1 /* $NetBSD: nd6.c,v 1.91 2004/12/04 16:10:25 peter Exp $ */ 2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.91 2004/12/04 16:10:25 peter Exp $"); 35 36 #include "opt_ipsec.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/callout.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/time.h> 46 #include <sys/kernel.h> 47 #include <sys/protosw.h> 48 #include <sys/errno.h> 49 #include <sys/ioctl.h> 50 #include <sys/syslog.h> 51 #include <sys/queue.h> 52 53 #include <net/if.h> 54 #include <net/if_dl.h> 55 #include <net/if_types.h> 56 #include <net/route.h> 57 #include <net/if_ether.h> 58 #include <net/if_fddi.h> 59 #include <net/if_arc.h> 60 61 #include <netinet/in.h> 62 #include <netinet6/in6_var.h> 63 #include <netinet/ip6.h> 64 #include <netinet6/ip6_var.h> 65 #include <netinet6/nd6.h> 66 #include <netinet/icmp6.h> 67 68 #ifdef IPSEC 69 #include <netinet6/ipsec.h> 70 #endif 71 72 #include <net/net_osdep.h> 73 74 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 75 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 76 77 #define SIN6(s) ((struct sockaddr_in6 *)s) 78 #define SDL(s) ((struct sockaddr_dl *)s) 79 80 /* timer values */ 81 int nd6_prune = 1; /* walk list every 1 seconds */ 82 int nd6_delay = 5; /* delay first probe time 5 second */ 83 int nd6_umaxtries = 3; /* maximum unicast query */ 84 int nd6_mmaxtries = 3; /* maximum multicast query */ 85 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 86 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 87 88 /* preventing too many loops in ND option parsing */ 89 int nd6_maxndopt = 10; /* max # of ND options allowed */ 90 91 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 92 93 #ifdef ND6_DEBUG 94 int nd6_debug = 1; 95 #else 96 int nd6_debug = 0; 97 #endif 98 99 /* for debugging? */ 100 static int nd6_inuse, nd6_allocated; 101 102 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6}; 103 struct nd_drhead nd_defrouter; 104 struct nd_prhead nd_prefix = { 0 }; 105 106 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 107 static struct sockaddr_in6 all1_sa; 108 109 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *)); 110 static void nd6_slowtimo __P((void *)); 111 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int)); 112 static void nd6_llinfo_timer __P((void *)); 113 114 struct callout nd6_slowtimo_ch = CALLOUT_INITIALIZER; 115 struct callout nd6_timer_ch = CALLOUT_INITIALIZER; 116 117 static int fill_drlist __P((void *, size_t *, size_t)); 118 static int fill_prlist __P((void *, size_t *, size_t)); 119 120 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery"); 121 122 void 123 nd6_init() 124 { 125 static int nd6_init_done = 0; 126 int i; 127 128 if (nd6_init_done) { 129 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n"); 130 return; 131 } 132 133 all1_sa.sin6_family = AF_INET6; 134 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 135 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) 136 all1_sa.sin6_addr.s6_addr[i] = 0xff; 137 138 /* initialization of the default router list */ 139 TAILQ_INIT(&nd_defrouter); 140 141 nd6_init_done = 1; 142 143 /* start timer */ 144 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 145 nd6_slowtimo, NULL); 146 } 147 148 struct nd_ifinfo * 149 nd6_ifattach(ifp) 150 struct ifnet *ifp; 151 { 152 struct nd_ifinfo *nd; 153 154 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK); 155 bzero(nd, sizeof(*nd)); 156 157 nd->initialized = 1; 158 159 nd->chlim = IPV6_DEFHLIM; 160 nd->basereachable = REACHABLE_TIME; 161 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 162 nd->retrans = RETRANS_TIMER; 163 /* 164 * Note that the default value of ip6_accept_rtadv is 0, which means 165 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV 166 * here. 167 */ 168 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV); 169 170 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 171 nd6_setmtu0(ifp, nd); 172 173 return nd; 174 } 175 176 void 177 nd6_ifdetach(nd) 178 struct nd_ifinfo *nd; 179 { 180 181 free(nd, M_IP6NDP); 182 } 183 184 void 185 nd6_setmtu(ifp) 186 struct ifnet *ifp; 187 { 188 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 189 } 190 191 void 192 nd6_setmtu0(ifp, ndi) 193 struct ifnet *ifp; 194 struct nd_ifinfo *ndi; 195 { 196 u_int32_t omaxmtu; 197 198 omaxmtu = ndi->maxmtu; 199 200 switch (ifp->if_type) { 201 case IFT_ARCNET: 202 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 203 break; 204 case IFT_FDDI: 205 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); 206 break; 207 default: 208 ndi->maxmtu = ifp->if_mtu; 209 break; 210 } 211 212 /* 213 * Decreasing the interface MTU under IPV6 minimum MTU may cause 214 * undesirable situation. We thus notify the operator of the change 215 * explicitly. The check for omaxmtu is necessary to restrict the 216 * log to the case of changing the MTU, not initializing it. 217 */ 218 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 219 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too" 220 " small for IPv6 which needs %lu\n", 221 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long) 222 IPV6_MMTU); 223 } 224 225 if (ndi->maxmtu > in6_maxmtu) 226 in6_setmaxmtu(); /* check all interfaces just in case */ 227 } 228 229 void 230 nd6_option_init(opt, icmp6len, ndopts) 231 void *opt; 232 int icmp6len; 233 union nd_opts *ndopts; 234 { 235 236 bzero(ndopts, sizeof(*ndopts)); 237 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 238 ndopts->nd_opts_last 239 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 240 241 if (icmp6len == 0) { 242 ndopts->nd_opts_done = 1; 243 ndopts->nd_opts_search = NULL; 244 } 245 } 246 247 /* 248 * Take one ND option. 249 */ 250 struct nd_opt_hdr * 251 nd6_option(ndopts) 252 union nd_opts *ndopts; 253 { 254 struct nd_opt_hdr *nd_opt; 255 int olen; 256 257 if (!ndopts) 258 panic("ndopts == NULL in nd6_option"); 259 if (!ndopts->nd_opts_last) 260 panic("uninitialized ndopts in nd6_option"); 261 if (!ndopts->nd_opts_search) 262 return NULL; 263 if (ndopts->nd_opts_done) 264 return NULL; 265 266 nd_opt = ndopts->nd_opts_search; 267 268 /* make sure nd_opt_len is inside the buffer */ 269 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 270 bzero(ndopts, sizeof(*ndopts)); 271 return NULL; 272 } 273 274 olen = nd_opt->nd_opt_len << 3; 275 if (olen == 0) { 276 /* 277 * Message validation requires that all included 278 * options have a length that is greater than zero. 279 */ 280 bzero(ndopts, sizeof(*ndopts)); 281 return NULL; 282 } 283 284 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 285 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 286 /* option overruns the end of buffer, invalid */ 287 bzero(ndopts, sizeof(*ndopts)); 288 return NULL; 289 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 290 /* reached the end of options chain */ 291 ndopts->nd_opts_done = 1; 292 ndopts->nd_opts_search = NULL; 293 } 294 return nd_opt; 295 } 296 297 /* 298 * Parse multiple ND options. 299 * This function is much easier to use, for ND routines that do not need 300 * multiple options of the same type. 301 */ 302 int 303 nd6_options(ndopts) 304 union nd_opts *ndopts; 305 { 306 struct nd_opt_hdr *nd_opt; 307 int i = 0; 308 309 if (!ndopts) 310 panic("ndopts == NULL in nd6_options"); 311 if (!ndopts->nd_opts_last) 312 panic("uninitialized ndopts in nd6_options"); 313 if (!ndopts->nd_opts_search) 314 return 0; 315 316 while (1) { 317 nd_opt = nd6_option(ndopts); 318 if (!nd_opt && !ndopts->nd_opts_last) { 319 /* 320 * Message validation requires that all included 321 * options have a length that is greater than zero. 322 */ 323 icmp6stat.icp6s_nd_badopt++; 324 bzero(ndopts, sizeof(*ndopts)); 325 return -1; 326 } 327 328 if (!nd_opt) 329 goto skip1; 330 331 switch (nd_opt->nd_opt_type) { 332 case ND_OPT_SOURCE_LINKADDR: 333 case ND_OPT_TARGET_LINKADDR: 334 case ND_OPT_MTU: 335 case ND_OPT_REDIRECTED_HEADER: 336 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 337 nd6log((LOG_INFO, 338 "duplicated ND6 option found (type=%d)\n", 339 nd_opt->nd_opt_type)); 340 /* XXX bark? */ 341 } else { 342 ndopts->nd_opt_array[nd_opt->nd_opt_type] 343 = nd_opt; 344 } 345 break; 346 case ND_OPT_PREFIX_INFORMATION: 347 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 348 ndopts->nd_opt_array[nd_opt->nd_opt_type] 349 = nd_opt; 350 } 351 ndopts->nd_opts_pi_end = 352 (struct nd_opt_prefix_info *)nd_opt; 353 break; 354 default: 355 /* 356 * Unknown options must be silently ignored, 357 * to accomodate future extension to the protocol. 358 */ 359 nd6log((LOG_DEBUG, 360 "nd6_options: unsupported option %d - " 361 "option ignored\n", nd_opt->nd_opt_type)); 362 } 363 364 skip1: 365 i++; 366 if (i > nd6_maxndopt) { 367 icmp6stat.icp6s_nd_toomanyopt++; 368 nd6log((LOG_INFO, "too many loop in nd opt\n")); 369 break; 370 } 371 372 if (ndopts->nd_opts_done) 373 break; 374 } 375 376 return 0; 377 } 378 379 /* 380 * ND6 timer routine to handle ND6 entries 381 */ 382 void 383 nd6_llinfo_settimer(ln, tick) 384 struct llinfo_nd6 *ln; 385 long tick; 386 { 387 int s; 388 389 s = splsoftnet(); 390 391 if (tick < 0) { 392 ln->ln_expire = 0; 393 ln->ln_ntick = 0; 394 callout_stop(&ln->ln_timer_ch); 395 } else { 396 ln->ln_expire = time.tv_sec + tick / hz; 397 if (tick > INT_MAX) { 398 ln->ln_ntick = tick - INT_MAX; 399 callout_reset(&ln->ln_timer_ch, INT_MAX, 400 nd6_llinfo_timer, ln); 401 } else { 402 ln->ln_ntick = 0; 403 callout_reset(&ln->ln_timer_ch, tick, 404 nd6_llinfo_timer, ln); 405 } 406 } 407 408 splx(s); 409 } 410 411 static void 412 nd6_llinfo_timer(arg) 413 void *arg; 414 { 415 int s; 416 struct llinfo_nd6 *ln; 417 struct rtentry *rt; 418 const struct sockaddr_in6 *dst; 419 struct ifnet *ifp; 420 struct nd_ifinfo *ndi = NULL; 421 422 s = splsoftnet(); 423 424 ln = (struct llinfo_nd6 *)arg; 425 426 if (ln->ln_ntick > 0) { 427 if (ln->ln_ntick > INT_MAX) { 428 ln->ln_ntick -= INT_MAX; 429 nd6_llinfo_settimer(ln, INT_MAX); 430 } else { 431 ln->ln_ntick = 0; 432 nd6_llinfo_settimer(ln, ln->ln_ntick); 433 } 434 splx(s); 435 return; 436 } 437 438 if ((rt = ln->ln_rt) == NULL) 439 panic("ln->ln_rt == NULL"); 440 if ((ifp = rt->rt_ifp) == NULL) 441 panic("ln->ln_rt->rt_ifp == NULL"); 442 ndi = ND_IFINFO(ifp); 443 dst = (struct sockaddr_in6 *)rt_key(rt); 444 445 /* sanity check */ 446 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) 447 panic("rt_llinfo(%p) is not equal to ln(%p)", 448 rt->rt_llinfo, ln); 449 if (!dst) 450 panic("dst=0 in nd6_timer(ln=%p)", ln); 451 452 switch (ln->ln_state) { 453 case ND6_LLINFO_INCOMPLETE: 454 if (ln->ln_asked < nd6_mmaxtries) { 455 ln->ln_asked++; 456 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 457 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 458 } else { 459 struct mbuf *m = ln->ln_hold; 460 if (m) { 461 ln->ln_hold = NULL; 462 /* 463 * Fake rcvif to make the ICMP error 464 * more helpful in diagnosing for the 465 * receiver. 466 * XXX: should we consider 467 * older rcvif? 468 */ 469 m->m_pkthdr.rcvif = rt->rt_ifp; 470 471 icmp6_error(m, ICMP6_DST_UNREACH, 472 ICMP6_DST_UNREACH_ADDR, 0); 473 } 474 (void)nd6_free(rt, 0); 475 ln = NULL; 476 } 477 break; 478 case ND6_LLINFO_REACHABLE: 479 if (!ND6_LLINFO_PERMANENT(ln)) { 480 ln->ln_state = ND6_LLINFO_STALE; 481 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 482 } 483 break; 484 485 case ND6_LLINFO_STALE: 486 /* Garbage Collection(RFC 2461 5.3) */ 487 if (!ND6_LLINFO_PERMANENT(ln)) { 488 (void)nd6_free(rt, 1); 489 ln = NULL; 490 } 491 break; 492 493 case ND6_LLINFO_DELAY: 494 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 495 /* We need NUD */ 496 ln->ln_asked = 1; 497 ln->ln_state = ND6_LLINFO_PROBE; 498 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 499 nd6_ns_output(ifp, &dst->sin6_addr, 500 &dst->sin6_addr, ln, 0); 501 } else { 502 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 503 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 504 } 505 break; 506 case ND6_LLINFO_PROBE: 507 if (ln->ln_asked < nd6_umaxtries) { 508 ln->ln_asked++; 509 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 510 nd6_ns_output(ifp, &dst->sin6_addr, 511 &dst->sin6_addr, ln, 0); 512 } else { 513 (void)nd6_free(rt, 0); 514 ln = NULL; 515 } 516 break; 517 } 518 519 splx(s); 520 } 521 522 /* 523 * ND6 timer routine to expire default route list and prefix list 524 */ 525 void 526 nd6_timer(ignored_arg) 527 void *ignored_arg; 528 { 529 int s; 530 struct nd_defrouter *dr; 531 struct nd_prefix *pr; 532 struct in6_ifaddr *ia6, *nia6; 533 534 s = splsoftnet(); 535 callout_reset(&nd6_timer_ch, nd6_prune * hz, 536 nd6_timer, NULL); 537 538 /* expire default router list */ 539 dr = TAILQ_FIRST(&nd_defrouter); 540 while (dr) { 541 if (dr->expire && dr->expire < time.tv_sec) { 542 struct nd_defrouter *t; 543 t = TAILQ_NEXT(dr, dr_entry); 544 defrtrlist_del(dr); 545 dr = t; 546 } else { 547 dr = TAILQ_NEXT(dr, dr_entry); 548 } 549 } 550 551 /* 552 * expire interface addresses. 553 * in the past the loop was inside prefix expiry processing. 554 * However, from a stricter speci-confrmance standpoint, we should 555 * rather separate address lifetimes and prefix lifetimes. 556 */ 557 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) { 558 nia6 = ia6->ia_next; 559 /* check address lifetime */ 560 if (IFA6_IS_INVALID(ia6)) { 561 in6_purgeaddr(&ia6->ia_ifa); 562 } 563 if (IFA6_IS_DEPRECATED(ia6)) { 564 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 565 } else { 566 /* 567 * A new RA might have made a deprecated address 568 * preferred. 569 */ 570 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 571 } 572 } 573 574 /* expire prefix list */ 575 pr = nd_prefix.lh_first; 576 while (pr) { 577 /* 578 * check prefix lifetime. 579 * since pltime is just for autoconf, pltime processing for 580 * prefix is not necessary. 581 */ 582 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 583 time.tv_sec - pr->ndpr_lastupdate > pr->ndpr_vltime) { 584 struct nd_prefix *t; 585 t = pr->ndpr_next; 586 587 /* 588 * address expiration and prefix expiration are 589 * separate. NEVER perform in6_purgeaddr here. 590 */ 591 592 prelist_remove(pr); 593 pr = t; 594 } else 595 pr = pr->ndpr_next; 596 } 597 splx(s); 598 } 599 600 /* 601 * Nuke neighbor cache/prefix/default router management table, right before 602 * ifp goes away. 603 */ 604 void 605 nd6_purge(ifp) 606 struct ifnet *ifp; 607 { 608 struct llinfo_nd6 *ln, *nln; 609 struct nd_defrouter *dr, *ndr; 610 struct nd_prefix *pr, *npr; 611 612 /* 613 * Nuke default router list entries toward ifp. 614 * We defer removal of default router list entries that is installed 615 * in the routing table, in order to keep additional side effects as 616 * small as possible. 617 */ 618 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) { 619 ndr = TAILQ_NEXT(dr, dr_entry); 620 if (dr->installed) 621 continue; 622 623 if (dr->ifp == ifp) 624 defrtrlist_del(dr); 625 } 626 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) { 627 ndr = TAILQ_NEXT(dr, dr_entry); 628 if (!dr->installed) 629 continue; 630 631 if (dr->ifp == ifp) 632 defrtrlist_del(dr); 633 } 634 635 /* Nuke prefix list entries toward ifp */ 636 for (pr = nd_prefix.lh_first; pr; pr = npr) { 637 npr = pr->ndpr_next; 638 if (pr->ndpr_ifp == ifp) { 639 /* 640 * Previously, pr->ndpr_addr is removed as well, 641 * but I strongly believe we don't have to do it. 642 * nd6_purge() is only called from in6_ifdetach(), 643 * which removes all the associated interface addresses 644 * by itself. 645 * (jinmei@kame.net 20010129) 646 */ 647 prelist_remove(pr); 648 } 649 } 650 651 /* cancel default outgoing interface setting */ 652 if (nd6_defifindex == ifp->if_index) 653 nd6_setdefaultiface(0); 654 655 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 656 /* refresh default router list */ 657 defrouter_select(); 658 } 659 660 /* 661 * Nuke neighbor cache entries for the ifp. 662 * Note that rt->rt_ifp may not be the same as ifp, 663 * due to KAME goto ours hack. See RTM_RESOLVE case in 664 * nd6_rtrequest(), and ip6_input(). 665 */ 666 ln = llinfo_nd6.ln_next; 667 while (ln && ln != &llinfo_nd6) { 668 struct rtentry *rt; 669 struct sockaddr_dl *sdl; 670 671 nln = ln->ln_next; 672 rt = ln->ln_rt; 673 if (rt && rt->rt_gateway && 674 rt->rt_gateway->sa_family == AF_LINK) { 675 sdl = (struct sockaddr_dl *)rt->rt_gateway; 676 if (sdl->sdl_index == ifp->if_index) 677 nln = nd6_free(rt, 0); 678 } 679 ln = nln; 680 } 681 } 682 683 struct rtentry * 684 nd6_lookup(addr6, create, ifp) 685 struct in6_addr *addr6; 686 int create; 687 struct ifnet *ifp; 688 { 689 struct rtentry *rt; 690 struct sockaddr_in6 sin6; 691 692 bzero(&sin6, sizeof(sin6)); 693 sin6.sin6_len = sizeof(struct sockaddr_in6); 694 sin6.sin6_family = AF_INET6; 695 sin6.sin6_addr = *addr6; 696 rt = rtalloc1((struct sockaddr *)&sin6, create); 697 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) { 698 /* 699 * This is the case for the default route. 700 * If we want to create a neighbor cache for the address, we 701 * should free the route for the destination and allocate an 702 * interface route. 703 */ 704 if (create) { 705 RTFREE(rt); 706 rt = 0; 707 } 708 } 709 if (!rt) { 710 if (create && ifp) { 711 int e; 712 713 /* 714 * If no route is available and create is set, 715 * we allocate a host route for the destination 716 * and treat it like an interface route. 717 * This hack is necessary for a neighbor which can't 718 * be covered by our own prefix. 719 */ 720 struct ifaddr *ifa = 721 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); 722 if (ifa == NULL) 723 return (NULL); 724 725 /* 726 * Create a new route. RTF_LLINFO is necessary 727 * to create a Neighbor Cache entry for the 728 * destination in nd6_rtrequest which will be 729 * called in rtrequest via ifa->ifa_rtrequest. 730 */ 731 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6, 732 ifa->ifa_addr, (struct sockaddr *)&all1_sa, 733 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) & 734 ~RTF_CLONING, &rt)) != 0) { 735 #if 0 736 log(LOG_ERR, 737 "nd6_lookup: failed to add route for a " 738 "neighbor(%s), errno=%d\n", 739 ip6_sprintf(addr6), e); 740 #endif 741 return (NULL); 742 } 743 if (rt == NULL) 744 return (NULL); 745 if (rt->rt_llinfo) { 746 struct llinfo_nd6 *ln = 747 (struct llinfo_nd6 *)rt->rt_llinfo; 748 ln->ln_state = ND6_LLINFO_NOSTATE; 749 } 750 } else 751 return (NULL); 752 } 753 rt->rt_refcnt--; 754 /* 755 * Validation for the entry. 756 * Note that the check for rt_llinfo is necessary because a cloned 757 * route from a parent route that has the L flag (e.g. the default 758 * route to a p2p interface) may have the flag, too, while the 759 * destination is not actually a neighbor. 760 * XXX: we can't use rt->rt_ifp to check for the interface, since 761 * it might be the loopback interface if the entry is for our 762 * own address on a non-loopback interface. Instead, we should 763 * use rt->rt_ifa->ifa_ifp, which would specify the REAL 764 * interface. 765 */ 766 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || 767 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || 768 (ifp && rt->rt_ifa->ifa_ifp != ifp)) { 769 if (create) { 770 nd6log((LOG_DEBUG, 771 "nd6_lookup: failed to lookup %s (if = %s)\n", 772 ip6_sprintf(addr6), 773 ifp ? if_name(ifp) : "unspec")); 774 } 775 return (NULL); 776 } 777 return (rt); 778 } 779 780 /* 781 * Detect if a given IPv6 address identifies a neighbor on a given link. 782 * XXX: should take care of the destination of a p2p link? 783 */ 784 int 785 nd6_is_addr_neighbor(addr, ifp) 786 struct sockaddr_in6 *addr; 787 struct ifnet *ifp; 788 { 789 struct nd_prefix *pr; 790 791 /* 792 * A link-local address is always a neighbor. 793 * XXX: we should use the sin6_scope_id field rather than the embedded 794 * interface index. 795 * XXX: a link does not necessarily specify a single interface. 796 */ 797 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) && 798 ntohs(addr->sin6_addr.s6_addr16[1]) == ifp->if_index) 799 return (1); 800 801 /* 802 * If the address matches one of our on-link prefixes, it should be a 803 * neighbor. 804 */ 805 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 806 if (pr->ndpr_ifp != ifp) 807 continue; 808 809 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) 810 continue; 811 812 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 813 &addr->sin6_addr, &pr->ndpr_mask)) 814 return (1); 815 } 816 817 /* 818 * If the default router list is empty, all addresses are regarded 819 * as on-link, and thus, as a neighbor. 820 * XXX: we restrict the condition to hosts, because routers usually do 821 * not have the "default router list". 822 */ 823 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL && 824 nd6_defifindex == ifp->if_index) { 825 return (1); 826 } 827 828 /* 829 * Even if the address matches none of our addresses, it might be 830 * in the neighbor cache. 831 */ 832 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL) 833 return (1); 834 835 return (0); 836 } 837 838 /* 839 * Free an nd6 llinfo entry. 840 * Since the function would cause significant changes in the kernel, DO NOT 841 * make it global, unless you have a strong reason for the change, and are sure 842 * that the change is safe. 843 */ 844 static struct llinfo_nd6 * 845 nd6_free(rt, gc) 846 struct rtentry *rt; 847 int gc; 848 { 849 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next; 850 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; 851 struct nd_defrouter *dr; 852 853 /* 854 * we used to have pfctlinput(PRC_HOSTDEAD) here. 855 * even though it is not harmful, it was not really necessary. 856 */ 857 858 /* cancel timer */ 859 nd6_llinfo_settimer(ln, -1); 860 861 if (!ip6_forwarding) { 862 int s; 863 s = splsoftnet(); 864 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 865 rt->rt_ifp); 866 867 if (dr != NULL && dr->expire && 868 ln->ln_state == ND6_LLINFO_STALE && gc) { 869 /* 870 * If the reason for the deletion is just garbage 871 * collection, and the neighbor is an active default 872 * router, do not delete it. Instead, reset the GC 873 * timer using the router's lifetime. 874 * Simply deleting the entry would affect default 875 * router selection, which is not necessarily a good 876 * thing, especially when we're using router preference 877 * values. 878 * XXX: the check for ln_state would be redundant, 879 * but we intentionally keep it just in case. 880 */ 881 if (dr->expire > time.tv_sec * hz) 882 nd6_llinfo_settimer(ln, 883 dr->expire - time.tv_sec * hz); 884 else 885 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 886 splx(s); 887 return (ln->ln_next); 888 } 889 890 if (ln->ln_router || dr) { 891 /* 892 * rt6_flush must be called whether or not the neighbor 893 * is in the Default Router List. 894 * See a corresponding comment in nd6_na_input(). 895 */ 896 rt6_flush(&in6, rt->rt_ifp); 897 } 898 899 if (dr) { 900 /* 901 * Unreachablity of a router might affect the default 902 * router selection and on-link detection of advertised 903 * prefixes. 904 */ 905 906 /* 907 * Temporarily fake the state to choose a new default 908 * router and to perform on-link determination of 909 * prefixes correctly. 910 * Below the state will be set correctly, 911 * or the entry itself will be deleted. 912 */ 913 ln->ln_state = ND6_LLINFO_INCOMPLETE; 914 915 /* 916 * Since defrouter_select() does not affect the 917 * on-link determination and MIP6 needs the check 918 * before the default router selection, we perform 919 * the check now. 920 */ 921 pfxlist_onlink_check(); 922 923 /* 924 * refresh default router list 925 */ 926 defrouter_select(); 927 } 928 splx(s); 929 } 930 931 /* 932 * Before deleting the entry, remember the next entry as the 933 * return value. We need this because pfxlist_onlink_check() above 934 * might have freed other entries (particularly the old next entry) as 935 * a side effect (XXX). 936 */ 937 next = ln->ln_next; 938 939 /* 940 * Detach the route from the routing tree and the list of neighbor 941 * caches, and disable the route entry not to be used in already 942 * cached routes. 943 */ 944 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0, 945 rt_mask(rt), 0, (struct rtentry **)0); 946 947 return (next); 948 } 949 950 /* 951 * Upper-layer reachability hint for Neighbor Unreachability Detection. 952 * 953 * XXX cost-effective metods? 954 */ 955 void 956 nd6_nud_hint(rt, dst6, force) 957 struct rtentry *rt; 958 struct in6_addr *dst6; 959 int force; 960 { 961 struct llinfo_nd6 *ln; 962 963 /* 964 * If the caller specified "rt", use that. Otherwise, resolve the 965 * routing table by supplied "dst6". 966 */ 967 if (!rt) { 968 if (!dst6) 969 return; 970 if (!(rt = nd6_lookup(dst6, 0, NULL))) 971 return; 972 } 973 974 if ((rt->rt_flags & RTF_GATEWAY) != 0 || 975 (rt->rt_flags & RTF_LLINFO) == 0 || 976 !rt->rt_llinfo || !rt->rt_gateway || 977 rt->rt_gateway->sa_family != AF_LINK) { 978 /* This is not a host route. */ 979 return; 980 } 981 982 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 983 if (ln->ln_state < ND6_LLINFO_REACHABLE) 984 return; 985 986 /* 987 * if we get upper-layer reachability confirmation many times, 988 * it is possible we have false information. 989 */ 990 if (!force) { 991 ln->ln_byhint++; 992 if (ln->ln_byhint > nd6_maxnudhint) 993 return; 994 } 995 996 ln->ln_state = ND6_LLINFO_REACHABLE; 997 if (!ND6_LLINFO_PERMANENT(ln)) { 998 nd6_llinfo_settimer(ln, 999 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz); 1000 } 1001 } 1002 1003 void 1004 nd6_rtrequest(req, rt, info) 1005 int req; 1006 struct rtentry *rt; 1007 struct rt_addrinfo *info; /* xxx unused */ 1008 { 1009 struct sockaddr *gate = rt->rt_gateway; 1010 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1011 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1012 struct ifnet *ifp = rt->rt_ifp; 1013 struct ifaddr *ifa; 1014 1015 if ((rt->rt_flags & RTF_GATEWAY) != 0) 1016 return; 1017 1018 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { 1019 /* 1020 * This is probably an interface direct route for a link 1021 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1022 * We do not need special treatment below for such a route. 1023 * Moreover, the RTF_LLINFO flag which would be set below 1024 * would annoy the ndp(8) command. 1025 */ 1026 return; 1027 } 1028 1029 if (req == RTM_RESOLVE && 1030 (nd6_need_cache(ifp) == 0 || /* stf case */ 1031 !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) { 1032 /* 1033 * FreeBSD and BSD/OS often make a cloned host route based 1034 * on a less-specific route (e.g. the default route). 1035 * If the less specific route does not have a "gateway" 1036 * (this is the case when the route just goes to a p2p or an 1037 * stf interface), we'll mistakenly make a neighbor cache for 1038 * the host route, and will see strange neighbor solicitation 1039 * for the corresponding destination. In order to avoid the 1040 * confusion, we check if the destination of the route is 1041 * a neighbor in terms of neighbor discovery, and stop the 1042 * process if not. Additionally, we remove the LLINFO flag 1043 * so that ndp(8) will not try to get the neighbor information 1044 * of the destination. 1045 */ 1046 rt->rt_flags &= ~RTF_LLINFO; 1047 return; 1048 } 1049 1050 switch (req) { 1051 case RTM_ADD: 1052 /* 1053 * There is no backward compatibility :) 1054 * 1055 * if ((rt->rt_flags & RTF_HOST) == 0 && 1056 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1057 * rt->rt_flags |= RTF_CLONING; 1058 */ 1059 if ((rt->rt_flags & RTF_CLONING) || 1060 ((rt->rt_flags & RTF_LLINFO) && !ln)) { 1061 /* 1062 * Case 1: This route should come from a route to 1063 * interface (RTF_CLONING case) or the route should be 1064 * treated as on-link but is currently not 1065 * (RTF_LLINFO && !ln case). 1066 */ 1067 rt_setgate(rt, rt_key(rt), 1068 (struct sockaddr *)&null_sdl); 1069 gate = rt->rt_gateway; 1070 SDL(gate)->sdl_type = ifp->if_type; 1071 SDL(gate)->sdl_index = ifp->if_index; 1072 if (ln) 1073 nd6_llinfo_settimer(ln, 0); 1074 if ((rt->rt_flags & RTF_CLONING) != 0) 1075 break; 1076 } 1077 /* 1078 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1079 * We don't do that here since llinfo is not ready yet. 1080 * 1081 * There are also couple of other things to be discussed: 1082 * - unsolicited NA code needs improvement beforehand 1083 * - RFC2461 says we MAY send multicast unsolicited NA 1084 * (7.2.6 paragraph 4), however, it also says that we 1085 * SHOULD provide a mechanism to prevent multicast NA storm. 1086 * we don't have anything like it right now. 1087 * note that the mechanism needs a mutual agreement 1088 * between proxies, which means that we need to implement 1089 * a new protocol, or a new kludge. 1090 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1091 * we need to check ip6forwarding before sending it. 1092 * (or should we allow proxy ND configuration only for 1093 * routers? there's no mention about proxy ND from hosts) 1094 */ 1095 #if 0 1096 /* XXX it does not work */ 1097 if (rt->rt_flags & RTF_ANNOUNCE) 1098 nd6_na_output(ifp, 1099 &SIN6(rt_key(rt))->sin6_addr, 1100 &SIN6(rt_key(rt))->sin6_addr, 1101 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1102 1, NULL); 1103 #endif 1104 /* FALLTHROUGH */ 1105 case RTM_RESOLVE: 1106 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 1107 /* 1108 * Address resolution isn't necessary for a point to 1109 * point link, so we can skip this test for a p2p link. 1110 */ 1111 if (gate->sa_family != AF_LINK || 1112 gate->sa_len < sizeof(null_sdl)) { 1113 log(LOG_DEBUG, 1114 "nd6_rtrequest: bad gateway value: %s\n", 1115 if_name(ifp)); 1116 break; 1117 } 1118 SDL(gate)->sdl_type = ifp->if_type; 1119 SDL(gate)->sdl_index = ifp->if_index; 1120 } 1121 if (ln != NULL) 1122 break; /* This happens on a route change */ 1123 /* 1124 * Case 2: This route may come from cloning, or a manual route 1125 * add with a LL address. 1126 */ 1127 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln)); 1128 rt->rt_llinfo = (caddr_t)ln; 1129 if (!ln) { 1130 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n"); 1131 break; 1132 } 1133 nd6_inuse++; 1134 nd6_allocated++; 1135 Bzero(ln, sizeof(*ln)); 1136 ln->ln_rt = rt; 1137 callout_init(&ln->ln_timer_ch); 1138 /* this is required for "ndp" command. - shin */ 1139 if (req == RTM_ADD) { 1140 /* 1141 * gate should have some valid AF_LINK entry, 1142 * and ln->ln_expire should have some lifetime 1143 * which is specified by ndp command. 1144 */ 1145 ln->ln_state = ND6_LLINFO_REACHABLE; 1146 ln->ln_byhint = 0; 1147 } else { 1148 /* 1149 * When req == RTM_RESOLVE, rt is created and 1150 * initialized in rtrequest(), so rt_expire is 0. 1151 */ 1152 ln->ln_state = ND6_LLINFO_NOSTATE; 1153 nd6_llinfo_settimer(ln, 0); 1154 } 1155 rt->rt_flags |= RTF_LLINFO; 1156 ln->ln_next = llinfo_nd6.ln_next; 1157 llinfo_nd6.ln_next = ln; 1158 ln->ln_prev = &llinfo_nd6; 1159 ln->ln_next->ln_prev = ln; 1160 1161 /* 1162 * check if rt_key(rt) is one of my address assigned 1163 * to the interface. 1164 */ 1165 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, 1166 &SIN6(rt_key(rt))->sin6_addr); 1167 if (ifa) { 1168 caddr_t macp = nd6_ifptomac(ifp); 1169 nd6_llinfo_settimer(ln, -1); 1170 ln->ln_state = ND6_LLINFO_REACHABLE; 1171 ln->ln_byhint = 0; 1172 if (macp) { 1173 Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); 1174 SDL(gate)->sdl_alen = ifp->if_addrlen; 1175 } 1176 if (nd6_useloopback) { 1177 rt->rt_ifp = lo0ifp; /* XXX */ 1178 /* 1179 * Make sure rt_ifa be equal to the ifaddr 1180 * corresponding to the address. 1181 * We need this because when we refer 1182 * rt_ifa->ia6_flags in ip6_input, we assume 1183 * that the rt_ifa points to the address instead 1184 * of the loopback address. 1185 */ 1186 if (ifa != rt->rt_ifa) { 1187 IFAFREE(rt->rt_ifa); 1188 IFAREF(ifa); 1189 rt->rt_ifa = ifa; 1190 } 1191 } 1192 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1193 nd6_llinfo_settimer(ln, -1); 1194 ln->ln_state = ND6_LLINFO_REACHABLE; 1195 ln->ln_byhint = 0; 1196 1197 /* join solicited node multicast for proxy ND */ 1198 if (ifp->if_flags & IFF_MULTICAST) { 1199 struct in6_addr llsol; 1200 int error; 1201 1202 llsol = SIN6(rt_key(rt))->sin6_addr; 1203 llsol.s6_addr16[0] = htons(0xff02); 1204 llsol.s6_addr16[1] = htons(ifp->if_index); 1205 llsol.s6_addr32[1] = 0; 1206 llsol.s6_addr32[2] = htonl(1); 1207 llsol.s6_addr8[12] = 0xff; 1208 1209 if (!in6_addmulti(&llsol, ifp, &error)) { 1210 nd6log((LOG_ERR, "%s: failed to join " 1211 "%s (errno=%d)\n", if_name(ifp), 1212 ip6_sprintf(&llsol), error)); 1213 } 1214 } 1215 } 1216 break; 1217 1218 case RTM_DELETE: 1219 if (!ln) 1220 break; 1221 /* leave from solicited node multicast for proxy ND */ 1222 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && 1223 (ifp->if_flags & IFF_MULTICAST) != 0) { 1224 struct in6_addr llsol; 1225 struct in6_multi *in6m; 1226 1227 llsol = SIN6(rt_key(rt))->sin6_addr; 1228 llsol.s6_addr16[0] = htons(0xff02); 1229 llsol.s6_addr16[1] = htons(ifp->if_index); 1230 llsol.s6_addr32[1] = 0; 1231 llsol.s6_addr32[2] = htonl(1); 1232 llsol.s6_addr8[12] = 0xff; 1233 1234 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1235 if (in6m) 1236 in6_delmulti(in6m); 1237 } 1238 nd6_inuse--; 1239 ln->ln_next->ln_prev = ln->ln_prev; 1240 ln->ln_prev->ln_next = ln->ln_next; 1241 ln->ln_prev = NULL; 1242 nd6_llinfo_settimer(ln, -1); 1243 rt->rt_llinfo = 0; 1244 rt->rt_flags &= ~RTF_LLINFO; 1245 if (ln->ln_hold) 1246 m_freem(ln->ln_hold); 1247 Free((caddr_t)ln); 1248 } 1249 } 1250 1251 int 1252 nd6_ioctl(cmd, data, ifp) 1253 u_long cmd; 1254 caddr_t data; 1255 struct ifnet *ifp; 1256 { 1257 struct in6_drlist *drl = (struct in6_drlist *)data; 1258 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1259 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1260 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1261 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1262 struct nd_defrouter *dr; 1263 struct nd_prefix *pr; 1264 struct rtentry *rt; 1265 int i = 0, error = 0; 1266 int s; 1267 1268 switch (cmd) { 1269 case SIOCGDRLST_IN6: 1270 /* 1271 * obsolete API, use sysctl under net.inet6.icmp6 1272 */ 1273 bzero(drl, sizeof(*drl)); 1274 s = splsoftnet(); 1275 dr = TAILQ_FIRST(&nd_defrouter); 1276 while (dr && i < DRLSTSIZ) { 1277 drl->defrouter[i].rtaddr = dr->rtaddr; 1278 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) { 1279 /* XXX: need to this hack for KAME stack */ 1280 drl->defrouter[i].rtaddr.s6_addr16[1] = 0; 1281 } else 1282 log(LOG_ERR, 1283 "default router list contains a " 1284 "non-linklocal address(%s)\n", 1285 ip6_sprintf(&drl->defrouter[i].rtaddr)); 1286 1287 drl->defrouter[i].flags = dr->flags; 1288 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1289 drl->defrouter[i].expire = dr->expire; 1290 drl->defrouter[i].if_index = dr->ifp->if_index; 1291 i++; 1292 dr = TAILQ_NEXT(dr, dr_entry); 1293 } 1294 splx(s); 1295 break; 1296 case SIOCGPRLST_IN6: 1297 /* 1298 * obsolete API, use sysctl under net.inet6.icmp6 1299 * 1300 * XXX the structure in6_prlist was changed in backward- 1301 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1302 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1303 */ 1304 /* 1305 * XXX meaning of fields, especialy "raflags", is very 1306 * differnet between RA prefix list and RR/static prefix list. 1307 * how about separating ioctls into two? 1308 */ 1309 bzero(oprl, sizeof(*oprl)); 1310 s = splsoftnet(); 1311 pr = nd_prefix.lh_first; 1312 while (pr && i < PRLSTSIZ) { 1313 struct nd_pfxrouter *pfr; 1314 int j; 1315 1316 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1317 oprl->prefix[i].raflags = pr->ndpr_raf; 1318 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1319 oprl->prefix[i].vltime = pr->ndpr_vltime; 1320 oprl->prefix[i].pltime = pr->ndpr_pltime; 1321 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1322 oprl->prefix[i].expire = pr->ndpr_expire; 1323 1324 pfr = pr->ndpr_advrtrs.lh_first; 1325 j = 0; 1326 while (pfr) { 1327 if (j < DRLSTSIZ) { 1328 #define RTRADDR oprl->prefix[i].advrtr[j] 1329 RTRADDR = pfr->router->rtaddr; 1330 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) { 1331 /* XXX: hack for KAME */ 1332 RTRADDR.s6_addr16[1] = 0; 1333 } else 1334 log(LOG_ERR, 1335 "a router(%s) advertises " 1336 "a prefix with " 1337 "non-link local address\n", 1338 ip6_sprintf(&RTRADDR)); 1339 #undef RTRADDR 1340 } 1341 j++; 1342 pfr = pfr->pfr_next; 1343 } 1344 oprl->prefix[i].advrtrs = j; 1345 oprl->prefix[i].origin = PR_ORIG_RA; 1346 1347 i++; 1348 pr = pr->ndpr_next; 1349 } 1350 splx(s); 1351 1352 break; 1353 case OSIOCGIFINFO_IN6: 1354 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1355 bzero(&ndi->ndi, sizeof(ndi->ndi)); 1356 ndi->ndi.linkmtu = IN6_LINKMTU(ifp); 1357 ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu; 1358 ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable; 1359 ndi->ndi.reachable = ND_IFINFO(ifp)->reachable; 1360 ndi->ndi.retrans = ND_IFINFO(ifp)->retrans; 1361 ndi->ndi.flags = ND_IFINFO(ifp)->flags; 1362 ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm; 1363 ndi->ndi.chlim = ND_IFINFO(ifp)->chlim; 1364 break; 1365 case SIOCGIFINFO_IN6: 1366 ndi->ndi = *ND_IFINFO(ifp); 1367 break; 1368 case SIOCSIFINFO_FLAGS: 1369 ND_IFINFO(ifp)->flags = ndi->ndi.flags; 1370 break; 1371 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1372 /* sync kernel routing table with the default router list */ 1373 defrouter_reset(); 1374 defrouter_select(); 1375 break; 1376 case SIOCSPFXFLUSH_IN6: 1377 { 1378 /* flush all the prefix advertised by routers */ 1379 struct nd_prefix *pr, *next; 1380 1381 s = splsoftnet(); 1382 for (pr = nd_prefix.lh_first; pr; pr = next) { 1383 struct in6_ifaddr *ia, *ia_next; 1384 1385 next = pr->ndpr_next; 1386 1387 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1388 continue; /* XXX */ 1389 1390 /* do we really have to remove addresses as well? */ 1391 for (ia = in6_ifaddr; ia; ia = ia_next) { 1392 /* ia might be removed. keep the next ptr. */ 1393 ia_next = ia->ia_next; 1394 1395 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1396 continue; 1397 1398 if (ia->ia6_ndpr == pr) 1399 in6_purgeaddr(&ia->ia_ifa); 1400 } 1401 prelist_remove(pr); 1402 } 1403 splx(s); 1404 break; 1405 } 1406 case SIOCSRTRFLUSH_IN6: 1407 { 1408 /* flush all the default routers */ 1409 struct nd_defrouter *dr, *next; 1410 1411 s = splsoftnet(); 1412 defrouter_reset(); 1413 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) { 1414 next = TAILQ_NEXT(dr, dr_entry); 1415 defrtrlist_del(dr); 1416 } 1417 defrouter_select(); 1418 splx(s); 1419 break; 1420 } 1421 case SIOCGNBRINFO_IN6: 1422 { 1423 struct llinfo_nd6 *ln; 1424 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1425 1426 /* 1427 * XXX: KAME specific hack for scoped addresses 1428 * XXXX: for other scopes than link-local? 1429 */ 1430 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) || 1431 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) { 1432 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2]; 1433 1434 if (*idp == 0) 1435 *idp = htons(ifp->if_index); 1436 } 1437 1438 s = splsoftnet(); 1439 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL || 1440 (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) { 1441 error = EINVAL; 1442 splx(s); 1443 break; 1444 } 1445 nbi->state = ln->ln_state; 1446 nbi->asked = ln->ln_asked; 1447 nbi->isrouter = ln->ln_router; 1448 nbi->expire = ln->ln_expire; 1449 splx(s); 1450 1451 break; 1452 } 1453 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1454 ndif->ifindex = nd6_defifindex; 1455 break; 1456 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1457 return (nd6_setdefaultiface(ndif->ifindex)); 1458 } 1459 return (error); 1460 } 1461 1462 /* 1463 * Create neighbor cache entry and cache link-layer address, 1464 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1465 */ 1466 struct rtentry * 1467 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code) 1468 struct ifnet *ifp; 1469 struct in6_addr *from; 1470 char *lladdr; 1471 int lladdrlen; 1472 int type; /* ICMP6 type */ 1473 int code; /* type dependent information */ 1474 { 1475 struct rtentry *rt = NULL; 1476 struct llinfo_nd6 *ln = NULL; 1477 int is_newentry; 1478 struct sockaddr_dl *sdl = NULL; 1479 int do_update; 1480 int olladdr; 1481 int llchange; 1482 int newstate = 0; 1483 1484 if (!ifp) 1485 panic("ifp == NULL in nd6_cache_lladdr"); 1486 if (!from) 1487 panic("from == NULL in nd6_cache_lladdr"); 1488 1489 /* nothing must be updated for unspecified address */ 1490 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1491 return NULL; 1492 1493 /* 1494 * Validation about ifp->if_addrlen and lladdrlen must be done in 1495 * the caller. 1496 * 1497 * XXX If the link does not have link-layer adderss, what should 1498 * we do? (ifp->if_addrlen == 0) 1499 * Spec says nothing in sections for RA, RS and NA. There's small 1500 * description on it in NS section (RFC 2461 7.2.3). 1501 */ 1502 1503 rt = nd6_lookup(from, 0, ifp); 1504 if (!rt) { 1505 #if 0 1506 /* nothing must be done if there's no lladdr */ 1507 if (!lladdr || !lladdrlen) 1508 return NULL; 1509 #endif 1510 1511 rt = nd6_lookup(from, 1, ifp); 1512 is_newentry = 1; 1513 } else { 1514 /* do nothing if static ndp is set */ 1515 if (rt->rt_flags & RTF_STATIC) 1516 return NULL; 1517 is_newentry = 0; 1518 } 1519 1520 if (!rt) 1521 return NULL; 1522 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { 1523 fail: 1524 (void)nd6_free(rt, 0); 1525 return NULL; 1526 } 1527 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1528 if (!ln) 1529 goto fail; 1530 if (!rt->rt_gateway) 1531 goto fail; 1532 if (rt->rt_gateway->sa_family != AF_LINK) 1533 goto fail; 1534 sdl = SDL(rt->rt_gateway); 1535 1536 olladdr = (sdl->sdl_alen) ? 1 : 0; 1537 if (olladdr && lladdr) { 1538 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) 1539 llchange = 1; 1540 else 1541 llchange = 0; 1542 } else 1543 llchange = 0; 1544 1545 /* 1546 * newentry olladdr lladdr llchange (*=record) 1547 * 0 n n -- (1) 1548 * 0 y n -- (2) 1549 * 0 n y -- (3) * STALE 1550 * 0 y y n (4) * 1551 * 0 y y y (5) * STALE 1552 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1553 * 1 -- y -- (7) * STALE 1554 */ 1555 1556 if (lladdr) { /* (3-5) and (7) */ 1557 /* 1558 * Record source link-layer address 1559 * XXX is it dependent to ifp->if_type? 1560 */ 1561 sdl->sdl_alen = ifp->if_addrlen; 1562 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); 1563 } 1564 1565 if (!is_newentry) { 1566 if ((!olladdr && lladdr) || /* (3) */ 1567 (olladdr && lladdr && llchange)) { /* (5) */ 1568 do_update = 1; 1569 newstate = ND6_LLINFO_STALE; 1570 } else /* (1-2,4) */ 1571 do_update = 0; 1572 } else { 1573 do_update = 1; 1574 if (!lladdr) /* (6) */ 1575 newstate = ND6_LLINFO_NOSTATE; 1576 else /* (7) */ 1577 newstate = ND6_LLINFO_STALE; 1578 } 1579 1580 if (do_update) { 1581 /* 1582 * Update the state of the neighbor cache. 1583 */ 1584 ln->ln_state = newstate; 1585 1586 if (ln->ln_state == ND6_LLINFO_STALE) { 1587 /* 1588 * XXX: since nd6_output() below will cause 1589 * state tansition to DELAY and reset the timer, 1590 * we must set the timer now, although it is actually 1591 * meaningless. 1592 */ 1593 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 1594 1595 if (ln->ln_hold) { 1596 /* 1597 * we assume ifp is not a p2p here, so just 1598 * set the 2nd argument as the 1st one. 1599 */ 1600 nd6_output(ifp, ifp, ln->ln_hold, 1601 (struct sockaddr_in6 *)rt_key(rt), rt); 1602 ln->ln_hold = NULL; 1603 } 1604 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1605 /* probe right away */ 1606 nd6_llinfo_settimer((void *)ln, 0); 1607 } 1608 } 1609 1610 /* 1611 * ICMP6 type dependent behavior. 1612 * 1613 * NS: clear IsRouter if new entry 1614 * RS: clear IsRouter 1615 * RA: set IsRouter if there's lladdr 1616 * redir: clear IsRouter if new entry 1617 * 1618 * RA case, (1): 1619 * The spec says that we must set IsRouter in the following cases: 1620 * - If lladdr exist, set IsRouter. This means (1-5). 1621 * - If it is old entry (!newentry), set IsRouter. This means (7). 1622 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1623 * A quetion arises for (1) case. (1) case has no lladdr in the 1624 * neighbor cache, this is similar to (6). 1625 * This case is rare but we figured that we MUST NOT set IsRouter. 1626 * 1627 * newentry olladdr lladdr llchange NS RS RA redir 1628 * D R 1629 * 0 n n -- (1) c ? s 1630 * 0 y n -- (2) c s s 1631 * 0 n y -- (3) c s s 1632 * 0 y y n (4) c s s 1633 * 0 y y y (5) c s s 1634 * 1 -- n -- (6) c c c s 1635 * 1 -- y -- (7) c c s c s 1636 * 1637 * (c=clear s=set) 1638 */ 1639 switch (type & 0xff) { 1640 case ND_NEIGHBOR_SOLICIT: 1641 /* 1642 * New entry must have is_router flag cleared. 1643 */ 1644 if (is_newentry) /* (6-7) */ 1645 ln->ln_router = 0; 1646 break; 1647 case ND_REDIRECT: 1648 /* 1649 * If the icmp is a redirect to a better router, always set the 1650 * is_router flag. Otherwise, if the entry is newly created, 1651 * clear the flag. [RFC 2461, sec 8.3] 1652 */ 1653 if (code == ND_REDIRECT_ROUTER) 1654 ln->ln_router = 1; 1655 else if (is_newentry) /* (6-7) */ 1656 ln->ln_router = 0; 1657 break; 1658 case ND_ROUTER_SOLICIT: 1659 /* 1660 * is_router flag must always be cleared. 1661 */ 1662 ln->ln_router = 0; 1663 break; 1664 case ND_ROUTER_ADVERT: 1665 /* 1666 * Mark an entry with lladdr as a router. 1667 */ 1668 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 1669 (is_newentry && lladdr)) { /* (7) */ 1670 ln->ln_router = 1; 1671 } 1672 break; 1673 } 1674 1675 /* 1676 * When the link-layer address of a router changes, select the 1677 * best router again. In particular, when the neighbor entry is newly 1678 * created, it might affect the selection policy. 1679 * Question: can we restrict the first condition to the "is_newentry" 1680 * case? 1681 * XXX: when we hear an RA from a new router with the link-layer 1682 * address option, defrouter_select() is called twice, since 1683 * defrtrlist_update called the function as well. However, I believe 1684 * we can compromise the overhead, since it only happens the first 1685 * time. 1686 * XXX: although defrouter_select() should not have a bad effect 1687 * for those are not autoconfigured hosts, we explicitly avoid such 1688 * cases for safety. 1689 */ 1690 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv) 1691 defrouter_select(); 1692 1693 return rt; 1694 } 1695 1696 static void 1697 nd6_slowtimo(ignored_arg) 1698 void *ignored_arg; 1699 { 1700 int s = splsoftnet(); 1701 struct nd_ifinfo *nd6if; 1702 struct ifnet *ifp; 1703 1704 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1705 nd6_slowtimo, NULL); 1706 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 1707 { 1708 nd6if = ND_IFINFO(ifp); 1709 if (nd6if->basereachable && /* already initialized */ 1710 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1711 /* 1712 * Since reachable time rarely changes by router 1713 * advertisements, we SHOULD insure that a new random 1714 * value gets recomputed at least once every few hours. 1715 * (RFC 2461, 6.3.4) 1716 */ 1717 nd6if->recalctm = nd6_recalc_reachtm_interval; 1718 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1719 } 1720 } 1721 splx(s); 1722 } 1723 1724 #define senderr(e) { error = (e); goto bad;} 1725 int 1726 nd6_output(ifp, origifp, m0, dst, rt0) 1727 struct ifnet *ifp; 1728 struct ifnet *origifp; 1729 struct mbuf *m0; 1730 struct sockaddr_in6 *dst; 1731 struct rtentry *rt0; 1732 { 1733 struct mbuf *m = m0; 1734 struct rtentry *rt = rt0; 1735 struct sockaddr_in6 *gw6 = NULL; 1736 struct llinfo_nd6 *ln = NULL; 1737 int error = 0; 1738 1739 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1740 goto sendpkt; 1741 1742 if (nd6_need_cache(ifp) == 0) 1743 goto sendpkt; 1744 1745 /* 1746 * next hop determination. This routine is derived from ether_outpout. 1747 */ 1748 if (rt) { 1749 if ((rt->rt_flags & RTF_UP) == 0) { 1750 if ((rt0 = rt = rtalloc1((struct sockaddr *)dst, 1751 1)) != NULL) 1752 { 1753 rt->rt_refcnt--; 1754 if (rt->rt_ifp != ifp) 1755 senderr(EHOSTUNREACH); 1756 } else 1757 senderr(EHOSTUNREACH); 1758 } 1759 1760 if (rt->rt_flags & RTF_GATEWAY) { 1761 gw6 = (struct sockaddr_in6 *)rt->rt_gateway; 1762 1763 /* 1764 * We skip link-layer address resolution and NUD 1765 * if the gateway is not a neighbor from ND point 1766 * of view, regardless of the value of nd_ifinfo.flags. 1767 * The second condition is a bit tricky; we skip 1768 * if the gateway is our own address, which is 1769 * sometimes used to install a route to a p2p link. 1770 */ 1771 if (!nd6_is_addr_neighbor(gw6, ifp) || 1772 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) { 1773 /* 1774 * We allow this kind of tricky route only 1775 * when the outgoing interface is p2p. 1776 * XXX: we may need a more generic rule here. 1777 */ 1778 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1779 senderr(EHOSTUNREACH); 1780 1781 goto sendpkt; 1782 } 1783 1784 if (rt->rt_gwroute == 0) 1785 goto lookup; 1786 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) { 1787 rtfree(rt); rt = rt0; 1788 lookup: 1789 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1); 1790 if ((rt = rt->rt_gwroute) == 0) 1791 senderr(EHOSTUNREACH); 1792 /* the "G" test below also prevents rt == rt0 */ 1793 if ((rt->rt_flags & RTF_GATEWAY) || 1794 (rt->rt_ifp != ifp)) { 1795 rt->rt_refcnt--; 1796 rt0->rt_gwroute = 0; 1797 senderr(EHOSTUNREACH); 1798 } 1799 } 1800 } 1801 } 1802 1803 /* 1804 * Address resolution or Neighbor Unreachability Detection 1805 * for the next hop. 1806 * At this point, the destination of the packet must be a unicast 1807 * or an anycast address(i.e. not a multicast). 1808 */ 1809 1810 /* Look up the neighbor cache for the nexthop */ 1811 if (rt && (rt->rt_flags & RTF_LLINFO) != 0) 1812 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1813 else { 1814 /* 1815 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 1816 * the condition below is not very efficient. But we believe 1817 * it is tolerable, because this should be a rare case. 1818 */ 1819 if (nd6_is_addr_neighbor(dst, ifp) && 1820 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL) 1821 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1822 } 1823 if (!ln || !rt) { 1824 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 1825 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 1826 log(LOG_DEBUG, 1827 "nd6_output: can't allocate llinfo for %s " 1828 "(ln=%p, rt=%p)\n", 1829 ip6_sprintf(&dst->sin6_addr), ln, rt); 1830 senderr(EIO); /* XXX: good error? */ 1831 } 1832 1833 goto sendpkt; /* send anyway */ 1834 } 1835 1836 /* We don't have to do link-layer address resolution on a p2p link. */ 1837 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 1838 ln->ln_state < ND6_LLINFO_REACHABLE) { 1839 ln->ln_state = ND6_LLINFO_STALE; 1840 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 1841 } 1842 1843 /* 1844 * The first time we send a packet to a neighbor whose entry is 1845 * STALE, we have to change the state to DELAY and a sets a timer to 1846 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 1847 * neighbor unreachability detection on expiration. 1848 * (RFC 2461 7.3.3) 1849 */ 1850 if (ln->ln_state == ND6_LLINFO_STALE) { 1851 ln->ln_asked = 0; 1852 ln->ln_state = ND6_LLINFO_DELAY; 1853 nd6_llinfo_settimer(ln, nd6_delay * hz); 1854 } 1855 1856 /* 1857 * If the neighbor cache entry has a state other than INCOMPLETE 1858 * (i.e. its link-layer address is already resolved), just 1859 * send the packet. 1860 */ 1861 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1862 goto sendpkt; 1863 1864 /* 1865 * There is a neighbor cache entry, but no ethernet address 1866 * response yet. Replace the held mbuf (if any) with this 1867 * latest one. 1868 */ 1869 if (ln->ln_state == ND6_LLINFO_NOSTATE) 1870 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1871 if (ln->ln_hold) 1872 m_freem(ln->ln_hold); 1873 ln->ln_hold = m; 1874 /* 1875 * If there has been no NS for the neighbor after entering the 1876 * INCOMPLETE state, send the first solicitation. 1877 */ 1878 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) { 1879 ln->ln_asked++; 1880 nd6_llinfo_settimer(ln, 1881 (long)ND_IFINFO(ifp)->retrans * hz / 1000); 1882 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 1883 } 1884 return (0); 1885 1886 sendpkt: 1887 1888 #ifdef IPSEC 1889 /* clean ipsec history once it goes out of the node */ 1890 ipsec_delaux(m); 1891 #endif 1892 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 1893 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst, 1894 rt)); 1895 } 1896 return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt)); 1897 1898 bad: 1899 if (m) 1900 m_freem(m); 1901 return (error); 1902 } 1903 #undef senderr 1904 1905 int 1906 nd6_need_cache(ifp) 1907 struct ifnet *ifp; 1908 { 1909 /* 1910 * XXX: we currently do not make neighbor cache on any interface 1911 * other than ARCnet, Ethernet, FDDI and GIF. 1912 * 1913 * RFC2893 says: 1914 * - unidirectional tunnels needs no ND 1915 */ 1916 switch (ifp->if_type) { 1917 case IFT_ARCNET: 1918 case IFT_ETHER: 1919 case IFT_FDDI: 1920 case IFT_IEEE1394: 1921 case IFT_GIF: /* XXX need more cases? */ 1922 return (1); 1923 default: 1924 return (0); 1925 } 1926 } 1927 1928 int 1929 nd6_storelladdr(ifp, rt, m, dst, desten) 1930 struct ifnet *ifp; 1931 struct rtentry *rt; 1932 struct mbuf *m; 1933 struct sockaddr *dst; 1934 u_char *desten; 1935 { 1936 struct sockaddr_dl *sdl; 1937 1938 if (m->m_flags & M_MCAST) { 1939 switch (ifp->if_type) { 1940 case IFT_ETHER: 1941 case IFT_FDDI: 1942 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 1943 desten); 1944 return (1); 1945 case IFT_IEEE1394: 1946 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen); 1947 return (1); 1948 case IFT_ARCNET: 1949 *desten = 0; 1950 return (1); 1951 default: 1952 m_freem(m); 1953 return (0); 1954 } 1955 } 1956 1957 if (rt == NULL) { 1958 /* this could happen, if we could not allocate memory */ 1959 m_freem(m); 1960 return (0); 1961 } 1962 if (rt->rt_gateway->sa_family != AF_LINK) { 1963 printf("nd6_storelladdr: something odd happens\n"); 1964 m_freem(m); 1965 return (0); 1966 } 1967 sdl = SDL(rt->rt_gateway); 1968 if (sdl->sdl_alen == 0) { 1969 /* this should be impossible, but we bark here for debugging */ 1970 printf("nd6_storelladdr: sdl_alen == 0, dst=%s, if=%s\n", 1971 ip6_sprintf(&SIN6(dst)->sin6_addr), if_name(ifp)); 1972 m_freem(m); 1973 return (0); 1974 } 1975 1976 bcopy(LLADDR(sdl), desten, sdl->sdl_alen); 1977 return (1); 1978 } 1979 1980 int 1981 nd6_sysctl(name, oldp, oldlenp, newp, newlen) 1982 int name; 1983 void *oldp; /* syscall arg, need copyout */ 1984 size_t *oldlenp; 1985 void *newp; /* syscall arg, need copyin */ 1986 size_t newlen; 1987 { 1988 void *p; 1989 size_t ol; 1990 int error; 1991 1992 error = 0; 1993 1994 if (newp) 1995 return EPERM; 1996 if (oldp && !oldlenp) 1997 return EINVAL; 1998 ol = oldlenp ? *oldlenp : 0; 1999 2000 if (oldp) { 2001 p = malloc(*oldlenp, M_TEMP, M_WAITOK); 2002 if (!p) 2003 return ENOMEM; 2004 } else 2005 p = NULL; 2006 switch (name) { 2007 case ICMPV6CTL_ND6_DRLIST: 2008 error = fill_drlist(p, oldlenp, ol); 2009 if (!error && p && oldp) 2010 error = copyout(p, oldp, *oldlenp); 2011 break; 2012 2013 case ICMPV6CTL_ND6_PRLIST: 2014 error = fill_prlist(p, oldlenp, ol); 2015 if (!error && p && oldp) 2016 error = copyout(p, oldp, *oldlenp); 2017 break; 2018 2019 default: 2020 error = ENOPROTOOPT; 2021 break; 2022 } 2023 if (p) 2024 free(p, M_TEMP); 2025 2026 return (error); 2027 } 2028 2029 static int 2030 fill_drlist(oldp, oldlenp, ol) 2031 void *oldp; 2032 size_t *oldlenp, ol; 2033 { 2034 int error = 0, s; 2035 struct in6_defrouter *d = NULL, *de = NULL; 2036 struct nd_defrouter *dr; 2037 size_t l; 2038 2039 s = splsoftnet(); 2040 2041 if (oldp) { 2042 d = (struct in6_defrouter *)oldp; 2043 de = (struct in6_defrouter *)((caddr_t)oldp + *oldlenp); 2044 } 2045 l = 0; 2046 2047 for (dr = TAILQ_FIRST(&nd_defrouter); dr; 2048 dr = TAILQ_NEXT(dr, dr_entry)) { 2049 2050 if (oldp && d + 1 <= de) { 2051 bzero(d, sizeof(*d)); 2052 d->rtaddr.sin6_family = AF_INET6; 2053 d->rtaddr.sin6_len = sizeof(struct sockaddr_in6); 2054 d->rtaddr.sin6_addr = dr->rtaddr; 2055 in6_recoverscope(&d->rtaddr, &d->rtaddr.sin6_addr, 2056 dr->ifp); 2057 d->flags = dr->flags; 2058 d->rtlifetime = dr->rtlifetime; 2059 d->expire = dr->expire; 2060 d->if_index = dr->ifp->if_index; 2061 } 2062 2063 l += sizeof(*d); 2064 if (d) 2065 d++; 2066 } 2067 2068 if (oldp) { 2069 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */ 2070 if (l > ol) 2071 error = ENOMEM; 2072 } else 2073 *oldlenp = l; 2074 2075 splx(s); 2076 2077 return (error); 2078 } 2079 2080 static int 2081 fill_prlist(oldp, oldlenp, ol) 2082 void *oldp; 2083 size_t *oldlenp, ol; 2084 { 2085 int error = 0, s; 2086 struct nd_prefix *pr; 2087 struct in6_prefix *p = NULL; 2088 struct in6_prefix *pe = NULL; 2089 size_t l; 2090 2091 s = splsoftnet(); 2092 2093 if (oldp) { 2094 p = (struct in6_prefix *)oldp; 2095 pe = (struct in6_prefix *)((caddr_t)oldp + *oldlenp); 2096 } 2097 l = 0; 2098 2099 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 2100 u_short advrtrs; 2101 size_t advance; 2102 struct sockaddr_in6 *sin6; 2103 struct sockaddr_in6 *s6; 2104 struct nd_pfxrouter *pfr; 2105 2106 if (oldp && p + 1 <= pe) 2107 { 2108 bzero(p, sizeof(*p)); 2109 sin6 = (struct sockaddr_in6 *)(p + 1); 2110 2111 p->prefix = pr->ndpr_prefix; 2112 if (in6_recoverscope(&p->prefix, 2113 &p->prefix.sin6_addr, pr->ndpr_ifp) != 0) 2114 log(LOG_ERR, 2115 "scope error in prefix list (%s)\n", 2116 ip6_sprintf(&p->prefix.sin6_addr)); 2117 p->raflags = pr->ndpr_raf; 2118 p->prefixlen = pr->ndpr_plen; 2119 p->vltime = pr->ndpr_vltime; 2120 p->pltime = pr->ndpr_pltime; 2121 p->if_index = pr->ndpr_ifp->if_index; 2122 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2123 p->expire = 0; 2124 else { 2125 time_t maxexpire; 2126 2127 /* XXX: we assume time_t is signed. */ 2128 maxexpire = (-1) & 2129 ~(1 << ((sizeof(maxexpire) * 8) - 1)); 2130 if (pr->ndpr_vltime < 2131 maxexpire - pr->ndpr_lastupdate) { 2132 p->expire = pr->ndpr_lastupdate + 2133 pr->ndpr_vltime; 2134 } else 2135 p->expire = maxexpire; 2136 } 2137 p->refcnt = pr->ndpr_refcnt; 2138 p->flags = pr->ndpr_stateflags; 2139 p->origin = PR_ORIG_RA; 2140 advrtrs = 0; 2141 for (pfr = pr->ndpr_advrtrs.lh_first; pfr; 2142 pfr = pfr->pfr_next) { 2143 if ((void *)&sin6[advrtrs + 1] > (void *)pe) { 2144 advrtrs++; 2145 continue; 2146 } 2147 s6 = &sin6[advrtrs]; 2148 s6->sin6_family = AF_INET6; 2149 s6->sin6_len = sizeof(struct sockaddr_in6); 2150 s6->sin6_addr = pfr->router->rtaddr; 2151 in6_recoverscope(s6, &s6->sin6_addr, 2152 pfr->router->ifp); 2153 advrtrs++; 2154 } 2155 p->advrtrs = advrtrs; 2156 } 2157 else { 2158 advrtrs = 0; 2159 for (pfr = pr->ndpr_advrtrs.lh_first; pfr; 2160 pfr = pfr->pfr_next) 2161 advrtrs++; 2162 } 2163 2164 advance = sizeof(*p) + sizeof(*sin6) * advrtrs; 2165 l += advance; 2166 if (p) 2167 p = (struct in6_prefix *)((caddr_t)p + advance); 2168 } 2169 2170 if (oldp) { 2171 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */ 2172 if (l > ol) 2173 error = ENOMEM; 2174 } else 2175 *oldlenp = l; 2176 2177 splx(s); 2178 2179 return (error); 2180 } 2181