1 /* $NetBSD: udp6_usrreq.c,v 1.138 2018/03/19 16:26:25 roy Exp $ */ 2 /* $KAME: udp6_usrreq.c,v 1.86 2001/05/27 17:33:00 itojun Exp $ */ 3 /* $KAME: udp6_output.c,v 1.43 2001/10/15 09:19:52 itojun Exp $ */ 4 5 /* 6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of the project nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* 35 * Copyright (c) 1982, 1986, 1989, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)udp_var.h 8.1 (Berkeley) 6/10/93 63 */ 64 65 #include <sys/cdefs.h> 66 __KERNEL_RCSID(0, "$NetBSD: udp6_usrreq.c,v 1.138 2018/03/19 16:26:25 roy Exp $"); 67 68 #ifdef _KERNEL_OPT 69 #include "opt_inet.h" 70 #include "opt_inet_csum.h" 71 #include "opt_ipsec.h" 72 #include "opt_net_mpsafe.h" 73 #endif 74 75 #include <sys/param.h> 76 #include <sys/mbuf.h> 77 #include <sys/protosw.h> 78 #include <sys/socket.h> 79 #include <sys/socketvar.h> 80 #include <sys/systm.h> 81 #include <sys/proc.h> 82 #include <sys/syslog.h> 83 #include <sys/domain.h> 84 #include <sys/sysctl.h> 85 86 #include <net/if.h> 87 #include <net/if_types.h> 88 89 #include <netinet/in.h> 90 #include <netinet/in_var.h> 91 #include <netinet/in_systm.h> 92 #include <netinet/in_offload.h> 93 #include <netinet/ip.h> 94 #include <netinet/ip_var.h> 95 #include <netinet/in_pcb.h> 96 #include <netinet/udp.h> 97 #include <netinet/udp_var.h> 98 #include <netinet/udp_private.h> 99 100 #include <netinet/ip6.h> 101 #include <netinet/icmp6.h> 102 #include <netinet6/ip6_var.h> 103 #include <netinet6/ip6_private.h> 104 #include <netinet6/in6_pcb.h> 105 #include <netinet6/udp6_var.h> 106 #include <netinet6/udp6_private.h> 107 #include <netinet6/ip6protosw.h> 108 #include <netinet6/scope6_var.h> 109 110 #ifdef IPSEC 111 #include <netipsec/ipsec.h> 112 #include <netipsec/ipsec_var.h> 113 #ifdef INET6 114 #include <netipsec/ipsec6.h> 115 #endif 116 #endif 117 118 #include "faith.h" 119 #if defined(NFAITH) && NFAITH > 0 120 #include <net/if_faith.h> 121 #endif 122 123 /* 124 * UDP protocol implementation. 125 * Per RFC 768, August, 1980. 126 */ 127 128 extern struct inpcbtable udbtable; 129 130 percpu_t *udp6stat_percpu; 131 132 /* UDP on IP6 parameters */ 133 static int udp6_sendspace = 9216; /* really max datagram size */ 134 static int udp6_recvspace = 40 * (1024 + sizeof(struct sockaddr_in6)); 135 /* 40 1K datagrams */ 136 137 static void udp6_notify(struct in6pcb *, int); 138 static void sysctl_net_inet6_udp6_setup(struct sysctllog **); 139 140 #ifdef UDP_CSUM_COUNTERS 141 #include <sys/device.h> 142 struct evcnt udp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 143 NULL, "udp6", "hwcsum bad"); 144 struct evcnt udp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 145 NULL, "udp6", "hwcsum ok"); 146 struct evcnt udp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 147 NULL, "udp6", "hwcsum data"); 148 struct evcnt udp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 149 NULL, "udp6", "swcsum"); 150 151 EVCNT_ATTACH_STATIC(udp6_hwcsum_bad); 152 EVCNT_ATTACH_STATIC(udp6_hwcsum_ok); 153 EVCNT_ATTACH_STATIC(udp6_hwcsum_data); 154 EVCNT_ATTACH_STATIC(udp6_swcsum); 155 156 #define UDP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++ 157 #else 158 #define UDP_CSUM_COUNTER_INCR(ev) /* nothing */ 159 #endif 160 161 void 162 udp6_init(void) 163 { 164 sysctl_net_inet6_udp6_setup(NULL); 165 udp6stat_percpu = percpu_alloc(sizeof(uint64_t) * UDP6_NSTATS); 166 167 udp_init_common(); 168 } 169 170 /* 171 * Notify a udp user of an asynchronous error; 172 * just wake up so that he can collect error status. 173 */ 174 static void 175 udp6_notify(struct in6pcb *in6p, int errno) 176 { 177 in6p->in6p_socket->so_error = errno; 178 sorwakeup(in6p->in6p_socket); 179 sowwakeup(in6p->in6p_socket); 180 } 181 182 void * 183 udp6_ctlinput(int cmd, const struct sockaddr *sa, void *d) 184 { 185 struct udphdr uh; 186 struct ip6_hdr *ip6; 187 const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa; 188 struct mbuf *m; 189 int off; 190 void *cmdarg; 191 struct ip6ctlparam *ip6cp = NULL; 192 const struct sockaddr_in6 *sa6_src = NULL; 193 void (*notify)(struct in6pcb *, int) = udp6_notify; 194 struct udp_portonly { 195 u_int16_t uh_sport; 196 u_int16_t uh_dport; 197 } *uhp; 198 199 if (sa->sa_family != AF_INET6 || 200 sa->sa_len != sizeof(struct sockaddr_in6)) 201 return NULL; 202 203 if ((unsigned)cmd >= PRC_NCMDS) 204 return NULL; 205 if (PRC_IS_REDIRECT(cmd)) 206 notify = in6_rtchange, d = NULL; 207 else if (cmd == PRC_HOSTDEAD) 208 d = NULL; 209 else if (cmd == PRC_MSGSIZE) { 210 /* special code is present, see below */ 211 notify = in6_rtchange; 212 } 213 else if (inet6ctlerrmap[cmd] == 0) 214 return NULL; 215 216 /* if the parameter is from icmp6, decode it. */ 217 if (d != NULL) { 218 ip6cp = (struct ip6ctlparam *)d; 219 m = ip6cp->ip6c_m; 220 ip6 = ip6cp->ip6c_ip6; 221 off = ip6cp->ip6c_off; 222 cmdarg = ip6cp->ip6c_cmdarg; 223 sa6_src = ip6cp->ip6c_src; 224 } else { 225 m = NULL; 226 ip6 = NULL; 227 cmdarg = NULL; 228 sa6_src = &sa6_any; 229 off = 0; 230 } 231 232 if (ip6) { 233 /* 234 * XXX: We assume that when IPV6 is non NULL, 235 * M and OFF are valid. 236 */ 237 238 /* check if we can safely examine src and dst ports */ 239 if (m->m_pkthdr.len < off + sizeof(*uhp)) { 240 if (cmd == PRC_MSGSIZE) 241 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0); 242 return NULL; 243 } 244 245 memset(&uh, 0, sizeof(uh)); 246 m_copydata(m, off, sizeof(*uhp), (void *)&uh); 247 248 if (cmd == PRC_MSGSIZE) { 249 int valid = 0; 250 251 /* 252 * Check to see if we have a valid UDP socket 253 * corresponding to the address in the ICMPv6 message 254 * payload. 255 */ 256 if (in6_pcblookup_connect(&udbtable, &sa6->sin6_addr, 257 uh.uh_dport, (const struct in6_addr *)&sa6_src->sin6_addr, 258 uh.uh_sport, 0, 0)) 259 valid++; 260 #if 0 261 /* 262 * As the use of sendto(2) is fairly popular, 263 * we may want to allow non-connected pcb too. 264 * But it could be too weak against attacks... 265 * We should at least check if the local address (= s) 266 * is really ours. 267 */ 268 else if (in6_pcblookup_bind(&udbtable, &sa6->sin6_addr, 269 uh.uh_dport, 0)) 270 valid++; 271 #endif 272 273 /* 274 * Depending on the value of "valid" and routing table 275 * size (mtudisc_{hi,lo}wat), we will: 276 * - recalculate the new MTU and create the 277 * corresponding routing entry, or 278 * - ignore the MTU change notification. 279 */ 280 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid); 281 282 /* 283 * regardless of if we called 284 * icmp6_mtudisc_update(), we need to call 285 * in6_pcbnotify(), to notify path MTU change 286 * to the userland (RFC3542), because some 287 * unconnected sockets may share the same 288 * destination and want to know the path MTU. 289 */ 290 } 291 292 (void)in6_pcbnotify(&udbtable, sa, uh.uh_dport, 293 sin6tocsa(sa6_src), uh.uh_sport, cmd, cmdarg, 294 notify); 295 } else { 296 (void)in6_pcbnotify(&udbtable, sa, 0, 297 sin6tocsa(sa6_src), 0, cmd, cmdarg, notify); 298 } 299 return NULL; 300 } 301 302 int 303 udp6_ctloutput(int op, struct socket *so, struct sockopt *sopt) 304 { 305 int s; 306 int error = 0; 307 int family; 308 309 family = so->so_proto->pr_domain->dom_family; 310 311 s = splsoftnet(); 312 switch (family) { 313 #ifdef INET 314 case PF_INET: 315 if (sopt->sopt_level != IPPROTO_UDP) { 316 error = ip_ctloutput(op, so, sopt); 317 goto end; 318 } 319 break; 320 #endif 321 #ifdef INET6 322 case PF_INET6: 323 if (sopt->sopt_level != IPPROTO_UDP) { 324 error = ip6_ctloutput(op, so, sopt); 325 goto end; 326 } 327 break; 328 #endif 329 default: 330 error = EAFNOSUPPORT; 331 goto end; 332 } 333 error = EINVAL; 334 335 end: 336 splx(s); 337 return error; 338 } 339 340 static void 341 udp6_sendup(struct mbuf *m, int off /* offset of data portion */, 342 struct sockaddr *src, struct socket *so) 343 { 344 struct mbuf *opts = NULL; 345 struct mbuf *n; 346 struct in6pcb *in6p; 347 348 KASSERT(so != NULL); 349 KASSERT(so->so_proto->pr_domain->dom_family == AF_INET6); 350 in6p = sotoin6pcb(so); 351 KASSERT(in6p != NULL); 352 353 #if defined(IPSEC) 354 /* check AH/ESP integrity. */ 355 if (ipsec_used && ipsec_in_reject(m, in6p)) { 356 if ((n = m_copypacket(m, M_DONTWAIT)) != NULL) 357 icmp6_error(n, ICMP6_DST_UNREACH, 358 ICMP6_DST_UNREACH_ADMIN, 0); 359 return; 360 } 361 #endif 362 363 if ((n = m_copypacket(m, M_DONTWAIT)) != NULL) { 364 if (in6p->in6p_flags & IN6P_CONTROLOPTS || 365 SOOPT_TIMESTAMP(in6p->in6p_socket->so_options)) { 366 struct ip6_hdr *ip6 = mtod(n, struct ip6_hdr *); 367 ip6_savecontrol(in6p, &opts, ip6, n); 368 } 369 370 m_adj(n, off); 371 if (sbappendaddr(&so->so_rcv, src, n, opts) == 0) { 372 m_freem(n); 373 if (opts) 374 m_freem(opts); 375 UDP6_STATINC(UDP6_STAT_FULLSOCK); 376 soroverflow(so); 377 } else 378 sorwakeup(so); 379 } 380 } 381 382 int 383 udp6_realinput(int af, struct sockaddr_in6 *src, struct sockaddr_in6 *dst, 384 struct mbuf *m, int off) 385 { 386 u_int16_t sport, dport; 387 int rcvcnt; 388 struct in6_addr src6, *dst6; 389 const struct in_addr *dst4; 390 struct inpcb_hdr *inph; 391 struct in6pcb *in6p; 392 393 rcvcnt = 0; 394 off += sizeof(struct udphdr); /* now, offset of payload */ 395 396 if (af != AF_INET && af != AF_INET6) 397 goto bad; 398 if (src->sin6_family != AF_INET6 || dst->sin6_family != AF_INET6) 399 goto bad; 400 401 src6 = src->sin6_addr; 402 if (sa6_recoverscope(src) != 0) { 403 /* XXX: should be impossible. */ 404 goto bad; 405 } 406 sport = src->sin6_port; 407 408 dport = dst->sin6_port; 409 dst4 = (struct in_addr *)&dst->sin6_addr.s6_addr[12]; 410 dst6 = &dst->sin6_addr; 411 412 if (IN6_IS_ADDR_MULTICAST(dst6) || 413 (af == AF_INET && IN_MULTICAST(dst4->s_addr))) { 414 /* 415 * Deliver a multicast or broadcast datagram to *all* sockets 416 * for which the local and remote addresses and ports match 417 * those of the incoming datagram. This allows more than 418 * one process to receive multi/broadcasts on the same port. 419 * (This really ought to be done for unicast datagrams as 420 * well, but that would cause problems with existing 421 * applications that open both address-specific sockets and 422 * a wildcard socket listening to the same port -- they would 423 * end up receiving duplicates of every unicast datagram. 424 * Those applications open the multiple sockets to overcome an 425 * inadequacy of the UDP socket interface, but for backwards 426 * compatibility we avoid the problem here rather than 427 * fixing the interface. Maybe 4.5BSD will remedy this?) 428 */ 429 430 /* 431 * KAME note: traditionally we dropped udpiphdr from mbuf here. 432 * we need udpiphdr for IPsec processing so we do that later. 433 */ 434 /* 435 * Locate pcb(s) for datagram. 436 */ 437 TAILQ_FOREACH(inph, &udbtable.inpt_queue, inph_queue) { 438 in6p = (struct in6pcb *)inph; 439 if (in6p->in6p_af != AF_INET6) 440 continue; 441 442 if (in6p->in6p_lport != dport) 443 continue; 444 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 445 if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_laddr, 446 dst6)) 447 continue; 448 } else { 449 if (IN6_IS_ADDR_V4MAPPED(dst6) && 450 (in6p->in6p_flags & IN6P_IPV6_V6ONLY)) 451 continue; 452 } 453 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) { 454 if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_faddr, 455 &src6) || in6p->in6p_fport != sport) 456 continue; 457 } else { 458 if (IN6_IS_ADDR_V4MAPPED(&src6) && 459 (in6p->in6p_flags & IN6P_IPV6_V6ONLY)) 460 continue; 461 } 462 463 udp6_sendup(m, off, sin6tosa(src), in6p->in6p_socket); 464 rcvcnt++; 465 466 /* 467 * Don't look for additional matches if this one does 468 * not have either the SO_REUSEPORT or SO_REUSEADDR 469 * socket options set. This heuristic avoids searching 470 * through all pcbs in the common case of a non-shared 471 * port. It assumes that an application will never 472 * clear these options after setting them. 473 */ 474 if ((in6p->in6p_socket->so_options & 475 (SO_REUSEPORT|SO_REUSEADDR)) == 0) 476 break; 477 } 478 } else { 479 /* 480 * Locate pcb for datagram. 481 */ 482 in6p = in6_pcblookup_connect(&udbtable, &src6, sport, dst6, 483 dport, 0, 0); 484 if (in6p == 0) { 485 UDP_STATINC(UDP_STAT_PCBHASHMISS); 486 in6p = in6_pcblookup_bind(&udbtable, dst6, dport, 0); 487 if (in6p == 0) 488 return rcvcnt; 489 } 490 491 udp6_sendup(m, off, sin6tosa(src), in6p->in6p_socket); 492 rcvcnt++; 493 } 494 495 bad: 496 return rcvcnt; 497 } 498 499 int 500 udp6_input_checksum(struct mbuf *m, const struct udphdr *uh, int off, int len) 501 { 502 503 /* 504 * XXX it's better to record and check if this mbuf is 505 * already checked. 506 */ 507 508 if (__predict_false((m->m_flags & M_LOOP) && !udp_do_loopback_cksum)) { 509 goto good; 510 } 511 if (uh->uh_sum == 0) { 512 UDP6_STATINC(UDP6_STAT_NOSUM); 513 goto bad; 514 } 515 516 switch (m->m_pkthdr.csum_flags & 517 ((m_get_rcvif_NOMPSAFE(m)->if_csum_flags_rx & M_CSUM_UDPv6) | 518 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) { 519 case M_CSUM_UDPv6|M_CSUM_TCP_UDP_BAD: 520 UDP_CSUM_COUNTER_INCR(&udp6_hwcsum_bad); 521 UDP6_STATINC(UDP6_STAT_BADSUM); 522 goto bad; 523 524 #if 0 /* notyet */ 525 case M_CSUM_UDPv6|M_CSUM_DATA: 526 #endif 527 528 case M_CSUM_UDPv6: 529 /* Checksum was okay. */ 530 UDP_CSUM_COUNTER_INCR(&udp6_hwcsum_ok); 531 break; 532 533 default: 534 /* 535 * Need to compute it ourselves. Maybe skip checksum 536 * on loopback interfaces. 537 */ 538 UDP_CSUM_COUNTER_INCR(&udp6_swcsum); 539 if (in6_cksum(m, IPPROTO_UDP, off, len) != 0) { 540 UDP6_STATINC(UDP6_STAT_BADSUM); 541 goto bad; 542 } 543 } 544 545 good: 546 return 0; 547 bad: 548 return -1; 549 } 550 551 int 552 udp6_input(struct mbuf **mp, int *offp, int proto) 553 { 554 struct mbuf *m = *mp; 555 int off = *offp; 556 struct sockaddr_in6 src, dst; 557 struct ip6_hdr *ip6; 558 struct udphdr *uh; 559 u_int32_t plen, ulen; 560 561 ip6 = mtod(m, struct ip6_hdr *); 562 563 #if defined(NFAITH) && 0 < NFAITH 564 if (faithprefix(&ip6->ip6_dst)) { 565 /* send icmp6 host unreach? */ 566 m_freem(m); 567 return IPPROTO_DONE; 568 } 569 #endif 570 571 UDP6_STATINC(UDP6_STAT_IPACKETS); 572 573 /* Check for jumbogram is done in ip6_input. We can trust pkthdr.len. */ 574 plen = m->m_pkthdr.len - off; 575 IP6_EXTHDR_GET(uh, struct udphdr *, m, off, sizeof(struct udphdr)); 576 if (uh == NULL) { 577 IP6_STATINC(IP6_STAT_TOOSHORT); 578 return IPPROTO_DONE; 579 } 580 581 /* 582 * Enforce alignment requirements that are violated in 583 * some cases, see kern/50766 for details. 584 */ 585 if (UDP_HDR_ALIGNED_P(uh) == 0) { 586 m = m_copyup(m, off + sizeof(struct udphdr), 0); 587 if (m == NULL) { 588 IP6_STATINC(IP6_STAT_TOOSHORT); 589 return IPPROTO_DONE; 590 } 591 ip6 = mtod(m, struct ip6_hdr *); 592 uh = (struct udphdr *)(mtod(m, char *) + off); 593 } 594 KASSERT(UDP_HDR_ALIGNED_P(uh)); 595 ulen = ntohs((u_short)uh->uh_ulen); 596 597 /* 598 * RFC2675 section 4: jumbograms will have 0 in the UDP header field, 599 * iff payload length > 0xffff. 600 */ 601 if (ulen == 0 && plen > 0xffff) 602 ulen = plen; 603 604 if (plen != ulen) { 605 UDP6_STATINC(UDP6_STAT_BADLEN); 606 goto bad; 607 } 608 609 /* destination port of 0 is illegal, based on RFC768. */ 610 if (uh->uh_dport == 0) 611 goto bad; 612 613 /* 614 * Checksum extended UDP header and data. Maybe skip checksum 615 * on loopback interfaces. 616 */ 617 if (udp6_input_checksum(m, uh, off, ulen)) 618 goto bad; 619 620 /* 621 * Construct source and dst sockaddrs. 622 */ 623 memset(&src, 0, sizeof(src)); 624 src.sin6_family = AF_INET6; 625 src.sin6_len = sizeof(struct sockaddr_in6); 626 src.sin6_addr = ip6->ip6_src; 627 src.sin6_port = uh->uh_sport; 628 memset(&dst, 0, sizeof(dst)); 629 dst.sin6_family = AF_INET6; 630 dst.sin6_len = sizeof(struct sockaddr_in6); 631 dst.sin6_addr = ip6->ip6_dst; 632 dst.sin6_port = uh->uh_dport; 633 634 if (udp6_realinput(AF_INET6, &src, &dst, m, off) == 0) { 635 if (m->m_flags & M_MCAST) { 636 UDP6_STATINC(UDP6_STAT_NOPORTMCAST); 637 goto bad; 638 } 639 UDP6_STATINC(UDP6_STAT_NOPORT); 640 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_NOPORT, 0); 641 m = NULL; 642 } 643 644 bad: 645 if (m) 646 m_freem(m); 647 return IPPROTO_DONE; 648 } 649 650 int 651 udp6_output(struct in6pcb * const in6p, struct mbuf *m, 652 struct sockaddr_in6 * const addr6, struct mbuf * const control, 653 struct lwp * const l) 654 { 655 u_int32_t ulen = m->m_pkthdr.len; 656 u_int32_t plen = sizeof(struct udphdr) + ulen; 657 struct ip6_hdr *ip6; 658 struct udphdr *udp6; 659 struct in6_addr _laddr, *laddr, *faddr; 660 struct in6_addr laddr_mapped; /* XXX ugly */ 661 struct sockaddr_in6 *sin6 = NULL; 662 struct ifnet *oifp = NULL; 663 int scope_ambiguous = 0; 664 u_int16_t fport; 665 int error = 0; 666 struct ip6_pktopts *optp = NULL; 667 struct ip6_pktopts opt; 668 int af = AF_INET6, hlen = sizeof(struct ip6_hdr); 669 #ifdef INET 670 struct ip *ip; 671 struct udpiphdr *ui; 672 int flags = 0; 673 #endif 674 struct sockaddr_in6 tmp; 675 676 if (addr6) { 677 sin6 = addr6; 678 if (sin6->sin6_family != AF_INET6) { 679 error = EAFNOSUPPORT; 680 goto release; 681 } 682 683 /* protect *sin6 from overwrites */ 684 tmp = *sin6; 685 sin6 = &tmp; 686 687 /* 688 * Application should provide a proper zone ID or the use of 689 * default zone IDs should be enabled. Unfortunately, some 690 * applications do not behave as it should, so we need a 691 * workaround. Even if an appropriate ID is not determined, 692 * we'll see if we can determine the outgoing interface. If we 693 * can, determine the zone ID based on the interface below. 694 */ 695 if (sin6->sin6_scope_id == 0 && !ip6_use_defzone) 696 scope_ambiguous = 1; 697 if ((error = sa6_embedscope(sin6, ip6_use_defzone)) != 0) 698 goto release; 699 } 700 701 if (control) { 702 if (__predict_false(l == NULL)) { 703 panic("%s: control but no lwp", __func__); 704 } 705 if ((error = ip6_setpktopts(control, &opt, 706 in6p->in6p_outputopts, l->l_cred, IPPROTO_UDP)) != 0) 707 goto release; 708 optp = &opt; 709 } else 710 optp = in6p->in6p_outputopts; 711 712 713 if (sin6) { 714 /* 715 * Slightly different than v4 version in that we call 716 * in6_selectsrc and in6_pcbsetport to fill in the local 717 * address and port rather than in_pcbconnect. in_pcbconnect 718 * sets in6p_faddr which causes EISCONN below to be hit on 719 * subsequent sendto. 720 */ 721 if (sin6->sin6_port == 0) { 722 error = EADDRNOTAVAIL; 723 goto release; 724 } 725 726 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) { 727 /* how about ::ffff:0.0.0.0 case? */ 728 error = EISCONN; 729 goto release; 730 } 731 732 faddr = &sin6->sin6_addr; 733 fport = sin6->sin6_port; /* allow 0 port */ 734 735 if (IN6_IS_ADDR_V4MAPPED(faddr)) { 736 if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY)) { 737 /* 738 * I believe we should explicitly discard the 739 * packet when mapped addresses are disabled, 740 * rather than send the packet as an IPv6 one. 741 * If we chose the latter approach, the packet 742 * might be sent out on the wire based on the 743 * default route, the situation which we'd 744 * probably want to avoid. 745 * (20010421 jinmei@kame.net) 746 */ 747 error = EINVAL; 748 goto release; 749 } 750 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr) && 751 !IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)) { 752 /* 753 * when remote addr is an IPv4-mapped address, 754 * local addr should not be an IPv6 address, 755 * since you cannot determine how to map IPv6 756 * source address to IPv4. 757 */ 758 error = EINVAL; 759 goto release; 760 } 761 762 af = AF_INET; 763 } 764 765 if (!IN6_IS_ADDR_V4MAPPED(faddr)) { 766 struct psref psref; 767 int bound = curlwp_bind(); 768 769 error = in6_selectsrc(sin6, optp, 770 in6p->in6p_moptions, 771 &in6p->in6p_route, 772 &in6p->in6p_laddr, &oifp, &psref, &_laddr); 773 /* XXX need error check? */ 774 if (oifp && scope_ambiguous && 775 (error = in6_setscope(&sin6->sin6_addr, 776 oifp, NULL))) { 777 if_put(oifp, &psref); 778 curlwp_bindx(bound); 779 goto release; 780 } 781 if_put(oifp, &psref); 782 curlwp_bindx(bound); 783 laddr = &_laddr; 784 } else { 785 /* 786 * XXX: freebsd[34] does not have in_selectsrc, but 787 * we can omit the whole part because freebsd4 calls 788 * udp_output() directly in this case, and thus we'll 789 * never see this path. 790 */ 791 if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 792 struct sockaddr_in sin_dst; 793 struct in_addr ina; 794 struct in_ifaddr *ia4; 795 struct psref _psref; 796 int bound; 797 798 memcpy(&ina, &faddr->s6_addr[12], sizeof(ina)); 799 sockaddr_in_init(&sin_dst, &ina, 0); 800 bound = curlwp_bind(); 801 ia4 = in_selectsrc(&sin_dst, &in6p->in6p_route, 802 in6p->in6p_socket->so_options, NULL, 803 &error, &_psref); 804 if (ia4 == NULL) { 805 curlwp_bindx(bound); 806 if (error == 0) 807 error = EADDRNOTAVAIL; 808 goto release; 809 } 810 memset(&laddr_mapped, 0, sizeof(laddr_mapped)); 811 laddr_mapped.s6_addr16[5] = 0xffff; /* ugly */ 812 memcpy(&laddr_mapped.s6_addr[12], 813 &IA_SIN(ia4)->sin_addr, 814 sizeof(IA_SIN(ia4)->sin_addr)); 815 ia4_release(ia4, &_psref); 816 curlwp_bindx(bound); 817 laddr = &laddr_mapped; 818 } else 819 { 820 laddr = &in6p->in6p_laddr; /* XXX */ 821 } 822 } 823 if (laddr == NULL) { 824 if (error == 0) 825 error = EADDRNOTAVAIL; 826 goto release; 827 } 828 if (in6p->in6p_lport == 0) { 829 /* 830 * Craft a sockaddr_in6 for the local endpoint. Use the 831 * "any" as a base, set the address, and recover the 832 * scope. 833 */ 834 struct sockaddr_in6 lsin6 = 835 *((const struct sockaddr_in6 *)in6p->in6p_socket->so_proto->pr_domain->dom_sa_any); 836 lsin6.sin6_addr = *laddr; 837 error = sa6_recoverscope(&lsin6); 838 if (error) 839 goto release; 840 841 error = in6_pcbsetport(&lsin6, in6p, l); 842 843 if (error) { 844 in6p->in6p_laddr = in6addr_any; 845 goto release; 846 } 847 } 848 } else { 849 if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) { 850 error = ENOTCONN; 851 goto release; 852 } 853 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr)) { 854 if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY)) 855 { 856 /* 857 * XXX: this case would happen when the 858 * application sets the V6ONLY flag after 859 * connecting the foreign address. 860 * Such applications should be fixed, 861 * so we bark here. 862 */ 863 log(LOG_INFO, "udp6_output: IPV6_V6ONLY " 864 "option was set for a connected socket\n"); 865 error = EINVAL; 866 goto release; 867 } else 868 af = AF_INET; 869 } 870 laddr = &in6p->in6p_laddr; 871 faddr = &in6p->in6p_faddr; 872 fport = in6p->in6p_fport; 873 } 874 875 if (af == AF_INET) 876 hlen = sizeof(struct ip); 877 878 /* 879 * Calculate data length and get a mbuf 880 * for UDP and IP6 headers. 881 */ 882 M_PREPEND(m, hlen + sizeof(struct udphdr), M_DONTWAIT); 883 if (m == NULL) { 884 error = ENOBUFS; 885 goto release; 886 } 887 888 /* 889 * Stuff checksum and output datagram. 890 */ 891 udp6 = (struct udphdr *)(mtod(m, char *) + hlen); 892 udp6->uh_sport = in6p->in6p_lport; /* lport is always set in the PCB */ 893 udp6->uh_dport = fport; 894 if (plen <= 0xffff) 895 udp6->uh_ulen = htons((u_int16_t)plen); 896 else 897 udp6->uh_ulen = 0; 898 udp6->uh_sum = 0; 899 900 switch (af) { 901 case AF_INET6: 902 ip6 = mtod(m, struct ip6_hdr *); 903 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK; 904 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 905 ip6->ip6_vfc |= IPV6_VERSION; 906 #if 0 /* ip6_plen will be filled in ip6_output. */ 907 ip6->ip6_plen = htons((u_int16_t)plen); 908 #endif 909 ip6->ip6_nxt = IPPROTO_UDP; 910 ip6->ip6_hlim = in6_selecthlim_rt(in6p); 911 ip6->ip6_src = *laddr; 912 ip6->ip6_dst = *faddr; 913 914 udp6->uh_sum = in6_cksum_phdr(laddr, faddr, 915 htonl(plen), htonl(IPPROTO_UDP)); 916 m->m_pkthdr.csum_flags = M_CSUM_UDPv6; 917 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 918 919 UDP6_STATINC(UDP6_STAT_OPACKETS); 920 error = ip6_output(m, optp, &in6p->in6p_route, 0, 921 in6p->in6p_moptions, in6p, NULL); 922 break; 923 case AF_INET: 924 #ifdef INET 925 /* can't transmit jumbogram over IPv4 */ 926 if (plen > 0xffff) { 927 error = EMSGSIZE; 928 goto release; 929 } 930 931 ip = mtod(m, struct ip *); 932 ui = (struct udpiphdr *)ip; 933 memset(ui->ui_x1, 0, sizeof(ui->ui_x1)); 934 ui->ui_pr = IPPROTO_UDP; 935 ui->ui_len = htons(plen); 936 memcpy(&ui->ui_src, &laddr->s6_addr[12], sizeof(ui->ui_src)); 937 ui->ui_ulen = ui->ui_len; 938 939 flags = (in6p->in6p_socket->so_options & 940 (SO_DONTROUTE | SO_BROADCAST)); 941 memcpy(&ui->ui_dst, &faddr->s6_addr[12], sizeof(ui->ui_dst)); 942 943 udp6->uh_sum = in_cksum(m, hlen + plen); 944 if (udp6->uh_sum == 0) 945 udp6->uh_sum = 0xffff; 946 947 ip->ip_len = htons(hlen + plen); 948 ip->ip_ttl = in6_selecthlim(in6p, NULL); /* XXX */ 949 ip->ip_tos = 0; /* XXX */ 950 951 UDP_STATINC(UDP_STAT_OPACKETS); 952 error = ip_output(m, NULL, &in6p->in6p_route, flags /* XXX */, 953 in6p->in6p_v4moptions, NULL); 954 break; 955 #else 956 error = EAFNOSUPPORT; 957 goto release; 958 #endif 959 } 960 goto releaseopt; 961 962 release: 963 m_freem(m); 964 965 releaseopt: 966 if (control) { 967 if (optp == &opt) 968 ip6_clearpktopts(&opt, -1); 969 m_freem(control); 970 } 971 return (error); 972 } 973 974 static int 975 udp6_attach(struct socket *so, int proto) 976 { 977 struct in6pcb *in6p; 978 int s, error; 979 980 KASSERT(sotoin6pcb(so) == NULL); 981 sosetlock(so); 982 983 /* 984 * MAPPED_ADDR implementation spec: 985 * Always attach for IPv6, and only when necessary for IPv4. 986 */ 987 s = splsoftnet(); 988 error = in6_pcballoc(so, &udbtable); 989 splx(s); 990 if (error) { 991 return error; 992 } 993 error = soreserve(so, udp6_sendspace, udp6_recvspace); 994 if (error) { 995 return error; 996 } 997 in6p = sotoin6pcb(so); 998 in6p->in6p_cksum = -1; /* just to be sure */ 999 1000 KASSERT(solocked(so)); 1001 return 0; 1002 } 1003 1004 static void 1005 udp6_detach(struct socket *so) 1006 { 1007 struct in6pcb *in6p = sotoin6pcb(so); 1008 int s; 1009 1010 KASSERT(solocked(so)); 1011 KASSERT(in6p != NULL); 1012 1013 s = splsoftnet(); 1014 in6_pcbdetach(in6p); 1015 splx(s); 1016 } 1017 1018 static int 1019 udp6_accept(struct socket *so, struct sockaddr *nam) 1020 { 1021 KASSERT(solocked(so)); 1022 1023 return EOPNOTSUPP; 1024 } 1025 1026 static int 1027 udp6_bind(struct socket *so, struct sockaddr *nam, struct lwp *l) 1028 { 1029 struct in6pcb *in6p = sotoin6pcb(so); 1030 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nam; 1031 int error = 0; 1032 int s; 1033 1034 KASSERT(solocked(so)); 1035 KASSERT(in6p != NULL); 1036 1037 s = splsoftnet(); 1038 error = in6_pcbbind(in6p, sin6, l); 1039 splx(s); 1040 return error; 1041 } 1042 1043 static int 1044 udp6_listen(struct socket *so, struct lwp *l) 1045 { 1046 KASSERT(solocked(so)); 1047 1048 return EOPNOTSUPP; 1049 } 1050 1051 static int 1052 udp6_connect(struct socket *so, struct sockaddr *nam, struct lwp *l) 1053 { 1054 struct in6pcb *in6p = sotoin6pcb(so); 1055 int error = 0; 1056 int s; 1057 1058 KASSERT(solocked(so)); 1059 KASSERT(in6p != NULL); 1060 1061 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) 1062 return EISCONN; 1063 s = splsoftnet(); 1064 error = in6_pcbconnect(in6p, (struct sockaddr_in6 *)nam, l); 1065 splx(s); 1066 if (error == 0) 1067 soisconnected(so); 1068 1069 return error; 1070 } 1071 1072 static int 1073 udp6_connect2(struct socket *so, struct socket *so2) 1074 { 1075 KASSERT(solocked(so)); 1076 1077 return EOPNOTSUPP; 1078 } 1079 1080 static int 1081 udp6_disconnect(struct socket *so) 1082 { 1083 struct in6pcb *in6p = sotoin6pcb(so); 1084 int s; 1085 1086 KASSERT(solocked(so)); 1087 KASSERT(in6p != NULL); 1088 1089 if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) 1090 return ENOTCONN; 1091 1092 s = splsoftnet(); 1093 in6_pcbdisconnect(in6p); 1094 memset((void *)&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr)); 1095 splx(s); 1096 1097 so->so_state &= ~SS_ISCONNECTED; /* XXX */ 1098 in6_pcbstate(in6p, IN6P_BOUND); /* XXX */ 1099 return 0; 1100 } 1101 1102 static int 1103 udp6_shutdown(struct socket *so) 1104 { 1105 int s; 1106 1107 s = splsoftnet(); 1108 socantsendmore(so); 1109 splx(s); 1110 1111 return 0; 1112 } 1113 1114 static int 1115 udp6_abort(struct socket *so) 1116 { 1117 int s; 1118 1119 KASSERT(solocked(so)); 1120 KASSERT(sotoin6pcb(so) != NULL); 1121 1122 s = splsoftnet(); 1123 soisdisconnected(so); 1124 in6_pcbdetach(sotoin6pcb(so)); 1125 splx(s); 1126 1127 return 0; 1128 } 1129 1130 static int 1131 udp6_ioctl(struct socket *so, u_long cmd, void *addr6, struct ifnet *ifp) 1132 { 1133 /* 1134 * MAPPED_ADDR implementation info: 1135 * Mapped addr support for PRU_CONTROL is not necessary. 1136 * Because typical user of PRU_CONTROL is such as ifconfig, 1137 * and they don't associate any addr to their socket. Then 1138 * socket family is only hint about the PRU_CONTROL'ed address 1139 * family, especially when getting addrs from kernel. 1140 * So AF_INET socket need to be used to control AF_INET addrs, 1141 * and AF_INET6 socket for AF_INET6 addrs. 1142 */ 1143 return in6_control(so, cmd, addr6, ifp); 1144 } 1145 1146 static int 1147 udp6_stat(struct socket *so, struct stat *ub) 1148 { 1149 KASSERT(solocked(so)); 1150 1151 /* stat: don't bother with a blocksize */ 1152 return 0; 1153 } 1154 1155 static int 1156 udp6_peeraddr(struct socket *so, struct sockaddr *nam) 1157 { 1158 KASSERT(solocked(so)); 1159 KASSERT(sotoin6pcb(so) != NULL); 1160 KASSERT(nam != NULL); 1161 1162 in6_setpeeraddr(sotoin6pcb(so), (struct sockaddr_in6 *)nam); 1163 return 0; 1164 } 1165 1166 static int 1167 udp6_sockaddr(struct socket *so, struct sockaddr *nam) 1168 { 1169 KASSERT(solocked(so)); 1170 KASSERT(sotoin6pcb(so) != NULL); 1171 KASSERT(nam != NULL); 1172 1173 in6_setsockaddr(sotoin6pcb(so), (struct sockaddr_in6 *)nam); 1174 return 0; 1175 } 1176 1177 static int 1178 udp6_rcvd(struct socket *so, int flags, struct lwp *l) 1179 { 1180 KASSERT(solocked(so)); 1181 1182 return EOPNOTSUPP; 1183 } 1184 1185 static int 1186 udp6_recvoob(struct socket *so, struct mbuf *m, int flags) 1187 { 1188 KASSERT(solocked(so)); 1189 1190 return EOPNOTSUPP; 1191 } 1192 1193 static int 1194 udp6_send(struct socket *so, struct mbuf *m, struct sockaddr *nam, 1195 struct mbuf *control, struct lwp *l) 1196 { 1197 struct in6pcb *in6p = sotoin6pcb(so); 1198 int error = 0; 1199 int s; 1200 1201 KASSERT(solocked(so)); 1202 KASSERT(in6p != NULL); 1203 KASSERT(m != NULL); 1204 1205 s = splsoftnet(); 1206 error = udp6_output(in6p, m, (struct sockaddr_in6 *)nam, control, l); 1207 splx(s); 1208 1209 return error; 1210 } 1211 1212 static int 1213 udp6_sendoob(struct socket *so, struct mbuf *m, struct mbuf *control) 1214 { 1215 KASSERT(solocked(so)); 1216 1217 if (m) 1218 m_freem(m); 1219 if (control) 1220 m_freem(control); 1221 1222 return EOPNOTSUPP; 1223 } 1224 1225 static int 1226 udp6_purgeif(struct socket *so, struct ifnet *ifp) 1227 { 1228 1229 mutex_enter(softnet_lock); 1230 in6_pcbpurgeif0(&udbtable, ifp); 1231 #ifdef NET_MPSAFE 1232 mutex_exit(softnet_lock); 1233 #endif 1234 in6_purgeif(ifp); 1235 #ifdef NET_MPSAFE 1236 mutex_enter(softnet_lock); 1237 #endif 1238 in6_pcbpurgeif(&udbtable, ifp); 1239 mutex_exit(softnet_lock); 1240 1241 return 0; 1242 } 1243 1244 static int 1245 sysctl_net_inet6_udp6_stats(SYSCTLFN_ARGS) 1246 { 1247 1248 return (NETSTAT_SYSCTL(udp6stat_percpu, UDP6_NSTATS)); 1249 } 1250 1251 static void 1252 sysctl_net_inet6_udp6_setup(struct sysctllog **clog) 1253 { 1254 1255 sysctl_createv(clog, 0, NULL, NULL, 1256 CTLFLAG_PERMANENT, 1257 CTLTYPE_NODE, "inet6", NULL, 1258 NULL, 0, NULL, 0, 1259 CTL_NET, PF_INET6, CTL_EOL); 1260 sysctl_createv(clog, 0, NULL, NULL, 1261 CTLFLAG_PERMANENT, 1262 CTLTYPE_NODE, "udp6", 1263 SYSCTL_DESCR("UDPv6 related settings"), 1264 NULL, 0, NULL, 0, 1265 CTL_NET, PF_INET6, IPPROTO_UDP, CTL_EOL); 1266 1267 sysctl_createv(clog, 0, NULL, NULL, 1268 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1269 CTLTYPE_INT, "sendspace", 1270 SYSCTL_DESCR("Default UDP send buffer size"), 1271 NULL, 0, &udp6_sendspace, 0, 1272 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_SENDSPACE, 1273 CTL_EOL); 1274 sysctl_createv(clog, 0, NULL, NULL, 1275 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1276 CTLTYPE_INT, "recvspace", 1277 SYSCTL_DESCR("Default UDP receive buffer size"), 1278 NULL, 0, &udp6_recvspace, 0, 1279 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_RECVSPACE, 1280 CTL_EOL); 1281 sysctl_createv(clog, 0, NULL, NULL, 1282 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1283 CTLTYPE_INT, "do_loopback_cksum", 1284 SYSCTL_DESCR("Perform UDP checksum on loopback"), 1285 NULL, 0, &udp_do_loopback_cksum, 0, 1286 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_LOOPBACKCKSUM, 1287 CTL_EOL); 1288 sysctl_createv(clog, 0, NULL, NULL, 1289 CTLFLAG_PERMANENT, 1290 CTLTYPE_STRUCT, "pcblist", 1291 SYSCTL_DESCR("UDP protocol control block list"), 1292 sysctl_inpcblist, 0, &udbtable, 0, 1293 CTL_NET, PF_INET6, IPPROTO_UDP, CTL_CREATE, 1294 CTL_EOL); 1295 sysctl_createv(clog, 0, NULL, NULL, 1296 CTLFLAG_PERMANENT, 1297 CTLTYPE_STRUCT, "stats", 1298 SYSCTL_DESCR("UDPv6 statistics"), 1299 sysctl_net_inet6_udp6_stats, 0, NULL, 0, 1300 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_STATS, 1301 CTL_EOL); 1302 } 1303 1304 void 1305 udp6_statinc(u_int stat) 1306 { 1307 1308 KASSERT(stat < UDP6_NSTATS); 1309 UDP6_STATINC(stat); 1310 } 1311 1312 PR_WRAP_USRREQS(udp6) 1313 #define udp6_attach udp6_attach_wrapper 1314 #define udp6_detach udp6_detach_wrapper 1315 #define udp6_accept udp6_accept_wrapper 1316 #define udp6_bind udp6_bind_wrapper 1317 #define udp6_listen udp6_listen_wrapper 1318 #define udp6_connect udp6_connect_wrapper 1319 #define udp6_connect2 udp6_connect2_wrapper 1320 #define udp6_disconnect udp6_disconnect_wrapper 1321 #define udp6_shutdown udp6_shutdown_wrapper 1322 #define udp6_abort udp6_abort_wrapper 1323 #define udp6_ioctl udp6_ioctl_wrapper 1324 #define udp6_stat udp6_stat_wrapper 1325 #define udp6_peeraddr udp6_peeraddr_wrapper 1326 #define udp6_sockaddr udp6_sockaddr_wrapper 1327 #define udp6_rcvd udp6_rcvd_wrapper 1328 #define udp6_recvoob udp6_recvoob_wrapper 1329 #define udp6_send udp6_send_wrapper 1330 #define udp6_sendoob udp6_sendoob_wrapper 1331 #define udp6_purgeif udp6_purgeif_wrapper 1332 1333 const struct pr_usrreqs udp6_usrreqs = { 1334 .pr_attach = udp6_attach, 1335 .pr_detach = udp6_detach, 1336 .pr_accept = udp6_accept, 1337 .pr_bind = udp6_bind, 1338 .pr_listen = udp6_listen, 1339 .pr_connect = udp6_connect, 1340 .pr_connect2 = udp6_connect2, 1341 .pr_disconnect = udp6_disconnect, 1342 .pr_shutdown = udp6_shutdown, 1343 .pr_abort = udp6_abort, 1344 .pr_ioctl = udp6_ioctl, 1345 .pr_stat = udp6_stat, 1346 .pr_peeraddr = udp6_peeraddr, 1347 .pr_sockaddr = udp6_sockaddr, 1348 .pr_rcvd = udp6_rcvd, 1349 .pr_recvoob = udp6_recvoob, 1350 .pr_send = udp6_send, 1351 .pr_sendoob = udp6_sendoob, 1352 .pr_purgeif = udp6_purgeif, 1353 }; 1354