1 /* $NetBSD: nd6.c,v 1.146 2013/12/17 20:25:00 martin Exp $ */ 2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.146 2013/12/17 20:25:00 martin Exp $"); 35 36 #include "opt_ipsec.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/callout.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/socket.h> 44 #include <sys/socketvar.h> 45 #include <sys/sockio.h> 46 #include <sys/time.h> 47 #include <sys/kernel.h> 48 #include <sys/protosw.h> 49 #include <sys/errno.h> 50 #include <sys/ioctl.h> 51 #include <sys/syslog.h> 52 #include <sys/queue.h> 53 #include <sys/cprng.h> 54 55 #include <net/if.h> 56 #include <net/if_dl.h> 57 #include <net/if_types.h> 58 #include <net/route.h> 59 #include <net/if_ether.h> 60 #include <net/if_fddi.h> 61 #include <net/if_arc.h> 62 63 #include <netinet/in.h> 64 #include <netinet6/in6_var.h> 65 #include <netinet/ip6.h> 66 #include <netinet6/ip6_var.h> 67 #include <netinet6/scope6_var.h> 68 #include <netinet6/nd6.h> 69 #include <netinet/icmp6.h> 70 #include <netinet6/icmp6_private.h> 71 72 #include <net/net_osdep.h> 73 74 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 75 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 76 77 /* timer values */ 78 int nd6_prune = 1; /* walk list every 1 seconds */ 79 int nd6_delay = 5; /* delay first probe time 5 second */ 80 int nd6_umaxtries = 3; /* maximum unicast query */ 81 int nd6_mmaxtries = 3; /* maximum multicast query */ 82 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 83 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 84 85 /* preventing too many loops in ND option parsing */ 86 int nd6_maxndopt = 10; /* max # of ND options allowed */ 87 88 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 89 90 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */ 91 92 #ifdef ND6_DEBUG 93 int nd6_debug = 1; 94 #else 95 int nd6_debug = 0; 96 #endif 97 98 /* for debugging? */ 99 static int nd6_inuse, nd6_allocated; 100 101 struct llinfo_nd6 llinfo_nd6 = { 102 .ln_prev = &llinfo_nd6, 103 .ln_next = &llinfo_nd6, 104 }; 105 struct nd_drhead nd_defrouter; 106 struct nd_prhead nd_prefix = { 0 }; 107 108 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 109 static const struct sockaddr_in6 all1_sa = { 110 .sin6_family = AF_INET6 111 , .sin6_len = sizeof(struct sockaddr_in6) 112 , .sin6_addr = {.s6_addr = {0xff, 0xff, 0xff, 0xff, 113 0xff, 0xff, 0xff, 0xff, 114 0xff, 0xff, 0xff, 0xff, 115 0xff, 0xff, 0xff, 0xff}} 116 }; 117 118 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 119 static void nd6_slowtimo(void *); 120 static int regen_tmpaddr(struct in6_ifaddr *); 121 static struct llinfo_nd6 *nd6_free(struct rtentry *, int); 122 static void nd6_llinfo_timer(void *); 123 static void clear_llinfo_pqueue(struct llinfo_nd6 *); 124 125 callout_t nd6_slowtimo_ch; 126 callout_t nd6_timer_ch; 127 extern callout_t in6_tmpaddrtimer_ch; 128 129 static int fill_drlist(void *, size_t *, size_t); 130 static int fill_prlist(void *, size_t *, size_t); 131 132 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery"); 133 134 #define LN_DEQUEUE(ln) do { \ 135 (ln)->ln_next->ln_prev = (ln)->ln_prev; \ 136 (ln)->ln_prev->ln_next = (ln)->ln_next; \ 137 } while (/*CONSTCOND*/0) 138 #define LN_INSERTHEAD(ln) do { \ 139 (ln)->ln_next = llinfo_nd6.ln_next; \ 140 llinfo_nd6.ln_next = (ln); \ 141 (ln)->ln_prev = &llinfo_nd6; \ 142 (ln)->ln_next->ln_prev = (ln); \ 143 } while (/*CONSTCOND*/0) 144 void 145 nd6_init(void) 146 { 147 static int nd6_init_done = 0; 148 149 if (nd6_init_done) { 150 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n"); 151 return; 152 } 153 154 /* initialization of the default router list */ 155 TAILQ_INIT(&nd_defrouter); 156 157 nd6_init_done = 1; 158 159 callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE); 160 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE); 161 162 /* start timer */ 163 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 164 nd6_slowtimo, NULL); 165 } 166 167 struct nd_ifinfo * 168 nd6_ifattach(struct ifnet *ifp) 169 { 170 struct nd_ifinfo *nd; 171 172 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO); 173 174 nd->initialized = 1; 175 176 nd->chlim = IPV6_DEFHLIM; 177 nd->basereachable = REACHABLE_TIME; 178 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 179 nd->retrans = RETRANS_TIMER; 180 /* 181 * Note that the default value of ip6_accept_rtadv is 0. 182 * Because we do not set ND6_IFF_OVERRIDE_RTADV here, we won't 183 * accept RAs by default. 184 */ 185 nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV; 186 187 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 188 nd6_setmtu0(ifp, nd); 189 190 return nd; 191 } 192 193 void 194 nd6_ifdetach(struct nd_ifinfo *nd) 195 { 196 197 free(nd, M_IP6NDP); 198 } 199 200 void 201 nd6_setmtu(struct ifnet *ifp) 202 { 203 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 204 } 205 206 void 207 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 208 { 209 u_int32_t omaxmtu; 210 211 omaxmtu = ndi->maxmtu; 212 213 switch (ifp->if_type) { 214 case IFT_ARCNET: 215 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 216 break; 217 case IFT_FDDI: 218 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); 219 break; 220 default: 221 ndi->maxmtu = ifp->if_mtu; 222 break; 223 } 224 225 /* 226 * Decreasing the interface MTU under IPV6 minimum MTU may cause 227 * undesirable situation. We thus notify the operator of the change 228 * explicitly. The check for omaxmtu is necessary to restrict the 229 * log to the case of changing the MTU, not initializing it. 230 */ 231 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 232 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too" 233 " small for IPv6 which needs %lu\n", 234 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long) 235 IPV6_MMTU); 236 } 237 238 if (ndi->maxmtu > in6_maxmtu) 239 in6_setmaxmtu(); /* check all interfaces just in case */ 240 } 241 242 void 243 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 244 { 245 246 memset(ndopts, 0, sizeof(*ndopts)); 247 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 248 ndopts->nd_opts_last 249 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 250 251 if (icmp6len == 0) { 252 ndopts->nd_opts_done = 1; 253 ndopts->nd_opts_search = NULL; 254 } 255 } 256 257 /* 258 * Take one ND option. 259 */ 260 struct nd_opt_hdr * 261 nd6_option(union nd_opts *ndopts) 262 { 263 struct nd_opt_hdr *nd_opt; 264 int olen; 265 266 if (ndopts == NULL) 267 panic("ndopts == NULL in nd6_option"); 268 if (ndopts->nd_opts_last == NULL) 269 panic("uninitialized ndopts in nd6_option"); 270 if (ndopts->nd_opts_search == NULL) 271 return NULL; 272 if (ndopts->nd_opts_done) 273 return NULL; 274 275 nd_opt = ndopts->nd_opts_search; 276 277 /* make sure nd_opt_len is inside the buffer */ 278 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) { 279 memset(ndopts, 0, sizeof(*ndopts)); 280 return NULL; 281 } 282 283 olen = nd_opt->nd_opt_len << 3; 284 if (olen == 0) { 285 /* 286 * Message validation requires that all included 287 * options have a length that is greater than zero. 288 */ 289 memset(ndopts, 0, sizeof(*ndopts)); 290 return NULL; 291 } 292 293 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen); 294 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 295 /* option overruns the end of buffer, invalid */ 296 memset(ndopts, 0, sizeof(*ndopts)); 297 return NULL; 298 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 299 /* reached the end of options chain */ 300 ndopts->nd_opts_done = 1; 301 ndopts->nd_opts_search = NULL; 302 } 303 return nd_opt; 304 } 305 306 /* 307 * Parse multiple ND options. 308 * This function is much easier to use, for ND routines that do not need 309 * multiple options of the same type. 310 */ 311 int 312 nd6_options(union nd_opts *ndopts) 313 { 314 struct nd_opt_hdr *nd_opt; 315 int i = 0; 316 317 if (ndopts == NULL) 318 panic("ndopts == NULL in nd6_options"); 319 if (ndopts->nd_opts_last == NULL) 320 panic("uninitialized ndopts in nd6_options"); 321 if (ndopts->nd_opts_search == NULL) 322 return 0; 323 324 while (1) { 325 nd_opt = nd6_option(ndopts); 326 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 327 /* 328 * Message validation requires that all included 329 * options have a length that is greater than zero. 330 */ 331 ICMP6_STATINC(ICMP6_STAT_ND_BADOPT); 332 memset(ndopts, 0, sizeof(*ndopts)); 333 return -1; 334 } 335 336 if (nd_opt == NULL) 337 goto skip1; 338 339 switch (nd_opt->nd_opt_type) { 340 case ND_OPT_SOURCE_LINKADDR: 341 case ND_OPT_TARGET_LINKADDR: 342 case ND_OPT_MTU: 343 case ND_OPT_REDIRECTED_HEADER: 344 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 345 nd6log((LOG_INFO, 346 "duplicated ND6 option found (type=%d)\n", 347 nd_opt->nd_opt_type)); 348 /* XXX bark? */ 349 } else { 350 ndopts->nd_opt_array[nd_opt->nd_opt_type] 351 = nd_opt; 352 } 353 break; 354 case ND_OPT_PREFIX_INFORMATION: 355 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 356 ndopts->nd_opt_array[nd_opt->nd_opt_type] 357 = nd_opt; 358 } 359 ndopts->nd_opts_pi_end = 360 (struct nd_opt_prefix_info *)nd_opt; 361 break; 362 default: 363 /* 364 * Unknown options must be silently ignored, 365 * to accommodate future extension to the protocol. 366 */ 367 nd6log((LOG_DEBUG, 368 "nd6_options: unsupported option %d - " 369 "option ignored\n", nd_opt->nd_opt_type)); 370 } 371 372 skip1: 373 i++; 374 if (i > nd6_maxndopt) { 375 ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT); 376 nd6log((LOG_INFO, "too many loop in nd opt\n")); 377 break; 378 } 379 380 if (ndopts->nd_opts_done) 381 break; 382 } 383 384 return 0; 385 } 386 387 /* 388 * ND6 timer routine to handle ND6 entries 389 */ 390 void 391 nd6_llinfo_settimer(struct llinfo_nd6 *ln, long xtick) 392 { 393 int s; 394 395 s = splsoftnet(); 396 397 if (xtick < 0) { 398 ln->ln_expire = 0; 399 ln->ln_ntick = 0; 400 callout_stop(&ln->ln_timer_ch); 401 } else { 402 ln->ln_expire = time_second + xtick / hz; 403 if (xtick > INT_MAX) { 404 ln->ln_ntick = xtick - INT_MAX; 405 callout_reset(&ln->ln_timer_ch, INT_MAX, 406 nd6_llinfo_timer, ln); 407 } else { 408 ln->ln_ntick = 0; 409 callout_reset(&ln->ln_timer_ch, xtick, 410 nd6_llinfo_timer, ln); 411 } 412 } 413 414 splx(s); 415 } 416 417 static void 418 nd6_llinfo_timer(void *arg) 419 { 420 struct llinfo_nd6 *ln; 421 struct rtentry *rt; 422 const struct sockaddr_in6 *dst; 423 struct ifnet *ifp; 424 struct nd_ifinfo *ndi = NULL; 425 426 mutex_enter(softnet_lock); 427 KERNEL_LOCK(1, NULL); 428 429 ln = (struct llinfo_nd6 *)arg; 430 431 if (ln->ln_ntick > 0) { 432 nd6_llinfo_settimer(ln, ln->ln_ntick); 433 KERNEL_UNLOCK_ONE(NULL); 434 mutex_exit(softnet_lock); 435 return; 436 } 437 438 if ((rt = ln->ln_rt) == NULL) 439 panic("ln->ln_rt == NULL"); 440 if ((ifp = rt->rt_ifp) == NULL) 441 panic("ln->ln_rt->rt_ifp == NULL"); 442 ndi = ND_IFINFO(ifp); 443 dst = satocsin6(rt_getkey(rt)); 444 445 /* sanity check */ 446 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) 447 panic("rt_llinfo(%p) is not equal to ln(%p)", 448 rt->rt_llinfo, ln); 449 if (!dst) 450 panic("dst=0 in nd6_timer(ln=%p)", ln); 451 452 switch (ln->ln_state) { 453 case ND6_LLINFO_INCOMPLETE: 454 if (ln->ln_asked < nd6_mmaxtries) { 455 ln->ln_asked++; 456 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 457 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 458 } else { 459 struct mbuf *m = ln->ln_hold; 460 if (m) { 461 struct mbuf *m0; 462 463 /* 464 * assuming every packet in ln_hold has 465 * the same IP header 466 */ 467 m0 = m->m_nextpkt; 468 m->m_nextpkt = NULL; 469 icmp6_error2(m, ICMP6_DST_UNREACH, 470 ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp); 471 472 ln->ln_hold = m0; 473 clear_llinfo_pqueue(ln); 474 } 475 (void)nd6_free(rt, 0); 476 ln = NULL; 477 } 478 break; 479 case ND6_LLINFO_REACHABLE: 480 if (!ND6_LLINFO_PERMANENT(ln)) { 481 ln->ln_state = ND6_LLINFO_STALE; 482 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 483 } 484 break; 485 486 case ND6_LLINFO_PURGE: 487 case ND6_LLINFO_STALE: 488 /* Garbage Collection(RFC 2461 5.3) */ 489 if (!ND6_LLINFO_PERMANENT(ln)) { 490 (void)nd6_free(rt, 1); 491 ln = NULL; 492 } 493 break; 494 495 case ND6_LLINFO_DELAY: 496 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 497 /* We need NUD */ 498 ln->ln_asked = 1; 499 ln->ln_state = ND6_LLINFO_PROBE; 500 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 501 nd6_ns_output(ifp, &dst->sin6_addr, 502 &dst->sin6_addr, ln, 0); 503 } else { 504 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 505 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 506 } 507 break; 508 case ND6_LLINFO_PROBE: 509 if (ln->ln_asked < nd6_umaxtries) { 510 ln->ln_asked++; 511 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 512 nd6_ns_output(ifp, &dst->sin6_addr, 513 &dst->sin6_addr, ln, 0); 514 } else { 515 (void)nd6_free(rt, 0); 516 ln = NULL; 517 } 518 break; 519 } 520 521 KERNEL_UNLOCK_ONE(NULL); 522 mutex_exit(softnet_lock); 523 } 524 525 /* 526 * ND6 timer routine to expire default route list and prefix list 527 */ 528 void 529 nd6_timer(void *ignored_arg) 530 { 531 struct nd_defrouter *next_dr, *dr; 532 struct nd_prefix *next_pr, *pr; 533 struct in6_ifaddr *ia6, *nia6; 534 535 callout_reset(&nd6_timer_ch, nd6_prune * hz, 536 nd6_timer, NULL); 537 538 mutex_enter(softnet_lock); 539 KERNEL_LOCK(1, NULL); 540 541 /* expire default router list */ 542 543 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, next_dr) { 544 if (dr->expire && dr->expire < time_second) { 545 defrtrlist_del(dr); 546 } 547 } 548 549 /* 550 * expire interface addresses. 551 * in the past the loop was inside prefix expiry processing. 552 * However, from a stricter speci-confrmance standpoint, we should 553 * rather separate address lifetimes and prefix lifetimes. 554 */ 555 addrloop: 556 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) { 557 nia6 = ia6->ia_next; 558 /* check address lifetime */ 559 if (IFA6_IS_INVALID(ia6)) { 560 int regen = 0; 561 562 /* 563 * If the expiring address is temporary, try 564 * regenerating a new one. This would be useful when 565 * we suspended a laptop PC, then turned it on after a 566 * period that could invalidate all temporary 567 * addresses. Although we may have to restart the 568 * loop (see below), it must be after purging the 569 * address. Otherwise, we'd see an infinite loop of 570 * regeneration. 571 */ 572 if (ip6_use_tempaddr && 573 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 574 if (regen_tmpaddr(ia6) == 0) 575 regen = 1; 576 } 577 578 in6_purgeaddr(&ia6->ia_ifa); 579 580 if (regen) 581 goto addrloop; /* XXX: see below */ 582 } else if (IFA6_IS_DEPRECATED(ia6)) { 583 int oldflags = ia6->ia6_flags; 584 585 if ((oldflags & IN6_IFF_DEPRECATED) == 0) { 586 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 587 nd6_newaddrmsg((struct ifaddr *)ia6); 588 } 589 590 /* 591 * If a temporary address has just become deprecated, 592 * regenerate a new one if possible. 593 */ 594 if (ip6_use_tempaddr && 595 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 596 (oldflags & IN6_IFF_DEPRECATED) == 0) { 597 598 if (regen_tmpaddr(ia6) == 0) { 599 /* 600 * A new temporary address is 601 * generated. 602 * XXX: this means the address chain 603 * has changed while we are still in 604 * the loop. Although the change 605 * would not cause disaster (because 606 * it's not a deletion, but an 607 * addition,) we'd rather restart the 608 * loop just for safety. Or does this 609 * significantly reduce performance?? 610 */ 611 goto addrloop; 612 } 613 } 614 } else { 615 /* 616 * A new RA might have made a deprecated address 617 * preferred. 618 */ 619 if (ia6->ia6_flags & IN6_IFF_DEPRECATED) { 620 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 621 nd6_newaddrmsg((struct ifaddr *)ia6); 622 } 623 } 624 } 625 626 /* expire prefix list */ 627 LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, next_pr) { 628 /* 629 * check prefix lifetime. 630 * since pltime is just for autoconf, pltime processing for 631 * prefix is not necessary. 632 */ 633 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 634 time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) { 635 636 /* 637 * address expiration and prefix expiration are 638 * separate. NEVER perform in6_purgeaddr here. 639 */ 640 641 prelist_remove(pr); 642 } 643 } 644 645 KERNEL_UNLOCK_ONE(NULL); 646 mutex_exit(softnet_lock); 647 } 648 649 /* ia6: deprecated/invalidated temporary address */ 650 static int 651 regen_tmpaddr(struct in6_ifaddr *ia6) 652 { 653 struct ifaddr *ifa; 654 struct ifnet *ifp; 655 struct in6_ifaddr *public_ifa6 = NULL; 656 657 ifp = ia6->ia_ifa.ifa_ifp; 658 IFADDR_FOREACH(ifa, ifp) { 659 struct in6_ifaddr *it6; 660 661 if (ifa->ifa_addr->sa_family != AF_INET6) 662 continue; 663 664 it6 = (struct in6_ifaddr *)ifa; 665 666 /* ignore no autoconf addresses. */ 667 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 668 continue; 669 670 /* ignore autoconf addresses with different prefixes. */ 671 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 672 continue; 673 674 /* 675 * Now we are looking at an autoconf address with the same 676 * prefix as ours. If the address is temporary and is still 677 * preferred, do not create another one. It would be rare, but 678 * could happen, for example, when we resume a laptop PC after 679 * a long period. 680 */ 681 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 682 !IFA6_IS_DEPRECATED(it6)) { 683 public_ifa6 = NULL; 684 break; 685 } 686 687 /* 688 * This is a public autoconf address that has the same prefix 689 * as ours. If it is preferred, keep it. We can't break the 690 * loop here, because there may be a still-preferred temporary 691 * address with the prefix. 692 */ 693 if (!IFA6_IS_DEPRECATED(it6)) 694 public_ifa6 = it6; 695 } 696 697 if (public_ifa6 != NULL) { 698 int e; 699 700 /* 701 * Random factor is introduced in the preferred lifetime, so 702 * we do not need additional delay (3rd arg to in6_tmpifadd). 703 */ 704 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 705 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 706 " tmp addr, errno=%d\n", e); 707 return -1; 708 } 709 return 0; 710 } 711 712 return -1; 713 } 714 715 bool 716 nd6_accepts_rtadv(const struct nd_ifinfo *ndi) 717 { 718 switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) { 719 case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV: 720 return true; 721 case ND6_IFF_ACCEPT_RTADV: 722 return ip6_accept_rtadv != 0; 723 case ND6_IFF_OVERRIDE_RTADV: 724 case 0: 725 default: 726 return false; 727 } 728 } 729 730 /* 731 * Nuke neighbor cache/prefix/default router management table, right before 732 * ifp goes away. 733 */ 734 void 735 nd6_purge(struct ifnet *ifp) 736 { 737 struct llinfo_nd6 *ln, *nln; 738 struct nd_defrouter *dr, *ndr; 739 struct nd_prefix *pr, *npr; 740 741 /* 742 * Nuke default router list entries toward ifp. 743 * We defer removal of default router list entries that is installed 744 * in the routing table, in order to keep additional side effects as 745 * small as possible. 746 */ 747 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) { 748 if (dr->installed) 749 continue; 750 751 if (dr->ifp == ifp) 752 defrtrlist_del(dr); 753 } 754 755 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) { 756 if (!dr->installed) 757 continue; 758 759 if (dr->ifp == ifp) 760 defrtrlist_del(dr); 761 } 762 763 /* Nuke prefix list entries toward ifp */ 764 LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, npr) { 765 if (pr->ndpr_ifp == ifp) { 766 /* 767 * Because if_detach() does *not* release prefixes 768 * while purging addresses the reference count will 769 * still be above zero. We therefore reset it to 770 * make sure that the prefix really gets purged. 771 */ 772 pr->ndpr_refcnt = 0; 773 /* 774 * Previously, pr->ndpr_addr is removed as well, 775 * but I strongly believe we don't have to do it. 776 * nd6_purge() is only called from in6_ifdetach(), 777 * which removes all the associated interface addresses 778 * by itself. 779 * (jinmei@kame.net 20010129) 780 */ 781 prelist_remove(pr); 782 } 783 } 784 785 /* cancel default outgoing interface setting */ 786 if (nd6_defifindex == ifp->if_index) 787 nd6_setdefaultiface(0); 788 789 /* XXX: too restrictive? */ 790 if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) { 791 struct nd_ifinfo *ndi = ND_IFINFO(ifp); 792 if (ndi && nd6_accepts_rtadv(ndi)) { 793 /* refresh default router list */ 794 defrouter_select(); 795 } 796 } 797 798 /* 799 * Nuke neighbor cache entries for the ifp. 800 * Note that rt->rt_ifp may not be the same as ifp, 801 * due to KAME goto ours hack. See RTM_RESOLVE case in 802 * nd6_rtrequest(), and ip6_input(). 803 */ 804 ln = llinfo_nd6.ln_next; 805 while (ln != NULL && ln != &llinfo_nd6) { 806 struct rtentry *rt; 807 const struct sockaddr_dl *sdl; 808 809 nln = ln->ln_next; 810 rt = ln->ln_rt; 811 if (rt && rt->rt_gateway && 812 rt->rt_gateway->sa_family == AF_LINK) { 813 sdl = satocsdl(rt->rt_gateway); 814 if (sdl->sdl_index == ifp->if_index) 815 nln = nd6_free(rt, 0); 816 } 817 ln = nln; 818 } 819 } 820 821 struct rtentry * 822 nd6_lookup(const struct in6_addr *addr6, int create, struct ifnet *ifp) 823 { 824 struct rtentry *rt; 825 struct sockaddr_in6 sin6; 826 827 sockaddr_in6_init(&sin6, addr6, 0, 0, 0); 828 rt = rtalloc1((struct sockaddr *)&sin6, create); 829 if (rt != NULL && (rt->rt_flags & RTF_LLINFO) == 0) { 830 /* 831 * This is the case for the default route. 832 * If we want to create a neighbor cache for the address, we 833 * should free the route for the destination and allocate an 834 * interface route. 835 */ 836 if (create) { 837 RTFREE(rt); 838 rt = NULL; 839 } 840 } 841 if (rt != NULL) 842 ; 843 else if (create && ifp) { 844 int e; 845 846 /* 847 * If no route is available and create is set, 848 * we allocate a host route for the destination 849 * and treat it like an interface route. 850 * This hack is necessary for a neighbor which can't 851 * be covered by our own prefix. 852 */ 853 struct ifaddr *ifa = 854 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); 855 if (ifa == NULL) 856 return NULL; 857 858 /* 859 * Create a new route. RTF_LLINFO is necessary 860 * to create a Neighbor Cache entry for the 861 * destination in nd6_rtrequest which will be 862 * called in rtrequest via ifa->ifa_rtrequest. 863 */ 864 if ((e = rtrequest(RTM_ADD, (const struct sockaddr *)&sin6, 865 ifa->ifa_addr, (const struct sockaddr *)&all1_sa, 866 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) & 867 ~RTF_CLONING, &rt)) != 0) { 868 #if 0 869 log(LOG_ERR, 870 "nd6_lookup: failed to add route for a " 871 "neighbor(%s), errno=%d\n", 872 ip6_sprintf(addr6), e); 873 #endif 874 return NULL; 875 } 876 if (rt == NULL) 877 return NULL; 878 if (rt->rt_llinfo) { 879 struct llinfo_nd6 *ln = 880 (struct llinfo_nd6 *)rt->rt_llinfo; 881 ln->ln_state = ND6_LLINFO_NOSTATE; 882 } 883 } else 884 return NULL; 885 rt->rt_refcnt--; 886 /* 887 * Validation for the entry. 888 * Note that the check for rt_llinfo is necessary because a cloned 889 * route from a parent route that has the L flag (e.g. the default 890 * route to a p2p interface) may have the flag, too, while the 891 * destination is not actually a neighbor. 892 * XXX: we can't use rt->rt_ifp to check for the interface, since 893 * it might be the loopback interface if the entry is for our 894 * own address on a non-loopback interface. Instead, we should 895 * use rt->rt_ifa->ifa_ifp, which would specify the REAL 896 * interface. 897 * Note also that ifa_ifp and ifp may differ when we connect two 898 * interfaces to a same link, install a link prefix to an interface, 899 * and try to install a neighbor cache on an interface that does not 900 * have a route to the prefix. 901 */ 902 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || 903 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || 904 (ifp && rt->rt_ifa->ifa_ifp != ifp)) { 905 if (create) { 906 nd6log((LOG_DEBUG, 907 "nd6_lookup: failed to lookup %s (if = %s)\n", 908 ip6_sprintf(addr6), 909 ifp ? if_name(ifp) : "unspec")); 910 } 911 return NULL; 912 } 913 return rt; 914 } 915 916 /* 917 * Detect if a given IPv6 address identifies a neighbor on a given link. 918 * XXX: should take care of the destination of a p2p link? 919 */ 920 int 921 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 922 { 923 struct nd_prefix *pr; 924 925 /* 926 * A link-local address is always a neighbor. 927 * XXX: a link does not necessarily specify a single interface. 928 */ 929 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 930 struct sockaddr_in6 sin6_copy; 931 u_int32_t zone; 932 933 /* 934 * We need sin6_copy since sa6_recoverscope() may modify the 935 * content (XXX). 936 */ 937 sin6_copy = *addr; 938 if (sa6_recoverscope(&sin6_copy)) 939 return 0; /* XXX: should be impossible */ 940 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 941 return 0; 942 if (sin6_copy.sin6_scope_id == zone) 943 return 1; 944 else 945 return 0; 946 } 947 948 /* 949 * If the address matches one of our on-link prefixes, it should be a 950 * neighbor. 951 */ 952 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { 953 if (pr->ndpr_ifp != ifp) 954 continue; 955 956 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) 957 continue; 958 959 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 960 &addr->sin6_addr, &pr->ndpr_mask)) 961 return 1; 962 } 963 964 /* 965 * If the default router list is empty, all addresses are regarded 966 * as on-link, and thus, as a neighbor. 967 * XXX: we restrict the condition to hosts, because routers usually do 968 * not have the "default router list". 969 */ 970 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL && 971 nd6_defifindex == ifp->if_index) { 972 return 1; 973 } 974 975 /* 976 * Even if the address matches none of our addresses, it might be 977 * in the neighbor cache. 978 */ 979 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL) 980 return 1; 981 982 return 0; 983 } 984 985 /* 986 * Free an nd6 llinfo entry. 987 * Since the function would cause significant changes in the kernel, DO NOT 988 * make it global, unless you have a strong reason for the change, and are sure 989 * that the change is safe. 990 */ 991 static struct llinfo_nd6 * 992 nd6_free(struct rtentry *rt, int gc) 993 { 994 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next; 995 struct in6_addr in6 = satocsin6(rt_getkey(rt))->sin6_addr; 996 struct nd_defrouter *dr; 997 998 /* 999 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1000 * even though it is not harmful, it was not really necessary. 1001 */ 1002 1003 /* cancel timer */ 1004 nd6_llinfo_settimer(ln, -1); 1005 1006 if (!ip6_forwarding) { 1007 int s; 1008 s = splsoftnet(); 1009 dr = defrouter_lookup(&satocsin6(rt_getkey(rt))->sin6_addr, 1010 rt->rt_ifp); 1011 1012 if (dr != NULL && dr->expire && 1013 ln->ln_state == ND6_LLINFO_STALE && gc) { 1014 /* 1015 * If the reason for the deletion is just garbage 1016 * collection, and the neighbor is an active default 1017 * router, do not delete it. Instead, reset the GC 1018 * timer using the router's lifetime. 1019 * Simply deleting the entry would affect default 1020 * router selection, which is not necessarily a good 1021 * thing, especially when we're using router preference 1022 * values. 1023 * XXX: the check for ln_state would be redundant, 1024 * but we intentionally keep it just in case. 1025 */ 1026 if (dr->expire > time_second) 1027 nd6_llinfo_settimer(ln, 1028 (dr->expire - time_second) * hz); 1029 else 1030 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 1031 splx(s); 1032 return ln->ln_next; 1033 } 1034 1035 if (ln->ln_router || dr) { 1036 /* 1037 * rt6_flush must be called whether or not the neighbor 1038 * is in the Default Router List. 1039 * See a corresponding comment in nd6_na_input(). 1040 */ 1041 rt6_flush(&in6, rt->rt_ifp); 1042 } 1043 1044 if (dr) { 1045 /* 1046 * Unreachablity of a router might affect the default 1047 * router selection and on-link detection of advertised 1048 * prefixes. 1049 */ 1050 1051 /* 1052 * Temporarily fake the state to choose a new default 1053 * router and to perform on-link determination of 1054 * prefixes correctly. 1055 * Below the state will be set correctly, 1056 * or the entry itself will be deleted. 1057 */ 1058 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1059 1060 /* 1061 * Since defrouter_select() does not affect the 1062 * on-link determination and MIP6 needs the check 1063 * before the default router selection, we perform 1064 * the check now. 1065 */ 1066 pfxlist_onlink_check(); 1067 1068 /* 1069 * refresh default router list 1070 */ 1071 defrouter_select(); 1072 } 1073 splx(s); 1074 } 1075 1076 /* 1077 * Before deleting the entry, remember the next entry as the 1078 * return value. We need this because pfxlist_onlink_check() above 1079 * might have freed other entries (particularly the old next entry) as 1080 * a side effect (XXX). 1081 */ 1082 next = ln->ln_next; 1083 1084 /* 1085 * Detach the route from the routing tree and the list of neighbor 1086 * caches, and disable the route entry not to be used in already 1087 * cached routes. 1088 */ 1089 rtrequest(RTM_DELETE, rt_getkey(rt), NULL, rt_mask(rt), 0, NULL); 1090 1091 return next; 1092 } 1093 1094 /* 1095 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1096 * 1097 * XXX cost-effective methods? 1098 */ 1099 void 1100 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force) 1101 { 1102 struct llinfo_nd6 *ln; 1103 1104 /* 1105 * If the caller specified "rt", use that. Otherwise, resolve the 1106 * routing table by supplied "dst6". 1107 */ 1108 if (rt == NULL) { 1109 if (dst6 == NULL) 1110 return; 1111 if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL) 1112 return; 1113 } 1114 1115 if ((rt->rt_flags & RTF_GATEWAY) != 0 || 1116 (rt->rt_flags & RTF_LLINFO) == 0 || 1117 !rt->rt_llinfo || !rt->rt_gateway || 1118 rt->rt_gateway->sa_family != AF_LINK) { 1119 /* This is not a host route. */ 1120 return; 1121 } 1122 1123 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1124 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1125 return; 1126 1127 /* 1128 * if we get upper-layer reachability confirmation many times, 1129 * it is possible we have false information. 1130 */ 1131 if (!force) { 1132 ln->ln_byhint++; 1133 if (ln->ln_byhint > nd6_maxnudhint) 1134 return; 1135 } 1136 1137 ln->ln_state = ND6_LLINFO_REACHABLE; 1138 if (!ND6_LLINFO_PERMANENT(ln)) { 1139 nd6_llinfo_settimer(ln, 1140 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz); 1141 } 1142 } 1143 1144 void 1145 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info) 1146 { 1147 struct sockaddr *gate = rt->rt_gateway; 1148 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1149 struct ifnet *ifp = rt->rt_ifp; 1150 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen; 1151 struct ifaddr *ifa; 1152 1153 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1154 1155 if (req == RTM_LLINFO_UPD) { 1156 int rc; 1157 struct in6_addr *in6; 1158 struct in6_addr in6_all; 1159 int anycast; 1160 1161 if ((ifa = info->rti_ifa) == NULL) 1162 return; 1163 1164 in6 = &ifatoia6(ifa)->ia_addr.sin6_addr; 1165 anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST; 1166 1167 in6_all = in6addr_linklocal_allnodes; 1168 if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) { 1169 log(LOG_ERR, "%s: failed to set scope %s " 1170 "(errno=%d)\n", __func__, if_name(ifp), rc); 1171 return; 1172 } 1173 1174 /* XXX don't set Override for proxy addresses */ 1175 nd6_na_output(ifa->ifa_ifp, &in6_all, in6, 1176 (anycast ? 0 : ND_NA_FLAG_OVERRIDE) 1177 #if 0 1178 | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0) 1179 #endif 1180 , 1, NULL); 1181 return; 1182 } 1183 1184 if ((rt->rt_flags & RTF_GATEWAY) != 0) 1185 return; 1186 1187 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { 1188 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1189 /* 1190 * This is probably an interface direct route for a link 1191 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1192 * We do not need special treatment below for such a route. 1193 * Moreover, the RTF_LLINFO flag which would be set below 1194 * would annoy the ndp(8) command. 1195 */ 1196 return; 1197 } 1198 1199 if (req == RTM_RESOLVE && 1200 (nd6_need_cache(ifp) == 0 || /* stf case */ 1201 !nd6_is_addr_neighbor(satocsin6(rt_getkey(rt)), ifp))) { 1202 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1203 /* 1204 * FreeBSD and BSD/OS often make a cloned host route based 1205 * on a less-specific route (e.g. the default route). 1206 * If the less specific route does not have a "gateway" 1207 * (this is the case when the route just goes to a p2p or an 1208 * stf interface), we'll mistakenly make a neighbor cache for 1209 * the host route, and will see strange neighbor solicitation 1210 * for the corresponding destination. In order to avoid the 1211 * confusion, we check if the destination of the route is 1212 * a neighbor in terms of neighbor discovery, and stop the 1213 * process if not. Additionally, we remove the LLINFO flag 1214 * so that ndp(8) will not try to get the neighbor information 1215 * of the destination. 1216 */ 1217 rt->rt_flags &= ~RTF_LLINFO; 1218 return; 1219 } 1220 1221 switch (req) { 1222 case RTM_ADD: 1223 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1224 /* 1225 * There is no backward compatibility :) 1226 * 1227 * if ((rt->rt_flags & RTF_HOST) == 0 && 1228 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1229 * rt->rt_flags |= RTF_CLONING; 1230 */ 1231 if ((rt->rt_flags & RTF_CLONING) || 1232 ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) { 1233 union { 1234 struct sockaddr sa; 1235 struct sockaddr_dl sdl; 1236 struct sockaddr_storage ss; 1237 } u; 1238 /* 1239 * Case 1: This route should come from a route to 1240 * interface (RTF_CLONING case) or the route should be 1241 * treated as on-link but is currently not 1242 * (RTF_LLINFO && ln == NULL case). 1243 */ 1244 if (sockaddr_dl_init(&u.sdl, sizeof(u.ss), 1245 ifp->if_index, ifp->if_type, 1246 NULL, namelen, NULL, addrlen) == NULL) { 1247 printf("%s.%d: sockaddr_dl_init(, %zu, ) " 1248 "failed on %s\n", __func__, __LINE__, 1249 sizeof(u.ss), if_name(ifp)); 1250 } 1251 rt_setgate(rt, &u.sa); 1252 gate = rt->rt_gateway; 1253 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1254 if (ln != NULL) 1255 nd6_llinfo_settimer(ln, 0); 1256 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1257 if ((rt->rt_flags & RTF_CLONING) != 0) 1258 break; 1259 } 1260 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1261 /* 1262 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1263 * We don't do that here since llinfo is not ready yet. 1264 * 1265 * There are also couple of other things to be discussed: 1266 * - unsolicited NA code needs improvement beforehand 1267 * - RFC2461 says we MAY send multicast unsolicited NA 1268 * (7.2.6 paragraph 4), however, it also says that we 1269 * SHOULD provide a mechanism to prevent multicast NA storm. 1270 * we don't have anything like it right now. 1271 * note that the mechanism needs a mutual agreement 1272 * between proxies, which means that we need to implement 1273 * a new protocol, or a new kludge. 1274 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1275 * we need to check ip6forwarding before sending it. 1276 * (or should we allow proxy ND configuration only for 1277 * routers? there's no mention about proxy ND from hosts) 1278 */ 1279 #if 0 1280 /* XXX it does not work */ 1281 if (rt->rt_flags & RTF_ANNOUNCE) 1282 nd6_na_output(ifp, 1283 &satocsin6(rt_getkey(rt))->sin6_addr, 1284 &satocsin6(rt_getkey(rt))->sin6_addr, 1285 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1286 1, NULL); 1287 #endif 1288 /* FALLTHROUGH */ 1289 case RTM_RESOLVE: 1290 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 1291 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1292 /* 1293 * Address resolution isn't necessary for a point to 1294 * point link, so we can skip this test for a p2p link. 1295 */ 1296 if (gate->sa_family != AF_LINK || 1297 gate->sa_len < 1298 sockaddr_dl_measure(namelen, addrlen)) { 1299 log(LOG_DEBUG, 1300 "nd6_rtrequest: bad gateway value: %s\n", 1301 if_name(ifp)); 1302 break; 1303 } 1304 satosdl(gate)->sdl_type = ifp->if_type; 1305 satosdl(gate)->sdl_index = ifp->if_index; 1306 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1307 } 1308 if (ln != NULL) 1309 break; /* This happens on a route change */ 1310 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1311 /* 1312 * Case 2: This route may come from cloning, or a manual route 1313 * add with a LL address. 1314 */ 1315 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln)); 1316 rt->rt_llinfo = ln; 1317 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1318 if (ln == NULL) { 1319 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n"); 1320 break; 1321 } 1322 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1323 nd6_inuse++; 1324 nd6_allocated++; 1325 memset(ln, 0, sizeof(*ln)); 1326 ln->ln_rt = rt; 1327 callout_init(&ln->ln_timer_ch, CALLOUT_MPSAFE); 1328 /* this is required for "ndp" command. - shin */ 1329 if (req == RTM_ADD) { 1330 /* 1331 * gate should have some valid AF_LINK entry, 1332 * and ln->ln_expire should have some lifetime 1333 * which is specified by ndp command. 1334 */ 1335 ln->ln_state = ND6_LLINFO_REACHABLE; 1336 ln->ln_byhint = 0; 1337 } else { 1338 /* 1339 * When req == RTM_RESOLVE, rt is created and 1340 * initialized in rtrequest(), so rt_expire is 0. 1341 */ 1342 ln->ln_state = ND6_LLINFO_NOSTATE; 1343 nd6_llinfo_settimer(ln, 0); 1344 } 1345 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1346 rt->rt_flags |= RTF_LLINFO; 1347 ln->ln_next = llinfo_nd6.ln_next; 1348 llinfo_nd6.ln_next = ln; 1349 ln->ln_prev = &llinfo_nd6; 1350 ln->ln_next->ln_prev = ln; 1351 1352 /* 1353 * If we have too many cache entries, initiate immediate 1354 * purging for some "less recently used" entries. Note that 1355 * we cannot directly call nd6_free() here because it would 1356 * cause re-entering rtable related routines triggering an LOR 1357 * problem for FreeBSD. 1358 */ 1359 if (ip6_neighborgcthresh >= 0 && 1360 nd6_inuse >= ip6_neighborgcthresh) { 1361 int i; 1362 1363 for (i = 0; i < 10 && llinfo_nd6.ln_prev != ln; i++) { 1364 struct llinfo_nd6 *ln_end = llinfo_nd6.ln_prev; 1365 1366 /* Move this entry to the head */ 1367 LN_DEQUEUE(ln_end); 1368 LN_INSERTHEAD(ln_end); 1369 1370 if (ND6_LLINFO_PERMANENT(ln_end)) 1371 continue; 1372 1373 if (ln_end->ln_state > ND6_LLINFO_INCOMPLETE) 1374 ln_end->ln_state = ND6_LLINFO_STALE; 1375 else 1376 ln_end->ln_state = ND6_LLINFO_PURGE; 1377 nd6_llinfo_settimer(ln_end, 0); 1378 } 1379 } 1380 1381 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1382 /* 1383 * check if rt_getkey(rt) is an address assigned 1384 * to the interface. 1385 */ 1386 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp, 1387 &satocsin6(rt_getkey(rt))->sin6_addr); 1388 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1389 if (ifa != NULL) { 1390 const void *mac; 1391 nd6_llinfo_settimer(ln, -1); 1392 ln->ln_state = ND6_LLINFO_REACHABLE; 1393 ln->ln_byhint = 0; 1394 if ((mac = nd6_ifptomac(ifp)) != NULL) { 1395 /* XXX check for error */ 1396 if (sockaddr_dl_setaddr(satosdl(gate), 1397 gate->sa_len, mac, 1398 ifp->if_addrlen) == NULL) { 1399 printf("%s.%d: " 1400 "sockaddr_dl_setaddr(, %d, ) " 1401 "failed on %s\n", __func__, 1402 __LINE__, gate->sa_len, 1403 if_name(ifp)); 1404 } 1405 } 1406 if (nd6_useloopback) { 1407 ifp = rt->rt_ifp = lo0ifp; /* XXX */ 1408 /* 1409 * Make sure rt_ifa be equal to the ifaddr 1410 * corresponding to the address. 1411 * We need this because when we refer 1412 * rt_ifa->ia6_flags in ip6_input, we assume 1413 * that the rt_ifa points to the address instead 1414 * of the loopback address. 1415 */ 1416 if (ifa != rt->rt_ifa) 1417 rt_replace_ifa(rt, ifa); 1418 rt->rt_flags &= ~RTF_CLONED; 1419 } 1420 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1421 nd6_llinfo_settimer(ln, -1); 1422 ln->ln_state = ND6_LLINFO_REACHABLE; 1423 ln->ln_byhint = 0; 1424 1425 /* join solicited node multicast for proxy ND */ 1426 if (ifp->if_flags & IFF_MULTICAST) { 1427 struct in6_addr llsol; 1428 int error; 1429 1430 llsol = satocsin6(rt_getkey(rt))->sin6_addr; 1431 llsol.s6_addr32[0] = htonl(0xff020000); 1432 llsol.s6_addr32[1] = 0; 1433 llsol.s6_addr32[2] = htonl(1); 1434 llsol.s6_addr8[12] = 0xff; 1435 if (in6_setscope(&llsol, ifp, NULL)) 1436 break; 1437 if (!in6_addmulti(&llsol, ifp, &error, 0)) { 1438 nd6log((LOG_ERR, "%s: failed to join " 1439 "%s (errno=%d)\n", if_name(ifp), 1440 ip6_sprintf(&llsol), error)); 1441 } 1442 } 1443 } 1444 break; 1445 1446 case RTM_DELETE: 1447 if (ln == NULL) 1448 break; 1449 /* leave from solicited node multicast for proxy ND */ 1450 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && 1451 (ifp->if_flags & IFF_MULTICAST) != 0) { 1452 struct in6_addr llsol; 1453 struct in6_multi *in6m; 1454 1455 llsol = satocsin6(rt_getkey(rt))->sin6_addr; 1456 llsol.s6_addr32[0] = htonl(0xff020000); 1457 llsol.s6_addr32[1] = 0; 1458 llsol.s6_addr32[2] = htonl(1); 1459 llsol.s6_addr8[12] = 0xff; 1460 if (in6_setscope(&llsol, ifp, NULL) == 0) { 1461 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1462 if (in6m) 1463 in6_delmulti(in6m); 1464 } 1465 } 1466 nd6_inuse--; 1467 ln->ln_next->ln_prev = ln->ln_prev; 1468 ln->ln_prev->ln_next = ln->ln_next; 1469 ln->ln_prev = NULL; 1470 nd6_llinfo_settimer(ln, -1); 1471 rt->rt_llinfo = 0; 1472 rt->rt_flags &= ~RTF_LLINFO; 1473 clear_llinfo_pqueue(ln); 1474 Free(ln); 1475 } 1476 } 1477 1478 int 1479 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp) 1480 { 1481 struct in6_drlist *drl = (struct in6_drlist *)data; 1482 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1483 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1484 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1485 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1486 struct nd_defrouter *dr; 1487 struct nd_prefix *pr; 1488 struct rtentry *rt; 1489 int i = 0, error = 0; 1490 int s; 1491 1492 switch (cmd) { 1493 case SIOCGDRLST_IN6: 1494 /* 1495 * obsolete API, use sysctl under net.inet6.icmp6 1496 */ 1497 memset(drl, 0, sizeof(*drl)); 1498 s = splsoftnet(); 1499 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) { 1500 if (i >= DRLSTSIZ) 1501 break; 1502 drl->defrouter[i].rtaddr = dr->rtaddr; 1503 in6_clearscope(&drl->defrouter[i].rtaddr); 1504 1505 drl->defrouter[i].flags = dr->flags; 1506 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1507 drl->defrouter[i].expire = dr->expire; 1508 drl->defrouter[i].if_index = dr->ifp->if_index; 1509 i++; 1510 } 1511 splx(s); 1512 break; 1513 case SIOCGPRLST_IN6: 1514 /* 1515 * obsolete API, use sysctl under net.inet6.icmp6 1516 * 1517 * XXX the structure in6_prlist was changed in backward- 1518 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1519 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1520 */ 1521 /* 1522 * XXX meaning of fields, especialy "raflags", is very 1523 * differnet between RA prefix list and RR/static prefix list. 1524 * how about separating ioctls into two? 1525 */ 1526 memset(oprl, 0, sizeof(*oprl)); 1527 s = splsoftnet(); 1528 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { 1529 struct nd_pfxrouter *pfr; 1530 int j; 1531 1532 if (i >= PRLSTSIZ) 1533 break; 1534 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1535 oprl->prefix[i].raflags = pr->ndpr_raf; 1536 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1537 oprl->prefix[i].vltime = pr->ndpr_vltime; 1538 oprl->prefix[i].pltime = pr->ndpr_pltime; 1539 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1540 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 1541 oprl->prefix[i].expire = 0; 1542 else { 1543 time_t maxexpire; 1544 1545 /* XXX: we assume time_t is signed. */ 1546 maxexpire = (-1) & 1547 ~((time_t)1 << 1548 ((sizeof(maxexpire) * 8) - 1)); 1549 if (pr->ndpr_vltime < 1550 maxexpire - pr->ndpr_lastupdate) { 1551 oprl->prefix[i].expire = 1552 pr->ndpr_lastupdate + 1553 pr->ndpr_vltime; 1554 } else 1555 oprl->prefix[i].expire = maxexpire; 1556 } 1557 1558 j = 0; 1559 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 1560 if (j < DRLSTSIZ) { 1561 #define RTRADDR oprl->prefix[i].advrtr[j] 1562 RTRADDR = pfr->router->rtaddr; 1563 in6_clearscope(&RTRADDR); 1564 #undef RTRADDR 1565 } 1566 j++; 1567 } 1568 oprl->prefix[i].advrtrs = j; 1569 oprl->prefix[i].origin = PR_ORIG_RA; 1570 1571 i++; 1572 } 1573 splx(s); 1574 1575 break; 1576 case OSIOCGIFINFO_IN6: 1577 #define ND ndi->ndi 1578 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1579 memset(&ND, 0, sizeof(ND)); 1580 ND.linkmtu = IN6_LINKMTU(ifp); 1581 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1582 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1583 ND.reachable = ND_IFINFO(ifp)->reachable; 1584 ND.retrans = ND_IFINFO(ifp)->retrans; 1585 ND.flags = ND_IFINFO(ifp)->flags; 1586 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1587 ND.chlim = ND_IFINFO(ifp)->chlim; 1588 break; 1589 case SIOCGIFINFO_IN6: 1590 ND = *ND_IFINFO(ifp); 1591 break; 1592 case SIOCSIFINFO_IN6: 1593 /* 1594 * used to change host variables from userland. 1595 * intented for a use on router to reflect RA configurations. 1596 */ 1597 /* 0 means 'unspecified' */ 1598 if (ND.linkmtu != 0) { 1599 if (ND.linkmtu < IPV6_MMTU || 1600 ND.linkmtu > IN6_LINKMTU(ifp)) { 1601 error = EINVAL; 1602 break; 1603 } 1604 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1605 } 1606 1607 if (ND.basereachable != 0) { 1608 int obasereachable = ND_IFINFO(ifp)->basereachable; 1609 1610 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1611 if (ND.basereachable != obasereachable) 1612 ND_IFINFO(ifp)->reachable = 1613 ND_COMPUTE_RTIME(ND.basereachable); 1614 } 1615 if (ND.retrans != 0) 1616 ND_IFINFO(ifp)->retrans = ND.retrans; 1617 if (ND.chlim != 0) 1618 ND_IFINFO(ifp)->chlim = ND.chlim; 1619 /* FALLTHROUGH */ 1620 case SIOCSIFINFO_FLAGS: 1621 ND_IFINFO(ifp)->flags = ND.flags; 1622 break; 1623 #undef ND 1624 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1625 /* sync kernel routing table with the default router list */ 1626 defrouter_reset(); 1627 defrouter_select(); 1628 break; 1629 case SIOCSPFXFLUSH_IN6: 1630 { 1631 /* flush all the prefix advertised by routers */ 1632 struct nd_prefix *pfx, *next; 1633 1634 s = splsoftnet(); 1635 LIST_FOREACH_SAFE(pfx, &nd_prefix, ndpr_entry, next) { 1636 struct in6_ifaddr *ia, *ia_next; 1637 1638 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr)) 1639 continue; /* XXX */ 1640 1641 /* do we really have to remove addresses as well? */ 1642 for (ia = in6_ifaddr; ia; ia = ia_next) { 1643 /* ia might be removed. keep the next ptr. */ 1644 ia_next = ia->ia_next; 1645 1646 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1647 continue; 1648 1649 if (ia->ia6_ndpr == pfx) 1650 in6_purgeaddr(&ia->ia_ifa); 1651 } 1652 prelist_remove(pfx); 1653 } 1654 splx(s); 1655 break; 1656 } 1657 case SIOCSRTRFLUSH_IN6: 1658 { 1659 /* flush all the default routers */ 1660 struct nd_defrouter *drtr, *next; 1661 1662 s = splsoftnet(); 1663 defrouter_reset(); 1664 TAILQ_FOREACH_SAFE(drtr, &nd_defrouter, dr_entry, next) { 1665 defrtrlist_del(drtr); 1666 } 1667 defrouter_select(); 1668 splx(s); 1669 break; 1670 } 1671 case SIOCGNBRINFO_IN6: 1672 { 1673 struct llinfo_nd6 *ln; 1674 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1675 1676 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1677 return error; 1678 1679 s = splsoftnet(); 1680 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL || 1681 (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) { 1682 error = EINVAL; 1683 splx(s); 1684 break; 1685 } 1686 nbi->state = ln->ln_state; 1687 nbi->asked = ln->ln_asked; 1688 nbi->isrouter = ln->ln_router; 1689 nbi->expire = ln->ln_expire; 1690 splx(s); 1691 1692 break; 1693 } 1694 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1695 ndif->ifindex = nd6_defifindex; 1696 break; 1697 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1698 return nd6_setdefaultiface(ndif->ifindex); 1699 } 1700 return error; 1701 } 1702 1703 void 1704 nd6_llinfo_release_pkts(struct llinfo_nd6 *ln, struct ifnet *ifp, 1705 struct rtentry *rt) 1706 { 1707 struct mbuf *m_hold, *m_hold_next; 1708 1709 for (m_hold = ln->ln_hold, ln->ln_hold = NULL; 1710 m_hold != NULL; 1711 m_hold = m_hold_next) { 1712 m_hold_next = m_hold->m_nextpkt; 1713 m_hold->m_nextpkt = NULL; 1714 1715 /* 1716 * we assume ifp is not a p2p here, so 1717 * just set the 2nd argument as the 1718 * 1st one. 1719 */ 1720 nd6_output(ifp, ifp, m_hold, satocsin6(rt_getkey(rt)), rt); 1721 } 1722 } 1723 1724 /* 1725 * Create neighbor cache entry and cache link-layer address, 1726 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1727 */ 1728 struct rtentry * 1729 nd6_cache_lladdr( 1730 struct ifnet *ifp, 1731 struct in6_addr *from, 1732 char *lladdr, 1733 int lladdrlen, 1734 int type, /* ICMP6 type */ 1735 int code /* type dependent information */ 1736 ) 1737 { 1738 struct nd_ifinfo *ndi = ND_IFINFO(ifp); 1739 struct rtentry *rt = NULL; 1740 struct llinfo_nd6 *ln = NULL; 1741 int is_newentry; 1742 struct sockaddr_dl *sdl = NULL; 1743 int do_update; 1744 int olladdr; 1745 int llchange; 1746 int newstate = 0; 1747 1748 if (ifp == NULL) 1749 panic("ifp == NULL in nd6_cache_lladdr"); 1750 if (from == NULL) 1751 panic("from == NULL in nd6_cache_lladdr"); 1752 1753 /* nothing must be updated for unspecified address */ 1754 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1755 return NULL; 1756 1757 /* 1758 * Validation about ifp->if_addrlen and lladdrlen must be done in 1759 * the caller. 1760 * 1761 * XXX If the link does not have link-layer adderss, what should 1762 * we do? (ifp->if_addrlen == 0) 1763 * Spec says nothing in sections for RA, RS and NA. There's small 1764 * description on it in NS section (RFC 2461 7.2.3). 1765 */ 1766 1767 rt = nd6_lookup(from, 0, ifp); 1768 if (rt == NULL) { 1769 #if 0 1770 /* nothing must be done if there's no lladdr */ 1771 if (!lladdr || !lladdrlen) 1772 return NULL; 1773 #endif 1774 1775 rt = nd6_lookup(from, 1, ifp); 1776 is_newentry = 1; 1777 } else { 1778 /* do nothing if static ndp is set */ 1779 if (rt->rt_flags & RTF_STATIC) 1780 return NULL; 1781 is_newentry = 0; 1782 } 1783 1784 if (rt == NULL) 1785 return NULL; 1786 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { 1787 fail: 1788 (void)nd6_free(rt, 0); 1789 return NULL; 1790 } 1791 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1792 if (ln == NULL) 1793 goto fail; 1794 if (rt->rt_gateway == NULL) 1795 goto fail; 1796 if (rt->rt_gateway->sa_family != AF_LINK) 1797 goto fail; 1798 sdl = satosdl(rt->rt_gateway); 1799 1800 olladdr = (sdl->sdl_alen) ? 1 : 0; 1801 if (olladdr && lladdr) { 1802 if (memcmp(lladdr, CLLADDR(sdl), ifp->if_addrlen)) 1803 llchange = 1; 1804 else 1805 llchange = 0; 1806 } else 1807 llchange = 0; 1808 1809 /* 1810 * newentry olladdr lladdr llchange (*=record) 1811 * 0 n n -- (1) 1812 * 0 y n -- (2) 1813 * 0 n y -- (3) * STALE 1814 * 0 y y n (4) * 1815 * 0 y y y (5) * STALE 1816 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1817 * 1 -- y -- (7) * STALE 1818 */ 1819 1820 if (lladdr) { /* (3-5) and (7) */ 1821 /* 1822 * Record source link-layer address 1823 * XXX is it dependent to ifp->if_type? 1824 */ 1825 /* XXX check for error */ 1826 if (sockaddr_dl_setaddr(sdl, sdl->sdl_len, lladdr, 1827 ifp->if_addrlen) == NULL) { 1828 printf("%s.%d: sockaddr_dl_setaddr(, %d, ) " 1829 "failed on %s\n", __func__, __LINE__, 1830 sdl->sdl_len, if_name(ifp)); 1831 } 1832 } 1833 1834 if (!is_newentry) { 1835 if ((!olladdr && lladdr) || /* (3) */ 1836 (olladdr && lladdr && llchange)) { /* (5) */ 1837 do_update = 1; 1838 newstate = ND6_LLINFO_STALE; 1839 } else /* (1-2,4) */ 1840 do_update = 0; 1841 } else { 1842 do_update = 1; 1843 if (lladdr == NULL) /* (6) */ 1844 newstate = ND6_LLINFO_NOSTATE; 1845 else /* (7) */ 1846 newstate = ND6_LLINFO_STALE; 1847 } 1848 1849 if (do_update) { 1850 /* 1851 * Update the state of the neighbor cache. 1852 */ 1853 ln->ln_state = newstate; 1854 1855 if (ln->ln_state == ND6_LLINFO_STALE) { 1856 /* 1857 * XXX: since nd6_output() below will cause 1858 * state tansition to DELAY and reset the timer, 1859 * we must set the timer now, although it is actually 1860 * meaningless. 1861 */ 1862 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 1863 1864 nd6_llinfo_release_pkts(ln, ifp, rt); 1865 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1866 /* probe right away */ 1867 nd6_llinfo_settimer((void *)ln, 0); 1868 } 1869 } 1870 1871 /* 1872 * ICMP6 type dependent behavior. 1873 * 1874 * NS: clear IsRouter if new entry 1875 * RS: clear IsRouter 1876 * RA: set IsRouter if there's lladdr 1877 * redir: clear IsRouter if new entry 1878 * 1879 * RA case, (1): 1880 * The spec says that we must set IsRouter in the following cases: 1881 * - If lladdr exist, set IsRouter. This means (1-5). 1882 * - If it is old entry (!newentry), set IsRouter. This means (7). 1883 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1884 * A quetion arises for (1) case. (1) case has no lladdr in the 1885 * neighbor cache, this is similar to (6). 1886 * This case is rare but we figured that we MUST NOT set IsRouter. 1887 * 1888 * newentry olladdr lladdr llchange NS RS RA redir 1889 * D R 1890 * 0 n n -- (1) c ? s 1891 * 0 y n -- (2) c s s 1892 * 0 n y -- (3) c s s 1893 * 0 y y n (4) c s s 1894 * 0 y y y (5) c s s 1895 * 1 -- n -- (6) c c c s 1896 * 1 -- y -- (7) c c s c s 1897 * 1898 * (c=clear s=set) 1899 */ 1900 switch (type & 0xff) { 1901 case ND_NEIGHBOR_SOLICIT: 1902 /* 1903 * New entry must have is_router flag cleared. 1904 */ 1905 if (is_newentry) /* (6-7) */ 1906 ln->ln_router = 0; 1907 break; 1908 case ND_REDIRECT: 1909 /* 1910 * If the icmp is a redirect to a better router, always set the 1911 * is_router flag. Otherwise, if the entry is newly created, 1912 * clear the flag. [RFC 2461, sec 8.3] 1913 */ 1914 if (code == ND_REDIRECT_ROUTER) 1915 ln->ln_router = 1; 1916 else if (is_newentry) /* (6-7) */ 1917 ln->ln_router = 0; 1918 break; 1919 case ND_ROUTER_SOLICIT: 1920 /* 1921 * is_router flag must always be cleared. 1922 */ 1923 ln->ln_router = 0; 1924 break; 1925 case ND_ROUTER_ADVERT: 1926 /* 1927 * Mark an entry with lladdr as a router. 1928 */ 1929 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 1930 (is_newentry && lladdr)) { /* (7) */ 1931 ln->ln_router = 1; 1932 } 1933 break; 1934 } 1935 1936 /* 1937 * When the link-layer address of a router changes, select the 1938 * best router again. In particular, when the neighbor entry is newly 1939 * created, it might affect the selection policy. 1940 * Question: can we restrict the first condition to the "is_newentry" 1941 * case? 1942 * XXX: when we hear an RA from a new router with the link-layer 1943 * address option, defrouter_select() is called twice, since 1944 * defrtrlist_update called the function as well. However, I believe 1945 * we can compromise the overhead, since it only happens the first 1946 * time. 1947 * XXX: although defrouter_select() should not have a bad effect 1948 * for those are not autoconfigured hosts, we explicitly avoid such 1949 * cases for safety. 1950 */ 1951 if (do_update && ln->ln_router && !ip6_forwarding && 1952 nd6_accepts_rtadv(ndi)) 1953 defrouter_select(); 1954 1955 return rt; 1956 } 1957 1958 static void 1959 nd6_slowtimo(void *ignored_arg) 1960 { 1961 struct nd_ifinfo *nd6if; 1962 struct ifnet *ifp; 1963 1964 mutex_enter(softnet_lock); 1965 KERNEL_LOCK(1, NULL); 1966 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1967 nd6_slowtimo, NULL); 1968 TAILQ_FOREACH(ifp, &ifnet, if_list) { 1969 nd6if = ND_IFINFO(ifp); 1970 if (nd6if->basereachable && /* already initialized */ 1971 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1972 /* 1973 * Since reachable time rarely changes by router 1974 * advertisements, we SHOULD insure that a new random 1975 * value gets recomputed at least once every few hours. 1976 * (RFC 2461, 6.3.4) 1977 */ 1978 nd6if->recalctm = nd6_recalc_reachtm_interval; 1979 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1980 } 1981 } 1982 KERNEL_UNLOCK_ONE(NULL); 1983 mutex_exit(softnet_lock); 1984 } 1985 1986 #define senderr(e) { error = (e); goto bad;} 1987 int 1988 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0, 1989 const struct sockaddr_in6 *dst, struct rtentry *rt0) 1990 { 1991 struct mbuf *m = m0; 1992 struct rtentry *rt = rt0; 1993 struct sockaddr_in6 *gw6 = NULL; 1994 struct llinfo_nd6 *ln = NULL; 1995 int error = 0; 1996 1997 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1998 goto sendpkt; 1999 2000 if (nd6_need_cache(ifp) == 0) 2001 goto sendpkt; 2002 2003 /* 2004 * next hop determination. This routine is derived from ether_output. 2005 */ 2006 if (rt) { 2007 if ((rt->rt_flags & RTF_UP) == 0) { 2008 if ((rt0 = rt = rtalloc1(sin6tocsa(dst), 1)) != NULL) { 2009 rt->rt_refcnt--; 2010 if (rt->rt_ifp != ifp) 2011 senderr(EHOSTUNREACH); 2012 } else 2013 senderr(EHOSTUNREACH); 2014 } 2015 2016 if (rt->rt_flags & RTF_GATEWAY) { 2017 gw6 = (struct sockaddr_in6 *)rt->rt_gateway; 2018 2019 /* 2020 * We skip link-layer address resolution and NUD 2021 * if the gateway is not a neighbor from ND point 2022 * of view, regardless of the value of nd_ifinfo.flags. 2023 * The second condition is a bit tricky; we skip 2024 * if the gateway is our own address, which is 2025 * sometimes used to install a route to a p2p link. 2026 */ 2027 if (!nd6_is_addr_neighbor(gw6, ifp) || 2028 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) { 2029 /* 2030 * We allow this kind of tricky route only 2031 * when the outgoing interface is p2p. 2032 * XXX: we may need a more generic rule here. 2033 */ 2034 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 2035 senderr(EHOSTUNREACH); 2036 2037 goto sendpkt; 2038 } 2039 2040 if (rt->rt_gwroute == NULL) 2041 goto lookup; 2042 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) { 2043 rtfree(rt); rt = rt0; 2044 lookup: 2045 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1); 2046 if ((rt = rt->rt_gwroute) == NULL) 2047 senderr(EHOSTUNREACH); 2048 /* the "G" test below also prevents rt == rt0 */ 2049 if ((rt->rt_flags & RTF_GATEWAY) || 2050 (rt->rt_ifp != ifp)) { 2051 rt->rt_refcnt--; 2052 rt0->rt_gwroute = NULL; 2053 senderr(EHOSTUNREACH); 2054 } 2055 } 2056 } 2057 } 2058 2059 /* 2060 * Address resolution or Neighbor Unreachability Detection 2061 * for the next hop. 2062 * At this point, the destination of the packet must be a unicast 2063 * or an anycast address(i.e. not a multicast). 2064 */ 2065 2066 /* Look up the neighbor cache for the nexthop */ 2067 if (rt != NULL && (rt->rt_flags & RTF_LLINFO) != 0) 2068 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 2069 else { 2070 /* 2071 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2072 * the condition below is not very efficient. But we believe 2073 * it is tolerable, because this should be a rare case. 2074 */ 2075 if (nd6_is_addr_neighbor(dst, ifp) && 2076 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL) 2077 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 2078 } 2079 if (ln == NULL || rt == NULL) { 2080 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 2081 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 2082 log(LOG_DEBUG, 2083 "nd6_output: can't allocate llinfo for %s " 2084 "(ln=%p, rt=%p)\n", 2085 ip6_sprintf(&dst->sin6_addr), ln, rt); 2086 senderr(EIO); /* XXX: good error? */ 2087 } 2088 2089 goto sendpkt; /* send anyway */ 2090 } 2091 2092 /* 2093 * Move this entry to the head of the queue so that it is less likely 2094 * for this entry to be a target of forced garbage collection (see 2095 * nd6_rtrequest()). 2096 */ 2097 LN_DEQUEUE(ln); 2098 LN_INSERTHEAD(ln); 2099 2100 /* We don't have to do link-layer address resolution on a p2p link. */ 2101 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 2102 ln->ln_state < ND6_LLINFO_REACHABLE) { 2103 ln->ln_state = ND6_LLINFO_STALE; 2104 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 2105 } 2106 2107 /* 2108 * The first time we send a packet to a neighbor whose entry is 2109 * STALE, we have to change the state to DELAY and a sets a timer to 2110 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2111 * neighbor unreachability detection on expiration. 2112 * (RFC 2461 7.3.3) 2113 */ 2114 if (ln->ln_state == ND6_LLINFO_STALE) { 2115 ln->ln_asked = 0; 2116 ln->ln_state = ND6_LLINFO_DELAY; 2117 nd6_llinfo_settimer(ln, (long)nd6_delay * hz); 2118 } 2119 2120 /* 2121 * If the neighbor cache entry has a state other than INCOMPLETE 2122 * (i.e. its link-layer address is already resolved), just 2123 * send the packet. 2124 */ 2125 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 2126 goto sendpkt; 2127 2128 /* 2129 * There is a neighbor cache entry, but no ethernet address 2130 * response yet. Append this latest packet to the end of the 2131 * packet queue in the mbuf, unless the number of the packet 2132 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, 2133 * the oldest packet in the queue will be removed. 2134 */ 2135 if (ln->ln_state == ND6_LLINFO_NOSTATE) 2136 ln->ln_state = ND6_LLINFO_INCOMPLETE; 2137 if (ln->ln_hold) { 2138 struct mbuf *m_hold; 2139 int i; 2140 2141 i = 0; 2142 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) { 2143 i++; 2144 if (m_hold->m_nextpkt == NULL) { 2145 m_hold->m_nextpkt = m; 2146 break; 2147 } 2148 } 2149 while (i >= nd6_maxqueuelen) { 2150 m_hold = ln->ln_hold; 2151 ln->ln_hold = ln->ln_hold->m_nextpkt; 2152 m_freem(m_hold); 2153 i--; 2154 } 2155 } else { 2156 ln->ln_hold = m; 2157 } 2158 2159 /* 2160 * If there has been no NS for the neighbor after entering the 2161 * INCOMPLETE state, send the first solicitation. 2162 */ 2163 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) { 2164 ln->ln_asked++; 2165 nd6_llinfo_settimer(ln, 2166 (long)ND_IFINFO(ifp)->retrans * hz / 1000); 2167 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 2168 } 2169 return 0; 2170 2171 sendpkt: 2172 /* discard the packet if IPv6 operation is disabled on the interface */ 2173 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2174 error = ENETDOWN; /* better error? */ 2175 goto bad; 2176 } 2177 2178 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 2179 return (*ifp->if_output)(origifp, m, sin6tocsa(dst), rt); 2180 return (*ifp->if_output)(ifp, m, sin6tocsa(dst), rt); 2181 2182 bad: 2183 if (m != NULL) 2184 m_freem(m); 2185 return error; 2186 } 2187 #undef senderr 2188 2189 int 2190 nd6_need_cache(struct ifnet *ifp) 2191 { 2192 /* 2193 * XXX: we currently do not make neighbor cache on any interface 2194 * other than ARCnet, Ethernet, FDDI and GIF. 2195 * 2196 * RFC2893 says: 2197 * - unidirectional tunnels needs no ND 2198 */ 2199 switch (ifp->if_type) { 2200 case IFT_ARCNET: 2201 case IFT_ETHER: 2202 case IFT_FDDI: 2203 case IFT_IEEE1394: 2204 case IFT_CARP: 2205 case IFT_GIF: /* XXX need more cases? */ 2206 case IFT_PPP: 2207 case IFT_TUNNEL: 2208 return 1; 2209 default: 2210 return 0; 2211 } 2212 } 2213 2214 int 2215 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt, 2216 struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst, 2217 size_t dstsize) 2218 { 2219 const struct sockaddr_dl *sdl; 2220 2221 if (m->m_flags & M_MCAST) { 2222 switch (ifp->if_type) { 2223 case IFT_ETHER: 2224 case IFT_FDDI: 2225 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr, 2226 lldst); 2227 return 1; 2228 case IFT_IEEE1394: 2229 memcpy(lldst, ifp->if_broadcastaddr, 2230 MIN(dstsize, ifp->if_addrlen)); 2231 return 1; 2232 case IFT_ARCNET: 2233 *lldst = 0; 2234 return 1; 2235 default: 2236 m_freem(m); 2237 return 0; 2238 } 2239 } 2240 2241 if (rt == NULL) { 2242 /* this could happen, if we could not allocate memory */ 2243 m_freem(m); 2244 return 0; 2245 } 2246 if (rt->rt_gateway->sa_family != AF_LINK) { 2247 printf("%s: something odd happens\n", __func__); 2248 m_freem(m); 2249 return 0; 2250 } 2251 sdl = satocsdl(rt->rt_gateway); 2252 if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) { 2253 /* this should be impossible, but we bark here for debugging */ 2254 printf("%s: sdl_alen == %" PRIu8 ", dst=%s, if=%s\n", __func__, 2255 sdl->sdl_alen, ip6_sprintf(&satocsin6(dst)->sin6_addr), 2256 if_name(ifp)); 2257 m_freem(m); 2258 return 0; 2259 } 2260 2261 memcpy(lldst, CLLADDR(sdl), MIN(dstsize, sdl->sdl_alen)); 2262 return 1; 2263 } 2264 2265 static void 2266 clear_llinfo_pqueue(struct llinfo_nd6 *ln) 2267 { 2268 struct mbuf *m_hold, *m_hold_next; 2269 2270 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) { 2271 m_hold_next = m_hold->m_nextpkt; 2272 m_hold->m_nextpkt = NULL; 2273 m_freem(m_hold); 2274 } 2275 2276 ln->ln_hold = NULL; 2277 return; 2278 } 2279 2280 int 2281 nd6_sysctl( 2282 int name, 2283 void *oldp, /* syscall arg, need copyout */ 2284 size_t *oldlenp, 2285 void *newp, /* syscall arg, need copyin */ 2286 size_t newlen 2287 ) 2288 { 2289 void *p; 2290 size_t ol; 2291 int error; 2292 2293 error = 0; 2294 2295 if (newp) 2296 return EPERM; 2297 if (oldp && !oldlenp) 2298 return EINVAL; 2299 ol = oldlenp ? *oldlenp : 0; 2300 2301 if (oldp) { 2302 p = malloc(*oldlenp, M_TEMP, M_WAITOK); 2303 if (p == NULL) 2304 return ENOMEM; 2305 } else 2306 p = NULL; 2307 switch (name) { 2308 case ICMPV6CTL_ND6_DRLIST: 2309 error = fill_drlist(p, oldlenp, ol); 2310 if (!error && p != NULL && oldp != NULL) 2311 error = copyout(p, oldp, *oldlenp); 2312 break; 2313 2314 case ICMPV6CTL_ND6_PRLIST: 2315 error = fill_prlist(p, oldlenp, ol); 2316 if (!error && p != NULL && oldp != NULL) 2317 error = copyout(p, oldp, *oldlenp); 2318 break; 2319 2320 case ICMPV6CTL_ND6_MAXQLEN: 2321 break; 2322 2323 default: 2324 error = ENOPROTOOPT; 2325 break; 2326 } 2327 if (p) 2328 free(p, M_TEMP); 2329 2330 return error; 2331 } 2332 2333 static int 2334 fill_drlist(void *oldp, size_t *oldlenp, size_t ol) 2335 { 2336 int error = 0, s; 2337 struct in6_defrouter *d = NULL, *de = NULL; 2338 struct nd_defrouter *dr; 2339 size_t l; 2340 2341 s = splsoftnet(); 2342 2343 if (oldp) { 2344 d = (struct in6_defrouter *)oldp; 2345 de = (struct in6_defrouter *)((char *)oldp + *oldlenp); 2346 } 2347 l = 0; 2348 2349 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) { 2350 2351 if (oldp && d + 1 <= de) { 2352 memset(d, 0, sizeof(*d)); 2353 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0); 2354 if (sa6_recoverscope(&d->rtaddr)) { 2355 log(LOG_ERR, 2356 "scope error in router list (%s)\n", 2357 ip6_sprintf(&d->rtaddr.sin6_addr)); 2358 /* XXX: press on... */ 2359 } 2360 d->flags = dr->flags; 2361 d->rtlifetime = dr->rtlifetime; 2362 d->expire = dr->expire; 2363 d->if_index = dr->ifp->if_index; 2364 } 2365 2366 l += sizeof(*d); 2367 if (d) 2368 d++; 2369 } 2370 2371 if (oldp) { 2372 if (l > ol) 2373 error = ENOMEM; 2374 } 2375 if (oldlenp) 2376 *oldlenp = l; /* (void *)d - (void *)oldp */ 2377 2378 splx(s); 2379 2380 return error; 2381 } 2382 2383 static int 2384 fill_prlist(void *oldp, size_t *oldlenp, size_t ol) 2385 { 2386 int error = 0, s; 2387 struct nd_prefix *pr; 2388 uint8_t *p = NULL, *ps = NULL; 2389 uint8_t *pe = NULL; 2390 size_t l; 2391 2392 s = splsoftnet(); 2393 2394 if (oldp) { 2395 ps = p = (uint8_t*)oldp; 2396 pe = (uint8_t*)oldp + *oldlenp; 2397 } 2398 l = 0; 2399 2400 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { 2401 u_short advrtrs; 2402 struct sockaddr_in6 sin6; 2403 struct nd_pfxrouter *pfr; 2404 struct in6_prefix pfx; 2405 2406 if (oldp && p + sizeof(struct in6_prefix) <= pe) 2407 { 2408 memset(&pfx, 0, sizeof(pfx)); 2409 ps = p; 2410 pfx.prefix = pr->ndpr_prefix; 2411 2412 if (sa6_recoverscope(&pfx.prefix)) { 2413 log(LOG_ERR, 2414 "scope error in prefix list (%s)\n", 2415 ip6_sprintf(&pfx.prefix.sin6_addr)); 2416 /* XXX: press on... */ 2417 } 2418 pfx.raflags = pr->ndpr_raf; 2419 pfx.prefixlen = pr->ndpr_plen; 2420 pfx.vltime = pr->ndpr_vltime; 2421 pfx.pltime = pr->ndpr_pltime; 2422 pfx.if_index = pr->ndpr_ifp->if_index; 2423 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2424 pfx.expire = 0; 2425 else { 2426 time_t maxexpire; 2427 2428 /* XXX: we assume time_t is signed. */ 2429 maxexpire = (-1) & 2430 ~((time_t)1 << 2431 ((sizeof(maxexpire) * 8) - 1)); 2432 if (pr->ndpr_vltime < 2433 maxexpire - pr->ndpr_lastupdate) { 2434 pfx.expire = pr->ndpr_lastupdate + 2435 pr->ndpr_vltime; 2436 } else 2437 pfx.expire = maxexpire; 2438 } 2439 pfx.refcnt = pr->ndpr_refcnt; 2440 pfx.flags = pr->ndpr_stateflags; 2441 pfx.origin = PR_ORIG_RA; 2442 2443 p += sizeof(pfx); l += sizeof(pfx); 2444 2445 advrtrs = 0; 2446 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2447 if (p + sizeof(sin6) > pe) { 2448 advrtrs++; 2449 continue; 2450 } 2451 2452 sockaddr_in6_init(&sin6, &pfr->router->rtaddr, 2453 0, 0, 0); 2454 if (sa6_recoverscope(&sin6)) { 2455 log(LOG_ERR, 2456 "scope error in " 2457 "prefix list (%s)\n", 2458 ip6_sprintf(&pfr->router->rtaddr)); 2459 } 2460 advrtrs++; 2461 memcpy(p, &sin6, sizeof(sin6)); 2462 p += sizeof(sin6); 2463 l += sizeof(sin6); 2464 } 2465 pfx.advrtrs = advrtrs; 2466 memcpy(ps, &pfx, sizeof(pfx)); 2467 } 2468 else { 2469 l += sizeof(pfx); 2470 advrtrs = 0; 2471 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2472 advrtrs++; 2473 l += sizeof(sin6); 2474 } 2475 } 2476 } 2477 2478 if (oldp) { 2479 *oldlenp = l; /* (void *)d - (void *)oldp */ 2480 if (l > ol) 2481 error = ENOMEM; 2482 } else 2483 *oldlenp = l; 2484 2485 splx(s); 2486 2487 return error; 2488 } 2489