1 /* $NetBSD: nd6.c,v 1.268 2020/04/03 14:04:27 christos Exp $ */ 2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.268 2020/04/03 14:04:27 christos Exp $"); 35 36 #ifdef _KERNEL_OPT 37 #include "opt_net_mpsafe.h" 38 #endif 39 40 #include "bridge.h" 41 #include "carp.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/callout.h> 46 #include <sys/kmem.h> 47 #include <sys/mbuf.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/sockio.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/errno.h> 54 #include <sys/ioctl.h> 55 #include <sys/syslog.h> 56 #include <sys/queue.h> 57 #include <sys/cprng.h> 58 #include <sys/workqueue.h> 59 60 #include <net/if.h> 61 #include <net/if_dl.h> 62 #include <net/if_llatbl.h> 63 #include <net/if_types.h> 64 #include <net/route.h> 65 #include <net/if_ether.h> 66 #include <net/if_arc.h> 67 68 #include <netinet/in.h> 69 #include <netinet6/in6_var.h> 70 #include <netinet/ip6.h> 71 #include <netinet6/ip6_var.h> 72 #include <netinet6/scope6_var.h> 73 #include <netinet6/nd6.h> 74 #include <netinet6/in6_ifattach.h> 75 #include <netinet/icmp6.h> 76 #include <netinet6/icmp6_private.h> 77 78 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 79 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 80 81 /* timer values */ 82 int nd6_prune = 1; /* walk list every 1 seconds */ 83 int nd6_delay = 5; /* delay first probe time 5 second */ 84 int nd6_umaxtries = 3; /* maximum unicast query */ 85 int nd6_mmaxtries = 3; /* maximum multicast query */ 86 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 87 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 88 89 /* preventing too many loops in ND option parsing */ 90 int nd6_maxndopt = 10; /* max # of ND options allowed */ 91 92 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 93 94 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */ 95 96 #ifdef ND6_DEBUG 97 int nd6_debug = 1; 98 #else 99 int nd6_debug = 0; 100 #endif 101 102 krwlock_t nd6_lock __cacheline_aligned; 103 104 struct nd_drhead nd_defrouter; 105 struct nd_prhead nd_prefix = { 0 }; 106 107 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 108 109 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 110 static void nd6_slowtimo(void *); 111 static int regen_tmpaddr(const struct in6_ifaddr *); 112 static void nd6_free(struct llentry *, int); 113 static void nd6_llinfo_timer(void *); 114 static void nd6_timer(void *); 115 static void nd6_timer_work(struct work *, void *); 116 static void clear_llinfo_pqueue(struct llentry *); 117 static struct nd_opt_hdr *nd6_option(union nd_opts *); 118 119 static callout_t nd6_slowtimo_ch; 120 static callout_t nd6_timer_ch; 121 static struct workqueue *nd6_timer_wq; 122 static struct work nd6_timer_wk; 123 124 static int fill_drlist(void *, size_t *); 125 static int fill_prlist(void *, size_t *); 126 127 static struct ifnet *nd6_defifp; 128 static int nd6_defifindex; 129 130 static int nd6_setdefaultiface(int); 131 132 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery"); 133 134 void 135 nd6_init(void) 136 { 137 int error; 138 139 nd6_nbr_init(); 140 141 rw_init(&nd6_lock); 142 143 /* initialization of the default router list */ 144 ND_DEFROUTER_LIST_INIT(); 145 146 callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE); 147 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE); 148 149 error = workqueue_create(&nd6_timer_wq, "nd6_timer", 150 nd6_timer_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE); 151 if (error) 152 panic("%s: workqueue_create failed (%d)\n", __func__, error); 153 154 /* start timer */ 155 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 156 nd6_slowtimo, NULL); 157 callout_reset(&nd6_timer_ch, hz, nd6_timer, NULL); 158 } 159 160 struct nd_ifinfo * 161 nd6_ifattach(struct ifnet *ifp) 162 { 163 struct nd_ifinfo *nd; 164 165 nd = kmem_zalloc(sizeof(*nd), KM_SLEEP); 166 167 nd->initialized = 1; 168 169 nd->chlim = IPV6_DEFHLIM; 170 nd->basereachable = REACHABLE_TIME; 171 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 172 nd->retrans = RETRANS_TIMER; 173 174 nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV; 175 176 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 177 * A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL 178 * because one of its members should. */ 179 if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 180 (ifp->if_flags & IFF_LOOPBACK)) 181 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 182 183 /* A loopback interface does not need to accept RTADV. 184 * A bridge interface should not accept RTADV 185 * because one of its members should. */ 186 if (ip6_accept_rtadv && 187 !(ifp->if_flags & IFF_LOOPBACK) && 188 !(ifp->if_type != IFT_BRIDGE)) 189 nd->flags |= ND6_IFF_ACCEPT_RTADV; 190 191 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 192 nd6_setmtu0(ifp, nd); 193 194 return nd; 195 } 196 197 void 198 nd6_ifdetach(struct ifnet *ifp, struct in6_ifextra *ext) 199 { 200 201 /* Ensure all IPv6 addresses are purged before calling nd6_purge */ 202 if_purgeaddrs(ifp, AF_INET6, in6_purgeaddr); 203 nd6_purge(ifp, ext); 204 kmem_free(ext->nd_ifinfo, sizeof(struct nd_ifinfo)); 205 } 206 207 void 208 nd6_setmtu(struct ifnet *ifp) 209 { 210 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 211 } 212 213 void 214 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 215 { 216 u_int32_t omaxmtu; 217 218 omaxmtu = ndi->maxmtu; 219 220 switch (ifp->if_type) { 221 case IFT_ARCNET: 222 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 223 break; 224 default: 225 ndi->maxmtu = ifp->if_mtu; 226 break; 227 } 228 229 /* 230 * Decreasing the interface MTU under IPV6 minimum MTU may cause 231 * undesirable situation. We thus notify the operator of the change 232 * explicitly. The check for omaxmtu is necessary to restrict the 233 * log to the case of changing the MTU, not initializing it. 234 */ 235 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 236 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too" 237 " small for IPv6 which needs %lu\n", 238 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long) 239 IPV6_MMTU); 240 } 241 242 if (ndi->maxmtu > in6_maxmtu) 243 in6_setmaxmtu(); /* check all interfaces just in case */ 244 } 245 246 void 247 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 248 { 249 250 memset(ndopts, 0, sizeof(*ndopts)); 251 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 252 ndopts->nd_opts_last 253 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 254 255 if (icmp6len == 0) { 256 ndopts->nd_opts_done = 1; 257 ndopts->nd_opts_search = NULL; 258 } 259 } 260 261 /* 262 * Take one ND option. 263 */ 264 static struct nd_opt_hdr * 265 nd6_option(union nd_opts *ndopts) 266 { 267 struct nd_opt_hdr *nd_opt; 268 int olen; 269 270 KASSERT(ndopts != NULL); 271 KASSERT(ndopts->nd_opts_last != NULL); 272 273 if (ndopts->nd_opts_search == NULL) 274 return NULL; 275 if (ndopts->nd_opts_done) 276 return NULL; 277 278 nd_opt = ndopts->nd_opts_search; 279 280 /* make sure nd_opt_len is inside the buffer */ 281 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) { 282 memset(ndopts, 0, sizeof(*ndopts)); 283 return NULL; 284 } 285 286 olen = nd_opt->nd_opt_len << 3; 287 if (olen == 0) { 288 /* 289 * Message validation requires that all included 290 * options have a length that is greater than zero. 291 */ 292 memset(ndopts, 0, sizeof(*ndopts)); 293 return NULL; 294 } 295 296 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen); 297 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 298 /* option overruns the end of buffer, invalid */ 299 memset(ndopts, 0, sizeof(*ndopts)); 300 return NULL; 301 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 302 /* reached the end of options chain */ 303 ndopts->nd_opts_done = 1; 304 ndopts->nd_opts_search = NULL; 305 } 306 return nd_opt; 307 } 308 309 /* 310 * Parse multiple ND options. 311 * This function is much easier to use, for ND routines that do not need 312 * multiple options of the same type. 313 */ 314 int 315 nd6_options(union nd_opts *ndopts) 316 { 317 struct nd_opt_hdr *nd_opt; 318 int i = 0; 319 320 KASSERT(ndopts != NULL); 321 KASSERT(ndopts->nd_opts_last != NULL); 322 323 if (ndopts->nd_opts_search == NULL) 324 return 0; 325 326 while (1) { 327 nd_opt = nd6_option(ndopts); 328 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 329 /* 330 * Message validation requires that all included 331 * options have a length that is greater than zero. 332 */ 333 ICMP6_STATINC(ICMP6_STAT_ND_BADOPT); 334 memset(ndopts, 0, sizeof(*ndopts)); 335 return -1; 336 } 337 338 if (nd_opt == NULL) 339 goto skip1; 340 341 switch (nd_opt->nd_opt_type) { 342 case ND_OPT_SOURCE_LINKADDR: 343 case ND_OPT_TARGET_LINKADDR: 344 case ND_OPT_MTU: 345 case ND_OPT_REDIRECTED_HEADER: 346 case ND_OPT_NONCE: 347 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 348 nd6log(LOG_INFO, 349 "duplicated ND6 option found (type=%d)\n", 350 nd_opt->nd_opt_type); 351 /* XXX bark? */ 352 } else { 353 ndopts->nd_opt_array[nd_opt->nd_opt_type] 354 = nd_opt; 355 } 356 break; 357 case ND_OPT_PREFIX_INFORMATION: 358 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 359 ndopts->nd_opt_array[nd_opt->nd_opt_type] 360 = nd_opt; 361 } 362 ndopts->nd_opts_pi_end = 363 (struct nd_opt_prefix_info *)nd_opt; 364 break; 365 default: 366 /* 367 * Unknown options must be silently ignored, 368 * to accommodate future extension to the protocol. 369 */ 370 nd6log(LOG_DEBUG, 371 "nd6_options: unsupported option %d - " 372 "option ignored\n", nd_opt->nd_opt_type); 373 } 374 375 skip1: 376 i++; 377 if (i > nd6_maxndopt) { 378 ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT); 379 nd6log(LOG_INFO, "too many loop in nd opt\n"); 380 break; 381 } 382 383 if (ndopts->nd_opts_done) 384 break; 385 } 386 387 return 0; 388 } 389 390 /* 391 * ND6 timer routine to handle ND6 entries 392 */ 393 void 394 nd6_llinfo_settimer(struct llentry *ln, time_t xtick) 395 { 396 397 CTASSERT(sizeof(time_t) > sizeof(int)); 398 LLE_WLOCK_ASSERT(ln); 399 400 KASSERT(xtick >= 0); 401 402 /* 403 * We have to take care of a reference leak which occurs if 404 * callout_reset overwrites a pending callout schedule. Unfortunately 405 * we don't have a mean to know the overwrite, so we need to know it 406 * using callout_stop. We need to call callout_pending first to exclude 407 * the case that the callout has never been scheduled. 408 */ 409 if (callout_pending(&ln->la_timer)) { 410 bool expired = callout_stop(&ln->la_timer); 411 if (!expired) 412 LLE_REMREF(ln); 413 } 414 415 ln->ln_expire = time_uptime + xtick / hz; 416 LLE_ADDREF(ln); 417 if (xtick > INT_MAX) { 418 ln->ln_ntick = xtick - INT_MAX; 419 callout_reset(&ln->ln_timer_ch, INT_MAX, 420 nd6_llinfo_timer, ln); 421 } else { 422 ln->ln_ntick = 0; 423 callout_reset(&ln->ln_timer_ch, xtick, 424 nd6_llinfo_timer, ln); 425 } 426 } 427 428 /* 429 * Gets source address of the first packet in hold queue 430 * and stores it in @src. 431 * Returns pointer to @src (if hold queue is not empty) or NULL. 432 */ 433 static struct in6_addr * 434 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 435 { 436 struct ip6_hdr *hip6; 437 438 if (ln == NULL || ln->ln_hold == NULL) 439 return NULL; 440 441 /* 442 * assuming every packet in ln_hold has the same IP header 443 */ 444 hip6 = mtod(ln->ln_hold, struct ip6_hdr *); 445 /* XXX pullup? */ 446 if (sizeof(*hip6) < ln->ln_hold->m_len) 447 *src = hip6->ip6_src; 448 else 449 src = NULL; 450 451 return src; 452 } 453 454 static void 455 nd6_llinfo_timer(void *arg) 456 { 457 struct llentry *ln = arg; 458 struct ifnet *ifp; 459 struct nd_ifinfo *ndi = NULL; 460 bool send_ns = false; 461 struct in6_addr mdaddr6 = zeroin6_addr; 462 const struct in6_addr *daddr6 = NULL; 463 const struct in6_addr *taddr6 = &ln->r_l3addr.addr6; 464 struct sockaddr_in6 dsin6, tsin6; 465 struct sockaddr *sa; 466 struct mbuf *m = NULL; 467 468 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE(); 469 470 LLE_WLOCK(ln); 471 if ((ln->la_flags & LLE_LINKED) == 0) 472 goto out; 473 if (ln->ln_ntick > 0) { 474 nd6_llinfo_settimer(ln, ln->ln_ntick); 475 goto out; 476 } 477 478 ifp = ln->lle_tbl->llt_ifp; 479 KASSERT(ifp != NULL); 480 481 ndi = ND_IFINFO(ifp); 482 483 switch (ln->ln_state) { 484 case ND6_LLINFO_WAITDELETE: 485 LLE_REMREF(ln); 486 nd6_free(ln, 0); 487 ln = NULL; 488 break; 489 490 case ND6_LLINFO_INCOMPLETE: 491 if (ln->ln_asked++ < nd6_mmaxtries) { 492 send_ns = true; 493 break; 494 } 495 496 if (ln->ln_hold) { 497 struct mbuf *m0; 498 499 m = ln->ln_hold; 500 501 /* 502 * assuming every packet in ln_hold has 503 * the same IP header 504 */ 505 m0 = m->m_nextpkt; 506 m->m_nextpkt = NULL; 507 ln->ln_hold = m0; 508 clear_llinfo_pqueue(ln); 509 } 510 511 sockaddr_in6_init(&tsin6, taddr6, 0, 0, 0); 512 if (!IN6_IS_ADDR_UNSPECIFIED(&mdaddr6)) { 513 sockaddr_in6_init(&dsin6, &mdaddr6, 0, 0, 0); 514 sa = sin6tosa(&dsin6); 515 } else 516 sa = NULL; 517 518 rt_clonedmsg(RTM_MISS, sa, sin6tosa(&tsin6), NULL, ifp); 519 520 /* 521 * Move to the ND6_LLINFO_WAITDELETE state for another 522 * interval at which point the llentry will be freed 523 * unless it's attempted to be used again and we'll 524 * resend NS again, rinse and repeat. 525 */ 526 ln->ln_state = ND6_LLINFO_WAITDELETE; 527 if (ln->ln_asked == nd6_mmaxtries) 528 nd6_llinfo_settimer(ln, ndi->retrans * hz / 1000); 529 else 530 send_ns = true; 531 break; 532 533 case ND6_LLINFO_REACHABLE: 534 if (!ND6_LLINFO_PERMANENT(ln)) { 535 ln->ln_state = ND6_LLINFO_STALE; 536 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 537 } 538 break; 539 540 case ND6_LLINFO_PURGE: 541 case ND6_LLINFO_STALE: 542 /* Garbage Collection(RFC 2461 5.3) */ 543 if (!ND6_LLINFO_PERMANENT(ln)) { 544 LLE_REMREF(ln); 545 nd6_free(ln, 1); 546 ln = NULL; 547 } 548 break; 549 550 case ND6_LLINFO_DELAY: 551 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 552 /* We need NUD */ 553 ln->ln_asked = 1; 554 ln->ln_state = ND6_LLINFO_PROBE; 555 daddr6 = &ln->r_l3addr.addr6; 556 send_ns = true; 557 } else { 558 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 559 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 560 } 561 break; 562 case ND6_LLINFO_PROBE: 563 if (ln->ln_asked < nd6_umaxtries) { 564 ln->ln_asked++; 565 daddr6 = &ln->r_l3addr.addr6; 566 send_ns = true; 567 } else { 568 LLE_REMREF(ln); 569 nd6_free(ln, 0); 570 ln = NULL; 571 } 572 break; 573 } 574 575 if (send_ns) { 576 struct in6_addr src, *psrc; 577 578 nd6_llinfo_settimer(ln, ndi->retrans * hz / 1000); 579 psrc = nd6_llinfo_get_holdsrc(ln, &src); 580 LLE_FREE_LOCKED(ln); 581 ln = NULL; 582 nd6_ns_output(ifp, daddr6, taddr6, psrc, NULL); 583 } 584 585 out: 586 if (ln != NULL) 587 LLE_FREE_LOCKED(ln); 588 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 589 if (m) { 590 icmp6_error2(m, ICMP6_DST_UNREACH, 591 ICMP6_DST_UNREACH_ADDR, 0, ifp, &mdaddr6); 592 } 593 } 594 595 /* 596 * ND6 timer routine to expire default route list and prefix list 597 */ 598 static void 599 nd6_timer_work(struct work *wk, void *arg) 600 { 601 struct nd_defrouter *next_dr, *dr; 602 struct nd_prefix *next_pr, *pr; 603 struct in6_ifaddr *ia6, *nia6; 604 int s, bound; 605 struct psref psref; 606 607 callout_reset(&nd6_timer_ch, nd6_prune * hz, 608 nd6_timer, NULL); 609 610 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE(); 611 612 /* expire default router list */ 613 614 ND6_WLOCK(); 615 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, next_dr) { 616 if (dr->expire && dr->expire < time_uptime) { 617 nd6_defrtrlist_del(dr, NULL); 618 } 619 } 620 ND6_UNLOCK(); 621 622 /* 623 * expire interface addresses. 624 * in the past the loop was inside prefix expiry processing. 625 * However, from a stricter speci-confrmance standpoint, we should 626 * rather separate address lifetimes and prefix lifetimes. 627 */ 628 bound = curlwp_bind(); 629 addrloop: 630 s = pserialize_read_enter(); 631 for (ia6 = IN6_ADDRLIST_READER_FIRST(); ia6; ia6 = nia6) { 632 nia6 = IN6_ADDRLIST_READER_NEXT(ia6); 633 634 ia6_acquire(ia6, &psref); 635 pserialize_read_exit(s); 636 637 /* check address lifetime */ 638 if (IFA6_IS_INVALID(ia6)) { 639 int regen = 0; 640 struct ifnet *ifp; 641 642 /* 643 * If the expiring address is temporary, try 644 * regenerating a new one. This would be useful when 645 * we suspended a laptop PC, then turned it on after a 646 * period that could invalidate all temporary 647 * addresses. Although we may have to restart the 648 * loop (see below), it must be after purging the 649 * address. Otherwise, we'd see an infinite loop of 650 * regeneration. 651 */ 652 if (ip6_use_tempaddr && 653 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 654 IFNET_LOCK(ia6->ia_ifa.ifa_ifp); 655 if (regen_tmpaddr(ia6) == 0) 656 regen = 1; 657 IFNET_UNLOCK(ia6->ia_ifa.ifa_ifp); 658 } 659 660 ifp = ia6->ia_ifa.ifa_ifp; 661 IFNET_LOCK(ifp); 662 /* 663 * Need to take the lock first to prevent if_detach 664 * from running in6_purgeaddr concurrently. 665 */ 666 if (!if_is_deactivated(ifp)) { 667 ia6_release(ia6, &psref); 668 in6_purgeaddr(&ia6->ia_ifa); 669 } else { 670 /* 671 * ifp is being destroyed, ia6 will be destroyed 672 * by if_detach. 673 */ 674 ia6_release(ia6, &psref); 675 } 676 ia6 = NULL; 677 IFNET_UNLOCK(ifp); 678 679 if (regen) 680 goto addrloop; /* XXX: see below */ 681 } else if (IFA6_IS_DEPRECATED(ia6)) { 682 int oldflags = ia6->ia6_flags; 683 684 if ((oldflags & IN6_IFF_DEPRECATED) == 0) { 685 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 686 rt_addrmsg(RTM_NEWADDR, (struct ifaddr *)ia6); 687 } 688 689 /* 690 * If a temporary address has just become deprecated, 691 * regenerate a new one if possible. 692 */ 693 if (ip6_use_tempaddr && 694 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 695 (oldflags & IN6_IFF_DEPRECATED) == 0) { 696 int ret; 697 698 IFNET_LOCK(ia6->ia_ifa.ifa_ifp); 699 ret = regen_tmpaddr(ia6); 700 IFNET_UNLOCK(ia6->ia_ifa.ifa_ifp); 701 if (ret == 0) { 702 /* 703 * A new temporary address is 704 * generated. 705 * XXX: this means the address chain 706 * has changed while we are still in 707 * the loop. Although the change 708 * would not cause disaster (because 709 * it's not a deletion, but an 710 * addition,) we'd rather restart the 711 * loop just for safety. Or does this 712 * significantly reduce performance?? 713 */ 714 ia6_release(ia6, &psref); 715 goto addrloop; 716 } 717 } 718 } else { 719 /* 720 * A new RA might have made a deprecated address 721 * preferred. 722 */ 723 if (ia6->ia6_flags & IN6_IFF_DEPRECATED) { 724 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 725 rt_addrmsg(RTM_NEWADDR, (struct ifaddr *)ia6); 726 } 727 } 728 s = pserialize_read_enter(); 729 ia6_release(ia6, &psref); 730 } 731 pserialize_read_exit(s); 732 curlwp_bindx(bound); 733 734 /* expire prefix list */ 735 ND6_WLOCK(); 736 ND_PREFIX_LIST_FOREACH_SAFE(pr, next_pr) { 737 /* 738 * check prefix lifetime. 739 * since pltime is just for autoconf, pltime processing for 740 * prefix is not necessary. 741 */ 742 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 743 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) { 744 /* 745 * Just invalidate the prefix here. Removing it 746 * will be done when purging an associated address. 747 */ 748 KASSERTMSG(pr->ndpr_refcnt > 0, "ndpr_refcnt=%d", 749 pr->ndpr_refcnt); 750 nd6_invalidate_prefix(pr); 751 } 752 } 753 ND6_UNLOCK(); 754 755 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 756 } 757 758 static void 759 nd6_timer(void *ignored_arg) 760 { 761 762 workqueue_enqueue(nd6_timer_wq, &nd6_timer_wk, NULL); 763 } 764 765 /* ia6: deprecated/invalidated temporary address */ 766 static int 767 regen_tmpaddr(const struct in6_ifaddr *ia6) 768 { 769 struct ifaddr *ifa; 770 struct ifnet *ifp; 771 struct in6_ifaddr *public_ifa6 = NULL; 772 int s; 773 774 ifp = ia6->ia_ifa.ifa_ifp; 775 s = pserialize_read_enter(); 776 IFADDR_READER_FOREACH(ifa, ifp) { 777 struct in6_ifaddr *it6; 778 779 if (ifa->ifa_addr->sa_family != AF_INET6) 780 continue; 781 782 it6 = (struct in6_ifaddr *)ifa; 783 784 /* ignore no autoconf addresses. */ 785 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 786 continue; 787 788 /* ignore autoconf addresses with different prefixes. */ 789 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 790 continue; 791 792 /* 793 * Now we are looking at an autoconf address with the same 794 * prefix as ours. If the address is temporary and is still 795 * preferred, do not create another one. It would be rare, but 796 * could happen, for example, when we resume a laptop PC after 797 * a long period. 798 */ 799 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 800 !IFA6_IS_DEPRECATED(it6)) { 801 public_ifa6 = NULL; 802 break; 803 } 804 805 /* 806 * This is a public autoconf address that has the same prefix 807 * as ours. If it is preferred, keep it. We can't break the 808 * loop here, because there may be a still-preferred temporary 809 * address with the prefix. 810 */ 811 if (!IFA6_IS_DEPRECATED(it6)) 812 public_ifa6 = it6; 813 } 814 815 if (public_ifa6 != NULL) { 816 int e; 817 struct psref psref; 818 819 ia6_acquire(public_ifa6, &psref); 820 pserialize_read_exit(s); 821 /* 822 * Random factor is introduced in the preferred lifetime, so 823 * we do not need additional delay (3rd arg to in6_tmpifadd). 824 */ 825 ND6_WLOCK(); 826 e = in6_tmpifadd(public_ifa6, 0, 0); 827 ND6_UNLOCK(); 828 if (e != 0) { 829 ia6_release(public_ifa6, &psref); 830 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 831 " tmp addr, errno=%d\n", e); 832 return -1; 833 } 834 ia6_release(public_ifa6, &psref); 835 return 0; 836 } 837 pserialize_read_exit(s); 838 839 return -1; 840 } 841 842 bool 843 nd6_accepts_rtadv(const struct nd_ifinfo *ndi) 844 { 845 switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) { 846 case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV: 847 return true; 848 case ND6_IFF_ACCEPT_RTADV: 849 return ip6_accept_rtadv != 0; 850 case ND6_IFF_OVERRIDE_RTADV: 851 case 0: 852 default: 853 return false; 854 } 855 } 856 857 /* 858 * Nuke neighbor cache/prefix/default router management table, right before 859 * ifp goes away. 860 */ 861 void 862 nd6_purge(struct ifnet *ifp, struct in6_ifextra *ext) 863 { 864 struct nd_defrouter *dr, *ndr; 865 struct nd_prefix *pr, *npr; 866 867 /* 868 * During detach, the ND info might be already removed, but 869 * then is explitly passed as argument. 870 * Otherwise get it from ifp->if_afdata. 871 */ 872 if (ext == NULL) 873 ext = ifp->if_afdata[AF_INET6]; 874 if (ext == NULL) 875 return; 876 877 ND6_WLOCK(); 878 /* 879 * Nuke default router list entries toward ifp. 880 * We defer removal of default router list entries that is installed 881 * in the routing table, in order to keep additional side effects as 882 * small as possible. 883 */ 884 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, ndr) { 885 if (dr->installed) 886 continue; 887 888 if (dr->ifp == ifp) { 889 KASSERT(ext != NULL); 890 nd6_defrtrlist_del(dr, ext); 891 } 892 } 893 894 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, ndr) { 895 if (!dr->installed) 896 continue; 897 898 if (dr->ifp == ifp) { 899 KASSERT(ext != NULL); 900 nd6_defrtrlist_del(dr, ext); 901 } 902 } 903 904 /* Nuke prefix list entries toward ifp */ 905 ND_PREFIX_LIST_FOREACH_SAFE(pr, npr) { 906 if (pr->ndpr_ifp == ifp) { 907 /* 908 * All addresses referencing pr should be already freed. 909 */ 910 KASSERTMSG(pr->ndpr_refcnt == 0, "ndpr_refcnt=%d", 911 pr->ndpr_refcnt); 912 nd6_prelist_remove(pr); 913 } 914 } 915 916 /* cancel default outgoing interface setting */ 917 if (nd6_defifindex == ifp->if_index) 918 nd6_setdefaultiface(0); 919 920 /* XXX: too restrictive? */ 921 if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) { 922 struct nd_ifinfo *ndi = ND_IFINFO(ifp); 923 if (ndi && nd6_accepts_rtadv(ndi)) { 924 /* refresh default router list */ 925 nd6_defrouter_select(); 926 } 927 } 928 ND6_UNLOCK(); 929 930 /* 931 * We may not need to nuke the neighbor cache entries here 932 * because the neighbor cache is kept in if_afdata[AF_INET6]. 933 * nd6_purge() is invoked by in6_ifdetach() which is called 934 * from if_detach() where everything gets purged. However 935 * in6_ifdetach is directly called from vlan(4), so we still 936 * need to purge entries here. 937 */ 938 if (ext->lltable != NULL) 939 lltable_purge_entries(ext->lltable); 940 } 941 942 void 943 nd6_assert_purged(struct ifnet *ifp) 944 { 945 struct nd_defrouter *dr; 946 struct nd_prefix *pr; 947 char ip6buf[INET6_ADDRSTRLEN] __diagused; 948 949 ND6_RLOCK(); 950 ND_DEFROUTER_LIST_FOREACH(dr) { 951 KASSERTMSG(dr->ifp != ifp, 952 "defrouter %s remains on %s", 953 IN6_PRINT(ip6buf, &dr->rtaddr), ifp->if_xname); 954 } 955 956 ND_PREFIX_LIST_FOREACH(pr) { 957 KASSERTMSG(pr->ndpr_ifp != ifp, 958 "prefix %s/%d remains on %s", 959 IN6_PRINT(ip6buf, &pr->ndpr_prefix.sin6_addr), 960 pr->ndpr_plen, ifp->if_xname); 961 } 962 ND6_UNLOCK(); 963 } 964 965 struct llentry * 966 nd6_lookup(const struct in6_addr *addr6, const struct ifnet *ifp, bool wlock) 967 { 968 struct sockaddr_in6 sin6; 969 struct llentry *ln; 970 971 sockaddr_in6_init(&sin6, addr6, 0, 0, 0); 972 973 IF_AFDATA_RLOCK(ifp); 974 ln = lla_lookup(LLTABLE6(ifp), wlock ? LLE_EXCLUSIVE : 0, 975 sin6tosa(&sin6)); 976 IF_AFDATA_RUNLOCK(ifp); 977 978 return ln; 979 } 980 981 struct llentry * 982 nd6_create(const struct in6_addr *addr6, const struct ifnet *ifp) 983 { 984 struct sockaddr_in6 sin6; 985 struct llentry *ln; 986 struct rtentry *rt; 987 988 sockaddr_in6_init(&sin6, addr6, 0, 0, 0); 989 rt = rtalloc1(sin6tosa(&sin6), 0); 990 991 IF_AFDATA_WLOCK(ifp); 992 ln = lla_create(LLTABLE6(ifp), LLE_EXCLUSIVE, sin6tosa(&sin6), rt); 993 IF_AFDATA_WUNLOCK(ifp); 994 995 if (rt != NULL) 996 rt_unref(rt); 997 if (ln != NULL) 998 ln->ln_state = ND6_LLINFO_NOSTATE; 999 1000 return ln; 1001 } 1002 1003 /* 1004 * Test whether a given IPv6 address is a neighbor or not, ignoring 1005 * the actual neighbor cache. The neighbor cache is ignored in order 1006 * to not reenter the routing code from within itself. 1007 */ 1008 static int 1009 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1010 { 1011 struct nd_prefix *pr; 1012 struct ifaddr *dstaddr; 1013 int s; 1014 1015 /* 1016 * A link-local address is always a neighbor. 1017 * XXX: a link does not necessarily specify a single interface. 1018 */ 1019 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1020 struct sockaddr_in6 sin6_copy; 1021 u_int32_t zone; 1022 1023 /* 1024 * We need sin6_copy since sa6_recoverscope() may modify the 1025 * content (XXX). 1026 */ 1027 sin6_copy = *addr; 1028 if (sa6_recoverscope(&sin6_copy)) 1029 return 0; /* XXX: should be impossible */ 1030 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1031 return 0; 1032 if (sin6_copy.sin6_scope_id == zone) 1033 return 1; 1034 else 1035 return 0; 1036 } 1037 1038 /* 1039 * If the address matches one of our addresses, 1040 * it should be a neighbor. 1041 * If the address matches one of our on-link prefixes, it should be a 1042 * neighbor. 1043 */ 1044 ND6_RLOCK(); 1045 ND_PREFIX_LIST_FOREACH(pr) { 1046 if (pr->ndpr_ifp != ifp) 1047 continue; 1048 1049 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { 1050 struct rtentry *rt; 1051 1052 rt = rtalloc1(sin6tosa(&pr->ndpr_prefix), 0); 1053 if (rt == NULL) 1054 continue; 1055 /* 1056 * This is the case where multiple interfaces 1057 * have the same prefix, but only one is installed 1058 * into the routing table and that prefix entry 1059 * is not the one being examined here. In the case 1060 * where RADIX_MPATH is enabled, multiple route 1061 * entries (of the same rt_key value) will be 1062 * installed because the interface addresses all 1063 * differ. 1064 */ 1065 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1066 &satocsin6(rt_getkey(rt))->sin6_addr)) { 1067 rt_unref(rt); 1068 continue; 1069 } 1070 rt_unref(rt); 1071 } 1072 1073 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1074 &addr->sin6_addr, &pr->ndpr_mask)) { 1075 ND6_UNLOCK(); 1076 return 1; 1077 } 1078 } 1079 ND6_UNLOCK(); 1080 1081 /* 1082 * If the address is assigned on the node of the other side of 1083 * a p2p interface, the address should be a neighbor. 1084 */ 1085 s = pserialize_read_enter(); 1086 dstaddr = ifa_ifwithdstaddr(sin6tocsa(addr)); 1087 if (dstaddr != NULL) { 1088 if (dstaddr->ifa_ifp == ifp) { 1089 pserialize_read_exit(s); 1090 return 1; 1091 } 1092 } 1093 pserialize_read_exit(s); 1094 1095 /* 1096 * If the default router list is empty, all addresses are regarded 1097 * as on-link, and thus, as a neighbor. 1098 */ 1099 ND6_RLOCK(); 1100 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1101 ND_DEFROUTER_LIST_EMPTY() && nd6_defifindex == ifp->if_index) { 1102 ND6_UNLOCK(); 1103 return 1; 1104 } 1105 ND6_UNLOCK(); 1106 1107 return 0; 1108 } 1109 1110 /* 1111 * Detect if a given IPv6 address identifies a neighbor on a given link. 1112 * XXX: should take care of the destination of a p2p link? 1113 */ 1114 int 1115 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1116 { 1117 struct nd_prefix *pr; 1118 struct llentry *ln; 1119 struct rtentry *rt; 1120 1121 /* 1122 * A link-local address is always a neighbor. 1123 * XXX: a link does not necessarily specify a single interface. 1124 */ 1125 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1126 struct sockaddr_in6 sin6_copy; 1127 u_int32_t zone; 1128 1129 /* 1130 * We need sin6_copy since sa6_recoverscope() may modify the 1131 * content (XXX). 1132 */ 1133 sin6_copy = *addr; 1134 if (sa6_recoverscope(&sin6_copy)) 1135 return 0; /* XXX: should be impossible */ 1136 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1137 return 0; 1138 if (sin6_copy.sin6_scope_id == zone) 1139 return 1; 1140 else 1141 return 0; 1142 } 1143 1144 /* 1145 * If the address matches one of our on-link prefixes, it should be a 1146 * neighbor. 1147 */ 1148 ND6_RLOCK(); 1149 ND_PREFIX_LIST_FOREACH(pr) { 1150 if (pr->ndpr_ifp != ifp) 1151 continue; 1152 1153 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) 1154 continue; 1155 1156 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1157 &addr->sin6_addr, &pr->ndpr_mask)) { 1158 ND6_UNLOCK(); 1159 return 1; 1160 } 1161 } 1162 1163 /* 1164 * If the default router list is empty, all addresses are regarded 1165 * as on-link, and thus, as a neighbor. 1166 * XXX: we restrict the condition to hosts, because routers usually do 1167 * not have the "default router list". 1168 */ 1169 if (!ip6_forwarding && ND_DEFROUTER_LIST_EMPTY() && 1170 nd6_defifindex == ifp->if_index) { 1171 ND6_UNLOCK(); 1172 return 1; 1173 } 1174 ND6_UNLOCK(); 1175 1176 if (nd6_is_new_addr_neighbor(addr, ifp)) 1177 return 1; 1178 1179 /* 1180 * Even if the address matches none of our addresses, it might be 1181 * in the neighbor cache or a connected route. 1182 */ 1183 ln = nd6_lookup(&addr->sin6_addr, ifp, false); 1184 if (ln != NULL) { 1185 LLE_RUNLOCK(ln); 1186 return 1; 1187 } 1188 1189 rt = rtalloc1(sin6tocsa(addr), 0); 1190 if (rt == NULL) 1191 return 0; 1192 1193 if ((rt->rt_flags & RTF_CONNECTED) && (rt->rt_ifp == ifp 1194 #if NBRIDGE > 0 1195 || rt->rt_ifp->if_bridge == ifp->if_bridge 1196 #endif 1197 #if NCARP > 0 1198 || (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) || 1199 (rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)|| 1200 (ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP && 1201 rt->rt_ifp->if_carpdev == ifp->if_carpdev) 1202 #endif 1203 )) { 1204 rt_unref(rt); 1205 return 1; 1206 } 1207 rt_unref(rt); 1208 1209 return 0; 1210 } 1211 1212 /* 1213 * Free an nd6 llinfo entry. 1214 * Since the function would cause significant changes in the kernel, DO NOT 1215 * make it global, unless you have a strong reason for the change, and are sure 1216 * that the change is safe. 1217 */ 1218 static void 1219 nd6_free(struct llentry *ln, int gc) 1220 { 1221 struct ifnet *ifp; 1222 struct in6_addr *in6; 1223 1224 KASSERT(ln != NULL); 1225 LLE_WLOCK_ASSERT(ln); 1226 1227 ifp = ln->lle_tbl->llt_ifp; 1228 in6 = &ln->r_l3addr.addr6; 1229 /* 1230 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1231 * even though it is not harmful, it was not really necessary. 1232 */ 1233 1234 if (!ip6_forwarding && ln->ln_router) { 1235 if (ln->ln_state == ND6_LLINFO_STALE && gc) { 1236 /* 1237 * If the reason for the deletion is just garbage 1238 * collection, and the neighbor is an active 1239 * router, do not delete it. Instead, reset the GC 1240 * timer using the router's lifetime. 1241 * Simply deleting the entry may affect default 1242 * router selection, which is not necessarily a good 1243 * thing, especially when we're using router preference 1244 * values. 1245 * XXX: the check for ln_state would be redundant, 1246 * but we intentionally keep it just in case. 1247 */ 1248 if (ln->ln_expire > time_uptime) 1249 nd6_llinfo_settimer(ln, 1250 (ln->ln_expire - time_uptime) * hz); 1251 else 1252 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 1253 LLE_WUNLOCK(ln); 1254 return; 1255 } 1256 1257 ND6_WLOCK(); 1258 1259 /* 1260 * We need to unlock to avoid a LOR with nd6_rt_flush() 1261 * with the rnh and for the calls to 1262 * nd6_pfxlist_onlink_check() and nd6_defrouter_select() in the 1263 * block further down for calls into nd6_lookup(). 1264 * We still hold a ref. 1265 * 1266 * Temporarily fake the state to choose a new default 1267 * router and to perform on-link determination of 1268 * prefixes correctly. 1269 * Below the state will be set correctly, 1270 * or the entry itself will be deleted. 1271 */ 1272 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1273 LLE_WUNLOCK(ln); 1274 1275 /* 1276 * nd6_rt_flush must be called whether or not the neighbor 1277 * is in the Default Router List. 1278 * See a corresponding comment in nd6_na_input(). 1279 */ 1280 nd6_rt_flush(in6, ifp); 1281 1282 /* 1283 * Unreachablity of a router might affect the default 1284 * router selection and on-link detection of advertised 1285 * prefixes. 1286 * 1287 * Since nd6_defrouter_select() does not affect the 1288 * on-link determination and MIP6 needs the check 1289 * before the default router selection, we perform 1290 * the check now. 1291 */ 1292 nd6_pfxlist_onlink_check(); 1293 1294 /* 1295 * refresh default router list 1296 */ 1297 nd6_defrouter_select(); 1298 1299 #ifdef __FreeBSD__ 1300 /* 1301 * If this entry was added by an on-link redirect, remove the 1302 * corresponding host route. 1303 */ 1304 if (ln->la_flags & LLE_REDIRECT) 1305 nd6_free_redirect(ln); 1306 #endif 1307 1308 ND6_UNLOCK(); 1309 LLE_WLOCK(ln); 1310 } 1311 1312 if (ln->la_flags & LLE_VALID || gc) { 1313 struct sockaddr_in6 sin6; 1314 const char *lladdr; 1315 1316 sockaddr_in6_init(&sin6, in6, 0, 0, 0); 1317 lladdr = ln->la_flags & LLE_VALID ? 1318 (const char *)&ln->ll_addr : NULL; 1319 rt_clonedmsg(RTM_DELETE, NULL, sin6tosa(&sin6), lladdr, ifp); 1320 } 1321 1322 /* 1323 * Save to unlock. We still hold an extra reference and will not 1324 * free(9) in llentry_free() if someone else holds one as well. 1325 */ 1326 LLE_WUNLOCK(ln); 1327 IF_AFDATA_LOCK(ifp); 1328 LLE_WLOCK(ln); 1329 1330 lltable_free_entry(LLTABLE6(ifp), ln); 1331 1332 IF_AFDATA_UNLOCK(ifp); 1333 } 1334 1335 /* 1336 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1337 * 1338 * XXX cost-effective methods? 1339 */ 1340 void 1341 nd6_nud_hint(struct rtentry *rt) 1342 { 1343 struct llentry *ln; 1344 struct ifnet *ifp; 1345 1346 if (rt == NULL) 1347 return; 1348 1349 ifp = rt->rt_ifp; 1350 ln = nd6_lookup(&(satocsin6(rt_getkey(rt)))->sin6_addr, ifp, true); 1351 if (ln == NULL) 1352 return; 1353 1354 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1355 goto done; 1356 1357 /* 1358 * if we get upper-layer reachability confirmation many times, 1359 * it is possible we have false information. 1360 */ 1361 ln->ln_byhint++; 1362 if (ln->ln_byhint > nd6_maxnudhint) 1363 goto done; 1364 1365 ln->ln_state = ND6_LLINFO_REACHABLE; 1366 if (!ND6_LLINFO_PERMANENT(ln)) 1367 nd6_llinfo_settimer(ln, ND_IFINFO(rt->rt_ifp)->reachable * hz); 1368 1369 done: 1370 LLE_WUNLOCK(ln); 1371 1372 return; 1373 } 1374 1375 struct gc_args { 1376 int gc_entries; 1377 const struct in6_addr *skip_in6; 1378 }; 1379 1380 static int 1381 nd6_purge_entry(struct lltable *llt, struct llentry *ln, void *farg) 1382 { 1383 struct gc_args *args = farg; 1384 int *n = &args->gc_entries; 1385 const struct in6_addr *skip_in6 = args->skip_in6; 1386 1387 if (*n <= 0) 1388 return 0; 1389 1390 if (ND6_LLINFO_PERMANENT(ln)) 1391 return 0; 1392 1393 if (IN6_ARE_ADDR_EQUAL(&ln->r_l3addr.addr6, skip_in6)) 1394 return 0; 1395 1396 LLE_WLOCK(ln); 1397 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1398 ln->ln_state = ND6_LLINFO_STALE; 1399 else 1400 ln->ln_state = ND6_LLINFO_PURGE; 1401 nd6_llinfo_settimer(ln, 0); 1402 LLE_WUNLOCK(ln); 1403 1404 (*n)--; 1405 return 0; 1406 } 1407 1408 static void 1409 nd6_gc_neighbors(struct lltable *llt, const struct in6_addr *in6) 1410 { 1411 1412 if (ip6_neighborgcthresh >= 0 && 1413 lltable_get_entry_count(llt) >= ip6_neighborgcthresh) { 1414 struct gc_args gc_args = {10, in6}; 1415 /* 1416 * XXX entries that are "less recently used" should be 1417 * freed first. 1418 */ 1419 lltable_foreach_lle(llt, nd6_purge_entry, &gc_args); 1420 } 1421 } 1422 1423 void 1424 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info) 1425 { 1426 struct sockaddr *gate = rt->rt_gateway; 1427 struct ifnet *ifp = rt->rt_ifp; 1428 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen; 1429 struct ifaddr *ifa; 1430 1431 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1432 1433 if (req == RTM_LLINFO_UPD) { 1434 int rc; 1435 struct in6_addr *in6; 1436 struct in6_addr in6_all; 1437 int anycast; 1438 1439 if ((ifa = info->rti_ifa) == NULL) 1440 return; 1441 1442 in6 = &ifatoia6(ifa)->ia_addr.sin6_addr; 1443 anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST; 1444 1445 in6_all = in6addr_linklocal_allnodes; 1446 if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) { 1447 log(LOG_ERR, "%s: failed to set scope %s " 1448 "(errno=%d)\n", __func__, if_name(ifp), rc); 1449 return; 1450 } 1451 1452 /* XXX don't set Override for proxy addresses */ 1453 nd6_na_output(ifa->ifa_ifp, &in6_all, in6, 1454 (anycast ? 0 : ND_NA_FLAG_OVERRIDE) 1455 #if 0 1456 | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0) 1457 #endif 1458 , 1, NULL); 1459 return; 1460 } 1461 1462 if ((rt->rt_flags & RTF_GATEWAY) != 0) 1463 return; 1464 1465 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { 1466 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1467 /* 1468 * This is probably an interface direct route for a link 1469 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1470 * We do not need special treatment below for such a route. 1471 * Moreover, the RTF_LLINFO flag which would be set below 1472 * would annoy the ndp(8) command. 1473 */ 1474 return; 1475 } 1476 1477 switch (req) { 1478 case RTM_ADD: { 1479 struct psref psref; 1480 1481 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1482 /* 1483 * There is no backward compatibility :) 1484 * 1485 * if ((rt->rt_flags & RTF_HOST) == 0 && 1486 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1487 * rt->rt_flags |= RTF_CLONING; 1488 */ 1489 /* XXX should move to route.c? */ 1490 if (rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL)) { 1491 union { 1492 struct sockaddr sa; 1493 struct sockaddr_dl sdl; 1494 struct sockaddr_storage ss; 1495 } u; 1496 /* 1497 * Case 1: This route should come from a route to 1498 * interface (RTF_CLONING case) or the route should be 1499 * treated as on-link but is currently not 1500 * (RTF_LLINFO && ln == NULL case). 1501 */ 1502 if (sockaddr_dl_init(&u.sdl, sizeof(u.ss), 1503 ifp->if_index, ifp->if_type, 1504 NULL, namelen, NULL, addrlen) == NULL) { 1505 printf("%s.%d: sockaddr_dl_init(, %zu, ) " 1506 "failed on %s\n", __func__, __LINE__, 1507 sizeof(u.ss), if_name(ifp)); 1508 } 1509 rt_setgate(rt, &u.sa); 1510 gate = rt->rt_gateway; 1511 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1512 if (gate == NULL) { 1513 log(LOG_ERR, 1514 "%s: rt_setgate failed on %s\n", __func__, 1515 if_name(ifp)); 1516 break; 1517 } 1518 1519 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1520 if ((rt->rt_flags & RTF_CONNECTED) != 0) 1521 break; 1522 } 1523 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1524 /* 1525 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1526 * We don't do that here since llinfo is not ready yet. 1527 * 1528 * There are also couple of other things to be discussed: 1529 * - unsolicited NA code needs improvement beforehand 1530 * - RFC2461 says we MAY send multicast unsolicited NA 1531 * (7.2.6 paragraph 4), however, it also says that we 1532 * SHOULD provide a mechanism to prevent multicast NA storm. 1533 * we don't have anything like it right now. 1534 * note that the mechanism needs a mutual agreement 1535 * between proxies, which means that we need to implement 1536 * a new protocol, or a new kludge. 1537 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1538 * we need to check ip6forwarding before sending it. 1539 * (or should we allow proxy ND configuration only for 1540 * routers? there's no mention about proxy ND from hosts) 1541 */ 1542 #if 0 1543 /* XXX it does not work */ 1544 if (rt->rt_flags & RTF_ANNOUNCE) 1545 nd6_na_output(ifp, 1546 &satocsin6(rt_getkey(rt))->sin6_addr, 1547 &satocsin6(rt_getkey(rt))->sin6_addr, 1548 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1549 1, NULL); 1550 #endif 1551 1552 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 1553 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1554 /* 1555 * Address resolution isn't necessary for a point to 1556 * point link, so we can skip this test for a p2p link. 1557 */ 1558 if (gate->sa_family != AF_LINK || 1559 gate->sa_len < 1560 sockaddr_dl_measure(namelen, addrlen)) { 1561 log(LOG_DEBUG, 1562 "nd6_rtrequest: bad gateway value: %s\n", 1563 if_name(ifp)); 1564 break; 1565 } 1566 satosdl(gate)->sdl_type = ifp->if_type; 1567 satosdl(gate)->sdl_index = ifp->if_index; 1568 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1569 } 1570 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1571 1572 /* 1573 * When called from rt_ifa_addlocal, we cannot depend on that 1574 * the address (rt_getkey(rt)) exits in the address list of the 1575 * interface. So check RTF_LOCAL instead. 1576 */ 1577 if (rt->rt_flags & RTF_LOCAL) { 1578 if (nd6_useloopback) 1579 rt->rt_ifp = lo0ifp; /* XXX */ 1580 break; 1581 } 1582 1583 /* 1584 * check if rt_getkey(rt) is an address assigned 1585 * to the interface. 1586 */ 1587 ifa = (struct ifaddr *)in6ifa_ifpwithaddr_psref(ifp, 1588 &satocsin6(rt_getkey(rt))->sin6_addr, &psref); 1589 if (ifa != NULL) { 1590 if (nd6_useloopback) { 1591 rt->rt_ifp = lo0ifp; /* XXX */ 1592 /* 1593 * Make sure rt_ifa be equal to the ifaddr 1594 * corresponding to the address. 1595 * We need this because when we refer 1596 * rt_ifa->ia6_flags in ip6_input, we assume 1597 * that the rt_ifa points to the address instead 1598 * of the loopback address. 1599 */ 1600 if (!ISSET(info->rti_flags, RTF_DONTCHANGEIFA) 1601 && ifa != rt->rt_ifa) 1602 rt_replace_ifa(rt, ifa); 1603 } 1604 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1605 /* join solicited node multicast for proxy ND */ 1606 if (ifp->if_flags & IFF_MULTICAST) { 1607 struct in6_addr llsol; 1608 int error; 1609 1610 llsol = satocsin6(rt_getkey(rt))->sin6_addr; 1611 llsol.s6_addr32[0] = htonl(0xff020000); 1612 llsol.s6_addr32[1] = 0; 1613 llsol.s6_addr32[2] = htonl(1); 1614 llsol.s6_addr8[12] = 0xff; 1615 if (in6_setscope(&llsol, ifp, NULL)) 1616 goto out; 1617 if (!in6_addmulti(&llsol, ifp, &error, 0)) { 1618 char ip6buf[INET6_ADDRSTRLEN]; 1619 nd6log(LOG_ERR, "%s: failed to join " 1620 "%s (errno=%d)\n", if_name(ifp), 1621 IN6_PRINT(ip6buf, &llsol), error); 1622 } 1623 } 1624 } 1625 out: 1626 ifa_release(ifa, &psref); 1627 /* 1628 * If we have too many cache entries, initiate immediate 1629 * purging for some entries. 1630 */ 1631 if (rt->rt_ifp != NULL) 1632 nd6_gc_neighbors(LLTABLE6(rt->rt_ifp), NULL); 1633 break; 1634 } 1635 1636 case RTM_DELETE: 1637 /* leave from solicited node multicast for proxy ND */ 1638 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && 1639 (ifp->if_flags & IFF_MULTICAST) != 0) { 1640 struct in6_addr llsol; 1641 1642 llsol = satocsin6(rt_getkey(rt))->sin6_addr; 1643 llsol.s6_addr32[0] = htonl(0xff020000); 1644 llsol.s6_addr32[1] = 0; 1645 llsol.s6_addr32[2] = htonl(1); 1646 llsol.s6_addr8[12] = 0xff; 1647 if (in6_setscope(&llsol, ifp, NULL) == 0) 1648 in6_lookup_and_delete_multi(&llsol, ifp); 1649 } 1650 break; 1651 } 1652 } 1653 1654 int 1655 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp) 1656 { 1657 struct in6_drlist *drl = (struct in6_drlist *)data; 1658 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1659 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1660 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1661 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1662 struct nd_defrouter *dr; 1663 struct nd_prefix *pr; 1664 int i = 0, error = 0; 1665 1666 switch (cmd) { 1667 case SIOCGDRLST_IN6: 1668 /* 1669 * obsolete API, use sysctl under net.inet6.icmp6 1670 */ 1671 memset(drl, 0, sizeof(*drl)); 1672 ND6_RLOCK(); 1673 ND_DEFROUTER_LIST_FOREACH(dr) { 1674 if (i >= DRLSTSIZ) 1675 break; 1676 drl->defrouter[i].rtaddr = dr->rtaddr; 1677 in6_clearscope(&drl->defrouter[i].rtaddr); 1678 1679 drl->defrouter[i].flags = dr->flags; 1680 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1681 drl->defrouter[i].expire = dr->expire ? 1682 time_mono_to_wall(dr->expire) : 0; 1683 drl->defrouter[i].if_index = dr->ifp->if_index; 1684 i++; 1685 } 1686 ND6_UNLOCK(); 1687 break; 1688 case SIOCGPRLST_IN6: 1689 /* 1690 * obsolete API, use sysctl under net.inet6.icmp6 1691 * 1692 * XXX the structure in6_prlist was changed in backward- 1693 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1694 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1695 */ 1696 /* 1697 * XXX meaning of fields, especialy "raflags", is very 1698 * differnet between RA prefix list and RR/static prefix list. 1699 * how about separating ioctls into two? 1700 */ 1701 memset(oprl, 0, sizeof(*oprl)); 1702 ND6_RLOCK(); 1703 ND_PREFIX_LIST_FOREACH(pr) { 1704 struct nd_pfxrouter *pfr; 1705 int j; 1706 1707 if (i >= PRLSTSIZ) 1708 break; 1709 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1710 oprl->prefix[i].raflags = pr->ndpr_raf; 1711 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1712 oprl->prefix[i].vltime = pr->ndpr_vltime; 1713 oprl->prefix[i].pltime = pr->ndpr_pltime; 1714 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1715 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 1716 oprl->prefix[i].expire = 0; 1717 else { 1718 time_t maxexpire; 1719 1720 /* XXX: we assume time_t is signed. */ 1721 maxexpire = (-1) & 1722 ~((time_t)1 << 1723 ((sizeof(maxexpire) * 8) - 1)); 1724 if (pr->ndpr_vltime < 1725 maxexpire - pr->ndpr_lastupdate) { 1726 time_t expire; 1727 expire = pr->ndpr_lastupdate + 1728 pr->ndpr_vltime; 1729 oprl->prefix[i].expire = expire ? 1730 time_mono_to_wall(expire) : 0; 1731 } else 1732 oprl->prefix[i].expire = maxexpire; 1733 } 1734 1735 j = 0; 1736 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 1737 if (j < DRLSTSIZ) { 1738 #define RTRADDR oprl->prefix[i].advrtr[j] 1739 RTRADDR = pfr->router->rtaddr; 1740 in6_clearscope(&RTRADDR); 1741 #undef RTRADDR 1742 } 1743 j++; 1744 } 1745 oprl->prefix[i].advrtrs = j; 1746 oprl->prefix[i].origin = PR_ORIG_RA; 1747 1748 i++; 1749 } 1750 ND6_UNLOCK(); 1751 1752 break; 1753 case OSIOCGIFINFO_IN6: 1754 #define ND ndi->ndi 1755 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1756 memset(&ND, 0, sizeof(ND)); 1757 ND.linkmtu = IN6_LINKMTU(ifp); 1758 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1759 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1760 ND.reachable = ND_IFINFO(ifp)->reachable; 1761 ND.retrans = ND_IFINFO(ifp)->retrans; 1762 ND.flags = ND_IFINFO(ifp)->flags; 1763 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1764 ND.chlim = ND_IFINFO(ifp)->chlim; 1765 break; 1766 case SIOCGIFINFO_IN6: 1767 ND = *ND_IFINFO(ifp); 1768 break; 1769 case SIOCSIFINFO_IN6: 1770 /* 1771 * used to change host variables from userland. 1772 * intented for a use on router to reflect RA configurations. 1773 */ 1774 /* 0 means 'unspecified' */ 1775 if (ND.linkmtu != 0) { 1776 if (ND.linkmtu < IPV6_MMTU || 1777 ND.linkmtu > IN6_LINKMTU(ifp)) { 1778 error = EINVAL; 1779 break; 1780 } 1781 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1782 } 1783 1784 if (ND.basereachable != 0) { 1785 int obasereachable = ND_IFINFO(ifp)->basereachable; 1786 1787 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1788 if (ND.basereachable != obasereachable) 1789 ND_IFINFO(ifp)->reachable = 1790 ND_COMPUTE_RTIME(ND.basereachable); 1791 } 1792 if (ND.retrans != 0) 1793 ND_IFINFO(ifp)->retrans = ND.retrans; 1794 if (ND.chlim != 0) 1795 ND_IFINFO(ifp)->chlim = ND.chlim; 1796 /* FALLTHROUGH */ 1797 case SIOCSIFINFO_FLAGS: 1798 { 1799 struct ifaddr *ifa; 1800 struct in6_ifaddr *ia; 1801 int s; 1802 1803 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1804 !(ND.flags & ND6_IFF_IFDISABLED)) 1805 { 1806 /* 1807 * If the interface is marked as ND6_IFF_IFDISABLED and 1808 * has a link-local address with IN6_IFF_DUPLICATED, 1809 * do not clear ND6_IFF_IFDISABLED. 1810 * See RFC 4862, section 5.4.5. 1811 */ 1812 int duplicated_linklocal = 0; 1813 1814 s = pserialize_read_enter(); 1815 IFADDR_READER_FOREACH(ifa, ifp) { 1816 if (ifa->ifa_addr->sa_family != AF_INET6) 1817 continue; 1818 ia = (struct in6_ifaddr *)ifa; 1819 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1820 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1821 { 1822 duplicated_linklocal = 1; 1823 break; 1824 } 1825 } 1826 pserialize_read_exit(s); 1827 1828 if (duplicated_linklocal) { 1829 ND.flags |= ND6_IFF_IFDISABLED; 1830 log(LOG_ERR, "%s: Cannot enable an interface" 1831 " with a link-local address marked" 1832 " duplicate.\n", if_name(ifp)); 1833 } else { 1834 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1835 if (ifp->if_flags & IFF_UP) 1836 in6_if_up(ifp); 1837 } 1838 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1839 (ND.flags & ND6_IFF_IFDISABLED)) { 1840 int bound = curlwp_bind(); 1841 /* Mark all IPv6 addresses as tentative. */ 1842 1843 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1844 s = pserialize_read_enter(); 1845 IFADDR_READER_FOREACH(ifa, ifp) { 1846 struct psref psref; 1847 if (ifa->ifa_addr->sa_family != AF_INET6) 1848 continue; 1849 ifa_acquire(ifa, &psref); 1850 pserialize_read_exit(s); 1851 1852 nd6_dad_stop(ifa); 1853 1854 ia = (struct in6_ifaddr *)ifa; 1855 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1856 1857 s = pserialize_read_enter(); 1858 ifa_release(ifa, &psref); 1859 } 1860 pserialize_read_exit(s); 1861 curlwp_bindx(bound); 1862 } 1863 1864 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1865 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1866 /* auto_linklocal 0->1 transition */ 1867 1868 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1869 in6_ifattach(ifp, NULL); 1870 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1871 ifp->if_flags & IFF_UP) 1872 { 1873 /* 1874 * When the IF already has 1875 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1876 * address is assigned, and IFF_UP, try to 1877 * assign one. 1878 */ 1879 int haslinklocal = 0; 1880 1881 s = pserialize_read_enter(); 1882 IFADDR_READER_FOREACH(ifa, ifp) { 1883 if (ifa->ifa_addr->sa_family !=AF_INET6) 1884 continue; 1885 ia = (struct in6_ifaddr *)ifa; 1886 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){ 1887 haslinklocal = 1; 1888 break; 1889 } 1890 } 1891 pserialize_read_exit(s); 1892 if (!haslinklocal) 1893 in6_ifattach(ifp, NULL); 1894 } 1895 } 1896 } 1897 ND_IFINFO(ifp)->flags = ND.flags; 1898 break; 1899 #undef ND 1900 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1901 /* sync kernel routing table with the default router list */ 1902 ND6_WLOCK(); 1903 nd6_defrouter_reset(); 1904 nd6_defrouter_select(); 1905 ND6_UNLOCK(); 1906 break; 1907 case SIOCSPFXFLUSH_IN6: 1908 { 1909 /* flush all the prefix advertised by routers */ 1910 struct nd_prefix *pfx, *next; 1911 1912 restart: 1913 ND6_WLOCK(); 1914 ND_PREFIX_LIST_FOREACH_SAFE(pfx, next) { 1915 struct in6_ifaddr *ia, *ia_next; 1916 int _s; 1917 1918 /* Only flush prefixes for the given interface. */ 1919 if (ifp != lo0ifp && ifp != pfx->ndpr_ifp) 1920 continue; 1921 1922 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr)) 1923 continue; /* XXX */ 1924 1925 /* do we really have to remove addresses as well? */ 1926 _s = pserialize_read_enter(); 1927 for (ia = IN6_ADDRLIST_READER_FIRST(); ia; 1928 ia = ia_next) { 1929 struct ifnet *ifa_ifp; 1930 int bound; 1931 struct psref psref; 1932 1933 /* ia might be removed. keep the next ptr. */ 1934 ia_next = IN6_ADDRLIST_READER_NEXT(ia); 1935 1936 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1937 continue; 1938 1939 if (ia->ia6_ndpr != pfx) 1940 continue; 1941 1942 bound = curlwp_bind(); 1943 ia6_acquire(ia, &psref); 1944 pserialize_read_exit(_s); 1945 ND6_UNLOCK(); 1946 1947 ifa_ifp = ia->ia_ifa.ifa_ifp; 1948 if (ifa_ifp == ifp) { 1949 /* Already have IFNET_LOCK(ifp) */ 1950 KASSERT(!if_is_deactivated(ifp)); 1951 ia6_release(ia, &psref); 1952 in6_purgeaddr(&ia->ia_ifa); 1953 curlwp_bindx(bound); 1954 goto restart; 1955 } 1956 IFNET_LOCK(ifa_ifp); 1957 /* 1958 * Need to take the lock first to prevent 1959 * if_detach from running in6_purgeaddr 1960 * concurrently. 1961 */ 1962 if (!if_is_deactivated(ifa_ifp)) { 1963 ia6_release(ia, &psref); 1964 in6_purgeaddr(&ia->ia_ifa); 1965 } else { 1966 /* 1967 * ifp is being destroyed, ia will be 1968 * destroyed by if_detach. 1969 */ 1970 ia6_release(ia, &psref); 1971 /* XXX may cause busy loop */ 1972 } 1973 IFNET_UNLOCK(ifa_ifp); 1974 curlwp_bindx(bound); 1975 goto restart; 1976 } 1977 pserialize_read_exit(_s); 1978 1979 KASSERTMSG(pfx->ndpr_refcnt == 0, "ndpr_refcnt=%d", 1980 pfx->ndpr_refcnt); 1981 nd6_prelist_remove(pfx); 1982 } 1983 ND6_UNLOCK(); 1984 break; 1985 } 1986 case SIOCSRTRFLUSH_IN6: 1987 { 1988 /* flush all the default routers */ 1989 struct nd_defrouter *drtr, *next; 1990 1991 ND6_WLOCK(); 1992 #if 0 1993 /* XXX Is this really needed? */ 1994 nd6_defrouter_reset(); 1995 #endif 1996 ND_DEFROUTER_LIST_FOREACH_SAFE(drtr, next) { 1997 /* Only flush routers for the given interface. */ 1998 if (ifp != lo0ifp && ifp != drtr->ifp) 1999 continue; 2000 2001 nd6_defrtrlist_del(drtr, NULL); 2002 } 2003 nd6_defrouter_select(); 2004 ND6_UNLOCK(); 2005 break; 2006 } 2007 case SIOCGNBRINFO_IN6: 2008 { 2009 struct llentry *ln; 2010 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 2011 2012 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 2013 return error; 2014 2015 ln = nd6_lookup(&nb_addr, ifp, false); 2016 if (ln == NULL) { 2017 error = EINVAL; 2018 break; 2019 } 2020 nbi->state = ln->ln_state; 2021 nbi->asked = ln->ln_asked; 2022 nbi->isrouter = ln->ln_router; 2023 nbi->expire = ln->ln_expire ? 2024 time_mono_to_wall(ln->ln_expire) : 0; 2025 LLE_RUNLOCK(ln); 2026 2027 break; 2028 } 2029 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 2030 ndif->ifindex = nd6_defifindex; 2031 break; 2032 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 2033 return nd6_setdefaultiface(ndif->ifindex); 2034 } 2035 return error; 2036 } 2037 2038 void 2039 nd6_llinfo_release_pkts(struct llentry *ln, struct ifnet *ifp) 2040 { 2041 struct mbuf *m_hold, *m_hold_next; 2042 struct sockaddr_in6 sin6; 2043 2044 LLE_WLOCK_ASSERT(ln); 2045 2046 sockaddr_in6_init(&sin6, &ln->r_l3addr.addr6, 0, 0, 0); 2047 2048 m_hold = ln->la_hold, ln->la_hold = NULL, ln->la_numheld = 0; 2049 2050 LLE_WUNLOCK(ln); 2051 for (; m_hold != NULL; m_hold = m_hold_next) { 2052 m_hold_next = m_hold->m_nextpkt; 2053 m_hold->m_nextpkt = NULL; 2054 2055 /* 2056 * we assume ifp is not a p2p here, so 2057 * just set the 2nd argument as the 2058 * 1st one. 2059 */ 2060 ip6_if_output(ifp, ifp, m_hold, &sin6, NULL); 2061 } 2062 LLE_WLOCK(ln); 2063 } 2064 2065 /* 2066 * Create neighbor cache entry and cache link-layer address, 2067 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 2068 */ 2069 void 2070 nd6_cache_lladdr( 2071 struct ifnet *ifp, 2072 struct in6_addr *from, 2073 char *lladdr, 2074 int lladdrlen, 2075 int type, /* ICMP6 type */ 2076 int code /* type dependent information */ 2077 ) 2078 { 2079 struct nd_ifinfo *ndi = ND_IFINFO(ifp); 2080 struct llentry *ln = NULL; 2081 int is_newentry; 2082 int do_update; 2083 int olladdr; 2084 int llchange; 2085 int newstate = 0; 2086 uint16_t router = 0; 2087 2088 KASSERT(ifp != NULL); 2089 KASSERT(from != NULL); 2090 2091 /* nothing must be updated for unspecified address */ 2092 if (IN6_IS_ADDR_UNSPECIFIED(from)) 2093 return; 2094 2095 /* 2096 * Validation about ifp->if_addrlen and lladdrlen must be done in 2097 * the caller. 2098 * 2099 * XXX If the link does not have link-layer adderss, what should 2100 * we do? (ifp->if_addrlen == 0) 2101 * Spec says nothing in sections for RA, RS and NA. There's small 2102 * description on it in NS section (RFC 2461 7.2.3). 2103 */ 2104 2105 ln = nd6_lookup(from, ifp, true); 2106 if (ln == NULL) { 2107 #if 0 2108 /* nothing must be done if there's no lladdr */ 2109 if (!lladdr || !lladdrlen) 2110 return NULL; 2111 #endif 2112 2113 ln = nd6_create(from, ifp); 2114 is_newentry = 1; 2115 } else { 2116 /* do nothing if static ndp is set */ 2117 if (ln->la_flags & LLE_STATIC) { 2118 LLE_WUNLOCK(ln); 2119 return; 2120 } 2121 is_newentry = 0; 2122 } 2123 2124 if (ln == NULL) 2125 return; 2126 2127 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2128 if (olladdr && lladdr) { 2129 llchange = memcmp(lladdr, &ln->ll_addr, ifp->if_addrlen); 2130 } else 2131 llchange = 0; 2132 2133 /* 2134 * newentry olladdr lladdr llchange (*=record) 2135 * 0 n n -- (1) 2136 * 0 y n -- (2) 2137 * 0 n y -- (3) * STALE 2138 * 0 y y n (4) * 2139 * 0 y y y (5) * STALE 2140 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2141 * 1 -- y -- (7) * STALE 2142 */ 2143 2144 if (lladdr) { /* (3-5) and (7) */ 2145 /* 2146 * Record source link-layer address 2147 * XXX is it dependent to ifp->if_type? 2148 */ 2149 memcpy(&ln->ll_addr, lladdr, ifp->if_addrlen); 2150 ln->la_flags |= LLE_VALID; 2151 } 2152 2153 if (!is_newentry) { 2154 if ((!olladdr && lladdr) || /* (3) */ 2155 (olladdr && lladdr && llchange)) { /* (5) */ 2156 do_update = 1; 2157 newstate = ND6_LLINFO_STALE; 2158 } else /* (1-2,4) */ 2159 do_update = 0; 2160 } else { 2161 do_update = 1; 2162 if (lladdr == NULL) /* (6) */ 2163 newstate = ND6_LLINFO_NOSTATE; 2164 else /* (7) */ 2165 newstate = ND6_LLINFO_STALE; 2166 } 2167 2168 if (do_update) { 2169 /* 2170 * Update the state of the neighbor cache. 2171 */ 2172 ln->ln_state = newstate; 2173 2174 if (ln->ln_state == ND6_LLINFO_STALE) { 2175 /* 2176 * XXX: since nd6_output() below will cause 2177 * state tansition to DELAY and reset the timer, 2178 * we must set the timer now, although it is actually 2179 * meaningless. 2180 */ 2181 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 2182 2183 nd6_llinfo_release_pkts(ln, ifp); 2184 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 2185 /* probe right away */ 2186 nd6_llinfo_settimer((void *)ln, 0); 2187 } 2188 } 2189 2190 /* 2191 * ICMP6 type dependent behavior. 2192 * 2193 * NS: clear IsRouter if new entry 2194 * RS: clear IsRouter 2195 * RA: set IsRouter if there's lladdr 2196 * redir: clear IsRouter if new entry 2197 * 2198 * RA case, (1): 2199 * The spec says that we must set IsRouter in the following cases: 2200 * - If lladdr exist, set IsRouter. This means (1-5). 2201 * - If it is old entry (!newentry), set IsRouter. This means (7). 2202 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 2203 * A quetion arises for (1) case. (1) case has no lladdr in the 2204 * neighbor cache, this is similar to (6). 2205 * This case is rare but we figured that we MUST NOT set IsRouter. 2206 * 2207 * newentry olladdr lladdr llchange NS RS RA redir 2208 * D R 2209 * 0 n n -- (1) c ? s 2210 * 0 y n -- (2) c s s 2211 * 0 n y -- (3) c s s 2212 * 0 y y n (4) c s s 2213 * 0 y y y (5) c s s 2214 * 1 -- n -- (6) c c c s 2215 * 1 -- y -- (7) c c s c s 2216 * 2217 * (c=clear s=set) 2218 */ 2219 switch (type & 0xff) { 2220 case ND_NEIGHBOR_SOLICIT: 2221 /* 2222 * New entry must have is_router flag cleared. 2223 */ 2224 if (is_newentry) /* (6-7) */ 2225 ln->ln_router = 0; 2226 break; 2227 case ND_REDIRECT: 2228 /* 2229 * If the icmp is a redirect to a better router, always set the 2230 * is_router flag. Otherwise, if the entry is newly created, 2231 * clear the flag. [RFC 2461, sec 8.3] 2232 */ 2233 if (code == ND_REDIRECT_ROUTER) 2234 ln->ln_router = 1; 2235 else if (is_newentry) /* (6-7) */ 2236 ln->ln_router = 0; 2237 break; 2238 case ND_ROUTER_SOLICIT: 2239 /* 2240 * is_router flag must always be cleared. 2241 */ 2242 ln->ln_router = 0; 2243 break; 2244 case ND_ROUTER_ADVERT: 2245 /* 2246 * Mark an entry with lladdr as a router. 2247 */ 2248 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 2249 (is_newentry && lladdr)) { /* (7) */ 2250 ln->ln_router = 1; 2251 } 2252 break; 2253 } 2254 2255 if (do_update && lladdr != NULL) { 2256 struct sockaddr_in6 sin6; 2257 2258 sockaddr_in6_init(&sin6, from, 0, 0, 0); 2259 rt_clonedmsg(is_newentry ? RTM_ADD : RTM_CHANGE, 2260 NULL, sin6tosa(&sin6), lladdr, ifp); 2261 } 2262 2263 if (ln != NULL) { 2264 router = ln->ln_router; 2265 LLE_WUNLOCK(ln); 2266 } 2267 2268 /* 2269 * If we have too many cache entries, initiate immediate 2270 * purging for some entries. 2271 */ 2272 if (is_newentry) 2273 nd6_gc_neighbors(LLTABLE6(ifp), &ln->r_l3addr.addr6); 2274 2275 /* 2276 * When the link-layer address of a router changes, select the 2277 * best router again. In particular, when the neighbor entry is newly 2278 * created, it might affect the selection policy. 2279 * Question: can we restrict the first condition to the "is_newentry" 2280 * case? 2281 * XXX: when we hear an RA from a new router with the link-layer 2282 * address option, nd6_defrouter_select() is called twice, since 2283 * defrtrlist_update called the function as well. However, I believe 2284 * we can compromise the overhead, since it only happens the first 2285 * time. 2286 * XXX: although nd6_defrouter_select() should not have a bad effect 2287 * for those are not autoconfigured hosts, we explicitly avoid such 2288 * cases for safety. 2289 */ 2290 if (do_update && router && !ip6_forwarding && 2291 nd6_accepts_rtadv(ndi)) { 2292 ND6_WLOCK(); 2293 nd6_defrouter_select(); 2294 ND6_UNLOCK(); 2295 } 2296 } 2297 2298 static void 2299 nd6_slowtimo(void *ignored_arg) 2300 { 2301 struct nd_ifinfo *nd6if; 2302 struct ifnet *ifp; 2303 int s; 2304 2305 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2306 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2307 nd6_slowtimo, NULL); 2308 2309 s = pserialize_read_enter(); 2310 IFNET_READER_FOREACH(ifp) { 2311 nd6if = ND_IFINFO(ifp); 2312 if (nd6if->basereachable && /* already initialized */ 2313 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2314 /* 2315 * Since reachable time rarely changes by router 2316 * advertisements, we SHOULD insure that a new random 2317 * value gets recomputed at least once every few hours. 2318 * (RFC 2461, 6.3.4) 2319 */ 2320 nd6if->recalctm = nd6_recalc_reachtm_interval; 2321 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2322 } 2323 } 2324 pserialize_read_exit(s); 2325 2326 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2327 } 2328 2329 /* 2330 * Return 0 if a neighbor cache is found. Return EWOULDBLOCK if a cache is not 2331 * found and trying to resolve a neighbor; in this case the mbuf is queued in 2332 * the list. Otherwise return errno after freeing the mbuf. 2333 */ 2334 int 2335 nd6_resolve(struct ifnet *ifp, const struct rtentry *rt, struct mbuf *m, 2336 const struct sockaddr *_dst, uint8_t *lldst, size_t dstsize) 2337 { 2338 struct llentry *ln = NULL; 2339 bool created = false; 2340 const struct sockaddr_in6 *dst = satocsin6(_dst); 2341 int error; 2342 2343 /* discard the packet if IPv6 operation is disabled on the interface */ 2344 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2345 m_freem(m); 2346 return ENETDOWN; /* better error? */ 2347 } 2348 2349 /* 2350 * Address resolution or Neighbor Unreachability Detection 2351 * for the next hop. 2352 * At this point, the destination of the packet must be a unicast 2353 * or an anycast address(i.e. not a multicast). 2354 */ 2355 2356 /* Look up the neighbor cache for the nexthop */ 2357 ln = nd6_lookup(&dst->sin6_addr, ifp, false); 2358 2359 if (ln != NULL && (ln->la_flags & LLE_VALID) != 0 && 2360 ln->ln_state == ND6_LLINFO_REACHABLE) { 2361 /* Fast path */ 2362 memcpy(lldst, &ln->ll_addr, MIN(dstsize, ifp->if_addrlen)); 2363 LLE_RUNLOCK(ln); 2364 return 0; 2365 } 2366 if (ln != NULL) 2367 LLE_RUNLOCK(ln); 2368 2369 /* Slow path */ 2370 ln = nd6_lookup(&dst->sin6_addr, ifp, true); 2371 if (ln == NULL && nd6_is_addr_neighbor(dst, ifp)) { 2372 /* 2373 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2374 * the condition below is not very efficient. But we believe 2375 * it is tolerable, because this should be a rare case. 2376 */ 2377 ln = nd6_create(&dst->sin6_addr, ifp); 2378 if (ln == NULL) { 2379 char ip6buf[INET6_ADDRSTRLEN]; 2380 log(LOG_DEBUG, 2381 "%s: can't allocate llinfo for %s " 2382 "(ln=%p, rt=%p)\n", __func__, 2383 IN6_PRINT(ip6buf, &dst->sin6_addr), ln, rt); 2384 m_freem(m); 2385 return ENOBUFS; 2386 } 2387 created = true; 2388 } 2389 2390 if (ln == NULL) { 2391 m_freem(m); 2392 return ENETDOWN; /* better error? */ 2393 } 2394 2395 LLE_WLOCK_ASSERT(ln); 2396 2397 /* We don't have to do link-layer address resolution on a p2p link. */ 2398 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 2399 ln->ln_state < ND6_LLINFO_REACHABLE) { 2400 ln->ln_state = ND6_LLINFO_STALE; 2401 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 2402 } 2403 2404 /* 2405 * The first time we send a packet to a neighbor whose entry is 2406 * STALE, we have to change the state to DELAY and a sets a timer to 2407 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2408 * neighbor unreachability detection on expiration. 2409 * (RFC 2461 7.3.3) 2410 */ 2411 if (ln->ln_state == ND6_LLINFO_STALE) { 2412 ln->ln_asked = 0; 2413 ln->ln_state = ND6_LLINFO_DELAY; 2414 nd6_llinfo_settimer(ln, nd6_delay * hz); 2415 } 2416 2417 /* 2418 * If the neighbor cache entry has a state other than INCOMPLETE 2419 * (i.e. its link-layer address is already resolved), just 2420 * send the packet. 2421 */ 2422 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) { 2423 KASSERT((ln->la_flags & LLE_VALID) != 0); 2424 memcpy(lldst, &ln->ll_addr, MIN(dstsize, ifp->if_addrlen)); 2425 LLE_WUNLOCK(ln); 2426 return 0; 2427 } 2428 2429 /* 2430 * There is a neighbor cache entry, but no ethernet address 2431 * response yet. Append this latest packet to the end of the 2432 * packet queue in the mbuf, unless the number of the packet 2433 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, 2434 * the oldest packet in the queue will be removed. 2435 */ 2436 if (ln->ln_state == ND6_LLINFO_NOSTATE || 2437 ln->ln_state == ND6_LLINFO_WAITDELETE) 2438 ln->ln_state = ND6_LLINFO_INCOMPLETE; 2439 if (ln->ln_hold) { 2440 struct mbuf *m_hold; 2441 int i; 2442 2443 i = 0; 2444 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) { 2445 i++; 2446 if (m_hold->m_nextpkt == NULL) { 2447 m_hold->m_nextpkt = m; 2448 break; 2449 } 2450 } 2451 while (i >= nd6_maxqueuelen) { 2452 m_hold = ln->ln_hold; 2453 ln->ln_hold = ln->ln_hold->m_nextpkt; 2454 m_freem(m_hold); 2455 i--; 2456 } 2457 } else { 2458 ln->ln_hold = m; 2459 } 2460 2461 if (ln->ln_asked >= nd6_mmaxtries) 2462 error = (rt != NULL && rt->rt_flags & RTF_GATEWAY) ? 2463 EHOSTUNREACH : EHOSTDOWN; 2464 else 2465 error = EWOULDBLOCK; 2466 2467 /* 2468 * If there has been no NS for the neighbor after entering the 2469 * INCOMPLETE state, send the first solicitation. 2470 */ 2471 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) { 2472 struct in6_addr src, *psrc; 2473 2474 ln->ln_asked++; 2475 nd6_llinfo_settimer(ln, ND_IFINFO(ifp)->retrans * hz / 1000); 2476 psrc = nd6_llinfo_get_holdsrc(ln, &src); 2477 LLE_WUNLOCK(ln); 2478 nd6_ns_output(ifp, NULL, &dst->sin6_addr, psrc, NULL); 2479 } else 2480 LLE_WUNLOCK(ln); 2481 2482 if (created) 2483 nd6_gc_neighbors(LLTABLE6(ifp), &dst->sin6_addr); 2484 2485 return error; 2486 } 2487 2488 int 2489 nd6_need_cache(struct ifnet *ifp) 2490 { 2491 /* 2492 * XXX: we currently do not make neighbor cache on any interface 2493 * other than ARCnet, Ethernet, and GIF. 2494 * 2495 * RFC2893 says: 2496 * - unidirectional tunnels needs no ND 2497 */ 2498 switch (ifp->if_type) { 2499 case IFT_ARCNET: 2500 case IFT_ETHER: 2501 case IFT_IEEE1394: 2502 case IFT_CARP: 2503 case IFT_GIF: /* XXX need more cases? */ 2504 case IFT_PPP: 2505 case IFT_TUNNEL: 2506 return 1; 2507 default: 2508 return 0; 2509 } 2510 } 2511 2512 static void 2513 clear_llinfo_pqueue(struct llentry *ln) 2514 { 2515 struct mbuf *m_hold, *m_hold_next; 2516 2517 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) { 2518 m_hold_next = m_hold->m_nextpkt; 2519 m_hold->m_nextpkt = NULL; 2520 m_freem(m_hold); 2521 } 2522 2523 ln->ln_hold = NULL; 2524 return; 2525 } 2526 2527 int 2528 nd6_sysctl( 2529 int name, 2530 void *oldp, /* syscall arg, need copyout */ 2531 size_t *oldlenp, 2532 void *newp, /* syscall arg, need copyin */ 2533 size_t newlen 2534 ) 2535 { 2536 int (*fill_func)(void *, size_t *); 2537 2538 if (newp) 2539 return EPERM; 2540 2541 switch (name) { 2542 case ICMPV6CTL_ND6_DRLIST: 2543 fill_func = fill_drlist; 2544 break; 2545 2546 case ICMPV6CTL_ND6_PRLIST: 2547 fill_func = fill_prlist; 2548 break; 2549 2550 case ICMPV6CTL_ND6_MAXQLEN: 2551 return 0; 2552 2553 default: 2554 return ENOPROTOOPT; 2555 } 2556 2557 if (oldlenp == NULL) 2558 return EINVAL; 2559 2560 size_t ol; 2561 int error = (*fill_func)(NULL, &ol); /* calc len needed */ 2562 if (error) 2563 return error; 2564 2565 if (oldp == NULL) { 2566 *oldlenp = ol; 2567 return 0; 2568 } 2569 2570 ol = *oldlenp = uimin(ol, *oldlenp); 2571 if (ol == 0) 2572 return 0; 2573 2574 void *p = kmem_alloc(ol, KM_SLEEP); 2575 error = (*fill_func)(p, oldlenp); 2576 if (!error) 2577 error = copyout(p, oldp, *oldlenp); 2578 kmem_free(p, ol); 2579 2580 return error; 2581 } 2582 2583 static int 2584 fill_drlist(void *oldp, size_t *oldlenp) 2585 { 2586 int error = 0; 2587 struct in6_defrouter *d = NULL, *de = NULL; 2588 struct nd_defrouter *dr; 2589 size_t l; 2590 2591 if (oldp) { 2592 d = (struct in6_defrouter *)oldp; 2593 de = (struct in6_defrouter *)((char *)oldp + *oldlenp); 2594 } 2595 l = 0; 2596 2597 ND6_RLOCK(); 2598 ND_DEFROUTER_LIST_FOREACH(dr) { 2599 2600 if (oldp && d + 1 <= de) { 2601 memset(d, 0, sizeof(*d)); 2602 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0); 2603 if (sa6_recoverscope(&d->rtaddr)) { 2604 char ip6buf[INET6_ADDRSTRLEN]; 2605 log(LOG_ERR, 2606 "scope error in router list (%s)\n", 2607 IN6_PRINT(ip6buf, &d->rtaddr.sin6_addr)); 2608 /* XXX: press on... */ 2609 } 2610 d->flags = dr->flags; 2611 d->rtlifetime = dr->rtlifetime; 2612 d->expire = dr->expire ? 2613 time_mono_to_wall(dr->expire) : 0; 2614 d->if_index = dr->ifp->if_index; 2615 } 2616 2617 l += sizeof(*d); 2618 if (d) 2619 d++; 2620 } 2621 ND6_UNLOCK(); 2622 2623 *oldlenp = l; /* (void *)d - (void *)oldp */ 2624 2625 return error; 2626 } 2627 2628 static int 2629 fill_prlist(void *oldp, size_t *oldlenp) 2630 { 2631 int error = 0; 2632 struct nd_prefix *pr; 2633 uint8_t *p = NULL, *ps = NULL; 2634 uint8_t *pe = NULL; 2635 size_t l; 2636 char ip6buf[INET6_ADDRSTRLEN]; 2637 2638 if (oldp) { 2639 ps = p = (uint8_t*)oldp; 2640 pe = (uint8_t*)oldp + *oldlenp; 2641 } 2642 l = 0; 2643 2644 ND6_RLOCK(); 2645 ND_PREFIX_LIST_FOREACH(pr) { 2646 u_short advrtrs; 2647 struct sockaddr_in6 sin6; 2648 struct nd_pfxrouter *pfr; 2649 struct in6_prefix pfx; 2650 2651 if (oldp && p + sizeof(struct in6_prefix) <= pe) 2652 { 2653 memset(&pfx, 0, sizeof(pfx)); 2654 ps = p; 2655 pfx.prefix = pr->ndpr_prefix; 2656 2657 if (sa6_recoverscope(&pfx.prefix)) { 2658 log(LOG_ERR, 2659 "scope error in prefix list (%s)\n", 2660 IN6_PRINT(ip6buf, &pfx.prefix.sin6_addr)); 2661 /* XXX: press on... */ 2662 } 2663 pfx.raflags = pr->ndpr_raf; 2664 pfx.prefixlen = pr->ndpr_plen; 2665 pfx.vltime = pr->ndpr_vltime; 2666 pfx.pltime = pr->ndpr_pltime; 2667 pfx.if_index = pr->ndpr_ifp->if_index; 2668 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2669 pfx.expire = 0; 2670 else { 2671 time_t maxexpire; 2672 2673 /* XXX: we assume time_t is signed. */ 2674 maxexpire = (-1) & 2675 ~((time_t)1 << 2676 ((sizeof(maxexpire) * 8) - 1)); 2677 if (pr->ndpr_vltime < 2678 maxexpire - pr->ndpr_lastupdate) { 2679 pfx.expire = pr->ndpr_lastupdate + 2680 pr->ndpr_vltime; 2681 } else 2682 pfx.expire = maxexpire; 2683 } 2684 pfx.refcnt = pr->ndpr_refcnt; 2685 pfx.flags = pr->ndpr_stateflags; 2686 pfx.origin = PR_ORIG_RA; 2687 2688 p += sizeof(pfx); l += sizeof(pfx); 2689 2690 advrtrs = 0; 2691 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2692 if (p + sizeof(sin6) > pe) { 2693 advrtrs++; 2694 continue; 2695 } 2696 2697 sockaddr_in6_init(&sin6, &pfr->router->rtaddr, 2698 0, 0, 0); 2699 if (sa6_recoverscope(&sin6)) { 2700 log(LOG_ERR, 2701 "scope error in " 2702 "prefix list (%s)\n", 2703 IN6_PRINT(ip6buf, 2704 &pfr->router->rtaddr)); 2705 } 2706 advrtrs++; 2707 memcpy(p, &sin6, sizeof(sin6)); 2708 p += sizeof(sin6); 2709 l += sizeof(sin6); 2710 } 2711 pfx.advrtrs = advrtrs; 2712 memcpy(ps, &pfx, sizeof(pfx)); 2713 } 2714 else { 2715 l += sizeof(pfx); 2716 advrtrs = 0; 2717 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2718 advrtrs++; 2719 l += sizeof(sin6); 2720 } 2721 } 2722 } 2723 ND6_UNLOCK(); 2724 2725 *oldlenp = l; 2726 2727 return error; 2728 } 2729 2730 static int 2731 nd6_setdefaultiface(int ifindex) 2732 { 2733 ifnet_t *ifp; 2734 int error = 0; 2735 int s; 2736 2737 s = pserialize_read_enter(); 2738 ifp = if_byindex(ifindex); 2739 if (ifp == NULL) { 2740 pserialize_read_exit(s); 2741 return EINVAL; 2742 } 2743 if (nd6_defifindex != ifindex) { 2744 nd6_defifindex = ifindex; 2745 nd6_defifp = nd6_defifindex > 0 ? ifp : NULL; 2746 2747 /* 2748 * Our current implementation assumes one-to-one maping between 2749 * interfaces and links, so it would be natural to use the 2750 * default interface as the default link. 2751 */ 2752 scope6_setdefault(nd6_defifp); 2753 } 2754 pserialize_read_exit(s); 2755 2756 return (error); 2757 } 2758