1 /* $NetBSD: nd6.c,v 1.203 2016/07/11 07:37:00 ozaki-r Exp $ */ 2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.203 2016/07/11 07:37:00 ozaki-r Exp $"); 35 36 #ifdef _KERNEL_OPT 37 #include "opt_net_mpsafe.h" 38 #endif 39 40 #include "bridge.h" 41 #include "carp.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/callout.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/sockio.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/protosw.h> 54 #include <sys/errno.h> 55 #include <sys/ioctl.h> 56 #include <sys/syslog.h> 57 #include <sys/queue.h> 58 #include <sys/cprng.h> 59 #include <sys/workqueue.h> 60 61 #include <net/if.h> 62 #include <net/if_dl.h> 63 #include <net/if_llatbl.h> 64 #include <net/if_types.h> 65 #include <net/route.h> 66 #include <net/if_ether.h> 67 #include <net/if_fddi.h> 68 #include <net/if_arc.h> 69 70 #include <netinet/in.h> 71 #include <netinet6/in6_var.h> 72 #include <netinet/ip6.h> 73 #include <netinet6/ip6_var.h> 74 #include <netinet6/scope6_var.h> 75 #include <netinet6/nd6.h> 76 #include <netinet6/in6_ifattach.h> 77 #include <netinet/icmp6.h> 78 #include <netinet6/icmp6_private.h> 79 80 #include <net/net_osdep.h> 81 82 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 83 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 84 85 /* timer values */ 86 int nd6_prune = 1; /* walk list every 1 seconds */ 87 int nd6_delay = 5; /* delay first probe time 5 second */ 88 int nd6_umaxtries = 3; /* maximum unicast query */ 89 int nd6_mmaxtries = 3; /* maximum multicast query */ 90 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 91 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 92 93 /* preventing too many loops in ND option parsing */ 94 int nd6_maxndopt = 10; /* max # of ND options allowed */ 95 96 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 97 98 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */ 99 100 #ifdef ND6_DEBUG 101 int nd6_debug = 1; 102 #else 103 int nd6_debug = 0; 104 #endif 105 106 struct nd_drhead nd_defrouter; 107 struct nd_prhead nd_prefix = { 0 }; 108 109 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 110 111 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 112 static void nd6_slowtimo(void *); 113 static int regen_tmpaddr(const struct in6_ifaddr *); 114 static void nd6_free(struct llentry *, int); 115 static void nd6_llinfo_timer(void *); 116 static void nd6_timer(void *); 117 static void nd6_timer_work(struct work *, void *); 118 static void clear_llinfo_pqueue(struct llentry *); 119 120 static callout_t nd6_slowtimo_ch; 121 static callout_t nd6_timer_ch; 122 static struct workqueue *nd6_timer_wq; 123 static struct work nd6_timer_wk; 124 125 static int fill_drlist(void *, size_t *, size_t); 126 static int fill_prlist(void *, size_t *, size_t); 127 128 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery"); 129 130 void 131 nd6_init(void) 132 { 133 int error; 134 135 /* initialization of the default router list */ 136 TAILQ_INIT(&nd_defrouter); 137 138 callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE); 139 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE); 140 141 error = workqueue_create(&nd6_timer_wq, "nd6_timer", 142 nd6_timer_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE); 143 if (error) 144 panic("%s: workqueue_create failed (%d)\n", __func__, error); 145 146 /* start timer */ 147 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 148 nd6_slowtimo, NULL); 149 callout_reset(&nd6_timer_ch, hz, nd6_timer, NULL); 150 } 151 152 struct nd_ifinfo * 153 nd6_ifattach(struct ifnet *ifp) 154 { 155 struct nd_ifinfo *nd; 156 157 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO); 158 159 nd->initialized = 1; 160 161 nd->chlim = IPV6_DEFHLIM; 162 nd->basereachable = REACHABLE_TIME; 163 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 164 nd->retrans = RETRANS_TIMER; 165 166 nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV; 167 168 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 169 * A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL 170 * because one of its members should. */ 171 if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 172 (ifp->if_flags & IFF_LOOPBACK)) 173 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 174 175 /* A loopback interface does not need to accept RTADV. 176 * A bridge interface should not accept RTADV 177 * because one of its members should. */ 178 if (ip6_accept_rtadv && 179 !(ifp->if_flags & IFF_LOOPBACK) && 180 !(ifp->if_type != IFT_BRIDGE)) 181 nd->flags |= ND6_IFF_ACCEPT_RTADV; 182 183 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 184 nd6_setmtu0(ifp, nd); 185 186 return nd; 187 } 188 189 void 190 nd6_ifdetach(struct ifnet *ifp, struct in6_ifextra *ext) 191 { 192 193 nd6_purge(ifp, ext); 194 free(ext->nd_ifinfo, M_IP6NDP); 195 } 196 197 void 198 nd6_setmtu(struct ifnet *ifp) 199 { 200 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 201 } 202 203 void 204 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 205 { 206 u_int32_t omaxmtu; 207 208 omaxmtu = ndi->maxmtu; 209 210 switch (ifp->if_type) { 211 case IFT_ARCNET: 212 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 213 break; 214 case IFT_FDDI: 215 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); 216 break; 217 default: 218 ndi->maxmtu = ifp->if_mtu; 219 break; 220 } 221 222 /* 223 * Decreasing the interface MTU under IPV6 minimum MTU may cause 224 * undesirable situation. We thus notify the operator of the change 225 * explicitly. The check for omaxmtu is necessary to restrict the 226 * log to the case of changing the MTU, not initializing it. 227 */ 228 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 229 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too" 230 " small for IPv6 which needs %lu\n", 231 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long) 232 IPV6_MMTU); 233 } 234 235 if (ndi->maxmtu > in6_maxmtu) 236 in6_setmaxmtu(); /* check all interfaces just in case */ 237 } 238 239 void 240 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 241 { 242 243 memset(ndopts, 0, sizeof(*ndopts)); 244 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 245 ndopts->nd_opts_last 246 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 247 248 if (icmp6len == 0) { 249 ndopts->nd_opts_done = 1; 250 ndopts->nd_opts_search = NULL; 251 } 252 } 253 254 /* 255 * Take one ND option. 256 */ 257 struct nd_opt_hdr * 258 nd6_option(union nd_opts *ndopts) 259 { 260 struct nd_opt_hdr *nd_opt; 261 int olen; 262 263 KASSERT(ndopts != NULL); 264 KASSERT(ndopts->nd_opts_last != NULL); 265 266 if (ndopts->nd_opts_search == NULL) 267 return NULL; 268 if (ndopts->nd_opts_done) 269 return NULL; 270 271 nd_opt = ndopts->nd_opts_search; 272 273 /* make sure nd_opt_len is inside the buffer */ 274 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) { 275 memset(ndopts, 0, sizeof(*ndopts)); 276 return NULL; 277 } 278 279 olen = nd_opt->nd_opt_len << 3; 280 if (olen == 0) { 281 /* 282 * Message validation requires that all included 283 * options have a length that is greater than zero. 284 */ 285 memset(ndopts, 0, sizeof(*ndopts)); 286 return NULL; 287 } 288 289 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen); 290 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 291 /* option overruns the end of buffer, invalid */ 292 memset(ndopts, 0, sizeof(*ndopts)); 293 return NULL; 294 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 295 /* reached the end of options chain */ 296 ndopts->nd_opts_done = 1; 297 ndopts->nd_opts_search = NULL; 298 } 299 return nd_opt; 300 } 301 302 /* 303 * Parse multiple ND options. 304 * This function is much easier to use, for ND routines that do not need 305 * multiple options of the same type. 306 */ 307 int 308 nd6_options(union nd_opts *ndopts) 309 { 310 struct nd_opt_hdr *nd_opt; 311 int i = 0; 312 313 KASSERT(ndopts != NULL); 314 KASSERT(ndopts->nd_opts_last != NULL); 315 316 if (ndopts->nd_opts_search == NULL) 317 return 0; 318 319 while (1) { 320 nd_opt = nd6_option(ndopts); 321 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 322 /* 323 * Message validation requires that all included 324 * options have a length that is greater than zero. 325 */ 326 ICMP6_STATINC(ICMP6_STAT_ND_BADOPT); 327 memset(ndopts, 0, sizeof(*ndopts)); 328 return -1; 329 } 330 331 if (nd_opt == NULL) 332 goto skip1; 333 334 switch (nd_opt->nd_opt_type) { 335 case ND_OPT_SOURCE_LINKADDR: 336 case ND_OPT_TARGET_LINKADDR: 337 case ND_OPT_MTU: 338 case ND_OPT_REDIRECTED_HEADER: 339 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 340 nd6log(LOG_INFO, 341 "duplicated ND6 option found (type=%d)\n", 342 nd_opt->nd_opt_type); 343 /* XXX bark? */ 344 } else { 345 ndopts->nd_opt_array[nd_opt->nd_opt_type] 346 = nd_opt; 347 } 348 break; 349 case ND_OPT_PREFIX_INFORMATION: 350 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 351 ndopts->nd_opt_array[nd_opt->nd_opt_type] 352 = nd_opt; 353 } 354 ndopts->nd_opts_pi_end = 355 (struct nd_opt_prefix_info *)nd_opt; 356 break; 357 default: 358 /* 359 * Unknown options must be silently ignored, 360 * to accommodate future extension to the protocol. 361 */ 362 nd6log(LOG_DEBUG, 363 "nd6_options: unsupported option %d - " 364 "option ignored\n", nd_opt->nd_opt_type); 365 } 366 367 skip1: 368 i++; 369 if (i > nd6_maxndopt) { 370 ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT); 371 nd6log(LOG_INFO, "too many loop in nd opt\n"); 372 break; 373 } 374 375 if (ndopts->nd_opts_done) 376 break; 377 } 378 379 return 0; 380 } 381 382 /* 383 * ND6 timer routine to handle ND6 entries 384 */ 385 void 386 nd6_llinfo_settimer(struct llentry *ln, time_t xtick) 387 { 388 389 CTASSERT(sizeof(time_t) > sizeof(int)); 390 LLE_WLOCK_ASSERT(ln); 391 392 if (xtick < 0) { 393 ln->ln_expire = 0; 394 ln->ln_ntick = 0; 395 callout_halt(&ln->ln_timer_ch, &ln->lle_lock); 396 } else { 397 ln->ln_expire = time_uptime + xtick / hz; 398 LLE_ADDREF(ln); 399 if (xtick > INT_MAX) { 400 ln->ln_ntick = xtick - INT_MAX; 401 callout_reset(&ln->ln_timer_ch, INT_MAX, 402 nd6_llinfo_timer, ln); 403 } else { 404 ln->ln_ntick = 0; 405 callout_reset(&ln->ln_timer_ch, xtick, 406 nd6_llinfo_timer, ln); 407 } 408 } 409 } 410 411 /* 412 * Gets source address of the first packet in hold queue 413 * and stores it in @src. 414 * Returns pointer to @src (if hold queue is not empty) or NULL. 415 */ 416 static struct in6_addr * 417 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 418 { 419 struct ip6_hdr *hip6; 420 421 if (ln == NULL || ln->ln_hold == NULL) 422 return NULL; 423 424 /* 425 * assuming every packet in ln_hold has the same IP header 426 */ 427 hip6 = mtod(ln->ln_hold, struct ip6_hdr *); 428 /* XXX pullup? */ 429 if (sizeof(*hip6) < ln->ln_hold->m_len) 430 *src = hip6->ip6_src; 431 else 432 src = NULL; 433 434 return src; 435 } 436 437 static void 438 nd6_llinfo_timer(void *arg) 439 { 440 struct llentry *ln = arg; 441 struct ifnet *ifp; 442 struct nd_ifinfo *ndi = NULL; 443 bool send_ns = false; 444 const struct in6_addr *daddr6 = NULL; 445 446 mutex_enter(softnet_lock); 447 KERNEL_LOCK(1, NULL); 448 449 LLE_WLOCK(ln); 450 if (ln->ln_ntick > 0) { 451 nd6_llinfo_settimer(ln, ln->ln_ntick); 452 goto out; 453 } 454 455 if (callout_pending(&ln->la_timer)) { 456 /* 457 * Here we are a bit odd here in the treatment of 458 * active/pending. If the pending bit is set, it got 459 * rescheduled before I ran. The active 460 * bit we ignore, since if it was stopped 461 * in ll_tablefree() and was currently running 462 * it would have return 0 so the code would 463 * not have deleted it since the callout could 464 * not be stopped so we want to go through 465 * with the delete here now. If the callout 466 * was restarted, the pending bit will be back on and 467 * we just want to bail since the callout_reset would 468 * return 1 and our reference would have been removed 469 * by nd6_llinfo_settimer above since canceled 470 * would have been 1. 471 */ 472 goto out; 473 } 474 475 ifp = ln->lle_tbl->llt_ifp; 476 477 KASSERT(ifp != NULL); 478 479 ndi = ND_IFINFO(ifp); 480 481 switch (ln->ln_state) { 482 case ND6_LLINFO_INCOMPLETE: 483 if (ln->ln_asked < nd6_mmaxtries) { 484 ln->ln_asked++; 485 send_ns = true; 486 } else { 487 struct mbuf *m = ln->ln_hold; 488 if (m) { 489 struct mbuf *m0; 490 491 /* 492 * assuming every packet in ln_hold has 493 * the same IP header 494 */ 495 m0 = m->m_nextpkt; 496 m->m_nextpkt = NULL; 497 ln->ln_hold = m0; 498 clear_llinfo_pqueue(ln); 499 } 500 nd6_free(ln, 0); 501 ln = NULL; 502 if (m != NULL) 503 icmp6_error2(m, ICMP6_DST_UNREACH, 504 ICMP6_DST_UNREACH_ADDR, 0, ifp); 505 } 506 break; 507 case ND6_LLINFO_REACHABLE: 508 if (!ND6_LLINFO_PERMANENT(ln)) { 509 ln->ln_state = ND6_LLINFO_STALE; 510 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 511 } 512 break; 513 514 case ND6_LLINFO_PURGE: 515 case ND6_LLINFO_STALE: 516 /* Garbage Collection(RFC 2461 5.3) */ 517 if (!ND6_LLINFO_PERMANENT(ln)) { 518 nd6_free(ln, 1); 519 ln = NULL; 520 } 521 break; 522 523 case ND6_LLINFO_DELAY: 524 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 525 /* We need NUD */ 526 ln->ln_asked = 1; 527 ln->ln_state = ND6_LLINFO_PROBE; 528 daddr6 = &ln->r_l3addr.addr6; 529 send_ns = true; 530 } else { 531 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 532 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 533 } 534 break; 535 case ND6_LLINFO_PROBE: 536 if (ln->ln_asked < nd6_umaxtries) { 537 ln->ln_asked++; 538 daddr6 = &ln->r_l3addr.addr6; 539 send_ns = true; 540 } else { 541 nd6_free(ln, 0); 542 ln = NULL; 543 } 544 break; 545 } 546 547 if (send_ns) { 548 struct in6_addr src, *psrc; 549 const struct in6_addr *taddr6 = &ln->r_l3addr.addr6; 550 551 nd6_llinfo_settimer(ln, ndi->retrans * hz / 1000); 552 psrc = nd6_llinfo_get_holdsrc(ln, &src); 553 LLE_FREE_LOCKED(ln); 554 ln = NULL; 555 nd6_ns_output(ifp, daddr6, taddr6, psrc, 0); 556 } 557 558 out: 559 if (ln != NULL) 560 LLE_FREE_LOCKED(ln); 561 KERNEL_UNLOCK_ONE(NULL); 562 mutex_exit(softnet_lock); 563 } 564 565 /* 566 * ND6 timer routine to expire default route list and prefix list 567 */ 568 static void 569 nd6_timer_work(struct work *wk, void *arg) 570 { 571 struct nd_defrouter *next_dr, *dr; 572 struct nd_prefix *next_pr, *pr; 573 struct in6_ifaddr *ia6, *nia6; 574 575 callout_reset(&nd6_timer_ch, nd6_prune * hz, 576 nd6_timer, NULL); 577 578 mutex_enter(softnet_lock); 579 KERNEL_LOCK(1, NULL); 580 581 /* expire default router list */ 582 583 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, next_dr) { 584 if (dr->expire && dr->expire < time_uptime) { 585 defrtrlist_del(dr, NULL); 586 } 587 } 588 589 /* 590 * expire interface addresses. 591 * in the past the loop was inside prefix expiry processing. 592 * However, from a stricter speci-confrmance standpoint, we should 593 * rather separate address lifetimes and prefix lifetimes. 594 */ 595 addrloop: 596 for (ia6 = IN6_ADDRLIST_WRITER_FIRST(); ia6; ia6 = nia6) { 597 nia6 = IN6_ADDRLIST_WRITER_NEXT(ia6); 598 /* check address lifetime */ 599 if (IFA6_IS_INVALID(ia6)) { 600 int regen = 0; 601 602 /* 603 * If the expiring address is temporary, try 604 * regenerating a new one. This would be useful when 605 * we suspended a laptop PC, then turned it on after a 606 * period that could invalidate all temporary 607 * addresses. Although we may have to restart the 608 * loop (see below), it must be after purging the 609 * address. Otherwise, we'd see an infinite loop of 610 * regeneration. 611 */ 612 if (ip6_use_tempaddr && 613 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 614 if (regen_tmpaddr(ia6) == 0) 615 regen = 1; 616 } 617 618 in6_purgeaddr(&ia6->ia_ifa); 619 620 if (regen) 621 goto addrloop; /* XXX: see below */ 622 } else if (IFA6_IS_DEPRECATED(ia6)) { 623 int oldflags = ia6->ia6_flags; 624 625 if ((oldflags & IN6_IFF_DEPRECATED) == 0) { 626 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 627 rt_newaddrmsg(RTM_NEWADDR, 628 (struct ifaddr *)ia6, 0, NULL); 629 } 630 631 /* 632 * If a temporary address has just become deprecated, 633 * regenerate a new one if possible. 634 */ 635 if (ip6_use_tempaddr && 636 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 637 (oldflags & IN6_IFF_DEPRECATED) == 0) { 638 639 if (regen_tmpaddr(ia6) == 0) { 640 /* 641 * A new temporary address is 642 * generated. 643 * XXX: this means the address chain 644 * has changed while we are still in 645 * the loop. Although the change 646 * would not cause disaster (because 647 * it's not a deletion, but an 648 * addition,) we'd rather restart the 649 * loop just for safety. Or does this 650 * significantly reduce performance?? 651 */ 652 goto addrloop; 653 } 654 } 655 } else { 656 /* 657 * A new RA might have made a deprecated address 658 * preferred. 659 */ 660 if (ia6->ia6_flags & IN6_IFF_DEPRECATED) { 661 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 662 rt_newaddrmsg(RTM_NEWADDR, 663 (struct ifaddr *)ia6, 0, NULL); 664 } 665 } 666 } 667 668 /* expire prefix list */ 669 LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, next_pr) { 670 /* 671 * check prefix lifetime. 672 * since pltime is just for autoconf, pltime processing for 673 * prefix is not necessary. 674 */ 675 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 676 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) { 677 678 /* 679 * address expiration and prefix expiration are 680 * separate. NEVER perform in6_purgeaddr here. 681 */ 682 683 prelist_remove(pr); 684 } 685 } 686 687 KERNEL_UNLOCK_ONE(NULL); 688 mutex_exit(softnet_lock); 689 } 690 691 static void 692 nd6_timer(void *ignored_arg) 693 { 694 695 workqueue_enqueue(nd6_timer_wq, &nd6_timer_wk, NULL); 696 } 697 698 /* ia6: deprecated/invalidated temporary address */ 699 static int 700 regen_tmpaddr(const struct in6_ifaddr *ia6) 701 { 702 struct ifaddr *ifa; 703 struct ifnet *ifp; 704 struct in6_ifaddr *public_ifa6 = NULL; 705 706 ifp = ia6->ia_ifa.ifa_ifp; 707 IFADDR_READER_FOREACH(ifa, ifp) { 708 struct in6_ifaddr *it6; 709 710 if (ifa->ifa_addr->sa_family != AF_INET6) 711 continue; 712 713 it6 = (struct in6_ifaddr *)ifa; 714 715 /* ignore no autoconf addresses. */ 716 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 717 continue; 718 719 /* ignore autoconf addresses with different prefixes. */ 720 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 721 continue; 722 723 /* 724 * Now we are looking at an autoconf address with the same 725 * prefix as ours. If the address is temporary and is still 726 * preferred, do not create another one. It would be rare, but 727 * could happen, for example, when we resume a laptop PC after 728 * a long period. 729 */ 730 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 731 !IFA6_IS_DEPRECATED(it6)) { 732 public_ifa6 = NULL; 733 break; 734 } 735 736 /* 737 * This is a public autoconf address that has the same prefix 738 * as ours. If it is preferred, keep it. We can't break the 739 * loop here, because there may be a still-preferred temporary 740 * address with the prefix. 741 */ 742 if (!IFA6_IS_DEPRECATED(it6)) 743 public_ifa6 = it6; 744 } 745 746 if (public_ifa6 != NULL) { 747 int e; 748 749 /* 750 * Random factor is introduced in the preferred lifetime, so 751 * we do not need additional delay (3rd arg to in6_tmpifadd). 752 */ 753 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 754 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 755 " tmp addr, errno=%d\n", e); 756 return -1; 757 } 758 return 0; 759 } 760 761 return -1; 762 } 763 764 bool 765 nd6_accepts_rtadv(const struct nd_ifinfo *ndi) 766 { 767 switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) { 768 case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV: 769 return true; 770 case ND6_IFF_ACCEPT_RTADV: 771 return ip6_accept_rtadv != 0; 772 case ND6_IFF_OVERRIDE_RTADV: 773 case 0: 774 default: 775 return false; 776 } 777 } 778 779 /* 780 * Nuke neighbor cache/prefix/default router management table, right before 781 * ifp goes away. 782 */ 783 void 784 nd6_purge(struct ifnet *ifp, struct in6_ifextra *ext) 785 { 786 struct nd_defrouter *dr, *ndr; 787 struct nd_prefix *pr, *npr; 788 789 /* 790 * During detach, the ND info might be already removed, but 791 * then is explitly passed as argument. 792 * Otherwise get it from ifp->if_afdata. 793 */ 794 if (ext == NULL) 795 ext = ifp->if_afdata[AF_INET6]; 796 if (ext == NULL) 797 return; 798 799 /* 800 * Nuke default router list entries toward ifp. 801 * We defer removal of default router list entries that is installed 802 * in the routing table, in order to keep additional side effects as 803 * small as possible. 804 */ 805 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) { 806 if (dr->installed) 807 continue; 808 809 if (dr->ifp == ifp) { 810 KASSERT(ext != NULL); 811 defrtrlist_del(dr, ext); 812 } 813 } 814 815 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) { 816 if (!dr->installed) 817 continue; 818 819 if (dr->ifp == ifp) { 820 KASSERT(ext != NULL); 821 defrtrlist_del(dr, ext); 822 } 823 } 824 825 /* Nuke prefix list entries toward ifp */ 826 LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, npr) { 827 if (pr->ndpr_ifp == ifp) { 828 /* 829 * Because if_detach() does *not* release prefixes 830 * while purging addresses the reference count will 831 * still be above zero. We therefore reset it to 832 * make sure that the prefix really gets purged. 833 */ 834 pr->ndpr_refcnt = 0; 835 /* 836 * Previously, pr->ndpr_addr is removed as well, 837 * but I strongly believe we don't have to do it. 838 * nd6_purge() is only called from in6_ifdetach(), 839 * which removes all the associated interface addresses 840 * by itself. 841 * (jinmei@kame.net 20010129) 842 */ 843 prelist_remove(pr); 844 } 845 } 846 847 /* cancel default outgoing interface setting */ 848 if (nd6_defifindex == ifp->if_index) 849 nd6_setdefaultiface(0); 850 851 /* XXX: too restrictive? */ 852 if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) { 853 struct nd_ifinfo *ndi = ND_IFINFO(ifp); 854 if (ndi && nd6_accepts_rtadv(ndi)) { 855 /* refresh default router list */ 856 defrouter_select(); 857 } 858 } 859 860 /* 861 * We may not need to nuke the neighbor cache entries here 862 * because the neighbor cache is kept in if_afdata[AF_INET6]. 863 * nd6_purge() is invoked by in6_ifdetach() which is called 864 * from if_detach() where everything gets purged. However 865 * in6_ifdetach is directly called from vlan(4), so we still 866 * need to purge entries here. 867 */ 868 if (ext->lltable != NULL) 869 lltable_purge_entries(ext->lltable); 870 } 871 872 struct llentry * 873 nd6_lookup(const struct in6_addr *addr6, const struct ifnet *ifp, bool wlock) 874 { 875 struct sockaddr_in6 sin6; 876 struct llentry *ln; 877 878 sockaddr_in6_init(&sin6, addr6, 0, 0, 0); 879 880 IF_AFDATA_RLOCK(ifp); 881 ln = lla_lookup(LLTABLE6(ifp), wlock ? LLE_EXCLUSIVE : 0, 882 sin6tosa(&sin6)); 883 IF_AFDATA_RUNLOCK(ifp); 884 885 return ln; 886 } 887 888 struct llentry * 889 nd6_create(const struct in6_addr *addr6, const struct ifnet *ifp) 890 { 891 struct sockaddr_in6 sin6; 892 struct llentry *ln; 893 894 sockaddr_in6_init(&sin6, addr6, 0, 0, 0); 895 896 IF_AFDATA_WLOCK(ifp); 897 ln = lla_create(LLTABLE6(ifp), LLE_EXCLUSIVE, 898 sin6tosa(&sin6)); 899 IF_AFDATA_WUNLOCK(ifp); 900 901 if (ln != NULL) 902 ln->ln_state = ND6_LLINFO_NOSTATE; 903 904 return ln; 905 } 906 907 /* 908 * Test whether a given IPv6 address is a neighbor or not, ignoring 909 * the actual neighbor cache. The neighbor cache is ignored in order 910 * to not reenter the routing code from within itself. 911 */ 912 static int 913 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 914 { 915 struct nd_prefix *pr; 916 struct ifaddr *dstaddr; 917 918 /* 919 * A link-local address is always a neighbor. 920 * XXX: a link does not necessarily specify a single interface. 921 */ 922 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 923 struct sockaddr_in6 sin6_copy; 924 u_int32_t zone; 925 926 /* 927 * We need sin6_copy since sa6_recoverscope() may modify the 928 * content (XXX). 929 */ 930 sin6_copy = *addr; 931 if (sa6_recoverscope(&sin6_copy)) 932 return 0; /* XXX: should be impossible */ 933 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 934 return 0; 935 if (sin6_copy.sin6_scope_id == zone) 936 return 1; 937 else 938 return 0; 939 } 940 941 /* 942 * If the address matches one of our addresses, 943 * it should be a neighbor. 944 * If the address matches one of our on-link prefixes, it should be a 945 * neighbor. 946 */ 947 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { 948 if (pr->ndpr_ifp != ifp) 949 continue; 950 951 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { 952 struct rtentry *rt; 953 954 rt = rtalloc1((struct sockaddr *)&pr->ndpr_prefix, 0); 955 if (rt == NULL) 956 continue; 957 /* 958 * This is the case where multiple interfaces 959 * have the same prefix, but only one is installed 960 * into the routing table and that prefix entry 961 * is not the one being examined here. In the case 962 * where RADIX_MPATH is enabled, multiple route 963 * entries (of the same rt_key value) will be 964 * installed because the interface addresses all 965 * differ. 966 */ 967 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 968 &satocsin6(rt_getkey(rt))->sin6_addr)) { 969 continue; 970 } 971 } 972 973 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 974 &addr->sin6_addr, &pr->ndpr_mask)) 975 return 1; 976 } 977 978 /* 979 * If the address is assigned on the node of the other side of 980 * a p2p interface, the address should be a neighbor. 981 */ 982 dstaddr = ifa_ifwithdstaddr((const struct sockaddr *)addr); 983 if (dstaddr != NULL) { 984 if (dstaddr->ifa_ifp == ifp) { 985 #ifdef __FreeBSD__ 986 /* XXX we need to ifaref in ifa_ifwithdstaddr as well */ 987 ifafree(dstaddr); 988 #endif 989 return 1; 990 } 991 #ifdef __FreeBSD__ 992 /* XXX we need to ifaref in ifa_ifwithdstaddr as well */ 993 ifafree(dstaddr); 994 #endif 995 } 996 997 /* 998 * If the default router list is empty, all addresses are regarded 999 * as on-link, and thus, as a neighbor. 1000 */ 1001 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1002 TAILQ_EMPTY(&nd_defrouter) && 1003 nd6_defifindex == ifp->if_index) { 1004 return 1; 1005 } 1006 1007 return 0; 1008 } 1009 1010 /* 1011 * Detect if a given IPv6 address identifies a neighbor on a given link. 1012 * XXX: should take care of the destination of a p2p link? 1013 */ 1014 int 1015 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1016 { 1017 struct nd_prefix *pr; 1018 struct llentry *ln; 1019 struct rtentry *rt; 1020 1021 /* 1022 * A link-local address is always a neighbor. 1023 * XXX: a link does not necessarily specify a single interface. 1024 */ 1025 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1026 struct sockaddr_in6 sin6_copy; 1027 u_int32_t zone; 1028 1029 /* 1030 * We need sin6_copy since sa6_recoverscope() may modify the 1031 * content (XXX). 1032 */ 1033 sin6_copy = *addr; 1034 if (sa6_recoverscope(&sin6_copy)) 1035 return 0; /* XXX: should be impossible */ 1036 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1037 return 0; 1038 if (sin6_copy.sin6_scope_id == zone) 1039 return 1; 1040 else 1041 return 0; 1042 } 1043 1044 /* 1045 * If the address matches one of our on-link prefixes, it should be a 1046 * neighbor. 1047 */ 1048 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { 1049 if (pr->ndpr_ifp != ifp) 1050 continue; 1051 1052 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) 1053 continue; 1054 1055 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1056 &addr->sin6_addr, &pr->ndpr_mask)) 1057 return 1; 1058 } 1059 1060 /* 1061 * If the default router list is empty, all addresses are regarded 1062 * as on-link, and thus, as a neighbor. 1063 * XXX: we restrict the condition to hosts, because routers usually do 1064 * not have the "default router list". 1065 */ 1066 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL && 1067 nd6_defifindex == ifp->if_index) { 1068 return 1; 1069 } 1070 1071 IF_AFDATA_UNLOCK_ASSERT(ifp); 1072 if (nd6_is_new_addr_neighbor(addr, ifp)) 1073 return 1; 1074 1075 /* 1076 * Even if the address matches none of our addresses, it might be 1077 * in the neighbor cache or a connected route. 1078 */ 1079 ln = nd6_lookup(&addr->sin6_addr, ifp, false); 1080 if (ln != NULL) { 1081 LLE_RUNLOCK(ln); 1082 return 1; 1083 } 1084 1085 rt = rtalloc1(sin6tocsa(addr), 0); 1086 if (rt == NULL) 1087 return 0; 1088 1089 if ((rt->rt_flags & RTF_CONNECTED) && (rt->rt_ifp == ifp 1090 #if NBRIDGE > 0 1091 || rt->rt_ifp->if_bridge == ifp->if_bridge 1092 #endif 1093 #if NCARP > 0 1094 || (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) || 1095 (rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)|| 1096 (ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP && 1097 rt->rt_ifp->if_carpdev == ifp->if_carpdev) 1098 #endif 1099 )) { 1100 rtfree(rt); 1101 return 1; 1102 } 1103 rtfree(rt); 1104 1105 return 0; 1106 } 1107 1108 /* 1109 * Free an nd6 llinfo entry. 1110 * Since the function would cause significant changes in the kernel, DO NOT 1111 * make it global, unless you have a strong reason for the change, and are sure 1112 * that the change is safe. 1113 */ 1114 static void 1115 nd6_free(struct llentry *ln, int gc) 1116 { 1117 struct nd_defrouter *dr; 1118 struct ifnet *ifp; 1119 struct in6_addr *in6; 1120 1121 KASSERT(ln != NULL); 1122 LLE_WLOCK_ASSERT(ln); 1123 1124 ifp = ln->lle_tbl->llt_ifp; 1125 in6 = &ln->r_l3addr.addr6; 1126 /* 1127 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1128 * even though it is not harmful, it was not really necessary. 1129 */ 1130 1131 /* cancel timer */ 1132 nd6_llinfo_settimer(ln, -1); 1133 1134 if (!ip6_forwarding) { 1135 int s; 1136 s = splsoftnet(); 1137 dr = defrouter_lookup(in6, ifp); 1138 1139 if (dr != NULL && dr->expire && 1140 ln->ln_state == ND6_LLINFO_STALE && gc) { 1141 /* 1142 * If the reason for the deletion is just garbage 1143 * collection, and the neighbor is an active default 1144 * router, do not delete it. Instead, reset the GC 1145 * timer using the router's lifetime. 1146 * Simply deleting the entry would affect default 1147 * router selection, which is not necessarily a good 1148 * thing, especially when we're using router preference 1149 * values. 1150 * XXX: the check for ln_state would be redundant, 1151 * but we intentionally keep it just in case. 1152 */ 1153 if (dr->expire > time_uptime) 1154 nd6_llinfo_settimer(ln, 1155 (dr->expire - time_uptime) * hz); 1156 else 1157 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 1158 splx(s); 1159 LLE_WUNLOCK(ln); 1160 return; 1161 } 1162 1163 if (ln->ln_router || dr) { 1164 /* 1165 * We need to unlock to avoid a LOR with rt6_flush() 1166 * with the rnh and for the calls to 1167 * pfxlist_onlink_check() and defrouter_select() in the 1168 * block further down for calls into nd6_lookup(). 1169 * We still hold a ref. 1170 */ 1171 LLE_WUNLOCK(ln); 1172 1173 /* 1174 * rt6_flush must be called whether or not the neighbor 1175 * is in the Default Router List. 1176 * See a corresponding comment in nd6_na_input(). 1177 */ 1178 rt6_flush(in6, ifp); 1179 } 1180 1181 if (dr) { 1182 /* 1183 * Unreachablity of a router might affect the default 1184 * router selection and on-link detection of advertised 1185 * prefixes. 1186 */ 1187 1188 /* 1189 * Temporarily fake the state to choose a new default 1190 * router and to perform on-link determination of 1191 * prefixes correctly. 1192 * Below the state will be set correctly, 1193 * or the entry itself will be deleted. 1194 */ 1195 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1196 1197 /* 1198 * Since defrouter_select() does not affect the 1199 * on-link determination and MIP6 needs the check 1200 * before the default router selection, we perform 1201 * the check now. 1202 */ 1203 pfxlist_onlink_check(); 1204 1205 /* 1206 * refresh default router list 1207 */ 1208 defrouter_select(); 1209 } 1210 1211 #ifdef __FreeBSD__ 1212 /* 1213 * If this entry was added by an on-link redirect, remove the 1214 * corresponding host route. 1215 */ 1216 if (ln->la_flags & LLE_REDIRECT) 1217 nd6_free_redirect(ln); 1218 #endif 1219 1220 if (ln->ln_router || dr) 1221 LLE_WLOCK(ln); 1222 1223 splx(s); 1224 } 1225 1226 /* 1227 * Save to unlock. We still hold an extra reference and will not 1228 * free(9) in llentry_free() if someone else holds one as well. 1229 */ 1230 LLE_WUNLOCK(ln); 1231 IF_AFDATA_LOCK(ifp); 1232 LLE_WLOCK(ln); 1233 1234 /* Guard against race with other llentry_free(). */ 1235 if (ln->la_flags & LLE_LINKED) { 1236 LLE_REMREF(ln); 1237 llentry_free(ln); 1238 } else 1239 LLE_FREE_LOCKED(ln); 1240 1241 IF_AFDATA_UNLOCK(ifp); 1242 } 1243 1244 /* 1245 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1246 * 1247 * XXX cost-effective methods? 1248 */ 1249 void 1250 nd6_nud_hint(struct rtentry *rt) 1251 { 1252 struct llentry *ln; 1253 struct ifnet *ifp; 1254 1255 if (rt == NULL) 1256 return; 1257 1258 ifp = rt->rt_ifp; 1259 ln = nd6_lookup(&(satocsin6(rt_getkey(rt)))->sin6_addr, ifp, true); 1260 if (ln == NULL) 1261 return; 1262 1263 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1264 goto done; 1265 1266 /* 1267 * if we get upper-layer reachability confirmation many times, 1268 * it is possible we have false information. 1269 */ 1270 ln->ln_byhint++; 1271 if (ln->ln_byhint > nd6_maxnudhint) 1272 goto done; 1273 1274 ln->ln_state = ND6_LLINFO_REACHABLE; 1275 if (!ND6_LLINFO_PERMANENT(ln)) 1276 nd6_llinfo_settimer(ln, ND_IFINFO(rt->rt_ifp)->reachable * hz); 1277 1278 done: 1279 LLE_WUNLOCK(ln); 1280 1281 return; 1282 } 1283 1284 static int 1285 nd6_purge_entry(struct lltable *llt, struct llentry *ln, void *farg) 1286 { 1287 int *n = farg; 1288 1289 if (*n <= 0) 1290 return 0; 1291 1292 if (ND6_LLINFO_PERMANENT(ln)) 1293 return 0; 1294 1295 LLE_WLOCK(ln); 1296 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1297 ln->ln_state = ND6_LLINFO_STALE; 1298 else 1299 ln->ln_state = ND6_LLINFO_PURGE; 1300 nd6_llinfo_settimer(ln, 0); 1301 LLE_WUNLOCK(ln); 1302 1303 (*n)--; 1304 return 0; 1305 } 1306 1307 static void 1308 nd6_gc_neighbors(struct lltable *llt) 1309 { 1310 int max_gc_entries = 10; 1311 1312 if (ip6_neighborgcthresh >= 0 && 1313 lltable_get_entry_count(llt) >= ip6_neighborgcthresh) { 1314 /* 1315 * XXX entries that are "less recently used" should be 1316 * freed first. 1317 */ 1318 lltable_foreach_lle(llt, nd6_purge_entry, &max_gc_entries); 1319 } 1320 } 1321 1322 void 1323 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info) 1324 { 1325 struct sockaddr *gate = rt->rt_gateway; 1326 struct ifnet *ifp = rt->rt_ifp; 1327 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen; 1328 struct ifaddr *ifa; 1329 1330 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1331 1332 if (req == RTM_LLINFO_UPD) { 1333 int rc; 1334 struct in6_addr *in6; 1335 struct in6_addr in6_all; 1336 int anycast; 1337 1338 if ((ifa = info->rti_ifa) == NULL) 1339 return; 1340 1341 in6 = &ifatoia6(ifa)->ia_addr.sin6_addr; 1342 anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST; 1343 1344 in6_all = in6addr_linklocal_allnodes; 1345 if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) { 1346 log(LOG_ERR, "%s: failed to set scope %s " 1347 "(errno=%d)\n", __func__, if_name(ifp), rc); 1348 return; 1349 } 1350 1351 /* XXX don't set Override for proxy addresses */ 1352 nd6_na_output(ifa->ifa_ifp, &in6_all, in6, 1353 (anycast ? 0 : ND_NA_FLAG_OVERRIDE) 1354 #if 0 1355 | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0) 1356 #endif 1357 , 1, NULL); 1358 return; 1359 } 1360 1361 if ((rt->rt_flags & RTF_GATEWAY) != 0) 1362 return; 1363 1364 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { 1365 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1366 /* 1367 * This is probably an interface direct route for a link 1368 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1369 * We do not need special treatment below for such a route. 1370 * Moreover, the RTF_LLINFO flag which would be set below 1371 * would annoy the ndp(8) command. 1372 */ 1373 return; 1374 } 1375 1376 switch (req) { 1377 case RTM_ADD: 1378 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1379 /* 1380 * There is no backward compatibility :) 1381 * 1382 * if ((rt->rt_flags & RTF_HOST) == 0 && 1383 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1384 * rt->rt_flags |= RTF_CLONING; 1385 */ 1386 /* XXX should move to route.c? */ 1387 if (rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL)) { 1388 union { 1389 struct sockaddr sa; 1390 struct sockaddr_dl sdl; 1391 struct sockaddr_storage ss; 1392 } u; 1393 /* 1394 * Case 1: This route should come from a route to 1395 * interface (RTF_CLONING case) or the route should be 1396 * treated as on-link but is currently not 1397 * (RTF_LLINFO && ln == NULL case). 1398 */ 1399 if (sockaddr_dl_init(&u.sdl, sizeof(u.ss), 1400 ifp->if_index, ifp->if_type, 1401 NULL, namelen, NULL, addrlen) == NULL) { 1402 printf("%s.%d: sockaddr_dl_init(, %zu, ) " 1403 "failed on %s\n", __func__, __LINE__, 1404 sizeof(u.ss), if_name(ifp)); 1405 } 1406 rt_setgate(rt, &u.sa); 1407 gate = rt->rt_gateway; 1408 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1409 if (gate == NULL) { 1410 log(LOG_ERR, 1411 "%s: rt_setgate failed on %s\n", __func__, 1412 if_name(ifp)); 1413 break; 1414 } 1415 1416 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1417 if ((rt->rt_flags & RTF_CONNECTED) != 0) 1418 break; 1419 } 1420 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1421 /* 1422 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1423 * We don't do that here since llinfo is not ready yet. 1424 * 1425 * There are also couple of other things to be discussed: 1426 * - unsolicited NA code needs improvement beforehand 1427 * - RFC2461 says we MAY send multicast unsolicited NA 1428 * (7.2.6 paragraph 4), however, it also says that we 1429 * SHOULD provide a mechanism to prevent multicast NA storm. 1430 * we don't have anything like it right now. 1431 * note that the mechanism needs a mutual agreement 1432 * between proxies, which means that we need to implement 1433 * a new protocol, or a new kludge. 1434 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1435 * we need to check ip6forwarding before sending it. 1436 * (or should we allow proxy ND configuration only for 1437 * routers? there's no mention about proxy ND from hosts) 1438 */ 1439 #if 0 1440 /* XXX it does not work */ 1441 if (rt->rt_flags & RTF_ANNOUNCE) 1442 nd6_na_output(ifp, 1443 &satocsin6(rt_getkey(rt))->sin6_addr, 1444 &satocsin6(rt_getkey(rt))->sin6_addr, 1445 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1446 1, NULL); 1447 #endif 1448 1449 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 1450 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1451 /* 1452 * Address resolution isn't necessary for a point to 1453 * point link, so we can skip this test for a p2p link. 1454 */ 1455 if (gate->sa_family != AF_LINK || 1456 gate->sa_len < 1457 sockaddr_dl_measure(namelen, addrlen)) { 1458 log(LOG_DEBUG, 1459 "nd6_rtrequest: bad gateway value: %s\n", 1460 if_name(ifp)); 1461 break; 1462 } 1463 satosdl(gate)->sdl_type = ifp->if_type; 1464 satosdl(gate)->sdl_index = ifp->if_index; 1465 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1466 } 1467 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1468 1469 /* 1470 * When called from rt_ifa_addlocal, we cannot depend on that 1471 * the address (rt_getkey(rt)) exits in the address list of the 1472 * interface. So check RTF_LOCAL instead. 1473 */ 1474 if (rt->rt_flags & RTF_LOCAL) { 1475 if (nd6_useloopback) 1476 rt->rt_ifp = lo0ifp; /* XXX */ 1477 break; 1478 } 1479 1480 /* 1481 * check if rt_getkey(rt) is an address assigned 1482 * to the interface. 1483 */ 1484 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp, 1485 &satocsin6(rt_getkey(rt))->sin6_addr); 1486 if (ifa != NULL) { 1487 if (nd6_useloopback) { 1488 rt->rt_ifp = lo0ifp; /* XXX */ 1489 /* 1490 * Make sure rt_ifa be equal to the ifaddr 1491 * corresponding to the address. 1492 * We need this because when we refer 1493 * rt_ifa->ia6_flags in ip6_input, we assume 1494 * that the rt_ifa points to the address instead 1495 * of the loopback address. 1496 */ 1497 if (ifa != rt->rt_ifa) 1498 rt_replace_ifa(rt, ifa); 1499 } 1500 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1501 /* join solicited node multicast for proxy ND */ 1502 if (ifp->if_flags & IFF_MULTICAST) { 1503 struct in6_addr llsol; 1504 int error; 1505 1506 llsol = satocsin6(rt_getkey(rt))->sin6_addr; 1507 llsol.s6_addr32[0] = htonl(0xff020000); 1508 llsol.s6_addr32[1] = 0; 1509 llsol.s6_addr32[2] = htonl(1); 1510 llsol.s6_addr8[12] = 0xff; 1511 if (in6_setscope(&llsol, ifp, NULL)) 1512 goto out; 1513 if (!in6_addmulti(&llsol, ifp, &error, 0)) { 1514 nd6log(LOG_ERR, "%s: failed to join " 1515 "%s (errno=%d)\n", if_name(ifp), 1516 ip6_sprintf(&llsol), error); 1517 } 1518 } 1519 } 1520 1521 out: 1522 /* 1523 * If we have too many cache entries, initiate immediate 1524 * purging for some entries. 1525 */ 1526 if (rt->rt_ifp != NULL) 1527 nd6_gc_neighbors(LLTABLE6(rt->rt_ifp)); 1528 break; 1529 1530 case RTM_DELETE: 1531 /* leave from solicited node multicast for proxy ND */ 1532 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && 1533 (ifp->if_flags & IFF_MULTICAST) != 0) { 1534 struct in6_addr llsol; 1535 struct in6_multi *in6m; 1536 1537 llsol = satocsin6(rt_getkey(rt))->sin6_addr; 1538 llsol.s6_addr32[0] = htonl(0xff020000); 1539 llsol.s6_addr32[1] = 0; 1540 llsol.s6_addr32[2] = htonl(1); 1541 llsol.s6_addr8[12] = 0xff; 1542 if (in6_setscope(&llsol, ifp, NULL) == 0) { 1543 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1544 if (in6m) 1545 in6_delmulti(in6m); 1546 } 1547 } 1548 break; 1549 } 1550 } 1551 1552 int 1553 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp) 1554 { 1555 struct in6_drlist *drl = (struct in6_drlist *)data; 1556 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1557 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1558 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1559 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1560 struct nd_defrouter *dr; 1561 struct nd_prefix *pr; 1562 int i = 0, error = 0; 1563 int s; 1564 1565 switch (cmd) { 1566 case SIOCGDRLST_IN6: 1567 /* 1568 * obsolete API, use sysctl under net.inet6.icmp6 1569 */ 1570 memset(drl, 0, sizeof(*drl)); 1571 s = splsoftnet(); 1572 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) { 1573 if (i >= DRLSTSIZ) 1574 break; 1575 drl->defrouter[i].rtaddr = dr->rtaddr; 1576 in6_clearscope(&drl->defrouter[i].rtaddr); 1577 1578 drl->defrouter[i].flags = dr->flags; 1579 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1580 drl->defrouter[i].expire = dr->expire ? 1581 time_mono_to_wall(dr->expire) : 0; 1582 drl->defrouter[i].if_index = dr->ifp->if_index; 1583 i++; 1584 } 1585 splx(s); 1586 break; 1587 case SIOCGPRLST_IN6: 1588 /* 1589 * obsolete API, use sysctl under net.inet6.icmp6 1590 * 1591 * XXX the structure in6_prlist was changed in backward- 1592 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1593 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1594 */ 1595 /* 1596 * XXX meaning of fields, especialy "raflags", is very 1597 * differnet between RA prefix list and RR/static prefix list. 1598 * how about separating ioctls into two? 1599 */ 1600 memset(oprl, 0, sizeof(*oprl)); 1601 s = splsoftnet(); 1602 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { 1603 struct nd_pfxrouter *pfr; 1604 int j; 1605 1606 if (i >= PRLSTSIZ) 1607 break; 1608 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1609 oprl->prefix[i].raflags = pr->ndpr_raf; 1610 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1611 oprl->prefix[i].vltime = pr->ndpr_vltime; 1612 oprl->prefix[i].pltime = pr->ndpr_pltime; 1613 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1614 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 1615 oprl->prefix[i].expire = 0; 1616 else { 1617 time_t maxexpire; 1618 1619 /* XXX: we assume time_t is signed. */ 1620 maxexpire = (-1) & 1621 ~((time_t)1 << 1622 ((sizeof(maxexpire) * 8) - 1)); 1623 if (pr->ndpr_vltime < 1624 maxexpire - pr->ndpr_lastupdate) { 1625 time_t expire; 1626 expire = pr->ndpr_lastupdate + 1627 pr->ndpr_vltime; 1628 oprl->prefix[i].expire = expire ? 1629 time_mono_to_wall(expire) : 0; 1630 } else 1631 oprl->prefix[i].expire = maxexpire; 1632 } 1633 1634 j = 0; 1635 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 1636 if (j < DRLSTSIZ) { 1637 #define RTRADDR oprl->prefix[i].advrtr[j] 1638 RTRADDR = pfr->router->rtaddr; 1639 in6_clearscope(&RTRADDR); 1640 #undef RTRADDR 1641 } 1642 j++; 1643 } 1644 oprl->prefix[i].advrtrs = j; 1645 oprl->prefix[i].origin = PR_ORIG_RA; 1646 1647 i++; 1648 } 1649 splx(s); 1650 1651 break; 1652 case OSIOCGIFINFO_IN6: 1653 #define ND ndi->ndi 1654 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1655 memset(&ND, 0, sizeof(ND)); 1656 ND.linkmtu = IN6_LINKMTU(ifp); 1657 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1658 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1659 ND.reachable = ND_IFINFO(ifp)->reachable; 1660 ND.retrans = ND_IFINFO(ifp)->retrans; 1661 ND.flags = ND_IFINFO(ifp)->flags; 1662 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1663 ND.chlim = ND_IFINFO(ifp)->chlim; 1664 break; 1665 case SIOCGIFINFO_IN6: 1666 ND = *ND_IFINFO(ifp); 1667 break; 1668 case SIOCSIFINFO_IN6: 1669 /* 1670 * used to change host variables from userland. 1671 * intented for a use on router to reflect RA configurations. 1672 */ 1673 /* 0 means 'unspecified' */ 1674 if (ND.linkmtu != 0) { 1675 if (ND.linkmtu < IPV6_MMTU || 1676 ND.linkmtu > IN6_LINKMTU(ifp)) { 1677 error = EINVAL; 1678 break; 1679 } 1680 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1681 } 1682 1683 if (ND.basereachable != 0) { 1684 int obasereachable = ND_IFINFO(ifp)->basereachable; 1685 1686 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1687 if (ND.basereachable != obasereachable) 1688 ND_IFINFO(ifp)->reachable = 1689 ND_COMPUTE_RTIME(ND.basereachable); 1690 } 1691 if (ND.retrans != 0) 1692 ND_IFINFO(ifp)->retrans = ND.retrans; 1693 if (ND.chlim != 0) 1694 ND_IFINFO(ifp)->chlim = ND.chlim; 1695 /* FALLTHROUGH */ 1696 case SIOCSIFINFO_FLAGS: 1697 { 1698 struct ifaddr *ifa; 1699 struct in6_ifaddr *ia; 1700 1701 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1702 !(ND.flags & ND6_IFF_IFDISABLED)) 1703 { 1704 /* 1705 * If the interface is marked as ND6_IFF_IFDISABLED and 1706 * has a link-local address with IN6_IFF_DUPLICATED, 1707 * do not clear ND6_IFF_IFDISABLED. 1708 * See RFC 4862, section 5.4.5. 1709 */ 1710 int duplicated_linklocal = 0; 1711 1712 IFADDR_READER_FOREACH(ifa, ifp) { 1713 if (ifa->ifa_addr->sa_family != AF_INET6) 1714 continue; 1715 ia = (struct in6_ifaddr *)ifa; 1716 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1717 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1718 { 1719 duplicated_linklocal = 1; 1720 break; 1721 } 1722 } 1723 1724 if (duplicated_linklocal) { 1725 ND.flags |= ND6_IFF_IFDISABLED; 1726 log(LOG_ERR, "Cannot enable an interface" 1727 " with a link-local address marked" 1728 " duplicate.\n"); 1729 } else { 1730 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1731 if (ifp->if_flags & IFF_UP) 1732 in6_if_up(ifp); 1733 } 1734 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1735 (ND.flags & ND6_IFF_IFDISABLED)) 1736 { 1737 /* Mark all IPv6 addresses as tentative. */ 1738 1739 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1740 IFADDR_READER_FOREACH(ifa, ifp) { 1741 if (ifa->ifa_addr->sa_family != AF_INET6) 1742 continue; 1743 nd6_dad_stop(ifa); 1744 ia = (struct in6_ifaddr *)ifa; 1745 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1746 } 1747 } 1748 1749 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1750 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1751 /* auto_linklocal 0->1 transition */ 1752 1753 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1754 in6_ifattach(ifp, NULL); 1755 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1756 ifp->if_flags & IFF_UP) 1757 { 1758 /* 1759 * When the IF already has 1760 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1761 * address is assigned, and IFF_UP, try to 1762 * assign one. 1763 */ 1764 int haslinklocal = 0; 1765 1766 IFADDR_READER_FOREACH(ifa, ifp) { 1767 if (ifa->ifa_addr->sa_family !=AF_INET6) 1768 continue; 1769 ia = (struct in6_ifaddr *)ifa; 1770 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){ 1771 haslinklocal = 1; 1772 break; 1773 } 1774 } 1775 if (!haslinklocal) 1776 in6_ifattach(ifp, NULL); 1777 } 1778 } 1779 } 1780 ND_IFINFO(ifp)->flags = ND.flags; 1781 break; 1782 #undef ND 1783 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1784 /* sync kernel routing table with the default router list */ 1785 defrouter_reset(); 1786 defrouter_select(); 1787 break; 1788 case SIOCSPFXFLUSH_IN6: 1789 { 1790 /* flush all the prefix advertised by routers */ 1791 struct nd_prefix *pfx, *next; 1792 1793 s = splsoftnet(); 1794 LIST_FOREACH_SAFE(pfx, &nd_prefix, ndpr_entry, next) { 1795 struct in6_ifaddr *ia, *ia_next; 1796 1797 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr)) 1798 continue; /* XXX */ 1799 1800 /* do we really have to remove addresses as well? */ 1801 for (ia = IN6_ADDRLIST_WRITER_FIRST(); ia; 1802 ia = ia_next) { 1803 /* ia might be removed. keep the next ptr. */ 1804 ia_next = IN6_ADDRLIST_WRITER_NEXT(ia); 1805 1806 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1807 continue; 1808 1809 if (ia->ia6_ndpr == pfx) 1810 in6_purgeaddr(&ia->ia_ifa); 1811 } 1812 prelist_remove(pfx); 1813 } 1814 splx(s); 1815 break; 1816 } 1817 case SIOCSRTRFLUSH_IN6: 1818 { 1819 /* flush all the default routers */ 1820 struct nd_defrouter *drtr, *next; 1821 1822 s = splsoftnet(); 1823 defrouter_reset(); 1824 TAILQ_FOREACH_SAFE(drtr, &nd_defrouter, dr_entry, next) { 1825 defrtrlist_del(drtr, NULL); 1826 } 1827 defrouter_select(); 1828 splx(s); 1829 break; 1830 } 1831 case SIOCGNBRINFO_IN6: 1832 { 1833 struct llentry *ln; 1834 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1835 1836 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1837 return error; 1838 1839 ln = nd6_lookup(&nb_addr, ifp, false); 1840 if (ln == NULL) { 1841 error = EINVAL; 1842 break; 1843 } 1844 nbi->state = ln->ln_state; 1845 nbi->asked = ln->ln_asked; 1846 nbi->isrouter = ln->ln_router; 1847 nbi->expire = ln->ln_expire ? 1848 time_mono_to_wall(ln->ln_expire) : 0; 1849 LLE_RUNLOCK(ln); 1850 1851 break; 1852 } 1853 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1854 ndif->ifindex = nd6_defifindex; 1855 break; 1856 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1857 return nd6_setdefaultiface(ndif->ifindex); 1858 } 1859 return error; 1860 } 1861 1862 void 1863 nd6_llinfo_release_pkts(struct llentry *ln, struct ifnet *ifp) 1864 { 1865 struct mbuf *m_hold, *m_hold_next; 1866 struct sockaddr_in6 sin6; 1867 1868 LLE_WLOCK_ASSERT(ln); 1869 1870 sockaddr_in6_init(&sin6, &ln->r_l3addr.addr6, 0, 0, 0); 1871 1872 m_hold = ln->la_hold, ln->la_hold = NULL, ln->la_numheld = 0; 1873 1874 LLE_WUNLOCK(ln); 1875 for (; m_hold != NULL; m_hold = m_hold_next) { 1876 m_hold_next = m_hold->m_nextpkt; 1877 m_hold->m_nextpkt = NULL; 1878 1879 /* 1880 * we assume ifp is not a p2p here, so 1881 * just set the 2nd argument as the 1882 * 1st one. 1883 */ 1884 nd6_output(ifp, ifp, m_hold, &sin6, NULL); 1885 } 1886 LLE_WLOCK(ln); 1887 } 1888 1889 /* 1890 * Create neighbor cache entry and cache link-layer address, 1891 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1892 */ 1893 void 1894 nd6_cache_lladdr( 1895 struct ifnet *ifp, 1896 struct in6_addr *from, 1897 char *lladdr, 1898 int lladdrlen, 1899 int type, /* ICMP6 type */ 1900 int code /* type dependent information */ 1901 ) 1902 { 1903 struct nd_ifinfo *ndi = ND_IFINFO(ifp); 1904 struct llentry *ln = NULL; 1905 int is_newentry; 1906 int do_update; 1907 int olladdr; 1908 int llchange; 1909 int newstate = 0; 1910 uint16_t router = 0; 1911 1912 KASSERT(ifp != NULL); 1913 KASSERT(from != NULL); 1914 1915 /* nothing must be updated for unspecified address */ 1916 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1917 return; 1918 1919 /* 1920 * Validation about ifp->if_addrlen and lladdrlen must be done in 1921 * the caller. 1922 * 1923 * XXX If the link does not have link-layer adderss, what should 1924 * we do? (ifp->if_addrlen == 0) 1925 * Spec says nothing in sections for RA, RS and NA. There's small 1926 * description on it in NS section (RFC 2461 7.2.3). 1927 */ 1928 1929 ln = nd6_lookup(from, ifp, true); 1930 if (ln == NULL) { 1931 #if 0 1932 /* nothing must be done if there's no lladdr */ 1933 if (!lladdr || !lladdrlen) 1934 return NULL; 1935 #endif 1936 1937 ln = nd6_create(from, ifp); 1938 is_newentry = 1; 1939 } else { 1940 /* do nothing if static ndp is set */ 1941 if (ln->la_flags & LLE_STATIC) { 1942 LLE_WUNLOCK(ln); 1943 return; 1944 } 1945 is_newentry = 0; 1946 } 1947 1948 if (ln == NULL) 1949 return; 1950 1951 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 1952 if (olladdr && lladdr) { 1953 llchange = memcmp(lladdr, &ln->ll_addr, ifp->if_addrlen); 1954 } else 1955 llchange = 0; 1956 1957 /* 1958 * newentry olladdr lladdr llchange (*=record) 1959 * 0 n n -- (1) 1960 * 0 y n -- (2) 1961 * 0 n y -- (3) * STALE 1962 * 0 y y n (4) * 1963 * 0 y y y (5) * STALE 1964 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1965 * 1 -- y -- (7) * STALE 1966 */ 1967 1968 if (lladdr) { /* (3-5) and (7) */ 1969 /* 1970 * Record source link-layer address 1971 * XXX is it dependent to ifp->if_type? 1972 */ 1973 memcpy(&ln->ll_addr, lladdr, ifp->if_addrlen); 1974 ln->la_flags |= LLE_VALID; 1975 } 1976 1977 if (!is_newentry) { 1978 if ((!olladdr && lladdr) || /* (3) */ 1979 (olladdr && lladdr && llchange)) { /* (5) */ 1980 do_update = 1; 1981 newstate = ND6_LLINFO_STALE; 1982 } else /* (1-2,4) */ 1983 do_update = 0; 1984 } else { 1985 do_update = 1; 1986 if (lladdr == NULL) /* (6) */ 1987 newstate = ND6_LLINFO_NOSTATE; 1988 else /* (7) */ 1989 newstate = ND6_LLINFO_STALE; 1990 } 1991 1992 if (do_update) { 1993 /* 1994 * Update the state of the neighbor cache. 1995 */ 1996 ln->ln_state = newstate; 1997 1998 if (ln->ln_state == ND6_LLINFO_STALE) { 1999 /* 2000 * XXX: since nd6_output() below will cause 2001 * state tansition to DELAY and reset the timer, 2002 * we must set the timer now, although it is actually 2003 * meaningless. 2004 */ 2005 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 2006 2007 nd6_llinfo_release_pkts(ln, ifp); 2008 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 2009 /* probe right away */ 2010 nd6_llinfo_settimer((void *)ln, 0); 2011 } 2012 } 2013 2014 /* 2015 * ICMP6 type dependent behavior. 2016 * 2017 * NS: clear IsRouter if new entry 2018 * RS: clear IsRouter 2019 * RA: set IsRouter if there's lladdr 2020 * redir: clear IsRouter if new entry 2021 * 2022 * RA case, (1): 2023 * The spec says that we must set IsRouter in the following cases: 2024 * - If lladdr exist, set IsRouter. This means (1-5). 2025 * - If it is old entry (!newentry), set IsRouter. This means (7). 2026 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 2027 * A quetion arises for (1) case. (1) case has no lladdr in the 2028 * neighbor cache, this is similar to (6). 2029 * This case is rare but we figured that we MUST NOT set IsRouter. 2030 * 2031 * newentry olladdr lladdr llchange NS RS RA redir 2032 * D R 2033 * 0 n n -- (1) c ? s 2034 * 0 y n -- (2) c s s 2035 * 0 n y -- (3) c s s 2036 * 0 y y n (4) c s s 2037 * 0 y y y (5) c s s 2038 * 1 -- n -- (6) c c c s 2039 * 1 -- y -- (7) c c s c s 2040 * 2041 * (c=clear s=set) 2042 */ 2043 switch (type & 0xff) { 2044 case ND_NEIGHBOR_SOLICIT: 2045 /* 2046 * New entry must have is_router flag cleared. 2047 */ 2048 if (is_newentry) /* (6-7) */ 2049 ln->ln_router = 0; 2050 break; 2051 case ND_REDIRECT: 2052 /* 2053 * If the icmp is a redirect to a better router, always set the 2054 * is_router flag. Otherwise, if the entry is newly created, 2055 * clear the flag. [RFC 2461, sec 8.3] 2056 */ 2057 if (code == ND_REDIRECT_ROUTER) 2058 ln->ln_router = 1; 2059 else if (is_newentry) /* (6-7) */ 2060 ln->ln_router = 0; 2061 break; 2062 case ND_ROUTER_SOLICIT: 2063 /* 2064 * is_router flag must always be cleared. 2065 */ 2066 ln->ln_router = 0; 2067 break; 2068 case ND_ROUTER_ADVERT: 2069 /* 2070 * Mark an entry with lladdr as a router. 2071 */ 2072 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 2073 (is_newentry && lladdr)) { /* (7) */ 2074 ln->ln_router = 1; 2075 } 2076 break; 2077 } 2078 2079 #if 0 2080 /* XXX should we send rtmsg as it used to be? */ 2081 if (do_update) 2082 rt_newmsg(RTM_CHANGE, rt); /* tell user process */ 2083 #endif 2084 2085 if (ln != NULL) { 2086 router = ln->ln_router; 2087 LLE_WUNLOCK(ln); 2088 } 2089 2090 /* 2091 * If we have too many cache entries, initiate immediate 2092 * purging for some entries. 2093 */ 2094 if (is_newentry) 2095 nd6_gc_neighbors(LLTABLE6(ifp)); 2096 2097 /* 2098 * When the link-layer address of a router changes, select the 2099 * best router again. In particular, when the neighbor entry is newly 2100 * created, it might affect the selection policy. 2101 * Question: can we restrict the first condition to the "is_newentry" 2102 * case? 2103 * XXX: when we hear an RA from a new router with the link-layer 2104 * address option, defrouter_select() is called twice, since 2105 * defrtrlist_update called the function as well. However, I believe 2106 * we can compromise the overhead, since it only happens the first 2107 * time. 2108 * XXX: although defrouter_select() should not have a bad effect 2109 * for those are not autoconfigured hosts, we explicitly avoid such 2110 * cases for safety. 2111 */ 2112 if (do_update && router && !ip6_forwarding && 2113 nd6_accepts_rtadv(ndi)) 2114 defrouter_select(); 2115 } 2116 2117 static void 2118 nd6_slowtimo(void *ignored_arg) 2119 { 2120 struct nd_ifinfo *nd6if; 2121 struct ifnet *ifp; 2122 int s; 2123 2124 mutex_enter(softnet_lock); 2125 KERNEL_LOCK(1, NULL); 2126 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2127 nd6_slowtimo, NULL); 2128 2129 s = pserialize_read_enter(); 2130 IFNET_READER_FOREACH(ifp) { 2131 nd6if = ND_IFINFO(ifp); 2132 if (nd6if->basereachable && /* already initialized */ 2133 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2134 /* 2135 * Since reachable time rarely changes by router 2136 * advertisements, we SHOULD insure that a new random 2137 * value gets recomputed at least once every few hours. 2138 * (RFC 2461, 6.3.4) 2139 */ 2140 nd6if->recalctm = nd6_recalc_reachtm_interval; 2141 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2142 } 2143 } 2144 pserialize_read_exit(s); 2145 2146 KERNEL_UNLOCK_ONE(NULL); 2147 mutex_exit(softnet_lock); 2148 } 2149 2150 int 2151 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2152 const struct sockaddr_in6 *dst, struct rtentry *rt) 2153 { 2154 #define senderr(e) { error = (e); goto bad;} 2155 struct llentry *ln = NULL; 2156 int error = 0; 2157 bool created = false; 2158 2159 if (rt != NULL) { 2160 error = rt_check_reject_route(rt, ifp); 2161 if (error != 0) { 2162 m_freem(m); 2163 return error; 2164 } 2165 } 2166 2167 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 2168 goto sendpkt; 2169 2170 if (nd6_need_cache(ifp) == 0) 2171 goto sendpkt; 2172 2173 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) != 0) { 2174 struct sockaddr_in6 *gw6 = satosin6(rt->rt_gateway); 2175 2176 /* XXX remain the check to keep the original behavior. */ 2177 /* 2178 * We skip link-layer address resolution and NUD 2179 * if the gateway is not a neighbor from ND point 2180 * of view, regardless of the value of nd_ifinfo.flags. 2181 * The second condition is a bit tricky; we skip 2182 * if the gateway is our own address, which is 2183 * sometimes used to install a route to a p2p link. 2184 */ 2185 if (!nd6_is_addr_neighbor(gw6, ifp) || 2186 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) { 2187 /* 2188 * We allow this kind of tricky route only 2189 * when the outgoing interface is p2p. 2190 * XXX: we may need a more generic rule here. 2191 */ 2192 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 2193 senderr(EHOSTUNREACH); 2194 2195 goto sendpkt; 2196 } 2197 } 2198 2199 /* 2200 * Address resolution or Neighbor Unreachability Detection 2201 * for the next hop. 2202 * At this point, the destination of the packet must be a unicast 2203 * or an anycast address(i.e. not a multicast). 2204 */ 2205 2206 /* Look up the neighbor cache for the nexthop */ 2207 ln = nd6_lookup(&dst->sin6_addr, ifp, true); 2208 if ((ln == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2209 /* 2210 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2211 * the condition below is not very efficient. But we believe 2212 * it is tolerable, because this should be a rare case. 2213 */ 2214 ln = nd6_create(&dst->sin6_addr, ifp); 2215 if (ln != NULL) 2216 created = true; 2217 } 2218 2219 if (ln == NULL) { 2220 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 2221 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 2222 log(LOG_DEBUG, 2223 "nd6_output: can't allocate llinfo for %s " 2224 "(ln=%p, rt=%p)\n", 2225 ip6_sprintf(&dst->sin6_addr), ln, rt); 2226 senderr(EIO); /* XXX: good error? */ 2227 } 2228 goto sendpkt; /* send anyway */ 2229 } 2230 2231 LLE_WLOCK_ASSERT(ln); 2232 2233 /* We don't have to do link-layer address resolution on a p2p link. */ 2234 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 2235 ln->ln_state < ND6_LLINFO_REACHABLE) { 2236 ln->ln_state = ND6_LLINFO_STALE; 2237 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 2238 } 2239 2240 /* 2241 * The first time we send a packet to a neighbor whose entry is 2242 * STALE, we have to change the state to DELAY and a sets a timer to 2243 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2244 * neighbor unreachability detection on expiration. 2245 * (RFC 2461 7.3.3) 2246 */ 2247 if (ln->ln_state == ND6_LLINFO_STALE) { 2248 ln->ln_asked = 0; 2249 ln->ln_state = ND6_LLINFO_DELAY; 2250 nd6_llinfo_settimer(ln, nd6_delay * hz); 2251 } 2252 2253 /* 2254 * If the neighbor cache entry has a state other than INCOMPLETE 2255 * (i.e. its link-layer address is already resolved), just 2256 * send the packet. 2257 */ 2258 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 2259 goto sendpkt; 2260 2261 /* 2262 * There is a neighbor cache entry, but no ethernet address 2263 * response yet. Append this latest packet to the end of the 2264 * packet queue in the mbuf, unless the number of the packet 2265 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, 2266 * the oldest packet in the queue will be removed. 2267 */ 2268 if (ln->ln_state == ND6_LLINFO_NOSTATE) 2269 ln->ln_state = ND6_LLINFO_INCOMPLETE; 2270 if (ln->ln_hold) { 2271 struct mbuf *m_hold; 2272 int i; 2273 2274 i = 0; 2275 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) { 2276 i++; 2277 if (m_hold->m_nextpkt == NULL) { 2278 m_hold->m_nextpkt = m; 2279 break; 2280 } 2281 } 2282 while (i >= nd6_maxqueuelen) { 2283 m_hold = ln->ln_hold; 2284 ln->ln_hold = ln->ln_hold->m_nextpkt; 2285 m_freem(m_hold); 2286 i--; 2287 } 2288 } else { 2289 ln->ln_hold = m; 2290 } 2291 2292 /* 2293 * If there has been no NS for the neighbor after entering the 2294 * INCOMPLETE state, send the first solicitation. 2295 */ 2296 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) { 2297 struct in6_addr src, *psrc; 2298 2299 ln->ln_asked++; 2300 nd6_llinfo_settimer(ln, ND_IFINFO(ifp)->retrans * hz / 1000); 2301 psrc = nd6_llinfo_get_holdsrc(ln, &src); 2302 LLE_WUNLOCK(ln); 2303 ln = NULL; 2304 nd6_ns_output(ifp, NULL, &dst->sin6_addr, psrc, 0); 2305 } else { 2306 /* We did the lookup so we need to do the unlock here. */ 2307 LLE_WUNLOCK(ln); 2308 } 2309 2310 error = 0; 2311 goto exit; 2312 2313 sendpkt: 2314 /* discard the packet if IPv6 operation is disabled on the interface */ 2315 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2316 error = ENETDOWN; /* better error? */ 2317 goto bad; 2318 } 2319 2320 if (ln != NULL) 2321 LLE_WUNLOCK(ln); 2322 2323 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2324 error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt); 2325 else 2326 error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt); 2327 goto exit; 2328 2329 bad: 2330 if (m != NULL) 2331 m_freem(m); 2332 exit: 2333 if (created) 2334 nd6_gc_neighbors(LLTABLE6(ifp)); 2335 2336 return error; 2337 #undef senderr 2338 } 2339 2340 int 2341 nd6_need_cache(struct ifnet *ifp) 2342 { 2343 /* 2344 * XXX: we currently do not make neighbor cache on any interface 2345 * other than ARCnet, Ethernet, FDDI and GIF. 2346 * 2347 * RFC2893 says: 2348 * - unidirectional tunnels needs no ND 2349 */ 2350 switch (ifp->if_type) { 2351 case IFT_ARCNET: 2352 case IFT_ETHER: 2353 case IFT_FDDI: 2354 case IFT_IEEE1394: 2355 case IFT_CARP: 2356 case IFT_GIF: /* XXX need more cases? */ 2357 case IFT_PPP: 2358 case IFT_TUNNEL: 2359 return 1; 2360 default: 2361 return 0; 2362 } 2363 } 2364 2365 /* 2366 * Add pernament ND6 link-layer record for given 2367 * interface address. 2368 * 2369 * Very similar to IPv4 arp_ifinit(), but: 2370 * 1) IPv6 DAD is performed in different place 2371 * 2) It is called by IPv6 protocol stack in contrast to 2372 * arp_ifinit() which is typically called in SIOCSIFADDR 2373 * driver ioctl handler. 2374 * 2375 */ 2376 int 2377 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2378 { 2379 struct ifnet *ifp; 2380 struct llentry *ln; 2381 2382 ifp = ia->ia_ifa.ifa_ifp; 2383 if (nd6_need_cache(ifp) == 0) 2384 return 0; 2385 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2386 ia->ia_ifa.ifa_flags = RTF_CONNECTED; 2387 2388 IF_AFDATA_WLOCK(ifp); 2389 ln = lla_create(LLTABLE6(ifp), LLE_IFADDR | LLE_EXCLUSIVE, 2390 (struct sockaddr *)&ia->ia_addr); 2391 IF_AFDATA_WUNLOCK(ifp); 2392 if (ln == NULL) 2393 return ENOBUFS; 2394 2395 ln->la_expire = 0; /* for IPv6 this means permanent */ 2396 ln->ln_state = ND6_LLINFO_REACHABLE; 2397 2398 LLE_WUNLOCK(ln); 2399 return 0; 2400 } 2401 2402 /* 2403 * Removes ALL lle records for interface address prefix. 2404 * XXXME: That's probably not we really want to do, we need 2405 * to remove address record only and keep other records 2406 * until we determine if given prefix is really going 2407 * to be removed. 2408 */ 2409 void 2410 nd6_rem_ifa_lle(struct in6_ifaddr *ia) 2411 { 2412 struct sockaddr_in6 mask, addr; 2413 2414 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2415 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2416 lltable_prefix_free(AF_INET6, (struct sockaddr *)&addr, 2417 (struct sockaddr *)&mask, LLE_STATIC); 2418 } 2419 2420 int 2421 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt, 2422 struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst, 2423 size_t dstsize) 2424 { 2425 struct llentry *ln; 2426 2427 if (m->m_flags & M_MCAST) { 2428 switch (ifp->if_type) { 2429 case IFT_ETHER: 2430 case IFT_FDDI: 2431 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr, 2432 lldst); 2433 return 1; 2434 case IFT_IEEE1394: 2435 memcpy(lldst, ifp->if_broadcastaddr, 2436 MIN(dstsize, ifp->if_addrlen)); 2437 return 1; 2438 case IFT_ARCNET: 2439 *lldst = 0; 2440 return 1; 2441 default: 2442 m_freem(m); 2443 return 0; 2444 } 2445 } 2446 2447 /* 2448 * the entry should have been created in nd6_store_lladdr 2449 */ 2450 ln = nd6_lookup(&satocsin6(dst)->sin6_addr, ifp, false); 2451 if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) { 2452 if (ln != NULL) 2453 LLE_RUNLOCK(ln); 2454 /* this could happen, if we could not allocate memory */ 2455 m_freem(m); 2456 return 0; 2457 } 2458 2459 /* XXX llentry should have addrlen? */ 2460 #if 0 2461 sdl = satocsdl(rt->rt_gateway); 2462 if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) { 2463 char sbuf[INET6_ADDRSTRLEN]; 2464 char dbuf[LINK_ADDRSTRLEN]; 2465 /* this should be impossible, but we bark here for debugging */ 2466 printf("%s: sdl_alen == %" PRIu8 ", if=%s, dst=%s, sdl=%s\n", 2467 __func__, sdl->sdl_alen, if_name(ifp), 2468 IN6_PRINT(sbuf, &satocsin6(dst)->sin6_addr), 2469 DL_PRINT(dbuf, &sdl->sdl_addr)); 2470 m_freem(m); 2471 return 0; 2472 } 2473 #endif 2474 2475 memcpy(lldst, &ln->ll_addr, MIN(dstsize, ifp->if_addrlen)); 2476 2477 LLE_RUNLOCK(ln); 2478 2479 return 1; 2480 } 2481 2482 static void 2483 clear_llinfo_pqueue(struct llentry *ln) 2484 { 2485 struct mbuf *m_hold, *m_hold_next; 2486 2487 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) { 2488 m_hold_next = m_hold->m_nextpkt; 2489 m_hold->m_nextpkt = NULL; 2490 m_freem(m_hold); 2491 } 2492 2493 ln->ln_hold = NULL; 2494 return; 2495 } 2496 2497 int 2498 nd6_sysctl( 2499 int name, 2500 void *oldp, /* syscall arg, need copyout */ 2501 size_t *oldlenp, 2502 void *newp, /* syscall arg, need copyin */ 2503 size_t newlen 2504 ) 2505 { 2506 void *p; 2507 size_t ol; 2508 int error; 2509 2510 error = 0; 2511 2512 if (newp) 2513 return EPERM; 2514 if (oldp && !oldlenp) 2515 return EINVAL; 2516 ol = oldlenp ? *oldlenp : 0; 2517 2518 if (oldp) { 2519 p = malloc(*oldlenp, M_TEMP, M_WAITOK); 2520 if (p == NULL) 2521 return ENOMEM; 2522 } else 2523 p = NULL; 2524 switch (name) { 2525 case ICMPV6CTL_ND6_DRLIST: 2526 error = fill_drlist(p, oldlenp, ol); 2527 if (!error && p != NULL && oldp != NULL) 2528 error = copyout(p, oldp, *oldlenp); 2529 break; 2530 2531 case ICMPV6CTL_ND6_PRLIST: 2532 error = fill_prlist(p, oldlenp, ol); 2533 if (!error && p != NULL && oldp != NULL) 2534 error = copyout(p, oldp, *oldlenp); 2535 break; 2536 2537 case ICMPV6CTL_ND6_MAXQLEN: 2538 break; 2539 2540 default: 2541 error = ENOPROTOOPT; 2542 break; 2543 } 2544 if (p) 2545 free(p, M_TEMP); 2546 2547 return error; 2548 } 2549 2550 static int 2551 fill_drlist(void *oldp, size_t *oldlenp, size_t ol) 2552 { 2553 int error = 0, s; 2554 struct in6_defrouter *d = NULL, *de = NULL; 2555 struct nd_defrouter *dr; 2556 size_t l; 2557 2558 s = splsoftnet(); 2559 2560 if (oldp) { 2561 d = (struct in6_defrouter *)oldp; 2562 de = (struct in6_defrouter *)((char *)oldp + *oldlenp); 2563 } 2564 l = 0; 2565 2566 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) { 2567 2568 if (oldp && d + 1 <= de) { 2569 memset(d, 0, sizeof(*d)); 2570 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0); 2571 if (sa6_recoverscope(&d->rtaddr)) { 2572 log(LOG_ERR, 2573 "scope error in router list (%s)\n", 2574 ip6_sprintf(&d->rtaddr.sin6_addr)); 2575 /* XXX: press on... */ 2576 } 2577 d->flags = dr->flags; 2578 d->rtlifetime = dr->rtlifetime; 2579 d->expire = dr->expire ? 2580 time_mono_to_wall(dr->expire) : 0; 2581 d->if_index = dr->ifp->if_index; 2582 } 2583 2584 l += sizeof(*d); 2585 if (d) 2586 d++; 2587 } 2588 2589 if (oldp) { 2590 if (l > ol) 2591 error = ENOMEM; 2592 } 2593 if (oldlenp) 2594 *oldlenp = l; /* (void *)d - (void *)oldp */ 2595 2596 splx(s); 2597 2598 return error; 2599 } 2600 2601 static int 2602 fill_prlist(void *oldp, size_t *oldlenp, size_t ol) 2603 { 2604 int error = 0, s; 2605 struct nd_prefix *pr; 2606 uint8_t *p = NULL, *ps = NULL; 2607 uint8_t *pe = NULL; 2608 size_t l; 2609 2610 s = splsoftnet(); 2611 2612 if (oldp) { 2613 ps = p = (uint8_t*)oldp; 2614 pe = (uint8_t*)oldp + *oldlenp; 2615 } 2616 l = 0; 2617 2618 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { 2619 u_short advrtrs; 2620 struct sockaddr_in6 sin6; 2621 struct nd_pfxrouter *pfr; 2622 struct in6_prefix pfx; 2623 2624 if (oldp && p + sizeof(struct in6_prefix) <= pe) 2625 { 2626 memset(&pfx, 0, sizeof(pfx)); 2627 ps = p; 2628 pfx.prefix = pr->ndpr_prefix; 2629 2630 if (sa6_recoverscope(&pfx.prefix)) { 2631 log(LOG_ERR, 2632 "scope error in prefix list (%s)\n", 2633 ip6_sprintf(&pfx.prefix.sin6_addr)); 2634 /* XXX: press on... */ 2635 } 2636 pfx.raflags = pr->ndpr_raf; 2637 pfx.prefixlen = pr->ndpr_plen; 2638 pfx.vltime = pr->ndpr_vltime; 2639 pfx.pltime = pr->ndpr_pltime; 2640 pfx.if_index = pr->ndpr_ifp->if_index; 2641 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2642 pfx.expire = 0; 2643 else { 2644 time_t maxexpire; 2645 2646 /* XXX: we assume time_t is signed. */ 2647 maxexpire = (-1) & 2648 ~((time_t)1 << 2649 ((sizeof(maxexpire) * 8) - 1)); 2650 if (pr->ndpr_vltime < 2651 maxexpire - pr->ndpr_lastupdate) { 2652 pfx.expire = pr->ndpr_lastupdate + 2653 pr->ndpr_vltime; 2654 } else 2655 pfx.expire = maxexpire; 2656 } 2657 pfx.refcnt = pr->ndpr_refcnt; 2658 pfx.flags = pr->ndpr_stateflags; 2659 pfx.origin = PR_ORIG_RA; 2660 2661 p += sizeof(pfx); l += sizeof(pfx); 2662 2663 advrtrs = 0; 2664 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2665 if (p + sizeof(sin6) > pe) { 2666 advrtrs++; 2667 continue; 2668 } 2669 2670 sockaddr_in6_init(&sin6, &pfr->router->rtaddr, 2671 0, 0, 0); 2672 if (sa6_recoverscope(&sin6)) { 2673 log(LOG_ERR, 2674 "scope error in " 2675 "prefix list (%s)\n", 2676 ip6_sprintf(&pfr->router->rtaddr)); 2677 } 2678 advrtrs++; 2679 memcpy(p, &sin6, sizeof(sin6)); 2680 p += sizeof(sin6); 2681 l += sizeof(sin6); 2682 } 2683 pfx.advrtrs = advrtrs; 2684 memcpy(ps, &pfx, sizeof(pfx)); 2685 } 2686 else { 2687 l += sizeof(pfx); 2688 advrtrs = 0; 2689 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2690 advrtrs++; 2691 l += sizeof(sin6); 2692 } 2693 } 2694 } 2695 2696 if (oldp) { 2697 *oldlenp = l; /* (void *)d - (void *)oldp */ 2698 if (l > ol) 2699 error = ENOMEM; 2700 } else 2701 *oldlenp = l; 2702 2703 splx(s); 2704 2705 return error; 2706 } 2707