1 /* $NetBSD: nd6.c,v 1.240 2017/12/15 04:03:46 ozaki-r Exp $ */ 2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.240 2017/12/15 04:03:46 ozaki-r Exp $"); 35 36 #ifdef _KERNEL_OPT 37 #include "opt_net_mpsafe.h" 38 #endif 39 40 #include "bridge.h" 41 #include "carp.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/callout.h> 46 #include <sys/kmem.h> 47 #include <sys/mbuf.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/sockio.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/errno.h> 54 #include <sys/ioctl.h> 55 #include <sys/syslog.h> 56 #include <sys/queue.h> 57 #include <sys/cprng.h> 58 #include <sys/workqueue.h> 59 60 #include <net/if.h> 61 #include <net/if_dl.h> 62 #include <net/if_llatbl.h> 63 #include <net/if_types.h> 64 #include <net/route.h> 65 #include <net/if_ether.h> 66 #include <net/if_fddi.h> 67 #include <net/if_arc.h> 68 69 #include <netinet/in.h> 70 #include <netinet6/in6_var.h> 71 #include <netinet/ip6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet6/scope6_var.h> 74 #include <netinet6/nd6.h> 75 #include <netinet6/in6_ifattach.h> 76 #include <netinet/icmp6.h> 77 #include <netinet6/icmp6_private.h> 78 79 #include <net/net_osdep.h> 80 81 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 82 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 83 84 /* timer values */ 85 int nd6_prune = 1; /* walk list every 1 seconds */ 86 int nd6_delay = 5; /* delay first probe time 5 second */ 87 int nd6_umaxtries = 3; /* maximum unicast query */ 88 int nd6_mmaxtries = 3; /* maximum multicast query */ 89 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 90 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 91 92 /* preventing too many loops in ND option parsing */ 93 int nd6_maxndopt = 10; /* max # of ND options allowed */ 94 95 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 96 97 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */ 98 99 #ifdef ND6_DEBUG 100 int nd6_debug = 1; 101 #else 102 int nd6_debug = 0; 103 #endif 104 105 krwlock_t nd6_lock __cacheline_aligned; 106 107 struct nd_drhead nd_defrouter; 108 struct nd_prhead nd_prefix = { 0 }; 109 110 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 111 112 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 113 static void nd6_slowtimo(void *); 114 static int regen_tmpaddr(const struct in6_ifaddr *); 115 static void nd6_free(struct llentry *, int); 116 static void nd6_llinfo_timer(void *); 117 static void nd6_timer(void *); 118 static void nd6_timer_work(struct work *, void *); 119 static void clear_llinfo_pqueue(struct llentry *); 120 static struct nd_opt_hdr *nd6_option(union nd_opts *); 121 122 static callout_t nd6_slowtimo_ch; 123 static callout_t nd6_timer_ch; 124 static struct workqueue *nd6_timer_wq; 125 static struct work nd6_timer_wk; 126 127 static int fill_drlist(void *, size_t *, size_t); 128 static int fill_prlist(void *, size_t *, size_t); 129 130 static struct ifnet *nd6_defifp; 131 static int nd6_defifindex; 132 133 static int nd6_setdefaultiface(int); 134 135 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery"); 136 137 void 138 nd6_init(void) 139 { 140 int error; 141 142 rw_init(&nd6_lock); 143 144 /* initialization of the default router list */ 145 ND_DEFROUTER_LIST_INIT(); 146 147 callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE); 148 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE); 149 150 error = workqueue_create(&nd6_timer_wq, "nd6_timer", 151 nd6_timer_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE); 152 if (error) 153 panic("%s: workqueue_create failed (%d)\n", __func__, error); 154 155 /* start timer */ 156 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 157 nd6_slowtimo, NULL); 158 callout_reset(&nd6_timer_ch, hz, nd6_timer, NULL); 159 } 160 161 struct nd_ifinfo * 162 nd6_ifattach(struct ifnet *ifp) 163 { 164 struct nd_ifinfo *nd; 165 166 nd = kmem_zalloc(sizeof(*nd), KM_SLEEP); 167 168 nd->initialized = 1; 169 170 nd->chlim = IPV6_DEFHLIM; 171 nd->basereachable = REACHABLE_TIME; 172 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 173 nd->retrans = RETRANS_TIMER; 174 175 nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV; 176 177 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 178 * A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL 179 * because one of its members should. */ 180 if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 181 (ifp->if_flags & IFF_LOOPBACK)) 182 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 183 184 /* A loopback interface does not need to accept RTADV. 185 * A bridge interface should not accept RTADV 186 * because one of its members should. */ 187 if (ip6_accept_rtadv && 188 !(ifp->if_flags & IFF_LOOPBACK) && 189 !(ifp->if_type != IFT_BRIDGE)) 190 nd->flags |= ND6_IFF_ACCEPT_RTADV; 191 192 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 193 nd6_setmtu0(ifp, nd); 194 195 return nd; 196 } 197 198 void 199 nd6_ifdetach(struct ifnet *ifp, struct in6_ifextra *ext) 200 { 201 202 /* Ensure all IPv6 addresses are purged before calling nd6_purge */ 203 if_purgeaddrs(ifp, AF_INET6, in6_purgeaddr); 204 nd6_purge(ifp, ext); 205 kmem_free(ext->nd_ifinfo, sizeof(struct nd_ifinfo)); 206 } 207 208 void 209 nd6_setmtu(struct ifnet *ifp) 210 { 211 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 212 } 213 214 void 215 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 216 { 217 u_int32_t omaxmtu; 218 219 omaxmtu = ndi->maxmtu; 220 221 switch (ifp->if_type) { 222 case IFT_ARCNET: 223 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 224 break; 225 case IFT_FDDI: 226 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); 227 break; 228 default: 229 ndi->maxmtu = ifp->if_mtu; 230 break; 231 } 232 233 /* 234 * Decreasing the interface MTU under IPV6 minimum MTU may cause 235 * undesirable situation. We thus notify the operator of the change 236 * explicitly. The check for omaxmtu is necessary to restrict the 237 * log to the case of changing the MTU, not initializing it. 238 */ 239 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 240 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too" 241 " small for IPv6 which needs %lu\n", 242 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long) 243 IPV6_MMTU); 244 } 245 246 if (ndi->maxmtu > in6_maxmtu) 247 in6_setmaxmtu(); /* check all interfaces just in case */ 248 } 249 250 void 251 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 252 { 253 254 memset(ndopts, 0, sizeof(*ndopts)); 255 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 256 ndopts->nd_opts_last 257 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 258 259 if (icmp6len == 0) { 260 ndopts->nd_opts_done = 1; 261 ndopts->nd_opts_search = NULL; 262 } 263 } 264 265 /* 266 * Take one ND option. 267 */ 268 static struct nd_opt_hdr * 269 nd6_option(union nd_opts *ndopts) 270 { 271 struct nd_opt_hdr *nd_opt; 272 int olen; 273 274 KASSERT(ndopts != NULL); 275 KASSERT(ndopts->nd_opts_last != NULL); 276 277 if (ndopts->nd_opts_search == NULL) 278 return NULL; 279 if (ndopts->nd_opts_done) 280 return NULL; 281 282 nd_opt = ndopts->nd_opts_search; 283 284 /* make sure nd_opt_len is inside the buffer */ 285 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) { 286 memset(ndopts, 0, sizeof(*ndopts)); 287 return NULL; 288 } 289 290 olen = nd_opt->nd_opt_len << 3; 291 if (olen == 0) { 292 /* 293 * Message validation requires that all included 294 * options have a length that is greater than zero. 295 */ 296 memset(ndopts, 0, sizeof(*ndopts)); 297 return NULL; 298 } 299 300 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen); 301 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 302 /* option overruns the end of buffer, invalid */ 303 memset(ndopts, 0, sizeof(*ndopts)); 304 return NULL; 305 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 306 /* reached the end of options chain */ 307 ndopts->nd_opts_done = 1; 308 ndopts->nd_opts_search = NULL; 309 } 310 return nd_opt; 311 } 312 313 /* 314 * Parse multiple ND options. 315 * This function is much easier to use, for ND routines that do not need 316 * multiple options of the same type. 317 */ 318 int 319 nd6_options(union nd_opts *ndopts) 320 { 321 struct nd_opt_hdr *nd_opt; 322 int i = 0; 323 324 KASSERT(ndopts != NULL); 325 KASSERT(ndopts->nd_opts_last != NULL); 326 327 if (ndopts->nd_opts_search == NULL) 328 return 0; 329 330 while (1) { 331 nd_opt = nd6_option(ndopts); 332 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 333 /* 334 * Message validation requires that all included 335 * options have a length that is greater than zero. 336 */ 337 ICMP6_STATINC(ICMP6_STAT_ND_BADOPT); 338 memset(ndopts, 0, sizeof(*ndopts)); 339 return -1; 340 } 341 342 if (nd_opt == NULL) 343 goto skip1; 344 345 switch (nd_opt->nd_opt_type) { 346 case ND_OPT_SOURCE_LINKADDR: 347 case ND_OPT_TARGET_LINKADDR: 348 case ND_OPT_MTU: 349 case ND_OPT_REDIRECTED_HEADER: 350 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 351 nd6log(LOG_INFO, 352 "duplicated ND6 option found (type=%d)\n", 353 nd_opt->nd_opt_type); 354 /* XXX bark? */ 355 } else { 356 ndopts->nd_opt_array[nd_opt->nd_opt_type] 357 = nd_opt; 358 } 359 break; 360 case ND_OPT_PREFIX_INFORMATION: 361 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 362 ndopts->nd_opt_array[nd_opt->nd_opt_type] 363 = nd_opt; 364 } 365 ndopts->nd_opts_pi_end = 366 (struct nd_opt_prefix_info *)nd_opt; 367 break; 368 default: 369 /* 370 * Unknown options must be silently ignored, 371 * to accommodate future extension to the protocol. 372 */ 373 nd6log(LOG_DEBUG, 374 "nd6_options: unsupported option %d - " 375 "option ignored\n", nd_opt->nd_opt_type); 376 } 377 378 skip1: 379 i++; 380 if (i > nd6_maxndopt) { 381 ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT); 382 nd6log(LOG_INFO, "too many loop in nd opt\n"); 383 break; 384 } 385 386 if (ndopts->nd_opts_done) 387 break; 388 } 389 390 return 0; 391 } 392 393 /* 394 * ND6 timer routine to handle ND6 entries 395 */ 396 void 397 nd6_llinfo_settimer(struct llentry *ln, time_t xtick) 398 { 399 400 CTASSERT(sizeof(time_t) > sizeof(int)); 401 LLE_WLOCK_ASSERT(ln); 402 403 KASSERT(xtick >= 0); 404 405 ln->ln_expire = time_uptime + xtick / hz; 406 LLE_ADDREF(ln); 407 if (xtick > INT_MAX) { 408 ln->ln_ntick = xtick - INT_MAX; 409 callout_reset(&ln->ln_timer_ch, INT_MAX, 410 nd6_llinfo_timer, ln); 411 } else { 412 ln->ln_ntick = 0; 413 callout_reset(&ln->ln_timer_ch, xtick, 414 nd6_llinfo_timer, ln); 415 } 416 } 417 418 /* 419 * Gets source address of the first packet in hold queue 420 * and stores it in @src. 421 * Returns pointer to @src (if hold queue is not empty) or NULL. 422 */ 423 static struct in6_addr * 424 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 425 { 426 struct ip6_hdr *hip6; 427 428 if (ln == NULL || ln->ln_hold == NULL) 429 return NULL; 430 431 /* 432 * assuming every packet in ln_hold has the same IP header 433 */ 434 hip6 = mtod(ln->ln_hold, struct ip6_hdr *); 435 /* XXX pullup? */ 436 if (sizeof(*hip6) < ln->ln_hold->m_len) 437 *src = hip6->ip6_src; 438 else 439 src = NULL; 440 441 return src; 442 } 443 444 static void 445 nd6_llinfo_timer(void *arg) 446 { 447 struct llentry *ln = arg; 448 struct ifnet *ifp; 449 struct nd_ifinfo *ndi = NULL; 450 bool send_ns = false; 451 const struct in6_addr *daddr6 = NULL; 452 453 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE(); 454 LLE_WLOCK(ln); 455 if ((ln->la_flags & LLE_LINKED) == 0) 456 goto out; 457 if (ln->ln_ntick > 0) { 458 nd6_llinfo_settimer(ln, ln->ln_ntick); 459 goto out; 460 } 461 462 if (callout_pending(&ln->la_timer)) { 463 /* 464 * Here we are a bit odd here in the treatment of 465 * active/pending. If the pending bit is set, it got 466 * rescheduled before I ran. The active 467 * bit we ignore, since if it was stopped 468 * in ll_tablefree() and was currently running 469 * it would have return 0 so the code would 470 * not have deleted it since the callout could 471 * not be stopped so we want to go through 472 * with the delete here now. If the callout 473 * was restarted, the pending bit will be back on and 474 * we just want to bail since the callout_reset would 475 * return 1 and our reference would have been removed 476 * by nd6_llinfo_settimer above since canceled 477 * would have been 1. 478 */ 479 goto out; 480 } 481 482 ifp = ln->lle_tbl->llt_ifp; 483 484 KASSERT(ifp != NULL); 485 486 ndi = ND_IFINFO(ifp); 487 488 switch (ln->ln_state) { 489 case ND6_LLINFO_INCOMPLETE: 490 if (ln->ln_asked < nd6_mmaxtries) { 491 ln->ln_asked++; 492 send_ns = true; 493 } else { 494 struct mbuf *m = ln->ln_hold; 495 if (m) { 496 struct mbuf *m0; 497 498 /* 499 * assuming every packet in ln_hold has 500 * the same IP header 501 */ 502 m0 = m->m_nextpkt; 503 m->m_nextpkt = NULL; 504 ln->ln_hold = m0; 505 clear_llinfo_pqueue(ln); 506 } 507 nd6_free(ln, 0); 508 ln = NULL; 509 if (m != NULL) { 510 icmp6_error2(m, ICMP6_DST_UNREACH, 511 ICMP6_DST_UNREACH_ADDR, 0, ifp); 512 } 513 } 514 break; 515 case ND6_LLINFO_REACHABLE: 516 if (!ND6_LLINFO_PERMANENT(ln)) { 517 ln->ln_state = ND6_LLINFO_STALE; 518 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 519 } 520 break; 521 522 case ND6_LLINFO_PURGE: 523 case ND6_LLINFO_STALE: 524 /* Garbage Collection(RFC 2461 5.3) */ 525 if (!ND6_LLINFO_PERMANENT(ln)) { 526 nd6_free(ln, 1); 527 ln = NULL; 528 } 529 break; 530 531 case ND6_LLINFO_DELAY: 532 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 533 /* We need NUD */ 534 ln->ln_asked = 1; 535 ln->ln_state = ND6_LLINFO_PROBE; 536 daddr6 = &ln->r_l3addr.addr6; 537 send_ns = true; 538 } else { 539 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 540 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 541 } 542 break; 543 case ND6_LLINFO_PROBE: 544 if (ln->ln_asked < nd6_umaxtries) { 545 ln->ln_asked++; 546 daddr6 = &ln->r_l3addr.addr6; 547 send_ns = true; 548 } else { 549 nd6_free(ln, 0); 550 ln = NULL; 551 } 552 break; 553 } 554 555 if (send_ns) { 556 struct in6_addr src, *psrc; 557 const struct in6_addr *taddr6 = &ln->r_l3addr.addr6; 558 559 nd6_llinfo_settimer(ln, ndi->retrans * hz / 1000); 560 psrc = nd6_llinfo_get_holdsrc(ln, &src); 561 LLE_FREE_LOCKED(ln); 562 ln = NULL; 563 nd6_ns_output(ifp, daddr6, taddr6, psrc, 0); 564 } 565 566 out: 567 if (ln != NULL) 568 LLE_FREE_LOCKED(ln); 569 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 570 } 571 572 /* 573 * ND6 timer routine to expire default route list and prefix list 574 */ 575 static void 576 nd6_timer_work(struct work *wk, void *arg) 577 { 578 struct nd_defrouter *next_dr, *dr; 579 struct nd_prefix *next_pr, *pr; 580 struct in6_ifaddr *ia6, *nia6; 581 int s, bound; 582 struct psref psref; 583 584 callout_reset(&nd6_timer_ch, nd6_prune * hz, 585 nd6_timer, NULL); 586 587 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE(); 588 589 /* expire default router list */ 590 591 ND6_WLOCK(); 592 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, next_dr) { 593 if (dr->expire && dr->expire < time_uptime) { 594 nd6_defrtrlist_del(dr, NULL); 595 } 596 } 597 ND6_UNLOCK(); 598 599 /* 600 * expire interface addresses. 601 * in the past the loop was inside prefix expiry processing. 602 * However, from a stricter speci-confrmance standpoint, we should 603 * rather separate address lifetimes and prefix lifetimes. 604 */ 605 bound = curlwp_bind(); 606 addrloop: 607 s = pserialize_read_enter(); 608 for (ia6 = IN6_ADDRLIST_READER_FIRST(); ia6; ia6 = nia6) { 609 nia6 = IN6_ADDRLIST_READER_NEXT(ia6); 610 611 ia6_acquire(ia6, &psref); 612 pserialize_read_exit(s); 613 614 /* check address lifetime */ 615 if (IFA6_IS_INVALID(ia6)) { 616 int regen = 0; 617 struct ifnet *ifp; 618 619 /* 620 * If the expiring address is temporary, try 621 * regenerating a new one. This would be useful when 622 * we suspended a laptop PC, then turned it on after a 623 * period that could invalidate all temporary 624 * addresses. Although we may have to restart the 625 * loop (see below), it must be after purging the 626 * address. Otherwise, we'd see an infinite loop of 627 * regeneration. 628 */ 629 if (ip6_use_tempaddr && 630 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 631 IFNET_LOCK(ia6->ia_ifa.ifa_ifp); 632 if (regen_tmpaddr(ia6) == 0) 633 regen = 1; 634 IFNET_UNLOCK(ia6->ia_ifa.ifa_ifp); 635 } 636 637 ifp = ia6->ia_ifa.ifa_ifp; 638 IFNET_LOCK(ifp); 639 /* 640 * Need to take the lock first to prevent if_detach 641 * from running in6_purgeaddr concurrently. 642 */ 643 if (!if_is_deactivated(ifp)) { 644 ia6_release(ia6, &psref); 645 in6_purgeaddr(&ia6->ia_ifa); 646 } else { 647 /* 648 * ifp is being destroyed, ia6 will be destroyed 649 * by if_detach. 650 */ 651 ia6_release(ia6, &psref); 652 } 653 ia6 = NULL; 654 IFNET_UNLOCK(ifp); 655 656 if (regen) 657 goto addrloop; /* XXX: see below */ 658 } else if (IFA6_IS_DEPRECATED(ia6)) { 659 int oldflags = ia6->ia6_flags; 660 661 if ((oldflags & IN6_IFF_DEPRECATED) == 0) { 662 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 663 rt_newaddrmsg(RTM_NEWADDR, 664 (struct ifaddr *)ia6, 0, NULL); 665 } 666 667 /* 668 * If a temporary address has just become deprecated, 669 * regenerate a new one if possible. 670 */ 671 if (ip6_use_tempaddr && 672 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 673 (oldflags & IN6_IFF_DEPRECATED) == 0) { 674 675 if (regen_tmpaddr(ia6) == 0) { 676 /* 677 * A new temporary address is 678 * generated. 679 * XXX: this means the address chain 680 * has changed while we are still in 681 * the loop. Although the change 682 * would not cause disaster (because 683 * it's not a deletion, but an 684 * addition,) we'd rather restart the 685 * loop just for safety. Or does this 686 * significantly reduce performance?? 687 */ 688 ia6_release(ia6, &psref); 689 goto addrloop; 690 } 691 } 692 } else { 693 /* 694 * A new RA might have made a deprecated address 695 * preferred. 696 */ 697 if (ia6->ia6_flags & IN6_IFF_DEPRECATED) { 698 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 699 rt_newaddrmsg(RTM_NEWADDR, 700 (struct ifaddr *)ia6, 0, NULL); 701 } 702 } 703 s = pserialize_read_enter(); 704 ia6_release(ia6, &psref); 705 } 706 pserialize_read_exit(s); 707 curlwp_bindx(bound); 708 709 /* expire prefix list */ 710 ND6_WLOCK(); 711 ND_PREFIX_LIST_FOREACH_SAFE(pr, next_pr) { 712 /* 713 * check prefix lifetime. 714 * since pltime is just for autoconf, pltime processing for 715 * prefix is not necessary. 716 */ 717 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 718 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) { 719 /* 720 * Just invalidate the prefix here. Removing it 721 * will be done when purging an associated address. 722 */ 723 KASSERT(pr->ndpr_refcnt > 0); 724 nd6_invalidate_prefix(pr); 725 } 726 } 727 ND6_UNLOCK(); 728 729 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 730 } 731 732 static void 733 nd6_timer(void *ignored_arg) 734 { 735 736 workqueue_enqueue(nd6_timer_wq, &nd6_timer_wk, NULL); 737 } 738 739 /* ia6: deprecated/invalidated temporary address */ 740 static int 741 regen_tmpaddr(const struct in6_ifaddr *ia6) 742 { 743 struct ifaddr *ifa; 744 struct ifnet *ifp; 745 struct in6_ifaddr *public_ifa6 = NULL; 746 int s; 747 748 ifp = ia6->ia_ifa.ifa_ifp; 749 s = pserialize_read_enter(); 750 IFADDR_READER_FOREACH(ifa, ifp) { 751 struct in6_ifaddr *it6; 752 753 if (ifa->ifa_addr->sa_family != AF_INET6) 754 continue; 755 756 it6 = (struct in6_ifaddr *)ifa; 757 758 /* ignore no autoconf addresses. */ 759 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 760 continue; 761 762 /* ignore autoconf addresses with different prefixes. */ 763 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 764 continue; 765 766 /* 767 * Now we are looking at an autoconf address with the same 768 * prefix as ours. If the address is temporary and is still 769 * preferred, do not create another one. It would be rare, but 770 * could happen, for example, when we resume a laptop PC after 771 * a long period. 772 */ 773 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 774 !IFA6_IS_DEPRECATED(it6)) { 775 public_ifa6 = NULL; 776 break; 777 } 778 779 /* 780 * This is a public autoconf address that has the same prefix 781 * as ours. If it is preferred, keep it. We can't break the 782 * loop here, because there may be a still-preferred temporary 783 * address with the prefix. 784 */ 785 if (!IFA6_IS_DEPRECATED(it6)) 786 public_ifa6 = it6; 787 } 788 789 if (public_ifa6 != NULL) { 790 int e; 791 struct psref psref; 792 793 ia6_acquire(public_ifa6, &psref); 794 pserialize_read_exit(s); 795 /* 796 * Random factor is introduced in the preferred lifetime, so 797 * we do not need additional delay (3rd arg to in6_tmpifadd). 798 */ 799 ND6_WLOCK(); 800 e = in6_tmpifadd(public_ifa6, 0, 0); 801 ND6_UNLOCK(); 802 if (e != 0) { 803 ia6_release(public_ifa6, &psref); 804 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 805 " tmp addr, errno=%d\n", e); 806 return -1; 807 } 808 ia6_release(public_ifa6, &psref); 809 return 0; 810 } 811 pserialize_read_exit(s); 812 813 return -1; 814 } 815 816 bool 817 nd6_accepts_rtadv(const struct nd_ifinfo *ndi) 818 { 819 switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) { 820 case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV: 821 return true; 822 case ND6_IFF_ACCEPT_RTADV: 823 return ip6_accept_rtadv != 0; 824 case ND6_IFF_OVERRIDE_RTADV: 825 case 0: 826 default: 827 return false; 828 } 829 } 830 831 /* 832 * Nuke neighbor cache/prefix/default router management table, right before 833 * ifp goes away. 834 */ 835 void 836 nd6_purge(struct ifnet *ifp, struct in6_ifextra *ext) 837 { 838 struct nd_defrouter *dr, *ndr; 839 struct nd_prefix *pr, *npr; 840 841 /* 842 * During detach, the ND info might be already removed, but 843 * then is explitly passed as argument. 844 * Otherwise get it from ifp->if_afdata. 845 */ 846 if (ext == NULL) 847 ext = ifp->if_afdata[AF_INET6]; 848 if (ext == NULL) 849 return; 850 851 ND6_WLOCK(); 852 /* 853 * Nuke default router list entries toward ifp. 854 * We defer removal of default router list entries that is installed 855 * in the routing table, in order to keep additional side effects as 856 * small as possible. 857 */ 858 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, ndr) { 859 if (dr->installed) 860 continue; 861 862 if (dr->ifp == ifp) { 863 KASSERT(ext != NULL); 864 nd6_defrtrlist_del(dr, ext); 865 } 866 } 867 868 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, ndr) { 869 if (!dr->installed) 870 continue; 871 872 if (dr->ifp == ifp) { 873 KASSERT(ext != NULL); 874 nd6_defrtrlist_del(dr, ext); 875 } 876 } 877 878 /* Nuke prefix list entries toward ifp */ 879 ND_PREFIX_LIST_FOREACH_SAFE(pr, npr) { 880 if (pr->ndpr_ifp == ifp) { 881 /* 882 * All addresses referencing pr should be already freed. 883 */ 884 KASSERT(pr->ndpr_refcnt == 0); 885 nd6_prelist_remove(pr); 886 } 887 } 888 889 /* cancel default outgoing interface setting */ 890 if (nd6_defifindex == ifp->if_index) 891 nd6_setdefaultiface(0); 892 893 /* XXX: too restrictive? */ 894 if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) { 895 struct nd_ifinfo *ndi = ND_IFINFO(ifp); 896 if (ndi && nd6_accepts_rtadv(ndi)) { 897 /* refresh default router list */ 898 nd6_defrouter_select(); 899 } 900 } 901 ND6_UNLOCK(); 902 903 /* 904 * We may not need to nuke the neighbor cache entries here 905 * because the neighbor cache is kept in if_afdata[AF_INET6]. 906 * nd6_purge() is invoked by in6_ifdetach() which is called 907 * from if_detach() where everything gets purged. However 908 * in6_ifdetach is directly called from vlan(4), so we still 909 * need to purge entries here. 910 */ 911 if (ext->lltable != NULL) 912 lltable_purge_entries(ext->lltable); 913 } 914 915 void 916 nd6_assert_purged(struct ifnet *ifp) 917 { 918 struct nd_defrouter *dr; 919 struct nd_prefix *pr; 920 char ip6buf[INET6_ADDRSTRLEN] __diagused; 921 922 ND6_RLOCK(); 923 ND_DEFROUTER_LIST_FOREACH(dr) { 924 KASSERTMSG(dr->ifp != ifp, 925 "defrouter %s remains on %s", 926 IN6_PRINT(ip6buf, &dr->rtaddr), ifp->if_xname); 927 } 928 929 ND_PREFIX_LIST_FOREACH(pr) { 930 KASSERTMSG(pr->ndpr_ifp != ifp, 931 "prefix %s/%d remains on %s", 932 IN6_PRINT(ip6buf, &pr->ndpr_prefix.sin6_addr), 933 pr->ndpr_plen, ifp->if_xname); 934 } 935 ND6_UNLOCK(); 936 } 937 938 struct llentry * 939 nd6_lookup(const struct in6_addr *addr6, const struct ifnet *ifp, bool wlock) 940 { 941 struct sockaddr_in6 sin6; 942 struct llentry *ln; 943 944 sockaddr_in6_init(&sin6, addr6, 0, 0, 0); 945 946 IF_AFDATA_RLOCK(ifp); 947 ln = lla_lookup(LLTABLE6(ifp), wlock ? LLE_EXCLUSIVE : 0, 948 sin6tosa(&sin6)); 949 IF_AFDATA_RUNLOCK(ifp); 950 951 return ln; 952 } 953 954 struct llentry * 955 nd6_create(const struct in6_addr *addr6, const struct ifnet *ifp) 956 { 957 struct sockaddr_in6 sin6; 958 struct llentry *ln; 959 struct rtentry *rt; 960 961 sockaddr_in6_init(&sin6, addr6, 0, 0, 0); 962 rt = rtalloc1(sin6tosa(&sin6), 0); 963 964 IF_AFDATA_WLOCK(ifp); 965 ln = lla_create(LLTABLE6(ifp), LLE_EXCLUSIVE, sin6tosa(&sin6), rt); 966 IF_AFDATA_WUNLOCK(ifp); 967 968 if (rt != NULL) 969 rt_unref(rt); 970 if (ln != NULL) 971 ln->ln_state = ND6_LLINFO_NOSTATE; 972 973 return ln; 974 } 975 976 /* 977 * Test whether a given IPv6 address is a neighbor or not, ignoring 978 * the actual neighbor cache. The neighbor cache is ignored in order 979 * to not reenter the routing code from within itself. 980 */ 981 static int 982 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 983 { 984 struct nd_prefix *pr; 985 struct ifaddr *dstaddr; 986 int s; 987 988 /* 989 * A link-local address is always a neighbor. 990 * XXX: a link does not necessarily specify a single interface. 991 */ 992 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 993 struct sockaddr_in6 sin6_copy; 994 u_int32_t zone; 995 996 /* 997 * We need sin6_copy since sa6_recoverscope() may modify the 998 * content (XXX). 999 */ 1000 sin6_copy = *addr; 1001 if (sa6_recoverscope(&sin6_copy)) 1002 return 0; /* XXX: should be impossible */ 1003 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1004 return 0; 1005 if (sin6_copy.sin6_scope_id == zone) 1006 return 1; 1007 else 1008 return 0; 1009 } 1010 1011 /* 1012 * If the address matches one of our addresses, 1013 * it should be a neighbor. 1014 * If the address matches one of our on-link prefixes, it should be a 1015 * neighbor. 1016 */ 1017 ND6_RLOCK(); 1018 ND_PREFIX_LIST_FOREACH(pr) { 1019 if (pr->ndpr_ifp != ifp) 1020 continue; 1021 1022 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { 1023 struct rtentry *rt; 1024 1025 rt = rtalloc1(sin6tosa(&pr->ndpr_prefix), 0); 1026 if (rt == NULL) 1027 continue; 1028 /* 1029 * This is the case where multiple interfaces 1030 * have the same prefix, but only one is installed 1031 * into the routing table and that prefix entry 1032 * is not the one being examined here. In the case 1033 * where RADIX_MPATH is enabled, multiple route 1034 * entries (of the same rt_key value) will be 1035 * installed because the interface addresses all 1036 * differ. 1037 */ 1038 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1039 &satocsin6(rt_getkey(rt))->sin6_addr)) { 1040 rt_unref(rt); 1041 continue; 1042 } 1043 rt_unref(rt); 1044 } 1045 1046 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1047 &addr->sin6_addr, &pr->ndpr_mask)) { 1048 ND6_UNLOCK(); 1049 return 1; 1050 } 1051 } 1052 ND6_UNLOCK(); 1053 1054 /* 1055 * If the address is assigned on the node of the other side of 1056 * a p2p interface, the address should be a neighbor. 1057 */ 1058 s = pserialize_read_enter(); 1059 dstaddr = ifa_ifwithdstaddr(sin6tocsa(addr)); 1060 if (dstaddr != NULL) { 1061 if (dstaddr->ifa_ifp == ifp) { 1062 pserialize_read_exit(s); 1063 return 1; 1064 } 1065 } 1066 pserialize_read_exit(s); 1067 1068 /* 1069 * If the default router list is empty, all addresses are regarded 1070 * as on-link, and thus, as a neighbor. 1071 */ 1072 ND6_RLOCK(); 1073 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1074 ND_DEFROUTER_LIST_EMPTY() && nd6_defifindex == ifp->if_index) { 1075 ND6_UNLOCK(); 1076 return 1; 1077 } 1078 ND6_UNLOCK(); 1079 1080 return 0; 1081 } 1082 1083 /* 1084 * Detect if a given IPv6 address identifies a neighbor on a given link. 1085 * XXX: should take care of the destination of a p2p link? 1086 */ 1087 int 1088 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1089 { 1090 struct nd_prefix *pr; 1091 struct llentry *ln; 1092 struct rtentry *rt; 1093 1094 /* 1095 * A link-local address is always a neighbor. 1096 * XXX: a link does not necessarily specify a single interface. 1097 */ 1098 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1099 struct sockaddr_in6 sin6_copy; 1100 u_int32_t zone; 1101 1102 /* 1103 * We need sin6_copy since sa6_recoverscope() may modify the 1104 * content (XXX). 1105 */ 1106 sin6_copy = *addr; 1107 if (sa6_recoverscope(&sin6_copy)) 1108 return 0; /* XXX: should be impossible */ 1109 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1110 return 0; 1111 if (sin6_copy.sin6_scope_id == zone) 1112 return 1; 1113 else 1114 return 0; 1115 } 1116 1117 /* 1118 * If the address matches one of our on-link prefixes, it should be a 1119 * neighbor. 1120 */ 1121 ND6_RLOCK(); 1122 ND_PREFIX_LIST_FOREACH(pr) { 1123 if (pr->ndpr_ifp != ifp) 1124 continue; 1125 1126 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) 1127 continue; 1128 1129 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1130 &addr->sin6_addr, &pr->ndpr_mask)) { 1131 ND6_UNLOCK(); 1132 return 1; 1133 } 1134 } 1135 1136 /* 1137 * If the default router list is empty, all addresses are regarded 1138 * as on-link, and thus, as a neighbor. 1139 * XXX: we restrict the condition to hosts, because routers usually do 1140 * not have the "default router list". 1141 */ 1142 if (!ip6_forwarding && ND_DEFROUTER_LIST_EMPTY() && 1143 nd6_defifindex == ifp->if_index) { 1144 ND6_UNLOCK(); 1145 return 1; 1146 } 1147 ND6_UNLOCK(); 1148 1149 if (nd6_is_new_addr_neighbor(addr, ifp)) 1150 return 1; 1151 1152 /* 1153 * Even if the address matches none of our addresses, it might be 1154 * in the neighbor cache or a connected route. 1155 */ 1156 ln = nd6_lookup(&addr->sin6_addr, ifp, false); 1157 if (ln != NULL) { 1158 LLE_RUNLOCK(ln); 1159 return 1; 1160 } 1161 1162 rt = rtalloc1(sin6tocsa(addr), 0); 1163 if (rt == NULL) 1164 return 0; 1165 1166 if ((rt->rt_flags & RTF_CONNECTED) && (rt->rt_ifp == ifp 1167 #if NBRIDGE > 0 1168 || rt->rt_ifp->if_bridge == ifp->if_bridge 1169 #endif 1170 #if NCARP > 0 1171 || (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) || 1172 (rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)|| 1173 (ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP && 1174 rt->rt_ifp->if_carpdev == ifp->if_carpdev) 1175 #endif 1176 )) { 1177 rt_unref(rt); 1178 return 1; 1179 } 1180 rt_unref(rt); 1181 1182 return 0; 1183 } 1184 1185 /* 1186 * Free an nd6 llinfo entry. 1187 * Since the function would cause significant changes in the kernel, DO NOT 1188 * make it global, unless you have a strong reason for the change, and are sure 1189 * that the change is safe. 1190 */ 1191 static void 1192 nd6_free(struct llentry *ln, int gc) 1193 { 1194 struct nd_defrouter *dr; 1195 struct ifnet *ifp; 1196 struct in6_addr *in6; 1197 1198 KASSERT(ln != NULL); 1199 LLE_WLOCK_ASSERT(ln); 1200 1201 ifp = ln->lle_tbl->llt_ifp; 1202 in6 = &ln->r_l3addr.addr6; 1203 /* 1204 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1205 * even though it is not harmful, it was not really necessary. 1206 */ 1207 1208 if (!ip6_forwarding) { 1209 ND6_WLOCK(); 1210 dr = nd6_defrouter_lookup(in6, ifp); 1211 1212 if (dr != NULL && dr->expire && 1213 ln->ln_state == ND6_LLINFO_STALE && gc) { 1214 /* 1215 * If the reason for the deletion is just garbage 1216 * collection, and the neighbor is an active default 1217 * router, do not delete it. Instead, reset the GC 1218 * timer using the router's lifetime. 1219 * Simply deleting the entry would affect default 1220 * router selection, which is not necessarily a good 1221 * thing, especially when we're using router preference 1222 * values. 1223 * XXX: the check for ln_state would be redundant, 1224 * but we intentionally keep it just in case. 1225 */ 1226 if (dr->expire > time_uptime) 1227 nd6_llinfo_settimer(ln, 1228 (dr->expire - time_uptime) * hz); 1229 else 1230 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 1231 ND6_UNLOCK(); 1232 LLE_WUNLOCK(ln); 1233 return; 1234 } 1235 1236 if (ln->ln_router || dr) { 1237 /* 1238 * We need to unlock to avoid a LOR with nd6_rt_flush() 1239 * with the rnh and for the calls to 1240 * nd6_pfxlist_onlink_check() and nd6_defrouter_select() in the 1241 * block further down for calls into nd6_lookup(). 1242 * We still hold a ref. 1243 */ 1244 LLE_WUNLOCK(ln); 1245 1246 /* 1247 * nd6_rt_flush must be called whether or not the neighbor 1248 * is in the Default Router List. 1249 * See a corresponding comment in nd6_na_input(). 1250 */ 1251 nd6_rt_flush(in6, ifp); 1252 } 1253 1254 if (dr) { 1255 /* 1256 * Unreachablity of a router might affect the default 1257 * router selection and on-link detection of advertised 1258 * prefixes. 1259 */ 1260 1261 /* 1262 * Temporarily fake the state to choose a new default 1263 * router and to perform on-link determination of 1264 * prefixes correctly. 1265 * Below the state will be set correctly, 1266 * or the entry itself will be deleted. 1267 */ 1268 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1269 1270 /* 1271 * Since nd6_defrouter_select() does not affect the 1272 * on-link determination and MIP6 needs the check 1273 * before the default router selection, we perform 1274 * the check now. 1275 */ 1276 nd6_pfxlist_onlink_check(); 1277 1278 /* 1279 * refresh default router list 1280 */ 1281 nd6_defrouter_select(); 1282 } 1283 1284 #ifdef __FreeBSD__ 1285 /* 1286 * If this entry was added by an on-link redirect, remove the 1287 * corresponding host route. 1288 */ 1289 if (ln->la_flags & LLE_REDIRECT) 1290 nd6_free_redirect(ln); 1291 #endif 1292 ND6_UNLOCK(); 1293 1294 if (ln->ln_router || dr) 1295 LLE_WLOCK(ln); 1296 } 1297 1298 /* 1299 * Save to unlock. We still hold an extra reference and will not 1300 * free(9) in llentry_free() if someone else holds one as well. 1301 */ 1302 LLE_WUNLOCK(ln); 1303 IF_AFDATA_LOCK(ifp); 1304 LLE_WLOCK(ln); 1305 1306 lltable_free_entry(LLTABLE6(ifp), ln); 1307 1308 IF_AFDATA_UNLOCK(ifp); 1309 } 1310 1311 /* 1312 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1313 * 1314 * XXX cost-effective methods? 1315 */ 1316 void 1317 nd6_nud_hint(struct rtentry *rt) 1318 { 1319 struct llentry *ln; 1320 struct ifnet *ifp; 1321 1322 if (rt == NULL) 1323 return; 1324 1325 ifp = rt->rt_ifp; 1326 ln = nd6_lookup(&(satocsin6(rt_getkey(rt)))->sin6_addr, ifp, true); 1327 if (ln == NULL) 1328 return; 1329 1330 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1331 goto done; 1332 1333 /* 1334 * if we get upper-layer reachability confirmation many times, 1335 * it is possible we have false information. 1336 */ 1337 ln->ln_byhint++; 1338 if (ln->ln_byhint > nd6_maxnudhint) 1339 goto done; 1340 1341 ln->ln_state = ND6_LLINFO_REACHABLE; 1342 if (!ND6_LLINFO_PERMANENT(ln)) 1343 nd6_llinfo_settimer(ln, ND_IFINFO(rt->rt_ifp)->reachable * hz); 1344 1345 done: 1346 LLE_WUNLOCK(ln); 1347 1348 return; 1349 } 1350 1351 struct gc_args { 1352 int gc_entries; 1353 const struct in6_addr *skip_in6; 1354 }; 1355 1356 static int 1357 nd6_purge_entry(struct lltable *llt, struct llentry *ln, void *farg) 1358 { 1359 struct gc_args *args = farg; 1360 int *n = &args->gc_entries; 1361 const struct in6_addr *skip_in6 = args->skip_in6; 1362 1363 if (*n <= 0) 1364 return 0; 1365 1366 if (ND6_LLINFO_PERMANENT(ln)) 1367 return 0; 1368 1369 if (IN6_ARE_ADDR_EQUAL(&ln->r_l3addr.addr6, skip_in6)) 1370 return 0; 1371 1372 LLE_WLOCK(ln); 1373 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1374 ln->ln_state = ND6_LLINFO_STALE; 1375 else 1376 ln->ln_state = ND6_LLINFO_PURGE; 1377 nd6_llinfo_settimer(ln, 0); 1378 LLE_WUNLOCK(ln); 1379 1380 (*n)--; 1381 return 0; 1382 } 1383 1384 static void 1385 nd6_gc_neighbors(struct lltable *llt, const struct in6_addr *in6) 1386 { 1387 1388 if (ip6_neighborgcthresh >= 0 && 1389 lltable_get_entry_count(llt) >= ip6_neighborgcthresh) { 1390 struct gc_args gc_args = {10, in6}; 1391 /* 1392 * XXX entries that are "less recently used" should be 1393 * freed first. 1394 */ 1395 lltable_foreach_lle(llt, nd6_purge_entry, &gc_args); 1396 } 1397 } 1398 1399 void 1400 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info) 1401 { 1402 struct sockaddr *gate = rt->rt_gateway; 1403 struct ifnet *ifp = rt->rt_ifp; 1404 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen; 1405 struct ifaddr *ifa; 1406 1407 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1408 1409 if (req == RTM_LLINFO_UPD) { 1410 int rc; 1411 struct in6_addr *in6; 1412 struct in6_addr in6_all; 1413 int anycast; 1414 1415 if ((ifa = info->rti_ifa) == NULL) 1416 return; 1417 1418 in6 = &ifatoia6(ifa)->ia_addr.sin6_addr; 1419 anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST; 1420 1421 in6_all = in6addr_linklocal_allnodes; 1422 if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) { 1423 log(LOG_ERR, "%s: failed to set scope %s " 1424 "(errno=%d)\n", __func__, if_name(ifp), rc); 1425 return; 1426 } 1427 1428 /* XXX don't set Override for proxy addresses */ 1429 nd6_na_output(ifa->ifa_ifp, &in6_all, in6, 1430 (anycast ? 0 : ND_NA_FLAG_OVERRIDE) 1431 #if 0 1432 | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0) 1433 #endif 1434 , 1, NULL); 1435 return; 1436 } 1437 1438 if ((rt->rt_flags & RTF_GATEWAY) != 0) 1439 return; 1440 1441 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { 1442 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1443 /* 1444 * This is probably an interface direct route for a link 1445 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1446 * We do not need special treatment below for such a route. 1447 * Moreover, the RTF_LLINFO flag which would be set below 1448 * would annoy the ndp(8) command. 1449 */ 1450 return; 1451 } 1452 1453 switch (req) { 1454 case RTM_ADD: { 1455 struct psref psref; 1456 1457 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1458 /* 1459 * There is no backward compatibility :) 1460 * 1461 * if ((rt->rt_flags & RTF_HOST) == 0 && 1462 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1463 * rt->rt_flags |= RTF_CLONING; 1464 */ 1465 /* XXX should move to route.c? */ 1466 if (rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL)) { 1467 union { 1468 struct sockaddr sa; 1469 struct sockaddr_dl sdl; 1470 struct sockaddr_storage ss; 1471 } u; 1472 /* 1473 * Case 1: This route should come from a route to 1474 * interface (RTF_CLONING case) or the route should be 1475 * treated as on-link but is currently not 1476 * (RTF_LLINFO && ln == NULL case). 1477 */ 1478 if (sockaddr_dl_init(&u.sdl, sizeof(u.ss), 1479 ifp->if_index, ifp->if_type, 1480 NULL, namelen, NULL, addrlen) == NULL) { 1481 printf("%s.%d: sockaddr_dl_init(, %zu, ) " 1482 "failed on %s\n", __func__, __LINE__, 1483 sizeof(u.ss), if_name(ifp)); 1484 } 1485 rt_setgate(rt, &u.sa); 1486 gate = rt->rt_gateway; 1487 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1488 if (gate == NULL) { 1489 log(LOG_ERR, 1490 "%s: rt_setgate failed on %s\n", __func__, 1491 if_name(ifp)); 1492 break; 1493 } 1494 1495 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1496 if ((rt->rt_flags & RTF_CONNECTED) != 0) 1497 break; 1498 } 1499 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1500 /* 1501 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1502 * We don't do that here since llinfo is not ready yet. 1503 * 1504 * There are also couple of other things to be discussed: 1505 * - unsolicited NA code needs improvement beforehand 1506 * - RFC2461 says we MAY send multicast unsolicited NA 1507 * (7.2.6 paragraph 4), however, it also says that we 1508 * SHOULD provide a mechanism to prevent multicast NA storm. 1509 * we don't have anything like it right now. 1510 * note that the mechanism needs a mutual agreement 1511 * between proxies, which means that we need to implement 1512 * a new protocol, or a new kludge. 1513 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1514 * we need to check ip6forwarding before sending it. 1515 * (or should we allow proxy ND configuration only for 1516 * routers? there's no mention about proxy ND from hosts) 1517 */ 1518 #if 0 1519 /* XXX it does not work */ 1520 if (rt->rt_flags & RTF_ANNOUNCE) 1521 nd6_na_output(ifp, 1522 &satocsin6(rt_getkey(rt))->sin6_addr, 1523 &satocsin6(rt_getkey(rt))->sin6_addr, 1524 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1525 1, NULL); 1526 #endif 1527 1528 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 1529 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1530 /* 1531 * Address resolution isn't necessary for a point to 1532 * point link, so we can skip this test for a p2p link. 1533 */ 1534 if (gate->sa_family != AF_LINK || 1535 gate->sa_len < 1536 sockaddr_dl_measure(namelen, addrlen)) { 1537 log(LOG_DEBUG, 1538 "nd6_rtrequest: bad gateway value: %s\n", 1539 if_name(ifp)); 1540 break; 1541 } 1542 satosdl(gate)->sdl_type = ifp->if_type; 1543 satosdl(gate)->sdl_index = ifp->if_index; 1544 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1545 } 1546 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1547 1548 /* 1549 * When called from rt_ifa_addlocal, we cannot depend on that 1550 * the address (rt_getkey(rt)) exits in the address list of the 1551 * interface. So check RTF_LOCAL instead. 1552 */ 1553 if (rt->rt_flags & RTF_LOCAL) { 1554 if (nd6_useloopback) 1555 rt->rt_ifp = lo0ifp; /* XXX */ 1556 break; 1557 } 1558 1559 /* 1560 * check if rt_getkey(rt) is an address assigned 1561 * to the interface. 1562 */ 1563 ifa = (struct ifaddr *)in6ifa_ifpwithaddr_psref(ifp, 1564 &satocsin6(rt_getkey(rt))->sin6_addr, &psref); 1565 if (ifa != NULL) { 1566 if (nd6_useloopback) { 1567 rt->rt_ifp = lo0ifp; /* XXX */ 1568 /* 1569 * Make sure rt_ifa be equal to the ifaddr 1570 * corresponding to the address. 1571 * We need this because when we refer 1572 * rt_ifa->ia6_flags in ip6_input, we assume 1573 * that the rt_ifa points to the address instead 1574 * of the loopback address. 1575 */ 1576 if (ifa != rt->rt_ifa) 1577 rt_replace_ifa(rt, ifa); 1578 } 1579 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1580 /* join solicited node multicast for proxy ND */ 1581 if (ifp->if_flags & IFF_MULTICAST) { 1582 struct in6_addr llsol; 1583 int error; 1584 1585 llsol = satocsin6(rt_getkey(rt))->sin6_addr; 1586 llsol.s6_addr32[0] = htonl(0xff020000); 1587 llsol.s6_addr32[1] = 0; 1588 llsol.s6_addr32[2] = htonl(1); 1589 llsol.s6_addr8[12] = 0xff; 1590 if (in6_setscope(&llsol, ifp, NULL)) 1591 goto out; 1592 if (!in6_addmulti(&llsol, ifp, &error, 0)) { 1593 char ip6buf[INET6_ADDRSTRLEN]; 1594 nd6log(LOG_ERR, "%s: failed to join " 1595 "%s (errno=%d)\n", if_name(ifp), 1596 IN6_PRINT(ip6buf, &llsol), error); 1597 } 1598 } 1599 } 1600 out: 1601 ifa_release(ifa, &psref); 1602 /* 1603 * If we have too many cache entries, initiate immediate 1604 * purging for some entries. 1605 */ 1606 if (rt->rt_ifp != NULL) 1607 nd6_gc_neighbors(LLTABLE6(rt->rt_ifp), NULL); 1608 break; 1609 } 1610 1611 case RTM_DELETE: 1612 /* leave from solicited node multicast for proxy ND */ 1613 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && 1614 (ifp->if_flags & IFF_MULTICAST) != 0) { 1615 struct in6_addr llsol; 1616 struct in6_multi *in6m; 1617 1618 llsol = satocsin6(rt_getkey(rt))->sin6_addr; 1619 llsol.s6_addr32[0] = htonl(0xff020000); 1620 llsol.s6_addr32[1] = 0; 1621 llsol.s6_addr32[2] = htonl(1); 1622 llsol.s6_addr8[12] = 0xff; 1623 if (in6_setscope(&llsol, ifp, NULL) == 0) { 1624 in6m = in6_lookup_multi(&llsol, ifp); 1625 if (in6m) 1626 in6_delmulti(in6m); 1627 } 1628 } 1629 break; 1630 } 1631 } 1632 1633 int 1634 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp) 1635 { 1636 struct in6_drlist *drl = (struct in6_drlist *)data; 1637 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1638 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1639 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1640 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1641 struct nd_defrouter *dr; 1642 struct nd_prefix *pr; 1643 int i = 0, error = 0; 1644 1645 switch (cmd) { 1646 case SIOCGDRLST_IN6: 1647 /* 1648 * obsolete API, use sysctl under net.inet6.icmp6 1649 */ 1650 memset(drl, 0, sizeof(*drl)); 1651 ND6_RLOCK(); 1652 ND_DEFROUTER_LIST_FOREACH(dr) { 1653 if (i >= DRLSTSIZ) 1654 break; 1655 drl->defrouter[i].rtaddr = dr->rtaddr; 1656 in6_clearscope(&drl->defrouter[i].rtaddr); 1657 1658 drl->defrouter[i].flags = dr->flags; 1659 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1660 drl->defrouter[i].expire = dr->expire ? 1661 time_mono_to_wall(dr->expire) : 0; 1662 drl->defrouter[i].if_index = dr->ifp->if_index; 1663 i++; 1664 } 1665 ND6_UNLOCK(); 1666 break; 1667 case SIOCGPRLST_IN6: 1668 /* 1669 * obsolete API, use sysctl under net.inet6.icmp6 1670 * 1671 * XXX the structure in6_prlist was changed in backward- 1672 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1673 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1674 */ 1675 /* 1676 * XXX meaning of fields, especialy "raflags", is very 1677 * differnet between RA prefix list and RR/static prefix list. 1678 * how about separating ioctls into two? 1679 */ 1680 memset(oprl, 0, sizeof(*oprl)); 1681 ND6_RLOCK(); 1682 ND_PREFIX_LIST_FOREACH(pr) { 1683 struct nd_pfxrouter *pfr; 1684 int j; 1685 1686 if (i >= PRLSTSIZ) 1687 break; 1688 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1689 oprl->prefix[i].raflags = pr->ndpr_raf; 1690 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1691 oprl->prefix[i].vltime = pr->ndpr_vltime; 1692 oprl->prefix[i].pltime = pr->ndpr_pltime; 1693 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1694 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 1695 oprl->prefix[i].expire = 0; 1696 else { 1697 time_t maxexpire; 1698 1699 /* XXX: we assume time_t is signed. */ 1700 maxexpire = (-1) & 1701 ~((time_t)1 << 1702 ((sizeof(maxexpire) * 8) - 1)); 1703 if (pr->ndpr_vltime < 1704 maxexpire - pr->ndpr_lastupdate) { 1705 time_t expire; 1706 expire = pr->ndpr_lastupdate + 1707 pr->ndpr_vltime; 1708 oprl->prefix[i].expire = expire ? 1709 time_mono_to_wall(expire) : 0; 1710 } else 1711 oprl->prefix[i].expire = maxexpire; 1712 } 1713 1714 j = 0; 1715 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 1716 if (j < DRLSTSIZ) { 1717 #define RTRADDR oprl->prefix[i].advrtr[j] 1718 RTRADDR = pfr->router->rtaddr; 1719 in6_clearscope(&RTRADDR); 1720 #undef RTRADDR 1721 } 1722 j++; 1723 } 1724 oprl->prefix[i].advrtrs = j; 1725 oprl->prefix[i].origin = PR_ORIG_RA; 1726 1727 i++; 1728 } 1729 ND6_UNLOCK(); 1730 1731 break; 1732 case OSIOCGIFINFO_IN6: 1733 #define ND ndi->ndi 1734 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1735 memset(&ND, 0, sizeof(ND)); 1736 ND.linkmtu = IN6_LINKMTU(ifp); 1737 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1738 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1739 ND.reachable = ND_IFINFO(ifp)->reachable; 1740 ND.retrans = ND_IFINFO(ifp)->retrans; 1741 ND.flags = ND_IFINFO(ifp)->flags; 1742 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1743 ND.chlim = ND_IFINFO(ifp)->chlim; 1744 break; 1745 case SIOCGIFINFO_IN6: 1746 ND = *ND_IFINFO(ifp); 1747 break; 1748 case SIOCSIFINFO_IN6: 1749 /* 1750 * used to change host variables from userland. 1751 * intented for a use on router to reflect RA configurations. 1752 */ 1753 /* 0 means 'unspecified' */ 1754 if (ND.linkmtu != 0) { 1755 if (ND.linkmtu < IPV6_MMTU || 1756 ND.linkmtu > IN6_LINKMTU(ifp)) { 1757 error = EINVAL; 1758 break; 1759 } 1760 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1761 } 1762 1763 if (ND.basereachable != 0) { 1764 int obasereachable = ND_IFINFO(ifp)->basereachable; 1765 1766 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1767 if (ND.basereachable != obasereachable) 1768 ND_IFINFO(ifp)->reachable = 1769 ND_COMPUTE_RTIME(ND.basereachable); 1770 } 1771 if (ND.retrans != 0) 1772 ND_IFINFO(ifp)->retrans = ND.retrans; 1773 if (ND.chlim != 0) 1774 ND_IFINFO(ifp)->chlim = ND.chlim; 1775 /* FALLTHROUGH */ 1776 case SIOCSIFINFO_FLAGS: 1777 { 1778 struct ifaddr *ifa; 1779 struct in6_ifaddr *ia; 1780 int s; 1781 1782 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1783 !(ND.flags & ND6_IFF_IFDISABLED)) 1784 { 1785 /* 1786 * If the interface is marked as ND6_IFF_IFDISABLED and 1787 * has a link-local address with IN6_IFF_DUPLICATED, 1788 * do not clear ND6_IFF_IFDISABLED. 1789 * See RFC 4862, section 5.4.5. 1790 */ 1791 int duplicated_linklocal = 0; 1792 1793 s = pserialize_read_enter(); 1794 IFADDR_READER_FOREACH(ifa, ifp) { 1795 if (ifa->ifa_addr->sa_family != AF_INET6) 1796 continue; 1797 ia = (struct in6_ifaddr *)ifa; 1798 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1799 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1800 { 1801 duplicated_linklocal = 1; 1802 break; 1803 } 1804 } 1805 pserialize_read_exit(s); 1806 1807 if (duplicated_linklocal) { 1808 ND.flags |= ND6_IFF_IFDISABLED; 1809 log(LOG_ERR, "Cannot enable an interface" 1810 " with a link-local address marked" 1811 " duplicate.\n"); 1812 } else { 1813 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1814 if (ifp->if_flags & IFF_UP) 1815 in6_if_up(ifp); 1816 } 1817 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1818 (ND.flags & ND6_IFF_IFDISABLED)) { 1819 int bound = curlwp_bind(); 1820 /* Mark all IPv6 addresses as tentative. */ 1821 1822 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1823 s = pserialize_read_enter(); 1824 IFADDR_READER_FOREACH(ifa, ifp) { 1825 struct psref psref; 1826 if (ifa->ifa_addr->sa_family != AF_INET6) 1827 continue; 1828 ifa_acquire(ifa, &psref); 1829 pserialize_read_exit(s); 1830 1831 nd6_dad_stop(ifa); 1832 1833 ia = (struct in6_ifaddr *)ifa; 1834 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1835 1836 s = pserialize_read_enter(); 1837 ifa_release(ifa, &psref); 1838 } 1839 pserialize_read_exit(s); 1840 curlwp_bindx(bound); 1841 } 1842 1843 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1844 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1845 /* auto_linklocal 0->1 transition */ 1846 1847 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1848 in6_ifattach(ifp, NULL); 1849 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1850 ifp->if_flags & IFF_UP) 1851 { 1852 /* 1853 * When the IF already has 1854 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1855 * address is assigned, and IFF_UP, try to 1856 * assign one. 1857 */ 1858 int haslinklocal = 0; 1859 1860 s = pserialize_read_enter(); 1861 IFADDR_READER_FOREACH(ifa, ifp) { 1862 if (ifa->ifa_addr->sa_family !=AF_INET6) 1863 continue; 1864 ia = (struct in6_ifaddr *)ifa; 1865 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){ 1866 haslinklocal = 1; 1867 break; 1868 } 1869 } 1870 pserialize_read_exit(s); 1871 if (!haslinklocal) 1872 in6_ifattach(ifp, NULL); 1873 } 1874 } 1875 } 1876 ND_IFINFO(ifp)->flags = ND.flags; 1877 break; 1878 #undef ND 1879 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1880 /* sync kernel routing table with the default router list */ 1881 ND6_WLOCK(); 1882 nd6_defrouter_reset(); 1883 nd6_defrouter_select(); 1884 ND6_UNLOCK(); 1885 break; 1886 case SIOCSPFXFLUSH_IN6: 1887 { 1888 /* flush all the prefix advertised by routers */ 1889 struct nd_prefix *pfx, *next; 1890 1891 restart: 1892 ND6_WLOCK(); 1893 ND_PREFIX_LIST_FOREACH_SAFE(pfx, next) { 1894 struct in6_ifaddr *ia, *ia_next; 1895 int _s; 1896 1897 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr)) 1898 continue; /* XXX */ 1899 1900 /* do we really have to remove addresses as well? */ 1901 _s = pserialize_read_enter(); 1902 for (ia = IN6_ADDRLIST_READER_FIRST(); ia; 1903 ia = ia_next) { 1904 struct ifnet *ifa_ifp; 1905 int bound; 1906 struct psref psref; 1907 1908 /* ia might be removed. keep the next ptr. */ 1909 ia_next = IN6_ADDRLIST_READER_NEXT(ia); 1910 1911 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1912 continue; 1913 1914 if (ia->ia6_ndpr != pfx) 1915 continue; 1916 1917 bound = curlwp_bind(); 1918 ia6_acquire(ia, &psref); 1919 pserialize_read_exit(_s); 1920 ND6_UNLOCK(); 1921 1922 ifa_ifp = ia->ia_ifa.ifa_ifp; 1923 if (ifa_ifp == ifp) { 1924 /* Already have IFNET_LOCK(ifp) */ 1925 KASSERT(!if_is_deactivated(ifp)); 1926 ia6_release(ia, &psref); 1927 in6_purgeaddr(&ia->ia_ifa); 1928 curlwp_bindx(bound); 1929 goto restart; 1930 } 1931 IFNET_LOCK(ifa_ifp); 1932 /* 1933 * Need to take the lock first to prevent 1934 * if_detach from running in6_purgeaddr 1935 * concurrently. 1936 */ 1937 if (!if_is_deactivated(ifa_ifp)) { 1938 ia6_release(ia, &psref); 1939 in6_purgeaddr(&ia->ia_ifa); 1940 } else { 1941 /* 1942 * ifp is being destroyed, ia will be 1943 * destroyed by if_detach. 1944 */ 1945 ia6_release(ia, &psref); 1946 /* XXX may cause busy loop */ 1947 } 1948 IFNET_UNLOCK(ifa_ifp); 1949 curlwp_bindx(bound); 1950 goto restart; 1951 } 1952 pserialize_read_exit(_s); 1953 1954 KASSERT(pfx->ndpr_refcnt == 0); 1955 nd6_prelist_remove(pfx); 1956 } 1957 ND6_UNLOCK(); 1958 break; 1959 } 1960 case SIOCSRTRFLUSH_IN6: 1961 { 1962 /* flush all the default routers */ 1963 struct nd_defrouter *drtr, *next; 1964 1965 ND6_WLOCK(); 1966 nd6_defrouter_reset(); 1967 ND_DEFROUTER_LIST_FOREACH_SAFE(drtr, next) { 1968 nd6_defrtrlist_del(drtr, NULL); 1969 } 1970 nd6_defrouter_select(); 1971 ND6_UNLOCK(); 1972 break; 1973 } 1974 case SIOCGNBRINFO_IN6: 1975 { 1976 struct llentry *ln; 1977 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1978 1979 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1980 return error; 1981 1982 ln = nd6_lookup(&nb_addr, ifp, false); 1983 if (ln == NULL) { 1984 error = EINVAL; 1985 break; 1986 } 1987 nbi->state = ln->ln_state; 1988 nbi->asked = ln->ln_asked; 1989 nbi->isrouter = ln->ln_router; 1990 nbi->expire = ln->ln_expire ? 1991 time_mono_to_wall(ln->ln_expire) : 0; 1992 LLE_RUNLOCK(ln); 1993 1994 break; 1995 } 1996 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1997 ndif->ifindex = nd6_defifindex; 1998 break; 1999 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 2000 return nd6_setdefaultiface(ndif->ifindex); 2001 } 2002 return error; 2003 } 2004 2005 void 2006 nd6_llinfo_release_pkts(struct llentry *ln, struct ifnet *ifp) 2007 { 2008 struct mbuf *m_hold, *m_hold_next; 2009 struct sockaddr_in6 sin6; 2010 2011 LLE_WLOCK_ASSERT(ln); 2012 2013 sockaddr_in6_init(&sin6, &ln->r_l3addr.addr6, 0, 0, 0); 2014 2015 m_hold = ln->la_hold, ln->la_hold = NULL, ln->la_numheld = 0; 2016 2017 LLE_WUNLOCK(ln); 2018 for (; m_hold != NULL; m_hold = m_hold_next) { 2019 m_hold_next = m_hold->m_nextpkt; 2020 m_hold->m_nextpkt = NULL; 2021 2022 /* 2023 * we assume ifp is not a p2p here, so 2024 * just set the 2nd argument as the 2025 * 1st one. 2026 */ 2027 ip6_if_output(ifp, ifp, m_hold, &sin6, NULL); 2028 } 2029 LLE_WLOCK(ln); 2030 } 2031 2032 /* 2033 * Create neighbor cache entry and cache link-layer address, 2034 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 2035 */ 2036 void 2037 nd6_cache_lladdr( 2038 struct ifnet *ifp, 2039 struct in6_addr *from, 2040 char *lladdr, 2041 int lladdrlen, 2042 int type, /* ICMP6 type */ 2043 int code /* type dependent information */ 2044 ) 2045 { 2046 struct nd_ifinfo *ndi = ND_IFINFO(ifp); 2047 struct llentry *ln = NULL; 2048 int is_newentry; 2049 int do_update; 2050 int olladdr; 2051 int llchange; 2052 int newstate = 0; 2053 uint16_t router = 0; 2054 2055 KASSERT(ifp != NULL); 2056 KASSERT(from != NULL); 2057 2058 /* nothing must be updated for unspecified address */ 2059 if (IN6_IS_ADDR_UNSPECIFIED(from)) 2060 return; 2061 2062 /* 2063 * Validation about ifp->if_addrlen and lladdrlen must be done in 2064 * the caller. 2065 * 2066 * XXX If the link does not have link-layer adderss, what should 2067 * we do? (ifp->if_addrlen == 0) 2068 * Spec says nothing in sections for RA, RS and NA. There's small 2069 * description on it in NS section (RFC 2461 7.2.3). 2070 */ 2071 2072 ln = nd6_lookup(from, ifp, true); 2073 if (ln == NULL) { 2074 #if 0 2075 /* nothing must be done if there's no lladdr */ 2076 if (!lladdr || !lladdrlen) 2077 return NULL; 2078 #endif 2079 2080 ln = nd6_create(from, ifp); 2081 is_newentry = 1; 2082 } else { 2083 /* do nothing if static ndp is set */ 2084 if (ln->la_flags & LLE_STATIC) { 2085 LLE_WUNLOCK(ln); 2086 return; 2087 } 2088 is_newentry = 0; 2089 } 2090 2091 if (ln == NULL) 2092 return; 2093 2094 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2095 if (olladdr && lladdr) { 2096 llchange = memcmp(lladdr, &ln->ll_addr, ifp->if_addrlen); 2097 } else 2098 llchange = 0; 2099 2100 /* 2101 * newentry olladdr lladdr llchange (*=record) 2102 * 0 n n -- (1) 2103 * 0 y n -- (2) 2104 * 0 n y -- (3) * STALE 2105 * 0 y y n (4) * 2106 * 0 y y y (5) * STALE 2107 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2108 * 1 -- y -- (7) * STALE 2109 */ 2110 2111 if (lladdr) { /* (3-5) and (7) */ 2112 /* 2113 * Record source link-layer address 2114 * XXX is it dependent to ifp->if_type? 2115 */ 2116 memcpy(&ln->ll_addr, lladdr, ifp->if_addrlen); 2117 ln->la_flags |= LLE_VALID; 2118 } 2119 2120 if (!is_newentry) { 2121 if ((!olladdr && lladdr) || /* (3) */ 2122 (olladdr && lladdr && llchange)) { /* (5) */ 2123 do_update = 1; 2124 newstate = ND6_LLINFO_STALE; 2125 } else /* (1-2,4) */ 2126 do_update = 0; 2127 } else { 2128 do_update = 1; 2129 if (lladdr == NULL) /* (6) */ 2130 newstate = ND6_LLINFO_NOSTATE; 2131 else /* (7) */ 2132 newstate = ND6_LLINFO_STALE; 2133 } 2134 2135 if (do_update) { 2136 /* 2137 * Update the state of the neighbor cache. 2138 */ 2139 ln->ln_state = newstate; 2140 2141 if (ln->ln_state == ND6_LLINFO_STALE) { 2142 /* 2143 * XXX: since nd6_output() below will cause 2144 * state tansition to DELAY and reset the timer, 2145 * we must set the timer now, although it is actually 2146 * meaningless. 2147 */ 2148 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 2149 2150 nd6_llinfo_release_pkts(ln, ifp); 2151 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 2152 /* probe right away */ 2153 nd6_llinfo_settimer((void *)ln, 0); 2154 } 2155 } 2156 2157 /* 2158 * ICMP6 type dependent behavior. 2159 * 2160 * NS: clear IsRouter if new entry 2161 * RS: clear IsRouter 2162 * RA: set IsRouter if there's lladdr 2163 * redir: clear IsRouter if new entry 2164 * 2165 * RA case, (1): 2166 * The spec says that we must set IsRouter in the following cases: 2167 * - If lladdr exist, set IsRouter. This means (1-5). 2168 * - If it is old entry (!newentry), set IsRouter. This means (7). 2169 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 2170 * A quetion arises for (1) case. (1) case has no lladdr in the 2171 * neighbor cache, this is similar to (6). 2172 * This case is rare but we figured that we MUST NOT set IsRouter. 2173 * 2174 * newentry olladdr lladdr llchange NS RS RA redir 2175 * D R 2176 * 0 n n -- (1) c ? s 2177 * 0 y n -- (2) c s s 2178 * 0 n y -- (3) c s s 2179 * 0 y y n (4) c s s 2180 * 0 y y y (5) c s s 2181 * 1 -- n -- (6) c c c s 2182 * 1 -- y -- (7) c c s c s 2183 * 2184 * (c=clear s=set) 2185 */ 2186 switch (type & 0xff) { 2187 case ND_NEIGHBOR_SOLICIT: 2188 /* 2189 * New entry must have is_router flag cleared. 2190 */ 2191 if (is_newentry) /* (6-7) */ 2192 ln->ln_router = 0; 2193 break; 2194 case ND_REDIRECT: 2195 /* 2196 * If the icmp is a redirect to a better router, always set the 2197 * is_router flag. Otherwise, if the entry is newly created, 2198 * clear the flag. [RFC 2461, sec 8.3] 2199 */ 2200 if (code == ND_REDIRECT_ROUTER) 2201 ln->ln_router = 1; 2202 else if (is_newentry) /* (6-7) */ 2203 ln->ln_router = 0; 2204 break; 2205 case ND_ROUTER_SOLICIT: 2206 /* 2207 * is_router flag must always be cleared. 2208 */ 2209 ln->ln_router = 0; 2210 break; 2211 case ND_ROUTER_ADVERT: 2212 /* 2213 * Mark an entry with lladdr as a router. 2214 */ 2215 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 2216 (is_newentry && lladdr)) { /* (7) */ 2217 ln->ln_router = 1; 2218 } 2219 break; 2220 } 2221 2222 #if 0 2223 /* XXX should we send rtmsg as it used to be? */ 2224 if (do_update) 2225 rt_newmsg(RTM_CHANGE, rt); /* tell user process */ 2226 #endif 2227 2228 if (ln != NULL) { 2229 router = ln->ln_router; 2230 LLE_WUNLOCK(ln); 2231 } 2232 2233 /* 2234 * If we have too many cache entries, initiate immediate 2235 * purging for some entries. 2236 */ 2237 if (is_newentry) 2238 nd6_gc_neighbors(LLTABLE6(ifp), &ln->r_l3addr.addr6); 2239 2240 /* 2241 * When the link-layer address of a router changes, select the 2242 * best router again. In particular, when the neighbor entry is newly 2243 * created, it might affect the selection policy. 2244 * Question: can we restrict the first condition to the "is_newentry" 2245 * case? 2246 * XXX: when we hear an RA from a new router with the link-layer 2247 * address option, nd6_defrouter_select() is called twice, since 2248 * defrtrlist_update called the function as well. However, I believe 2249 * we can compromise the overhead, since it only happens the first 2250 * time. 2251 * XXX: although nd6_defrouter_select() should not have a bad effect 2252 * for those are not autoconfigured hosts, we explicitly avoid such 2253 * cases for safety. 2254 */ 2255 if (do_update && router && !ip6_forwarding && 2256 nd6_accepts_rtadv(ndi)) { 2257 ND6_WLOCK(); 2258 nd6_defrouter_select(); 2259 ND6_UNLOCK(); 2260 } 2261 } 2262 2263 static void 2264 nd6_slowtimo(void *ignored_arg) 2265 { 2266 struct nd_ifinfo *nd6if; 2267 struct ifnet *ifp; 2268 int s; 2269 2270 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2271 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2272 nd6_slowtimo, NULL); 2273 2274 s = pserialize_read_enter(); 2275 IFNET_READER_FOREACH(ifp) { 2276 nd6if = ND_IFINFO(ifp); 2277 if (nd6if->basereachable && /* already initialized */ 2278 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2279 /* 2280 * Since reachable time rarely changes by router 2281 * advertisements, we SHOULD insure that a new random 2282 * value gets recomputed at least once every few hours. 2283 * (RFC 2461, 6.3.4) 2284 */ 2285 nd6if->recalctm = nd6_recalc_reachtm_interval; 2286 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2287 } 2288 } 2289 pserialize_read_exit(s); 2290 2291 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2292 } 2293 2294 /* 2295 * Return 0 if a neighbor cache is found. Return EWOULDBLOCK if a cache is not 2296 * found and trying to resolve a neighbor; in this case the mbuf is queued in 2297 * the list. Otherwise return errno after freeing the mbuf. 2298 */ 2299 int 2300 nd6_resolve(struct ifnet *ifp, const struct rtentry *rt, struct mbuf *m, 2301 const struct sockaddr *_dst, uint8_t *lldst, size_t dstsize) 2302 { 2303 struct llentry *ln = NULL; 2304 bool created = false; 2305 const struct sockaddr_in6 *dst = satocsin6(_dst); 2306 2307 /* discard the packet if IPv6 operation is disabled on the interface */ 2308 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2309 m_freem(m); 2310 return ENETDOWN; /* better error? */ 2311 } 2312 2313 /* 2314 * Address resolution or Neighbor Unreachability Detection 2315 * for the next hop. 2316 * At this point, the destination of the packet must be a unicast 2317 * or an anycast address(i.e. not a multicast). 2318 */ 2319 2320 /* Look up the neighbor cache for the nexthop */ 2321 ln = nd6_lookup(&dst->sin6_addr, ifp, false); 2322 2323 if (ln != NULL && (ln->la_flags & LLE_VALID) != 0) { 2324 KASSERT(ln->ln_state > ND6_LLINFO_INCOMPLETE); 2325 /* Fast path */ 2326 memcpy(lldst, &ln->ll_addr, MIN(dstsize, ifp->if_addrlen)); 2327 LLE_RUNLOCK(ln); 2328 return 0; 2329 } 2330 if (ln != NULL) 2331 LLE_RUNLOCK(ln); 2332 2333 /* Slow path */ 2334 ln = nd6_lookup(&dst->sin6_addr, ifp, true); 2335 if (ln == NULL && nd6_is_addr_neighbor(dst, ifp)) { 2336 struct sockaddr_in6 sin6; 2337 /* 2338 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2339 * the condition below is not very efficient. But we believe 2340 * it is tolerable, because this should be a rare case. 2341 */ 2342 ln = nd6_create(&dst->sin6_addr, ifp); 2343 if (ln == NULL) { 2344 char ip6buf[INET6_ADDRSTRLEN]; 2345 log(LOG_DEBUG, 2346 "%s: can't allocate llinfo for %s " 2347 "(ln=%p, rt=%p)\n", __func__, 2348 IN6_PRINT(ip6buf, &dst->sin6_addr), ln, rt); 2349 m_freem(m); 2350 return ENOBUFS; 2351 } 2352 2353 sockaddr_in6_init(&sin6, &ln->r_l3addr.addr6, 0, 0, 0); 2354 rt_clonedmsg(sin6tosa(&sin6), ifp, rt); 2355 2356 created = true; 2357 } 2358 2359 if (ln == NULL) { 2360 m_freem(m); 2361 return ENETDOWN; /* better error? */ 2362 } 2363 2364 LLE_WLOCK_ASSERT(ln); 2365 2366 /* We don't have to do link-layer address resolution on a p2p link. */ 2367 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 2368 ln->ln_state < ND6_LLINFO_REACHABLE) { 2369 ln->ln_state = ND6_LLINFO_STALE; 2370 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 2371 } 2372 2373 /* 2374 * The first time we send a packet to a neighbor whose entry is 2375 * STALE, we have to change the state to DELAY and a sets a timer to 2376 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2377 * neighbor unreachability detection on expiration. 2378 * (RFC 2461 7.3.3) 2379 */ 2380 if (ln->ln_state == ND6_LLINFO_STALE) { 2381 ln->ln_asked = 0; 2382 ln->ln_state = ND6_LLINFO_DELAY; 2383 nd6_llinfo_settimer(ln, nd6_delay * hz); 2384 } 2385 2386 /* 2387 * There is a neighbor cache entry, but no ethernet address 2388 * response yet. Append this latest packet to the end of the 2389 * packet queue in the mbuf, unless the number of the packet 2390 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, 2391 * the oldest packet in the queue will be removed. 2392 */ 2393 if (ln->ln_state == ND6_LLINFO_NOSTATE) 2394 ln->ln_state = ND6_LLINFO_INCOMPLETE; 2395 if (ln->ln_hold) { 2396 struct mbuf *m_hold; 2397 int i; 2398 2399 i = 0; 2400 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) { 2401 i++; 2402 if (m_hold->m_nextpkt == NULL) { 2403 m_hold->m_nextpkt = m; 2404 break; 2405 } 2406 } 2407 while (i >= nd6_maxqueuelen) { 2408 m_hold = ln->ln_hold; 2409 ln->ln_hold = ln->ln_hold->m_nextpkt; 2410 m_freem(m_hold); 2411 i--; 2412 } 2413 } else { 2414 ln->ln_hold = m; 2415 } 2416 2417 /* 2418 * If there has been no NS for the neighbor after entering the 2419 * INCOMPLETE state, send the first solicitation. 2420 */ 2421 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) { 2422 struct in6_addr src, *psrc; 2423 2424 ln->ln_asked++; 2425 nd6_llinfo_settimer(ln, ND_IFINFO(ifp)->retrans * hz / 1000); 2426 psrc = nd6_llinfo_get_holdsrc(ln, &src); 2427 LLE_WUNLOCK(ln); 2428 ln = NULL; 2429 nd6_ns_output(ifp, NULL, &dst->sin6_addr, psrc, 0); 2430 } else { 2431 /* We did the lookup so we need to do the unlock here. */ 2432 LLE_WUNLOCK(ln); 2433 } 2434 2435 if (created) 2436 nd6_gc_neighbors(LLTABLE6(ifp), &dst->sin6_addr); 2437 2438 return EWOULDBLOCK; 2439 } 2440 2441 int 2442 nd6_need_cache(struct ifnet *ifp) 2443 { 2444 /* 2445 * XXX: we currently do not make neighbor cache on any interface 2446 * other than ARCnet, Ethernet, FDDI and GIF. 2447 * 2448 * RFC2893 says: 2449 * - unidirectional tunnels needs no ND 2450 */ 2451 switch (ifp->if_type) { 2452 case IFT_ARCNET: 2453 case IFT_ETHER: 2454 case IFT_FDDI: 2455 case IFT_IEEE1394: 2456 case IFT_CARP: 2457 case IFT_GIF: /* XXX need more cases? */ 2458 case IFT_PPP: 2459 case IFT_TUNNEL: 2460 return 1; 2461 default: 2462 return 0; 2463 } 2464 } 2465 2466 static void 2467 clear_llinfo_pqueue(struct llentry *ln) 2468 { 2469 struct mbuf *m_hold, *m_hold_next; 2470 2471 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) { 2472 m_hold_next = m_hold->m_nextpkt; 2473 m_hold->m_nextpkt = NULL; 2474 m_freem(m_hold); 2475 } 2476 2477 ln->ln_hold = NULL; 2478 return; 2479 } 2480 2481 int 2482 nd6_sysctl( 2483 int name, 2484 void *oldp, /* syscall arg, need copyout */ 2485 size_t *oldlenp, 2486 void *newp, /* syscall arg, need copyin */ 2487 size_t newlen 2488 ) 2489 { 2490 void *p; 2491 size_t ol; 2492 int error; 2493 size_t bufsize = 0; 2494 2495 error = 0; 2496 2497 if (newp) 2498 return EPERM; 2499 if (oldp && !oldlenp) 2500 return EINVAL; 2501 ol = oldlenp ? *oldlenp : 0; 2502 2503 if (oldp && *oldlenp > 0) { 2504 p = kmem_alloc(*oldlenp, KM_SLEEP); 2505 bufsize = *oldlenp; 2506 } else 2507 p = NULL; 2508 switch (name) { 2509 case ICMPV6CTL_ND6_DRLIST: 2510 error = fill_drlist(p, oldlenp, ol); 2511 if (!error && p != NULL && oldp != NULL) 2512 error = copyout(p, oldp, *oldlenp); 2513 break; 2514 2515 case ICMPV6CTL_ND6_PRLIST: 2516 error = fill_prlist(p, oldlenp, ol); 2517 if (!error && p != NULL && oldp != NULL) 2518 error = copyout(p, oldp, *oldlenp); 2519 break; 2520 2521 case ICMPV6CTL_ND6_MAXQLEN: 2522 break; 2523 2524 default: 2525 error = ENOPROTOOPT; 2526 break; 2527 } 2528 if (p) 2529 kmem_free(p, bufsize); 2530 2531 return error; 2532 } 2533 2534 static int 2535 fill_drlist(void *oldp, size_t *oldlenp, size_t ol) 2536 { 2537 int error = 0; 2538 struct in6_defrouter *d = NULL, *de = NULL; 2539 struct nd_defrouter *dr; 2540 size_t l; 2541 2542 if (oldp) { 2543 d = (struct in6_defrouter *)oldp; 2544 de = (struct in6_defrouter *)((char *)oldp + *oldlenp); 2545 } 2546 l = 0; 2547 2548 ND6_RLOCK(); 2549 ND_DEFROUTER_LIST_FOREACH(dr) { 2550 2551 if (oldp && d + 1 <= de) { 2552 memset(d, 0, sizeof(*d)); 2553 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0); 2554 if (sa6_recoverscope(&d->rtaddr)) { 2555 char ip6buf[INET6_ADDRSTRLEN]; 2556 log(LOG_ERR, 2557 "scope error in router list (%s)\n", 2558 IN6_PRINT(ip6buf, &d->rtaddr.sin6_addr)); 2559 /* XXX: press on... */ 2560 } 2561 d->flags = dr->flags; 2562 d->rtlifetime = dr->rtlifetime; 2563 d->expire = dr->expire ? 2564 time_mono_to_wall(dr->expire) : 0; 2565 d->if_index = dr->ifp->if_index; 2566 } 2567 2568 l += sizeof(*d); 2569 if (d) 2570 d++; 2571 } 2572 ND6_UNLOCK(); 2573 2574 if (oldp) { 2575 if (l > ol) 2576 error = ENOMEM; 2577 } 2578 if (oldlenp) 2579 *oldlenp = l; /* (void *)d - (void *)oldp */ 2580 2581 return error; 2582 } 2583 2584 static int 2585 fill_prlist(void *oldp, size_t *oldlenp, size_t ol) 2586 { 2587 int error = 0; 2588 struct nd_prefix *pr; 2589 uint8_t *p = NULL, *ps = NULL; 2590 uint8_t *pe = NULL; 2591 size_t l; 2592 char ip6buf[INET6_ADDRSTRLEN]; 2593 2594 if (oldp) { 2595 ps = p = (uint8_t*)oldp; 2596 pe = (uint8_t*)oldp + *oldlenp; 2597 } 2598 l = 0; 2599 2600 ND6_RLOCK(); 2601 ND_PREFIX_LIST_FOREACH(pr) { 2602 u_short advrtrs; 2603 struct sockaddr_in6 sin6; 2604 struct nd_pfxrouter *pfr; 2605 struct in6_prefix pfx; 2606 2607 if (oldp && p + sizeof(struct in6_prefix) <= pe) 2608 { 2609 memset(&pfx, 0, sizeof(pfx)); 2610 ps = p; 2611 pfx.prefix = pr->ndpr_prefix; 2612 2613 if (sa6_recoverscope(&pfx.prefix)) { 2614 log(LOG_ERR, 2615 "scope error in prefix list (%s)\n", 2616 IN6_PRINT(ip6buf, &pfx.prefix.sin6_addr)); 2617 /* XXX: press on... */ 2618 } 2619 pfx.raflags = pr->ndpr_raf; 2620 pfx.prefixlen = pr->ndpr_plen; 2621 pfx.vltime = pr->ndpr_vltime; 2622 pfx.pltime = pr->ndpr_pltime; 2623 pfx.if_index = pr->ndpr_ifp->if_index; 2624 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2625 pfx.expire = 0; 2626 else { 2627 time_t maxexpire; 2628 2629 /* XXX: we assume time_t is signed. */ 2630 maxexpire = (-1) & 2631 ~((time_t)1 << 2632 ((sizeof(maxexpire) * 8) - 1)); 2633 if (pr->ndpr_vltime < 2634 maxexpire - pr->ndpr_lastupdate) { 2635 pfx.expire = pr->ndpr_lastupdate + 2636 pr->ndpr_vltime; 2637 } else 2638 pfx.expire = maxexpire; 2639 } 2640 pfx.refcnt = pr->ndpr_refcnt; 2641 pfx.flags = pr->ndpr_stateflags; 2642 pfx.origin = PR_ORIG_RA; 2643 2644 p += sizeof(pfx); l += sizeof(pfx); 2645 2646 advrtrs = 0; 2647 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2648 if (p + sizeof(sin6) > pe) { 2649 advrtrs++; 2650 continue; 2651 } 2652 2653 sockaddr_in6_init(&sin6, &pfr->router->rtaddr, 2654 0, 0, 0); 2655 if (sa6_recoverscope(&sin6)) { 2656 log(LOG_ERR, 2657 "scope error in " 2658 "prefix list (%s)\n", 2659 IN6_PRINT(ip6buf, 2660 &pfr->router->rtaddr)); 2661 } 2662 advrtrs++; 2663 memcpy(p, &sin6, sizeof(sin6)); 2664 p += sizeof(sin6); 2665 l += sizeof(sin6); 2666 } 2667 pfx.advrtrs = advrtrs; 2668 memcpy(ps, &pfx, sizeof(pfx)); 2669 } 2670 else { 2671 l += sizeof(pfx); 2672 advrtrs = 0; 2673 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2674 advrtrs++; 2675 l += sizeof(sin6); 2676 } 2677 } 2678 } 2679 ND6_UNLOCK(); 2680 2681 if (oldp) { 2682 *oldlenp = l; /* (void *)d - (void *)oldp */ 2683 if (l > ol) 2684 error = ENOMEM; 2685 } else 2686 *oldlenp = l; 2687 2688 return error; 2689 } 2690 2691 static int 2692 nd6_setdefaultiface(int ifindex) 2693 { 2694 ifnet_t *ifp; 2695 int error = 0; 2696 int s; 2697 2698 s = pserialize_read_enter(); 2699 ifp = if_byindex(ifindex); 2700 if (ifp == NULL) { 2701 pserialize_read_exit(s); 2702 return EINVAL; 2703 } 2704 if (nd6_defifindex != ifindex) { 2705 nd6_defifindex = ifindex; 2706 nd6_defifp = nd6_defifindex > 0 ? ifp : NULL; 2707 2708 /* 2709 * Our current implementation assumes one-to-one maping between 2710 * interfaces and links, so it would be natural to use the 2711 * default interface as the default link. 2712 */ 2713 scope6_setdefault(nd6_defifp); 2714 } 2715 pserialize_read_exit(s); 2716 2717 return (error); 2718 } 2719