 #ifdef notyet
765 static struct secspacq *key_newspacq (const struct secpolicyindex *);
766 static struct secspacq *key_getspacq (const struct secpolicyindex *);
767 #endif
768 static int key_api_acquire(struct socket *, struct mbuf *,
769 	const struct sadb_msghdr *);
770 static int key_api_register(struct socket *, struct mbuf *,
771 	const struct sadb_msghdr *);
772 static int key_expire (struct secasvar *);
773 static int key_api_flush(struct socket *, struct mbuf *,
774 	const struct sadb_msghdr *);
775 static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
776 	int *lenp, pid_t pid);
777 static int key_api_dump(struct socket *, struct mbuf *,
778 	const struct sadb_msghdr *);
779 static int key_api_promisc(struct socket *, struct mbuf *,
780 	const struct sadb_msghdr *);
781 static int key_senderror (struct socket *, struct mbuf *, int);
782 static int key_validate_ext (const struct sadb_ext *, int);
783 static int key_align (struct mbuf *, struct sadb_msghdr *);
784 #if 0
785 static const char *key_getfqdn (void);
786 static const char *key_getuserfqdn (void);
787 #endif
788 static void key_sa_chgstate (struct secasvar *, u_int8_t);
789 
790 static struct mbuf *key_alloc_mbuf (int);
791 
792 static void key_timehandler(void *);
793 static void key_timehandler_work(struct work *, void *);
794 static struct callout	key_timehandler_ch;
795 static struct workqueue	*key_timehandler_wq;
796 static struct work	key_timehandler_wk;
797 
798 u_int
799 key_sp_refcnt(const struct secpolicy *sp)
800 {
801 
802 	/* FIXME */
803 	return 0;
804 }
805 
806 #ifdef NET_MPSAFE
807 static void
808 key_spd_pserialize_perform(void)
809 {
810 
811 	KASSERT(mutex_owned(&key_spd.lock));
812 
813 	while (key_spd.psz_performing)
814 		cv_wait(&key_spd.cv_psz, &key_spd.lock);
815 	key_spd.psz_performing = true;
816 	mutex_exit(&key_spd.lock);
817 
818 	pserialize_perform(key_spd.psz);
819 
820 	mutex_enter(&key_spd.lock);
821 	key_spd.psz_performing = false;
822 	cv_broadcast(&key_spd.cv_psz);
823 }
824 #endif
825 
826 /*
827  * Remove the sp from the key_spd.splist and wait for references to the sp
828  * to be released. key_spd.lock must be held.
829  */
830 static void
831 key_unlink_sp(struct secpolicy *sp)
832 {
833 
834 	KASSERT(mutex_owned(&key_spd.lock));
835 
836 	sp->state = IPSEC_SPSTATE_DEAD;
837 	SPLIST_WRITER_REMOVE(sp);
838 
839 	/* Invalidate all cached SPD pointers in the PCBs. */
840 	ipsec_invalpcbcacheall();
841 
842 #ifdef NET_MPSAFE
843 	KASSERT(mutex_ownable(softnet_lock));
844 	key_spd_pserialize_perform();
845 #endif
846 
847 	localcount_drain(&sp->localcount, &key_spd.cv_lc, &key_spd.lock);
848 }
849 
850 /*
851  * Return 0 when there are known to be no SP's for the specified
852  * direction.  Otherwise return 1.  This is used by IPsec code
853  * to optimize performance.
854  */
855 int
856 key_havesp(u_int dir)
857 {
858 	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
859 		!SPLIST_READER_EMPTY(dir) : 1);
860 }
861 
862 /* %%% IPsec policy management */
863 /*
864  * allocating a SP for OUTBOUND or INBOUND packet.
865  * Must call key_freesp() later.
866  * OUT:	NULL:	not found
867  *	others:	found and return the pointer.
868  */
869 struct secpolicy *
870 key_lookup_sp_byspidx(const struct secpolicyindex *spidx,
871     u_int dir, const char* where, int tag)
872 {
873 	struct secpolicy *sp;
874 	int s;
875 
876 	KASSERT(spidx != NULL);
877 	KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
878 
879 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
880 
881 	/* get a SP entry */
882 	if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
883 		kdebug_secpolicyindex("objects", spidx);
884 	}
885 
886 	s = pserialize_read_enter();
887 	SPLIST_READER_FOREACH(sp, dir) {
888 		if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
889 			kdebug_secpolicyindex("in SPD", &sp->spidx);
890 		}
891 
892 		if (sp->state == IPSEC_SPSTATE_DEAD)
893 			continue;
894 		if (key_spidx_match_withmask(&sp->spidx, spidx))
895 			goto found;
896 	}
897 	sp = NULL;
898 found:
899 	if (sp) {
900 		/* sanity check */
901 		KEY_CHKSPDIR(sp->spidx.dir, dir);
902 
903 		/* found a SPD entry */
904 		sp->lastused = time_uptime;
905 		key_sp_ref(sp, where, tag);
906 	}
907 	pserialize_read_exit(s);
908 
909 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
910 	    "DP return SP:%p (ID=%u) refcnt %u\n",
911 	    sp, sp ? sp->id : 0, key_sp_refcnt(sp));
912 	return sp;
913 }
914 
915 /*
916  * return a policy that matches this particular inbound packet.
917  * XXX slow
918  */
919 struct secpolicy *
920 key_gettunnel(const struct sockaddr *osrc,
921 	      const struct sockaddr *odst,
922 	      const struct sockaddr *isrc,
923 	      const struct sockaddr *idst,
924 	      const char* where, int tag)
925 {
926 	struct secpolicy *sp;
927 	const int dir = IPSEC_DIR_INBOUND;
928 	int s;
929 	struct ipsecrequest *r1, *r2, *p;
930 	struct secpolicyindex spidx;
931 
932 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
933 
934 	if (isrc->sa_family != idst->sa_family) {
935 		IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
936 		    isrc->sa_family, idst->sa_family);
937 		sp = NULL;
938 		goto done;
939 	}
940 
941 	s = pserialize_read_enter();
942 	SPLIST_READER_FOREACH(sp, dir) {
943 		if (sp->state == IPSEC_SPSTATE_DEAD)
944 			continue;
945 
946 		r1 = r2 = NULL;
947 		for (p = sp->req; p; p = p->next) {
948 			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
949 				continue;
950 
951 			r1 = r2;
952 			r2 = p;
953 
954 			if (!r1) {
955 				/* here we look at address matches only */
956 				spidx = sp->spidx;
957 				if (isrc->sa_len > sizeof(spidx.src) ||
958 				    idst->sa_len > sizeof(spidx.dst))
959 					continue;
960 				memcpy(&spidx.src, isrc, isrc->sa_len);
961 				memcpy(&spidx.dst, idst, idst->sa_len);
962 				if (!key_spidx_match_withmask(&sp->spidx, &spidx))
963 					continue;
964 			} else {
965 				if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
966 				    !key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
967 					continue;
968 			}
969 
970 			if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
971 			    !key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
972 				continue;
973 
974 			goto found;
975 		}
976 	}
977 	sp = NULL;
978 found:
979 	if (sp) {
980 		sp->lastused = time_uptime;
981 		key_sp_ref(sp, where, tag);
982 	}
983 	pserialize_read_exit(s);
984 done:
985 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
986 	    "DP return SP:%p (ID=%u) refcnt %u\n",
987 	    sp, sp ? sp->id : 0, key_sp_refcnt(sp));
988 	return sp;
989 }
990 
991 /*
992  * allocating an SA entry for an *OUTBOUND* packet.
993  * checking each request entries in SP, and acquire an SA if need.
994  * OUT:	0: there are valid requests.
995  *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
996  */
997 int
998 key_checkrequest(const struct ipsecrequest *isr, const struct secasindex *saidx,
999     struct secasvar **ret)
1000 {
1001 	u_int level;
1002 	int error;
1003 	struct secasvar *sav;
1004 
1005 	KASSERT(isr != NULL);
1006 	KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
1007 	    saidx->mode == IPSEC_MODE_TUNNEL,
1008 	    "unexpected policy %u", saidx->mode);
1009 
1010 	/* get current level */
1011 	level = ipsec_get_reqlevel(isr);
1012 
1013 	/*
1014 	 * XXX guard against protocol callbacks from the crypto
1015 	 * thread as they reference ipsecrequest.sav which we
1016 	 * temporarily null out below.  Need to rethink how we
1017 	 * handle bundled SA's in the callback thread.
1018 	 */
1019 	IPSEC_SPLASSERT_SOFTNET("key_checkrequest");
1020 
1021 	sav = key_lookup_sa_bysaidx(saidx);
1022 	if (sav != NULL) {
1023 		*ret = sav;
1024 		return 0;
1025 	}
1026 
1027 	/* there is no SA */
1028 	error = key_acquire(saidx, isr->sp);
1029 	if (error != 0) {
1030 		/* XXX What should I do ? */
1031 		IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
1032 		    error);
1033 		return error;
1034 	}
1035 
1036 	if (level != IPSEC_LEVEL_REQUIRE) {
1037 		/* XXX sigh, the interface to this routine is botched */
1038 		*ret = NULL;
1039 		return 0;
1040 	} else {
1041 		return ENOENT;
1042 	}
1043 }
1044 
1045 /*
1046  * looking up a SA for policy entry from SAD.
1047  * NOTE: searching SAD of aliving state.
1048  * OUT:	NULL:	not found.
1049  *	others:	found and return the pointer.
1050  */
1051 struct secasvar *
1052 key_lookup_sa_bysaidx(const struct secasindex *saidx)
1053 {
1054 	struct secashead *sah;
1055 	struct secasvar *sav = NULL;
1056 	u_int stateidx, state;
1057 	const u_int *saorder_state_valid;
1058 	int arraysize;
1059 	int s;
1060 
1061 	s = pserialize_read_enter();
1062 	sah = key_getsah(saidx, CMP_MODE_REQID);
1063 	if (sah == NULL)
1064 		goto out;
1065 
1066 	/*
1067 	 * search a valid state list for outbound packet.
1068 	 * This search order is important.
1069 	 */
1070 	if (key_prefered_oldsa) {
1071 		saorder_state_valid = saorder_state_valid_prefer_old;
1072 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1073 	} else {
1074 		saorder_state_valid = saorder_state_valid_prefer_new;
1075 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1076 	}
1077 
1078 	/* search valid state */
1079 	for (stateidx = 0;
1080 	     stateidx < arraysize;
1081 	     stateidx++) {
1082 
1083 		state = saorder_state_valid[stateidx];
1084 
1085 		if (key_prefered_oldsa)
1086 			sav = SAVLIST_READER_FIRST(sah, state);
1087 		else {
1088 			/* XXX need O(1) lookup */
1089 			struct secasvar *last = NULL;
1090 
1091 			SAVLIST_READER_FOREACH(sav, sah, state)
1092 				last = sav;
1093 			sav = last;
1094 		}
1095 		if (sav != NULL) {
1096 			KEY_SA_REF(sav);
1097 			KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1098 			    "DP cause refcnt++:%d SA:%p\n",
1099 			    key_sa_refcnt(sav), sav);
1100 			break;
1101 		}
1102 	}
1103 out:
1104 	pserialize_read_exit(s);
1105 
1106 	return sav;
1107 }
1108 
1109 #if 0
1110 static void
1111 key_sendup_message_delete(struct secasvar *sav)
1112 {
1113 	struct mbuf *m, *result = 0;
1114 	uint8_t satype;
1115 
1116 	satype = key_proto2satype(sav->sah->saidx.proto);
1117 	if (satype == 0)
1118 		goto msgfail;
1119 
1120 	m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1);
1121 	if (m == NULL)
1122 		goto msgfail;
1123 	result = m;
1124 
1125 	/* set sadb_address for saidx's. */
1126 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
1127 	    sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1128 	if (m == NULL)
1129 		goto msgfail;
1130 	m_cat(result, m);
1131 
1132 	/* set sadb_address for saidx's. */
1133 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa,
1134 	    sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
1135 	if (m == NULL)
1136 		goto msgfail;
1137 	m_cat(result, m);
1138 
1139 	/* create SA extension */
1140 	m = key_setsadbsa(sav);
1141 	if (m == NULL)
1142 		goto msgfail;
1143 	m_cat(result, m);
1144 
1145 	if (result->m_len < sizeof(struct sadb_msg)) {
1146 		result = m_pullup(result, sizeof(struct sadb_msg));
1147 		if (result == NULL)
1148 			goto msgfail;
1149 	}
1150 
1151 	result->m_pkthdr.len = 0;
1152 	for (m = result; m; m = m->m_next)
1153 		result->m_pkthdr.len += m->m_len;
1154 	mtod(result, struct sadb_msg *)->sadb_msg_len =
1155 	    PFKEY_UNIT64(result->m_pkthdr.len);
1156 
1157 	key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
1158 	result = NULL;
1159 msgfail:
1160 	if (result)
1161 		m_freem(result);
1162 }
1163 #endif
1164 
1165 /*
1166  * allocating a usable SA entry for a *INBOUND* packet.
1167  * Must call key_freesav() later.
1168  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1169  *	NULL:		not found, or error occurred.
1170  *
1171  * In the comparison, no source address is used--for RFC2401 conformance.
1172  * To quote, from section 4.1:
1173  *	A security association is uniquely identified by a triple consisting
1174  *	of a Security Parameter Index (SPI), an IP Destination Address, and a
1175  *	security protocol (AH or ESP) identifier.
1176  * Note that, however, we do need to keep source address in IPsec SA.
1177  * IKE specification and PF_KEY specification do assume that we
1178  * keep source address in IPsec SA.  We see a tricky situation here.
1179  *
1180  * sport and dport are used for NAT-T. network order is always used.
1181  */
1182 struct secasvar *
1183 key_lookup_sa(
1184 	const union sockaddr_union *dst,
1185 	u_int proto,
1186 	u_int32_t spi,
1187 	u_int16_t sport,
1188 	u_int16_t dport,
1189 	const char* where, int tag)
1190 {
1191 	struct secashead *sah;
1192 	struct secasvar *sav;
1193 	u_int stateidx, state;
1194 	const u_int *saorder_state_valid;
1195 	int arraysize, chkport;
1196 	int s;
1197 
1198 	int must_check_spi = 1;
1199 	int must_check_alg = 0;
1200 	u_int16_t cpi = 0;
1201 	u_int8_t algo = 0;
1202 
1203 	if ((sport != 0) && (dport != 0))
1204 		chkport = PORT_STRICT;
1205 	else
1206 		chkport = PORT_NONE;
1207 
1208 	KASSERT(dst != NULL);
1209 
1210 	/*
1211 	 * XXX IPCOMP case
1212 	 * We use cpi to define spi here. In the case where cpi <=
1213 	 * IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
1214 	 * the real spi. In this case, don't check the spi but check the
1215 	 * algorithm
1216 	 */
1217 
1218 	if (proto == IPPROTO_IPCOMP) {
1219 		u_int32_t tmp;
1220 		tmp = ntohl(spi);
1221 		cpi = (u_int16_t) tmp;
1222 		if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
1223 			algo = (u_int8_t) cpi;
1224 			must_check_spi = 0;
1225 			must_check_alg = 1;
1226 		}
1227 	}
1228 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1229 	    "DP from %s:%u check_spi=%d, check_alg=%d\n",
1230 	    where, tag, must_check_spi, must_check_alg);
1231 
1232 
1233 	/*
1234 	 * searching SAD.
1235 	 * XXX: to be checked internal IP header somewhere.  Also when
1236 	 * IPsec tunnel packet is received.  But ESP tunnel mode is
1237 	 * encrypted so we can't check internal IP header.
1238 	 */
1239 	if (key_prefered_oldsa) {
1240 		saorder_state_valid = saorder_state_valid_prefer_old;
1241 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1242 	} else {
1243 		saorder_state_valid = saorder_state_valid_prefer_new;
1244 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1245 	}
1246 	s = pserialize_read_enter();
1247 	SAHLIST_READER_FOREACH(sah) {
1248 		/* search valid state */
1249 		for (stateidx = 0; stateidx < arraysize; stateidx++) {
1250 			state = saorder_state_valid[stateidx];
1251 			SAVLIST_READER_FOREACH(sav, sah, state) {
1252 				KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1253 				    "try match spi %#x, %#x\n",
1254 				    ntohl(spi), ntohl(sav->spi));
1255 				/* sanity check */
1256 				KEY_CHKSASTATE(sav->state, state);
1257 				/* do not return entries w/ unusable state */
1258 				if (!SADB_SASTATE_USABLE_P(sav)) {
1259 					KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1260 					    "bad state %d\n", sav->state);
1261 					continue;
1262 				}
1263 				if (proto != sav->sah->saidx.proto) {
1264 					KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1265 					    "proto fail %d != %d\n",
1266 					    proto, sav->sah->saidx.proto);
1267 					continue;
1268 				}
1269 				if (must_check_spi && spi != sav->spi) {
1270 					KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1271 					    "spi fail %#x != %#x\n",
1272 					    ntohl(spi), ntohl(sav->spi));
1273 					continue;
1274 				}
1275 				/* XXX only on the ipcomp case */
1276 				if (must_check_alg && algo != sav->alg_comp) {
1277 					KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
1278 					    "algo fail %d != %d\n",
1279 					    algo, sav->alg_comp);
1280 					continue;
1281 				}
1282 
1283 #if 0	/* don't check src */
1284 	/* Fix port in src->sa */
1285 
1286 				/* check src address */
1287 				if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
1288 					continue;
1289 #endif
1290 				/* fix port of dst address XXX*/
1291 				key_porttosaddr(__UNCONST(dst), dport);
1292 				/* check dst address */
1293 				if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
1294 					continue;
1295 				key_sa_ref(sav, where, tag);
1296 				goto done;
1297 			}
1298 		}
1299 	}
1300 	sav = NULL;
1301 done:
1302 	pserialize_read_exit(s);
1303 
1304 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1305 	    "DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav));
1306 	return sav;
1307 }
1308 
1309 static void
1310 key_validate_savlist(const struct secashead *sah, const u_int state)
1311 {
1312 #ifdef DEBUG
1313 	struct secasvar *sav, *next;
1314 	int s;
1315 
1316 	/*
1317 	 * The list should be sorted by lft_c->sadb_lifetime_addtime
1318 	 * in ascending order.
1319 	 */
1320 	s = pserialize_read_enter();
1321 	SAVLIST_READER_FOREACH(sav, sah, state) {
1322 		next = SAVLIST_READER_NEXT(sav);
1323 		if (next != NULL &&
1324 		    sav->lft_c != NULL && next->lft_c != NULL) {
1325 			KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <=
1326 			    next->lft_c->sadb_lifetime_addtime,
1327 			    "savlist is not sorted: sah=%p, state=%d, "
1328 			    "sav=%" PRIu64 ", next=%" PRIu64, sah, state,
1329 			    sav->lft_c->sadb_lifetime_addtime,
1330 			    next->lft_c->sadb_lifetime_addtime);
1331 		}
1332 	}
1333 	pserialize_read_exit(s);
1334 #endif
1335 }
1336 
1337 void
1338 key_init_sp(struct secpolicy *sp)
1339 {
1340 
1341 	ASSERT_SLEEPABLE();
1342 
1343 	sp->state = IPSEC_SPSTATE_ALIVE;
1344 	if (sp->policy == IPSEC_POLICY_IPSEC)
1345 		KASSERT(sp->req != NULL);
1346 	localcount_init(&sp->localcount);
1347 	SPLIST_ENTRY_INIT(sp);
1348 }
1349 
1350 /*
1351  * Must be called in a pserialize read section. A held SP
1352  * must be released by key_sp_unref after use.
1353  */
1354 void
1355 key_sp_ref(struct secpolicy *sp, const char* where, int tag)
1356 {
1357 
1358 	localcount_acquire(&sp->localcount);
1359 
1360 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1361 	    "DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n",
1362 	    sp, sp->id, where, tag, key_sp_refcnt(sp));
1363 }
1364 
1365 /*
1366  * Must be called without holding key_spd.lock because the lock
1367  * would be held in localcount_release.
1368  */
1369 void
1370 key_sp_unref(struct secpolicy *sp, const char* where, int tag)
1371 {
1372 
1373 	KDASSERT(mutex_ownable(&key_spd.lock));
1374 
1375 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1376 	    "DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n",
1377 	    sp, sp->id, where, tag, key_sp_refcnt(sp));
1378 
1379 	localcount_release(&sp->localcount, &key_spd.cv_lc, &key_spd.lock);
1380 }
1381 
1382 static void
1383 key_init_sav(struct secasvar *sav)
1384 {
1385 
1386 	ASSERT_SLEEPABLE();
1387 
1388 	localcount_init(&sav->localcount);
1389 	SAVLIST_ENTRY_INIT(sav);
1390 }
1391 
1392 u_int
1393 key_sa_refcnt(const struct secasvar *sav)
1394 {
1395 
1396 	/* FIXME */
1397 	return 0;
1398 }
1399 
1400 void
1401 key_sa_ref(struct secasvar *sav, const char* where, int tag)
1402 {
1403 
1404 	localcount_acquire(&sav->localcount);
1405 
1406 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1407 	    "DP cause refcnt++: SA:%p from %s:%u\n",
1408 	    sav, where, tag);
1409 }
1410 
1411 void
1412 key_sa_unref(struct secasvar *sav, const char* where, int tag)
1413 {
1414 
1415 	KDASSERT(mutex_ownable(&key_sad.lock));
1416 
1417 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1418 	    "DP cause refcnt--: SA:%p from %s:%u\n",
1419 	    sav, where, tag);
1420 
1421 	localcount_release(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
1422 }
1423 
1424 #if 0
1425 /*
1426  * Must be called after calling key_lookup_sp*().
1427  * For the packet with socket.
1428  */
1429 static void
1430 key_freeso(struct socket *so)
1431 {
1432 	/* sanity check */
1433 	KASSERT(so != NULL);
1434 
1435 	switch (so->so_proto->pr_domain->dom_family) {
1436 #ifdef INET
1437 	case PF_INET:
1438 	    {
1439 		struct inpcb *pcb = sotoinpcb(so);
1440 
1441 		/* Does it have a PCB ? */
1442 		if (pcb == NULL)
1443 			return;
1444 
1445 		struct inpcbpolicy *sp = pcb->inp_sp;
1446 		key_freesp_so(&sp->sp_in);
1447 		key_freesp_so(&sp->sp_out);
1448 	    }
1449 		break;
1450 #endif
1451 #ifdef INET6
1452 	case PF_INET6:
1453 	    {
1454 #ifdef HAVE_NRL_INPCB
1455 		struct inpcb *pcb  = sotoinpcb(so);
1456 		struct inpcbpolicy *sp = pcb->inp_sp;
1457 
1458 		/* Does it have a PCB ? */
1459 		if (pcb == NULL)
1460 			return;
1461 		key_freesp_so(&sp->sp_in);
1462 		key_freesp_so(&sp->sp_out);
1463 #else
1464 		struct in6pcb *pcb  = sotoin6pcb(so);
1465 
1466 		/* Does it have a PCB ? */
1467 		if (pcb == NULL)
1468 			return;
1469 		key_freesp_so(&pcb->in6p_sp->sp_in);
1470 		key_freesp_so(&pcb->in6p_sp->sp_out);
1471 #endif
1472 	    }
1473 		break;
1474 #endif /* INET6 */
1475 	default:
1476 		IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
1477 		    so->so_proto->pr_domain->dom_family);
1478 		return;
1479 	}
1480 }
1481 
1482 static void
1483 key_freesp_so(struct secpolicy **sp)
1484 {
1485 
1486 	KASSERT(sp != NULL);
1487 	KASSERT(*sp != NULL);
1488 
1489 	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1490 	    (*sp)->policy == IPSEC_POLICY_BYPASS)
1491 		return;
1492 
1493 	KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
1494 	    "invalid policy %u", (*sp)->policy);
1495 	KEY_SP_UNREF(&sp);
1496 }
1497 #endif
1498 
1499 #ifdef NET_MPSAFE
1500 static void
1501 key_sad_pserialize_perform(void)
1502 {
1503 
1504 	KASSERT(mutex_owned(&key_sad.lock));
1505 
1506 	while (key_sad.psz_performing)
1507 		cv_wait(&key_sad.cv_psz, &key_sad.lock);
1508 	key_sad.psz_performing = true;
1509 	mutex_exit(&key_sad.lock);
1510 
1511 	pserialize_perform(key_sad.psz);
1512 
1513 	mutex_enter(&key_sad.lock);
1514 	key_sad.psz_performing = false;
1515 	cv_broadcast(&key_sad.cv_psz);
1516 }
1517 #endif
1518 
1519 /*
1520  * Remove the sav from the savlist of its sah and wait for references to the sav
1521  * to be released. key_sad.lock must be held.
1522  */
1523 static void
1524 key_unlink_sav(struct secasvar *sav)
1525 {
1526 
1527 	KASSERT(mutex_owned(&key_sad.lock));
1528 
1529 	SAVLIST_WRITER_REMOVE(sav);
1530 
1531 #ifdef NET_MPSAFE
1532 	KASSERT(mutex_ownable(softnet_lock));
1533 	key_sad_pserialize_perform();
1534 #endif
1535 
1536 	localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
1537 }
1538 
1539 /*
1540  * Destroy an sav where the sav must be unlinked from an sah
1541  * by say key_unlink_sav.
1542  */
1543 static void
1544 key_destroy_sav(struct secasvar *sav)
1545 {
1546 
1547 	ASSERT_SLEEPABLE();
1548 
1549 	localcount_fini(&sav->localcount);
1550 	SAVLIST_ENTRY_DESTROY(sav);
1551 
1552 	key_delsav(sav);
1553 }
1554 
1555 /*
1556  * Destroy sav with holding its reference.
1557  */
1558 static void
1559 key_destroy_sav_with_ref(struct secasvar *sav)
1560 {
1561 
1562 	ASSERT_SLEEPABLE();
1563 
1564 	mutex_enter(&key_sad.lock);
1565 	sav->state = SADB_SASTATE_DEAD;
1566 	SAVLIST_WRITER_REMOVE(sav);
1567 	mutex_exit(&key_sad.lock);
1568 
1569 	/* We cannot unref with holding key_sad.lock */
1570 	KEY_SA_UNREF(&sav);
1571 
1572 	mutex_enter(&key_sad.lock);
1573 #ifdef NET_MPSAFE
1574 	KASSERT(mutex_ownable(softnet_lock));
1575 	key_sad_pserialize_perform();
1576 #endif
1577 	localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
1578 	mutex_exit(&key_sad.lock);
1579 
1580 	key_destroy_sav(sav);
1581 }
1582 
1583 /* %%% SPD management */
1584 /*
1585  * free security policy entry.
1586  */
1587 static void
1588 key_destroy_sp(struct secpolicy *sp)
1589 {
1590 
1591 	SPLIST_ENTRY_DESTROY(sp);
1592 	localcount_fini(&sp->localcount);
1593 
1594 	key_free_sp(sp);
1595 
1596 	key_update_used();
1597 }
1598 
1599 void
1600 key_free_sp(struct secpolicy *sp)
1601 {
1602 	struct ipsecrequest *isr = sp->req, *nextisr;
1603 
1604 	while (isr != NULL) {
1605 		nextisr = isr->next;
1606 		kmem_free(isr, sizeof(*isr));
1607 		isr = nextisr;
1608 	}
1609 
1610 	kmem_free(sp, sizeof(*sp));
1611 }
1612 
1613 void
1614 key_socksplist_add(struct secpolicy *sp)
1615 {
1616 
1617 	mutex_enter(&key_spd.lock);
1618 	PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry);
1619 	mutex_exit(&key_spd.lock);
1620 
1621 	key_update_used();
1622 }
1623 
1624 /*
1625  * search SPD
1626  * OUT:	NULL	: not found
1627  *	others	: found, pointer to a SP.
1628  */
1629 static struct secpolicy *
1630 key_getsp(const struct secpolicyindex *spidx)
1631 {
1632 	struct secpolicy *sp;
1633 	int s;
1634 
1635 	KASSERT(spidx != NULL);
1636 
1637 	s = pserialize_read_enter();
1638 	SPLIST_READER_FOREACH(sp, spidx->dir) {
1639 		if (sp->state == IPSEC_SPSTATE_DEAD)
1640 			continue;
1641 		if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1642 			KEY_SP_REF(sp);
1643 			pserialize_read_exit(s);
1644 			return sp;
1645 		}
1646 	}
1647 	pserialize_read_exit(s);
1648 
1649 	return NULL;
1650 }
1651 
1652 /*
1653  * search SPD and remove found SP
1654  * OUT:	NULL	: not found
1655  *	others	: found, pointer to a SP.
1656  */
1657 static struct secpolicy *
1658 key_lookup_and_remove_sp(const struct secpolicyindex *spidx)
1659 {
1660 	struct secpolicy *sp = NULL;
1661 
1662 	mutex_enter(&key_spd.lock);
1663 	SPLIST_WRITER_FOREACH(sp, spidx->dir) {
1664 		KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1665 
1666 		if (key_spidx_match_exactly(spidx, &sp->spidx)) {
1667 			key_unlink_sp(sp);
1668 			goto out;
1669 		}
1670 	}
1671 	sp = NULL;
1672 out:
1673 	mutex_exit(&key_spd.lock);
1674 
1675 	return sp;
1676 }
1677 
1678 /*
1679  * get SP by index.
1680  * OUT:	NULL	: not found
1681  *	others	: found, pointer to a SP.
1682  */
1683 static struct secpolicy *
1684 key_getspbyid(u_int32_t id)
1685 {
1686 	struct secpolicy *sp;
1687 	int s;
1688 
1689 	s = pserialize_read_enter();
1690 	SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1691 		if (sp->state == IPSEC_SPSTATE_DEAD)
1692 			continue;
1693 		if (sp->id == id) {
1694 			KEY_SP_REF(sp);
1695 			goto out;
1696 		}
1697 	}
1698 
1699 	SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1700 		if (sp->state == IPSEC_SPSTATE_DEAD)
1701 			continue;
1702 		if (sp->id == id) {
1703 			KEY_SP_REF(sp);
1704 			goto out;
1705 		}
1706 	}
1707 out:
1708 	pserialize_read_exit(s);
1709 	return sp;
1710 }
1711 
1712 /*
1713  * get SP by index, remove and return it.
1714  * OUT:	NULL	: not found
1715  *	others	: found, pointer to a SP.
1716  */
1717 static struct secpolicy *
1718 key_lookupbyid_and_remove_sp(u_int32_t id)
1719 {
1720 	struct secpolicy *sp;
1721 
1722 	mutex_enter(&key_spd.lock);
1723 	SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
1724 		KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1725 		if (sp->id == id)
1726 			goto out;
1727 	}
1728 
1729 	SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
1730 		KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
1731 		if (sp->id == id)
1732 			goto out;
1733 	}
1734 out:
1735 	if (sp != NULL)
1736 		key_unlink_sp(sp);
1737 	mutex_exit(&key_spd.lock);
1738 	return sp;
1739 }
1740 
1741 struct secpolicy *
1742 key_newsp(const char* where, int tag)
1743 {
1744 	struct secpolicy *newsp = NULL;
1745 
1746 	newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP);
1747 
1748 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
1749 	    "DP from %s:%u return SP:%p\n", where, tag, newsp);
1750 	return newsp;
1751 }
1752 
1753 /*
1754  * create secpolicy structure from sadb_x_policy structure.
1755  * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1756  * so must be set properly later.
1757  */
1758 struct secpolicy *
1759 key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
1760 {
1761 	struct secpolicy *newsp;
1762 
1763 	KASSERT(!cpu_softintr_p());
1764 	KASSERT(xpl0 != NULL);
1765 	KASSERT(len >= sizeof(*xpl0));
1766 
1767 	if (len != PFKEY_EXTLEN(xpl0)) {
1768 		IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1769 		*error = EINVAL;
1770 		return NULL;
1771 	}
1772 
1773 	newsp = KEY_NEWSP();
1774 	if (newsp == NULL) {
1775 		*error = ENOBUFS;
1776 		return NULL;
1777 	}
1778 
1779 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1780 	newsp->policy = xpl0->sadb_x_policy_type;
1781 
1782 	/* check policy */
1783 	switch (xpl0->sadb_x_policy_type) {
1784 	case IPSEC_POLICY_DISCARD:
1785 	case IPSEC_POLICY_NONE:
1786 	case IPSEC_POLICY_ENTRUST:
1787 	case IPSEC_POLICY_BYPASS:
1788 		newsp->req = NULL;
1789 		*error = 0;
1790 		return newsp;
1791 
1792 	case IPSEC_POLICY_IPSEC:
1793 		/* Continued */
1794 		break;
1795 	default:
1796 		IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
1797 		key_free_sp(newsp);
1798 		*error = EINVAL;
1799 		return NULL;
1800 	}
1801 
1802 	/* IPSEC_POLICY_IPSEC */
1803     {
1804 	int tlen;
1805 	const struct sadb_x_ipsecrequest *xisr;
1806 	uint16_t xisr_reqid;
1807 	struct ipsecrequest **p_isr = &newsp->req;
1808 
1809 	/* validity check */
1810 	if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1811 		IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
1812 		*error = EINVAL;
1813 		goto free_exit;
1814 	}
1815 
1816 	tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1817 	xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
1818 
1819 	while (tlen > 0) {
1820 		/* length check */
1821 		if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1822 			IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
1823 			*error = EINVAL;
1824 			goto free_exit;
1825 		}
1826 
1827 		/* allocate request buffer */
1828 		*p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
1829 
1830 		/* set values */
1831 		(*p_isr)->next = NULL;
1832 
1833 		switch (xisr->sadb_x_ipsecrequest_proto) {
1834 		case IPPROTO_ESP:
1835 		case IPPROTO_AH:
1836 		case IPPROTO_IPCOMP:
1837 			break;
1838 		default:
1839 			IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
1840 			    xisr->sadb_x_ipsecrequest_proto);
1841 			*error = EPROTONOSUPPORT;
1842 			goto free_exit;
1843 		}
1844 		(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1845 
1846 		switch (xisr->sadb_x_ipsecrequest_mode) {
1847 		case IPSEC_MODE_TRANSPORT:
1848 		case IPSEC_MODE_TUNNEL:
1849 			break;
1850 		case IPSEC_MODE_ANY:
1851 		default:
1852 			IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
1853 			    xisr->sadb_x_ipsecrequest_mode);
1854 			*error = EINVAL;
1855 			goto free_exit;
1856 		}
1857 		(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1858 
1859 		switch (xisr->sadb_x_ipsecrequest_level) {
1860 		case IPSEC_LEVEL_DEFAULT:
1861 		case IPSEC_LEVEL_USE:
1862 		case IPSEC_LEVEL_REQUIRE:
1863 			break;
1864 		case IPSEC_LEVEL_UNIQUE:
1865 			xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
1866 			/* validity check */
1867 			/*
1868 			 * If range violation of reqid, kernel will
1869 			 * update it, don't refuse it.
1870 			 */
1871 			if (xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
1872 				IPSECLOG(LOG_DEBUG,
1873 				    "reqid=%d range "
1874 				    "violation, updated by kernel.\n",
1875 				    xisr_reqid);
1876 				xisr_reqid = 0;
1877 			}
1878 
1879 			/* allocate new reqid id if reqid is zero. */
1880 			if (xisr_reqid == 0) {
1881 				u_int16_t reqid = key_newreqid();
1882 				if (reqid == 0) {
1883 					*error = ENOBUFS;
1884 					goto free_exit;
1885 				}
1886 				(*p_isr)->saidx.reqid = reqid;
1887 			} else {
1888 			/* set it for manual keying. */
1889 				(*p_isr)->saidx.reqid = xisr_reqid;
1890 			}
1891 			break;
1892 
1893 		default:
1894 			IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
1895 			    xisr->sadb_x_ipsecrequest_level);
1896 			*error = EINVAL;
1897 			goto free_exit;
1898 		}
1899 		(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1900 
1901 		/* set IP addresses if there */
1902 		if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1903 			const struct sockaddr *paddr;
1904 
1905 			paddr = (const struct sockaddr *)(xisr + 1);
1906 
1907 			/* validity check */
1908 			if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
1909 				IPSECLOG(LOG_DEBUG, "invalid request "
1910 				    "address length.\n");
1911 				*error = EINVAL;
1912 				goto free_exit;
1913 			}
1914 			memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
1915 
1916 			paddr = (const struct sockaddr *)((const char *)paddr
1917 			    + paddr->sa_len);
1918 
1919 			/* validity check */
1920 			if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
1921 				IPSECLOG(LOG_DEBUG, "invalid request "
1922 				    "address length.\n");
1923 				*error = EINVAL;
1924 				goto free_exit;
1925 			}
1926 			memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
1927 		}
1928 
1929 		(*p_isr)->sp = newsp;
1930 
1931 		/* initialization for the next. */
1932 		p_isr = &(*p_isr)->next;
1933 		tlen -= xisr->sadb_x_ipsecrequest_len;
1934 
1935 		/* validity check */
1936 		if (tlen < 0) {
1937 			IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
1938 			*error = EINVAL;
1939 			goto free_exit;
1940 		}
1941 
1942 		xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
1943 		    xisr->sadb_x_ipsecrequest_len);
1944 	}
1945     }
1946 
1947 	*error = 0;
1948 	return newsp;
1949 
1950 free_exit:
1951 	key_free_sp(newsp);
1952 	return NULL;
1953 }
1954 
1955 static u_int16_t
1956 key_newreqid(void)
1957 {
1958 	static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1959 
1960 	auto_reqid = (auto_reqid == 0xffff ?
1961 	    IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1962 
1963 	/* XXX should be unique check */
1964 
1965 	return auto_reqid;
1966 }
1967 
1968 /*
1969  * copy secpolicy struct to sadb_x_policy structure indicated.
1970  */
1971 struct mbuf *
1972 key_sp2msg(const struct secpolicy *sp)
1973 {
1974 	struct sadb_x_policy *xpl;
1975 	int tlen;
1976 	char *p;
1977 	struct mbuf *m;
1978 
1979 	KASSERT(sp != NULL);
1980 
1981 	tlen = key_getspreqmsglen(sp);
1982 
1983 	m = key_alloc_mbuf(tlen);
1984 	if (!m || m->m_next) {	/*XXX*/
1985 		if (m)
1986 			m_freem(m);
1987 		return NULL;
1988 	}
1989 
1990 	m->m_len = tlen;
1991 	m->m_next = NULL;
1992 	xpl = mtod(m, struct sadb_x_policy *);
1993 	memset(xpl, 0, tlen);
1994 
1995 	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1996 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1997 	xpl->sadb_x_policy_type = sp->policy;
1998 	xpl->sadb_x_policy_dir = sp->spidx.dir;
1999 	xpl->sadb_x_policy_id = sp->id;
2000 	p = (char *)xpl + sizeof(*xpl);
2001 
2002 	/* if is the policy for ipsec ? */
2003 	if (sp->policy == IPSEC_POLICY_IPSEC) {
2004 		struct sadb_x_ipsecrequest *xisr;
2005 		struct ipsecrequest *isr;
2006 
2007 		for (isr = sp->req; isr != NULL; isr = isr->next) {
2008 
2009 			xisr = (struct sadb_x_ipsecrequest *)p;
2010 
2011 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
2012 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
2013 			xisr->sadb_x_ipsecrequest_level = isr->level;
2014 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
2015 
2016 			p += sizeof(*xisr);
2017 			memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
2018 			p += isr->saidx.src.sa.sa_len;
2019 			memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
2020 			p += isr->saidx.src.sa.sa_len;
2021 
2022 			xisr->sadb_x_ipsecrequest_len =
2023 			    PFKEY_ALIGN8(sizeof(*xisr)
2024 			    + isr->saidx.src.sa.sa_len
2025 			    + isr->saidx.dst.sa.sa_len);
2026 		}
2027 	}
2028 
2029 	return m;
2030 }
2031 
2032 /* m will not be freed nor modified */
2033 static struct mbuf *
2034 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
2035 		int ndeep, int nitem, ...)
2036 {
2037 	va_list ap;
2038 	int idx;
2039 	int i;
2040 	struct mbuf *result = NULL, *n;
2041 	int len;
2042 
2043 	KASSERT(m != NULL);
2044 	KASSERT(mhp != NULL);
2045 
2046 	va_start(ap, nitem);
2047 	for (i = 0; i < nitem; i++) {
2048 		idx = va_arg(ap, int);
2049 		if (idx < 0 || idx > SADB_EXT_MAX)
2050 			goto fail;
2051 		/* don't attempt to pull empty extension */
2052 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
2053 			continue;
2054 		if (idx != SADB_EXT_RESERVED &&
2055 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
2056 			continue;
2057 
2058 		if (idx == SADB_EXT_RESERVED) {
2059 			CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
2060 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2061 			MGETHDR(n, M_DONTWAIT, MT_DATA);
2062 			if (!n)
2063 				goto fail;
2064 			n->m_len = len;
2065 			n->m_next = NULL;
2066 			m_copydata(m, 0, sizeof(struct sadb_msg),
2067 			    mtod(n, void *));
2068 		} else if (i < ndeep) {
2069 			len = mhp->extlen[idx];
2070 			n = key_alloc_mbuf(len);
2071 			if (!n || n->m_next) {	/*XXX*/
2072 				if (n)
2073 					m_freem(n);
2074 				goto fail;
2075 			}
2076 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
2077 			    mtod(n, void *));
2078 		} else {
2079 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
2080 			    M_DONTWAIT);
2081 		}
2082 		if (n == NULL)
2083 			goto fail;
2084 
2085 		if (result)
2086 			m_cat(result, n);
2087 		else
2088 			result = n;
2089 	}
2090 	va_end(ap);
2091 
2092 	if (result && (result->m_flags & M_PKTHDR) != 0) {
2093 		result->m_pkthdr.len = 0;
2094 		for (n = result; n; n = n->m_next)
2095 			result->m_pkthdr.len += n->m_len;
2096 	}
2097 
2098 	return result;
2099 
2100 fail:
2101 	va_end(ap);
2102 	m_freem(result);
2103 	return NULL;
2104 }
2105 
2106 /*
2107  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
2108  * add an entry to SP database, when received
2109  *   <base, address(SD), (lifetime(H),) policy>
2110  * from the user(?).
2111  * Adding to SP database,
2112  * and send
2113  *   <base, address(SD), (lifetime(H),) policy>
2114  * to the socket which was send.
2115  *
2116  * SPDADD set a unique policy entry.
2117  * SPDSETIDX like SPDADD without a part of policy requests.
2118  * SPDUPDATE replace a unique policy entry.
2119  *
2120  * m will always be freed.
2121  */
2122 static int
2123 key_api_spdadd(struct socket *so, struct mbuf *m,
2124 	   const struct sadb_msghdr *mhp)
2125 {
2126 	const struct sockaddr *src, *dst;
2127 	const struct sadb_x_policy *xpl0;
2128 	struct sadb_x_policy *xpl;
2129 	const struct sadb_lifetime *lft = NULL;
2130 	struct secpolicyindex spidx;
2131 	struct secpolicy *newsp;
2132 	int error;
2133 
2134 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2135 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2136 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2137 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2138 		return key_senderror(so, m, EINVAL);
2139 	}
2140 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2141 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2142 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2143 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2144 		return key_senderror(so, m, EINVAL);
2145 	}
2146 	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
2147 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
2148 		    sizeof(struct sadb_lifetime)) {
2149 			IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2150 			return key_senderror(so, m, EINVAL);
2151 		}
2152 		lft = mhp->ext[SADB_EXT_LIFETIME_HARD];
2153 	}
2154 
2155 	xpl0 = mhp->ext[SADB_X_EXT_POLICY];
2156 
2157 	/* checking the direciton. */
2158 	switch (xpl0->sadb_x_policy_dir) {
2159 	case IPSEC_DIR_INBOUND:
2160 	case IPSEC_DIR_OUTBOUND:
2161 		break;
2162 	default:
2163 		IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2164 		return key_senderror(so, m, EINVAL);
2165 	}
2166 
2167 	/* check policy */
2168 	/* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */
2169 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
2170 	    xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
2171 		IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
2172 		return key_senderror(so, m, EINVAL);
2173 	}
2174 
2175 	/* policy requests are mandatory when action is ipsec. */
2176 	if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
2177 	    xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2178 	    mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
2179 		IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
2180 		return key_senderror(so, m, EINVAL);
2181 	}
2182 
2183 	src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
2184 	dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
2185 
2186 	/* sanity check on addr pair */
2187 	if (src->sa_family != dst->sa_family)
2188 		return key_senderror(so, m, EINVAL);
2189 	if (src->sa_len != dst->sa_len)
2190 		return key_senderror(so, m, EINVAL);
2191 
2192 	key_init_spidx_bymsghdr(&spidx, mhp);
2193 
2194 	/*
2195 	 * checking there is SP already or not.
2196 	 * SPDUPDATE doesn't depend on whether there is a SP or not.
2197 	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
2198 	 * then error.
2199 	 */
2200     {
2201 	struct secpolicy *sp;
2202 
2203 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2204 		sp = key_lookup_and_remove_sp(&spidx);
2205 		if (sp != NULL)
2206 			key_destroy_sp(sp);
2207 	} else {
2208 		sp = key_getsp(&spidx);
2209 		if (sp != NULL) {
2210 			KEY_SP_UNREF(&sp);
2211 			IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
2212 			return key_senderror(so, m, EEXIST);
2213 		}
2214 	}
2215     }
2216 
2217 	/* allocation new SP entry */
2218 	newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error);
2219 	if (newsp == NULL) {
2220 		return key_senderror(so, m, error);
2221 	}
2222 
2223 	newsp->id = key_getnewspid();
2224 	if (newsp->id == 0) {
2225 		kmem_free(newsp, sizeof(*newsp));
2226 		return key_senderror(so, m, ENOBUFS);
2227 	}
2228 
2229 	newsp->spidx = spidx;
2230 	newsp->created = time_uptime;
2231 	newsp->lastused = newsp->created;
2232 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
2233 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
2234 
2235 	key_init_sp(newsp);
2236 
2237 	mutex_enter(&key_spd.lock);
2238 	SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp);
2239 	mutex_exit(&key_spd.lock);
2240 
2241 #ifdef notyet
2242 	/* delete the entry in key_misc.spacqlist */
2243 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
2244 		struct secspacq *spacq = key_getspacq(&spidx);
2245 		if (spacq != NULL) {
2246 			/* reset counter in order to deletion by timehandler. */
2247 			spacq->created = time_uptime;
2248 			spacq->count = 0;
2249 		}
2250     	}
2251 #endif
2252 
2253 	/* Invalidate all cached SPD pointers in the PCBs. */
2254 	ipsec_invalpcbcacheall();
2255 
2256 #if defined(GATEWAY)
2257 	/* Invalidate the ipflow cache, as well. */
2258 	ipflow_invalidate_all(0);
2259 #ifdef INET6
2260 	if (in6_present)
2261 		ip6flow_invalidate_all(0);
2262 #endif /* INET6 */
2263 #endif /* GATEWAY */
2264 
2265 	key_update_used();
2266 
2267     {
2268 	struct mbuf *n, *mpolicy;
2269 	int off;
2270 
2271 	/* create new sadb_msg to reply. */
2272 	if (lft) {
2273 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
2274 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
2275 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2276 	} else {
2277 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
2278 		    SADB_X_EXT_POLICY,
2279 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2280 	}
2281 	if (!n)
2282 		return key_senderror(so, m, ENOBUFS);
2283 
2284 	n = key_fill_replymsg(n, 0);
2285 	if (n == NULL)
2286 		return key_senderror(so, m, ENOBUFS);
2287 
2288 	off = 0;
2289 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2290 	    sizeof(*xpl), &off);
2291 	if (mpolicy == NULL) {
2292 		/* n is already freed */
2293 		return key_senderror(so, m, ENOBUFS);
2294 	}
2295 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
2296 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2297 		m_freem(n);
2298 		return key_senderror(so, m, EINVAL);
2299 	}
2300 	xpl->sadb_x_policy_id = newsp->id;
2301 
2302 	m_freem(m);
2303 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2304     }
2305 }
2306 
2307 /*
2308  * get new policy id.
2309  * OUT:
2310  *	0:	failure.
2311  *	others: success.
2312  */
2313 static u_int32_t
2314 key_getnewspid(void)
2315 {
2316 	u_int32_t newid = 0;
2317 	int count = key_spi_trycnt;	/* XXX */
2318 	struct secpolicy *sp;
2319 
2320 	/* when requesting to allocate spi ranged */
2321 	while (count--) {
2322 		newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
2323 
2324 		sp = key_getspbyid(newid);
2325 		if (sp == NULL)
2326 			break;
2327 
2328 		KEY_SP_UNREF(&sp);
2329 	}
2330 
2331 	if (count == 0 || newid == 0) {
2332 		IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
2333 		return 0;
2334 	}
2335 
2336 	return newid;
2337 }
2338 
2339 /*
2340  * SADB_SPDDELETE processing
2341  * receive
2342  *   <base, address(SD), policy(*)>
2343  * from the user(?), and set SADB_SASTATE_DEAD,
2344  * and send,
2345  *   <base, address(SD), policy(*)>
2346  * to the ikmpd.
2347  * policy(*) including direction of policy.
2348  *
2349  * m will always be freed.
2350  */
2351 static int
2352 key_api_spddelete(struct socket *so, struct mbuf *m,
2353               const struct sadb_msghdr *mhp)
2354 {
2355 	struct sadb_x_policy *xpl0;
2356 	struct secpolicyindex spidx;
2357 	struct secpolicy *sp;
2358 
2359 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2360 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2361 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2362 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2363 		return key_senderror(so, m, EINVAL);
2364 	}
2365 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2366 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2367 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2368 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2369 		return key_senderror(so, m, EINVAL);
2370 	}
2371 
2372 	xpl0 = mhp->ext[SADB_X_EXT_POLICY];
2373 
2374 	/* checking the directon. */
2375 	switch (xpl0->sadb_x_policy_dir) {
2376 	case IPSEC_DIR_INBOUND:
2377 	case IPSEC_DIR_OUTBOUND:
2378 		break;
2379 	default:
2380 		IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
2381 		return key_senderror(so, m, EINVAL);
2382 	}
2383 
2384 	/* make secindex */
2385 	key_init_spidx_bymsghdr(&spidx, mhp);
2386 
2387 	/* Is there SP in SPD ? */
2388 	sp = key_lookup_and_remove_sp(&spidx);
2389 	if (sp == NULL) {
2390 		IPSECLOG(LOG_DEBUG, "no SP found.\n");
2391 		return key_senderror(so, m, EINVAL);
2392 	}
2393 
2394 	/* save policy id to buffer to be returned. */
2395 	xpl0->sadb_x_policy_id = sp->id;
2396 
2397 	key_destroy_sp(sp);
2398 
2399 	/* We're deleting policy; no need to invalidate the ipflow cache. */
2400 
2401     {
2402 	struct mbuf *n;
2403 
2404 	/* create new sadb_msg to reply. */
2405 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2406 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2407 	if (!n)
2408 		return key_senderror(so, m, ENOBUFS);
2409 
2410 	n = key_fill_replymsg(n, 0);
2411 	if (n == NULL)
2412 		return key_senderror(so, m, ENOBUFS);
2413 
2414 	m_freem(m);
2415 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2416     }
2417 }
2418 
2419 /*
2420  * SADB_SPDDELETE2 processing
2421  * receive
2422  *   <base, policy(*)>
2423  * from the user(?), and set SADB_SASTATE_DEAD,
2424  * and send,
2425  *   <base, policy(*)>
2426  * to the ikmpd.
2427  * policy(*) including direction of policy.
2428  *
2429  * m will always be freed.
2430  */
2431 static int
2432 key_api_spddelete2(struct socket *so, struct mbuf *m,
2433 	       const struct sadb_msghdr *mhp)
2434 {
2435 	u_int32_t id;
2436 	struct secpolicy *sp;
2437 	const struct sadb_x_policy *xpl;
2438 
2439 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2440 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2441 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2442 		return key_senderror(so, m, EINVAL);
2443 	}
2444 
2445 	xpl = mhp->ext[SADB_X_EXT_POLICY];
2446 	id = xpl->sadb_x_policy_id;
2447 
2448 	/* Is there SP in SPD ? */
2449 	sp = key_lookupbyid_and_remove_sp(id);
2450 	if (sp == NULL) {
2451 		IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2452 		return key_senderror(so, m, EINVAL);
2453 	}
2454 
2455 	key_destroy_sp(sp);
2456 
2457 	/* We're deleting policy; no need to invalidate the ipflow cache. */
2458 
2459     {
2460 	struct mbuf *n, *nn;
2461 	int off, len;
2462 
2463 	CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
2464 
2465 	/* create new sadb_msg to reply. */
2466 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2467 
2468 	MGETHDR(n, M_DONTWAIT, MT_DATA);
2469 	if (n && len > MHLEN) {
2470 		MCLGET(n, M_DONTWAIT);
2471 		if ((n->m_flags & M_EXT) == 0) {
2472 			m_freem(n);
2473 			n = NULL;
2474 		}
2475 	}
2476 	if (!n)
2477 		return key_senderror(so, m, ENOBUFS);
2478 
2479 	n->m_len = len;
2480 	n->m_next = NULL;
2481 	off = 0;
2482 
2483 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
2484 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2485 
2486 	KASSERTMSG(off == len, "length inconsistency");
2487 
2488 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2489 	    mhp->extlen[SADB_X_EXT_POLICY], M_DONTWAIT);
2490 	if (!n->m_next) {
2491 		m_freem(n);
2492 		return key_senderror(so, m, ENOBUFS);
2493 	}
2494 
2495 	n->m_pkthdr.len = 0;
2496 	for (nn = n; nn; nn = nn->m_next)
2497 		n->m_pkthdr.len += nn->m_len;
2498 
2499 	n = key_fill_replymsg(n, 0);
2500 	if (n == NULL)
2501 		return key_senderror(so, m, ENOBUFS);
2502 
2503 	m_freem(m);
2504 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2505     }
2506 }
2507 
2508 /*
2509  * SADB_X_GET processing
2510  * receive
2511  *   <base, policy(*)>
2512  * from the user(?),
2513  * and send,
2514  *   <base, address(SD), policy>
2515  * to the ikmpd.
2516  * policy(*) including direction of policy.
2517  *
2518  * m will always be freed.
2519  */
2520 static int
2521 key_api_spdget(struct socket *so, struct mbuf *m,
2522 	   const struct sadb_msghdr *mhp)
2523 {
2524 	u_int32_t id;
2525 	struct secpolicy *sp;
2526 	struct mbuf *n;
2527 	const struct sadb_x_policy *xpl;
2528 
2529 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2530 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2531 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
2532 		return key_senderror(so, m, EINVAL);
2533 	}
2534 
2535 	xpl = mhp->ext[SADB_X_EXT_POLICY];
2536 	id = xpl->sadb_x_policy_id;
2537 
2538 	/* Is there SP in SPD ? */
2539 	sp = key_getspbyid(id);
2540 	if (sp == NULL) {
2541 		IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
2542 		return key_senderror(so, m, ENOENT);
2543 	}
2544 
2545 	n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
2546 	    mhp->msg->sadb_msg_pid);
2547 	KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */
2548 	if (n != NULL) {
2549 		m_freem(m);
2550 		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2551 	} else
2552 		return key_senderror(so, m, ENOBUFS);
2553 }
2554 
2555 #ifdef notyet
2556 /*
2557  * SADB_X_SPDACQUIRE processing.
2558  * Acquire policy and SA(s) for a *OUTBOUND* packet.
2559  * send
2560  *   <base, policy(*)>
2561  * to KMD, and expect to receive
2562  *   <base> with SADB_X_SPDACQUIRE if error occurred,
2563  * or
2564  *   <base, policy>
2565  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2566  * policy(*) is without policy requests.
2567  *
2568  *    0     : succeed
2569  *    others: error number
2570  */
2571 int
2572 key_spdacquire(const struct secpolicy *sp)
2573 {
2574 	struct mbuf *result = NULL, *m;
2575 	struct secspacq *newspacq;
2576 	int error;
2577 
2578 	KASSERT(sp != NULL);
2579 	KASSERTMSG(sp->req == NULL, "called but there is request");
2580 	KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
2581 	    "policy mismathed. IPsec is expected");
2582 
2583 	/* Get an entry to check whether sent message or not. */
2584 	newspacq = key_getspacq(&sp->spidx);
2585 	if (newspacq != NULL) {
2586 		if (key_blockacq_count < newspacq->count) {
2587 			/* reset counter and do send message. */
2588 			newspacq->count = 0;
2589 		} else {
2590 			/* increment counter and do nothing. */
2591 			newspacq->count++;
2592 			return 0;
2593 		}
2594 	} else {
2595 		/* make new entry for blocking to send SADB_ACQUIRE. */
2596 		newspacq = key_newspacq(&sp->spidx);
2597 		if (newspacq == NULL)
2598 			return ENOBUFS;
2599 
2600 		/* add to key_misc.acqlist */
2601 		LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain);
2602 	}
2603 
2604 	/* create new sadb_msg to reply. */
2605 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2606 	if (!m) {
2607 		error = ENOBUFS;
2608 		goto fail;
2609 	}
2610 	result = m;
2611 
2612 	result->m_pkthdr.len = 0;
2613 	for (m = result; m; m = m->m_next)
2614 		result->m_pkthdr.len += m->m_len;
2615 
2616 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2617 	    PFKEY_UNIT64(result->m_pkthdr.len);
2618 
2619 	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2620 
2621 fail:
2622 	if (result)
2623 		m_freem(result);
2624 	return error;
2625 }
2626 #endif /* notyet */
2627 
2628 /*
2629  * SADB_SPDFLUSH processing
2630  * receive
2631  *   <base>
2632  * from the user, and free all entries in secpctree.
2633  * and send,
2634  *   <base>
2635  * to the user.
2636  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2637  *
2638  * m will always be freed.
2639  */
2640 static int
2641 key_api_spdflush(struct socket *so, struct mbuf *m,
2642 	     const struct sadb_msghdr *mhp)
2643 {
2644 	struct sadb_msg *newmsg;
2645 	struct secpolicy *sp;
2646 	u_int dir;
2647 
2648 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2649 		return key_senderror(so, m, EINVAL);
2650 
2651 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2652 	    retry:
2653 		mutex_enter(&key_spd.lock);
2654 		SPLIST_WRITER_FOREACH(sp, dir) {
2655 			KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
2656 			key_unlink_sp(sp);
2657 			mutex_exit(&key_spd.lock);
2658 			key_destroy_sp(sp);
2659 			goto retry;
2660 		}
2661 		mutex_exit(&key_spd.lock);
2662 	}
2663 
2664 	/* We're deleting policy; no need to invalidate the ipflow cache. */
2665 
2666 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2667 		IPSECLOG(LOG_DEBUG, "No more memory.\n");
2668 		return key_senderror(so, m, ENOBUFS);
2669 	}
2670 
2671 	if (m->m_next)
2672 		m_freem(m->m_next);
2673 	m->m_next = NULL;
2674 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2675 	newmsg = mtod(m, struct sadb_msg *);
2676 	newmsg->sadb_msg_errno = 0;
2677 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2678 
2679 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2680 }
2681 
2682 static struct sockaddr key_src = {
2683 	.sa_len = 2,
2684 	.sa_family = PF_KEY,
2685 };
2686 
2687 static struct mbuf *
2688 key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
2689 {
2690 	struct secpolicy *sp;
2691 	int cnt;
2692 	u_int dir;
2693 	struct mbuf *m, *n, *prev;
2694 	int totlen;
2695 
2696 	KASSERT(mutex_owned(&key_spd.lock));
2697 
2698 	*lenp = 0;
2699 
2700 	/* search SPD entry and get buffer size. */
2701 	cnt = 0;
2702 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2703 		SPLIST_WRITER_FOREACH(sp, dir) {
2704 			cnt++;
2705 		}
2706 	}
2707 
2708 	if (cnt == 0) {
2709 		*errorp = ENOENT;
2710 		return (NULL);
2711 	}
2712 
2713 	m = NULL;
2714 	prev = m;
2715 	totlen = 0;
2716 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2717 		SPLIST_WRITER_FOREACH(sp, dir) {
2718 			--cnt;
2719 			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
2720 
2721 			if (!n) {
2722 				*errorp = ENOBUFS;
2723 				if (m)
2724 					m_freem(m);
2725 				return (NULL);
2726 			}
2727 
2728 			totlen += n->m_pkthdr.len;
2729 			if (!m) {
2730 				m = n;
2731 			} else {
2732 				prev->m_nextpkt = n;
2733 			}
2734 			prev = n;
2735 		}
2736 	}
2737 
2738 	*lenp = totlen;
2739 	*errorp = 0;
2740 	return (m);
2741 }
2742 
2743 /*
2744  * SADB_SPDDUMP processing
2745  * receive
2746  *   <base>
2747  * from the user, and dump all SP leaves
2748  * and send,
2749  *   <base> .....
2750  * to the ikmpd.
2751  *
2752  * m will always be freed.
2753  */
2754 static int
2755 key_api_spddump(struct socket *so, struct mbuf *m0,
2756  	    const struct sadb_msghdr *mhp)
2757 {
2758 	struct mbuf *n;
2759 	int error, len;
2760 	int ok;
2761 	pid_t pid;
2762 
2763 	pid = mhp->msg->sadb_msg_pid;
2764 	/*
2765 	 * If the requestor has insufficient socket-buffer space
2766 	 * for the entire chain, nobody gets any response to the DUMP.
2767 	 * XXX For now, only the requestor ever gets anything.
2768 	 * Moreover, if the requestor has any space at all, they receive
2769 	 * the entire chain, otherwise the request is refused with  ENOBUFS.
2770 	 */
2771 	if (sbspace(&so->so_rcv) <= 0) {
2772 		return key_senderror(so, m0, ENOBUFS);
2773 	}
2774 
2775 	mutex_enter(&key_spd.lock);
2776 	n = key_setspddump_chain(&error, &len, pid);
2777 	mutex_exit(&key_spd.lock);
2778 
2779 	if (n == NULL) {
2780 		return key_senderror(so, m0, ENOENT);
2781 	}
2782 	{
2783 		uint64_t *ps = PFKEY_STAT_GETREF();
2784 		ps[PFKEY_STAT_IN_TOTAL]++;
2785 		ps[PFKEY_STAT_IN_BYTES] += len;
2786 		PFKEY_STAT_PUTREF();
2787 	}
2788 
2789 	/*
2790 	 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
2791 	 * The requestor receives either the entire chain, or an
2792 	 * error message with ENOBUFS.
2793 	 */
2794 
2795 	/*
2796 	 * sbappendchainwith record takes the chain of entries, one
2797 	 * packet-record per SPD entry, prepends the key_src sockaddr
2798 	 * to each packet-record, links the sockaddr mbufs into a new
2799 	 * list of records, then   appends the entire resulting
2800 	 * list to the requesting socket.
2801 	 */
2802 	ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
2803 	    SB_PRIO_ONESHOT_OVERFLOW);
2804 
2805 	if (!ok) {
2806 		PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
2807 		m_freem(n);
2808 		return key_senderror(so, m0, ENOBUFS);
2809 	}
2810 
2811 	m_freem(m0);
2812 	return error;
2813 }
2814 
2815 /*
2816  * SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
2817  */
2818 static int
2819 key_api_nat_map(struct socket *so, struct mbuf *m,
2820 	    const struct sadb_msghdr *mhp)
2821 {
2822 	struct sadb_x_nat_t_type *type;
2823 	struct sadb_x_nat_t_port *sport;
2824 	struct sadb_x_nat_t_port *dport;
2825 	struct sadb_address *iaddr, *raddr;
2826 	struct sadb_x_nat_t_frag *frag;
2827 
2828 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
2829 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
2830 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
2831 		IPSECLOG(LOG_DEBUG, "invalid message.\n");
2832 		return key_senderror(so, m, EINVAL);
2833 	}
2834 	if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
2835 	    (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
2836 	    (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
2837 		IPSECLOG(LOG_DEBUG, "invalid message.\n");
2838 		return key_senderror(so, m, EINVAL);
2839 	}
2840 
2841 	if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
2842 	    (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
2843 		IPSECLOG(LOG_DEBUG, "invalid message\n");
2844 		return key_senderror(so, m, EINVAL);
2845 	}
2846 
2847 	if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
2848 	    (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
2849 		IPSECLOG(LOG_DEBUG, "invalid message\n");
2850 		return key_senderror(so, m, EINVAL);
2851 	}
2852 
2853 	if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
2854 	    (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
2855 		IPSECLOG(LOG_DEBUG, "invalid message\n");
2856 		return key_senderror(so, m, EINVAL);
2857 	}
2858 
2859 	type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
2860 	sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
2861 	dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
2862 	iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI];
2863 	raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR];
2864 	frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG];
2865 
2866 	/*
2867 	 * XXX handle that, it should also contain a SA, or anything
2868 	 * that enable to update the SA information.
2869 	 */
2870 
2871 	return 0;
2872 }
2873 
2874 static struct mbuf *
2875 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
2876 {
2877 	struct mbuf *result = NULL, *m;
2878 
2879 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid,
2880 	    key_sp_refcnt(sp));
2881 	if (!m)
2882 		goto fail;
2883 	result = m;
2884 
2885 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2886 	    &sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto);
2887 	if (!m)
2888 		goto fail;
2889 	m_cat(result, m);
2890 
2891 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2892 	    &sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto);
2893 	if (!m)
2894 		goto fail;
2895 	m_cat(result, m);
2896 
2897 	m = key_sp2msg(sp);
2898 	if (!m)
2899 		goto fail;
2900 	m_cat(result, m);
2901 
2902 	if ((result->m_flags & M_PKTHDR) == 0)
2903 		goto fail;
2904 
2905 	if (result->m_len < sizeof(struct sadb_msg)) {
2906 		result = m_pullup(result, sizeof(struct sadb_msg));
2907 		if (result == NULL)
2908 			goto fail;
2909 	}
2910 
2911 	result->m_pkthdr.len = 0;
2912 	for (m = result; m; m = m->m_next)
2913 		result->m_pkthdr.len += m->m_len;
2914 
2915 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2916 	    PFKEY_UNIT64(result->m_pkthdr.len);
2917 
2918 	return result;
2919 
2920 fail:
2921 	m_freem(result);
2922 	return NULL;
2923 }
2924 
2925 /*
2926  * get PFKEY message length for security policy and request.
2927  */
2928 static u_int
2929 key_getspreqmsglen(const struct secpolicy *sp)
2930 {
2931 	u_int tlen;
2932 
2933 	tlen = sizeof(struct sadb_x_policy);
2934 
2935 	/* if is the policy for ipsec ? */
2936 	if (sp->policy != IPSEC_POLICY_IPSEC)
2937 		return tlen;
2938 
2939 	/* get length of ipsec requests */
2940     {
2941 	const struct ipsecrequest *isr;
2942 	int len;
2943 
2944 	for (isr = sp->req; isr != NULL; isr = isr->next) {
2945 		len = sizeof(struct sadb_x_ipsecrequest)
2946 		    + isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
2947 
2948 		tlen += PFKEY_ALIGN8(len);
2949 	}
2950     }
2951 
2952 	return tlen;
2953 }
2954 
2955 /*
2956  * SADB_SPDEXPIRE processing
2957  * send
2958  *   <base, address(SD), lifetime(CH), policy>
2959  * to KMD by PF_KEY.
2960  *
2961  * OUT:	0	: succeed
2962  *	others	: error number
2963  */
2964 static int
2965 key_spdexpire(struct secpolicy *sp)
2966 {
2967 	int s;
2968 	struct mbuf *result = NULL, *m;
2969 	int len;
2970 	int error = -1;
2971 	struct sadb_lifetime *lt;
2972 
2973 	/* XXX: Why do we lock ? */
2974 	s = splsoftnet();	/*called from softclock()*/
2975 
2976 	KASSERT(sp != NULL);
2977 
2978 	/* set msg header */
2979 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2980 	if (!m) {
2981 		error = ENOBUFS;
2982 		goto fail;
2983 	}
2984 	result = m;
2985 
2986 	/* create lifetime extension (current and hard) */
2987 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2988 	m = key_alloc_mbuf(len);
2989 	if (!m || m->m_next) {	/*XXX*/
2990 		if (m)
2991 			m_freem(m);
2992 		error = ENOBUFS;
2993 		goto fail;
2994 	}
2995 	memset(mtod(m, void *), 0, len);
2996 	lt = mtod(m, struct sadb_lifetime *);
2997 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2998 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2999 	lt->sadb_lifetime_allocations = 0;
3000 	lt->sadb_lifetime_bytes = 0;
3001 	lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created);
3002 	lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused);
3003 	lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
3004 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3005 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
3006 	lt->sadb_lifetime_allocations = 0;
3007 	lt->sadb_lifetime_bytes = 0;
3008 	lt->sadb_lifetime_addtime = sp->lifetime;
3009 	lt->sadb_lifetime_usetime = sp->validtime;
3010 	m_cat(result, m);
3011 
3012 	/* set sadb_address for source */
3013 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
3014 	    sp->spidx.prefs, sp->spidx.ul_proto);
3015 	if (!m) {
3016 		error = ENOBUFS;
3017 		goto fail;
3018 	}
3019 	m_cat(result, m);
3020 
3021 	/* set sadb_address for destination */
3022 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
3023 	    sp->spidx.prefd, sp->spidx.ul_proto);
3024 	if (!m) {
3025 		error = ENOBUFS;
3026 		goto fail;
3027 	}
3028 	m_cat(result, m);
3029 
3030 	/* set secpolicy */
3031 	m = key_sp2msg(sp);
3032 	if (!m) {
3033 		error = ENOBUFS;
3034 		goto fail;
3035 	}
3036 	m_cat(result, m);
3037 
3038 	if ((result->m_flags & M_PKTHDR) == 0) {
3039 		error = EINVAL;
3040 		goto fail;
3041 	}
3042 
3043 	if (result->m_len < sizeof(struct sadb_msg)) {
3044 		result = m_pullup(result, sizeof(struct sadb_msg));
3045 		if (result == NULL) {
3046 			error = ENOBUFS;
3047 			goto fail;
3048 		}
3049 	}
3050 
3051 	result->m_pkthdr.len = 0;
3052 	for (m = result; m; m = m->m_next)
3053 		result->m_pkthdr.len += m->m_len;
3054 
3055 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3056 	    PFKEY_UNIT64(result->m_pkthdr.len);
3057 
3058 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
3059 
3060  fail:
3061 	if (result)
3062 		m_freem(result);
3063 	splx(s);
3064 	return error;
3065 }
3066 
3067 /* %%% SAD management */
3068 /*
3069  * allocating a memory for new SA head, and copy from the values of mhp.
3070  * OUT:	NULL	: failure due to the lack of memory.
3071  *	others	: pointer to new SA head.
3072  */
3073 static struct secashead *
3074 key_newsah(const struct secasindex *saidx)
3075 {
3076 	struct secashead *newsah;
3077 	int i;
3078 
3079 	KASSERT(saidx != NULL);
3080 
3081 	newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
3082 	for (i = 0; i < __arraycount(newsah->savlist); i++)
3083 		PSLIST_INIT(&newsah->savlist[i]);
3084 	newsah->saidx = *saidx;
3085 
3086 	localcount_init(&newsah->localcount);
3087 	/* Take a reference for the caller */
3088 	localcount_acquire(&newsah->localcount);
3089 
3090 	/* Add to the sah list */
3091 	SAHLIST_ENTRY_INIT(newsah);
3092 	newsah->state = SADB_SASTATE_MATURE;
3093 	mutex_enter(&key_sad.lock);
3094 	SAHLIST_WRITER_INSERT_HEAD(newsah);
3095 	mutex_exit(&key_sad.lock);
3096 
3097 	return newsah;
3098 }
3099 
3100 static bool
3101 key_sah_has_sav(struct secashead *sah)
3102 {
3103 	u_int state;
3104 
3105 	KASSERT(mutex_owned(&key_sad.lock));
3106 
3107 	SASTATE_ANY_FOREACH(state) {
3108 		if (!SAVLIST_WRITER_EMPTY(sah, state))
3109 			return true;
3110 	}
3111 
3112 	return false;
3113 }
3114 
3115 static void
3116 key_unlink_sah(struct secashead *sah)
3117 {
3118 
3119 	KASSERT(!cpu_softintr_p());
3120 	KASSERT(mutex_owned(&key_sad.lock));
3121 	KASSERT(sah->state == SADB_SASTATE_DEAD);
3122 
3123 	/* Remove from the sah list */
3124 	SAHLIST_WRITER_REMOVE(sah);
3125 
3126 #ifdef NET_MPSAFE
3127 	KASSERT(mutex_ownable(softnet_lock));
3128 	key_sad_pserialize_perform();
3129 #endif
3130 
3131 	localcount_drain(&sah->localcount, &key_sad.cv_lc, &key_sad.lock);
3132 }
3133 
3134 static void
3135 key_destroy_sah(struct secashead *sah)
3136 {
3137 
3138 	rtcache_free(&sah->sa_route);
3139 
3140 	SAHLIST_ENTRY_DESTROY(sah);
3141 	localcount_fini(&sah->localcount);
3142 
3143 	if (sah->idents != NULL)
3144 		kmem_free(sah->idents, sah->idents_len);
3145 	if (sah->identd != NULL)
3146 		kmem_free(sah->identd, sah->identd_len);
3147 
3148 	kmem_free(sah, sizeof(*sah));
3149 }
3150 
3151 /*
3152  * allocating a new SA with LARVAL state.
3153  * key_api_add() and key_api_getspi() call,
3154  * and copy the values of mhp into new buffer.
3155  * When SAD message type is GETSPI:
3156  *	to set sequence number from acq_seq++,
3157  *	to set zero to SPI.
3158  *	not to call key_setsava().
3159  * OUT:	NULL	: fail
3160  *	others	: pointer to new secasvar.
3161  *
3162  * does not modify mbuf.  does not free mbuf on error.
3163  */
3164 static struct secasvar *
3165 key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
3166     int *errp, const char* where, int tag)
3167 {
3168 	struct secasvar *newsav;
3169 	const struct sadb_sa *xsa;
3170 
3171 	KASSERT(!cpu_softintr_p());
3172 	KASSERT(m != NULL);
3173 	KASSERT(mhp != NULL);
3174 	KASSERT(mhp->msg != NULL);
3175 
3176 	newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
3177 
3178 	switch (mhp->msg->sadb_msg_type) {
3179 	case SADB_GETSPI:
3180 		newsav->spi = 0;
3181 
3182 #ifdef IPSEC_DOSEQCHECK
3183 		/* sync sequence number */
3184 		if (mhp->msg->sadb_msg_seq == 0)
3185 			newsav->seq =
3186 			    (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
3187 		else
3188 #endif
3189 			newsav->seq = mhp->msg->sadb_msg_seq;
3190 		break;
3191 
3192 	case SADB_ADD:
3193 		/* sanity check */
3194 		if (mhp->ext[SADB_EXT_SA] == NULL) {
3195 			IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
3196 			*errp = EINVAL;
3197 			goto error;
3198 		}
3199 		xsa = mhp->ext[SADB_EXT_SA];
3200 		newsav->spi = xsa->sadb_sa_spi;
3201 		newsav->seq = mhp->msg->sadb_msg_seq;
3202 		break;
3203 	default:
3204 		*errp = EINVAL;
3205 		goto error;
3206 	}
3207 
3208 	/* copy sav values */
3209 	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
3210 		*errp = key_setsaval(newsav, m, mhp);
3211 		if (*errp)
3212 			goto error;
3213 	} else {
3214 		/* We don't allow lft_c to be NULL */
3215 		newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime),
3216 		    KM_SLEEP);
3217 	}
3218 
3219 	/* reset created */
3220 	newsav->created = time_uptime;
3221 	newsav->pid = mhp->msg->sadb_msg_pid;
3222 
3223 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3224 	    "DP from %s:%u return SA:%p\n", where, tag, newsav);
3225 	return newsav;
3226 
3227 error:
3228 	KASSERT(*errp != 0);
3229 	kmem_free(newsav, sizeof(*newsav));
3230 	KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
3231 	    "DP from %s:%u return SA:NULL\n", where, tag);
3232 	return NULL;
3233 }
3234 
3235 
3236 static void
3237 key_clear_xform(struct secasvar *sav)
3238 {
3239 
3240 	/*
3241 	 * Cleanup xform state.  Note that zeroize'ing causes the
3242 	 * keys to be cleared; otherwise we must do it ourself.
3243 	 */
3244 	if (sav->tdb_xform != NULL) {
3245 		sav->tdb_xform->xf_zeroize(sav);
3246 		sav->tdb_xform = NULL;
3247 	} else {
3248 		if (sav->key_auth != NULL)
3249 			explicit_memset(_KEYBUF(sav->key_auth), 0,
3250 			    _KEYLEN(sav->key_auth));
3251 		if (sav->key_enc != NULL)
3252 			explicit_memset(_KEYBUF(sav->key_enc), 0,
3253 			    _KEYLEN(sav->key_enc));
3254 	}
3255 }
3256 
3257 /*
3258  * free() SA variable entry.
3259  */
3260 static void
3261 key_delsav(struct secasvar *sav)
3262 {
3263 
3264 	key_clear_xform(sav);
3265 	key_freesaval(sav);
3266 	kmem_free(sav, sizeof(*sav));
3267 }
3268 
3269 /*
3270  * Must be called in a pserialize read section. A held sah
3271  * must be released by key_sah_unref after use.
3272  */
3273 static void
3274 key_sah_ref(struct secashead *sah)
3275 {
3276 
3277 	localcount_acquire(&sah->localcount);
3278 }
3279 
3280 /*
3281  * Must be called without holding key_sad.lock because the lock
3282  * would be held in localcount_release.
3283  */
3284 static void
3285 key_sah_unref(struct secashead *sah)
3286 {
3287 
3288 	KDASSERT(mutex_ownable(&key_sad.lock));
3289 
3290 	localcount_release(&sah->localcount, &key_sad.cv_lc, &key_sad.lock);
3291 }
3292 
3293 /*
3294  * Search SAD and return sah. Must be called in a pserialize
3295  * read section.
3296  * OUT:
3297  *	NULL	: not found
3298  *	others	: found, pointer to a SA.
3299  */
3300 static struct secashead *
3301 key_getsah(const struct secasindex *saidx, int flag)
3302 {
3303 	struct secashead *sah;
3304 
3305 	SAHLIST_READER_FOREACH(sah) {
3306 		if (sah->state == SADB_SASTATE_DEAD)
3307 			continue;
3308 		if (key_saidx_match(&sah->saidx, saidx, flag))
3309 			return sah;
3310 	}
3311 
3312 	return NULL;
3313 }
3314 
3315 /*
3316  * Search SAD and return sah. If sah is returned, the caller must call
3317  * key_sah_unref to releaset a reference.
3318  * OUT:
3319  *	NULL	: not found
3320  *	others	: found, pointer to a SA.
3321  */
3322 static struct secashead *
3323 key_getsah_ref(const struct secasindex *saidx, int flag)
3324 {
3325 	struct secashead *sah;
3326 	int s;
3327 
3328 	s = pserialize_read_enter();
3329 	sah = key_getsah(saidx, flag);
3330 	if (sah != NULL)
3331 		key_sah_ref(sah);
3332 	pserialize_read_exit(s);
3333 
3334 	return sah;
3335 }
3336 
3337 /*
3338  * check not to be duplicated SPI.
3339  * NOTE: this function is too slow due to searching all SAD.
3340  * OUT:
3341  *	NULL	: not found
3342  *	others	: found, pointer to a SA.
3343  */
3344 static bool
3345 key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
3346 {
3347 	struct secashead *sah;
3348 	struct secasvar *sav;
3349 	int s;
3350 
3351 	/* check address family */
3352 	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3353 		IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
3354 		return false;
3355 	}
3356 
3357 	/* check all SAD */
3358 	s = pserialize_read_enter();
3359 	SAHLIST_READER_FOREACH(sah) {
3360 		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3361 			continue;
3362 		sav = key_getsavbyspi(sah, spi);
3363 		if (sav != NULL) {
3364 			pserialize_read_exit(s);
3365 			KEY_SA_UNREF(&sav);
3366 			return true;
3367 		}
3368 	}
3369 	pserialize_read_exit(s);
3370 
3371 	return false;
3372 }
3373 
3374 /*
3375  * search SAD litmited alive SA, protocol, SPI.
3376  * OUT:
3377  *	NULL	: not found
3378  *	others	: found, pointer to a SA.
3379  */
3380 static struct secasvar *
3381 key_getsavbyspi(struct secashead *sah, u_int32_t spi)
3382 {
3383 	struct secasvar *sav = NULL;
3384 	u_int state;
3385 	int s;
3386 
3387 	/* search all status */
3388 	s = pserialize_read_enter();
3389 	SASTATE_ALIVE_FOREACH(state) {
3390 		SAVLIST_READER_FOREACH(sav, sah, state) {
3391 			/* sanity check */
3392 			if (sav->state != state) {
3393 				IPSECLOG(LOG_DEBUG,
3394 				    "invalid sav->state (queue: %d SA: %d)\n",
3395 				    state, sav->state);
3396 				continue;
3397 			}
3398 
3399 			if (sav->spi == spi) {
3400 				KEY_SA_REF(sav);
3401 				goto out;
3402 			}
3403 		}
3404 	}
3405 out:
3406 	pserialize_read_exit(s);
3407 
3408 	return sav;
3409 }
3410 
3411 /*
3412  * Free allocated data to member variables of sav:
3413  * sav->replay, sav->key_* and sav->lft_*.
3414  */
3415 static void
3416 key_freesaval(struct secasvar *sav)
3417 {
3418 
3419 	KASSERT(key_sa_refcnt(sav) == 0);
3420 
3421 	if (sav->replay != NULL)
3422 		kmem_intr_free(sav->replay, sav->replay_len);
3423 	if (sav->key_auth != NULL)
3424 		kmem_intr_free(sav->key_auth, sav->key_auth_len);
3425 	if (sav->key_enc != NULL)
3426 		kmem_intr_free(sav->key_enc, sav->key_enc_len);
3427 	if (sav->lft_c != NULL)
3428 		kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
3429 	if (sav->lft_h != NULL)
3430 		kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
3431 	if (sav->lft_s != NULL)
3432 		kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
3433 }
3434 
3435 /*
3436  * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3437  * You must update these if need.
3438  * OUT:	0:	success.
3439  *	!0:	failure.
3440  *
3441  * does not modify mbuf.  does not free mbuf on error.
3442  */
3443 static int
3444 key_setsaval(struct secasvar *sav, struct mbuf *m,
3445 	     const struct sadb_msghdr *mhp)
3446 {
3447 	int error = 0;
3448 
3449 	KASSERT(!cpu_softintr_p());
3450 	KASSERT(m != NULL);
3451 	KASSERT(mhp != NULL);
3452 	KASSERT(mhp->msg != NULL);
3453 
3454 	/* We shouldn't initialize sav variables while someone uses it. */
3455 	KASSERT(key_sa_refcnt(sav) == 0);
3456 
3457 	/* SA */
3458 	if (mhp->ext[SADB_EXT_SA] != NULL) {
3459 		const struct sadb_sa *sa0;
3460 
3461 		sa0 = mhp->ext[SADB_EXT_SA];
3462 		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3463 			error = EINVAL;
3464 			goto fail;
3465 		}
3466 
3467 		sav->alg_auth = sa0->sadb_sa_auth;
3468 		sav->alg_enc = sa0->sadb_sa_encrypt;
3469 		sav->flags = sa0->sadb_sa_flags;
3470 
3471 		/* replay window */
3472 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3473 			size_t len = sizeof(struct secreplay) +
3474 			    sa0->sadb_sa_replay;
3475 			sav->replay = kmem_zalloc(len, KM_SLEEP);
3476 			sav->replay_len = len;
3477 			if (sa0->sadb_sa_replay != 0)
3478 				sav->replay->bitmap = (char*)(sav->replay+1);
3479 			sav->replay->wsize = sa0->sadb_sa_replay;
3480 		}
3481 	}
3482 
3483 	/* Authentication keys */
3484 	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3485 		const struct sadb_key *key0;
3486 		int len;
3487 
3488 		key0 = mhp->ext[SADB_EXT_KEY_AUTH];
3489 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3490 
3491 		error = 0;
3492 		if (len < sizeof(*key0)) {
3493 			error = EINVAL;
3494 			goto fail;
3495 		}
3496 		switch (mhp->msg->sadb_msg_satype) {
3497 		case SADB_SATYPE_AH:
3498 		case SADB_SATYPE_ESP:
3499 		case SADB_X_SATYPE_TCPSIGNATURE:
3500 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3501 			    sav->alg_auth != SADB_X_AALG_NULL)
3502 				error = EINVAL;
3503 			break;
3504 		case SADB_X_SATYPE_IPCOMP:
3505 		default:
3506 			error = EINVAL;
3507 			break;
3508 		}
3509 		if (error) {
3510 			IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
3511 			goto fail;
3512 		}
3513 
3514 		sav->key_auth = key_newbuf(key0, len);
3515 		sav->key_auth_len = len;
3516 	}
3517 
3518 	/* Encryption key */
3519 	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3520 		const struct sadb_key *key0;
3521 		int len;
3522 
3523 		key0 = mhp->ext[SADB_EXT_KEY_ENCRYPT];
3524 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3525 
3526 		error = 0;
3527 		if (len < sizeof(*key0)) {
3528 			error = EINVAL;
3529 			goto fail;
3530 		}
3531 		switch (mhp->msg->sadb_msg_satype) {
3532 		case SADB_SATYPE_ESP:
3533 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3534 			    sav->alg_enc != SADB_EALG_NULL) {
3535 				error = EINVAL;
3536 				break;
3537 			}
3538 			sav->key_enc = key_newbuf(key0, len);
3539 			sav->key_enc_len = len;
3540 			break;
3541 		case SADB_X_SATYPE_IPCOMP:
3542 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3543 				error = EINVAL;
3544 			sav->key_enc = NULL;	/*just in case*/
3545 			break;
3546 		case SADB_SATYPE_AH:
3547 		case SADB_X_SATYPE_TCPSIGNATURE:
3548 		default:
3549 			error = EINVAL;
3550 			break;
3551 		}
3552 		if (error) {
3553 			IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
3554 			goto fail;
3555 		}
3556 	}
3557 
3558 	/* set iv */
3559 	sav->ivlen = 0;
3560 
3561 	switch (mhp->msg->sadb_msg_satype) {
3562 	case SADB_SATYPE_AH:
3563 		error = xform_init(sav, XF_AH);
3564 		break;
3565 	case SADB_SATYPE_ESP:
3566 		error = xform_init(sav, XF_ESP);
3567 		break;
3568 	case SADB_X_SATYPE_IPCOMP:
3569 		error = xform_init(sav, XF_IPCOMP);
3570 		break;
3571 	case SADB_X_SATYPE_TCPSIGNATURE:
3572 		error = xform_init(sav, XF_TCPSIGNATURE);
3573 		break;
3574 	}
3575 	if (error) {
3576 		IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
3577 		    mhp->msg->sadb_msg_satype);
3578 		goto fail;
3579 	}
3580 
3581 	/* reset created */
3582 	sav->created = time_uptime;
3583 
3584 	/* make lifetime for CURRENT */
3585 	sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
3586 
3587 	sav->lft_c->sadb_lifetime_len =
3588 	    PFKEY_UNIT64(sizeof(struct sadb_lifetime));
3589 	sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
3590 	sav->lft_c->sadb_lifetime_allocations = 0;
3591 	sav->lft_c->sadb_lifetime_bytes = 0;
3592 	sav->lft_c->sadb_lifetime_addtime = time_uptime;
3593 	sav->lft_c->sadb_lifetime_usetime = 0;
3594 
3595 	/* lifetimes for HARD and SOFT */
3596     {
3597 	const struct sadb_lifetime *lft0;
3598 
3599 	lft0 = mhp->ext[SADB_EXT_LIFETIME_HARD];
3600 	if (lft0 != NULL) {
3601 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3602 			error = EINVAL;
3603 			goto fail;
3604 		}
3605 		sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
3606 	}
3607 
3608 	lft0 = mhp->ext[SADB_EXT_LIFETIME_SOFT];
3609 	if (lft0 != NULL) {
3610 		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3611 			error = EINVAL;
3612 			goto fail;
3613 		}
3614 		sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
3615 		/* to be initialize ? */
3616 	}
3617     }
3618 
3619 	return 0;
3620 
3621  fail:
3622 	key_clear_xform(sav);
3623 	key_freesaval(sav);
3624 
3625 	return error;
3626 }
3627 
3628 /*
3629  * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3630  * OUT:	0:	valid
3631  *	other:	errno
3632  */
3633 static int
3634 key_init_xform(struct secasvar *sav)
3635 {
3636 	int error;
3637 
3638 	/* We shouldn't initialize sav variables while someone uses it. */
3639 	KASSERT(key_sa_refcnt(sav) == 0);
3640 
3641 	/* check SPI value */
3642 	switch (sav->sah->saidx.proto) {
3643 	case IPPROTO_ESP:
3644 	case IPPROTO_AH:
3645 		if (ntohl(sav->spi) <= 255) {
3646 			IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
3647 			    (u_int32_t)ntohl(sav->spi));
3648 			return EINVAL;
3649 		}
3650 		break;
3651 	}
3652 
3653 	/* check satype */
3654 	switch (sav->sah->saidx.proto) {
3655 	case IPPROTO_ESP:
3656 		/* check flags */
3657 		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3658 		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3659 			IPSECLOG(LOG_DEBUG,
3660 			    "invalid flag (derived) given to old-esp.\n");
3661 			return EINVAL;
3662 		}
3663 		error = xform_init(sav, XF_ESP);
3664 		break;
3665 	case IPPROTO_AH:
3666 		/* check flags */
3667 		if (sav->flags & SADB_X_EXT_DERIV) {
3668 			IPSECLOG(LOG_DEBUG,
3669 			    "invalid flag (derived) given to AH SA.\n");
3670 			return EINVAL;
3671 		}
3672 		if (sav->alg_enc != SADB_EALG_NONE) {
3673 			IPSECLOG(LOG_DEBUG,
3674 			    "protocol and algorithm mismated.\n");
3675 			return(EINVAL);
3676 		}
3677 		error = xform_init(sav, XF_AH);
3678 		break;
3679 	case IPPROTO_IPCOMP:
3680 		if (sav->alg_auth != SADB_AALG_NONE) {
3681 			IPSECLOG(LOG_DEBUG,
3682 			    "protocol and algorithm mismated.\n");
3683 			return(EINVAL);
3684 		}
3685 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3686 		 && ntohl(sav->spi) >= 0x10000) {
3687 			IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
3688 			return(EINVAL);
3689 		}
3690 		error = xform_init(sav, XF_IPCOMP);
3691 		break;
3692 	case IPPROTO_TCP:
3693 		if (sav->alg_enc != SADB_EALG_NONE) {
3694 			IPSECLOG(LOG_DEBUG,
3695 			    "protocol and algorithm mismated.\n");
3696 			return(EINVAL);
3697 		}
3698 		error = xform_init(sav, XF_TCPSIGNATURE);
3699 		break;
3700 	default:
3701 		IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
3702 		error = EPROTONOSUPPORT;
3703 		break;
3704 	}
3705 
3706 	return error;
3707 }
3708 
3709 /*
3710  * subroutine for SADB_GET and SADB_DUMP.
3711  */
3712 static struct mbuf *
3713 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3714 	      u_int32_t seq, u_int32_t pid)
3715 {
3716 	struct mbuf *result = NULL, *tres = NULL, *m;
3717 	int l = 0;
3718 	int i;
3719 	void *p;
3720 	struct sadb_lifetime lt;
3721 	int dumporder[] = {
3722 		SADB_EXT_SA, SADB_X_EXT_SA2,
3723 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3724 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3725 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3726 		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3727 		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3728 		SADB_X_EXT_NAT_T_TYPE,
3729 		SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3730 		SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3731 		SADB_X_EXT_NAT_T_FRAG,
3732 
3733 	};
3734 
3735 	m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav));
3736 	if (m == NULL)
3737 		goto fail;
3738 	result = m;
3739 
3740 	for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
3741 		m = NULL;
3742 		p = NULL;
3743 		switch (dumporder[i]) {
3744 		case SADB_EXT_SA:
3745 			m = key_setsadbsa(sav);
3746 			break;
3747 
3748 		case SADB_X_EXT_SA2:
3749 			m = key_setsadbxsa2(sav->sah->saidx.mode,
3750 			    sav->replay ? sav->replay->count : 0,
3751 			    sav->sah->saidx.reqid);
3752 			break;
3753 
3754 		case SADB_EXT_ADDRESS_SRC:
3755 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3756 			    &sav->sah->saidx.src.sa,
3757 			    FULLMASK, IPSEC_ULPROTO_ANY);
3758 			break;
3759 
3760 		case SADB_EXT_ADDRESS_DST:
3761 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3762 			    &sav->sah->saidx.dst.sa,
3763 			    FULLMASK, IPSEC_ULPROTO_ANY);
3764 			break;
3765 
3766 		case SADB_EXT_KEY_AUTH:
3767 			if (!sav->key_auth)
3768 				continue;
3769 			l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
3770 			p = sav->key_auth;
3771 			break;
3772 
3773 		case SADB_EXT_KEY_ENCRYPT:
3774 			if (!sav->key_enc)
3775 				continue;
3776 			l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
3777 			p = sav->key_enc;
3778 			break;
3779 
3780 		case SADB_EXT_LIFETIME_CURRENT:
3781 			KASSERT(sav->lft_c != NULL);
3782 			l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
3783 			memcpy(&lt, sav->lft_c, sizeof(struct sadb_lifetime));
3784 			lt.sadb_lifetime_addtime =
3785 			    time_mono_to_wall(lt.sadb_lifetime_addtime);
3786 			lt.sadb_lifetime_usetime =
3787 			    time_mono_to_wall(lt.sadb_lifetime_usetime);
3788 			p = &lt;
3789 			break;
3790 
3791 		case SADB_EXT_LIFETIME_HARD:
3792 			if (!sav->lft_h)
3793 				continue;
3794 			l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
3795 			p = sav->lft_h;
3796 			break;
3797 
3798 		case SADB_EXT_LIFETIME_SOFT:
3799 			if (!sav->lft_s)
3800 				continue;
3801 			l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
3802 			p = sav->lft_s;
3803 			break;
3804 
3805 		case SADB_X_EXT_NAT_T_TYPE:
3806 			m = key_setsadbxtype(sav->natt_type);
3807 			break;
3808 
3809 		case SADB_X_EXT_NAT_T_DPORT:
3810 			if (sav->natt_type == 0)
3811 				continue;
3812 			m = key_setsadbxport(
3813 			    key_portfromsaddr(&sav->sah->saidx.dst),
3814 			    SADB_X_EXT_NAT_T_DPORT);
3815 			break;
3816 
3817 		case SADB_X_EXT_NAT_T_SPORT:
3818 			if (sav->natt_type == 0)
3819 				continue;
3820 			m = key_setsadbxport(
3821 			    key_portfromsaddr(&sav->sah->saidx.src),
3822 			    SADB_X_EXT_NAT_T_SPORT);
3823 			break;
3824 
3825 		case SADB_X_EXT_NAT_T_FRAG:
3826 			/* don't send frag info if not set */
3827 			if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
3828 				continue;
3829 			m = key_setsadbxfrag(sav->esp_frag);
3830 			break;
3831 
3832 		case SADB_X_EXT_NAT_T_OAI:
3833 		case SADB_X_EXT_NAT_T_OAR:
3834 			continue;
3835 
3836 		case SADB_EXT_ADDRESS_PROXY:
3837 		case SADB_EXT_IDENTITY_SRC:
3838 		case SADB_EXT_IDENTITY_DST:
3839 			/* XXX: should we brought from SPD ? */
3840 		case SADB_EXT_SENSITIVITY:
3841 		default:
3842 			continue;
3843 		}
3844 
3845 		KASSERT(!(m && p));
3846 		if (!m && !p)
3847 			goto fail;
3848 		if (p && tres) {
3849 			M_PREPEND(tres, l, M_DONTWAIT);
3850 			if (!tres)
3851 				goto fail;
3852 			memcpy(mtod(tres, void *), p, l);
3853 			continue;
3854 		}
3855 		if (p) {
3856 			m = key_alloc_mbuf(l);
3857 			if (!m)
3858 				goto fail;
3859 			m_copyback(m, 0, l, p);
3860 		}
3861 
3862 		if (tres)
3863 			m_cat(m, tres);
3864 		tres = m;
3865 	}
3866 
3867 	m_cat(result, tres);
3868 	tres = NULL; /* avoid free on error below */
3869 
3870 	if (result->m_len < sizeof(struct sadb_msg)) {
3871 		result = m_pullup(result, sizeof(struct sadb_msg));
3872 		if (result == NULL)
3873 			goto fail;
3874 	}
3875 
3876 	result->m_pkthdr.len = 0;
3877 	for (m = result; m; m = m->m_next)
3878 		result->m_pkthdr.len += m->m_len;
3879 
3880 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3881 	    PFKEY_UNIT64(result->m_pkthdr.len);
3882 
3883 	return result;
3884 
3885 fail:
3886 	m_freem(result);
3887 	m_freem(tres);
3888 	return NULL;
3889 }
3890 
3891 
3892 /*
3893  * set a type in sadb_x_nat_t_type
3894  */
3895 static struct mbuf *
3896 key_setsadbxtype(u_int16_t type)
3897 {
3898 	struct mbuf *m;
3899 	size_t len;
3900 	struct sadb_x_nat_t_type *p;
3901 
3902 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3903 
3904 	m = key_alloc_mbuf(len);
3905 	if (!m || m->m_next) {	/*XXX*/
3906 		if (m)
3907 			m_freem(m);
3908 		return NULL;
3909 	}
3910 
3911 	p = mtod(m, struct sadb_x_nat_t_type *);
3912 
3913 	memset(p, 0, len);
3914 	p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3915 	p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3916 	p->sadb_x_nat_t_type_type = type;
3917 
3918 	return m;
3919 }
3920 /*
3921  * set a port in sadb_x_nat_t_port. port is in network order
3922  */
3923 static struct mbuf *
3924 key_setsadbxport(u_int16_t port, u_int16_t type)
3925 {
3926 	struct mbuf *m;
3927 	size_t len;
3928 	struct sadb_x_nat_t_port *p;
3929 
3930 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3931 
3932 	m = key_alloc_mbuf(len);
3933 	if (!m || m->m_next) {	/*XXX*/
3934 		if (m)
3935 			m_freem(m);
3936 		return NULL;
3937 	}
3938 
3939 	p = mtod(m, struct sadb_x_nat_t_port *);
3940 
3941 	memset(p, 0, len);
3942 	p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3943 	p->sadb_x_nat_t_port_exttype = type;
3944 	p->sadb_x_nat_t_port_port = port;
3945 
3946 	return m;
3947 }
3948 
3949 /*
3950  * set fragmentation info in sadb_x_nat_t_frag
3951  */
3952 static struct mbuf *
3953 key_setsadbxfrag(u_int16_t flen)
3954 {
3955 	struct mbuf *m;
3956 	size_t len;
3957 	struct sadb_x_nat_t_frag *p;
3958 
3959 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
3960 
3961 	m = key_alloc_mbuf(len);
3962 	if (!m || m->m_next) {  /*XXX*/
3963 		if (m)
3964 			m_freem(m);
3965 		return NULL;
3966 	}
3967 
3968 	p = mtod(m, struct sadb_x_nat_t_frag *);
3969 
3970 	memset(p, 0, len);
3971 	p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
3972 	p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
3973 	p->sadb_x_nat_t_frag_fraglen = flen;
3974 
3975 	return m;
3976 }
3977 
3978 /*
3979  * Get port from sockaddr, port is in network order
3980  */
3981 u_int16_t
3982 key_portfromsaddr(const union sockaddr_union *saddr)
3983 {
3984 	u_int16_t port;
3985 
3986 	switch (saddr->sa.sa_family) {
3987 	case AF_INET: {
3988 		port = saddr->sin.sin_port;
3989 		break;
3990 	}
3991 #ifdef INET6
3992 	case AF_INET6: {
3993 		port = saddr->sin6.sin6_port;
3994 		break;
3995 	}
3996 #endif
3997 	default:
3998 		printf("%s: unexpected address family\n", __func__);
3999 		port = 0;
4000 		break;
4001 	}
4002 
4003 	return port;
4004 }
4005 
4006 
4007 /*
4008  * Set port is struct sockaddr. port is in network order
4009  */
4010 static void
4011 key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
4012 {
4013 	switch (saddr->sa.sa_family) {
4014 	case AF_INET: {
4015 		saddr->sin.sin_port = port;
4016 		break;
4017 	}
4018 #ifdef INET6
4019 	case AF_INET6: {
4020 		saddr->sin6.sin6_port = port;
4021 		break;
4022 	}
4023 #endif
4024 	default:
4025 		printf("%s: unexpected address family %d\n", __func__,
4026 		    saddr->sa.sa_family);
4027 		break;
4028 	}
4029 
4030 	return;
4031 }
4032 
4033 /*
4034  * Safety check sa_len
4035  */
4036 static int
4037 key_checksalen(const union sockaddr_union *saddr)
4038 {
4039 	switch (saddr->sa.sa_family) {
4040 	case AF_INET:
4041 		if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
4042 			return -1;
4043 		break;
4044 #ifdef INET6
4045 	case AF_INET6:
4046 		if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
4047 			return -1;
4048 		break;
4049 #endif
4050 	default:
4051 		printf("%s: unexpected sa_family %d\n", __func__,
4052 		    saddr->sa.sa_family);
4053 			return -1;
4054 		break;
4055 	}
4056 	return 0;
4057 }
4058 
4059 
4060 /*
4061  * set data into sadb_msg.
4062  */
4063 static struct mbuf *
4064 key_setsadbmsg(u_int8_t type,  u_int16_t tlen, u_int8_t satype,
4065 	       u_int32_t seq, pid_t pid, u_int16_t reserved)
4066 {
4067 	struct mbuf *m;
4068 	struct sadb_msg *p;
4069 	int len;
4070 
4071 	CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
4072 
4073 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
4074 
4075 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4076 	if (m && len > MHLEN) {
4077 		MCLGET(m, M_DONTWAIT);
4078 		if ((m->m_flags & M_EXT) == 0) {
4079 			m_freem(m);
4080 			m = NULL;
4081 		}
4082 	}
4083 	if (!m)
4084 		return NULL;
4085 	m->m_pkthdr.len = m->m_len = len;
4086 	m->m_next = NULL;
4087 
4088 	p = mtod(m, struct sadb_msg *);
4089 
4090 	memset(p, 0, len);
4091 	p->sadb_msg_version = PF_KEY_V2;
4092 	p->sadb_msg_type = type;
4093 	p->sadb_msg_errno = 0;
4094 	p->sadb_msg_satype = satype;
4095 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
4096 	p->sadb_msg_reserved = reserved;
4097 	p->sadb_msg_seq = seq;
4098 	p->sadb_msg_pid = (u_int32_t)pid;
4099 
4100 	return m;
4101 }
4102 
4103 /*
4104  * copy secasvar data into sadb_address.
4105  */
4106 static struct mbuf *
4107 key_setsadbsa(struct secasvar *sav)
4108 {
4109 	struct mbuf *m;
4110 	struct sadb_sa *p;
4111 	int len;
4112 
4113 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
4114 	m = key_alloc_mbuf(len);
4115 	if (!m || m->m_next) {	/*XXX*/
4116 		if (m)
4117 			m_freem(m);
4118 		return NULL;
4119 	}
4120 
4121 	p = mtod(m, struct sadb_sa *);
4122 
4123 	memset(p, 0, len);
4124 	p->sadb_sa_len = PFKEY_UNIT64(len);
4125 	p->sadb_sa_exttype = SADB_EXT_SA;
4126 	p->sadb_sa_spi = sav->spi;
4127 	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
4128 	p->sadb_sa_state = sav->state;
4129 	p->sadb_sa_auth = sav->alg_auth;
4130 	p->sadb_sa_encrypt = sav->alg_enc;
4131 	p->sadb_sa_flags = sav->flags;
4132 
4133 	return m;
4134 }
4135 
4136 /*
4137  * set data into sadb_address.
4138  */
4139 static struct mbuf *
4140 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
4141 		u_int8_t prefixlen, u_int16_t ul_proto)
4142 {
4143 	struct mbuf *m;
4144 	struct sadb_address *p;
4145 	size_t len;
4146 
4147 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
4148 	    PFKEY_ALIGN8(saddr->sa_len);
4149 	m = key_alloc_mbuf(len);
4150 	if (!m || m->m_next) {	/*XXX*/
4151 		if (m)
4152 			m_freem(m);
4153 		return NULL;
4154 	}
4155 
4156 	p = mtod(m, struct sadb_address *);
4157 
4158 	memset(p, 0, len);
4159 	p->sadb_address_len = PFKEY_UNIT64(len);
4160 	p->sadb_address_exttype = exttype;
4161 	p->sadb_address_proto = ul_proto;
4162 	if (prefixlen == FULLMASK) {
4163 		switch (saddr->sa_family) {
4164 		case AF_INET:
4165 			prefixlen = sizeof(struct in_addr) << 3;
4166 			break;
4167 		case AF_INET6:
4168 			prefixlen = sizeof(struct in6_addr) << 3;
4169 			break;
4170 		default:
4171 			; /*XXX*/
4172 		}
4173 	}
4174 	p->sadb_address_prefixlen = prefixlen;
4175 	p->sadb_address_reserved = 0;
4176 
4177 	memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
4178 	    saddr, saddr->sa_len);
4179 
4180 	return m;
4181 }
4182 
4183 #if 0
4184 /*
4185  * set data into sadb_ident.
4186  */
4187 static struct mbuf *
4188 key_setsadbident(u_int16_t exttype, u_int16_t idtype,
4189 		 void *string, int stringlen, u_int64_t id)
4190 {
4191 	struct mbuf *m;
4192 	struct sadb_ident *p;
4193 	size_t len;
4194 
4195 	len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
4196 	m = key_alloc_mbuf(len);
4197 	if (!m || m->m_next) {	/*XXX*/
4198 		if (m)
4199 			m_freem(m);
4200 		return NULL;
4201 	}
4202 
4203 	p = mtod(m, struct sadb_ident *);
4204 
4205 	memset(p, 0, len);
4206 	p->sadb_ident_len = PFKEY_UNIT64(len);
4207 	p->sadb_ident_exttype = exttype;
4208 	p->sadb_ident_type = idtype;
4209 	p->sadb_ident_reserved = 0;
4210 	p->sadb_ident_id = id;
4211 
4212 	memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
4213 	   	   string, stringlen);
4214 
4215 	return m;
4216 }
4217 #endif
4218 
4219 /*
4220  * set data into sadb_x_sa2.
4221  */
4222 static struct mbuf *
4223 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
4224 {
4225 	struct mbuf *m;
4226 	struct sadb_x_sa2 *p;
4227 	size_t len;
4228 
4229 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
4230 	m = key_alloc_mbuf(len);
4231 	if (!m || m->m_next) {	/*XXX*/
4232 		if (m)
4233 			m_freem(m);
4234 		return NULL;
4235 	}
4236 
4237 	p = mtod(m, struct sadb_x_sa2 *);
4238 
4239 	memset(p, 0, len);
4240 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
4241 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
4242 	p->sadb_x_sa2_mode = mode;
4243 	p->sadb_x_sa2_reserved1 = 0;
4244 	p->sadb_x_sa2_reserved2 = 0;
4245 	p->sadb_x_sa2_sequence = seq;
4246 	p->sadb_x_sa2_reqid = reqid;
4247 
4248 	return m;
4249 }
4250 
4251 /*
4252  * set data into sadb_x_policy
4253  */
4254 static struct mbuf *
4255 key_setsadbxpolicy(const u_int16_t type, const u_int8_t dir, const u_int32_t id)
4256 {
4257 	struct mbuf *m;
4258 	struct sadb_x_policy *p;
4259 	size_t len;
4260 
4261 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
4262 	m = key_alloc_mbuf(len);
4263 	if (!m || m->m_next) {	/*XXX*/
4264 		if (m)
4265 			m_freem(m);
4266 		return NULL;
4267 	}
4268 
4269 	p = mtod(m, struct sadb_x_policy *);
4270 
4271 	memset(p, 0, len);
4272 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
4273 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
4274 	p->sadb_x_policy_type = type;
4275 	p->sadb_x_policy_dir = dir;
4276 	p->sadb_x_policy_id = id;
4277 
4278 	return m;
4279 }
4280 
4281 /* %%% utilities */
4282 /*
4283  * copy a buffer into the new buffer allocated.
4284  */
4285 static void *
4286 key_newbuf(const void *src, u_int len)
4287 {
4288 	void *new;
4289 
4290 	new = kmem_alloc(len, KM_SLEEP);
4291 	memcpy(new, src, len);
4292 
4293 	return new;
4294 }
4295 
4296 /* compare my own address
4297  * OUT:	1: true, i.e. my address.
4298  *	0: false
4299  */
4300 int
4301 key_ismyaddr(const struct sockaddr *sa)
4302 {
4303 #ifdef INET
4304 	const struct sockaddr_in *sin;
4305 	const struct in_ifaddr *ia;
4306 	int s;
4307 #endif
4308 
4309 	KASSERT(sa != NULL);
4310 
4311 	switch (sa->sa_family) {
4312 #ifdef INET
4313 	case AF_INET:
4314 		sin = (const struct sockaddr_in *)sa;
4315 		s = pserialize_read_enter();
4316 		IN_ADDRLIST_READER_FOREACH(ia) {
4317 			if (sin->sin_family == ia->ia_addr.sin_family &&
4318 			    sin->sin_len == ia->ia_addr.sin_len &&
4319 			    sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
4320 			{
4321 				pserialize_read_exit(s);
4322 				return 1;
4323 			}
4324 		}
4325 		pserialize_read_exit(s);
4326 		break;
4327 #endif
4328 #ifdef INET6
4329 	case AF_INET6:
4330 		return key_ismyaddr6((const struct sockaddr_in6 *)sa);
4331 #endif
4332 	}
4333 
4334 	return 0;
4335 }
4336 
4337 #ifdef INET6
4338 /*
4339  * compare my own address for IPv6.
4340  * 1: ours
4341  * 0: other
4342  * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
4343  */
4344 #include <netinet6/in6_var.h>
4345 
4346 static int
4347 key_ismyaddr6(const struct sockaddr_in6 *sin6)
4348 {
4349 	struct in6_ifaddr *ia;
4350 	int s;
4351 	struct psref psref;
4352 	int bound;
4353 	int ours = 1;
4354 
4355 	bound = curlwp_bind();
4356 	s = pserialize_read_enter();
4357 	IN6_ADDRLIST_READER_FOREACH(ia) {
4358 		bool ingroup;
4359 
4360 		if (key_sockaddr_match((const struct sockaddr *)&sin6,
4361 		    (const struct sockaddr *)&ia->ia_addr, 0)) {
4362 			pserialize_read_exit(s);
4363 			goto ours;
4364 		}
4365 		ia6_acquire(ia, &psref);
4366 		pserialize_read_exit(s);
4367 
4368 		/*
4369 		 * XXX Multicast
4370 		 * XXX why do we care about multlicast here while we don't care
4371 		 * about IPv4 multicast??
4372 		 * XXX scope
4373 		 */
4374 		ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
4375 		if (ingroup) {
4376 			ia6_release(ia, &psref);
4377 			goto ours;
4378 		}
4379 
4380 		s = pserialize_read_enter();
4381 		ia6_release(ia, &psref);
4382 	}
4383 	pserialize_read_exit(s);
4384 
4385 	/* loopback, just for safety */
4386 	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
4387 		goto ours;
4388 
4389 	ours = 0;
4390 ours:
4391 	curlwp_bindx(bound);
4392 
4393 	return ours;
4394 }
4395 #endif /*INET6*/
4396 
4397 /*
4398  * compare two secasindex structure.
4399  * flag can specify to compare 2 saidxes.
4400  * compare two secasindex structure without both mode and reqid.
4401  * don't compare port.
4402  * IN:
4403  *      saidx0: source, it can be in SAD.
4404  *      saidx1: object.
4405  * OUT:
4406  *      1 : equal
4407  *      0 : not equal
4408  */
4409 static int
4410 key_saidx_match(
4411 	const struct secasindex *saidx0,
4412 	const struct secasindex *saidx1,
4413 	int flag)
4414 {
4415 	int chkport;
4416 	const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
4417 
4418 	KASSERT(saidx0 != NULL);
4419 	KASSERT(saidx1 != NULL);
4420 
4421 	/* sanity */
4422 	if (saidx0->proto != saidx1->proto)
4423 		return 0;
4424 
4425 	if (flag == CMP_EXACTLY) {
4426 		if (saidx0->mode != saidx1->mode)
4427 			return 0;
4428 		if (saidx0->reqid != saidx1->reqid)
4429 			return 0;
4430 		if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4431 		    memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4432 			return 0;
4433 	} else {
4434 
4435 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4436 		if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
4437 			/*
4438 			 * If reqid of SPD is non-zero, unique SA is required.
4439 			 * The result must be of same reqid in this case.
4440 			 */
4441 			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4442 				return 0;
4443 		}
4444 
4445 		if (flag == CMP_MODE_REQID) {
4446 			if (saidx0->mode != IPSEC_MODE_ANY &&
4447 			    saidx0->mode != saidx1->mode)
4448 				return 0;
4449 		}
4450 
4451 
4452 		sa0src = &saidx0->src.sa;
4453 		sa0dst = &saidx0->dst.sa;
4454 		sa1src = &saidx1->src.sa;
4455 		sa1dst = &saidx1->dst.sa;
4456 		/*
4457 		 * If NAT-T is enabled, check ports for tunnel mode.
4458 		 * Don't do it for transport mode, as there is no
4459 		 * port information available in the SP.
4460 		 * Also don't check ports if they are set to zero
4461 		 * in the SPD: This means we have a non-generated
4462 		 * SPD which can't know UDP ports.
4463 		 */
4464 		if (saidx1->mode == IPSEC_MODE_TUNNEL)
4465 			chkport = PORT_LOOSE;
4466 		else
4467 			chkport = PORT_NONE;
4468 
4469 		if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
4470 			return 0;
4471 		}
4472 		if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
4473 			return 0;
4474 		}
4475 	}
4476 
4477 	return 1;
4478 }
4479 
4480 /*
4481  * compare two secindex structure exactly.
4482  * IN:
4483  *	spidx0: source, it is often in SPD.
4484  *	spidx1: object, it is often from PFKEY message.
4485  * OUT:
4486  *	1 : equal
4487  *	0 : not equal
4488  */
4489 static int
4490 key_spidx_match_exactly(
4491 	const struct secpolicyindex *spidx0,
4492 	const struct secpolicyindex *spidx1)
4493 {
4494 
4495 	KASSERT(spidx0 != NULL);
4496 	KASSERT(spidx1 != NULL);
4497 
4498 	/* sanity */
4499 	if (spidx0->prefs != spidx1->prefs ||
4500 	    spidx0->prefd != spidx1->prefd ||
4501 	    spidx0->ul_proto != spidx1->ul_proto)
4502 		return 0;
4503 
4504 	return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
4505 	       key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
4506 }
4507 
4508 /*
4509  * compare two secindex structure with mask.
4510  * IN:
4511  *	spidx0: source, it is often in SPD.
4512  *	spidx1: object, it is often from IP header.
4513  * OUT:
4514  *	1 : equal
4515  *	0 : not equal
4516  */
4517 static int
4518 key_spidx_match_withmask(
4519 	const struct secpolicyindex *spidx0,
4520 	const struct secpolicyindex *spidx1)
4521 {
4522 
4523 	KASSERT(spidx0 != NULL);
4524 	KASSERT(spidx1 != NULL);
4525 
4526 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4527 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4528 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4529 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4530 		return 0;
4531 
4532 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4533 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
4534 	    spidx0->ul_proto != spidx1->ul_proto)
4535 		return 0;
4536 
4537 	switch (spidx0->src.sa.sa_family) {
4538 	case AF_INET:
4539 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
4540 		    spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4541 			return 0;
4542 		if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
4543 		    &spidx1->src.sin.sin_addr, spidx0->prefs))
4544 			return 0;
4545 		break;
4546 	case AF_INET6:
4547 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
4548 		    spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4549 			return 0;
4550 		/*
4551 		 * scope_id check. if sin6_scope_id is 0, we regard it
4552 		 * as a wildcard scope, which matches any scope zone ID.
4553 		 */
4554 		if (spidx0->src.sin6.sin6_scope_id &&
4555 		    spidx1->src.sin6.sin6_scope_id &&
4556 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4557 			return 0;
4558 		if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
4559 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4560 			return 0;
4561 		break;
4562 	default:
4563 		/* XXX */
4564 		if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4565 			return 0;
4566 		break;
4567 	}
4568 
4569 	switch (spidx0->dst.sa.sa_family) {
4570 	case AF_INET:
4571 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
4572 		    spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4573 			return 0;
4574 		if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
4575 		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
4576 			return 0;
4577 		break;
4578 	case AF_INET6:
4579 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
4580 		    spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4581 			return 0;
4582 		/*
4583 		 * scope_id check. if sin6_scope_id is 0, we regard it
4584 		 * as a wildcard scope, which matches any scope zone ID.
4585 		 */
4586 		if (spidx0->src.sin6.sin6_scope_id &&
4587 		    spidx1->src.sin6.sin6_scope_id &&
4588 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4589 			return 0;
4590 		if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
4591 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4592 			return 0;
4593 		break;
4594 	default:
4595 		/* XXX */
4596 		if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4597 			return 0;
4598 		break;
4599 	}
4600 
4601 	/* XXX Do we check other field ?  e.g. flowinfo */
4602 
4603 	return 1;
4604 }
4605 
4606 /* returns 0 on match */
4607 static int
4608 key_portcomp(in_port_t port1, in_port_t port2, int howport)
4609 {
4610 	switch (howport) {
4611 	case PORT_NONE:
4612 		return 0;
4613 	case PORT_LOOSE:
4614 		if (port1 == 0 || port2 == 0)
4615 			return 0;
4616 		/*FALLTHROUGH*/
4617 	case PORT_STRICT:
4618 		if (port1 != port2) {
4619 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4620 			    "port fail %d != %d\n", port1, port2);
4621 			return 1;
4622 		}
4623 		return 0;
4624 	default:
4625 		KASSERT(0);
4626 		return 1;
4627 	}
4628 }
4629 
4630 /* returns 1 on match */
4631 static int
4632 key_sockaddr_match(
4633 	const struct sockaddr *sa1,
4634 	const struct sockaddr *sa2,
4635 	int howport)
4636 {
4637 	const struct sockaddr_in *sin1, *sin2;
4638 	const struct sockaddr_in6 *sin61, *sin62;
4639 	char s1[IPSEC_ADDRSTRLEN], s2[IPSEC_ADDRSTRLEN];
4640 
4641 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
4642 		KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4643 		    "fam/len fail %d != %d || %d != %d\n",
4644 			sa1->sa_family, sa2->sa_family, sa1->sa_len,
4645 			sa2->sa_len);
4646 		return 0;
4647 	}
4648 
4649 	switch (sa1->sa_family) {
4650 	case AF_INET:
4651 		if (sa1->sa_len != sizeof(struct sockaddr_in)) {
4652 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4653 			    "len fail %d != %zu\n",
4654 			    sa1->sa_len, sizeof(struct sockaddr_in));
4655 			return 0;
4656 		}
4657 		sin1 = (const struct sockaddr_in *)sa1;
4658 		sin2 = (const struct sockaddr_in *)sa2;
4659 		if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
4660 			KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4661 			    "addr fail %s != %s\n",
4662 			    (in_print(s1, sizeof(s1), &sin1->sin_addr), s1),
4663 			    (in_print(s2, sizeof(s2), &sin2->sin_addr), s2));
4664 			return 0;
4665 		}
4666 		if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
4667 			return 0;
4668 		}
4669 		KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
4670 		    "addr success %s[%d] == %s[%d]\n",
4671 		    (in_print(s1, sizeof(s1), &sin1->sin_addr), s1),
4672 		    sin1->sin_port,
4673 		    (in_print(s2, sizeof(s2), &sin2->sin_addr), s2),
4674 		    sin2->sin_port);
4675 		break;
4676 	case AF_INET6:
4677 		sin61 = (const struct sockaddr_in6 *)sa1;
4678 		sin62 = (const struct sockaddr_in6 *)sa2;
4679 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4680 			return 0;	/*EINVAL*/
4681 
4682 		if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
4683 			return 0;
4684 		}
4685 		if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
4686 			return 0;
4687 		}
4688 		if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
4689 			return 0;
4690 		}
4691 		break;
4692 	default:
4693 		if (memcmp(sa1, sa2, sa1->sa_len) != 0)
4694 			return 0;
4695 		break;
4696 	}
4697 
4698 	return 1;
4699 }
4700 
4701 /*
4702  * compare two buffers with mask.
4703  * IN:
4704  *	addr1: source
4705  *	addr2: object
4706  *	bits:  Number of bits to compare
4707  * OUT:
4708  *	1 : equal
4709  *	0 : not equal
4710  */
4711 static int
4712 key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
4713 {
4714 	const unsigned char *p1 = a1;
4715 	const unsigned char *p2 = a2;
4716 
4717 	/* XXX: This could be considerably faster if we compare a word
4718 	 * at a time, but it is complicated on LSB Endian machines */
4719 
4720 	/* Handle null pointers */
4721 	if (p1 == NULL || p2 == NULL)
4722 		return (p1 == p2);
4723 
4724 	while (bits >= 8) {
4725 		if (*p1++ != *p2++)
4726 			return 0;
4727 		bits -= 8;
4728 	}
4729 
4730 	if (bits > 0) {
4731 		u_int8_t mask = ~((1<<(8-bits))-1);
4732 		if ((*p1 & mask) != (*p2 & mask))
4733 			return 0;
4734 	}
4735 	return 1;	/* Match! */
4736 }
4737 
4738 static void
4739 key_timehandler_spd(time_t now)
4740 {
4741 	u_int dir;
4742 	struct secpolicy *sp;
4743 
4744 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4745 	    retry:
4746 		mutex_enter(&key_spd.lock);
4747 		SPLIST_WRITER_FOREACH(sp, dir) {
4748 			KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
4749 
4750 			if (sp->lifetime == 0 && sp->validtime == 0)
4751 				continue;
4752 
4753 			if ((sp->lifetime && now - sp->created > sp->lifetime) ||
4754 			    (sp->validtime && now - sp->lastused > sp->validtime)) {
4755 				key_unlink_sp(sp);
4756 				mutex_exit(&key_spd.lock);
4757 				key_spdexpire(sp);
4758 				key_destroy_sp(sp);
4759 				goto retry;
4760 			}
4761 		}
4762 		mutex_exit(&key_spd.lock);
4763 	}
4764 
4765     retry_socksplist:
4766 	mutex_enter(&key_spd.lock);
4767 	SOCKSPLIST_WRITER_FOREACH(sp) {
4768 		if (sp->state != IPSEC_SPSTATE_DEAD)
4769 			continue;
4770 
4771 		key_unlink_sp(sp);
4772 		mutex_exit(&key_spd.lock);
4773 		key_destroy_sp(sp);
4774 		goto retry_socksplist;
4775 	}
4776 	mutex_exit(&key_spd.lock);
4777 }
4778 
4779 static void
4780 key_timehandler_sad(time_t now)
4781 {
4782 	struct secashead *sah;
4783 	int s;
4784 
4785 restart:
4786 	mutex_enter(&key_sad.lock);
4787 	SAHLIST_WRITER_FOREACH(sah) {
4788 		/* If sah has been dead and has no sav, then delete it */
4789 		if (sah->state == SADB_SASTATE_DEAD &&
4790 		    !key_sah_has_sav(sah)) {
4791 			key_unlink_sah(sah);
4792 			mutex_exit(&key_sad.lock);
4793 			key_destroy_sah(sah);
4794 			goto restart;
4795 		}
4796 	}
4797 	mutex_exit(&key_sad.lock);
4798 
4799 	s = pserialize_read_enter();
4800 	SAHLIST_READER_FOREACH(sah) {
4801 		struct secasvar *sav;
4802 
4803 		key_sah_ref(sah);
4804 		pserialize_read_exit(s);
4805 
4806 		/* if LARVAL entry doesn't become MATURE, delete it. */
4807 		mutex_enter(&key_sad.lock);
4808 	restart_sav_LARVAL:
4809 		SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) {
4810 			if (now - sav->created > key_larval_lifetime) {
4811 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4812 				goto restart_sav_LARVAL;
4813 			}
4814 		}
4815 		mutex_exit(&key_sad.lock);
4816 
4817 		/*
4818 		 * check MATURE entry to start to send expire message
4819 		 * whether or not.
4820 		 */
4821 	restart_sav_MATURE:
4822 		mutex_enter(&key_sad.lock);
4823 		SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_MATURE) {
4824 			/* we don't need to check. */
4825 			if (sav->lft_s == NULL)
4826 				continue;
4827 
4828 			/* sanity check */
4829 			KASSERT(sav->lft_c != NULL);
4830 
4831 			/* check SOFT lifetime */
4832 			if (sav->lft_s->sadb_lifetime_addtime != 0 &&
4833 			    now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4834 				/*
4835 				 * check SA to be used whether or not.
4836 				 * when SA hasn't been used, delete it.
4837 				 */
4838 				if (sav->lft_c->sadb_lifetime_usetime == 0) {
4839 					key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4840 					mutex_exit(&key_sad.lock);
4841 				} else {
4842 					key_sa_chgstate(sav, SADB_SASTATE_DYING);
4843 					mutex_exit(&key_sad.lock);
4844 					/*
4845 					 * XXX If we keep to send expire
4846 					 * message in the status of
4847 					 * DYING. Do remove below code.
4848 					 */
4849 					key_expire(sav);
4850 				}
4851 				goto restart_sav_MATURE;
4852 			}
4853 			/* check SOFT lifetime by bytes */
4854 			/*
4855 			 * XXX I don't know the way to delete this SA
4856 			 * when new SA is installed.  Caution when it's
4857 			 * installed too big lifetime by time.
4858 			 */
4859 			else if (sav->lft_s->sadb_lifetime_bytes != 0 &&
4860 			         sav->lft_s->sadb_lifetime_bytes <
4861 			         sav->lft_c->sadb_lifetime_bytes) {
4862 
4863 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4864 				mutex_exit(&key_sad.lock);
4865 				/*
4866 				 * XXX If we keep to send expire
4867 				 * message in the status of
4868 				 * DYING. Do remove below code.
4869 				 */
4870 				key_expire(sav);
4871 				goto restart_sav_MATURE;
4872 			}
4873 		}
4874 		mutex_exit(&key_sad.lock);
4875 
4876 		/* check DYING entry to change status to DEAD. */
4877 		mutex_enter(&key_sad.lock);
4878 	restart_sav_DYING:
4879 		SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DYING) {
4880 			/* we don't need to check. */
4881 			if (sav->lft_h == NULL)
4882 				continue;
4883 
4884 			/* sanity check */
4885 			KASSERT(sav->lft_c != NULL);
4886 
4887 			if (sav->lft_h->sadb_lifetime_addtime != 0 &&
4888 			    now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
4889 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4890 				goto restart_sav_DYING;
4891 			}
4892 #if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
4893 			else if (sav->lft_s != NULL
4894 			      && sav->lft_s->sadb_lifetime_addtime != 0
4895 			      && now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
4896 				/*
4897 				 * XXX: should be checked to be
4898 				 * installed the valid SA.
4899 				 */
4900 
4901 				/*
4902 				 * If there is no SA then sending
4903 				 * expire message.
4904 				 */
4905 				key_expire(sav);
4906 			}
4907 #endif
4908 			/* check HARD lifetime by bytes */
4909 			else if (sav->lft_h->sadb_lifetime_bytes != 0 &&
4910 			         sav->lft_h->sadb_lifetime_bytes <
4911 			         sav->lft_c->sadb_lifetime_bytes) {
4912 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4913 				goto restart_sav_DYING;
4914 			}
4915 		}
4916 		mutex_exit(&key_sad.lock);
4917 
4918 		/* delete entry in DEAD */
4919 	restart_sav_DEAD:
4920 		mutex_enter(&key_sad.lock);
4921 		SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DEAD) {
4922 			key_unlink_sav(sav);
4923 			mutex_exit(&key_sad.lock);
4924 			key_destroy_sav(sav);
4925 			goto restart_sav_DEAD;
4926 		}
4927 		mutex_exit(&key_sad.lock);
4928 
4929 		s = pserialize_read_enter();
4930 		key_sah_unref(sah);
4931 	}
4932 	pserialize_read_exit(s);
4933 }
4934 
4935 static void
4936 key_timehandler_acq(time_t now)
4937 {
4938 #ifndef IPSEC_NONBLOCK_ACQUIRE
4939 	struct secacq *acq, *nextacq;
4940 
4941     restart:
4942 	mutex_enter(&key_misc.lock);
4943 	LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) {
4944 		if (now - acq->created > key_blockacq_lifetime) {
4945 			LIST_REMOVE(acq, chain);
4946 			mutex_exit(&key_misc.lock);
4947 			kmem_free(acq, sizeof(*acq));
4948 			goto restart;
4949 		}
4950 	}
4951 	mutex_exit(&key_misc.lock);
4952 #endif
4953 }
4954 
4955 static void
4956 key_timehandler_spacq(time_t now)
4957 {
4958 #ifdef notyet
4959 	struct secspacq *acq, *nextacq;
4960 
4961 	LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) {
4962 		if (now - acq->created > key_blockacq_lifetime) {
4963 			KASSERT(__LIST_CHAINED(acq));
4964 			LIST_REMOVE(acq, chain);
4965 			kmem_free(acq, sizeof(*acq));
4966 		}
4967 	}
4968 #endif
4969 }
4970 
4971 static unsigned int key_timehandler_work_enqueued = 0;
4972 
4973 /*
4974  * time handler.
4975  * scanning SPD and SAD to check status for each entries,
4976  * and do to remove or to expire.
4977  */
4978 static void
4979 key_timehandler_work(struct work *wk, void *arg)
4980 {
4981 	time_t now = time_uptime;
4982 	IPSEC_DECLARE_LOCK_VARIABLE;
4983 
4984 	/* We can allow enqueuing another work at this point */
4985 	atomic_swap_uint(&key_timehandler_work_enqueued, 0);
4986 
4987 	IPSEC_ACQUIRE_GLOBAL_LOCKS();
4988 
4989 	key_timehandler_spd(now);
4990 	key_timehandler_sad(now);
4991 	key_timehandler_acq(now);
4992 	key_timehandler_spacq(now);
4993 
4994 	key_acquire_sendup_pending_mbuf();
4995 
4996 	/* do exchange to tick time !! */
4997 	callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
4998 
4999 	IPSEC_RELEASE_GLOBAL_LOCKS();
5000 	return;
5001 }
5002 
5003 static void
5004 key_timehandler(void *arg)
5005 {
5006 
5007 	/* Avoid enqueuing another work when one is already enqueued */
5008 	if (atomic_swap_uint(&key_timehandler_work_enqueued, 1) == 1)
5009 		return;
5010 
5011 	workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
5012 }
5013 
5014 u_long
5015 key_random(void)
5016 {
5017 	u_long value;
5018 
5019 	key_randomfill(&value, sizeof(value));
5020 	return value;
5021 }
5022 
5023 void
5024 key_randomfill(void *p, size_t l)
5025 {
5026 
5027 	cprng_fast(p, l);
5028 }
5029 
5030 /*
5031  * map SADB_SATYPE_* to IPPROTO_*.
5032  * if satype == SADB_SATYPE then satype is mapped to ~0.
5033  * OUT:
5034  *	0: invalid satype.
5035  */
5036 static u_int16_t
5037 key_satype2proto(u_int8_t satype)
5038 {
5039 	switch (satype) {
5040 	case SADB_SATYPE_UNSPEC:
5041 		return IPSEC_PROTO_ANY;
5042 	case SADB_SATYPE_AH:
5043 		return IPPROTO_AH;
5044 	case SADB_SATYPE_ESP:
5045 		return IPPROTO_ESP;
5046 	case SADB_X_SATYPE_IPCOMP:
5047 		return IPPROTO_IPCOMP;
5048 	case SADB_X_SATYPE_TCPSIGNATURE:
5049 		return IPPROTO_TCP;
5050 	default:
5051 		return 0;
5052 	}
5053 	/* NOTREACHED */
5054 }
5055 
5056 /*
5057  * map IPPROTO_* to SADB_SATYPE_*
5058  * OUT:
5059  *	0: invalid protocol type.
5060  */
5061 static u_int8_t
5062 key_proto2satype(u_int16_t proto)
5063 {
5064 	switch (proto) {
5065 	case IPPROTO_AH:
5066 		return SADB_SATYPE_AH;
5067 	case IPPROTO_ESP:
5068 		return SADB_SATYPE_ESP;
5069 	case IPPROTO_IPCOMP:
5070 		return SADB_X_SATYPE_IPCOMP;
5071 	case IPPROTO_TCP:
5072 		return SADB_X_SATYPE_TCPSIGNATURE;
5073 	default:
5074 		return 0;
5075 	}
5076 	/* NOTREACHED */
5077 }
5078 
5079 static int
5080 key_setsecasidx(int proto, int mode, int reqid,
5081     const struct sockaddr *src, const struct sockaddr *dst,
5082     struct secasindex * saidx)
5083 {
5084 	const union sockaddr_union *src_u = (const union sockaddr_union *)src;
5085 	const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
5086 
5087 	/* sa len safety check */
5088 	if (key_checksalen(src_u) != 0)
5089 		return -1;
5090 	if (key_checksalen(dst_u) != 0)
5091 		return -1;
5092 
5093 	memset(saidx, 0, sizeof(*saidx));
5094 	saidx->proto = proto;
5095 	saidx->mode = mode;
5096 	saidx->reqid = reqid;
5097 	memcpy(&saidx->src, src_u, src_u->sa.sa_len);
5098 	memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
5099 
5100 	key_porttosaddr(&((saidx)->src), 0);
5101 	key_porttosaddr(&((saidx)->dst), 0);
5102 	return 0;
5103 }
5104 
5105 static void
5106 key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
5107     const struct sadb_msghdr *mhp)
5108 {
5109 	const struct sadb_address *src0, *dst0;
5110 	const struct sockaddr *src, *dst;
5111 	const struct sadb_x_policy *xpl0;
5112 
5113 	src0 = mhp->ext[SADB_EXT_ADDRESS_SRC];
5114 	dst0 = mhp->ext[SADB_EXT_ADDRESS_DST];
5115 	src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5116 	dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5117 	xpl0 = mhp->ext[SADB_X_EXT_POLICY];
5118 
5119 	memset(spidx, 0, sizeof(*spidx));
5120 	spidx->dir = xpl0->sadb_x_policy_dir;
5121 	spidx->prefs = src0->sadb_address_prefixlen;
5122 	spidx->prefd = dst0->sadb_address_prefixlen;
5123 	spidx->ul_proto = src0->sadb_address_proto;
5124 	/* XXX boundary check against sa_len */
5125 	memcpy(&spidx->src, src, src->sa_len);
5126 	memcpy(&spidx->dst, dst, dst->sa_len);
5127 }
5128 
5129 /* %%% PF_KEY */
5130 /*
5131  * SADB_GETSPI processing is to receive
5132  *	<base, (SA2), src address, dst address, (SPI range)>
5133  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
5134  * tree with the status of LARVAL, and send
5135  *	<base, SA(*), address(SD)>
5136  * to the IKMPd.
5137  *
5138  * IN:	mhp: pointer to the pointer to each header.
5139  * OUT:	NULL if fail.
5140  *	other if success, return pointer to the message to send.
5141  */
5142 static int
5143 key_api_getspi(struct socket *so, struct mbuf *m,
5144 	   const struct sadb_msghdr *mhp)
5145 {
5146 	const struct sockaddr *src, *dst;
5147 	struct secasindex saidx;
5148 	struct secashead *sah;
5149 	struct secasvar *newsav;
5150 	u_int8_t proto;
5151 	u_int32_t spi;
5152 	u_int8_t mode;
5153 	u_int16_t reqid;
5154 	int error;
5155 
5156 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5157 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5158 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5159 		return key_senderror(so, m, EINVAL);
5160 	}
5161 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5162 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5163 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5164 		return key_senderror(so, m, EINVAL);
5165 	}
5166 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5167 		const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
5168 		mode = sa2->sadb_x_sa2_mode;
5169 		reqid = sa2->sadb_x_sa2_reqid;
5170 	} else {
5171 		mode = IPSEC_MODE_ANY;
5172 		reqid = 0;
5173 	}
5174 
5175 	src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5176 	dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5177 
5178 	/* map satype to proto */
5179 	proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5180 	if (proto == 0) {
5181 		IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5182 		return key_senderror(so, m, EINVAL);
5183 	}
5184 
5185 
5186 	error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5187 	if (error != 0)
5188 		return key_senderror(so, m, EINVAL);
5189 
5190 	error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5191 	if (error != 0)
5192 		return key_senderror(so, m, EINVAL);
5193 
5194 	/* SPI allocation */
5195 	spi = key_do_getnewspi(mhp->ext[SADB_EXT_SPIRANGE], &saidx);
5196 	if (spi == 0)
5197 		return key_senderror(so, m, EINVAL);
5198 
5199 	/* get a SA index */
5200 	sah = key_getsah_ref(&saidx, CMP_REQID);
5201 	if (sah == NULL) {
5202 		/* create a new SA index */
5203 		sah = key_newsah(&saidx);
5204 		if (sah == NULL) {
5205 			IPSECLOG(LOG_DEBUG, "No more memory.\n");
5206 			return key_senderror(so, m, ENOBUFS);
5207 		}
5208 	}
5209 
5210 	/* get a new SA */
5211 	/* XXX rewrite */
5212 	newsav = KEY_NEWSAV(m, mhp, &error);
5213 	if (newsav == NULL) {
5214 		key_sah_unref(sah);
5215 		/* XXX don't free new SA index allocated in above. */
5216 		return key_senderror(so, m, error);
5217 	}
5218 
5219 	/* set spi */
5220 	newsav->spi = htonl(spi);
5221 
5222 	/* Add to sah#savlist */
5223 	key_init_sav(newsav);
5224 	newsav->sah = sah;
5225 	newsav->state = SADB_SASTATE_LARVAL;
5226 	mutex_enter(&key_sad.lock);
5227 	SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav);
5228 	mutex_exit(&key_sad.lock);
5229 	key_validate_savlist(sah, SADB_SASTATE_LARVAL);
5230 
5231 	key_sah_unref(sah);
5232 
5233 #ifndef IPSEC_NONBLOCK_ACQUIRE
5234 	/* delete the entry in key_misc.acqlist */
5235 	if (mhp->msg->sadb_msg_seq != 0) {
5236 		struct secacq *acq;
5237 		mutex_enter(&key_misc.lock);
5238 		acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
5239 		if (acq != NULL) {
5240 			/* reset counter in order to deletion by timehandler. */
5241 			acq->created = time_uptime;
5242 			acq->count = 0;
5243 		}
5244 		mutex_exit(&key_misc.lock);
5245 	}
5246 #endif
5247 
5248     {
5249 	struct mbuf *n, *nn;
5250 	struct sadb_sa *m_sa;
5251 	int off, len;
5252 
5253 	CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5254 	    PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
5255 
5256 	/* create new sadb_msg to reply. */
5257 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
5258 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
5259 
5260 	MGETHDR(n, M_DONTWAIT, MT_DATA);
5261 	if (len > MHLEN) {
5262 		MCLGET(n, M_DONTWAIT);
5263 		if ((n->m_flags & M_EXT) == 0) {
5264 			m_freem(n);
5265 			n = NULL;
5266 		}
5267 	}
5268 	if (!n)
5269 		return key_senderror(so, m, ENOBUFS);
5270 
5271 	n->m_len = len;
5272 	n->m_next = NULL;
5273 	off = 0;
5274 
5275 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
5276 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
5277 
5278 	m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
5279 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
5280 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
5281 	m_sa->sadb_sa_spi = htonl(spi);
5282 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
5283 
5284 	KASSERTMSG(off == len, "length inconsistency");
5285 
5286 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
5287 	    SADB_EXT_ADDRESS_DST);
5288 	if (!n->m_next) {
5289 		m_freem(n);
5290 		return key_senderror(so, m, ENOBUFS);
5291 	}
5292 
5293 	if (n->m_len < sizeof(struct sadb_msg)) {
5294 		n = m_pullup(n, sizeof(struct sadb_msg));
5295 		if (n == NULL)
5296 			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
5297 	}
5298 
5299 	n->m_pkthdr.len = 0;
5300 	for (nn = n; nn; nn = nn->m_next)
5301 		n->m_pkthdr.len += nn->m_len;
5302 
5303 	key_fill_replymsg(n, newsav->seq);
5304 
5305 	m_freem(m);
5306 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5307     }
5308 }
5309 
5310 /*
5311  * allocating new SPI
5312  * called by key_api_getspi().
5313  * OUT:
5314  *	0:	failure.
5315  *	others: success.
5316  */
5317 static u_int32_t
5318 key_do_getnewspi(const struct sadb_spirange *spirange,
5319 		 const struct secasindex *saidx)
5320 {
5321 	u_int32_t newspi;
5322 	u_int32_t spmin, spmax;
5323 	int count = key_spi_trycnt;
5324 
5325 	/* set spi range to allocate */
5326 	if (spirange != NULL) {
5327 		spmin = spirange->sadb_spirange_min;
5328 		spmax = spirange->sadb_spirange_max;
5329 	} else {
5330 		spmin = key_spi_minval;
5331 		spmax = key_spi_maxval;
5332 	}
5333 	/* IPCOMP needs 2-byte SPI */
5334 	if (saidx->proto == IPPROTO_IPCOMP) {
5335 		u_int32_t t;
5336 		if (spmin >= 0x10000)
5337 			spmin = 0xffff;
5338 		if (spmax >= 0x10000)
5339 			spmax = 0xffff;
5340 		if (spmin > spmax) {
5341 			t = spmin; spmin = spmax; spmax = t;
5342 		}
5343 	}
5344 
5345 	if (spmin == spmax) {
5346 		if (key_checkspidup(saidx, htonl(spmin))) {
5347 			IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
5348 			return 0;
5349 		}
5350 
5351 		count--; /* taking one cost. */
5352 		newspi = spmin;
5353 
5354 	} else {
5355 
5356 		/* init SPI */
5357 		newspi = 0;
5358 
5359 		/* when requesting to allocate spi ranged */
5360 		while (count--) {
5361 			/* generate pseudo-random SPI value ranged. */
5362 			newspi = spmin + (key_random() % (spmax - spmin + 1));
5363 
5364 			if (!key_checkspidup(saidx, htonl(newspi)))
5365 				break;
5366 		}
5367 
5368 		if (count == 0 || newspi == 0) {
5369 			IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
5370 			return 0;
5371 		}
5372 	}
5373 
5374 	/* statistics */
5375 	keystat.getspi_count =
5376 	    (keystat.getspi_count + key_spi_trycnt - count) / 2;
5377 
5378 	return newspi;
5379 }
5380 
5381 static int
5382 key_handle_natt_info(struct secasvar *sav,
5383       		     const struct sadb_msghdr *mhp)
5384 {
5385 	const char *msg = "?" ;
5386 	struct sadb_x_nat_t_type *type;
5387 	struct sadb_x_nat_t_port *sport, *dport;
5388 	struct sadb_address *iaddr, *raddr;
5389 	struct sadb_x_nat_t_frag *frag;
5390 
5391 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
5392 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
5393 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
5394 		return 0;
5395 
5396 	if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
5397 		msg = "TYPE";
5398 		goto bad;
5399 	}
5400 
5401 	if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
5402 		msg = "SPORT";
5403 		goto bad;
5404 	}
5405 
5406 	if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5407 		msg = "DPORT";
5408 		goto bad;
5409 	}
5410 
5411 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
5412 		IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5413 		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
5414 			msg = "OAI";
5415 			goto bad;
5416 		}
5417 	}
5418 
5419 	if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5420 		IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5421 		if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5422 			msg = "OAR";
5423 			goto bad;
5424 		}
5425 	}
5426 
5427 	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5428 	    if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5429 		    msg = "FRAG";
5430 		    goto bad;
5431 	    }
5432 	}
5433 
5434 	type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5435 	sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5436 	dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5437 	iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI];
5438 	raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR];
5439 	frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5440 
5441 	IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5442 	    type->sadb_x_nat_t_type_type,
5443 	    ntohs(sport->sadb_x_nat_t_port_port),
5444 	    ntohs(dport->sadb_x_nat_t_port_port));
5445 
5446 	sav->natt_type = type->sadb_x_nat_t_type_type;
5447 	key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
5448 	key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
5449 	if (frag)
5450 		sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
5451 	else
5452 		sav->esp_frag = IP_MAXPACKET;
5453 
5454 	return 0;
5455 bad:
5456 	IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
5457 	__USE(msg);
5458 	return -1;
5459 }
5460 
5461 /* Just update the IPSEC_NAT_T ports if present */
5462 static int
5463 key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
5464       		     const struct sadb_msghdr *mhp)
5465 {
5466 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
5467 		IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
5468 	if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
5469 		IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
5470 
5471 	if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
5472 	    (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
5473 	    (mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
5474 		struct sadb_x_nat_t_type *type;
5475 		struct sadb_x_nat_t_port *sport;
5476 		struct sadb_x_nat_t_port *dport;
5477 
5478 		if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
5479 		    (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
5480 		    (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
5481 			IPSECLOG(LOG_DEBUG, "invalid message\n");
5482 			return -1;
5483 		}
5484 
5485 		type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5486 		sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5487 		dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5488 
5489 		key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
5490 		key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
5491 
5492 		IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
5493 		    type->sadb_x_nat_t_type_type,
5494 		    ntohs(sport->sadb_x_nat_t_port_port),
5495 		    ntohs(dport->sadb_x_nat_t_port_port));
5496 	}
5497 
5498 	return 0;
5499 }
5500 
5501 
5502 /*
5503  * SADB_UPDATE processing
5504  * receive
5505  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5506  *       key(AE), (identity(SD),) (sensitivity)>
5507  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
5508  * and send
5509  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5510  *       (identity(SD),) (sensitivity)>
5511  * to the ikmpd.
5512  *
5513  * m will always be freed.
5514  */
5515 static int
5516 key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
5517 {
5518 	struct sadb_sa *sa0;
5519 	const struct sockaddr *src, *dst;
5520 	struct secasindex saidx;
5521 	struct secashead *sah;
5522 	struct secasvar *sav, *newsav;
5523 	u_int16_t proto;
5524 	u_int8_t mode;
5525 	u_int16_t reqid;
5526 	int error;
5527 
5528 	/* map satype to proto */
5529 	proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5530 	if (proto == 0) {
5531 		IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5532 		return key_senderror(so, m, EINVAL);
5533 	}
5534 
5535 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5536 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5537 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5538 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5539 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5540 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5541 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5542 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5543 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5544 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5545 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5546 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5547 		return key_senderror(so, m, EINVAL);
5548 	}
5549 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5550 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5551 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5552 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5553 		return key_senderror(so, m, EINVAL);
5554 	}
5555 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5556 		const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
5557 		mode = sa2->sadb_x_sa2_mode;
5558 		reqid = sa2->sadb_x_sa2_reqid;
5559 	} else {
5560 		mode = IPSEC_MODE_ANY;
5561 		reqid = 0;
5562 	}
5563 	/* XXX boundary checking for other extensions */
5564 
5565 	sa0 = mhp->ext[SADB_EXT_SA];
5566 	src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5567 	dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5568 
5569 	error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5570 	if (error != 0)
5571 		return key_senderror(so, m, EINVAL);
5572 
5573 	error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5574 	if (error != 0)
5575 		return key_senderror(so, m, EINVAL);
5576 
5577 	/* get a SA header */
5578 	sah = key_getsah_ref(&saidx, CMP_REQID);
5579 	if (sah == NULL) {
5580 		IPSECLOG(LOG_DEBUG, "no SA index found.\n");
5581 		return key_senderror(so, m, ENOENT);
5582 	}
5583 
5584 	/* set spidx if there */
5585 	/* XXX rewrite */
5586 	error = key_setident(sah, m, mhp);
5587 	if (error)
5588 		goto error_sah;
5589 
5590 	/* find a SA with sequence number. */
5591 #ifdef IPSEC_DOSEQCHECK
5592 	if (mhp->msg->sadb_msg_seq != 0) {
5593 		sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
5594 		if (sav == NULL) {
5595 			IPSECLOG(LOG_DEBUG,
5596 			    "no larval SA with sequence %u exists.\n",
5597 			    mhp->msg->sadb_msg_seq);
5598 			error = ENOENT;
5599 			goto error_sah;
5600 		}
5601 	}
5602 #else
5603 	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5604 	if (sav == NULL) {
5605 		IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
5606 		    (u_int32_t)ntohl(sa0->sadb_sa_spi));
5607 		error = EINVAL;
5608 		goto error_sah;
5609 	}
5610 #endif
5611 
5612 	/* validity check */
5613 	if (sav->sah->saidx.proto != proto) {
5614 		IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
5615 		    sav->sah->saidx.proto, proto);
5616 		error = EINVAL;
5617 		goto error;
5618 	}
5619 #ifdef IPSEC_DOSEQCHECK
5620 	if (sav->spi != sa0->sadb_sa_spi) {
5621 		IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
5622 		    (u_int32_t)ntohl(sav->spi),
5623 		    (u_int32_t)ntohl(sa0->sadb_sa_spi));
5624 		error = EINVAL;
5625 		goto error;
5626 	}
5627 #endif
5628 	if (sav->pid != mhp->msg->sadb_msg_pid) {
5629 		IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
5630 		    sav->pid, mhp->msg->sadb_msg_pid);
5631 		error = EINVAL;
5632 		goto error;
5633 	}
5634 
5635 	/*
5636 	 * Allocate a new SA instead of modifying the existing SA directly
5637 	 * to avoid race conditions.
5638 	 */
5639 	newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
5640 
5641 	/* copy sav values */
5642 	newsav->spi = sav->spi;
5643 	newsav->seq = sav->seq;
5644 	newsav->created = sav->created;
5645 	newsav->pid = sav->pid;
5646 	newsav->sah = sav->sah;
5647 
5648 	error = key_setsaval(newsav, m, mhp);
5649 	if (error) {
5650 		key_delsav(newsav);
5651 		goto error;
5652 	}
5653 
5654 	error = key_handle_natt_info(newsav, mhp);
5655 	if (error != 0) {
5656 		key_delsav(newsav);
5657 		goto error;
5658 	}
5659 
5660 	error = key_init_xform(newsav);
5661 	if (error != 0) {
5662 		key_delsav(newsav);
5663 		goto error;
5664 	}
5665 
5666 	/* Add to sah#savlist */
5667 	key_init_sav(newsav);
5668 	newsav->state = SADB_SASTATE_MATURE;
5669 	mutex_enter(&key_sad.lock);
5670 	SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5671 	mutex_exit(&key_sad.lock);
5672 	key_validate_savlist(sah, SADB_SASTATE_MATURE);
5673 
5674 	key_sah_unref(sah);
5675 	sah = NULL;
5676 
5677 	key_destroy_sav_with_ref(sav);
5678 	sav = NULL;
5679 
5680     {
5681 	struct mbuf *n;
5682 
5683 	/* set msg buf from mhp */
5684 	n = key_getmsgbuf_x1(m, mhp);
5685 	if (n == NULL) {
5686 		IPSECLOG(LOG_DEBUG, "No more memory.\n");
5687 		return key_senderror(so, m, ENOBUFS);
5688 	}
5689 
5690 	m_freem(m);
5691 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5692     }
5693 error:
5694 	KEY_SA_UNREF(&sav);
5695 error_sah:
5696 	key_sah_unref(sah);
5697 	return key_senderror(so, m, error);
5698 }
5699 
5700 /*
5701  * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5702  * only called by key_api_update().
5703  * OUT:
5704  *	NULL	: not found
5705  *	others	: found, pointer to a SA.
5706  */
5707 #ifdef IPSEC_DOSEQCHECK
5708 static struct secasvar *
5709 key_getsavbyseq(struct secashead *sah, u_int32_t seq)
5710 {
5711 	struct secasvar *sav;
5712 	u_int state;
5713 	int s;
5714 
5715 	state = SADB_SASTATE_LARVAL;
5716 
5717 	/* search SAD with sequence number ? */
5718 	s = pserialize_read_enter();
5719 	SAVLIST_READER_FOREACH(sav, sah, state) {
5720 		KEY_CHKSASTATE(state, sav->state);
5721 
5722 		if (sav->seq == seq) {
5723 			SA_ADDREF(sav);
5724 			KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
5725 			    "DP cause refcnt++:%d SA:%p\n",
5726 			    key_sa_refcnt(sav), sav);
5727 			break;
5728 		}
5729 	}
5730 	pserialize_read_exit(s);
5731 
5732 	return sav;
5733 }
5734 #endif
5735 
5736 /*
5737  * SADB_ADD processing
5738  * add an entry to SA database, when received
5739  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5740  *       key(AE), (identity(SD),) (sensitivity)>
5741  * from the ikmpd,
5742  * and send
5743  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5744  *       (identity(SD),) (sensitivity)>
5745  * to the ikmpd.
5746  *
5747  * IGNORE identity and sensitivity messages.
5748  *
5749  * m will always be freed.
5750  */
5751 static int
5752 key_api_add(struct socket *so, struct mbuf *m,
5753 	const struct sadb_msghdr *mhp)
5754 {
5755 	struct sadb_sa *sa0;
5756 	const struct sockaddr *src, *dst;
5757 	struct secasindex saidx;
5758 	struct secashead *sah;
5759 	struct secasvar *newsav;
5760 	u_int16_t proto;
5761 	u_int8_t mode;
5762 	u_int16_t reqid;
5763 	int error;
5764 
5765 	/* map satype to proto */
5766 	proto = key_satype2proto(mhp->msg->sadb_msg_satype);
5767 	if (proto == 0) {
5768 		IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
5769 		return key_senderror(so, m, EINVAL);
5770 	}
5771 
5772 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5773 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5774 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5775 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5776 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5777 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5778 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5779 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5780 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5781 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5782 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5783 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5784 		return key_senderror(so, m, EINVAL);
5785 	}
5786 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5787 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5788 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5789 		/* XXX need more */
5790 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
5791 		return key_senderror(so, m, EINVAL);
5792 	}
5793 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5794 		const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
5795 		mode = sa2->sadb_x_sa2_mode;
5796 		reqid = sa2->sadb_x_sa2_reqid;
5797 	} else {
5798 		mode = IPSEC_MODE_ANY;
5799 		reqid = 0;
5800 	}
5801 
5802 	sa0 = mhp->ext[SADB_EXT_SA];
5803 	src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
5804 	dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
5805 
5806 	error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
5807 	if (error != 0)
5808 		return key_senderror(so, m, EINVAL);
5809 
5810 	error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
5811 	if (error != 0)
5812 		return key_senderror(so, m, EINVAL);
5813 
5814 	/* get a SA header */
5815 	sah = key_getsah_ref(&saidx, CMP_REQID);
5816 	if (sah == NULL) {
5817 		/* create a new SA header */
5818 		sah = key_newsah(&saidx);
5819 		if (sah == NULL) {
5820 			IPSECLOG(LOG_DEBUG, "No more memory.\n");
5821 			return key_senderror(so, m, ENOBUFS);
5822 		}
5823 	}
5824 
5825 	/* set spidx if there */
5826 	/* XXX rewrite */
5827 	error = key_setident(sah, m, mhp);
5828 	if (error)
5829 		goto error;
5830 
5831     {
5832 	struct secasvar *sav;
5833 
5834 	/* We can create new SA only if SPI is differenct. */
5835 	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5836 	if (sav != NULL) {
5837 		KEY_SA_UNREF(&sav);
5838 		IPSECLOG(LOG_DEBUG, "SA already exists.\n");
5839 		error = EEXIST;
5840 		goto error;
5841 	}
5842     }
5843 
5844 	/* create new SA entry. */
5845 	newsav = KEY_NEWSAV(m, mhp, &error);
5846 	if (newsav == NULL)
5847 		goto error;
5848 	newsav->sah = sah;
5849 
5850 	error = key_handle_natt_info(newsav, mhp);
5851 	if (error != 0) {
5852 		key_delsav(newsav);
5853 		error = EINVAL;
5854 		goto error;
5855 	}
5856 
5857 	error = key_init_xform(newsav);
5858 	if (error != 0) {
5859 		key_delsav(newsav);
5860 		goto error;
5861 	}
5862 
5863 	/* Add to sah#savlist */
5864 	key_init_sav(newsav);
5865 	newsav->state = SADB_SASTATE_MATURE;
5866 	mutex_enter(&key_sad.lock);
5867 	SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
5868 	mutex_exit(&key_sad.lock);
5869 	key_validate_savlist(sah, SADB_SASTATE_MATURE);
5870 
5871 	key_sah_unref(sah);
5872 	sah = NULL;
5873 
5874 	/*
5875 	 * don't call key_freesav() here, as we would like to keep the SA
5876 	 * in the database on success.
5877 	 */
5878 
5879     {
5880 	struct mbuf *n;
5881 
5882 	/* set msg buf from mhp */
5883 	n = key_getmsgbuf_x1(m, mhp);
5884 	if (n == NULL) {
5885 		IPSECLOG(LOG_DEBUG, "No more memory.\n");
5886 		return key_senderror(so, m, ENOBUFS);
5887 	}
5888 
5889 	m_freem(m);
5890 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5891     }
5892 error:
5893 	key_sah_unref(sah);
5894 	return key_senderror(so, m, error);
5895 }
5896 
5897 /* m is retained */
5898 static int
5899 key_setident(struct secashead *sah, struct mbuf *m,
5900 	     const struct sadb_msghdr *mhp)
5901 {
5902 	const struct sadb_ident *idsrc, *iddst;
5903 	int idsrclen, iddstlen;
5904 
5905 	KASSERT(!cpu_softintr_p());
5906 	KASSERT(sah != NULL);
5907 	KASSERT(m != NULL);
5908 	KASSERT(mhp != NULL);
5909 	KASSERT(mhp->msg != NULL);
5910 
5911 	/*
5912 	 * Can be called with an existing sah from key_api_update().
5913 	 */
5914 	if (sah->idents != NULL) {
5915 		kmem_free(sah->idents, sah->idents_len);
5916 		sah->idents = NULL;
5917 		sah->idents_len = 0;
5918 	}
5919 	if (sah->identd != NULL) {
5920 		kmem_free(sah->identd, sah->identd_len);
5921 		sah->identd = NULL;
5922 		sah->identd_len = 0;
5923 	}
5924 
5925 	/* don't make buffer if not there */
5926 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5927 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5928 		sah->idents = NULL;
5929 		sah->identd = NULL;
5930 		return 0;
5931 	}
5932 
5933 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5934 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5935 		IPSECLOG(LOG_DEBUG, "invalid identity.\n");
5936 		return EINVAL;
5937 	}
5938 
5939 	idsrc = mhp->ext[SADB_EXT_IDENTITY_SRC];
5940 	iddst = mhp->ext[SADB_EXT_IDENTITY_DST];
5941 	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5942 	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5943 
5944 	/* validity check */
5945 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5946 		IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
5947 		return EINVAL;
5948 	}
5949 
5950 	switch (idsrc->sadb_ident_type) {
5951 	case SADB_IDENTTYPE_PREFIX:
5952 	case SADB_IDENTTYPE_FQDN:
5953 	case SADB_IDENTTYPE_USERFQDN:
5954 	default:
5955 		/* XXX do nothing */
5956 		sah->idents = NULL;
5957 		sah->identd = NULL;
5958 	 	return 0;
5959 	}
5960 
5961 	/* make structure */
5962 	sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
5963 	sah->idents_len = idsrclen;
5964 	sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
5965 	sah->identd_len = iddstlen;
5966 	memcpy(sah->idents, idsrc, idsrclen);
5967 	memcpy(sah->identd, iddst, iddstlen);
5968 
5969 	return 0;
5970 }
5971 
5972 /*
5973  * m will not be freed on return.
5974  * it is caller's responsibility to free the result.
5975  */
5976 static struct mbuf *
5977 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
5978 {
5979 	struct mbuf *n;
5980 
5981 	KASSERT(m != NULL);
5982 	KASSERT(mhp != NULL);
5983 	KASSERT(mhp->msg != NULL);
5984 
5985 	/* create new sadb_msg to reply. */
5986 	n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
5987 	    SADB_EXT_SA, SADB_X_EXT_SA2,
5988 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5989 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5990 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
5991 	    SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
5992 	    SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
5993 	    SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
5994 	if (!n)
5995 		return NULL;
5996 
5997 	if (n->m_len < sizeof(struct sadb_msg)) {
5998 		n = m_pullup(n, sizeof(struct sadb_msg));
5999 		if (n == NULL)
6000 			return NULL;
6001 	}
6002 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
6003 	mtod(n, struct sadb_msg *)->sadb_msg_len =
6004 	    PFKEY_UNIT64(n->m_pkthdr.len);
6005 
6006 	return n;
6007 }
6008 
6009 static int key_delete_all (struct socket *, struct mbuf *,
6010 			   const struct sadb_msghdr *, u_int16_t);
6011 
6012 /*
6013  * SADB_DELETE processing
6014  * receive
6015  *   <base, SA(*), address(SD)>
6016  * from the ikmpd, and set SADB_SASTATE_DEAD,
6017  * and send,
6018  *   <base, SA(*), address(SD)>
6019  * to the ikmpd.
6020  *
6021  * m will always be freed.
6022  */
6023 static int
6024 key_api_delete(struct socket *so, struct mbuf *m,
6025 	   const struct sadb_msghdr *mhp)
6026 {
6027 	struct sadb_sa *sa0;
6028 	const struct sockaddr *src, *dst;
6029 	struct secasindex saidx;
6030 	struct secashead *sah;
6031 	struct secasvar *sav = NULL;
6032 	u_int16_t proto;
6033 	int error;
6034 
6035 	/* map satype to proto */
6036 	proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6037 	if (proto == 0) {
6038 		IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6039 		return key_senderror(so, m, EINVAL);
6040 	}
6041 
6042 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6043 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
6044 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6045 		return key_senderror(so, m, EINVAL);
6046 	}
6047 
6048 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6049 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
6050 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6051 		return key_senderror(so, m, EINVAL);
6052 	}
6053 
6054 	if (mhp->ext[SADB_EXT_SA] == NULL) {
6055 		/*
6056 		 * Caller wants us to delete all non-LARVAL SAs
6057 		 * that match the src/dst.  This is used during
6058 		 * IKE INITIAL-CONTACT.
6059 		 */
6060 		IPSECLOG(LOG_DEBUG, "doing delete all.\n");
6061 		return key_delete_all(so, m, mhp, proto);
6062 	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
6063 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6064 		return key_senderror(so, m, EINVAL);
6065 	}
6066 
6067 	sa0 = mhp->ext[SADB_EXT_SA];
6068 	src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6069 	dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6070 
6071 	error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6072 	if (error != 0)
6073 		return key_senderror(so, m, EINVAL);
6074 
6075 	error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6076 	if (error != 0)
6077 		return key_senderror(so, m, EINVAL);
6078 
6079 	/* get a SA header */
6080 	sah = key_getsah_ref(&saidx, CMP_HEAD);
6081 	if (sah != NULL) {
6082 		/* get a SA with SPI. */
6083 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
6084 		key_sah_unref(sah);
6085 	}
6086 
6087 	if (sav == NULL) {
6088 		IPSECLOG(LOG_DEBUG, "no SA found.\n");
6089 		return key_senderror(so, m, ENOENT);
6090 	}
6091 
6092 	key_destroy_sav_with_ref(sav);
6093 	sav = NULL;
6094 
6095     {
6096 	struct mbuf *n;
6097 
6098 	/* create new sadb_msg to reply. */
6099 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
6100 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6101 	if (!n)
6102 		return key_senderror(so, m, ENOBUFS);
6103 
6104 	n = key_fill_replymsg(n, 0);
6105 	if (n == NULL)
6106 		return key_senderror(so, m, ENOBUFS);
6107 
6108 	m_freem(m);
6109 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6110     }
6111 }
6112 
6113 /*
6114  * delete all SAs for src/dst.  Called from key_api_delete().
6115  */
6116 static int
6117 key_delete_all(struct socket *so, struct mbuf *m,
6118 	       const struct sadb_msghdr *mhp, u_int16_t proto)
6119 {
6120 	const struct sockaddr *src, *dst;
6121 	struct secasindex saidx;
6122 	struct secashead *sah;
6123 	struct secasvar *sav;
6124 	u_int state;
6125 	int error;
6126 
6127 	src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6128 	dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6129 
6130 	error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6131 	if (error != 0)
6132 		return key_senderror(so, m, EINVAL);
6133 
6134 	error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6135 	if (error != 0)
6136 		return key_senderror(so, m, EINVAL);
6137 
6138 	sah = key_getsah_ref(&saidx, CMP_HEAD);
6139 	if (sah != NULL) {
6140 		/* Delete all non-LARVAL SAs. */
6141 		SASTATE_ALIVE_FOREACH(state) {
6142 			if (state == SADB_SASTATE_LARVAL)
6143 				continue;
6144 		restart:
6145 			mutex_enter(&key_sad.lock);
6146 			SAVLIST_WRITER_FOREACH(sav, sah, state) {
6147 				sav->state = SADB_SASTATE_DEAD;
6148 				key_unlink_sav(sav);
6149 				mutex_exit(&key_sad.lock);
6150 				key_destroy_sav(sav);
6151 				goto restart;
6152 			}
6153 			mutex_exit(&key_sad.lock);
6154 		}
6155 		key_sah_unref(sah);
6156 	}
6157     {
6158 	struct mbuf *n;
6159 
6160 	/* create new sadb_msg to reply. */
6161 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
6162 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
6163 	if (!n)
6164 		return key_senderror(so, m, ENOBUFS);
6165 
6166 	n = key_fill_replymsg(n, 0);
6167 	if (n == NULL)
6168 		return key_senderror(so, m, ENOBUFS);
6169 
6170 	m_freem(m);
6171 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
6172     }
6173 }
6174 
6175 /*
6176  * SADB_GET processing
6177  * receive
6178  *   <base, SA(*), address(SD)>
6179  * from the ikmpd, and get a SP and a SA to respond,
6180  * and send,
6181  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
6182  *       (identity(SD),) (sensitivity)>
6183  * to the ikmpd.
6184  *
6185  * m will always be freed.
6186  */
6187 static int
6188 key_api_get(struct socket *so, struct mbuf *m,
6189 	const struct sadb_msghdr *mhp)
6190 {
6191 	struct sadb_sa *sa0;
6192 	const struct sockaddr *src, *dst;
6193 	struct secasindex saidx;
6194 	struct secasvar *sav = NULL;
6195 	u_int16_t proto;
6196 	int error;
6197 
6198 	/* map satype to proto */
6199 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6200 		IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6201 		return key_senderror(so, m, EINVAL);
6202 	}
6203 
6204 	if (mhp->ext[SADB_EXT_SA] == NULL ||
6205 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6206 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
6207 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6208 		return key_senderror(so, m, EINVAL);
6209 	}
6210 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
6211 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6212 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
6213 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6214 		return key_senderror(so, m, EINVAL);
6215 	}
6216 
6217 	sa0 = mhp->ext[SADB_EXT_SA];
6218 	src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6219 	dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6220 
6221 	error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6222 	if (error != 0)
6223 		return key_senderror(so, m, EINVAL);
6224 
6225 	error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
6226 	if (error != 0)
6227 		return key_senderror(so, m, EINVAL);
6228 
6229 	/* get a SA header */
6230     {
6231 	struct secashead *sah;
6232 	int s = pserialize_read_enter();
6233 
6234 	sah = key_getsah(&saidx, CMP_HEAD);
6235 	if (sah != NULL) {
6236 		/* get a SA with SPI. */
6237 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
6238 	}
6239 	pserialize_read_exit(s);
6240     }
6241 	if (sav == NULL) {
6242 		IPSECLOG(LOG_DEBUG, "no SA found.\n");
6243 		return key_senderror(so, m, ENOENT);
6244 	}
6245 
6246     {
6247 	struct mbuf *n;
6248 	u_int8_t satype;
6249 
6250 	/* map proto to satype */
6251 	satype = key_proto2satype(sav->sah->saidx.proto);
6252 	if (satype == 0) {
6253 		KEY_SA_UNREF(&sav);
6254 		IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
6255 		return key_senderror(so, m, EINVAL);
6256 	}
6257 
6258 	/* create new sadb_msg to reply. */
6259 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
6260 	    mhp->msg->sadb_msg_pid);
6261 	KEY_SA_UNREF(&sav);
6262 	if (!n)
6263 		return key_senderror(so, m, ENOBUFS);
6264 
6265 	m_freem(m);
6266 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
6267     }
6268 }
6269 
6270 /* XXX make it sysctl-configurable? */
6271 static void
6272 key_getcomb_setlifetime(struct sadb_comb *comb)
6273 {
6274 
6275 	comb->sadb_comb_soft_allocations = 1;
6276 	comb->sadb_comb_hard_allocations = 1;
6277 	comb->sadb_comb_soft_bytes = 0;
6278 	comb->sadb_comb_hard_bytes = 0;
6279 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
6280 	comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100;
6281 	comb->sadb_comb_hard_usetime = 28800;	/* 8 hours */
6282 	comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
6283 }
6284 
6285 /*
6286  * XXX reorder combinations by preference
6287  * XXX no idea if the user wants ESP authentication or not
6288  */
6289 static struct mbuf *
6290 key_getcomb_esp(void)
6291 {
6292 	struct sadb_comb *comb;
6293 	const struct enc_xform *algo;
6294 	struct mbuf *result = NULL, *m, *n;
6295 	int encmin;
6296 	int i, off, o;
6297 	int totlen;
6298 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6299 
6300 	m = NULL;
6301 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6302 		algo = esp_algorithm_lookup(i);
6303 		if (algo == NULL)
6304 			continue;
6305 
6306 		/* discard algorithms with key size smaller than system min */
6307 		if (_BITS(algo->maxkey) < ipsec_esp_keymin)
6308 			continue;
6309 		if (_BITS(algo->minkey) < ipsec_esp_keymin)
6310 			encmin = ipsec_esp_keymin;
6311 		else
6312 			encmin = _BITS(algo->minkey);
6313 
6314 		if (ipsec_esp_auth)
6315 			m = key_getcomb_ah();
6316 		else {
6317 			KASSERTMSG(l <= MLEN,
6318 			    "l=%u > MLEN=%lu", l, (u_long) MLEN);
6319 			MGET(m, M_DONTWAIT, MT_DATA);
6320 			if (m) {
6321 				M_ALIGN(m, l);
6322 				m->m_len = l;
6323 				m->m_next = NULL;
6324 				memset(mtod(m, void *), 0, m->m_len);
6325 			}
6326 		}
6327 		if (!m)
6328 			goto fail;
6329 
6330 		totlen = 0;
6331 		for (n = m; n; n = n->m_next)
6332 			totlen += n->m_len;
6333 		KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
6334 
6335 		for (off = 0; off < totlen; off += l) {
6336 			n = m_pulldown(m, off, l, &o);
6337 			if (!n) {
6338 				/* m is already freed */
6339 				goto fail;
6340 			}
6341 			comb = (struct sadb_comb *)(mtod(n, char *) + o);
6342 			memset(comb, 0, sizeof(*comb));
6343 			key_getcomb_setlifetime(comb);
6344 			comb->sadb_comb_encrypt = i;
6345 			comb->sadb_comb_encrypt_minbits = encmin;
6346 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6347 		}
6348 
6349 		if (!result)
6350 			result = m;
6351 		else
6352 			m_cat(result, m);
6353 	}
6354 
6355 	return result;
6356 
6357  fail:
6358 	if (result)
6359 		m_freem(result);
6360 	return NULL;
6361 }
6362 
6363 static void
6364 key_getsizes_ah(const struct auth_hash *ah, int alg,
6365 	        u_int16_t* ksmin, u_int16_t* ksmax)
6366 {
6367 	*ksmin = *ksmax = ah->keysize;
6368 	if (ah->keysize == 0) {
6369 		/*
6370 		 * Transform takes arbitrary key size but algorithm
6371 		 * key size is restricted.  Enforce this here.
6372 		 */
6373 		switch (alg) {
6374 		case SADB_X_AALG_MD5:	*ksmin = *ksmax = 16; break;
6375 		case SADB_X_AALG_SHA:	*ksmin = *ksmax = 20; break;
6376 		case SADB_X_AALG_NULL:	*ksmin = 0; *ksmax = 256; break;
6377 		default:
6378 			IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
6379 			break;
6380 		}
6381 	}
6382 }
6383 
6384 /*
6385  * XXX reorder combinations by preference
6386  */
6387 static struct mbuf *
6388 key_getcomb_ah(void)
6389 {
6390 	struct sadb_comb *comb;
6391 	const struct auth_hash *algo;
6392 	struct mbuf *m;
6393 	u_int16_t minkeysize, maxkeysize;
6394 	int i;
6395 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6396 
6397 	m = NULL;
6398 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6399 #if 1
6400 		/* we prefer HMAC algorithms, not old algorithms */
6401 		if (i != SADB_AALG_SHA1HMAC &&
6402 		    i != SADB_AALG_MD5HMAC &&
6403 		    i != SADB_X_AALG_SHA2_256 &&
6404 		    i != SADB_X_AALG_SHA2_384 &&
6405 		    i != SADB_X_AALG_SHA2_512)
6406 			continue;
6407 #endif
6408 		algo = ah_algorithm_lookup(i);
6409 		if (!algo)
6410 			continue;
6411 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6412 		/* discard algorithms with key size smaller than system min */
6413 		if (_BITS(minkeysize) < ipsec_ah_keymin)
6414 			continue;
6415 
6416 		if (!m) {
6417 			KASSERTMSG(l <= MLEN,
6418 			    "l=%u > MLEN=%lu", l, (u_long) MLEN);
6419 			MGET(m, M_DONTWAIT, MT_DATA);
6420 			if (m) {
6421 				M_ALIGN(m, l);
6422 				m->m_len = l;
6423 				m->m_next = NULL;
6424 			}
6425 		} else
6426 			M_PREPEND(m, l, M_DONTWAIT);
6427 		if (!m)
6428 			return NULL;
6429 
6430 		if (m->m_len < sizeof(struct sadb_comb)) {
6431 			m = m_pullup(m, sizeof(struct sadb_comb));
6432 			if (m == NULL)
6433 				return NULL;
6434 		}
6435 
6436 		comb = mtod(m, struct sadb_comb *);
6437 		memset(comb, 0, sizeof(*comb));
6438 		key_getcomb_setlifetime(comb);
6439 		comb->sadb_comb_auth = i;
6440 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6441 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6442 	}
6443 
6444 	return m;
6445 }
6446 
6447 /*
6448  * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
6449  * XXX reorder combinations by preference
6450  */
6451 static struct mbuf *
6452 key_getcomb_ipcomp(void)
6453 {
6454 	struct sadb_comb *comb;
6455 	const struct comp_algo *algo;
6456 	struct mbuf *m;
6457 	int i;
6458 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6459 
6460 	m = NULL;
6461 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6462 		algo = ipcomp_algorithm_lookup(i);
6463 		if (!algo)
6464 			continue;
6465 
6466 		if (!m) {
6467 			KASSERTMSG(l <= MLEN,
6468 			    "l=%u > MLEN=%lu", l, (u_long) MLEN);
6469 			MGET(m, M_DONTWAIT, MT_DATA);
6470 			if (m) {
6471 				M_ALIGN(m, l);
6472 				m->m_len = l;
6473 				m->m_next = NULL;
6474 			}
6475 		} else
6476 			M_PREPEND(m, l, M_DONTWAIT);
6477 		if (!m)
6478 			return NULL;
6479 
6480 		if (m->m_len < sizeof(struct sadb_comb)) {
6481 			m = m_pullup(m, sizeof(struct sadb_comb));
6482 			if (m == NULL)
6483 				return NULL;
6484 		}
6485 
6486 		comb = mtod(m, struct sadb_comb *);
6487 		memset(comb, 0, sizeof(*comb));
6488 		key_getcomb_setlifetime(comb);
6489 		comb->sadb_comb_encrypt = i;
6490 		/* what should we set into sadb_comb_*_{min,max}bits? */
6491 	}
6492 
6493 	return m;
6494 }
6495 
6496 /*
6497  * XXX no way to pass mode (transport/tunnel) to userland
6498  * XXX replay checking?
6499  * XXX sysctl interface to ipsec_{ah,esp}_keymin
6500  */
6501 static struct mbuf *
6502 key_getprop(const struct secasindex *saidx)
6503 {
6504 	struct sadb_prop *prop;
6505 	struct mbuf *m, *n;
6506 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6507 	int totlen;
6508 
6509 	switch (saidx->proto)  {
6510 	case IPPROTO_ESP:
6511 		m = key_getcomb_esp();
6512 		break;
6513 	case IPPROTO_AH:
6514 		m = key_getcomb_ah();
6515 		break;
6516 	case IPPROTO_IPCOMP:
6517 		m = key_getcomb_ipcomp();
6518 		break;
6519 	default:
6520 		return NULL;
6521 	}
6522 
6523 	if (!m)
6524 		return NULL;
6525 	M_PREPEND(m, l, M_DONTWAIT);
6526 	if (!m)
6527 		return NULL;
6528 
6529 	totlen = 0;
6530 	for (n = m; n; n = n->m_next)
6531 		totlen += n->m_len;
6532 
6533 	prop = mtod(m, struct sadb_prop *);
6534 	memset(prop, 0, sizeof(*prop));
6535 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6536 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6537 	prop->sadb_prop_replay = 32;	/* XXX */
6538 
6539 	return m;
6540 }
6541 
6542 /*
6543  * SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire().
6544  * send
6545  *   <base, SA, address(SD), (address(P)), x_policy,
6546  *       (identity(SD),) (sensitivity,) proposal>
6547  * to KMD, and expect to receive
6548  *   <base> with SADB_ACQUIRE if error occurred,
6549  * or
6550  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
6551  * from KMD by PF_KEY.
6552  *
6553  * XXX x_policy is outside of RFC2367 (KAME extension).
6554  * XXX sensitivity is not supported.
6555  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6556  * see comment for key_getcomb_ipcomp().
6557  *
6558  * OUT:
6559  *    0     : succeed
6560  *    others: error number
6561  */
6562 static int
6563 key_acquire(const struct secasindex *saidx, const struct secpolicy *sp)
6564 {
6565 	struct mbuf *result = NULL, *m;
6566 #ifndef IPSEC_NONBLOCK_ACQUIRE
6567 	struct secacq *newacq;
6568 #endif
6569 	u_int8_t satype;
6570 	int error = -1;
6571 	u_int32_t seq;
6572 
6573 	/* sanity check */
6574 	KASSERT(saidx != NULL);
6575 	satype = key_proto2satype(saidx->proto);
6576 	KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
6577 
6578 #ifndef IPSEC_NONBLOCK_ACQUIRE
6579 	/*
6580 	 * We never do anything about acquirng SA.  There is anather
6581 	 * solution that kernel blocks to send SADB_ACQUIRE message until
6582 	 * getting something message from IKEd.  In later case, to be
6583 	 * managed with ACQUIRING list.
6584 	 */
6585 	/* Get an entry to check whether sending message or not. */
6586 	mutex_enter(&key_misc.lock);
6587 	newacq = key_getacq(saidx);
6588 	if (newacq != NULL) {
6589 		if (key_blockacq_count < newacq->count) {
6590 			/* reset counter and do send message. */
6591 			newacq->count = 0;
6592 		} else {
6593 			/* increment counter and do nothing. */
6594 			newacq->count++;
6595 			mutex_exit(&key_misc.lock);
6596 			return 0;
6597 		}
6598 	} else {
6599 		/* make new entry for blocking to send SADB_ACQUIRE. */
6600 		newacq = key_newacq(saidx);
6601 		if (newacq == NULL) {
6602 			mutex_exit(&key_misc.lock);
6603 			return ENOBUFS;
6604 		}
6605 
6606 		/* add to key_misc.acqlist */
6607 		LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain);
6608 	}
6609 
6610 	seq = newacq->seq;
6611 	mutex_exit(&key_misc.lock);
6612 #else
6613 	seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
6614 #endif
6615 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6616 	if (!m) {
6617 		error = ENOBUFS;
6618 		goto fail;
6619 	}
6620 	result = m;
6621 
6622 	/* set sadb_address for saidx's. */
6623 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
6624 	    IPSEC_ULPROTO_ANY);
6625 	if (!m) {
6626 		error = ENOBUFS;
6627 		goto fail;
6628 	}
6629 	m_cat(result, m);
6630 
6631 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
6632 	    IPSEC_ULPROTO_ANY);
6633 	if (!m) {
6634 		error = ENOBUFS;
6635 		goto fail;
6636 	}
6637 	m_cat(result, m);
6638 
6639 	/* XXX proxy address (optional) */
6640 
6641 	/* set sadb_x_policy */
6642 	if (sp) {
6643 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6644 		if (!m) {
6645 			error = ENOBUFS;
6646 			goto fail;
6647 		}
6648 		m_cat(result, m);
6649 	}
6650 
6651 	/* XXX identity (optional) */
6652 #if 0
6653 	if (idexttype && fqdn) {
6654 		/* create identity extension (FQDN) */
6655 		struct sadb_ident *id;
6656 		int fqdnlen;
6657 
6658 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
6659 		id = (struct sadb_ident *)p;
6660 		memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6661 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6662 		id->sadb_ident_exttype = idexttype;
6663 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6664 		memcpy(id + 1, fqdn, fqdnlen);
6665 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6666 	}
6667 
6668 	if (idexttype) {
6669 		/* create identity extension (USERFQDN) */
6670 		struct sadb_ident *id;
6671 		int userfqdnlen;
6672 
6673 		if (userfqdn) {
6674 			/* +1 for terminating-NUL */
6675 			userfqdnlen = strlen(userfqdn) + 1;
6676 		} else
6677 			userfqdnlen = 0;
6678 		id = (struct sadb_ident *)p;
6679 		memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6680 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6681 		id->sadb_ident_exttype = idexttype;
6682 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6683 		/* XXX is it correct? */
6684 		if (curlwp)
6685 			id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
6686 		if (userfqdn && userfqdnlen)
6687 			memcpy(id + 1, userfqdn, userfqdnlen);
6688 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6689 	}
6690 #endif
6691 
6692 	/* XXX sensitivity (optional) */
6693 
6694 	/* create proposal/combination extension */
6695 	m = key_getprop(saidx);
6696 #if 0
6697 	/*
6698 	 * spec conformant: always attach proposal/combination extension,
6699 	 * the problem is that we have no way to attach it for ipcomp,
6700 	 * due to the way sadb_comb is declared in RFC2367.
6701 	 */
6702 	if (!m) {
6703 		error = ENOBUFS;
6704 		goto fail;
6705 	}
6706 	m_cat(result, m);
6707 #else
6708 	/*
6709 	 * outside of spec; make proposal/combination extension optional.
6710 	 */
6711 	if (m)
6712 		m_cat(result, m);
6713 #endif
6714 
6715 	if ((result->m_flags & M_PKTHDR) == 0) {
6716 		error = EINVAL;
6717 		goto fail;
6718 	}
6719 
6720 	if (result->m_len < sizeof(struct sadb_msg)) {
6721 		result = m_pullup(result, sizeof(struct sadb_msg));
6722 		if (result == NULL) {
6723 			error = ENOBUFS;
6724 			goto fail;
6725 		}
6726 	}
6727 
6728 	result->m_pkthdr.len = 0;
6729 	for (m = result; m; m = m->m_next)
6730 		result->m_pkthdr.len += m->m_len;
6731 
6732 	mtod(result, struct sadb_msg *)->sadb_msg_len =
6733 	    PFKEY_UNIT64(result->m_pkthdr.len);
6734 
6735 	/*
6736 	 * XXX we cannot call key_sendup_mbuf directly here because
6737 	 * it can cause a deadlock:
6738 	 * - We have a reference to an SP (and an SA) here
6739 	 * - key_sendup_mbuf will try to take key_so_mtx
6740 	 * - Some other thread may try to localcount_drain to the SP with
6741 	 *   holding key_so_mtx in say key_api_spdflush
6742 	 * - In this case localcount_drain never return because key_sendup_mbuf
6743 	 *   that has stuck on key_so_mtx never release a reference to the SP
6744 	 *
6745 	 * So defer key_sendup_mbuf to the timer.
6746 	 */
6747 	return key_acquire_sendup_mbuf_later(result);
6748 
6749  fail:
6750 	if (result)
6751 		m_freem(result);
6752 	return error;
6753 }
6754 
6755 static struct mbuf *key_acquire_mbuf_head = NULL;
6756 static unsigned key_acquire_mbuf_count = 0;
6757 #define KEY_ACQUIRE_MBUF_MAX	10
6758 
6759 static void
6760 key_acquire_sendup_pending_mbuf(void)
6761 {
6762 	struct mbuf *m, *prev;
6763 	int error;
6764 
6765 again:
6766 	prev = NULL;
6767 	mutex_enter(&key_misc.lock);
6768 	m = key_acquire_mbuf_head;
6769 	/* Get an earliest mbuf (one at the tail of the list) */
6770 	while (m != NULL) {
6771 		if (m->m_nextpkt == NULL) {
6772 			if (prev != NULL)
6773 				prev->m_nextpkt = NULL;
6774 			if (m == key_acquire_mbuf_head)
6775 				key_acquire_mbuf_head = NULL;
6776 			key_acquire_mbuf_count--;
6777 			break;
6778 		}
6779 		prev = m;
6780 		m = m->m_nextpkt;
6781 	}
6782 	mutex_exit(&key_misc.lock);
6783 
6784 	if (m == NULL)
6785 		return;
6786 
6787 	m->m_nextpkt = NULL;
6788 	error = key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
6789 	if (error != 0)
6790 		IPSECLOG(LOG_WARNING, "key_sendup_mbuf failed (error=%d)\n",
6791 		    error);
6792 
6793 	if (prev != NULL)
6794 		goto again;
6795 }
6796 
6797 static int
6798 key_acquire_sendup_mbuf_later(struct mbuf *m)
6799 {
6800 
6801 	mutex_enter(&key_misc.lock);
6802 	/* Avoid queuing too much mbufs */
6803 	if (key_acquire_mbuf_count >= KEY_ACQUIRE_MBUF_MAX) {
6804 		mutex_exit(&key_misc.lock);
6805 		m_freem(m);
6806 		return ENOBUFS; /* XXX */
6807 	}
6808 	/* Enqueue mbuf at the head of the list */
6809 	m->m_nextpkt = key_acquire_mbuf_head;
6810 	key_acquire_mbuf_head = m;
6811 	key_acquire_mbuf_count++;
6812 	mutex_exit(&key_misc.lock);
6813 
6814 	/* Kick the timer */
6815 	key_timehandler(NULL);
6816 
6817 	return 0;
6818 }
6819 
6820 #ifndef IPSEC_NONBLOCK_ACQUIRE
6821 static struct secacq *
6822 key_newacq(const struct secasindex *saidx)
6823 {
6824 	struct secacq *newacq;
6825 
6826 	/* get new entry */
6827 	newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
6828 	if (newacq == NULL) {
6829 		IPSECLOG(LOG_DEBUG, "No more memory.\n");
6830 		return NULL;
6831 	}
6832 
6833 	/* copy secindex */
6834 	memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
6835 	newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
6836 	newacq->created = time_uptime;
6837 	newacq->count = 0;
6838 
6839 	return newacq;
6840 }
6841 
6842 static struct secacq *
6843 key_getacq(const struct secasindex *saidx)
6844 {
6845 	struct secacq *acq;
6846 
6847 	KASSERT(mutex_owned(&key_misc.lock));
6848 
6849 	LIST_FOREACH(acq, &key_misc.acqlist, chain) {
6850 		if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
6851 			return acq;
6852 	}
6853 
6854 	return NULL;
6855 }
6856 
6857 static struct secacq *
6858 key_getacqbyseq(u_int32_t seq)
6859 {
6860 	struct secacq *acq;
6861 
6862 	KASSERT(mutex_owned(&key_misc.lock));
6863 
6864 	LIST_FOREACH(acq, &key_misc.acqlist, chain) {
6865 		if (acq->seq == seq)
6866 			return acq;
6867 	}
6868 
6869 	return NULL;
6870 }
6871 #endif
6872 
6873 #ifdef notyet
6874 static struct secspacq *
6875 key_newspacq(const struct secpolicyindex *spidx)
6876 {
6877 	struct secspacq *acq;
6878 
6879 	/* get new entry */
6880 	acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
6881 	if (acq == NULL) {
6882 		IPSECLOG(LOG_DEBUG, "No more memory.\n");
6883 		return NULL;
6884 	}
6885 
6886 	/* copy secindex */
6887 	memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
6888 	acq->created = time_uptime;
6889 	acq->count = 0;
6890 
6891 	return acq;
6892 }
6893 
6894 static struct secspacq *
6895 key_getspacq(const struct secpolicyindex *spidx)
6896 {
6897 	struct secspacq *acq;
6898 
6899 	LIST_FOREACH(acq, &key_misc.spacqlist, chain) {
6900 		if (key_spidx_match_exactly(spidx, &acq->spidx))
6901 			return acq;
6902 	}
6903 
6904 	return NULL;
6905 }
6906 #endif /* notyet */
6907 
6908 /*
6909  * SADB_ACQUIRE processing,
6910  * in first situation, is receiving
6911  *   <base>
6912  * from the ikmpd, and clear sequence of its secasvar entry.
6913  *
6914  * In second situation, is receiving
6915  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6916  * from a user land process, and return
6917  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6918  * to the socket.
6919  *
6920  * m will always be freed.
6921  */
6922 static int
6923 key_api_acquire(struct socket *so, struct mbuf *m,
6924       	     const struct sadb_msghdr *mhp)
6925 {
6926 	const struct sockaddr *src, *dst;
6927 	struct secasindex saidx;
6928 	u_int16_t proto;
6929 	int error;
6930 
6931 	/*
6932 	 * Error message from KMd.
6933 	 * We assume that if error was occurred in IKEd, the length of PFKEY
6934 	 * message is equal to the size of sadb_msg structure.
6935 	 * We do not raise error even if error occurred in this function.
6936 	 */
6937 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6938 #ifndef IPSEC_NONBLOCK_ACQUIRE
6939 		struct secacq *acq;
6940 
6941 		/* check sequence number */
6942 		if (mhp->msg->sadb_msg_seq == 0) {
6943 			IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
6944 			m_freem(m);
6945 			return 0;
6946 		}
6947 
6948 		mutex_enter(&key_misc.lock);
6949 		acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
6950 		if (acq == NULL) {
6951 			mutex_exit(&key_misc.lock);
6952 			/*
6953 			 * the specified larval SA is already gone, or we got
6954 			 * a bogus sequence number.  we can silently ignore it.
6955 			 */
6956 			m_freem(m);
6957 			return 0;
6958 		}
6959 
6960 		/* reset acq counter in order to deletion by timehander. */
6961 		acq->created = time_uptime;
6962 		acq->count = 0;
6963 		mutex_exit(&key_misc.lock);
6964 #endif
6965 		m_freem(m);
6966 		return 0;
6967 	}
6968 
6969 	/*
6970 	 * This message is from user land.
6971 	 */
6972 
6973 	/* map satype to proto */
6974 	proto = key_satype2proto(mhp->msg->sadb_msg_satype);
6975 	if (proto == 0) {
6976 		IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
6977 		return key_senderror(so, m, EINVAL);
6978 	}
6979 
6980 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6981 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6982 	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6983 		/* error */
6984 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6985 		return key_senderror(so, m, EINVAL);
6986 	}
6987 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6988 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6989 	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6990 		/* error */
6991 		IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
6992 		return key_senderror(so, m, EINVAL);
6993 	}
6994 
6995 	src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
6996 	dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
6997 
6998 	error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
6999 	if (error != 0)
7000 		return key_senderror(so, m, EINVAL);
7001 
7002 	error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
7003 	if (error != 0)
7004 		return key_senderror(so, m, EINVAL);
7005 
7006 	/* get a SA index */
7007     {
7008 	struct secashead *sah;
7009 	int s = pserialize_read_enter();
7010 
7011 	sah = key_getsah(&saidx, CMP_MODE_REQID);
7012 	if (sah != NULL) {
7013 		pserialize_read_exit(s);
7014 		IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
7015 		return key_senderror(so, m, EEXIST);
7016 	}
7017 	pserialize_read_exit(s);
7018     }
7019 
7020 	error = key_acquire(&saidx, NULL);
7021 	if (error != 0) {
7022 		IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
7023 		    error);
7024 		return key_senderror(so, m, error);
7025 	}
7026 
7027 	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
7028 }
7029 
7030 /*
7031  * SADB_REGISTER processing.
7032  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
7033  * receive
7034  *   <base>
7035  * from the ikmpd, and register a socket to send PF_KEY messages,
7036  * and send
7037  *   <base, supported>
7038  * to KMD by PF_KEY.
7039  * If socket is detached, must free from regnode.
7040  *
7041  * m will always be freed.
7042  */
7043 static int
7044 key_api_register(struct socket *so, struct mbuf *m,
7045 	     const struct sadb_msghdr *mhp)
7046 {
7047 	struct secreg *reg, *newreg = 0;
7048 
7049 	/* check for invalid register message */
7050 	if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist))
7051 		return key_senderror(so, m, EINVAL);
7052 
7053 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
7054 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
7055 		goto setmsg;
7056 
7057 	/* Allocate regnode in advance, out of mutex */
7058 	newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
7059 
7060 	/* check whether existing or not */
7061 	mutex_enter(&key_misc.lock);
7062 	LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) {
7063 		if (reg->so == so) {
7064 			IPSECLOG(LOG_DEBUG, "socket exists already.\n");
7065 			mutex_exit(&key_misc.lock);
7066 			kmem_free(newreg, sizeof(*newreg));
7067 			return key_senderror(so, m, EEXIST);
7068 		}
7069 	}
7070 
7071 	newreg->so = so;
7072 	((struct keycb *)sotorawcb(so))->kp_registered++;
7073 
7074 	/* add regnode to key_misc.reglist. */
7075 	LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain);
7076 	mutex_exit(&key_misc.lock);
7077 
7078   setmsg:
7079     {
7080 	struct mbuf *n;
7081 	struct sadb_supported *sup;
7082 	u_int len, alen, elen;
7083 	int off;
7084 	int i;
7085 	struct sadb_alg *alg;
7086 
7087 	/* create new sadb_msg to reply. */
7088 	alen = 0;
7089 	for (i = 1; i <= SADB_AALG_MAX; i++) {
7090 		if (ah_algorithm_lookup(i))
7091 			alen += sizeof(struct sadb_alg);
7092 	}
7093 	if (alen)
7094 		alen += sizeof(struct sadb_supported);
7095 	elen = 0;
7096 	for (i = 1; i <= SADB_EALG_MAX; i++) {
7097 		if (esp_algorithm_lookup(i))
7098 			elen += sizeof(struct sadb_alg);
7099 	}
7100 	if (elen)
7101 		elen += sizeof(struct sadb_supported);
7102 
7103 	len = sizeof(struct sadb_msg) + alen + elen;
7104 
7105 	if (len > MCLBYTES)
7106 		return key_senderror(so, m, ENOBUFS);
7107 
7108 	MGETHDR(n, M_DONTWAIT, MT_DATA);
7109 	if (len > MHLEN) {
7110 		MCLGET(n, M_DONTWAIT);
7111 		if ((n->m_flags & M_EXT) == 0) {
7112 			m_freem(n);
7113 			n = NULL;
7114 		}
7115 	}
7116 	if (!n)
7117 		return key_senderror(so, m, ENOBUFS);
7118 
7119 	n->m_pkthdr.len = n->m_len = len;
7120 	n->m_next = NULL;
7121 	off = 0;
7122 
7123 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
7124 	n = key_fill_replymsg(n, 0);
7125 	if (n == NULL)
7126 		return key_senderror(so, m, ENOBUFS);
7127 
7128 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
7129 
7130 	/* for authentication algorithm */
7131 	if (alen) {
7132 		sup = (struct sadb_supported *)(mtod(n, char *) + off);
7133 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
7134 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
7135 		off += PFKEY_ALIGN8(sizeof(*sup));
7136 
7137 		for (i = 1; i <= SADB_AALG_MAX; i++) {
7138 			const struct auth_hash *aalgo;
7139 			u_int16_t minkeysize, maxkeysize;
7140 
7141 			aalgo = ah_algorithm_lookup(i);
7142 			if (!aalgo)
7143 				continue;
7144 			alg = (struct sadb_alg *)(mtod(n, char *) + off);
7145 			alg->sadb_alg_id = i;
7146 			alg->sadb_alg_ivlen = 0;
7147 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
7148 			alg->sadb_alg_minbits = _BITS(minkeysize);
7149 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
7150 			off += PFKEY_ALIGN8(sizeof(*alg));
7151 		}
7152 	}
7153 
7154 	/* for encryption algorithm */
7155 	if (elen) {
7156 		sup = (struct sadb_supported *)(mtod(n, char *) + off);
7157 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
7158 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
7159 		off += PFKEY_ALIGN8(sizeof(*sup));
7160 
7161 		for (i = 1; i <= SADB_EALG_MAX; i++) {
7162 			const struct enc_xform *ealgo;
7163 
7164 			ealgo = esp_algorithm_lookup(i);
7165 			if (!ealgo)
7166 				continue;
7167 			alg = (struct sadb_alg *)(mtod(n, char *) + off);
7168 			alg->sadb_alg_id = i;
7169 			alg->sadb_alg_ivlen = ealgo->blocksize;
7170 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
7171 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
7172 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
7173 		}
7174 	}
7175 
7176 	KASSERTMSG(off == len, "length inconsistency");
7177 
7178 	m_freem(m);
7179 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
7180     }
7181 }
7182 
7183 /*
7184  * free secreg entry registered.
7185  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
7186  */
7187 void
7188 key_freereg(struct socket *so)
7189 {
7190 	struct secreg *reg;
7191 	int i;
7192 
7193 	KASSERT(!cpu_softintr_p());
7194 	KASSERT(so != NULL);
7195 
7196 	/*
7197 	 * check whether existing or not.
7198 	 * check all type of SA, because there is a potential that
7199 	 * one socket is registered to multiple type of SA.
7200 	 */
7201 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7202 		mutex_enter(&key_misc.lock);
7203 		LIST_FOREACH(reg, &key_misc.reglist[i], chain) {
7204 			if (reg->so == so) {
7205 				LIST_REMOVE(reg, chain);
7206 				break;
7207 			}
7208 		}
7209 		mutex_exit(&key_misc.lock);
7210 		if (reg != NULL)
7211 			kmem_free(reg, sizeof(*reg));
7212 	}
7213 
7214 	return;
7215 }
7216 
7217 /*
7218  * SADB_EXPIRE processing
7219  * send
7220  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
7221  * to KMD by PF_KEY.
7222  * NOTE: We send only soft lifetime extension.
7223  *
7224  * OUT:	0	: succeed
7225  *	others	: error number
7226  */
7227 static int
7228 key_expire(struct secasvar *sav)
7229 {
7230 	int s;
7231 	int satype;
7232 	struct mbuf *result = NULL, *m;
7233 	int len;
7234 	int error = -1;
7235 	struct sadb_lifetime *lt;
7236 
7237 	/* XXX: Why do we lock ? */
7238 	s = splsoftnet();	/*called from softclock()*/
7239 
7240 	KASSERT(sav != NULL);
7241 
7242 	satype = key_proto2satype(sav->sah->saidx.proto);
7243 	KASSERTMSG(satype != 0, "invalid proto is passed");
7244 
7245 	/* set msg header */
7246 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav));
7247 	if (!m) {
7248 		error = ENOBUFS;
7249 		goto fail;
7250 	}
7251 	result = m;
7252 
7253 	/* create SA extension */
7254 	m = key_setsadbsa(sav);
7255 	if (!m) {
7256 		error = ENOBUFS;
7257 		goto fail;
7258 	}
7259 	m_cat(result, m);
7260 
7261 	/* create SA extension */
7262 	m = key_setsadbxsa2(sav->sah->saidx.mode,
7263 	    sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
7264 	if (!m) {
7265 		error = ENOBUFS;
7266 		goto fail;
7267 	}
7268 	m_cat(result, m);
7269 
7270 	/* create lifetime extension (current and soft) */
7271 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
7272 	m = key_alloc_mbuf(len);
7273 	if (!m || m->m_next) {	/*XXX*/
7274 		if (m)
7275 			m_freem(m);
7276 		error = ENOBUFS;
7277 		goto fail;
7278 	}
7279 	memset(mtod(m, void *), 0, len);
7280 	lt = mtod(m, struct sadb_lifetime *);
7281 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
7282 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
7283 	lt->sadb_lifetime_allocations = sav->lft_c->sadb_lifetime_allocations;
7284 	lt->sadb_lifetime_bytes = sav->lft_c->sadb_lifetime_bytes;
7285 	lt->sadb_lifetime_addtime =
7286 	    time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
7287 	lt->sadb_lifetime_usetime =
7288 	    time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
7289 	lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
7290 	memcpy(lt, sav->lft_s, sizeof(*lt));
7291 	m_cat(result, m);
7292 
7293 	/* set sadb_address for source */
7294 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
7295 	    FULLMASK, IPSEC_ULPROTO_ANY);
7296 	if (!m) {
7297 		error = ENOBUFS;
7298 		goto fail;
7299 	}
7300 	m_cat(result, m);
7301 
7302 	/* set sadb_address for destination */
7303 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
7304 	    FULLMASK, IPSEC_ULPROTO_ANY);
7305 	if (!m) {
7306 		error = ENOBUFS;
7307 		goto fail;
7308 	}
7309 	m_cat(result, m);
7310 
7311 	if ((result->m_flags & M_PKTHDR) == 0) {
7312 		error = EINVAL;
7313 		goto fail;
7314 	}
7315 
7316 	if (result->m_len < sizeof(struct sadb_msg)) {
7317 		result = m_pullup(result, sizeof(struct sadb_msg));
7318 		if (result == NULL) {
7319 			error = ENOBUFS;
7320 			goto fail;
7321 		}
7322 	}
7323 
7324 	result->m_pkthdr.len = 0;
7325 	for (m = result; m; m = m->m_next)
7326 		result->m_pkthdr.len += m->m_len;
7327 
7328 	mtod(result, struct sadb_msg *)->sadb_msg_len =
7329 	    PFKEY_UNIT64(result->m_pkthdr.len);
7330 
7331 	splx(s);
7332 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7333 
7334  fail:
7335 	if (result)
7336 		m_freem(result);
7337 	splx(s);
7338 	return error;
7339 }
7340 
7341 /*
7342  * SADB_FLUSH processing
7343  * receive
7344  *   <base>
7345  * from the ikmpd, and free all entries in secastree.
7346  * and send,
7347  *   <base>
7348  * to the ikmpd.
7349  * NOTE: to do is only marking SADB_SASTATE_DEAD.
7350  *
7351  * m will always be freed.
7352  */
7353 static int
7354 key_api_flush(struct socket *so, struct mbuf *m,
7355           const struct sadb_msghdr *mhp)
7356 {
7357 	struct sadb_msg *newmsg;
7358 	struct secashead *sah;
7359 	struct secasvar *sav;
7360 	u_int16_t proto;
7361 	u_int8_t state;
7362 	int s;
7363 
7364 	/* map satype to proto */
7365 	proto = key_satype2proto(mhp->msg->sadb_msg_satype);
7366 	if (proto == 0) {
7367 		IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7368 		return key_senderror(so, m, EINVAL);
7369 	}
7370 
7371 	/* no SATYPE specified, i.e. flushing all SA. */
7372 	s = pserialize_read_enter();
7373 	SAHLIST_READER_FOREACH(sah) {
7374 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
7375 		    proto != sah->saidx.proto)
7376 			continue;
7377 
7378 		key_sah_ref(sah);
7379 		pserialize_read_exit(s);
7380 
7381 		SASTATE_ALIVE_FOREACH(state) {
7382 		restart:
7383 			mutex_enter(&key_sad.lock);
7384 			SAVLIST_WRITER_FOREACH(sav, sah, state) {
7385 				sav->state = SADB_SASTATE_DEAD;
7386 				key_unlink_sav(sav);
7387 				mutex_exit(&key_sad.lock);
7388 				key_destroy_sav(sav);
7389 				goto restart;
7390 			}
7391 			mutex_exit(&key_sad.lock);
7392 		}
7393 
7394 		s = pserialize_read_enter();
7395 		sah->state = SADB_SASTATE_DEAD;
7396 		key_sah_unref(sah);
7397 	}
7398 	pserialize_read_exit(s);
7399 
7400 	if (m->m_len < sizeof(struct sadb_msg) ||
7401 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7402 		IPSECLOG(LOG_DEBUG, "No more memory.\n");
7403 		return key_senderror(so, m, ENOBUFS);
7404 	}
7405 
7406 	if (m->m_next)
7407 		m_freem(m->m_next);
7408 	m->m_next = NULL;
7409 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7410 	newmsg = mtod(m, struct sadb_msg *);
7411 	newmsg->sadb_msg_errno = 0;
7412 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7413 
7414 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7415 }
7416 
7417 
7418 static struct mbuf *
7419 key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
7420 {
7421 	struct secashead *sah;
7422 	struct secasvar *sav;
7423 	u_int16_t proto;
7424 	u_int8_t satype;
7425 	u_int8_t state;
7426 	int cnt;
7427 	struct mbuf *m, *n, *prev;
7428 
7429 	KASSERT(mutex_owned(&key_sad.lock));
7430 
7431 	*lenp = 0;
7432 
7433 	/* map satype to proto */
7434 	proto = key_satype2proto(req_satype);
7435 	if (proto == 0) {
7436 		*errorp = EINVAL;
7437 		return (NULL);
7438 	}
7439 
7440 	/* count sav entries to be sent to userland. */
7441 	cnt = 0;
7442 	SAHLIST_WRITER_FOREACH(sah) {
7443 		if (req_satype != SADB_SATYPE_UNSPEC &&
7444 		    proto != sah->saidx.proto)
7445 			continue;
7446 
7447 		SASTATE_ANY_FOREACH(state) {
7448 			SAVLIST_WRITER_FOREACH(sav, sah, state) {
7449 				cnt++;
7450 			}
7451 		}
7452 	}
7453 
7454 	if (cnt == 0) {
7455 		*errorp = ENOENT;
7456 		return (NULL);
7457 	}
7458 
7459 	/* send this to the userland, one at a time. */
7460 	m = NULL;
7461 	prev = m;
7462 	SAHLIST_WRITER_FOREACH(sah) {
7463 		if (req_satype != SADB_SATYPE_UNSPEC &&
7464 		    proto != sah->saidx.proto)
7465 			continue;
7466 
7467 		/* map proto to satype */
7468 		satype = key_proto2satype(sah->saidx.proto);
7469 		if (satype == 0) {
7470 			m_freem(m);
7471 			*errorp = EINVAL;
7472 			return (NULL);
7473 		}
7474 
7475 		SASTATE_ANY_FOREACH(state) {
7476 			SAVLIST_WRITER_FOREACH(sav, sah, state) {
7477 				n = key_setdumpsa(sav, SADB_DUMP, satype,
7478 				    --cnt, pid);
7479 				if (!n) {
7480 					m_freem(m);
7481 					*errorp = ENOBUFS;
7482 					return (NULL);
7483 				}
7484 
7485 				if (!m)
7486 					m = n;
7487 				else
7488 					prev->m_nextpkt = n;
7489 				prev = n;
7490 			}
7491 		}
7492 	}
7493 
7494 	if (!m) {
7495 		*errorp = EINVAL;
7496 		return (NULL);
7497 	}
7498 
7499 	if ((m->m_flags & M_PKTHDR) != 0) {
7500 		m->m_pkthdr.len = 0;
7501 		for (n = m; n; n = n->m_next)
7502 			m->m_pkthdr.len += n->m_len;
7503 	}
7504 
7505 	*errorp = 0;
7506 	return (m);
7507 }
7508 
7509 /*
7510  * SADB_DUMP processing
7511  * dump all entries including status of DEAD in SAD.
7512  * receive
7513  *   <base>
7514  * from the ikmpd, and dump all secasvar leaves
7515  * and send,
7516  *   <base> .....
7517  * to the ikmpd.
7518  *
7519  * m will always be freed.
7520  */
7521 static int
7522 key_api_dump(struct socket *so, struct mbuf *m0,
7523 	 const struct sadb_msghdr *mhp)
7524 {
7525 	u_int16_t proto;
7526 	u_int8_t satype;
7527 	struct mbuf *n;
7528 	int error, len, ok;
7529 
7530 	/* map satype to proto */
7531 	satype = mhp->msg->sadb_msg_satype;
7532 	proto = key_satype2proto(satype);
7533 	if (proto == 0) {
7534 		IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
7535 		return key_senderror(so, m0, EINVAL);
7536 	}
7537 
7538 	/*
7539 	 * If the requestor has insufficient socket-buffer space
7540 	 * for the entire chain, nobody gets any response to the DUMP.
7541 	 * XXX For now, only the requestor ever gets anything.
7542 	 * Moreover, if the requestor has any space at all, they receive
7543 	 * the entire chain, otherwise the request is refused with ENOBUFS.
7544 	 */
7545 	if (sbspace(&so->so_rcv) <= 0) {
7546 		return key_senderror(so, m0, ENOBUFS);
7547 	}
7548 
7549 	mutex_enter(&key_sad.lock);
7550 	n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
7551 	mutex_exit(&key_sad.lock);
7552 
7553 	if (n == NULL) {
7554 		return key_senderror(so, m0, ENOENT);
7555 	}
7556 	{
7557 		uint64_t *ps = PFKEY_STAT_GETREF();
7558 		ps[PFKEY_STAT_IN_TOTAL]++;
7559 		ps[PFKEY_STAT_IN_BYTES] += len;
7560 		PFKEY_STAT_PUTREF();
7561 	}
7562 
7563 	/*
7564 	 * PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
7565 	 * The requestor receives either the entire chain, or an
7566 	 * error message with ENOBUFS.
7567 	 *
7568 	 * sbappendaddrchain() takes the chain of entries, one
7569 	 * packet-record per SPD entry, prepends the key_src sockaddr
7570 	 * to each packet-record, links the sockaddr mbufs into a new
7571 	 * list of records, then   appends the entire resulting
7572 	 * list to the requesting socket.
7573 	 */
7574 	ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
7575 	    SB_PRIO_ONESHOT_OVERFLOW);
7576 
7577 	if (!ok) {
7578 		PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
7579 		m_freem(n);
7580 		return key_senderror(so, m0, ENOBUFS);
7581 	}
7582 
7583 	m_freem(m0);
7584 	return 0;
7585 }
7586 
7587 /*
7588  * SADB_X_PROMISC processing
7589  *
7590  * m will always be freed.
7591  */
7592 static int
7593 key_api_promisc(struct socket *so, struct mbuf *m,
7594 	    const struct sadb_msghdr *mhp)
7595 {
7596 	int olen;
7597 
7598 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7599 
7600 	if (olen < sizeof(struct sadb_msg)) {
7601 #if 1
7602 		return key_senderror(so, m, EINVAL);
7603 #else
7604 		m_freem(m);
7605 		return 0;
7606 #endif
7607 	} else if (olen == sizeof(struct sadb_msg)) {
7608 		/* enable/disable promisc mode */
7609 		struct keycb *kp = (struct keycb *)sotorawcb(so);
7610 		if (kp == NULL)
7611 			return key_senderror(so, m, EINVAL);
7612 		mhp->msg->sadb_msg_errno = 0;
7613 		switch (mhp->msg->sadb_msg_satype) {
7614 		case 0:
7615 		case 1:
7616 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
7617 			break;
7618 		default:
7619 			return key_senderror(so, m, EINVAL);
7620 		}
7621 
7622 		/* send the original message back to everyone */
7623 		mhp->msg->sadb_msg_errno = 0;
7624 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7625 	} else {
7626 		/* send packet as is */
7627 
7628 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7629 
7630 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
7631 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7632 	}
7633 }
7634 
7635 static int (*key_api_typesw[]) (struct socket *, struct mbuf *,
7636 		const struct sadb_msghdr *) = {
7637 	NULL,			/* SADB_RESERVED */
7638 	key_api_getspi,		/* SADB_GETSPI */
7639 	key_api_update,		/* SADB_UPDATE */
7640 	key_api_add,		/* SADB_ADD */
7641 	key_api_delete,		/* SADB_DELETE */
7642 	key_api_get,		/* SADB_GET */
7643 	key_api_acquire,	/* SADB_ACQUIRE */
7644 	key_api_register,	/* SADB_REGISTER */
7645 	NULL,			/* SADB_EXPIRE */
7646 	key_api_flush,		/* SADB_FLUSH */
7647 	key_api_dump,		/* SADB_DUMP */
7648 	key_api_promisc,	/* SADB_X_PROMISC */
7649 	NULL,			/* SADB_X_PCHANGE */
7650 	key_api_spdadd,		/* SADB_X_SPDUPDATE */
7651 	key_api_spdadd,		/* SADB_X_SPDADD */
7652 	key_api_spddelete,	/* SADB_X_SPDDELETE */
7653 	key_api_spdget,		/* SADB_X_SPDGET */
7654 	NULL,			/* SADB_X_SPDACQUIRE */
7655 	key_api_spddump,	/* SADB_X_SPDDUMP */
7656 	key_api_spdflush,	/* SADB_X_SPDFLUSH */
7657 	key_api_spdadd,		/* SADB_X_SPDSETIDX */
7658 	NULL,			/* SADB_X_SPDEXPIRE */
7659 	key_api_spddelete2,	/* SADB_X_SPDDELETE2 */
7660 	key_api_nat_map,	/* SADB_X_NAT_T_NEW_MAPPING */
7661 };
7662 
7663 /*
7664  * parse sadb_msg buffer to process PFKEYv2,
7665  * and create a data to response if needed.
7666  * I think to be dealed with mbuf directly.
7667  * IN:
7668  *     msgp  : pointer to pointer to a received buffer pulluped.
7669  *             This is rewrited to response.
7670  *     so    : pointer to socket.
7671  * OUT:
7672  *    length for buffer to send to user process.
7673  */
7674 int
7675 key_parse(struct mbuf *m, struct socket *so)
7676 {
7677 	struct sadb_msg *msg;
7678 	struct sadb_msghdr mh;
7679 	u_int orglen;
7680 	int error;
7681 
7682 	KASSERT(m != NULL);
7683 	KASSERT(so != NULL);
7684 
7685 #if 0	/*kdebug_sadb assumes msg in linear buffer*/
7686 	if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
7687 		kdebug_sadb("passed sadb_msg", msg);
7688 	}
7689 #endif
7690 
7691 	if (m->m_len < sizeof(struct sadb_msg)) {
7692 		m = m_pullup(m, sizeof(struct sadb_msg));
7693 		if (!m)
7694 			return ENOBUFS;
7695 	}
7696 	msg = mtod(m, struct sadb_msg *);
7697 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7698 
7699 	if ((m->m_flags & M_PKTHDR) == 0 ||
7700 	    m->m_pkthdr.len != orglen) {
7701 		IPSECLOG(LOG_DEBUG, "invalid message length.\n");
7702 		PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
7703 		error = EINVAL;
7704 		goto senderror;
7705 	}
7706 
7707 	if (msg->sadb_msg_version != PF_KEY_V2) {
7708 		IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
7709 		    msg->sadb_msg_version);
7710 		PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
7711 		error = EINVAL;
7712 		goto senderror;
7713 	}
7714 
7715 	if (msg->sadb_msg_type > SADB_MAX) {
7716 		IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7717 		    msg->sadb_msg_type);
7718 		PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7719 		error = EINVAL;
7720 		goto senderror;
7721 	}
7722 
7723 	/* for old-fashioned code - should be nuked */
7724 	if (m->m_pkthdr.len > MCLBYTES) {
7725 		m_freem(m);
7726 		return ENOBUFS;
7727 	}
7728 	if (m->m_next) {
7729 		struct mbuf *n;
7730 
7731 		MGETHDR(n, M_DONTWAIT, MT_DATA);
7732 		if (n && m->m_pkthdr.len > MHLEN) {
7733 			MCLGET(n, M_DONTWAIT);
7734 			if ((n->m_flags & M_EXT) == 0) {
7735 				m_free(n);
7736 				n = NULL;
7737 			}
7738 		}
7739 		if (!n) {
7740 			m_freem(m);
7741 			return ENOBUFS;
7742 		}
7743 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
7744 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7745 		n->m_next = NULL;
7746 		m_freem(m);
7747 		m = n;
7748 	}
7749 
7750 	/* align the mbuf chain so that extensions are in contiguous region. */
7751 	error = key_align(m, &mh);
7752 	if (error)
7753 		return error;
7754 
7755 	if (m->m_next) {	/*XXX*/
7756 		m_freem(m);
7757 		return ENOBUFS;
7758 	}
7759 
7760 	msg = mh.msg;
7761 
7762 	/* check SA type */
7763 	switch (msg->sadb_msg_satype) {
7764 	case SADB_SATYPE_UNSPEC:
7765 		switch (msg->sadb_msg_type) {
7766 		case SADB_GETSPI:
7767 		case SADB_UPDATE:
7768 		case SADB_ADD:
7769 		case SADB_DELETE:
7770 		case SADB_GET:
7771 		case SADB_ACQUIRE:
7772 		case SADB_EXPIRE:
7773 			IPSECLOG(LOG_DEBUG,
7774 			    "must specify satype when msg type=%u.\n",
7775 			    msg->sadb_msg_type);
7776 			PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7777 			error = EINVAL;
7778 			goto senderror;
7779 		}
7780 		break;
7781 	case SADB_SATYPE_AH:
7782 	case SADB_SATYPE_ESP:
7783 	case SADB_X_SATYPE_IPCOMP:
7784 	case SADB_X_SATYPE_TCPSIGNATURE:
7785 		switch (msg->sadb_msg_type) {
7786 		case SADB_X_SPDADD:
7787 		case SADB_X_SPDDELETE:
7788 		case SADB_X_SPDGET:
7789 		case SADB_X_SPDDUMP:
7790 		case SADB_X_SPDFLUSH:
7791 		case SADB_X_SPDSETIDX:
7792 		case SADB_X_SPDUPDATE:
7793 		case SADB_X_SPDDELETE2:
7794 			IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
7795 			    msg->sadb_msg_type);
7796 			PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7797 			error = EINVAL;
7798 			goto senderror;
7799 		}
7800 		break;
7801 	case SADB_SATYPE_RSVP:
7802 	case SADB_SATYPE_OSPFV2:
7803 	case SADB_SATYPE_RIPV2:
7804 	case SADB_SATYPE_MIP:
7805 		IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
7806 		    msg->sadb_msg_satype);
7807 		PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7808 		error = EOPNOTSUPP;
7809 		goto senderror;
7810 	case 1:	/* XXX: What does it do? */
7811 		if (msg->sadb_msg_type == SADB_X_PROMISC)
7812 			break;
7813 		/*FALLTHROUGH*/
7814 	default:
7815 		IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
7816 		    msg->sadb_msg_satype);
7817 		PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
7818 		error = EINVAL;
7819 		goto senderror;
7820 	}
7821 
7822 	/* check field of upper layer protocol and address family */
7823 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
7824 	    mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7825 		const struct sadb_address *src0, *dst0;
7826 		const struct sockaddr *sa0, *da0;
7827 		u_int plen;
7828 
7829 		src0 = mh.ext[SADB_EXT_ADDRESS_SRC];
7830 		dst0 = mh.ext[SADB_EXT_ADDRESS_DST];
7831 		sa0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_SRC);
7832 		da0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_DST);
7833 
7834 		/* check upper layer protocol */
7835 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7836 			IPSECLOG(LOG_DEBUG,
7837 			    "upper layer protocol mismatched.\n");
7838 			goto invaddr;
7839 		}
7840 
7841 		/* check family */
7842 		if (sa0->sa_family != da0->sa_family) {
7843 			IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
7844 			goto invaddr;
7845 		}
7846 		if (sa0->sa_len != da0->sa_len) {
7847 			IPSECLOG(LOG_DEBUG,
7848 			    "address struct size mismatched.\n");
7849 			goto invaddr;
7850 		}
7851 
7852 		switch (sa0->sa_family) {
7853 		case AF_INET:
7854 			if (sa0->sa_len != sizeof(struct sockaddr_in))
7855 				goto invaddr;
7856 			break;
7857 		case AF_INET6:
7858 			if (sa0->sa_len != sizeof(struct sockaddr_in6))
7859 				goto invaddr;
7860 			break;
7861 		default:
7862 			IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
7863 			error = EAFNOSUPPORT;
7864 			goto senderror;
7865 		}
7866 
7867 		switch (sa0->sa_family) {
7868 		case AF_INET:
7869 			plen = sizeof(struct in_addr) << 3;
7870 			break;
7871 		case AF_INET6:
7872 			plen = sizeof(struct in6_addr) << 3;
7873 			break;
7874 		default:
7875 			plen = 0;	/*fool gcc*/
7876 			break;
7877 		}
7878 
7879 		/* check max prefix length */
7880 		if (src0->sadb_address_prefixlen > plen ||
7881 		    dst0->sadb_address_prefixlen > plen) {
7882 			IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
7883 			goto invaddr;
7884 		}
7885 
7886 		/*
7887 		 * prefixlen == 0 is valid because there can be a case when
7888 		 * all addresses are matched.
7889 		 */
7890 	}
7891 
7892 	if (msg->sadb_msg_type >= __arraycount(key_api_typesw) ||
7893 	    key_api_typesw[msg->sadb_msg_type] == NULL) {
7894 		PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
7895 		error = EINVAL;
7896 		goto senderror;
7897 	}
7898 
7899 	return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh);
7900 
7901 invaddr:
7902 	error = EINVAL;
7903 senderror:
7904 	PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
7905 	return key_senderror(so, m, error);
7906 }
7907 
7908 static int
7909 key_senderror(struct socket *so, struct mbuf *m, int code)
7910 {
7911 	struct sadb_msg *msg;
7912 
7913 	KASSERT(m->m_len >= sizeof(struct sadb_msg));
7914 
7915 	msg = mtod(m, struct sadb_msg *);
7916 	msg->sadb_msg_errno = code;
7917 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7918 }
7919 
7920 /*
7921  * set the pointer to each header into message buffer.
7922  * m will be freed on error.
7923  * XXX larger-than-MCLBYTES extension?
7924  */
7925 static int
7926 key_align(struct mbuf *m, struct sadb_msghdr *mhp)
7927 {
7928 	struct mbuf *n;
7929 	struct sadb_ext *ext;
7930 	size_t off, end;
7931 	int extlen;
7932 	int toff;
7933 
7934 	KASSERT(m != NULL);
7935 	KASSERT(mhp != NULL);
7936 	KASSERT(m->m_len >= sizeof(struct sadb_msg));
7937 
7938 	/* initialize */
7939 	memset(mhp, 0, sizeof(*mhp));
7940 
7941 	mhp->msg = mtod(m, struct sadb_msg *);
7942 	mhp->ext[0] = mhp->msg;	/*XXX backward compat */
7943 
7944 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7945 	extlen = end;	/*just in case extlen is not updated*/
7946 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7947 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7948 		if (!n) {
7949 			/* m is already freed */
7950 			return ENOBUFS;
7951 		}
7952 		ext = (struct sadb_ext *)(mtod(n, char *) + toff);
7953 
7954 		/* set pointer */
7955 		switch (ext->sadb_ext_type) {
7956 		case SADB_EXT_SA:
7957 		case SADB_EXT_ADDRESS_SRC:
7958 		case SADB_EXT_ADDRESS_DST:
7959 		case SADB_EXT_ADDRESS_PROXY:
7960 		case SADB_EXT_LIFETIME_CURRENT:
7961 		case SADB_EXT_LIFETIME_HARD:
7962 		case SADB_EXT_LIFETIME_SOFT:
7963 		case SADB_EXT_KEY_AUTH:
7964 		case SADB_EXT_KEY_ENCRYPT:
7965 		case SADB_EXT_IDENTITY_SRC:
7966 		case SADB_EXT_IDENTITY_DST:
7967 		case SADB_EXT_SENSITIVITY:
7968 		case SADB_EXT_PROPOSAL:
7969 		case SADB_EXT_SUPPORTED_AUTH:
7970 		case SADB_EXT_SUPPORTED_ENCRYPT:
7971 		case SADB_EXT_SPIRANGE:
7972 		case SADB_X_EXT_POLICY:
7973 		case SADB_X_EXT_SA2:
7974 		case SADB_X_EXT_NAT_T_TYPE:
7975 		case SADB_X_EXT_NAT_T_SPORT:
7976 		case SADB_X_EXT_NAT_T_DPORT:
7977 		case SADB_X_EXT_NAT_T_OAI:
7978 		case SADB_X_EXT_NAT_T_OAR:
7979 		case SADB_X_EXT_NAT_T_FRAG:
7980 			/* duplicate check */
7981 			/*
7982 			 * XXX Are there duplication payloads of either
7983 			 * KEY_AUTH or KEY_ENCRYPT ?
7984 			 */
7985 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
7986 				IPSECLOG(LOG_DEBUG,
7987 				    "duplicate ext_type %u is passed.\n",
7988 				    ext->sadb_ext_type);
7989 				m_freem(m);
7990 				PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
7991 				return EINVAL;
7992 			}
7993 			break;
7994 		default:
7995 			IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
7996 			    ext->sadb_ext_type);
7997 			m_freem(m);
7998 			PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
7999 			return EINVAL;
8000 		}
8001 
8002 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
8003 
8004 		if (key_validate_ext(ext, extlen)) {
8005 			m_freem(m);
8006 			PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
8007 			return EINVAL;
8008 		}
8009 
8010 		n = m_pulldown(m, off, extlen, &toff);
8011 		if (!n) {
8012 			/* m is already freed */
8013 			return ENOBUFS;
8014 		}
8015 		ext = (struct sadb_ext *)(mtod(n, char *) + toff);
8016 
8017 		mhp->ext[ext->sadb_ext_type] = ext;
8018 		mhp->extoff[ext->sadb_ext_type] = off;
8019 		mhp->extlen[ext->sadb_ext_type] = extlen;
8020 	}
8021 
8022 	if (off != end) {
8023 		m_freem(m);
8024 		PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
8025 		return EINVAL;
8026 	}
8027 
8028 	return 0;
8029 }
8030 
8031 static int
8032 key_validate_ext(const struct sadb_ext *ext, int len)
8033 {
8034 	const struct sockaddr *sa;
8035 	enum { NONE, ADDR } checktype = NONE;
8036 	int baselen = 0;
8037 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
8038 
8039 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
8040 		return EINVAL;
8041 
8042 	/* if it does not match minimum/maximum length, bail */
8043 	if (ext->sadb_ext_type >= __arraycount(minsize) ||
8044 	    ext->sadb_ext_type >= __arraycount(maxsize))
8045 		return EINVAL;
8046 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
8047 		return EINVAL;
8048 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
8049 		return EINVAL;
8050 
8051 	/* more checks based on sadb_ext_type XXX need more */
8052 	switch (ext->sadb_ext_type) {
8053 	case SADB_EXT_ADDRESS_SRC:
8054 	case SADB_EXT_ADDRESS_DST:
8055 	case SADB_EXT_ADDRESS_PROXY:
8056 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
8057 		checktype = ADDR;
8058 		break;
8059 	case SADB_EXT_IDENTITY_SRC:
8060 	case SADB_EXT_IDENTITY_DST:
8061 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
8062 		    SADB_X_IDENTTYPE_ADDR) {
8063 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
8064 			checktype = ADDR;
8065 		} else
8066 			checktype = NONE;
8067 		break;
8068 	default:
8069 		checktype = NONE;
8070 		break;
8071 	}
8072 
8073 	switch (checktype) {
8074 	case NONE:
8075 		break;
8076 	case ADDR:
8077 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
8078 		if (len < baselen + sal)
8079 			return EINVAL;
8080 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
8081 			return EINVAL;
8082 		break;
8083 	}
8084 
8085 	return 0;
8086 }
8087 
8088 static int
8089 key_do_init(void)
8090 {
8091 	int i, error;
8092 
8093 	mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE);
8094 
8095 	mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE);
8096 	cv_init(&key_spd.cv_lc, "key_sp_lc");
8097 	key_spd.psz = pserialize_create();
8098 	cv_init(&key_spd.cv_psz, "key_sp_psz");
8099 	key_spd.psz_performing = false;
8100 
8101 	mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE);
8102 	cv_init(&key_sad.cv_lc, "key_sa_lc");
8103 	key_sad.psz = pserialize_create();
8104 	cv_init(&key_sad.cv_psz, "key_sa_psz");
8105 	key_sad.psz_performing = false;
8106 
8107 	pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
8108 
8109 	callout_init(&key_timehandler_ch, CALLOUT_MPSAFE);
8110 	error = workqueue_create(&key_timehandler_wq, "key_timehandler",
8111 	    key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
8112 	if (error != 0)
8113 		panic("%s: workqueue_create failed (%d)\n", __func__, error);
8114 
8115 	for (i = 0; i < IPSEC_DIR_MAX; i++) {
8116 		PSLIST_INIT(&key_spd.splist[i]);
8117 	}
8118 
8119 	PSLIST_INIT(&key_spd.socksplist);
8120 
8121 	PSLIST_INIT(&key_sad.sahlist);
8122 
8123 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
8124 		LIST_INIT(&key_misc.reglist[i]);
8125 	}
8126 
8127 #ifndef IPSEC_NONBLOCK_ACQUIRE
8128 	LIST_INIT(&key_misc.acqlist);
8129 #endif
8130 #ifdef notyet
8131 	LIST_INIT(&key_misc.spacqlist);
8132 #endif
8133 
8134 	/* system default */
8135 	ip4_def_policy.policy = IPSEC_POLICY_NONE;
8136 	ip4_def_policy.state = IPSEC_SPSTATE_ALIVE;
8137 	localcount_init(&ip4_def_policy.localcount);
8138 
8139 #ifdef INET6
8140 	ip6_def_policy.policy = IPSEC_POLICY_NONE;
8141 	ip6_def_policy.state = IPSEC_SPSTATE_ALIVE;
8142 	localcount_init(&ip6_def_policy.localcount);
8143 #endif
8144 
8145 	callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
8146 
8147 	/* initialize key statistics */
8148 	keystat.getspi_count = 1;
8149 
8150 	aprint_verbose("IPsec: Initialized Security Association Processing.\n");
8151 
8152 	return (0);
8153 }
8154 
8155 void
8156 key_init(void)
8157 {
8158 	static ONCE_DECL(key_init_once);
8159 
8160 	sysctl_net_keyv2_setup(NULL);
8161 	sysctl_net_key_compat_setup(NULL);
8162 
8163 	RUN_ONCE(&key_init_once, key_do_init);
8164 
8165 	key_init_so();
8166 }
8167 
8168 /*
8169  * XXX: maybe This function is called after INBOUND IPsec processing.
8170  *
8171  * Special check for tunnel-mode packets.
8172  * We must make some checks for consistency between inner and outer IP header.
8173  *
8174  * xxx more checks to be provided
8175  */
8176 int
8177 key_checktunnelsanity(
8178     struct secasvar *sav,
8179     u_int family,
8180     void *src,
8181     void *dst
8182 )
8183 {
8184 
8185 	/* XXX: check inner IP header */
8186 
8187 	return 1;
8188 }
8189 
8190 #if 0
8191 #define hostnamelen	strlen(hostname)
8192 
8193 /*
8194  * Get FQDN for the host.
8195  * If the administrator configured hostname (by hostname(1)) without
8196  * domain name, returns nothing.
8197  */
8198 static const char *
8199 key_getfqdn(void)
8200 {
8201 	int i;
8202 	int hasdot;
8203 	static char fqdn[MAXHOSTNAMELEN + 1];
8204 
8205 	if (!hostnamelen)
8206 		return NULL;
8207 
8208 	/* check if it comes with domain name. */
8209 	hasdot = 0;
8210 	for (i = 0; i < hostnamelen; i++) {
8211 		if (hostname[i] == '.')
8212 			hasdot++;
8213 	}
8214 	if (!hasdot)
8215 		return NULL;
8216 
8217 	/* NOTE: hostname may not be NUL-terminated. */
8218 	memset(fqdn, 0, sizeof(fqdn));
8219 	memcpy(fqdn, hostname, hostnamelen);
8220 	fqdn[hostnamelen] = '\0';
8221 	return fqdn;
8222 }
8223 
8224 /*
8225  * get username@FQDN for the host/user.
8226  */
8227 static const char *
8228 key_getuserfqdn(void)
8229 {
8230 	const char *host;
8231 	static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
8232 	struct proc *p = curproc;
8233 	char *q;
8234 
8235 	if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
8236 		return NULL;
8237 	if (!(host = key_getfqdn()))
8238 		return NULL;
8239 
8240 	/* NOTE: s_login may not be-NUL terminated. */
8241 	memset(userfqdn, 0, sizeof(userfqdn));
8242 	memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
8243 	userfqdn[MAXLOGNAME] = '\0';	/* safeguard */
8244 	q = userfqdn + strlen(userfqdn);
8245 	*q++ = '@';
8246 	memcpy(q, host, strlen(host));
8247 	q += strlen(host);
8248 	*q++ = '\0';
8249 
8250 	return userfqdn;
8251 }
8252 #endif
8253 
8254 /* record data transfer on SA, and update timestamps */
8255 void
8256 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
8257 {
8258 
8259 	KASSERT(sav != NULL);
8260 	KASSERT(sav->lft_c != NULL);
8261 	KASSERT(m != NULL);
8262 
8263 	/*
8264 	 * XXX Currently, there is a difference of bytes size
8265 	 * between inbound and outbound processing.
8266 	 */
8267 	sav->lft_c->sadb_lifetime_bytes += m->m_pkthdr.len;
8268 	/* to check bytes lifetime is done in key_timehandler(). */
8269 
8270 	/*
8271 	 * We use the number of packets as the unit of
8272 	 * sadb_lifetime_allocations.  We increment the variable
8273 	 * whenever {esp,ah}_{in,out}put is called.
8274 	 */
8275 	sav->lft_c->sadb_lifetime_allocations++;
8276 	/* XXX check for expires? */
8277 
8278 	/*
8279 	 * NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
8280 	 * in seconds.  HARD and SOFT lifetime are measured by the time
8281 	 * difference (again in seconds) from sadb_lifetime_usetime.
8282 	 *
8283 	 *	usetime
8284 	 *	v     expire   expire
8285 	 * -----+-----+--------+---> t
8286 	 *	<--------------> HARD
8287 	 *	<-----> SOFT
8288 	 */
8289 	sav->lft_c->sadb_lifetime_usetime = time_uptime;
8290 	/* XXX check for expires? */
8291 
8292 	return;
8293 }
8294 
8295 /* dumb version */
8296 void
8297 key_sa_routechange(struct sockaddr *dst)
8298 {
8299 	struct secashead *sah;
8300 	int s;
8301 
8302 	s = pserialize_read_enter();
8303 	SAHLIST_READER_FOREACH(sah) {
8304 		struct route *ro;
8305 		const struct sockaddr *sa;
8306 
8307 		key_sah_ref(sah);
8308 		pserialize_read_exit(s);
8309 
8310 		ro = &sah->sa_route;
8311 		sa = rtcache_getdst(ro);
8312 		if (sa != NULL && dst->sa_len == sa->sa_len &&
8313 		    memcmp(dst, sa, dst->sa_len) == 0)
8314 			rtcache_free(ro);
8315 
8316 		s = pserialize_read_enter();
8317 		key_sah_unref(sah);
8318 	}
8319 	pserialize_read_exit(s);
8320 
8321 	return;
8322 }
8323 
8324 static void
8325 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
8326 {
8327 	struct secasvar *_sav;
8328 
8329 	ASSERT_SLEEPABLE();
8330 	KASSERT(mutex_owned(&key_sad.lock));
8331 
8332 	if (sav->state == state)
8333 		return;
8334 
8335 	key_unlink_sav(sav);
8336 	localcount_fini(&sav->localcount);
8337 	SAVLIST_ENTRY_DESTROY(sav);
8338 	key_init_sav(sav);
8339 
8340 	sav->state = state;
8341 	if (!SADB_SASTATE_USABLE_P(sav)) {
8342 		/* We don't need to care about the order */
8343 		SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav);
8344 		return;
8345 	}
8346 	/*
8347 	 * Sort the list by lft_c->sadb_lifetime_addtime
8348 	 * in ascending order.
8349 	 */
8350 	SAVLIST_READER_FOREACH(_sav, sav->sah, state) {
8351 		if (_sav->lft_c->sadb_lifetime_addtime >
8352 		    sav->lft_c->sadb_lifetime_addtime) {
8353 			SAVLIST_WRITER_INSERT_BEFORE(_sav, sav);
8354 			break;
8355 		}
8356 	}
8357 	if (_sav == NULL) {
8358 		SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav);
8359 	}
8360 	key_validate_savlist(sav->sah, state);
8361 }
8362 
8363 /* XXX too much? */
8364 static struct mbuf *
8365 key_alloc_mbuf(int l)
8366 {
8367 	struct mbuf *m = NULL, *n;
8368 	int len, t;
8369 
8370 	len = l;
8371 	while (len > 0) {
8372 		MGET(n, M_DONTWAIT, MT_DATA);
8373 		if (n && len > MLEN)
8374 			MCLGET(n, M_DONTWAIT);
8375 		if (!n) {
8376 			m_freem(m);
8377 			return NULL;
8378 		}
8379 
8380 		n->m_next = NULL;
8381 		n->m_len = 0;
8382 		n->m_len = M_TRAILINGSPACE(n);
8383 		/* use the bottom of mbuf, hoping we can prepend afterwards */
8384 		if (n->m_len > len) {
8385 			t = (n->m_len - len) & ~(sizeof(long) - 1);
8386 			n->m_data += t;
8387 			n->m_len = len;
8388 		}
8389 
8390 		len -= n->m_len;
8391 
8392 		if (m)
8393 			m_cat(m, n);
8394 		else
8395 			m = n;
8396 	}
8397 
8398 	return m;
8399 }
8400 
8401 static struct mbuf *
8402 key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
8403 {
8404 	struct secashead *sah;
8405 	struct secasvar *sav;
8406 	u_int16_t proto;
8407 	u_int8_t satype;
8408 	u_int8_t state;
8409 	int cnt;
8410 	struct mbuf *m, *n;
8411 
8412 	KASSERT(mutex_owned(&key_sad.lock));
8413 
8414 	/* map satype to proto */
8415 	proto = key_satype2proto(req_satype);
8416 	if (proto == 0) {
8417 		*errorp = EINVAL;
8418 		return (NULL);
8419 	}
8420 
8421 	/* count sav entries to be sent to the userland. */
8422 	cnt = 0;
8423 	SAHLIST_WRITER_FOREACH(sah) {
8424 		if (req_satype != SADB_SATYPE_UNSPEC &&
8425 		    proto != sah->saidx.proto)
8426 			continue;
8427 
8428 		SASTATE_ANY_FOREACH(state) {
8429 			SAVLIST_WRITER_FOREACH(sav, sah, state) {
8430 				cnt++;
8431 			}
8432 		}
8433 	}
8434 
8435 	if (cnt == 0) {
8436 		*errorp = ENOENT;
8437 		return (NULL);
8438 	}
8439 
8440 	/* send this to the userland, one at a time. */
8441 	m = NULL;
8442 	SAHLIST_WRITER_FOREACH(sah) {
8443 		if (req_satype != SADB_SATYPE_UNSPEC &&
8444 		    proto != sah->saidx.proto)
8445 			continue;
8446 
8447 		/* map proto to satype */
8448 		satype = key_proto2satype(sah->saidx.proto);
8449 		if (satype == 0) {
8450 			m_freem(m);
8451 			*errorp = EINVAL;
8452 			return (NULL);
8453 		}
8454 
8455 		SASTATE_ANY_FOREACH(state) {
8456 			SAVLIST_WRITER_FOREACH(sav, sah, state) {
8457 				n = key_setdumpsa(sav, SADB_DUMP, satype,
8458 				    --cnt, pid);
8459 				if (!n) {
8460 					m_freem(m);
8461 					*errorp = ENOBUFS;
8462 					return (NULL);
8463 				}
8464 
8465 				if (!m)
8466 					m = n;
8467 				else
8468 					m_cat(m, n);
8469 			}
8470 		}
8471 	}
8472 
8473 	if (!m) {
8474 		*errorp = EINVAL;
8475 		return (NULL);
8476 	}
8477 
8478 	if ((m->m_flags & M_PKTHDR) != 0) {
8479 		m->m_pkthdr.len = 0;
8480 		for (n = m; n; n = n->m_next)
8481 			m->m_pkthdr.len += n->m_len;
8482 	}
8483 
8484 	*errorp = 0;
8485 	return (m);
8486 }
8487 
8488 static struct mbuf *
8489 key_setspddump(int *errorp, pid_t pid)
8490 {
8491 	struct secpolicy *sp;
8492 	int cnt;
8493 	u_int dir;
8494 	struct mbuf *m, *n;
8495 
8496 	KASSERT(mutex_owned(&key_spd.lock));
8497 
8498 	/* search SPD entry and get buffer size. */
8499 	cnt = 0;
8500 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8501 		SPLIST_WRITER_FOREACH(sp, dir) {
8502 			cnt++;
8503 		}
8504 	}
8505 
8506 	if (cnt == 0) {
8507 		*errorp = ENOENT;
8508 		return (NULL);
8509 	}
8510 
8511 	m = NULL;
8512 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
8513 		SPLIST_WRITER_FOREACH(sp, dir) {
8514 			--cnt;
8515 			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
8516 
8517 			if (!n) {
8518 				*errorp = ENOBUFS;
8519 				m_freem(m);
8520 				return (NULL);
8521 			}
8522 			if (!m)
8523 				m = n;
8524 			else {
8525 				m->m_pkthdr.len += n->m_pkthdr.len;
8526 				m_cat(m, n);
8527 			}
8528 		}
8529 	}
8530 
8531 	*errorp = 0;
8532 	return (m);
8533 }
8534 
8535 int
8536 key_get_used(void) {
8537 	return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) ||
8538 	    !SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) ||
8539 	    !SOCKSPLIST_READER_EMPTY();
8540 }
8541 
8542 void
8543 key_update_used(void)
8544 {
8545 	switch (ipsec_enabled) {
8546 	default:
8547 	case 0:
8548 #ifdef notyet
8549 		/* XXX: racy */
8550 		ipsec_used = 0;
8551 #endif
8552 		break;
8553 	case 1:
8554 #ifndef notyet
8555 		/* XXX: racy */
8556 		if (!ipsec_used)
8557 #endif
8558 		ipsec_used = key_get_used();
8559 		break;
8560 	case 2:
8561 		ipsec_used = 1;
8562 		break;
8563 	}
8564 }
8565 
8566 static int
8567 sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
8568 {
8569 	struct mbuf *m, *n;
8570 	int err2 = 0;
8571 	char *p, *ep;
8572 	size_t len;
8573 	int error;
8574 
8575 	if (newp)
8576 		return (EPERM);
8577 	if (namelen != 1)
8578 		return (EINVAL);
8579 
8580 	mutex_enter(&key_sad.lock);
8581 	m = key_setdump(name[0], &error, l->l_proc->p_pid);
8582 	mutex_exit(&key_sad.lock);
8583 	if (!m)
8584 		return (error);
8585 	if (!oldp)
8586 		*oldlenp = m->m_pkthdr.len;
8587 	else {
8588 		p = oldp;
8589 		if (*oldlenp < m->m_pkthdr.len) {
8590 			err2 = ENOMEM;
8591 			ep = p + *oldlenp;
8592 		} else {
8593 			*oldlenp = m->m_pkthdr.len;
8594 			ep = p + m->m_pkthdr.len;
8595 		}
8596 		for (n = m; n; n = n->m_next) {
8597 			len =  (ep - p < n->m_len) ?
8598 				ep - p : n->m_len;
8599 			error = copyout(mtod(n, const void *), p, len);
8600 			p += len;
8601 			if (error)
8602 				break;
8603 		}
8604 		if (error == 0)
8605 			error = err2;
8606 	}
8607 	m_freem(m);
8608 
8609 	return (error);
8610 }
8611 
8612 static int
8613 sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
8614 {
8615 	struct mbuf *m, *n;
8616 	int err2 = 0;
8617 	char *p, *ep;
8618 	size_t len;
8619 	int error;
8620 
8621 	if (newp)
8622 		return (EPERM);
8623 	if (namelen != 0)
8624 		return (EINVAL);
8625 
8626 	mutex_enter(&key_spd.lock);
8627 	m = key_setspddump(&error, l->l_proc->p_pid);
8628 	mutex_exit(&key_spd.lock);
8629 	if (!m)
8630 		return (error);
8631 	if (!oldp)
8632 		*oldlenp = m->m_pkthdr.len;
8633 	else {
8634 		p = oldp;
8635 		if (*oldlenp < m->m_pkthdr.len) {
8636 			err2 = ENOMEM;
8637 			ep = p + *oldlenp;
8638 		} else {
8639 			*oldlenp = m->m_pkthdr.len;
8640 			ep = p + m->m_pkthdr.len;
8641 		}
8642 		for (n = m; n; n = n->m_next) {
8643 			len = (ep - p < n->m_len) ? ep - p : n->m_len;
8644 			error = copyout(mtod(n, const void *), p, len);
8645 			p += len;
8646 			if (error)
8647 				break;
8648 		}
8649 		if (error == 0)
8650 			error = err2;
8651 	}
8652 	m_freem(m);
8653 
8654 	return (error);
8655 }
8656 
8657 /*
8658  * Create sysctl tree for native IPSEC key knobs, originally
8659  * under name "net.keyv2"  * with MIB number { CTL_NET, PF_KEY_V2. }.
8660  * However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
8661  * and in any case the part of our sysctl namespace used for dumping the
8662  * SPD and SA database  *HAS* to be compatible with the KAME sysctl
8663  * namespace, for API reasons.
8664  *
8665  * Pending a consensus on the right way  to fix this, add a level of
8666  * indirection in how we number the `native' IPSEC key nodes;
8667  * and (as requested by Andrew Brown)  move registration of the
8668  * KAME-compatible names  to a separate function.
8669  */
8670 #if 0
8671 #  define IPSEC_PFKEY PF_KEY_V2
8672 # define IPSEC_PFKEY_NAME "keyv2"
8673 #else
8674 #  define IPSEC_PFKEY PF_KEY
8675 # define IPSEC_PFKEY_NAME "key"
8676 #endif
8677 
8678 static int
8679 sysctl_net_key_stats(SYSCTLFN_ARGS)
8680 {
8681 
8682 	return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
8683 }
8684 
8685 static void
8686 sysctl_net_keyv2_setup(struct sysctllog **clog)
8687 {
8688 
8689 	sysctl_createv(clog, 0, NULL, NULL,
8690 		       CTLFLAG_PERMANENT,
8691 		       CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
8692 		       NULL, 0, NULL, 0,
8693 		       CTL_NET, IPSEC_PFKEY, CTL_EOL);
8694 
8695 	sysctl_createv(clog, 0, NULL, NULL,
8696 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8697 		       CTLTYPE_INT, "debug", NULL,
8698 		       NULL, 0, &key_debug_level, 0,
8699 		       CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
8700 	sysctl_createv(clog, 0, NULL, NULL,
8701 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8702 		       CTLTYPE_INT, "spi_try", NULL,
8703 		       NULL, 0, &key_spi_trycnt, 0,
8704 		       CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
8705 	sysctl_createv(clog, 0, NULL, NULL,
8706 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8707 		       CTLTYPE_INT, "spi_min_value", NULL,
8708 		       NULL, 0, &key_spi_minval, 0,
8709 		       CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
8710 	sysctl_createv(clog, 0, NULL, NULL,
8711 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8712 		       CTLTYPE_INT, "spi_max_value", NULL,
8713 		       NULL, 0, &key_spi_maxval, 0,
8714 		       CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
8715 	sysctl_createv(clog, 0, NULL, NULL,
8716 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8717 		       CTLTYPE_INT, "random_int", NULL,
8718 		       NULL, 0, &key_int_random, 0,
8719 		       CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
8720 	sysctl_createv(clog, 0, NULL, NULL,
8721 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8722 		       CTLTYPE_INT, "larval_lifetime", NULL,
8723 		       NULL, 0, &key_larval_lifetime, 0,
8724 		       CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
8725 	sysctl_createv(clog, 0, NULL, NULL,
8726 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8727 		       CTLTYPE_INT, "blockacq_count", NULL,
8728 		       NULL, 0, &key_blockacq_count, 0,
8729 		       CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
8730 	sysctl_createv(clog, 0, NULL, NULL,
8731 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8732 		       CTLTYPE_INT, "blockacq_lifetime", NULL,
8733 		       NULL, 0, &key_blockacq_lifetime, 0,
8734 		       CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
8735 	sysctl_createv(clog, 0, NULL, NULL,
8736 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8737 		       CTLTYPE_INT, "esp_keymin", NULL,
8738 		       NULL, 0, &ipsec_esp_keymin, 0,
8739 		       CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
8740 	sysctl_createv(clog, 0, NULL, NULL,
8741 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8742 		       CTLTYPE_INT, "prefered_oldsa", NULL,
8743 		       NULL, 0, &key_prefered_oldsa, 0,
8744 		       CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
8745 	sysctl_createv(clog, 0, NULL, NULL,
8746 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8747 		       CTLTYPE_INT, "esp_auth", NULL,
8748 		       NULL, 0, &ipsec_esp_auth, 0,
8749 		       CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
8750 	sysctl_createv(clog, 0, NULL, NULL,
8751 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
8752 		       CTLTYPE_INT, "ah_keymin", NULL,
8753 		       NULL, 0, &ipsec_ah_keymin, 0,
8754 		       CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
8755 	sysctl_createv(clog, 0, NULL, NULL,
8756 		       CTLFLAG_PERMANENT,
8757 		       CTLTYPE_STRUCT, "stats",
8758 		       SYSCTL_DESCR("PF_KEY statistics"),
8759 		       sysctl_net_key_stats, 0, NULL, 0,
8760 		       CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
8761 }
8762 
8763 /*
8764  * Register sysctl names used by setkey(8). For historical reasons,
8765  * and to share a single API, these names appear under { CTL_NET, PF_KEY }
8766  * for both IPSEC and KAME IPSEC.
8767  */
8768 static void
8769 sysctl_net_key_compat_setup(struct sysctllog **clog)
8770 {
8771 
8772 	sysctl_createv(clog, 0, NULL, NULL,
8773 		       CTLFLAG_PERMANENT,
8774 		       CTLTYPE_NODE, "key", NULL,
8775 		       NULL, 0, NULL, 0,
8776 		       CTL_NET, PF_KEY, CTL_EOL);
8777 
8778 	/* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
8779 	sysctl_createv(clog, 0, NULL, NULL,
8780 		       CTLFLAG_PERMANENT,
8781 		       CTLTYPE_STRUCT, "dumpsa", NULL,
8782 		       sysctl_net_key_dumpsa, 0, NULL, 0,
8783 		       CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
8784 	sysctl_createv(clog, 0, NULL, NULL,
8785 		       CTLFLAG_PERMANENT,
8786 		       CTLTYPE_STRUCT, "dumpsp", NULL,
8787 		       sysctl_net_key_dumpsp, 0, NULL, 0,
8788 		       CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
8789 }
8790