1 /* $NetBSD: nd6.c,v 1.85 2003/06/24 07:54:48 itojun Exp $ */ 2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.85 2003/06/24 07:54:48 itojun Exp $"); 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/callout.h> 39 #include <sys/malloc.h> 40 #include <sys/mbuf.h> 41 #include <sys/socket.h> 42 #include <sys/sockio.h> 43 #include <sys/time.h> 44 #include <sys/kernel.h> 45 #include <sys/protosw.h> 46 #include <sys/errno.h> 47 #include <sys/ioctl.h> 48 #include <sys/syslog.h> 49 #include <sys/queue.h> 50 51 #include <net/if.h> 52 #include <net/if_dl.h> 53 #include <net/if_types.h> 54 #include <net/route.h> 55 #include <net/if_ether.h> 56 #include <net/if_fddi.h> 57 #include <net/if_arc.h> 58 59 #include <netinet/in.h> 60 #include <netinet6/in6_var.h> 61 #include <netinet/ip6.h> 62 #include <netinet6/ip6_var.h> 63 #include <netinet6/nd6.h> 64 #include <netinet/icmp6.h> 65 66 #include "loop.h" 67 extern struct ifnet loif[NLOOP]; 68 69 #include <net/net_osdep.h> 70 71 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 72 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 73 74 #define SIN6(s) ((struct sockaddr_in6 *)s) 75 #define SDL(s) ((struct sockaddr_dl *)s) 76 77 /* timer values */ 78 int nd6_prune = 1; /* walk list every 1 seconds */ 79 int nd6_delay = 5; /* delay first probe time 5 second */ 80 int nd6_umaxtries = 3; /* maximum unicast query */ 81 int nd6_mmaxtries = 3; /* maximum multicast query */ 82 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 83 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 84 85 /* preventing too many loops in ND option parsing */ 86 int nd6_maxndopt = 10; /* max # of ND options allowed */ 87 88 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 89 90 #ifdef ND6_DEBUG 91 int nd6_debug = 1; 92 #else 93 int nd6_debug = 0; 94 #endif 95 96 /* for debugging? */ 97 static int nd6_inuse, nd6_allocated; 98 99 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6}; 100 struct nd_drhead nd_defrouter; 101 struct nd_prhead nd_prefix = { 0 }; 102 103 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 104 static struct sockaddr_in6 all1_sa; 105 106 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *)); 107 static void nd6_slowtimo __P((void *)); 108 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int)); 109 110 struct callout nd6_slowtimo_ch = CALLOUT_INITIALIZER; 111 struct callout nd6_timer_ch = CALLOUT_INITIALIZER; 112 113 static int fill_drlist __P((void *, size_t *, size_t)); 114 static int fill_prlist __P((void *, size_t *, size_t)); 115 116 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery"); 117 118 void 119 nd6_init() 120 { 121 static int nd6_init_done = 0; 122 int i; 123 124 if (nd6_init_done) { 125 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n"); 126 return; 127 } 128 129 all1_sa.sin6_family = AF_INET6; 130 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 131 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) 132 all1_sa.sin6_addr.s6_addr[i] = 0xff; 133 134 /* initialization of the default router list */ 135 TAILQ_INIT(&nd_defrouter); 136 137 nd6_init_done = 1; 138 139 /* start timer */ 140 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 141 nd6_slowtimo, NULL); 142 } 143 144 struct nd_ifinfo * 145 nd6_ifattach(ifp) 146 struct ifnet *ifp; 147 { 148 struct nd_ifinfo *nd; 149 150 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK); 151 bzero(nd, sizeof(*nd)); 152 153 nd->initialized = 1; 154 155 nd->chlim = IPV6_DEFHLIM; 156 nd->basereachable = REACHABLE_TIME; 157 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 158 nd->retrans = RETRANS_TIMER; 159 /* 160 * Note that the default value of ip6_accept_rtadv is 0, which means 161 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV 162 * here. 163 */ 164 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV); 165 166 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 167 nd6_setmtu0(ifp, nd); 168 169 return nd; 170 } 171 172 void 173 nd6_ifdetach(nd) 174 struct nd_ifinfo *nd; 175 { 176 177 free(nd, M_IP6NDP); 178 } 179 180 void 181 nd6_setmtu(ifp) 182 struct ifnet *ifp; 183 { 184 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 185 } 186 187 void 188 nd6_setmtu0(ifp, ndi) 189 struct ifnet *ifp; 190 struct nd_ifinfo *ndi; 191 { 192 u_int32_t omaxmtu; 193 194 omaxmtu = ndi->maxmtu; 195 196 switch (ifp->if_type) { 197 case IFT_ARCNET: 198 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 199 break; 200 case IFT_FDDI: 201 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); 202 break; 203 default: 204 ndi->maxmtu = ifp->if_mtu; 205 break; 206 } 207 208 /* 209 * Decreasing the interface MTU under IPV6 minimum MTU may cause 210 * undesirable situation. We thus notify the operator of the change 211 * explicitly. The check for omaxmtu is necessary to restrict the 212 * log to the case of changing the MTU, not initializing it. 213 */ 214 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 215 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too" 216 " small for IPv6 which needs %lu\n", 217 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long) 218 IPV6_MMTU); 219 } 220 221 if (ndi->maxmtu > in6_maxmtu) 222 in6_setmaxmtu(); /* check all interfaces just in case */ 223 } 224 225 void 226 nd6_option_init(opt, icmp6len, ndopts) 227 void *opt; 228 int icmp6len; 229 union nd_opts *ndopts; 230 { 231 232 bzero(ndopts, sizeof(*ndopts)); 233 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 234 ndopts->nd_opts_last 235 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 236 237 if (icmp6len == 0) { 238 ndopts->nd_opts_done = 1; 239 ndopts->nd_opts_search = NULL; 240 } 241 } 242 243 /* 244 * Take one ND option. 245 */ 246 struct nd_opt_hdr * 247 nd6_option(ndopts) 248 union nd_opts *ndopts; 249 { 250 struct nd_opt_hdr *nd_opt; 251 int olen; 252 253 if (!ndopts) 254 panic("ndopts == NULL in nd6_option"); 255 if (!ndopts->nd_opts_last) 256 panic("uninitialized ndopts in nd6_option"); 257 if (!ndopts->nd_opts_search) 258 return NULL; 259 if (ndopts->nd_opts_done) 260 return NULL; 261 262 nd_opt = ndopts->nd_opts_search; 263 264 /* make sure nd_opt_len is inside the buffer */ 265 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 266 bzero(ndopts, sizeof(*ndopts)); 267 return NULL; 268 } 269 270 olen = nd_opt->nd_opt_len << 3; 271 if (olen == 0) { 272 /* 273 * Message validation requires that all included 274 * options have a length that is greater than zero. 275 */ 276 bzero(ndopts, sizeof(*ndopts)); 277 return NULL; 278 } 279 280 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 281 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 282 /* option overruns the end of buffer, invalid */ 283 bzero(ndopts, sizeof(*ndopts)); 284 return NULL; 285 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 286 /* reached the end of options chain */ 287 ndopts->nd_opts_done = 1; 288 ndopts->nd_opts_search = NULL; 289 } 290 return nd_opt; 291 } 292 293 /* 294 * Parse multiple ND options. 295 * This function is much easier to use, for ND routines that do not need 296 * multiple options of the same type. 297 */ 298 int 299 nd6_options(ndopts) 300 union nd_opts *ndopts; 301 { 302 struct nd_opt_hdr *nd_opt; 303 int i = 0; 304 305 if (!ndopts) 306 panic("ndopts == NULL in nd6_options"); 307 if (!ndopts->nd_opts_last) 308 panic("uninitialized ndopts in nd6_options"); 309 if (!ndopts->nd_opts_search) 310 return 0; 311 312 while (1) { 313 nd_opt = nd6_option(ndopts); 314 if (!nd_opt && !ndopts->nd_opts_last) { 315 /* 316 * Message validation requires that all included 317 * options have a length that is greater than zero. 318 */ 319 icmp6stat.icp6s_nd_badopt++; 320 bzero(ndopts, sizeof(*ndopts)); 321 return -1; 322 } 323 324 if (!nd_opt) 325 goto skip1; 326 327 switch (nd_opt->nd_opt_type) { 328 case ND_OPT_SOURCE_LINKADDR: 329 case ND_OPT_TARGET_LINKADDR: 330 case ND_OPT_MTU: 331 case ND_OPT_REDIRECTED_HEADER: 332 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 333 nd6log((LOG_INFO, 334 "duplicated ND6 option found (type=%d)\n", 335 nd_opt->nd_opt_type)); 336 /* XXX bark? */ 337 } else { 338 ndopts->nd_opt_array[nd_opt->nd_opt_type] 339 = nd_opt; 340 } 341 break; 342 case ND_OPT_PREFIX_INFORMATION: 343 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 344 ndopts->nd_opt_array[nd_opt->nd_opt_type] 345 = nd_opt; 346 } 347 ndopts->nd_opts_pi_end = 348 (struct nd_opt_prefix_info *)nd_opt; 349 break; 350 default: 351 /* 352 * Unknown options must be silently ignored, 353 * to accomodate future extension to the protocol. 354 */ 355 nd6log((LOG_DEBUG, 356 "nd6_options: unsupported option %d - " 357 "option ignored\n", nd_opt->nd_opt_type)); 358 } 359 360 skip1: 361 i++; 362 if (i > nd6_maxndopt) { 363 icmp6stat.icp6s_nd_toomanyopt++; 364 nd6log((LOG_INFO, "too many loop in nd opt\n")); 365 break; 366 } 367 368 if (ndopts->nd_opts_done) 369 break; 370 } 371 372 return 0; 373 } 374 375 /* 376 * ND6 timer routine to expire default route list and prefix list 377 */ 378 void 379 nd6_timer(ignored_arg) 380 void *ignored_arg; 381 { 382 int s; 383 struct llinfo_nd6 *ln; 384 struct nd_defrouter *dr; 385 struct nd_prefix *pr; 386 struct ifnet *ifp; 387 struct in6_ifaddr *ia6, *nia6; 388 struct in6_addrlifetime *lt6; 389 390 s = splsoftnet(); 391 callout_reset(&nd6_timer_ch, nd6_prune * hz, 392 nd6_timer, NULL); 393 394 ln = llinfo_nd6.ln_next; 395 while (ln && ln != &llinfo_nd6) { 396 struct rtentry *rt; 397 struct sockaddr_in6 *dst; 398 struct llinfo_nd6 *next = ln->ln_next; 399 /* XXX: used for the DELAY case only: */ 400 struct nd_ifinfo *ndi = NULL; 401 402 if ((rt = ln->ln_rt) == NULL) { 403 ln = next; 404 continue; 405 } 406 if ((ifp = rt->rt_ifp) == NULL) { 407 ln = next; 408 continue; 409 } 410 ndi = ND_IFINFO(ifp); 411 dst = (struct sockaddr_in6 *)rt_key(rt); 412 413 if (ln->ln_expire > time.tv_sec) { 414 ln = next; 415 continue; 416 } 417 418 /* sanity check */ 419 if (!rt) 420 panic("rt=0 in nd6_timer(ln=%p)", ln); 421 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) 422 panic("rt_llinfo(%p) is not equal to ln(%p)", 423 rt->rt_llinfo, ln); 424 if (!dst) 425 panic("dst=0 in nd6_timer(ln=%p)", ln); 426 427 switch (ln->ln_state) { 428 case ND6_LLINFO_INCOMPLETE: 429 if (ln->ln_asked < nd6_mmaxtries) { 430 ln->ln_asked++; 431 ln->ln_expire = time.tv_sec + 432 ND6_RETRANS_SEC(ND_IFINFO(ifp)->retrans); 433 nd6_ns_output(ifp, NULL, &dst->sin6_addr, 434 ln, 0); 435 } else { 436 struct mbuf *m = ln->ln_hold; 437 if (m) { 438 ln->ln_hold = NULL; 439 /* 440 * Fake rcvif to make the ICMP error 441 * more helpful in diagnosing for the 442 * receiver. 443 * XXX: should we consider 444 * older rcvif? 445 */ 446 m->m_pkthdr.rcvif = rt->rt_ifp; 447 448 icmp6_error(m, ICMP6_DST_UNREACH, 449 ICMP6_DST_UNREACH_ADDR, 0); 450 } 451 next = nd6_free(rt, 0); 452 } 453 break; 454 case ND6_LLINFO_REACHABLE: 455 if (ln->ln_expire) { 456 ln->ln_state = ND6_LLINFO_STALE; 457 ln->ln_expire = time.tv_sec + nd6_gctimer; 458 } 459 break; 460 461 case ND6_LLINFO_STALE: 462 /* Garbage Collection(RFC 2461 5.3) */ 463 if (ln->ln_expire) 464 next = nd6_free(rt, 1); 465 break; 466 467 case ND6_LLINFO_DELAY: 468 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 469 /* We need NUD */ 470 ln->ln_asked = 1; 471 ln->ln_state = ND6_LLINFO_PROBE; 472 ln->ln_expire = time.tv_sec + 473 ND6_RETRANS_SEC(ndi->retrans); 474 nd6_ns_output(ifp, &dst->sin6_addr, 475 &dst->sin6_addr, ln, 0); 476 } else { 477 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 478 ln->ln_expire = time.tv_sec + nd6_gctimer; 479 } 480 break; 481 case ND6_LLINFO_PROBE: 482 if (ln->ln_asked < nd6_umaxtries) { 483 ln->ln_asked++; 484 ln->ln_expire = time.tv_sec + 485 ND6_RETRANS_SEC(ND_IFINFO(ifp)->retrans); 486 nd6_ns_output(ifp, &dst->sin6_addr, 487 &dst->sin6_addr, ln, 0); 488 } else { 489 next = nd6_free(rt, 0); 490 } 491 break; 492 } 493 ln = next; 494 } 495 496 /* expire default router list */ 497 dr = TAILQ_FIRST(&nd_defrouter); 498 while (dr) { 499 if (dr->expire && dr->expire < time.tv_sec) { 500 struct nd_defrouter *t; 501 t = TAILQ_NEXT(dr, dr_entry); 502 defrtrlist_del(dr); 503 dr = t; 504 } else { 505 dr = TAILQ_NEXT(dr, dr_entry); 506 } 507 } 508 509 /* 510 * expire interface addresses. 511 * in the past the loop was inside prefix expiry processing. 512 * However, from a stricter speci-confrmance standpoint, we should 513 * rather separate address lifetimes and prefix lifetimes. 514 */ 515 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) { 516 nia6 = ia6->ia_next; 517 /* check address lifetime */ 518 lt6 = &ia6->ia6_lifetime; 519 if (IFA6_IS_INVALID(ia6)) { 520 in6_purgeaddr(&ia6->ia_ifa); 521 } 522 if (IFA6_IS_DEPRECATED(ia6)) { 523 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 524 } else { 525 /* 526 * A new RA might have made a deprecated address 527 * preferred. 528 */ 529 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 530 } 531 } 532 533 /* expire prefix list */ 534 pr = nd_prefix.lh_first; 535 while (pr) { 536 /* 537 * check prefix lifetime. 538 * since pltime is just for autoconf, pltime processing for 539 * prefix is not necessary. 540 */ 541 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 542 time.tv_sec - pr->ndpr_lastupdate > pr->ndpr_vltime) { 543 struct nd_prefix *t; 544 t = pr->ndpr_next; 545 546 /* 547 * address expiration and prefix expiration are 548 * separate. NEVER perform in6_purgeaddr here. 549 */ 550 551 prelist_remove(pr); 552 pr = t; 553 } else 554 pr = pr->ndpr_next; 555 } 556 splx(s); 557 } 558 559 /* 560 * Nuke neighbor cache/prefix/default router management table, right before 561 * ifp goes away. 562 */ 563 void 564 nd6_purge(ifp) 565 struct ifnet *ifp; 566 { 567 struct llinfo_nd6 *ln, *nln; 568 struct nd_defrouter *dr, *ndr; 569 struct nd_prefix *pr, *npr; 570 571 /* 572 * Nuke default router list entries toward ifp. 573 * We defer removal of default router list entries that is installed 574 * in the routing table, in order to keep additional side effects as 575 * small as possible. 576 */ 577 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) { 578 ndr = TAILQ_NEXT(dr, dr_entry); 579 if (dr->installed) 580 continue; 581 582 if (dr->ifp == ifp) 583 defrtrlist_del(dr); 584 } 585 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) { 586 ndr = TAILQ_NEXT(dr, dr_entry); 587 if (!dr->installed) 588 continue; 589 590 if (dr->ifp == ifp) 591 defrtrlist_del(dr); 592 } 593 594 /* Nuke prefix list entries toward ifp */ 595 for (pr = nd_prefix.lh_first; pr; pr = npr) { 596 npr = pr->ndpr_next; 597 if (pr->ndpr_ifp == ifp) { 598 /* 599 * Previously, pr->ndpr_addr is removed as well, 600 * but I strongly believe we don't have to do it. 601 * nd6_purge() is only called from in6_ifdetach(), 602 * which removes all the associated interface addresses 603 * by itself. 604 * (jinmei@kame.net 20010129) 605 */ 606 prelist_remove(pr); 607 } 608 } 609 610 /* cancel default outgoing interface setting */ 611 if (nd6_defifindex == ifp->if_index) 612 nd6_setdefaultiface(0); 613 614 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 615 /* refresh default router list */ 616 defrouter_select(); 617 } 618 619 /* 620 * Nuke neighbor cache entries for the ifp. 621 * Note that rt->rt_ifp may not be the same as ifp, 622 * due to KAME goto ours hack. See RTM_RESOLVE case in 623 * nd6_rtrequest(), and ip6_input(). 624 */ 625 ln = llinfo_nd6.ln_next; 626 while (ln && ln != &llinfo_nd6) { 627 struct rtentry *rt; 628 struct sockaddr_dl *sdl; 629 630 nln = ln->ln_next; 631 rt = ln->ln_rt; 632 if (rt && rt->rt_gateway && 633 rt->rt_gateway->sa_family == AF_LINK) { 634 sdl = (struct sockaddr_dl *)rt->rt_gateway; 635 if (sdl->sdl_index == ifp->if_index) 636 nln = nd6_free(rt, 0); 637 } 638 ln = nln; 639 } 640 } 641 642 struct rtentry * 643 nd6_lookup(addr6, create, ifp) 644 struct in6_addr *addr6; 645 int create; 646 struct ifnet *ifp; 647 { 648 struct rtentry *rt; 649 struct sockaddr_in6 sin6; 650 651 bzero(&sin6, sizeof(sin6)); 652 sin6.sin6_len = sizeof(struct sockaddr_in6); 653 sin6.sin6_family = AF_INET6; 654 sin6.sin6_addr = *addr6; 655 rt = rtalloc1((struct sockaddr *)&sin6, create); 656 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) { 657 /* 658 * This is the case for the default route. 659 * If we want to create a neighbor cache for the address, we 660 * should free the route for the destination and allocate an 661 * interface route. 662 */ 663 if (create) { 664 RTFREE(rt); 665 rt = 0; 666 } 667 } 668 if (!rt) { 669 if (create && ifp) { 670 int e; 671 672 /* 673 * If no route is available and create is set, 674 * we allocate a host route for the destination 675 * and treat it like an interface route. 676 * This hack is necessary for a neighbor which can't 677 * be covered by our own prefix. 678 */ 679 struct ifaddr *ifa = 680 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); 681 if (ifa == NULL) 682 return (NULL); 683 684 /* 685 * Create a new route. RTF_LLINFO is necessary 686 * to create a Neighbor Cache entry for the 687 * destination in nd6_rtrequest which will be 688 * called in rtrequest via ifa->ifa_rtrequest. 689 */ 690 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6, 691 ifa->ifa_addr, (struct sockaddr *)&all1_sa, 692 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) & 693 ~RTF_CLONING, &rt)) != 0) { 694 #if 0 695 log(LOG_ERR, 696 "nd6_lookup: failed to add route for a " 697 "neighbor(%s), errno=%d\n", 698 ip6_sprintf(addr6), e); 699 #endif 700 return (NULL); 701 } 702 if (rt == NULL) 703 return (NULL); 704 if (rt->rt_llinfo) { 705 struct llinfo_nd6 *ln = 706 (struct llinfo_nd6 *)rt->rt_llinfo; 707 ln->ln_state = ND6_LLINFO_NOSTATE; 708 } 709 } else 710 return (NULL); 711 } 712 rt->rt_refcnt--; 713 /* 714 * Validation for the entry. 715 * Note that the check for rt_llinfo is necessary because a cloned 716 * route from a parent route that has the L flag (e.g. the default 717 * route to a p2p interface) may have the flag, too, while the 718 * destination is not actually a neighbor. 719 * XXX: we can't use rt->rt_ifp to check for the interface, since 720 * it might be the loopback interface if the entry is for our 721 * own address on a non-loopback interface. Instead, we should 722 * use rt->rt_ifa->ifa_ifp, which would specify the REAL 723 * interface. 724 */ 725 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || 726 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || 727 (ifp && rt->rt_ifa->ifa_ifp != ifp)) { 728 if (create) { 729 nd6log((LOG_DEBUG, 730 "nd6_lookup: failed to lookup %s (if = %s)\n", 731 ip6_sprintf(addr6), 732 ifp ? if_name(ifp) : "unspec")); 733 } 734 return (NULL); 735 } 736 return (rt); 737 } 738 739 /* 740 * Detect if a given IPv6 address identifies a neighbor on a given link. 741 * XXX: should take care of the destination of a p2p link? 742 */ 743 int 744 nd6_is_addr_neighbor(addr, ifp) 745 struct sockaddr_in6 *addr; 746 struct ifnet *ifp; 747 { 748 struct nd_prefix *pr; 749 struct rtentry *rt; 750 751 /* 752 * A link-local address is always a neighbor. 753 * XXX: we should use the sin6_scope_id field rather than the embedded 754 * interface index. 755 * XXX: a link does not necessarily specify a single interface. 756 */ 757 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) && 758 ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index) 759 return (1); 760 761 /* 762 * If the address matches one of our on-link prefixes, it should be a 763 * neighbor. 764 */ 765 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 766 if (pr->ndpr_ifp != ifp) 767 continue; 768 769 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) 770 continue; 771 772 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 773 &addr->sin6_addr, &pr->ndpr_mask)) 774 return (1); 775 } 776 777 /* 778 * If the default router list is empty, all addresses are regarded 779 * as on-link, and thus, as a neighbor. 780 * XXX: we restrict the condition to hosts, because routers usually do 781 * not have the "default router list". 782 */ 783 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL && 784 nd6_defifindex == ifp->if_index) { 785 return (1); 786 } 787 788 /* 789 * Even if the address matches none of our addresses, it might be 790 * in the neighbor cache. 791 */ 792 if ((rt = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) 793 return (1); 794 795 return (0); 796 } 797 798 /* 799 * Free an nd6 llinfo entry. 800 * Since the function would cause significant changes in the kernel, DO NOT 801 * make it global, unless you have a strong reason for the change, and are sure 802 * that the change is safe. 803 */ 804 static struct llinfo_nd6 * 805 nd6_free(rt, gc) 806 struct rtentry *rt; 807 int gc; 808 { 809 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next; 810 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; 811 struct nd_defrouter *dr; 812 813 /* 814 * we used to have pfctlinput(PRC_HOSTDEAD) here. 815 * even though it is not harmful, it was not really necessary. 816 */ 817 818 if (!ip6_forwarding) { 819 int s; 820 s = splsoftnet(); 821 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 822 rt->rt_ifp); 823 824 if (dr != NULL && dr->expire && 825 ln->ln_state == ND6_LLINFO_STALE && gc) { 826 /* 827 * If the reason for the deletion is just garbage 828 * collection, and the neighbor is an active default 829 * router, do not delete it. Instead, reset the GC 830 * timer using the router's lifetime. 831 * Simply deleting the entry would affect default 832 * router selection, which is not necessarily a good 833 * thing, especially when we're using router preference 834 * values. 835 * XXX: the check for ln_state would be redundant, 836 * but we intentionally keep it just in case. 837 */ 838 ln->ln_expire = dr->expire; 839 splx(s); 840 return (ln->ln_next); 841 } 842 843 if (ln->ln_router || dr) { 844 /* 845 * rt6_flush must be called whether or not the neighbor 846 * is in the Default Router List. 847 * See a corresponding comment in nd6_na_input(). 848 */ 849 rt6_flush(&in6, rt->rt_ifp); 850 } 851 852 if (dr) { 853 /* 854 * Unreachablity of a router might affect the default 855 * router selection and on-link detection of advertised 856 * prefixes. 857 */ 858 859 /* 860 * Temporarily fake the state to choose a new default 861 * router and to perform on-link determination of 862 * prefixes correctly. 863 * Below the state will be set correctly, 864 * or the entry itself will be deleted. 865 */ 866 ln->ln_state = ND6_LLINFO_INCOMPLETE; 867 868 /* 869 * Since defrouter_select() does not affect the 870 * on-link determination and MIP6 needs the check 871 * before the default router selection, we perform 872 * the check now. 873 */ 874 pfxlist_onlink_check(); 875 876 /* 877 * refresh default router list 878 */ 879 defrouter_select(); 880 } 881 splx(s); 882 } 883 884 /* 885 * Before deleting the entry, remember the next entry as the 886 * return value. We need this because pfxlist_onlink_check() above 887 * might have freed other entries (particularly the old next entry) as 888 * a side effect (XXX). 889 */ 890 next = ln->ln_next; 891 892 /* 893 * Detach the route from the routing tree and the list of neighbor 894 * caches, and disable the route entry not to be used in already 895 * cached routes. 896 */ 897 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0, 898 rt_mask(rt), 0, (struct rtentry **)0); 899 900 return (next); 901 } 902 903 /* 904 * Upper-layer reachability hint for Neighbor Unreachability Detection. 905 * 906 * XXX cost-effective metods? 907 */ 908 void 909 nd6_nud_hint(rt, dst6, force) 910 struct rtentry *rt; 911 struct in6_addr *dst6; 912 int force; 913 { 914 struct llinfo_nd6 *ln; 915 916 /* 917 * If the caller specified "rt", use that. Otherwise, resolve the 918 * routing table by supplied "dst6". 919 */ 920 if (!rt) { 921 if (!dst6) 922 return; 923 if (!(rt = nd6_lookup(dst6, 0, NULL))) 924 return; 925 } 926 927 if ((rt->rt_flags & RTF_GATEWAY) != 0 || 928 (rt->rt_flags & RTF_LLINFO) == 0 || 929 !rt->rt_llinfo || !rt->rt_gateway || 930 rt->rt_gateway->sa_family != AF_LINK) { 931 /* This is not a host route. */ 932 return; 933 } 934 935 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 936 if (ln->ln_state < ND6_LLINFO_REACHABLE) 937 return; 938 939 /* 940 * if we get upper-layer reachability confirmation many times, 941 * it is possible we have false information. 942 */ 943 if (!force) { 944 ln->ln_byhint++; 945 if (ln->ln_byhint > nd6_maxnudhint) 946 return; 947 } 948 949 ln->ln_state = ND6_LLINFO_REACHABLE; 950 if (ln->ln_expire) 951 ln->ln_expire = time.tv_sec + ND_IFINFO(rt->rt_ifp)->reachable; 952 } 953 954 void 955 nd6_rtrequest(req, rt, info) 956 int req; 957 struct rtentry *rt; 958 struct rt_addrinfo *info; /* xxx unused */ 959 { 960 struct sockaddr *gate = rt->rt_gateway; 961 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; 962 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 963 struct ifnet *ifp = rt->rt_ifp; 964 struct ifaddr *ifa; 965 int mine = 0; 966 967 if ((rt->rt_flags & RTF_GATEWAY) != 0) 968 return; 969 970 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { 971 /* 972 * This is probably an interface direct route for a link 973 * which does not need neighbor caches (e.g. fe80::%lo0/64). 974 * We do not need special treatment below for such a route. 975 * Moreover, the RTF_LLINFO flag which would be set below 976 * would annoy the ndp(8) command. 977 */ 978 return; 979 } 980 981 if (req == RTM_RESOLVE && 982 (nd6_need_cache(ifp) == 0 || /* stf case */ 983 !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) { 984 /* 985 * FreeBSD and BSD/OS often make a cloned host route based 986 * on a less-specific route (e.g. the default route). 987 * If the less specific route does not have a "gateway" 988 * (this is the case when the route just goes to a p2p or an 989 * stf interface), we'll mistakenly make a neighbor cache for 990 * the host route, and will see strange neighbor solicitation 991 * for the corresponding destination. In order to avoid the 992 * confusion, we check if the destination of the route is 993 * a neighbor in terms of neighbor discovery, and stop the 994 * process if not. Additionally, we remove the LLINFO flag 995 * so that ndp(8) will not try to get the neighbor information 996 * of the destination. 997 */ 998 rt->rt_flags &= ~RTF_LLINFO; 999 return; 1000 } 1001 1002 switch (req) { 1003 case RTM_ADD: 1004 /* 1005 * There is no backward compatibility :) 1006 * 1007 * if ((rt->rt_flags & RTF_HOST) == 0 && 1008 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1009 * rt->rt_flags |= RTF_CLONING; 1010 */ 1011 if ((rt->rt_flags & RTF_CLONING) || 1012 ((rt->rt_flags & RTF_LLINFO) && !ln)) { 1013 /* 1014 * Case 1: This route should come from a route to 1015 * interface (RTF_CLONING case) or the route should be 1016 * treated as on-link but is currently not 1017 * (RTF_LLINFO && !ln case). 1018 */ 1019 rt_setgate(rt, rt_key(rt), 1020 (struct sockaddr *)&null_sdl); 1021 gate = rt->rt_gateway; 1022 SDL(gate)->sdl_type = ifp->if_type; 1023 SDL(gate)->sdl_index = ifp->if_index; 1024 if (ln) 1025 ln->ln_expire = time.tv_sec; 1026 #if 1 1027 if (ln && ln->ln_expire == 0) { 1028 /* kludge for desktops */ 1029 #if 0 1030 printf("nd6_rtrequest: time.tv_sec is zero; " 1031 "treat it as 1\n"); 1032 #endif 1033 ln->ln_expire = 1; 1034 } 1035 #endif 1036 if ((rt->rt_flags & RTF_CLONING) != 0) 1037 break; 1038 } 1039 /* 1040 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1041 * We don't do that here since llinfo is not ready yet. 1042 * 1043 * There are also couple of other things to be discussed: 1044 * - unsolicited NA code needs improvement beforehand 1045 * - RFC2461 says we MAY send multicast unsolicited NA 1046 * (7.2.6 paragraph 4), however, it also says that we 1047 * SHOULD provide a mechanism to prevent multicast NA storm. 1048 * we don't have anything like it right now. 1049 * note that the mechanism needs a mutual agreement 1050 * between proxies, which means that we need to implement 1051 * a new protocol, or a new kludge. 1052 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1053 * we need to check ip6forwarding before sending it. 1054 * (or should we allow proxy ND configuration only for 1055 * routers? there's no mention about proxy ND from hosts) 1056 */ 1057 #if 0 1058 /* XXX it does not work */ 1059 if (rt->rt_flags & RTF_ANNOUNCE) 1060 nd6_na_output(ifp, 1061 &SIN6(rt_key(rt))->sin6_addr, 1062 &SIN6(rt_key(rt))->sin6_addr, 1063 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1064 1, NULL); 1065 #endif 1066 /* FALLTHROUGH */ 1067 case RTM_RESOLVE: 1068 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 1069 /* 1070 * Address resolution isn't necessary for a point to 1071 * point link, so we can skip this test for a p2p link. 1072 */ 1073 if (gate->sa_family != AF_LINK || 1074 gate->sa_len < sizeof(null_sdl)) { 1075 log(LOG_DEBUG, 1076 "nd6_rtrequest: bad gateway value: %s\n", 1077 if_name(ifp)); 1078 break; 1079 } 1080 SDL(gate)->sdl_type = ifp->if_type; 1081 SDL(gate)->sdl_index = ifp->if_index; 1082 } 1083 if (ln != NULL) 1084 break; /* This happens on a route change */ 1085 /* 1086 * Case 2: This route may come from cloning, or a manual route 1087 * add with a LL address. 1088 */ 1089 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln)); 1090 rt->rt_llinfo = (caddr_t)ln; 1091 if (!ln) { 1092 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n"); 1093 break; 1094 } 1095 nd6_inuse++; 1096 nd6_allocated++; 1097 Bzero(ln, sizeof(*ln)); 1098 ln->ln_rt = rt; 1099 /* this is required for "ndp" command. - shin */ 1100 if (req == RTM_ADD) { 1101 /* 1102 * gate should have some valid AF_LINK entry, 1103 * and ln->ln_expire should have some lifetime 1104 * which is specified by ndp command. 1105 */ 1106 ln->ln_state = ND6_LLINFO_REACHABLE; 1107 ln->ln_byhint = 0; 1108 } else { 1109 /* 1110 * When req == RTM_RESOLVE, rt is created and 1111 * initialized in rtrequest(), so rt_expire is 0. 1112 */ 1113 ln->ln_state = ND6_LLINFO_NOSTATE; 1114 ln->ln_expire = time.tv_sec; 1115 } 1116 rt->rt_flags |= RTF_LLINFO; 1117 ln->ln_next = llinfo_nd6.ln_next; 1118 llinfo_nd6.ln_next = ln; 1119 ln->ln_prev = &llinfo_nd6; 1120 ln->ln_next->ln_prev = ln; 1121 1122 /* 1123 * check if rt_key(rt) is one of my address assigned 1124 * to the interface. 1125 */ 1126 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, 1127 &SIN6(rt_key(rt))->sin6_addr); 1128 if (ifa) { 1129 caddr_t macp = nd6_ifptomac(ifp); 1130 ln->ln_expire = 0; 1131 ln->ln_state = ND6_LLINFO_REACHABLE; 1132 ln->ln_byhint = 0; 1133 mine = 1; 1134 if (macp) { 1135 Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); 1136 SDL(gate)->sdl_alen = ifp->if_addrlen; 1137 } 1138 if (nd6_useloopback) { 1139 rt->rt_ifp = &loif[0]; /* XXX */ 1140 /* 1141 * Make sure rt_ifa be equal to the ifaddr 1142 * corresponding to the address. 1143 * We need this because when we refer 1144 * rt_ifa->ia6_flags in ip6_input, we assume 1145 * that the rt_ifa points to the address instead 1146 * of the loopback address. 1147 */ 1148 if (ifa != rt->rt_ifa) { 1149 IFAFREE(rt->rt_ifa); 1150 IFAREF(ifa); 1151 rt->rt_ifa = ifa; 1152 } 1153 } 1154 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1155 ln->ln_expire = 0; 1156 ln->ln_state = ND6_LLINFO_REACHABLE; 1157 ln->ln_byhint = 0; 1158 1159 /* join solicited node multicast for proxy ND */ 1160 if (ifp->if_flags & IFF_MULTICAST) { 1161 struct in6_addr llsol; 1162 int error; 1163 1164 llsol = SIN6(rt_key(rt))->sin6_addr; 1165 llsol.s6_addr16[0] = htons(0xff02); 1166 llsol.s6_addr16[1] = htons(ifp->if_index); 1167 llsol.s6_addr32[1] = 0; 1168 llsol.s6_addr32[2] = htonl(1); 1169 llsol.s6_addr8[12] = 0xff; 1170 1171 if (!in6_addmulti(&llsol, ifp, &error)) { 1172 nd6log((LOG_ERR, "%s: failed to join " 1173 "%s (errno=%d)\n", if_name(ifp), 1174 ip6_sprintf(&llsol), error)); 1175 } 1176 } 1177 } 1178 break; 1179 1180 case RTM_DELETE: 1181 if (!ln) 1182 break; 1183 /* leave from solicited node multicast for proxy ND */ 1184 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && 1185 (ifp->if_flags & IFF_MULTICAST) != 0) { 1186 struct in6_addr llsol; 1187 struct in6_multi *in6m; 1188 1189 llsol = SIN6(rt_key(rt))->sin6_addr; 1190 llsol.s6_addr16[0] = htons(0xff02); 1191 llsol.s6_addr16[1] = htons(ifp->if_index); 1192 llsol.s6_addr32[1] = 0; 1193 llsol.s6_addr32[2] = htonl(1); 1194 llsol.s6_addr8[12] = 0xff; 1195 1196 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1197 if (in6m) 1198 in6_delmulti(in6m); 1199 } 1200 nd6_inuse--; 1201 ln->ln_next->ln_prev = ln->ln_prev; 1202 ln->ln_prev->ln_next = ln->ln_next; 1203 ln->ln_prev = NULL; 1204 rt->rt_llinfo = 0; 1205 rt->rt_flags &= ~RTF_LLINFO; 1206 if (ln->ln_hold) 1207 m_freem(ln->ln_hold); 1208 Free((caddr_t)ln); 1209 } 1210 } 1211 1212 int 1213 nd6_ioctl(cmd, data, ifp) 1214 u_long cmd; 1215 caddr_t data; 1216 struct ifnet *ifp; 1217 { 1218 struct in6_drlist *drl = (struct in6_drlist *)data; 1219 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1220 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1221 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1222 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1223 struct nd_defrouter *dr; 1224 struct nd_prefix *pr; 1225 struct rtentry *rt; 1226 int i = 0, error = 0; 1227 int s; 1228 1229 switch (cmd) { 1230 case SIOCGDRLST_IN6: 1231 /* 1232 * obsolete API, use sysctl under net.inet6.icmp6 1233 */ 1234 bzero(drl, sizeof(*drl)); 1235 s = splsoftnet(); 1236 dr = TAILQ_FIRST(&nd_defrouter); 1237 while (dr && i < DRLSTSIZ) { 1238 drl->defrouter[i].rtaddr = dr->rtaddr; 1239 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) { 1240 /* XXX: need to this hack for KAME stack */ 1241 drl->defrouter[i].rtaddr.s6_addr16[1] = 0; 1242 } else 1243 log(LOG_ERR, 1244 "default router list contains a " 1245 "non-linklocal address(%s)\n", 1246 ip6_sprintf(&drl->defrouter[i].rtaddr)); 1247 1248 drl->defrouter[i].flags = dr->flags; 1249 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1250 drl->defrouter[i].expire = dr->expire; 1251 drl->defrouter[i].if_index = dr->ifp->if_index; 1252 i++; 1253 dr = TAILQ_NEXT(dr, dr_entry); 1254 } 1255 splx(s); 1256 break; 1257 case SIOCGPRLST_IN6: 1258 /* 1259 * obsolete API, use sysctl under net.inet6.icmp6 1260 * 1261 * XXX the structure in6_prlist was changed in backward- 1262 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1263 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1264 */ 1265 /* 1266 * XXX meaning of fields, especialy "raflags", is very 1267 * differnet between RA prefix list and RR/static prefix list. 1268 * how about separating ioctls into two? 1269 */ 1270 bzero(oprl, sizeof(*oprl)); 1271 s = splsoftnet(); 1272 pr = nd_prefix.lh_first; 1273 while (pr && i < PRLSTSIZ) { 1274 struct nd_pfxrouter *pfr; 1275 int j; 1276 1277 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1278 oprl->prefix[i].raflags = pr->ndpr_raf; 1279 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1280 oprl->prefix[i].vltime = pr->ndpr_vltime; 1281 oprl->prefix[i].pltime = pr->ndpr_pltime; 1282 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1283 oprl->prefix[i].expire = pr->ndpr_expire; 1284 1285 pfr = pr->ndpr_advrtrs.lh_first; 1286 j = 0; 1287 while (pfr) { 1288 if (j < DRLSTSIZ) { 1289 #define RTRADDR oprl->prefix[i].advrtr[j] 1290 RTRADDR = pfr->router->rtaddr; 1291 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) { 1292 /* XXX: hack for KAME */ 1293 RTRADDR.s6_addr16[1] = 0; 1294 } else 1295 log(LOG_ERR, 1296 "a router(%s) advertises " 1297 "a prefix with " 1298 "non-link local address\n", 1299 ip6_sprintf(&RTRADDR)); 1300 #undef RTRADDR 1301 } 1302 j++; 1303 pfr = pfr->pfr_next; 1304 } 1305 oprl->prefix[i].advrtrs = j; 1306 oprl->prefix[i].origin = PR_ORIG_RA; 1307 1308 i++; 1309 pr = pr->ndpr_next; 1310 } 1311 splx(s); 1312 1313 break; 1314 case OSIOCGIFINFO_IN6: 1315 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1316 bzero(&ndi->ndi, sizeof(ndi->ndi)); 1317 ndi->ndi.linkmtu = IN6_LINKMTU(ifp); 1318 ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu; 1319 ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable; 1320 ndi->ndi.reachable = ND_IFINFO(ifp)->reachable; 1321 ndi->ndi.retrans = ND_IFINFO(ifp)->retrans; 1322 ndi->ndi.flags = ND_IFINFO(ifp)->flags; 1323 ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm; 1324 ndi->ndi.chlim = ND_IFINFO(ifp)->chlim; 1325 break; 1326 case SIOCGIFINFO_IN6: 1327 ndi->ndi = *ND_IFINFO(ifp); 1328 break; 1329 case SIOCSIFINFO_FLAGS: 1330 ND_IFINFO(ifp)->flags = ndi->ndi.flags; 1331 break; 1332 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1333 /* sync kernel routing table with the default router list */ 1334 defrouter_reset(); 1335 defrouter_select(); 1336 break; 1337 case SIOCSPFXFLUSH_IN6: 1338 { 1339 /* flush all the prefix advertised by routers */ 1340 struct nd_prefix *pr, *next; 1341 1342 s = splsoftnet(); 1343 for (pr = nd_prefix.lh_first; pr; pr = next) { 1344 struct in6_ifaddr *ia, *ia_next; 1345 1346 next = pr->ndpr_next; 1347 1348 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1349 continue; /* XXX */ 1350 1351 /* do we really have to remove addresses as well? */ 1352 for (ia = in6_ifaddr; ia; ia = ia_next) { 1353 /* ia might be removed. keep the next ptr. */ 1354 ia_next = ia->ia_next; 1355 1356 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1357 continue; 1358 1359 if (ia->ia6_ndpr == pr) 1360 in6_purgeaddr(&ia->ia_ifa); 1361 } 1362 prelist_remove(pr); 1363 } 1364 splx(s); 1365 break; 1366 } 1367 case SIOCSRTRFLUSH_IN6: 1368 { 1369 /* flush all the default routers */ 1370 struct nd_defrouter *dr, *next; 1371 1372 s = splsoftnet(); 1373 defrouter_reset(); 1374 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) { 1375 next = TAILQ_NEXT(dr, dr_entry); 1376 defrtrlist_del(dr); 1377 } 1378 defrouter_select(); 1379 splx(s); 1380 break; 1381 } 1382 case SIOCGNBRINFO_IN6: 1383 { 1384 struct llinfo_nd6 *ln; 1385 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1386 1387 /* 1388 * XXX: KAME specific hack for scoped addresses 1389 * XXXX: for other scopes than link-local? 1390 */ 1391 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) || 1392 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) { 1393 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2]; 1394 1395 if (*idp == 0) 1396 *idp = htons(ifp->if_index); 1397 } 1398 1399 s = splsoftnet(); 1400 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL || 1401 (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) { 1402 error = EINVAL; 1403 splx(s); 1404 break; 1405 } 1406 nbi->state = ln->ln_state; 1407 nbi->asked = ln->ln_asked; 1408 nbi->isrouter = ln->ln_router; 1409 nbi->expire = ln->ln_expire; 1410 splx(s); 1411 1412 break; 1413 } 1414 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1415 ndif->ifindex = nd6_defifindex; 1416 break; 1417 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1418 return (nd6_setdefaultiface(ndif->ifindex)); 1419 } 1420 return (error); 1421 } 1422 1423 /* 1424 * Create neighbor cache entry and cache link-layer address, 1425 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1426 */ 1427 struct rtentry * 1428 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code) 1429 struct ifnet *ifp; 1430 struct in6_addr *from; 1431 char *lladdr; 1432 int lladdrlen; 1433 int type; /* ICMP6 type */ 1434 int code; /* type dependent information */ 1435 { 1436 struct rtentry *rt = NULL; 1437 struct llinfo_nd6 *ln = NULL; 1438 int is_newentry; 1439 struct sockaddr_dl *sdl = NULL; 1440 int do_update; 1441 int olladdr; 1442 int llchange; 1443 int newstate = 0; 1444 1445 if (!ifp) 1446 panic("ifp == NULL in nd6_cache_lladdr"); 1447 if (!from) 1448 panic("from == NULL in nd6_cache_lladdr"); 1449 1450 /* nothing must be updated for unspecified address */ 1451 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1452 return NULL; 1453 1454 /* 1455 * Validation about ifp->if_addrlen and lladdrlen must be done in 1456 * the caller. 1457 * 1458 * XXX If the link does not have link-layer adderss, what should 1459 * we do? (ifp->if_addrlen == 0) 1460 * Spec says nothing in sections for RA, RS and NA. There's small 1461 * description on it in NS section (RFC 2461 7.2.3). 1462 */ 1463 1464 rt = nd6_lookup(from, 0, ifp); 1465 if (!rt) { 1466 #if 0 1467 /* nothing must be done if there's no lladdr */ 1468 if (!lladdr || !lladdrlen) 1469 return NULL; 1470 #endif 1471 1472 rt = nd6_lookup(from, 1, ifp); 1473 is_newentry = 1; 1474 } else { 1475 /* do nothing if static ndp is set */ 1476 if (rt->rt_flags & RTF_STATIC) 1477 return NULL; 1478 is_newentry = 0; 1479 } 1480 1481 if (!rt) 1482 return NULL; 1483 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { 1484 fail: 1485 (void)nd6_free(rt, 0); 1486 return NULL; 1487 } 1488 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1489 if (!ln) 1490 goto fail; 1491 if (!rt->rt_gateway) 1492 goto fail; 1493 if (rt->rt_gateway->sa_family != AF_LINK) 1494 goto fail; 1495 sdl = SDL(rt->rt_gateway); 1496 1497 olladdr = (sdl->sdl_alen) ? 1 : 0; 1498 if (olladdr && lladdr) { 1499 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) 1500 llchange = 1; 1501 else 1502 llchange = 0; 1503 } else 1504 llchange = 0; 1505 1506 /* 1507 * newentry olladdr lladdr llchange (*=record) 1508 * 0 n n -- (1) 1509 * 0 y n -- (2) 1510 * 0 n y -- (3) * STALE 1511 * 0 y y n (4) * 1512 * 0 y y y (5) * STALE 1513 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1514 * 1 -- y -- (7) * STALE 1515 */ 1516 1517 if (lladdr) { /* (3-5) and (7) */ 1518 /* 1519 * Record source link-layer address 1520 * XXX is it dependent to ifp->if_type? 1521 */ 1522 sdl->sdl_alen = ifp->if_addrlen; 1523 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); 1524 } 1525 1526 if (!is_newentry) { 1527 if ((!olladdr && lladdr) || /* (3) */ 1528 (olladdr && lladdr && llchange)) { /* (5) */ 1529 do_update = 1; 1530 newstate = ND6_LLINFO_STALE; 1531 } else /* (1-2,4) */ 1532 do_update = 0; 1533 } else { 1534 do_update = 1; 1535 if (!lladdr) /* (6) */ 1536 newstate = ND6_LLINFO_NOSTATE; 1537 else /* (7) */ 1538 newstate = ND6_LLINFO_STALE; 1539 } 1540 1541 if (do_update) { 1542 /* 1543 * Update the state of the neighbor cache. 1544 */ 1545 ln->ln_state = newstate; 1546 1547 if (ln->ln_state == ND6_LLINFO_STALE) { 1548 /* 1549 * XXX: since nd6_output() below will cause 1550 * state tansition to DELAY and reset the timer, 1551 * we must set the timer now, although it is actually 1552 * meaningless. 1553 */ 1554 ln->ln_expire = time.tv_sec + nd6_gctimer; 1555 1556 if (ln->ln_hold) { 1557 /* 1558 * we assume ifp is not a p2p here, so just 1559 * set the 2nd argument as the 1st one. 1560 */ 1561 nd6_output(ifp, ifp, ln->ln_hold, 1562 (struct sockaddr_in6 *)rt_key(rt), rt); 1563 ln->ln_hold = NULL; 1564 } 1565 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1566 /* probe right away */ 1567 ln->ln_expire = time.tv_sec; 1568 } 1569 } 1570 1571 /* 1572 * ICMP6 type dependent behavior. 1573 * 1574 * NS: clear IsRouter if new entry 1575 * RS: clear IsRouter 1576 * RA: set IsRouter if there's lladdr 1577 * redir: clear IsRouter if new entry 1578 * 1579 * RA case, (1): 1580 * The spec says that we must set IsRouter in the following cases: 1581 * - If lladdr exist, set IsRouter. This means (1-5). 1582 * - If it is old entry (!newentry), set IsRouter. This means (7). 1583 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1584 * A quetion arises for (1) case. (1) case has no lladdr in the 1585 * neighbor cache, this is similar to (6). 1586 * This case is rare but we figured that we MUST NOT set IsRouter. 1587 * 1588 * newentry olladdr lladdr llchange NS RS RA redir 1589 * D R 1590 * 0 n n -- (1) c ? s 1591 * 0 y n -- (2) c s s 1592 * 0 n y -- (3) c s s 1593 * 0 y y n (4) c s s 1594 * 0 y y y (5) c s s 1595 * 1 -- n -- (6) c c c s 1596 * 1 -- y -- (7) c c s c s 1597 * 1598 * (c=clear s=set) 1599 */ 1600 switch (type & 0xff) { 1601 case ND_NEIGHBOR_SOLICIT: 1602 /* 1603 * New entry must have is_router flag cleared. 1604 */ 1605 if (is_newentry) /* (6-7) */ 1606 ln->ln_router = 0; 1607 break; 1608 case ND_REDIRECT: 1609 /* 1610 * If the icmp is a redirect to a better router, always set the 1611 * is_router flag. Otherwise, if the entry is newly created, 1612 * clear the flag. [RFC 2461, sec 8.3] 1613 */ 1614 if (code == ND_REDIRECT_ROUTER) 1615 ln->ln_router = 1; 1616 else if (is_newentry) /* (6-7) */ 1617 ln->ln_router = 0; 1618 break; 1619 case ND_ROUTER_SOLICIT: 1620 /* 1621 * is_router flag must always be cleared. 1622 */ 1623 ln->ln_router = 0; 1624 break; 1625 case ND_ROUTER_ADVERT: 1626 /* 1627 * Mark an entry with lladdr as a router. 1628 */ 1629 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 1630 (is_newentry && lladdr)) { /* (7) */ 1631 ln->ln_router = 1; 1632 } 1633 break; 1634 } 1635 1636 /* 1637 * When the link-layer address of a router changes, select the 1638 * best router again. In particular, when the neighbor entry is newly 1639 * created, it might affect the selection policy. 1640 * Question: can we restrict the first condition to the "is_newentry" 1641 * case? 1642 * XXX: when we hear an RA from a new router with the link-layer 1643 * address option, defrouter_select() is called twice, since 1644 * defrtrlist_update called the function as well. However, I believe 1645 * we can compromise the overhead, since it only happens the first 1646 * time. 1647 * XXX: although defrouter_select() should not have a bad effect 1648 * for those are not autoconfigured hosts, we explicitly avoid such 1649 * cases for safety. 1650 */ 1651 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv) 1652 defrouter_select(); 1653 1654 return rt; 1655 } 1656 1657 static void 1658 nd6_slowtimo(ignored_arg) 1659 void *ignored_arg; 1660 { 1661 int s = splsoftnet(); 1662 struct nd_ifinfo *nd6if; 1663 struct ifnet *ifp; 1664 1665 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1666 nd6_slowtimo, NULL); 1667 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 1668 { 1669 nd6if = ND_IFINFO(ifp); 1670 if (nd6if->basereachable && /* already initialized */ 1671 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1672 /* 1673 * Since reachable time rarely changes by router 1674 * advertisements, we SHOULD insure that a new random 1675 * value gets recomputed at least once every few hours. 1676 * (RFC 2461, 6.3.4) 1677 */ 1678 nd6if->recalctm = nd6_recalc_reachtm_interval; 1679 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1680 } 1681 } 1682 splx(s); 1683 } 1684 1685 #define senderr(e) { error = (e); goto bad;} 1686 int 1687 nd6_output(ifp, origifp, m0, dst, rt0) 1688 struct ifnet *ifp; 1689 struct ifnet *origifp; 1690 struct mbuf *m0; 1691 struct sockaddr_in6 *dst; 1692 struct rtentry *rt0; 1693 { 1694 struct mbuf *m = m0; 1695 struct rtentry *rt = rt0; 1696 struct sockaddr_in6 *gw6 = NULL; 1697 struct llinfo_nd6 *ln = NULL; 1698 int error = 0; 1699 1700 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1701 goto sendpkt; 1702 1703 if (nd6_need_cache(ifp) == 0) 1704 goto sendpkt; 1705 1706 /* 1707 * next hop determination. This routine is derived from ether_outpout. 1708 */ 1709 if (rt) { 1710 if ((rt->rt_flags & RTF_UP) == 0) { 1711 if ((rt0 = rt = rtalloc1((struct sockaddr *)dst, 1712 1)) != NULL) 1713 { 1714 rt->rt_refcnt--; 1715 if (rt->rt_ifp != ifp) { 1716 /* XXX: loop care? */ 1717 return nd6_output(ifp, origifp, m0, 1718 dst, rt); 1719 } 1720 } else 1721 senderr(EHOSTUNREACH); 1722 } 1723 1724 if (rt->rt_flags & RTF_GATEWAY) { 1725 gw6 = (struct sockaddr_in6 *)rt->rt_gateway; 1726 1727 /* 1728 * We skip link-layer address resolution and NUD 1729 * if the gateway is not a neighbor from ND point 1730 * of view, regardless of the value of nd_ifinfo.flags. 1731 * The second condition is a bit tricky; we skip 1732 * if the gateway is our own address, which is 1733 * sometimes used to install a route to a p2p link. 1734 */ 1735 if (!nd6_is_addr_neighbor(gw6, ifp) || 1736 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) { 1737 /* 1738 * We allow this kind of tricky route only 1739 * when the outgoing interface is p2p. 1740 * XXX: we may need a more generic rule here. 1741 */ 1742 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1743 senderr(EHOSTUNREACH); 1744 1745 goto sendpkt; 1746 } 1747 1748 if (rt->rt_gwroute == 0) 1749 goto lookup; 1750 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) { 1751 rtfree(rt); rt = rt0; 1752 lookup: 1753 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1); 1754 if ((rt = rt->rt_gwroute) == 0) 1755 senderr(EHOSTUNREACH); 1756 /* the "G" test below also prevents rt == rt0 */ 1757 if ((rt->rt_flags & RTF_GATEWAY) || 1758 (rt->rt_ifp != ifp)) { 1759 rt->rt_refcnt--; 1760 rt0->rt_gwroute = 0; 1761 senderr(EHOSTUNREACH); 1762 } 1763 } 1764 } 1765 } 1766 1767 /* 1768 * Address resolution or Neighbor Unreachability Detection 1769 * for the next hop. 1770 * At this point, the destination of the packet must be a unicast 1771 * or an anycast address(i.e. not a multicast). 1772 */ 1773 1774 /* Look up the neighbor cache for the nexthop */ 1775 if (rt && (rt->rt_flags & RTF_LLINFO) != 0) 1776 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1777 else { 1778 /* 1779 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 1780 * the condition below is not very efficient. But we believe 1781 * it is tolerable, because this should be a rare case. 1782 */ 1783 if (nd6_is_addr_neighbor(dst, ifp) && 1784 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL) 1785 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1786 } 1787 if (!ln || !rt) { 1788 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 1789 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 1790 log(LOG_DEBUG, 1791 "nd6_output: can't allocate llinfo for %s " 1792 "(ln=%p, rt=%p)\n", 1793 ip6_sprintf(&dst->sin6_addr), ln, rt); 1794 senderr(EIO); /* XXX: good error? */ 1795 } 1796 1797 goto sendpkt; /* send anyway */ 1798 } 1799 1800 /* We don't have to do link-layer address resolution on a p2p link. */ 1801 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 1802 ln->ln_state < ND6_LLINFO_REACHABLE) { 1803 ln->ln_state = ND6_LLINFO_STALE; 1804 ln->ln_expire = time.tv_sec + nd6_gctimer; 1805 } 1806 1807 /* 1808 * The first time we send a packet to a neighbor whose entry is 1809 * STALE, we have to change the state to DELAY and a sets a timer to 1810 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 1811 * neighbor unreachability detection on expiration. 1812 * (RFC 2461 7.3.3) 1813 */ 1814 if (ln->ln_state == ND6_LLINFO_STALE) { 1815 ln->ln_asked = 0; 1816 ln->ln_state = ND6_LLINFO_DELAY; 1817 ln->ln_expire = time.tv_sec + nd6_delay; 1818 } 1819 1820 /* 1821 * If the neighbor cache entry has a state other than INCOMPLETE 1822 * (i.e. its link-layer address is already resolved), just 1823 * send the packet. 1824 */ 1825 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1826 goto sendpkt; 1827 1828 /* 1829 * There is a neighbor cache entry, but no ethernet address 1830 * response yet. Replace the held mbuf (if any) with this 1831 * latest one. 1832 */ 1833 if (ln->ln_state == ND6_LLINFO_NOSTATE) 1834 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1835 if (ln->ln_hold) 1836 m_freem(ln->ln_hold); 1837 ln->ln_hold = m; 1838 /* 1839 * If there has been no NS for the neighbor after entering the 1840 * INCOMPLETE state, send the first solicitation. 1841 * Technically this can be against the rate-limiting rule described in 1842 * Section 7.2.2 of RFC 2461 because the interval to the next scheduled 1843 * solicitation issued in nd6_timer() may be less than the specified 1844 * retransmission time. This should not be a problem from a practical 1845 * point of view, because we'll typically see an immediate response 1846 * from the neighbor, which suppresses the succeeding solicitations. 1847 */ 1848 if (ln->ln_expire && ln->ln_asked == 0) { 1849 ln->ln_asked++; 1850 ln->ln_expire = time.tv_sec + 1851 ND6_RETRANS_SEC(ND_IFINFO(ifp)->retrans); 1852 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 1853 } 1854 return (0); 1855 1856 sendpkt: 1857 1858 #ifdef IPSEC 1859 /* clean ipsec history once it goes out of the node */ 1860 ipsec_delaux(m); 1861 #endif 1862 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 1863 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst, 1864 rt)); 1865 } 1866 return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt)); 1867 1868 bad: 1869 if (m) 1870 m_freem(m); 1871 return (error); 1872 } 1873 #undef senderr 1874 1875 int 1876 nd6_need_cache(ifp) 1877 struct ifnet *ifp; 1878 { 1879 /* 1880 * XXX: we currently do not make neighbor cache on any interface 1881 * other than ARCnet, Ethernet, FDDI and GIF. 1882 * 1883 * RFC2893 says: 1884 * - unidirectional tunnels needs no ND 1885 */ 1886 switch (ifp->if_type) { 1887 case IFT_ARCNET: 1888 case IFT_ETHER: 1889 case IFT_FDDI: 1890 case IFT_IEEE1394: 1891 case IFT_GIF: /* XXX need more cases? */ 1892 return (1); 1893 default: 1894 return (0); 1895 } 1896 } 1897 1898 int 1899 nd6_storelladdr(ifp, rt, m, dst, desten) 1900 struct ifnet *ifp; 1901 struct rtentry *rt; 1902 struct mbuf *m; 1903 struct sockaddr *dst; 1904 u_char *desten; 1905 { 1906 struct sockaddr_dl *sdl; 1907 1908 if (m->m_flags & M_MCAST) { 1909 switch (ifp->if_type) { 1910 case IFT_ETHER: 1911 case IFT_FDDI: 1912 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 1913 desten); 1914 return (1); 1915 case IFT_IEEE1394: 1916 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen); 1917 return (1); 1918 case IFT_ARCNET: 1919 *desten = 0; 1920 return (1); 1921 default: 1922 m_freem(m); 1923 return (0); 1924 } 1925 } 1926 1927 if (rt == NULL) { 1928 /* this could happen, if we could not allocate memory */ 1929 m_freem(m); 1930 return (0); 1931 } 1932 if (rt->rt_gateway->sa_family != AF_LINK) { 1933 printf("nd6_storelladdr: something odd happens\n"); 1934 m_freem(m); 1935 return (0); 1936 } 1937 sdl = SDL(rt->rt_gateway); 1938 if (sdl->sdl_alen == 0) { 1939 /* this should be impossible, but we bark here for debugging */ 1940 printf("nd6_storelladdr: sdl_alen == 0, dst=%s, if=%s\n", 1941 ip6_sprintf(&SIN6(dst)->sin6_addr), if_name(ifp)); 1942 m_freem(m); 1943 return (0); 1944 } 1945 1946 bcopy(LLADDR(sdl), desten, sdl->sdl_alen); 1947 return (1); 1948 } 1949 1950 int 1951 nd6_sysctl(name, oldp, oldlenp, newp, newlen) 1952 int name; 1953 void *oldp; /* syscall arg, need copyout */ 1954 size_t *oldlenp; 1955 void *newp; /* syscall arg, need copyin */ 1956 size_t newlen; 1957 { 1958 void *p; 1959 size_t ol, l; 1960 int error; 1961 1962 error = 0; 1963 l = 0; 1964 1965 if (newp) 1966 return EPERM; 1967 if (oldp && !oldlenp) 1968 return EINVAL; 1969 ol = oldlenp ? *oldlenp : 0; 1970 1971 if (oldp) { 1972 p = malloc(*oldlenp, M_TEMP, M_WAITOK); 1973 if (!p) 1974 return ENOMEM; 1975 } else 1976 p = NULL; 1977 switch (name) { 1978 case ICMPV6CTL_ND6_DRLIST: 1979 error = fill_drlist(p, oldlenp, ol); 1980 if (!error && p && oldp) 1981 error = copyout(p, oldp, *oldlenp); 1982 break; 1983 1984 case ICMPV6CTL_ND6_PRLIST: 1985 error = fill_prlist(p, oldlenp, ol); 1986 if (!error && p && oldp) 1987 error = copyout(p, oldp, *oldlenp); 1988 break; 1989 1990 default: 1991 error = ENOPROTOOPT; 1992 break; 1993 } 1994 if (p) 1995 free(p, M_TEMP); 1996 1997 return (error); 1998 } 1999 2000 static int 2001 fill_drlist(oldp, oldlenp, ol) 2002 void *oldp; 2003 size_t *oldlenp, ol; 2004 { 2005 int error = 0, s; 2006 struct in6_defrouter *d = NULL, *de = NULL; 2007 struct nd_defrouter *dr; 2008 size_t l; 2009 2010 s = splsoftnet(); 2011 2012 if (oldp) { 2013 d = (struct in6_defrouter *)oldp; 2014 de = (struct in6_defrouter *)((caddr_t)oldp + *oldlenp); 2015 } 2016 l = 0; 2017 2018 for (dr = TAILQ_FIRST(&nd_defrouter); dr; 2019 dr = TAILQ_NEXT(dr, dr_entry)) { 2020 2021 if (oldp && d + 1 <= de) { 2022 bzero(d, sizeof(*d)); 2023 d->rtaddr.sin6_family = AF_INET6; 2024 d->rtaddr.sin6_len = sizeof(struct sockaddr_in6); 2025 d->rtaddr.sin6_addr = dr->rtaddr; 2026 in6_recoverscope(&d->rtaddr, &d->rtaddr.sin6_addr, 2027 dr->ifp); 2028 d->flags = dr->flags; 2029 d->rtlifetime = dr->rtlifetime; 2030 d->expire = dr->expire; 2031 d->if_index = dr->ifp->if_index; 2032 } 2033 2034 l += sizeof(*d); 2035 if (d) 2036 d++; 2037 } 2038 2039 if (oldp) { 2040 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */ 2041 if (l > ol) 2042 error = ENOMEM; 2043 } else 2044 *oldlenp = l; 2045 2046 splx(s); 2047 2048 return (error); 2049 } 2050 2051 static int 2052 fill_prlist(oldp, oldlenp, ol) 2053 void *oldp; 2054 size_t *oldlenp, ol; 2055 { 2056 int error = 0, s; 2057 struct nd_prefix *pr; 2058 struct in6_prefix *p = NULL; 2059 struct in6_prefix *pe = NULL; 2060 size_t l; 2061 2062 s = splsoftnet(); 2063 2064 if (oldp) { 2065 p = (struct in6_prefix *)oldp; 2066 pe = (struct in6_prefix *)((caddr_t)oldp + *oldlenp); 2067 } 2068 l = 0; 2069 2070 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 2071 u_short advrtrs; 2072 size_t advance; 2073 struct sockaddr_in6 *sin6; 2074 struct sockaddr_in6 *s6; 2075 struct nd_pfxrouter *pfr; 2076 2077 if (oldp && p + 1 <= pe) 2078 { 2079 bzero(p, sizeof(*p)); 2080 sin6 = (struct sockaddr_in6 *)(p + 1); 2081 2082 p->prefix = pr->ndpr_prefix; 2083 if (in6_recoverscope(&p->prefix, 2084 &p->prefix.sin6_addr, pr->ndpr_ifp) != 0) 2085 log(LOG_ERR, 2086 "scope error in prefix list (%s)\n", 2087 ip6_sprintf(&p->prefix.sin6_addr)); 2088 p->raflags = pr->ndpr_raf; 2089 p->prefixlen = pr->ndpr_plen; 2090 p->vltime = pr->ndpr_vltime; 2091 p->pltime = pr->ndpr_pltime; 2092 p->if_index = pr->ndpr_ifp->if_index; 2093 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2094 p->expire = 0; 2095 else { 2096 time_t maxexpire; 2097 2098 /* XXX: we assume time_t is signed. */ 2099 maxexpire = (-1) & 2100 ~(1 << ((sizeof(maxexpire) * 8) - 1)); 2101 if (pr->ndpr_vltime < 2102 maxexpire - pr->ndpr_lastupdate) { 2103 p->expire = pr->ndpr_lastupdate + 2104 pr->ndpr_vltime; 2105 } else 2106 p->expire = maxexpire; 2107 } 2108 p->refcnt = pr->ndpr_refcnt; 2109 p->flags = pr->ndpr_stateflags; 2110 p->origin = PR_ORIG_RA; 2111 advrtrs = 0; 2112 for (pfr = pr->ndpr_advrtrs.lh_first; pfr; 2113 pfr = pfr->pfr_next) { 2114 if ((void *)&sin6[advrtrs + 1] > (void *)pe) { 2115 advrtrs++; 2116 continue; 2117 } 2118 s6 = &sin6[advrtrs]; 2119 s6->sin6_family = AF_INET6; 2120 s6->sin6_len = sizeof(struct sockaddr_in6); 2121 s6->sin6_addr = pfr->router->rtaddr; 2122 in6_recoverscope(s6, &s6->sin6_addr, 2123 pfr->router->ifp); 2124 advrtrs++; 2125 } 2126 p->advrtrs = advrtrs; 2127 } 2128 else { 2129 advrtrs = 0; 2130 for (pfr = pr->ndpr_advrtrs.lh_first; pfr; 2131 pfr = pfr->pfr_next) 2132 advrtrs++; 2133 } 2134 2135 advance = sizeof(*p) + sizeof(*sin6) * advrtrs; 2136 l += advance; 2137 if (p) 2138 p = (struct in6_prefix *)((caddr_t)p + advance); 2139 } 2140 2141 if (oldp) { 2142 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */ 2143 if (l > ol) 2144 error = ENOMEM; 2145 } else 2146 *oldlenp = l; 2147 2148 splx(s); 2149 2150 return (error); 2151 } 2152