xref: /netbsd-src/sys/netinet6/nd6.c (revision 48fb7bfab72acd4281a53bbee5ccf3f809019e75)
1 /*	$NetBSD: nd6.c,v 1.147 2014/01/15 10:25:04 roy Exp $	*/
2 /*	$KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.147 2014/01/15 10:25:04 roy Exp $");
35 
36 #include "opt_ipsec.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/socketvar.h>
45 #include <sys/sockio.h>
46 #include <sys/time.h>
47 #include <sys/kernel.h>
48 #include <sys/protosw.h>
49 #include <sys/errno.h>
50 #include <sys/ioctl.h>
51 #include <sys/syslog.h>
52 #include <sys/queue.h>
53 #include <sys/cprng.h>
54 
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_types.h>
58 #include <net/route.h>
59 #include <net/if_ether.h>
60 #include <net/if_fddi.h>
61 #include <net/if_arc.h>
62 
63 #include <netinet/in.h>
64 #include <netinet6/in6_var.h>
65 #include <netinet/ip6.h>
66 #include <netinet6/ip6_var.h>
67 #include <netinet6/scope6_var.h>
68 #include <netinet6/nd6.h>
69 #include <netinet/icmp6.h>
70 #include <netinet6/icmp6_private.h>
71 
72 #include <net/net_osdep.h>
73 
74 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
75 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
76 
77 /* timer values */
78 int	nd6_prune	= 1;	/* walk list every 1 seconds */
79 int	nd6_delay	= 5;	/* delay first probe time 5 second */
80 int	nd6_umaxtries	= 3;	/* maximum unicast query */
81 int	nd6_mmaxtries	= 3;	/* maximum multicast query */
82 int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
83 int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
84 
85 /* preventing too many loops in ND option parsing */
86 int nd6_maxndopt = 10;	/* max # of ND options allowed */
87 
88 int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
89 
90 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
91 
92 #ifdef ND6_DEBUG
93 int nd6_debug = 1;
94 #else
95 int nd6_debug = 0;
96 #endif
97 
98 /* for debugging? */
99 static int nd6_inuse, nd6_allocated;
100 
101 struct llinfo_nd6 llinfo_nd6 = {
102 	.ln_prev = &llinfo_nd6,
103 	.ln_next = &llinfo_nd6,
104 };
105 struct nd_drhead nd_defrouter;
106 struct nd_prhead nd_prefix = { 0 };
107 
108 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
109 static const struct sockaddr_in6 all1_sa = {
110 	  .sin6_family = AF_INET6
111 	, .sin6_len = sizeof(struct sockaddr_in6)
112 	, .sin6_addr = {.s6_addr = {0xff, 0xff, 0xff, 0xff,
113 				    0xff, 0xff, 0xff, 0xff,
114 				    0xff, 0xff, 0xff, 0xff,
115 				    0xff, 0xff, 0xff, 0xff}}
116 };
117 
118 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
119 static void nd6_slowtimo(void *);
120 static int regen_tmpaddr(struct in6_ifaddr *);
121 static struct llinfo_nd6 *nd6_free(struct rtentry *, int);
122 static void nd6_llinfo_timer(void *);
123 static void clear_llinfo_pqueue(struct llinfo_nd6 *);
124 
125 callout_t nd6_slowtimo_ch;
126 callout_t nd6_timer_ch;
127 extern callout_t in6_tmpaddrtimer_ch;
128 
129 static int fill_drlist(void *, size_t *, size_t);
130 static int fill_prlist(void *, size_t *, size_t);
131 
132 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
133 
134 #define LN_DEQUEUE(ln) do { \
135 	(ln)->ln_next->ln_prev = (ln)->ln_prev; \
136 	(ln)->ln_prev->ln_next = (ln)->ln_next; \
137 	} while (/*CONSTCOND*/0)
138 #define LN_INSERTHEAD(ln) do { \
139 	(ln)->ln_next = llinfo_nd6.ln_next; \
140 	llinfo_nd6.ln_next = (ln); \
141 	(ln)->ln_prev = &llinfo_nd6; \
142 	(ln)->ln_next->ln_prev = (ln); \
143 	} while (/*CONSTCOND*/0)
144 void
145 nd6_init(void)
146 {
147 	static int nd6_init_done = 0;
148 
149 	if (nd6_init_done) {
150 		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
151 		return;
152 	}
153 
154 	/* initialization of the default router list */
155 	TAILQ_INIT(&nd_defrouter);
156 
157 	nd6_init_done = 1;
158 
159 	callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
160 	callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
161 
162 	/* start timer */
163 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
164 	    nd6_slowtimo, NULL);
165 }
166 
167 struct nd_ifinfo *
168 nd6_ifattach(struct ifnet *ifp)
169 {
170 	struct nd_ifinfo *nd;
171 
172 	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
173 
174 	nd->initialized = 1;
175 
176 	nd->chlim = IPV6_DEFHLIM;
177 	nd->basereachable = REACHABLE_TIME;
178 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
179 	nd->retrans = RETRANS_TIMER;
180 	/*
181 	 * Note that the default value of ip6_accept_rtadv is 0.
182 	 * Because we do not set ND6_IFF_OVERRIDE_RTADV here, we won't
183 	 * accept RAs by default.
184 	 */
185 	nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV;
186 
187 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
188 	nd6_setmtu0(ifp, nd);
189 
190 	return nd;
191 }
192 
193 void
194 nd6_ifdetach(struct nd_ifinfo *nd)
195 {
196 
197 	free(nd, M_IP6NDP);
198 }
199 
200 void
201 nd6_setmtu(struct ifnet *ifp)
202 {
203 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
204 }
205 
206 void
207 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
208 {
209 	u_int32_t omaxmtu;
210 
211 	omaxmtu = ndi->maxmtu;
212 
213 	switch (ifp->if_type) {
214 	case IFT_ARCNET:
215 		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
216 		break;
217 	case IFT_FDDI:
218 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
219 		break;
220 	default:
221 		ndi->maxmtu = ifp->if_mtu;
222 		break;
223 	}
224 
225 	/*
226 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
227 	 * undesirable situation.  We thus notify the operator of the change
228 	 * explicitly.  The check for omaxmtu is necessary to restrict the
229 	 * log to the case of changing the MTU, not initializing it.
230 	 */
231 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
232 		log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
233 		    " small for IPv6 which needs %lu\n",
234 		    if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
235 		    IPV6_MMTU);
236 	}
237 
238 	if (ndi->maxmtu > in6_maxmtu)
239 		in6_setmaxmtu(); /* check all interfaces just in case */
240 }
241 
242 void
243 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
244 {
245 
246 	memset(ndopts, 0, sizeof(*ndopts));
247 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
248 	ndopts->nd_opts_last
249 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
250 
251 	if (icmp6len == 0) {
252 		ndopts->nd_opts_done = 1;
253 		ndopts->nd_opts_search = NULL;
254 	}
255 }
256 
257 /*
258  * Take one ND option.
259  */
260 struct nd_opt_hdr *
261 nd6_option(union nd_opts *ndopts)
262 {
263 	struct nd_opt_hdr *nd_opt;
264 	int olen;
265 
266 	if (ndopts == NULL)
267 		panic("ndopts == NULL in nd6_option");
268 	if (ndopts->nd_opts_last == NULL)
269 		panic("uninitialized ndopts in nd6_option");
270 	if (ndopts->nd_opts_search == NULL)
271 		return NULL;
272 	if (ndopts->nd_opts_done)
273 		return NULL;
274 
275 	nd_opt = ndopts->nd_opts_search;
276 
277 	/* make sure nd_opt_len is inside the buffer */
278 	if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
279 		memset(ndopts, 0, sizeof(*ndopts));
280 		return NULL;
281 	}
282 
283 	olen = nd_opt->nd_opt_len << 3;
284 	if (olen == 0) {
285 		/*
286 		 * Message validation requires that all included
287 		 * options have a length that is greater than zero.
288 		 */
289 		memset(ndopts, 0, sizeof(*ndopts));
290 		return NULL;
291 	}
292 
293 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
294 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
295 		/* option overruns the end of buffer, invalid */
296 		memset(ndopts, 0, sizeof(*ndopts));
297 		return NULL;
298 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
299 		/* reached the end of options chain */
300 		ndopts->nd_opts_done = 1;
301 		ndopts->nd_opts_search = NULL;
302 	}
303 	return nd_opt;
304 }
305 
306 /*
307  * Parse multiple ND options.
308  * This function is much easier to use, for ND routines that do not need
309  * multiple options of the same type.
310  */
311 int
312 nd6_options(union nd_opts *ndopts)
313 {
314 	struct nd_opt_hdr *nd_opt;
315 	int i = 0;
316 
317 	if (ndopts == NULL)
318 		panic("ndopts == NULL in nd6_options");
319 	if (ndopts->nd_opts_last == NULL)
320 		panic("uninitialized ndopts in nd6_options");
321 	if (ndopts->nd_opts_search == NULL)
322 		return 0;
323 
324 	while (1) {
325 		nd_opt = nd6_option(ndopts);
326 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
327 			/*
328 			 * Message validation requires that all included
329 			 * options have a length that is greater than zero.
330 			 */
331 			ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
332 			memset(ndopts, 0, sizeof(*ndopts));
333 			return -1;
334 		}
335 
336 		if (nd_opt == NULL)
337 			goto skip1;
338 
339 		switch (nd_opt->nd_opt_type) {
340 		case ND_OPT_SOURCE_LINKADDR:
341 		case ND_OPT_TARGET_LINKADDR:
342 		case ND_OPT_MTU:
343 		case ND_OPT_REDIRECTED_HEADER:
344 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
345 				nd6log((LOG_INFO,
346 				    "duplicated ND6 option found (type=%d)\n",
347 				    nd_opt->nd_opt_type));
348 				/* XXX bark? */
349 			} else {
350 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
351 					= nd_opt;
352 			}
353 			break;
354 		case ND_OPT_PREFIX_INFORMATION:
355 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
356 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
357 					= nd_opt;
358 			}
359 			ndopts->nd_opts_pi_end =
360 				(struct nd_opt_prefix_info *)nd_opt;
361 			break;
362 		default:
363 			/*
364 			 * Unknown options must be silently ignored,
365 			 * to accommodate future extension to the protocol.
366 			 */
367 			nd6log((LOG_DEBUG,
368 			    "nd6_options: unsupported option %d - "
369 			    "option ignored\n", nd_opt->nd_opt_type));
370 		}
371 
372 skip1:
373 		i++;
374 		if (i > nd6_maxndopt) {
375 			ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
376 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
377 			break;
378 		}
379 
380 		if (ndopts->nd_opts_done)
381 			break;
382 	}
383 
384 	return 0;
385 }
386 
387 /*
388  * ND6 timer routine to handle ND6 entries
389  */
390 void
391 nd6_llinfo_settimer(struct llinfo_nd6 *ln, long xtick)
392 {
393 	int s;
394 
395 	s = splsoftnet();
396 
397 	if (xtick < 0) {
398 		ln->ln_expire = 0;
399 		ln->ln_ntick = 0;
400 		callout_stop(&ln->ln_timer_ch);
401 	} else {
402 		ln->ln_expire = time_second + xtick / hz;
403 		if (xtick > INT_MAX) {
404 			ln->ln_ntick = xtick - INT_MAX;
405 			callout_reset(&ln->ln_timer_ch, INT_MAX,
406 			    nd6_llinfo_timer, ln);
407 		} else {
408 			ln->ln_ntick = 0;
409 			callout_reset(&ln->ln_timer_ch, xtick,
410 			    nd6_llinfo_timer, ln);
411 		}
412 	}
413 
414 	splx(s);
415 }
416 
417 static void
418 nd6_llinfo_timer(void *arg)
419 {
420 	struct llinfo_nd6 *ln;
421 	struct rtentry *rt;
422 	const struct sockaddr_in6 *dst;
423 	struct ifnet *ifp;
424 	struct nd_ifinfo *ndi = NULL;
425 
426 	mutex_enter(softnet_lock);
427 	KERNEL_LOCK(1, NULL);
428 
429 	ln = (struct llinfo_nd6 *)arg;
430 
431 	if (ln->ln_ntick > 0) {
432 		nd6_llinfo_settimer(ln, ln->ln_ntick);
433 		KERNEL_UNLOCK_ONE(NULL);
434 		mutex_exit(softnet_lock);
435 		return;
436 	}
437 
438 	if ((rt = ln->ln_rt) == NULL)
439 		panic("ln->ln_rt == NULL");
440 	if ((ifp = rt->rt_ifp) == NULL)
441 		panic("ln->ln_rt->rt_ifp == NULL");
442 	ndi = ND_IFINFO(ifp);
443 	dst = satocsin6(rt_getkey(rt));
444 
445 	/* sanity check */
446 	if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
447 		panic("rt_llinfo(%p) is not equal to ln(%p)",
448 		      rt->rt_llinfo, ln);
449 	if (!dst)
450 		panic("dst=0 in nd6_timer(ln=%p)", ln);
451 
452 	switch (ln->ln_state) {
453 	case ND6_LLINFO_INCOMPLETE:
454 		if (ln->ln_asked < nd6_mmaxtries) {
455 			ln->ln_asked++;
456 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
457 			nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
458 		} else {
459 			struct mbuf *m = ln->ln_hold;
460 			if (m) {
461 				struct mbuf *m0;
462 
463 				/*
464 				 * assuming every packet in ln_hold has
465 				 * the same IP header
466 				 */
467 				m0 = m->m_nextpkt;
468 				m->m_nextpkt = NULL;
469 				icmp6_error2(m, ICMP6_DST_UNREACH,
470 				    ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
471 
472 				ln->ln_hold = m0;
473 				clear_llinfo_pqueue(ln);
474  			}
475 			(void)nd6_free(rt, 0);
476 			ln = NULL;
477 		}
478 		break;
479 	case ND6_LLINFO_REACHABLE:
480 		if (!ND6_LLINFO_PERMANENT(ln)) {
481 			ln->ln_state = ND6_LLINFO_STALE;
482 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
483 		}
484 		break;
485 
486 	case ND6_LLINFO_PURGE:
487 	case ND6_LLINFO_STALE:
488 		/* Garbage Collection(RFC 2461 5.3) */
489 		if (!ND6_LLINFO_PERMANENT(ln)) {
490 			(void)nd6_free(rt, 1);
491 			ln = NULL;
492 		}
493 		break;
494 
495 	case ND6_LLINFO_DELAY:
496 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
497 			/* We need NUD */
498 			ln->ln_asked = 1;
499 			ln->ln_state = ND6_LLINFO_PROBE;
500 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
501 			nd6_ns_output(ifp, &dst->sin6_addr,
502 			    &dst->sin6_addr, ln, 0);
503 		} else {
504 			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
505 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
506 		}
507 		break;
508 	case ND6_LLINFO_PROBE:
509 		if (ln->ln_asked < nd6_umaxtries) {
510 			ln->ln_asked++;
511 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
512 			nd6_ns_output(ifp, &dst->sin6_addr,
513 			    &dst->sin6_addr, ln, 0);
514 		} else {
515 			(void)nd6_free(rt, 0);
516 			ln = NULL;
517 		}
518 		break;
519 	}
520 
521 	KERNEL_UNLOCK_ONE(NULL);
522 	mutex_exit(softnet_lock);
523 }
524 
525 /*
526  * ND6 timer routine to expire default route list and prefix list
527  */
528 void
529 nd6_timer(void *ignored_arg)
530 {
531 	struct nd_defrouter *next_dr, *dr;
532 	struct nd_prefix *next_pr, *pr;
533 	struct in6_ifaddr *ia6, *nia6;
534 
535 	callout_reset(&nd6_timer_ch, nd6_prune * hz,
536 	    nd6_timer, NULL);
537 
538 	mutex_enter(softnet_lock);
539 	KERNEL_LOCK(1, NULL);
540 
541 	/* expire default router list */
542 
543 	TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, next_dr) {
544 		if (dr->expire && dr->expire < time_second) {
545 			defrtrlist_del(dr);
546 		}
547 	}
548 
549 	/*
550 	 * expire interface addresses.
551 	 * in the past the loop was inside prefix expiry processing.
552 	 * However, from a stricter speci-confrmance standpoint, we should
553 	 * rather separate address lifetimes and prefix lifetimes.
554 	 */
555   addrloop:
556 	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
557 		nia6 = ia6->ia_next;
558 		/* check address lifetime */
559 		if (IFA6_IS_INVALID(ia6)) {
560 			int regen = 0;
561 
562 			/*
563 			 * If the expiring address is temporary, try
564 			 * regenerating a new one.  This would be useful when
565 			 * we suspended a laptop PC, then turned it on after a
566 			 * period that could invalidate all temporary
567 			 * addresses.  Although we may have to restart the
568 			 * loop (see below), it must be after purging the
569 			 * address.  Otherwise, we'd see an infinite loop of
570 			 * regeneration.
571 			 */
572 			if (ip6_use_tempaddr &&
573 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
574 				if (regen_tmpaddr(ia6) == 0)
575 					regen = 1;
576 			}
577 
578  			in6_purgeaddr(&ia6->ia_ifa);
579 
580 			if (regen)
581 				goto addrloop; /* XXX: see below */
582 		} else if (IFA6_IS_DEPRECATED(ia6)) {
583 			int oldflags = ia6->ia6_flags;
584 
585 			if ((oldflags & IN6_IFF_DEPRECATED) == 0) {
586 				ia6->ia6_flags |= IN6_IFF_DEPRECATED;
587 				nd6_newaddrmsg((struct ifaddr *)ia6);
588 			}
589 
590 			/*
591 			 * If a temporary address has just become deprecated,
592 			 * regenerate a new one if possible.
593 			 */
594 			if (ip6_use_tempaddr &&
595 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
596 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
597 
598 				if (regen_tmpaddr(ia6) == 0) {
599 					/*
600 					 * A new temporary address is
601 					 * generated.
602 					 * XXX: this means the address chain
603 					 * has changed while we are still in
604 					 * the loop.  Although the change
605 					 * would not cause disaster (because
606 					 * it's not a deletion, but an
607 					 * addition,) we'd rather restart the
608 					 * loop just for safety.  Or does this
609 					 * significantly reduce performance??
610 					 */
611 					goto addrloop;
612 				}
613 			}
614 		} else {
615 			/*
616 			 * A new RA might have made a deprecated address
617 			 * preferred.
618 			 */
619 			if (ia6->ia6_flags & IN6_IFF_DEPRECATED) {
620 				ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
621 				nd6_newaddrmsg((struct ifaddr *)ia6);
622 			}
623 		}
624 	}
625 
626 	/* expire prefix list */
627 	LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, next_pr) {
628 		/*
629 		 * check prefix lifetime.
630 		 * since pltime is just for autoconf, pltime processing for
631 		 * prefix is not necessary.
632 		 */
633 		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
634 		    time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
635 
636 			/*
637 			 * address expiration and prefix expiration are
638 			 * separate.  NEVER perform in6_purgeaddr here.
639 			 */
640 
641 			prelist_remove(pr);
642 		}
643 	}
644 
645 	KERNEL_UNLOCK_ONE(NULL);
646 	mutex_exit(softnet_lock);
647 }
648 
649 /* ia6: deprecated/invalidated temporary address */
650 static int
651 regen_tmpaddr(struct in6_ifaddr *ia6)
652 {
653 	struct ifaddr *ifa;
654 	struct ifnet *ifp;
655 	struct in6_ifaddr *public_ifa6 = NULL;
656 
657 	ifp = ia6->ia_ifa.ifa_ifp;
658 	IFADDR_FOREACH(ifa, ifp) {
659 		struct in6_ifaddr *it6;
660 
661 		if (ifa->ifa_addr->sa_family != AF_INET6)
662 			continue;
663 
664 		it6 = (struct in6_ifaddr *)ifa;
665 
666 		/* ignore no autoconf addresses. */
667 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
668 			continue;
669 
670 		/* ignore autoconf addresses with different prefixes. */
671 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
672 			continue;
673 
674 		/*
675 		 * Now we are looking at an autoconf address with the same
676 		 * prefix as ours.  If the address is temporary and is still
677 		 * preferred, do not create another one.  It would be rare, but
678 		 * could happen, for example, when we resume a laptop PC after
679 		 * a long period.
680 		 */
681 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
682 		    !IFA6_IS_DEPRECATED(it6)) {
683 			public_ifa6 = NULL;
684 			break;
685 		}
686 
687 		/*
688 		 * This is a public autoconf address that has the same prefix
689 		 * as ours.  If it is preferred, keep it.  We can't break the
690 		 * loop here, because there may be a still-preferred temporary
691 		 * address with the prefix.
692 		 */
693 		if (!IFA6_IS_DEPRECATED(it6))
694 		    public_ifa6 = it6;
695 	}
696 
697 	if (public_ifa6 != NULL) {
698 		int e;
699 
700 		/*
701 		 * Random factor is introduced in the preferred lifetime, so
702 		 * we do not need additional delay (3rd arg to in6_tmpifadd).
703 		 */
704 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
705 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
706 			    " tmp addr, errno=%d\n", e);
707 			return -1;
708 		}
709 		return 0;
710 	}
711 
712 	return -1;
713 }
714 
715 bool
716 nd6_accepts_rtadv(const struct nd_ifinfo *ndi)
717 {
718 	switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) {
719 	case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV:
720 		return true;
721 	case ND6_IFF_ACCEPT_RTADV:
722 		return ip6_accept_rtadv != 0;
723 	case ND6_IFF_OVERRIDE_RTADV:
724 	case 0:
725 	default:
726 		return false;
727 	}
728 }
729 
730 /*
731  * Nuke neighbor cache/prefix/default router management table, right before
732  * ifp goes away.
733  */
734 void
735 nd6_purge(struct ifnet *ifp)
736 {
737 	struct llinfo_nd6 *ln, *nln;
738 	struct nd_defrouter *dr, *ndr;
739 	struct nd_prefix *pr, *npr;
740 
741 	/*
742 	 * Nuke default router list entries toward ifp.
743 	 * We defer removal of default router list entries that is installed
744 	 * in the routing table, in order to keep additional side effects as
745 	 * small as possible.
746 	 */
747 	TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
748 		if (dr->installed)
749 			continue;
750 
751 		if (dr->ifp == ifp)
752 			defrtrlist_del(dr);
753 	}
754 
755 	TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
756 		if (!dr->installed)
757 			continue;
758 
759 		if (dr->ifp == ifp)
760 			defrtrlist_del(dr);
761 	}
762 
763 	/* Nuke prefix list entries toward ifp */
764 	LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, npr) {
765 		if (pr->ndpr_ifp == ifp) {
766 			/*
767 			 * Because if_detach() does *not* release prefixes
768 			 * while purging addresses the reference count will
769 			 * still be above zero. We therefore reset it to
770 			 * make sure that the prefix really gets purged.
771 			 */
772 			pr->ndpr_refcnt = 0;
773 			/*
774 			 * Previously, pr->ndpr_addr is removed as well,
775 			 * but I strongly believe we don't have to do it.
776 			 * nd6_purge() is only called from in6_ifdetach(),
777 			 * which removes all the associated interface addresses
778 			 * by itself.
779 			 * (jinmei@kame.net 20010129)
780 			 */
781 			prelist_remove(pr);
782 		}
783 	}
784 
785 	/* cancel default outgoing interface setting */
786 	if (nd6_defifindex == ifp->if_index)
787 		nd6_setdefaultiface(0);
788 
789 	/* XXX: too restrictive? */
790 	if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) {
791 		struct nd_ifinfo *ndi = ND_IFINFO(ifp);
792 		if (ndi && nd6_accepts_rtadv(ndi)) {
793 			/* refresh default router list */
794 			defrouter_select();
795 		}
796 	}
797 
798 	/*
799 	 * Nuke neighbor cache entries for the ifp.
800 	 * Note that rt->rt_ifp may not be the same as ifp,
801 	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
802 	 * nd6_rtrequest(), and ip6_input().
803 	 */
804 	ln = llinfo_nd6.ln_next;
805 	while (ln != NULL && ln != &llinfo_nd6) {
806 		struct rtentry *rt;
807 		const struct sockaddr_dl *sdl;
808 
809 		nln = ln->ln_next;
810 		rt = ln->ln_rt;
811 		if (rt && rt->rt_gateway &&
812 		    rt->rt_gateway->sa_family == AF_LINK) {
813 			sdl = satocsdl(rt->rt_gateway);
814 			if (sdl->sdl_index == ifp->if_index)
815 				nln = nd6_free(rt, 0);
816 		}
817 		ln = nln;
818 	}
819 }
820 
821 static struct rtentry *
822 nd6_lookup1(const struct in6_addr *addr6, int create, struct ifnet *ifp,
823     int cloning)
824 {
825 	struct rtentry *rt;
826 	struct sockaddr_in6 sin6;
827 
828 	sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
829 	rt = rtalloc1((struct sockaddr *)&sin6, create);
830 	if (rt != NULL && (rt->rt_flags & RTF_LLINFO) == 0) {
831 		/*
832 		 * This is the case for the default route.
833 		 * If we want to create a neighbor cache for the address, we
834 		 * should free the route for the destination and allocate an
835 		 * interface route.
836 		 */
837 		if (create) {
838 			RTFREE(rt);
839 			rt = NULL;
840 		}
841 	}
842 	if (rt != NULL)
843 		;
844 	else if (create && ifp) {
845 		int e;
846 
847 		/*
848 		 * If no route is available and create is set,
849 		 * we allocate a host route for the destination
850 		 * and treat it like an interface route.
851 		 * This hack is necessary for a neighbor which can't
852 		 * be covered by our own prefix.
853 		 */
854 		struct ifaddr *ifa =
855 		    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
856 		if (ifa == NULL)
857 			return NULL;
858 
859 		/*
860 		 * Create a new route.  RTF_LLINFO is necessary
861 		 * to create a Neighbor Cache entry for the
862 		 * destination in nd6_rtrequest which will be
863 		 * called in rtrequest via ifa->ifa_rtrequest.
864 		 */
865 		if ((e = rtrequest(RTM_ADD, (const struct sockaddr *)&sin6,
866 		    ifa->ifa_addr, (const struct sockaddr *)&all1_sa,
867 		    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
868 		    ~RTF_CLONING, &rt)) != 0) {
869 #if 0
870 			log(LOG_ERR,
871 			    "nd6_lookup: failed to add route for a "
872 			    "neighbor(%s), errno=%d\n",
873 			    ip6_sprintf(addr6), e);
874 #endif
875 			return NULL;
876 		}
877 		if (rt == NULL)
878 			return NULL;
879 		if (rt->rt_llinfo) {
880 			struct llinfo_nd6 *ln =
881 			    (struct llinfo_nd6 *)rt->rt_llinfo;
882 			ln->ln_state = ND6_LLINFO_NOSTATE;
883 		}
884 	} else
885 		return NULL;
886 	rt->rt_refcnt--;
887 
888 	/*
889 	 * Check for a cloning route to match the address.
890 	 * This should only be set from in6_is_addr_neighbor so we avoid
891 	 * a potentially expensive second call to rtalloc1.
892 	 */
893 	if (cloning &&
894 	    rt->rt_flags & (RTF_CLONING | RTF_CLONED) &&
895 	    (rt->rt_ifp == ifp
896 #if NBRIDGE > 0
897 	    || SAME_BRIDGE(rt->rt_ifp->if_bridgeport, ifp->if_bridgeport)
898 #endif
899 #if NCARP > 0
900 	    || (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) ||
901 	    (rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)||
902 	    (ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP &&
903 	    rt->rt_ifp->if_carpdev == ifp->if_carpdev)
904 #endif
905 	    ))
906 		return rt;
907 
908 	/*
909 	 * Validation for the entry.
910 	 * Note that the check for rt_llinfo is necessary because a cloned
911 	 * route from a parent route that has the L flag (e.g. the default
912 	 * route to a p2p interface) may have the flag, too, while the
913 	 * destination is not actually a neighbor.
914 	 * XXX: we can't use rt->rt_ifp to check for the interface, since
915 	 *      it might be the loopback interface if the entry is for our
916 	 *      own address on a non-loopback interface. Instead, we should
917 	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
918 	 *	interface.
919 	 * Note also that ifa_ifp and ifp may differ when we connect two
920 	 * interfaces to a same link, install a link prefix to an interface,
921 	 * and try to install a neighbor cache on an interface that does not
922 	 * have a route to the prefix.
923 	 */
924 	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
925 	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
926 	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
927 		if (create) {
928 			nd6log((LOG_DEBUG,
929 			    "nd6_lookup: failed to lookup %s (if = %s)\n",
930 			    ip6_sprintf(addr6),
931 			    ifp ? if_name(ifp) : "unspec"));
932 		}
933 		return NULL;
934 	}
935 	return rt;
936 }
937 
938 struct rtentry *
939 nd6_lookup(const struct in6_addr *addr6, int create, struct ifnet *ifp)
940 {
941 
942 	return nd6_lookup1(addr6, create, ifp, 0);
943 }
944 
945 /*
946  * Detect if a given IPv6 address identifies a neighbor on a given link.
947  * XXX: should take care of the destination of a p2p link?
948  */
949 int
950 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
951 {
952 	struct nd_prefix *pr;
953 
954 	/*
955 	 * A link-local address is always a neighbor.
956 	 * XXX: a link does not necessarily specify a single interface.
957 	 */
958 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
959 		struct sockaddr_in6 sin6_copy;
960 		u_int32_t zone;
961 
962 		/*
963 		 * We need sin6_copy since sa6_recoverscope() may modify the
964 		 * content (XXX).
965 		 */
966 		sin6_copy = *addr;
967 		if (sa6_recoverscope(&sin6_copy))
968 			return 0; /* XXX: should be impossible */
969 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
970 			return 0;
971 		if (sin6_copy.sin6_scope_id == zone)
972 			return 1;
973 		else
974 			return 0;
975 	}
976 
977 	/*
978 	 * If the address matches one of our on-link prefixes, it should be a
979 	 * neighbor.
980 	 */
981 	LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
982 		if (pr->ndpr_ifp != ifp)
983 			continue;
984 
985 		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
986 			continue;
987 
988 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
989 		    &addr->sin6_addr, &pr->ndpr_mask))
990 			return 1;
991 	}
992 
993 	/*
994 	 * If the default router list is empty, all addresses are regarded
995 	 * as on-link, and thus, as a neighbor.
996 	 * XXX: we restrict the condition to hosts, because routers usually do
997 	 * not have the "default router list".
998 	 */
999 	if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
1000 	    nd6_defifindex == ifp->if_index) {
1001 		return 1;
1002 	}
1003 
1004 	/*
1005 	 * Even if the address matches none of our addresses, it might match
1006 	 * a cloning route or be in the neighbor cache.
1007 	 */
1008 	if (nd6_lookup1(&addr->sin6_addr, 0, ifp, 1) != NULL)
1009 		return 1;
1010 
1011 	return 0;
1012 }
1013 
1014 /*
1015  * Free an nd6 llinfo entry.
1016  * Since the function would cause significant changes in the kernel, DO NOT
1017  * make it global, unless you have a strong reason for the change, and are sure
1018  * that the change is safe.
1019  */
1020 static struct llinfo_nd6 *
1021 nd6_free(struct rtentry *rt, int gc)
1022 {
1023 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1024 	struct in6_addr in6 = satocsin6(rt_getkey(rt))->sin6_addr;
1025 	struct nd_defrouter *dr;
1026 
1027 	/*
1028 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1029 	 * even though it is not harmful, it was not really necessary.
1030 	 */
1031 
1032 	/* cancel timer */
1033 	nd6_llinfo_settimer(ln, -1);
1034 
1035 	if (!ip6_forwarding) {
1036 		int s;
1037 		s = splsoftnet();
1038 		dr = defrouter_lookup(&satocsin6(rt_getkey(rt))->sin6_addr,
1039 		    rt->rt_ifp);
1040 
1041 		if (dr != NULL && dr->expire &&
1042 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1043 			/*
1044 			 * If the reason for the deletion is just garbage
1045 			 * collection, and the neighbor is an active default
1046 			 * router, do not delete it.  Instead, reset the GC
1047 			 * timer using the router's lifetime.
1048 			 * Simply deleting the entry would affect default
1049 			 * router selection, which is not necessarily a good
1050 			 * thing, especially when we're using router preference
1051 			 * values.
1052 			 * XXX: the check for ln_state would be redundant,
1053 			 *      but we intentionally keep it just in case.
1054 			 */
1055 			if (dr->expire > time_second)
1056 				nd6_llinfo_settimer(ln,
1057 				    (dr->expire - time_second) * hz);
1058 			else
1059 				nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1060 			splx(s);
1061 			return ln->ln_next;
1062 		}
1063 
1064 		if (ln->ln_router || dr) {
1065 			/*
1066 			 * rt6_flush must be called whether or not the neighbor
1067 			 * is in the Default Router List.
1068 			 * See a corresponding comment in nd6_na_input().
1069 			 */
1070 			rt6_flush(&in6, rt->rt_ifp);
1071 		}
1072 
1073 		if (dr) {
1074 			/*
1075 			 * Unreachablity of a router might affect the default
1076 			 * router selection and on-link detection of advertised
1077 			 * prefixes.
1078 			 */
1079 
1080 			/*
1081 			 * Temporarily fake the state to choose a new default
1082 			 * router and to perform on-link determination of
1083 			 * prefixes correctly.
1084 			 * Below the state will be set correctly,
1085 			 * or the entry itself will be deleted.
1086 			 */
1087 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1088 
1089 			/*
1090 			 * Since defrouter_select() does not affect the
1091 			 * on-link determination and MIP6 needs the check
1092 			 * before the default router selection, we perform
1093 			 * the check now.
1094 			 */
1095 			pfxlist_onlink_check();
1096 
1097 			/*
1098 			 * refresh default router list
1099 			 */
1100 			defrouter_select();
1101 		}
1102 		splx(s);
1103 	}
1104 
1105 	/*
1106 	 * Before deleting the entry, remember the next entry as the
1107 	 * return value.  We need this because pfxlist_onlink_check() above
1108 	 * might have freed other entries (particularly the old next entry) as
1109 	 * a side effect (XXX).
1110 	 */
1111 	next = ln->ln_next;
1112 
1113 	/*
1114 	 * Detach the route from the routing tree and the list of neighbor
1115 	 * caches, and disable the route entry not to be used in already
1116 	 * cached routes.
1117 	 */
1118 	rtrequest(RTM_DELETE, rt_getkey(rt), NULL, rt_mask(rt), 0, NULL);
1119 
1120 	return next;
1121 }
1122 
1123 /*
1124  * Upper-layer reachability hint for Neighbor Unreachability Detection.
1125  *
1126  * XXX cost-effective methods?
1127  */
1128 void
1129 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1130 {
1131 	struct llinfo_nd6 *ln;
1132 
1133 	/*
1134 	 * If the caller specified "rt", use that.  Otherwise, resolve the
1135 	 * routing table by supplied "dst6".
1136 	 */
1137 	if (rt == NULL) {
1138 		if (dst6 == NULL)
1139 			return;
1140 		if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1141 			return;
1142 	}
1143 
1144 	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1145 	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1146 	    !rt->rt_llinfo || !rt->rt_gateway ||
1147 	    rt->rt_gateway->sa_family != AF_LINK) {
1148 		/* This is not a host route. */
1149 		return;
1150 	}
1151 
1152 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1153 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1154 		return;
1155 
1156 	/*
1157 	 * if we get upper-layer reachability confirmation many times,
1158 	 * it is possible we have false information.
1159 	 */
1160 	if (!force) {
1161 		ln->ln_byhint++;
1162 		if (ln->ln_byhint > nd6_maxnudhint)
1163 			return;
1164 	}
1165 
1166 	ln->ln_state = ND6_LLINFO_REACHABLE;
1167 	if (!ND6_LLINFO_PERMANENT(ln)) {
1168 		nd6_llinfo_settimer(ln,
1169 		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1170 	}
1171 }
1172 
1173 void
1174 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
1175 {
1176 	struct sockaddr *gate = rt->rt_gateway;
1177 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1178 	struct ifnet *ifp = rt->rt_ifp;
1179 	uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
1180 	struct ifaddr *ifa;
1181 
1182 	RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1183 
1184 	if (req == RTM_LLINFO_UPD) {
1185 		int rc;
1186 		struct in6_addr *in6;
1187 		struct in6_addr in6_all;
1188 		int anycast;
1189 
1190 		if ((ifa = info->rti_ifa) == NULL)
1191 			return;
1192 
1193 		in6 = &ifatoia6(ifa)->ia_addr.sin6_addr;
1194 		anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST;
1195 
1196 		in6_all = in6addr_linklocal_allnodes;
1197 		if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) {
1198 			log(LOG_ERR, "%s: failed to set scope %s "
1199 			    "(errno=%d)\n", __func__, if_name(ifp), rc);
1200 			return;
1201 		}
1202 
1203 		/* XXX don't set Override for proxy addresses */
1204 		nd6_na_output(ifa->ifa_ifp, &in6_all, in6,
1205 		    (anycast ? 0 : ND_NA_FLAG_OVERRIDE)
1206 #if 0
1207 		    | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0)
1208 #endif
1209 		    , 1, NULL);
1210 		return;
1211 	}
1212 
1213 	if ((rt->rt_flags & RTF_GATEWAY) != 0)
1214 		return;
1215 
1216 	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1217 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1218 		/*
1219 		 * This is probably an interface direct route for a link
1220 		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1221 		 * We do not need special treatment below for such a route.
1222 		 * Moreover, the RTF_LLINFO flag which would be set below
1223 		 * would annoy the ndp(8) command.
1224 		 */
1225 		return;
1226 	}
1227 
1228 	if (req == RTM_RESOLVE &&
1229 	    (nd6_need_cache(ifp) == 0 || /* stf case */
1230 	     !nd6_is_addr_neighbor(satocsin6(rt_getkey(rt)), ifp))) {
1231 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1232 		/*
1233 		 * FreeBSD and BSD/OS often make a cloned host route based
1234 		 * on a less-specific route (e.g. the default route).
1235 		 * If the less specific route does not have a "gateway"
1236 		 * (this is the case when the route just goes to a p2p or an
1237 		 * stf interface), we'll mistakenly make a neighbor cache for
1238 		 * the host route, and will see strange neighbor solicitation
1239 		 * for the corresponding destination.  In order to avoid the
1240 		 * confusion, we check if the destination of the route is
1241 		 * a neighbor in terms of neighbor discovery, and stop the
1242 		 * process if not.  Additionally, we remove the LLINFO flag
1243 		 * so that ndp(8) will not try to get the neighbor information
1244 		 * of the destination.
1245 		 */
1246 		rt->rt_flags &= ~RTF_LLINFO;
1247 		return;
1248 	}
1249 
1250 	switch (req) {
1251 	case RTM_ADD:
1252 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1253 		/*
1254 		 * There is no backward compatibility :)
1255 		 *
1256 		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1257 		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1258 		 *	   rt->rt_flags |= RTF_CLONING;
1259 		 */
1260 		if ((rt->rt_flags & RTF_CLONING) ||
1261 		    ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1262 			union {
1263 				struct sockaddr sa;
1264 				struct sockaddr_dl sdl;
1265 				struct sockaddr_storage ss;
1266 			} u;
1267 			/*
1268 			 * Case 1: This route should come from a route to
1269 			 * interface (RTF_CLONING case) or the route should be
1270 			 * treated as on-link but is currently not
1271 			 * (RTF_LLINFO && ln == NULL case).
1272 			 */
1273 			if (sockaddr_dl_init(&u.sdl, sizeof(u.ss),
1274 			    ifp->if_index, ifp->if_type,
1275 			    NULL, namelen, NULL, addrlen) == NULL) {
1276 				printf("%s.%d: sockaddr_dl_init(, %zu, ) "
1277 				    "failed on %s\n", __func__, __LINE__,
1278 				    sizeof(u.ss), if_name(ifp));
1279 			}
1280 			rt_setgate(rt, &u.sa);
1281 			gate = rt->rt_gateway;
1282 			RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1283 			if (ln != NULL)
1284 				nd6_llinfo_settimer(ln, 0);
1285 			RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1286 			if ((rt->rt_flags & RTF_CLONING) != 0)
1287 				break;
1288 		}
1289 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1290 		/*
1291 		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1292 		 * We don't do that here since llinfo is not ready yet.
1293 		 *
1294 		 * There are also couple of other things to be discussed:
1295 		 * - unsolicited NA code needs improvement beforehand
1296 		 * - RFC2461 says we MAY send multicast unsolicited NA
1297 		 *   (7.2.6 paragraph 4), however, it also says that we
1298 		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1299 		 *   we don't have anything like it right now.
1300 		 *   note that the mechanism needs a mutual agreement
1301 		 *   between proxies, which means that we need to implement
1302 		 *   a new protocol, or a new kludge.
1303 		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1304 		 *   we need to check ip6forwarding before sending it.
1305 		 *   (or should we allow proxy ND configuration only for
1306 		 *   routers?  there's no mention about proxy ND from hosts)
1307 		 */
1308 #if 0
1309 		/* XXX it does not work */
1310 		if (rt->rt_flags & RTF_ANNOUNCE)
1311 			nd6_na_output(ifp,
1312 			      &satocsin6(rt_getkey(rt))->sin6_addr,
1313 			      &satocsin6(rt_getkey(rt))->sin6_addr,
1314 			      ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1315 			      1, NULL);
1316 #endif
1317 		/* FALLTHROUGH */
1318 	case RTM_RESOLVE:
1319 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1320 			RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1321 			/*
1322 			 * Address resolution isn't necessary for a point to
1323 			 * point link, so we can skip this test for a p2p link.
1324 			 */
1325 			if (gate->sa_family != AF_LINK ||
1326 			    gate->sa_len <
1327 			    sockaddr_dl_measure(namelen, addrlen)) {
1328 				log(LOG_DEBUG,
1329 				    "nd6_rtrequest: bad gateway value: %s\n",
1330 				    if_name(ifp));
1331 				break;
1332 			}
1333 			satosdl(gate)->sdl_type = ifp->if_type;
1334 			satosdl(gate)->sdl_index = ifp->if_index;
1335 			RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1336 		}
1337 		if (ln != NULL)
1338 			break;	/* This happens on a route change */
1339 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1340 		/*
1341 		 * Case 2: This route may come from cloning, or a manual route
1342 		 * add with a LL address.
1343 		 */
1344 		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1345 		rt->rt_llinfo = ln;
1346 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1347 		if (ln == NULL) {
1348 			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1349 			break;
1350 		}
1351 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1352 		nd6_inuse++;
1353 		nd6_allocated++;
1354 		memset(ln, 0, sizeof(*ln));
1355 		ln->ln_rt = rt;
1356 		callout_init(&ln->ln_timer_ch, CALLOUT_MPSAFE);
1357 		/* this is required for "ndp" command. - shin */
1358 		if (req == RTM_ADD) {
1359 		        /*
1360 			 * gate should have some valid AF_LINK entry,
1361 			 * and ln->ln_expire should have some lifetime
1362 			 * which is specified by ndp command.
1363 			 */
1364 			ln->ln_state = ND6_LLINFO_REACHABLE;
1365 			ln->ln_byhint = 0;
1366 		} else {
1367 		        /*
1368 			 * When req == RTM_RESOLVE, rt is created and
1369 			 * initialized in rtrequest(), so rt_expire is 0.
1370 			 */
1371 			ln->ln_state = ND6_LLINFO_NOSTATE;
1372 			nd6_llinfo_settimer(ln, 0);
1373 		}
1374 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1375 		rt->rt_flags |= RTF_LLINFO;
1376 		ln->ln_next = llinfo_nd6.ln_next;
1377 		llinfo_nd6.ln_next = ln;
1378 		ln->ln_prev = &llinfo_nd6;
1379 		ln->ln_next->ln_prev = ln;
1380 
1381 		/*
1382 		 * If we have too many cache entries, initiate immediate
1383 		 * purging for some "less recently used" entries.  Note that
1384 		 * we cannot directly call nd6_free() here because it would
1385 		 * cause re-entering rtable related routines triggering an LOR
1386 		 * problem for FreeBSD.
1387 		 */
1388 		if (ip6_neighborgcthresh >= 0 &&
1389 		    nd6_inuse >= ip6_neighborgcthresh) {
1390 			int i;
1391 
1392 			for (i = 0; i < 10 && llinfo_nd6.ln_prev != ln; i++) {
1393 				struct llinfo_nd6 *ln_end = llinfo_nd6.ln_prev;
1394 
1395 				/* Move this entry to the head */
1396 				LN_DEQUEUE(ln_end);
1397 				LN_INSERTHEAD(ln_end);
1398 
1399 				if (ND6_LLINFO_PERMANENT(ln_end))
1400 					continue;
1401 
1402 				if (ln_end->ln_state > ND6_LLINFO_INCOMPLETE)
1403 					ln_end->ln_state = ND6_LLINFO_STALE;
1404 				else
1405 					ln_end->ln_state = ND6_LLINFO_PURGE;
1406 				nd6_llinfo_settimer(ln_end, 0);
1407 			}
1408 		}
1409 
1410 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1411 		/*
1412 		 * check if rt_getkey(rt) is an address assigned
1413 		 * to the interface.
1414 		 */
1415 		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp,
1416 		    &satocsin6(rt_getkey(rt))->sin6_addr);
1417 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1418 		if (ifa != NULL) {
1419 			const void *mac;
1420 			nd6_llinfo_settimer(ln, -1);
1421 			ln->ln_state = ND6_LLINFO_REACHABLE;
1422 			ln->ln_byhint = 0;
1423 			if ((mac = nd6_ifptomac(ifp)) != NULL) {
1424 				/* XXX check for error */
1425 				if (sockaddr_dl_setaddr(satosdl(gate),
1426 				    gate->sa_len, mac,
1427 				    ifp->if_addrlen) == NULL) {
1428 					printf("%s.%d: "
1429 					    "sockaddr_dl_setaddr(, %d, ) "
1430 					    "failed on %s\n", __func__,
1431 					    __LINE__, gate->sa_len,
1432 					    if_name(ifp));
1433 				}
1434 			}
1435 			if (nd6_useloopback) {
1436 				ifp = rt->rt_ifp = lo0ifp;	/* XXX */
1437 				/*
1438 				 * Make sure rt_ifa be equal to the ifaddr
1439 				 * corresponding to the address.
1440 				 * We need this because when we refer
1441 				 * rt_ifa->ia6_flags in ip6_input, we assume
1442 				 * that the rt_ifa points to the address instead
1443 				 * of the loopback address.
1444 				 */
1445 				if (ifa != rt->rt_ifa)
1446 					rt_replace_ifa(rt, ifa);
1447 				rt->rt_flags &= ~RTF_CLONED;
1448 			}
1449 		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1450 			nd6_llinfo_settimer(ln, -1);
1451 			ln->ln_state = ND6_LLINFO_REACHABLE;
1452 			ln->ln_byhint = 0;
1453 
1454 			/* join solicited node multicast for proxy ND */
1455 			if (ifp->if_flags & IFF_MULTICAST) {
1456 				struct in6_addr llsol;
1457 				int error;
1458 
1459 				llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1460 				llsol.s6_addr32[0] = htonl(0xff020000);
1461 				llsol.s6_addr32[1] = 0;
1462 				llsol.s6_addr32[2] = htonl(1);
1463 				llsol.s6_addr8[12] = 0xff;
1464 				if (in6_setscope(&llsol, ifp, NULL))
1465 					break;
1466 				if (!in6_addmulti(&llsol, ifp, &error, 0)) {
1467 					nd6log((LOG_ERR, "%s: failed to join "
1468 					    "%s (errno=%d)\n", if_name(ifp),
1469 					    ip6_sprintf(&llsol), error));
1470 				}
1471 			}
1472 		}
1473 		break;
1474 
1475 	case RTM_DELETE:
1476 		if (ln == NULL)
1477 			break;
1478 		/* leave from solicited node multicast for proxy ND */
1479 		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1480 		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1481 			struct in6_addr llsol;
1482 			struct in6_multi *in6m;
1483 
1484 			llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1485 			llsol.s6_addr32[0] = htonl(0xff020000);
1486 			llsol.s6_addr32[1] = 0;
1487 			llsol.s6_addr32[2] = htonl(1);
1488 			llsol.s6_addr8[12] = 0xff;
1489 			if (in6_setscope(&llsol, ifp, NULL) == 0) {
1490 				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1491 				if (in6m)
1492 					in6_delmulti(in6m);
1493 			}
1494 		}
1495 		nd6_inuse--;
1496 		ln->ln_next->ln_prev = ln->ln_prev;
1497 		ln->ln_prev->ln_next = ln->ln_next;
1498 		ln->ln_prev = NULL;
1499 		nd6_llinfo_settimer(ln, -1);
1500 		rt->rt_llinfo = 0;
1501 		rt->rt_flags &= ~RTF_LLINFO;
1502 		clear_llinfo_pqueue(ln);
1503 		Free(ln);
1504 	}
1505 }
1506 
1507 int
1508 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
1509 {
1510 	struct in6_drlist *drl = (struct in6_drlist *)data;
1511 	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1512 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1513 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1514 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1515 	struct nd_defrouter *dr;
1516 	struct nd_prefix *pr;
1517 	struct rtentry *rt;
1518 	int i = 0, error = 0;
1519 	int s;
1520 
1521 	switch (cmd) {
1522 	case SIOCGDRLST_IN6:
1523 		/*
1524 		 * obsolete API, use sysctl under net.inet6.icmp6
1525 		 */
1526 		memset(drl, 0, sizeof(*drl));
1527 		s = splsoftnet();
1528 		TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
1529 			if (i >= DRLSTSIZ)
1530 				break;
1531 			drl->defrouter[i].rtaddr = dr->rtaddr;
1532 			in6_clearscope(&drl->defrouter[i].rtaddr);
1533 
1534 			drl->defrouter[i].flags = dr->flags;
1535 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1536 			drl->defrouter[i].expire = dr->expire;
1537 			drl->defrouter[i].if_index = dr->ifp->if_index;
1538 			i++;
1539 		}
1540 		splx(s);
1541 		break;
1542 	case SIOCGPRLST_IN6:
1543 		/*
1544 		 * obsolete API, use sysctl under net.inet6.icmp6
1545 		 *
1546 		 * XXX the structure in6_prlist was changed in backward-
1547 		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1548 		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1549 		 */
1550 		/*
1551 		 * XXX meaning of fields, especialy "raflags", is very
1552 		 * differnet between RA prefix list and RR/static prefix list.
1553 		 * how about separating ioctls into two?
1554 		 */
1555 		memset(oprl, 0, sizeof(*oprl));
1556 		s = splsoftnet();
1557 		LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
1558 			struct nd_pfxrouter *pfr;
1559 			int j;
1560 
1561 			if (i >= PRLSTSIZ)
1562 				break;
1563 			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1564 			oprl->prefix[i].raflags = pr->ndpr_raf;
1565 			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1566 			oprl->prefix[i].vltime = pr->ndpr_vltime;
1567 			oprl->prefix[i].pltime = pr->ndpr_pltime;
1568 			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1569 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1570 				oprl->prefix[i].expire = 0;
1571 			else {
1572 				time_t maxexpire;
1573 
1574 				/* XXX: we assume time_t is signed. */
1575 				maxexpire = (-1) &
1576 				    ~((time_t)1 <<
1577 				    ((sizeof(maxexpire) * 8) - 1));
1578 				if (pr->ndpr_vltime <
1579 				    maxexpire - pr->ndpr_lastupdate) {
1580 					oprl->prefix[i].expire =
1581 						 pr->ndpr_lastupdate +
1582 						pr->ndpr_vltime;
1583 				} else
1584 					oprl->prefix[i].expire = maxexpire;
1585 			}
1586 
1587 			j = 0;
1588 			LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
1589 				if (j < DRLSTSIZ) {
1590 #define RTRADDR oprl->prefix[i].advrtr[j]
1591 					RTRADDR = pfr->router->rtaddr;
1592 					in6_clearscope(&RTRADDR);
1593 #undef RTRADDR
1594 				}
1595 				j++;
1596 			}
1597 			oprl->prefix[i].advrtrs = j;
1598 			oprl->prefix[i].origin = PR_ORIG_RA;
1599 
1600 			i++;
1601 		}
1602 		splx(s);
1603 
1604 		break;
1605 	case OSIOCGIFINFO_IN6:
1606 #define ND	ndi->ndi
1607 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1608 		memset(&ND, 0, sizeof(ND));
1609 		ND.linkmtu = IN6_LINKMTU(ifp);
1610 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1611 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1612 		ND.reachable = ND_IFINFO(ifp)->reachable;
1613 		ND.retrans = ND_IFINFO(ifp)->retrans;
1614 		ND.flags = ND_IFINFO(ifp)->flags;
1615 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1616 		ND.chlim = ND_IFINFO(ifp)->chlim;
1617 		break;
1618 	case SIOCGIFINFO_IN6:
1619 		ND = *ND_IFINFO(ifp);
1620 		break;
1621 	case SIOCSIFINFO_IN6:
1622 		/*
1623 		 * used to change host variables from userland.
1624 		 * intented for a use on router to reflect RA configurations.
1625 		 */
1626 		/* 0 means 'unspecified' */
1627 		if (ND.linkmtu != 0) {
1628 			if (ND.linkmtu < IPV6_MMTU ||
1629 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1630 				error = EINVAL;
1631 				break;
1632 			}
1633 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1634 		}
1635 
1636 		if (ND.basereachable != 0) {
1637 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1638 
1639 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1640 			if (ND.basereachable != obasereachable)
1641 				ND_IFINFO(ifp)->reachable =
1642 				    ND_COMPUTE_RTIME(ND.basereachable);
1643 		}
1644 		if (ND.retrans != 0)
1645 			ND_IFINFO(ifp)->retrans = ND.retrans;
1646 		if (ND.chlim != 0)
1647 			ND_IFINFO(ifp)->chlim = ND.chlim;
1648 		/* FALLTHROUGH */
1649 	case SIOCSIFINFO_FLAGS:
1650 		ND_IFINFO(ifp)->flags = ND.flags;
1651 		break;
1652 #undef ND
1653 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1654 		/* sync kernel routing table with the default router list */
1655 		defrouter_reset();
1656 		defrouter_select();
1657 		break;
1658 	case SIOCSPFXFLUSH_IN6:
1659 	{
1660 		/* flush all the prefix advertised by routers */
1661 		struct nd_prefix *pfx, *next;
1662 
1663 		s = splsoftnet();
1664 		LIST_FOREACH_SAFE(pfx, &nd_prefix, ndpr_entry, next) {
1665 			struct in6_ifaddr *ia, *ia_next;
1666 
1667 			if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
1668 				continue; /* XXX */
1669 
1670 			/* do we really have to remove addresses as well? */
1671 			for (ia = in6_ifaddr; ia; ia = ia_next) {
1672 				/* ia might be removed.  keep the next ptr. */
1673 				ia_next = ia->ia_next;
1674 
1675 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1676 					continue;
1677 
1678 				if (ia->ia6_ndpr == pfx)
1679 					in6_purgeaddr(&ia->ia_ifa);
1680 			}
1681 			prelist_remove(pfx);
1682 		}
1683 		splx(s);
1684 		break;
1685 	}
1686 	case SIOCSRTRFLUSH_IN6:
1687 	{
1688 		/* flush all the default routers */
1689 		struct nd_defrouter *drtr, *next;
1690 
1691 		s = splsoftnet();
1692 		defrouter_reset();
1693 		TAILQ_FOREACH_SAFE(drtr, &nd_defrouter, dr_entry, next) {
1694 			defrtrlist_del(drtr);
1695 		}
1696 		defrouter_select();
1697 		splx(s);
1698 		break;
1699 	}
1700 	case SIOCGNBRINFO_IN6:
1701 	{
1702 		struct llinfo_nd6 *ln;
1703 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1704 
1705 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1706 			return error;
1707 
1708 		s = splsoftnet();
1709 		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL ||
1710 		    (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) {
1711 			error = EINVAL;
1712 			splx(s);
1713 			break;
1714 		}
1715 		nbi->state = ln->ln_state;
1716 		nbi->asked = ln->ln_asked;
1717 		nbi->isrouter = ln->ln_router;
1718 		nbi->expire = ln->ln_expire;
1719 		splx(s);
1720 
1721 		break;
1722 	}
1723 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1724 		ndif->ifindex = nd6_defifindex;
1725 		break;
1726 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1727 		return nd6_setdefaultiface(ndif->ifindex);
1728 	}
1729 	return error;
1730 }
1731 
1732 void
1733 nd6_llinfo_release_pkts(struct llinfo_nd6 *ln, struct ifnet *ifp,
1734     struct rtentry *rt)
1735 {
1736 	struct mbuf *m_hold, *m_hold_next;
1737 
1738 	for (m_hold = ln->ln_hold, ln->ln_hold = NULL;
1739 	     m_hold != NULL;
1740 	     m_hold = m_hold_next) {
1741 		m_hold_next = m_hold->m_nextpkt;
1742 		m_hold->m_nextpkt = NULL;
1743 
1744 		/*
1745 		 * we assume ifp is not a p2p here, so
1746 		 * just set the 2nd argument as the
1747 		 * 1st one.
1748 		 */
1749 		nd6_output(ifp, ifp, m_hold, satocsin6(rt_getkey(rt)), rt);
1750 	}
1751 }
1752 
1753 /*
1754  * Create neighbor cache entry and cache link-layer address,
1755  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1756  */
1757 struct rtentry *
1758 nd6_cache_lladdr(
1759     struct ifnet *ifp,
1760     struct in6_addr *from,
1761     char *lladdr,
1762     int lladdrlen,
1763     int type,	/* ICMP6 type */
1764     int code	/* type dependent information */
1765 )
1766 {
1767 	struct nd_ifinfo *ndi = ND_IFINFO(ifp);
1768 	struct rtentry *rt = NULL;
1769 	struct llinfo_nd6 *ln = NULL;
1770 	int is_newentry;
1771 	struct sockaddr_dl *sdl = NULL;
1772 	int do_update;
1773 	int olladdr;
1774 	int llchange;
1775 	int newstate = 0;
1776 
1777 	if (ifp == NULL)
1778 		panic("ifp == NULL in nd6_cache_lladdr");
1779 	if (from == NULL)
1780 		panic("from == NULL in nd6_cache_lladdr");
1781 
1782 	/* nothing must be updated for unspecified address */
1783 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1784 		return NULL;
1785 
1786 	/*
1787 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1788 	 * the caller.
1789 	 *
1790 	 * XXX If the link does not have link-layer adderss, what should
1791 	 * we do? (ifp->if_addrlen == 0)
1792 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1793 	 * description on it in NS section (RFC 2461 7.2.3).
1794 	 */
1795 
1796 	rt = nd6_lookup(from, 0, ifp);
1797 	if (rt == NULL) {
1798 #if 0
1799 		/* nothing must be done if there's no lladdr */
1800 		if (!lladdr || !lladdrlen)
1801 			return NULL;
1802 #endif
1803 
1804 		rt = nd6_lookup(from, 1, ifp);
1805 		is_newentry = 1;
1806 	} else {
1807 		/* do nothing if static ndp is set */
1808 		if (rt->rt_flags & RTF_STATIC)
1809 			return NULL;
1810 		is_newentry = 0;
1811 	}
1812 
1813 	if (rt == NULL)
1814 		return NULL;
1815 	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1816 fail:
1817 		(void)nd6_free(rt, 0);
1818 		return NULL;
1819 	}
1820 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1821 	if (ln == NULL)
1822 		goto fail;
1823 	if (rt->rt_gateway == NULL)
1824 		goto fail;
1825 	if (rt->rt_gateway->sa_family != AF_LINK)
1826 		goto fail;
1827 	sdl = satosdl(rt->rt_gateway);
1828 
1829 	olladdr = (sdl->sdl_alen) ? 1 : 0;
1830 	if (olladdr && lladdr) {
1831 		if (memcmp(lladdr, CLLADDR(sdl), ifp->if_addrlen))
1832 			llchange = 1;
1833 		else
1834 			llchange = 0;
1835 	} else
1836 		llchange = 0;
1837 
1838 	/*
1839 	 * newentry olladdr  lladdr  llchange	(*=record)
1840 	 *	0	n	n	--	(1)
1841 	 *	0	y	n	--	(2)
1842 	 *	0	n	y	--	(3) * STALE
1843 	 *	0	y	y	n	(4) *
1844 	 *	0	y	y	y	(5) * STALE
1845 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1846 	 *	1	--	y	--	(7) * STALE
1847 	 */
1848 
1849 	if (lladdr) {		/* (3-5) and (7) */
1850 		/*
1851 		 * Record source link-layer address
1852 		 * XXX is it dependent to ifp->if_type?
1853 		 */
1854 		/* XXX check for error */
1855 		if (sockaddr_dl_setaddr(sdl, sdl->sdl_len, lladdr,
1856 		    ifp->if_addrlen) == NULL) {
1857 			printf("%s.%d: sockaddr_dl_setaddr(, %d, ) "
1858 			    "failed on %s\n", __func__, __LINE__,
1859 			    sdl->sdl_len, if_name(ifp));
1860 		}
1861 	}
1862 
1863 	if (!is_newentry) {
1864 		if ((!olladdr && lladdr) ||		/* (3) */
1865 		    (olladdr && lladdr && llchange)) {	/* (5) */
1866 			do_update = 1;
1867 			newstate = ND6_LLINFO_STALE;
1868 		} else					/* (1-2,4) */
1869 			do_update = 0;
1870 	} else {
1871 		do_update = 1;
1872 		if (lladdr == NULL)			/* (6) */
1873 			newstate = ND6_LLINFO_NOSTATE;
1874 		else					/* (7) */
1875 			newstate = ND6_LLINFO_STALE;
1876 	}
1877 
1878 	if (do_update) {
1879 		/*
1880 		 * Update the state of the neighbor cache.
1881 		 */
1882 		ln->ln_state = newstate;
1883 
1884 		if (ln->ln_state == ND6_LLINFO_STALE) {
1885 			/*
1886 			 * XXX: since nd6_output() below will cause
1887 			 * state tansition to DELAY and reset the timer,
1888 			 * we must set the timer now, although it is actually
1889 			 * meaningless.
1890 			 */
1891 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1892 
1893 			nd6_llinfo_release_pkts(ln, ifp, rt);
1894 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1895 			/* probe right away */
1896 			nd6_llinfo_settimer((void *)ln, 0);
1897 		}
1898 	}
1899 
1900 	/*
1901 	 * ICMP6 type dependent behavior.
1902 	 *
1903 	 * NS: clear IsRouter if new entry
1904 	 * RS: clear IsRouter
1905 	 * RA: set IsRouter if there's lladdr
1906 	 * redir: clear IsRouter if new entry
1907 	 *
1908 	 * RA case, (1):
1909 	 * The spec says that we must set IsRouter in the following cases:
1910 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1911 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1912 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1913 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1914 	 * neighbor cache, this is similar to (6).
1915 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1916 	 *
1917 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1918 	 *							D R
1919 	 *	0	n	n	--	(1)	c   ?     s
1920 	 *	0	y	n	--	(2)	c   s     s
1921 	 *	0	n	y	--	(3)	c   s     s
1922 	 *	0	y	y	n	(4)	c   s     s
1923 	 *	0	y	y	y	(5)	c   s     s
1924 	 *	1	--	n	--	(6) c	c 	c s
1925 	 *	1	--	y	--	(7) c	c   s	c s
1926 	 *
1927 	 *					(c=clear s=set)
1928 	 */
1929 	switch (type & 0xff) {
1930 	case ND_NEIGHBOR_SOLICIT:
1931 		/*
1932 		 * New entry must have is_router flag cleared.
1933 		 */
1934 		if (is_newentry)	/* (6-7) */
1935 			ln->ln_router = 0;
1936 		break;
1937 	case ND_REDIRECT:
1938 		/*
1939 		 * If the icmp is a redirect to a better router, always set the
1940 		 * is_router flag.  Otherwise, if the entry is newly created,
1941 		 * clear the flag.  [RFC 2461, sec 8.3]
1942 		 */
1943 		if (code == ND_REDIRECT_ROUTER)
1944 			ln->ln_router = 1;
1945 		else if (is_newentry) /* (6-7) */
1946 			ln->ln_router = 0;
1947 		break;
1948 	case ND_ROUTER_SOLICIT:
1949 		/*
1950 		 * is_router flag must always be cleared.
1951 		 */
1952 		ln->ln_router = 0;
1953 		break;
1954 	case ND_ROUTER_ADVERT:
1955 		/*
1956 		 * Mark an entry with lladdr as a router.
1957 		 */
1958 		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1959 		    (is_newentry && lladdr)) {			/* (7) */
1960 			ln->ln_router = 1;
1961 		}
1962 		break;
1963 	}
1964 
1965 	/*
1966 	 * When the link-layer address of a router changes, select the
1967 	 * best router again.  In particular, when the neighbor entry is newly
1968 	 * created, it might affect the selection policy.
1969 	 * Question: can we restrict the first condition to the "is_newentry"
1970 	 * case?
1971 	 * XXX: when we hear an RA from a new router with the link-layer
1972 	 * address option, defrouter_select() is called twice, since
1973 	 * defrtrlist_update called the function as well.  However, I believe
1974 	 * we can compromise the overhead, since it only happens the first
1975 	 * time.
1976 	 * XXX: although defrouter_select() should not have a bad effect
1977 	 * for those are not autoconfigured hosts, we explicitly avoid such
1978 	 * cases for safety.
1979 	 */
1980 	if (do_update && ln->ln_router && !ip6_forwarding &&
1981 	    nd6_accepts_rtadv(ndi))
1982 		defrouter_select();
1983 
1984 	return rt;
1985 }
1986 
1987 static void
1988 nd6_slowtimo(void *ignored_arg)
1989 {
1990 	struct nd_ifinfo *nd6if;
1991 	struct ifnet *ifp;
1992 
1993 	mutex_enter(softnet_lock);
1994 	KERNEL_LOCK(1, NULL);
1995       	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1996 	    nd6_slowtimo, NULL);
1997 	TAILQ_FOREACH(ifp, &ifnet, if_list) {
1998 		nd6if = ND_IFINFO(ifp);
1999 		if (nd6if->basereachable && /* already initialized */
2000 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2001 			/*
2002 			 * Since reachable time rarely changes by router
2003 			 * advertisements, we SHOULD insure that a new random
2004 			 * value gets recomputed at least once every few hours.
2005 			 * (RFC 2461, 6.3.4)
2006 			 */
2007 			nd6if->recalctm = nd6_recalc_reachtm_interval;
2008 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2009 		}
2010 	}
2011 	KERNEL_UNLOCK_ONE(NULL);
2012 	mutex_exit(softnet_lock);
2013 }
2014 
2015 #define senderr(e) { error = (e); goto bad;}
2016 int
2017 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
2018     const struct sockaddr_in6 *dst, struct rtentry *rt0)
2019 {
2020 	struct mbuf *m = m0;
2021 	struct rtentry *rt = rt0;
2022 	struct sockaddr_in6 *gw6 = NULL;
2023 	struct llinfo_nd6 *ln = NULL;
2024 	int error = 0;
2025 
2026 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
2027 		goto sendpkt;
2028 
2029 	if (nd6_need_cache(ifp) == 0)
2030 		goto sendpkt;
2031 
2032 	/*
2033 	 * next hop determination.  This routine is derived from ether_output.
2034 	 */
2035 	if (rt) {
2036 		if ((rt->rt_flags & RTF_UP) == 0) {
2037 			if ((rt0 = rt = rtalloc1(sin6tocsa(dst), 1)) != NULL) {
2038 				rt->rt_refcnt--;
2039 				if (rt->rt_ifp != ifp)
2040 					senderr(EHOSTUNREACH);
2041 			} else
2042 				senderr(EHOSTUNREACH);
2043 		}
2044 
2045 		if (rt->rt_flags & RTF_GATEWAY) {
2046 			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
2047 
2048 			/*
2049 			 * We skip link-layer address resolution and NUD
2050 			 * if the gateway is not a neighbor from ND point
2051 			 * of view, regardless of the value of nd_ifinfo.flags.
2052 			 * The second condition is a bit tricky; we skip
2053 			 * if the gateway is our own address, which is
2054 			 * sometimes used to install a route to a p2p link.
2055 			 */
2056 			if (!nd6_is_addr_neighbor(gw6, ifp) ||
2057 			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
2058 				/*
2059 				 * We allow this kind of tricky route only
2060 				 * when the outgoing interface is p2p.
2061 				 * XXX: we may need a more generic rule here.
2062 				 */
2063 				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
2064 					senderr(EHOSTUNREACH);
2065 
2066 				goto sendpkt;
2067 			}
2068 
2069 			if (rt->rt_gwroute == NULL)
2070 				goto lookup;
2071 			if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
2072 				rtfree(rt); rt = rt0;
2073 			lookup:
2074 				rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
2075 				if ((rt = rt->rt_gwroute) == NULL)
2076 					senderr(EHOSTUNREACH);
2077 				/* the "G" test below also prevents rt == rt0 */
2078 				if ((rt->rt_flags & RTF_GATEWAY) ||
2079 				    (rt->rt_ifp != ifp)) {
2080 					rt->rt_refcnt--;
2081 					rt0->rt_gwroute = NULL;
2082 					senderr(EHOSTUNREACH);
2083 				}
2084 			}
2085 		}
2086 	}
2087 
2088 	/*
2089 	 * Address resolution or Neighbor Unreachability Detection
2090 	 * for the next hop.
2091 	 * At this point, the destination of the packet must be a unicast
2092 	 * or an anycast address(i.e. not a multicast).
2093 	 */
2094 
2095 	/* Look up the neighbor cache for the nexthop */
2096 	if (rt != NULL && (rt->rt_flags & RTF_LLINFO) != 0)
2097 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2098 	else {
2099 		/*
2100 		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2101 		 * the condition below is not very efficient.  But we believe
2102 		 * it is tolerable, because this should be a rare case.
2103 		 */
2104 		if (nd6_is_addr_neighbor(dst, ifp) &&
2105 		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2106 			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2107 	}
2108 	if (ln == NULL || rt == NULL) {
2109 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2110 		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2111 			log(LOG_DEBUG,
2112 			    "nd6_output: can't allocate llinfo for %s "
2113 			    "(ln=%p, rt=%p)\n",
2114 			    ip6_sprintf(&dst->sin6_addr), ln, rt);
2115 			senderr(EIO);	/* XXX: good error? */
2116 		}
2117 
2118 		goto sendpkt;	/* send anyway */
2119 	}
2120 
2121 	/*
2122 	 * Move this entry to the head of the queue so that it is less likely
2123 	 * for this entry to be a target of forced garbage collection (see
2124 	 * nd6_rtrequest()).
2125 	 */
2126 	LN_DEQUEUE(ln);
2127 	LN_INSERTHEAD(ln);
2128 
2129 	/* We don't have to do link-layer address resolution on a p2p link. */
2130 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2131 	    ln->ln_state < ND6_LLINFO_REACHABLE) {
2132 		ln->ln_state = ND6_LLINFO_STALE;
2133 		nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2134 	}
2135 
2136 	/*
2137 	 * The first time we send a packet to a neighbor whose entry is
2138 	 * STALE, we have to change the state to DELAY and a sets a timer to
2139 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2140 	 * neighbor unreachability detection on expiration.
2141 	 * (RFC 2461 7.3.3)
2142 	 */
2143 	if (ln->ln_state == ND6_LLINFO_STALE) {
2144 		ln->ln_asked = 0;
2145 		ln->ln_state = ND6_LLINFO_DELAY;
2146 		nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2147 	}
2148 
2149 	/*
2150 	 * If the neighbor cache entry has a state other than INCOMPLETE
2151 	 * (i.e. its link-layer address is already resolved), just
2152 	 * send the packet.
2153 	 */
2154 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2155 		goto sendpkt;
2156 
2157 	/*
2158 	 * There is a neighbor cache entry, but no ethernet address
2159 	 * response yet.  Append this latest packet to the end of the
2160 	 * packet queue in the mbuf, unless the number of the packet
2161 	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
2162 	 * the oldest packet in the queue will be removed.
2163 	 */
2164 	if (ln->ln_state == ND6_LLINFO_NOSTATE)
2165 		ln->ln_state = ND6_LLINFO_INCOMPLETE;
2166 	if (ln->ln_hold) {
2167 		struct mbuf *m_hold;
2168 		int i;
2169 
2170 		i = 0;
2171 		for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2172 			i++;
2173 			if (m_hold->m_nextpkt == NULL) {
2174 				m_hold->m_nextpkt = m;
2175 				break;
2176 			}
2177 		}
2178 		while (i >= nd6_maxqueuelen) {
2179 			m_hold = ln->ln_hold;
2180 			ln->ln_hold = ln->ln_hold->m_nextpkt;
2181 			m_freem(m_hold);
2182 			i--;
2183 		}
2184 	} else {
2185 		ln->ln_hold = m;
2186 	}
2187 
2188 	/*
2189 	 * If there has been no NS for the neighbor after entering the
2190 	 * INCOMPLETE state, send the first solicitation.
2191 	 */
2192 	if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2193 		ln->ln_asked++;
2194 		nd6_llinfo_settimer(ln,
2195 		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2196 		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2197 	}
2198 	return 0;
2199 
2200   sendpkt:
2201 	/* discard the packet if IPv6 operation is disabled on the interface */
2202 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2203 		error = ENETDOWN; /* better error? */
2204 		goto bad;
2205 	}
2206 
2207 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2208 		return (*ifp->if_output)(origifp, m, sin6tocsa(dst), rt);
2209 	return (*ifp->if_output)(ifp, m, sin6tocsa(dst), rt);
2210 
2211   bad:
2212 	if (m != NULL)
2213 		m_freem(m);
2214 	return error;
2215 }
2216 #undef senderr
2217 
2218 int
2219 nd6_need_cache(struct ifnet *ifp)
2220 {
2221 	/*
2222 	 * XXX: we currently do not make neighbor cache on any interface
2223 	 * other than ARCnet, Ethernet, FDDI and GIF.
2224 	 *
2225 	 * RFC2893 says:
2226 	 * - unidirectional tunnels needs no ND
2227 	 */
2228 	switch (ifp->if_type) {
2229 	case IFT_ARCNET:
2230 	case IFT_ETHER:
2231 	case IFT_FDDI:
2232 	case IFT_IEEE1394:
2233 	case IFT_CARP:
2234 	case IFT_GIF:		/* XXX need more cases? */
2235 	case IFT_PPP:
2236 	case IFT_TUNNEL:
2237 		return 1;
2238 	default:
2239 		return 0;
2240 	}
2241 }
2242 
2243 int
2244 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
2245     struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst,
2246     size_t dstsize)
2247 {
2248 	const struct sockaddr_dl *sdl;
2249 
2250 	if (m->m_flags & M_MCAST) {
2251 		switch (ifp->if_type) {
2252 		case IFT_ETHER:
2253 		case IFT_FDDI:
2254 			ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
2255 			    lldst);
2256 			return 1;
2257 		case IFT_IEEE1394:
2258 			memcpy(lldst, ifp->if_broadcastaddr,
2259 			    MIN(dstsize, ifp->if_addrlen));
2260 			return 1;
2261 		case IFT_ARCNET:
2262 			*lldst = 0;
2263 			return 1;
2264 		default:
2265 			m_freem(m);
2266 			return 0;
2267 		}
2268 	}
2269 
2270 	if (rt == NULL) {
2271 		/* this could happen, if we could not allocate memory */
2272 		m_freem(m);
2273 		return 0;
2274 	}
2275 	if (rt->rt_gateway->sa_family != AF_LINK) {
2276 		printf("%s: something odd happens\n", __func__);
2277 		m_freem(m);
2278 		return 0;
2279 	}
2280 	sdl = satocsdl(rt->rt_gateway);
2281 	if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
2282 		/* this should be impossible, but we bark here for debugging */
2283 		printf("%s: sdl_alen == %" PRIu8 ", dst=%s, if=%s\n", __func__,
2284 		    sdl->sdl_alen, ip6_sprintf(&satocsin6(dst)->sin6_addr),
2285 		    if_name(ifp));
2286 		m_freem(m);
2287 		return 0;
2288 	}
2289 
2290 	memcpy(lldst, CLLADDR(sdl), MIN(dstsize, sdl->sdl_alen));
2291 	return 1;
2292 }
2293 
2294 static void
2295 clear_llinfo_pqueue(struct llinfo_nd6 *ln)
2296 {
2297 	struct mbuf *m_hold, *m_hold_next;
2298 
2299 	for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2300 		m_hold_next = m_hold->m_nextpkt;
2301 		m_hold->m_nextpkt = NULL;
2302 		m_freem(m_hold);
2303 	}
2304 
2305 	ln->ln_hold = NULL;
2306 	return;
2307 }
2308 
2309 int
2310 nd6_sysctl(
2311     int name,
2312     void *oldp,	/* syscall arg, need copyout */
2313     size_t *oldlenp,
2314     void *newp,	/* syscall arg, need copyin */
2315     size_t newlen
2316 )
2317 {
2318 	void *p;
2319 	size_t ol;
2320 	int error;
2321 
2322 	error = 0;
2323 
2324 	if (newp)
2325 		return EPERM;
2326 	if (oldp && !oldlenp)
2327 		return EINVAL;
2328 	ol = oldlenp ? *oldlenp : 0;
2329 
2330 	if (oldp) {
2331 		p = malloc(*oldlenp, M_TEMP, M_WAITOK);
2332 		if (p == NULL)
2333 			return ENOMEM;
2334 	} else
2335 		p = NULL;
2336 	switch (name) {
2337 	case ICMPV6CTL_ND6_DRLIST:
2338 		error = fill_drlist(p, oldlenp, ol);
2339 		if (!error && p != NULL && oldp != NULL)
2340 			error = copyout(p, oldp, *oldlenp);
2341 		break;
2342 
2343 	case ICMPV6CTL_ND6_PRLIST:
2344 		error = fill_prlist(p, oldlenp, ol);
2345 		if (!error && p != NULL && oldp != NULL)
2346 			error = copyout(p, oldp, *oldlenp);
2347 		break;
2348 
2349 	case ICMPV6CTL_ND6_MAXQLEN:
2350 		break;
2351 
2352 	default:
2353 		error = ENOPROTOOPT;
2354 		break;
2355 	}
2356 	if (p)
2357 		free(p, M_TEMP);
2358 
2359 	return error;
2360 }
2361 
2362 static int
2363 fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
2364 {
2365 	int error = 0, s;
2366 	struct in6_defrouter *d = NULL, *de = NULL;
2367 	struct nd_defrouter *dr;
2368 	size_t l;
2369 
2370 	s = splsoftnet();
2371 
2372 	if (oldp) {
2373 		d = (struct in6_defrouter *)oldp;
2374 		de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
2375 	}
2376 	l = 0;
2377 
2378 	TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
2379 
2380 		if (oldp && d + 1 <= de) {
2381 			memset(d, 0, sizeof(*d));
2382 			sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
2383 			if (sa6_recoverscope(&d->rtaddr)) {
2384 				log(LOG_ERR,
2385 				    "scope error in router list (%s)\n",
2386 				    ip6_sprintf(&d->rtaddr.sin6_addr));
2387 				/* XXX: press on... */
2388 			}
2389 			d->flags = dr->flags;
2390 			d->rtlifetime = dr->rtlifetime;
2391 			d->expire = dr->expire;
2392 			d->if_index = dr->ifp->if_index;
2393 		}
2394 
2395 		l += sizeof(*d);
2396 		if (d)
2397 			d++;
2398 	}
2399 
2400 	if (oldp) {
2401 		if (l > ol)
2402 			error = ENOMEM;
2403 	}
2404 	if (oldlenp)
2405 		*oldlenp = l;	/* (void *)d - (void *)oldp */
2406 
2407 	splx(s);
2408 
2409 	return error;
2410 }
2411 
2412 static int
2413 fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
2414 {
2415 	int error = 0, s;
2416 	struct nd_prefix *pr;
2417 	uint8_t *p = NULL, *ps = NULL;
2418 	uint8_t *pe = NULL;
2419 	size_t l;
2420 
2421 	s = splsoftnet();
2422 
2423 	if (oldp) {
2424 		ps = p = (uint8_t*)oldp;
2425 		pe = (uint8_t*)oldp + *oldlenp;
2426 	}
2427 	l = 0;
2428 
2429 	LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
2430 		u_short advrtrs;
2431 		struct sockaddr_in6 sin6;
2432 		struct nd_pfxrouter *pfr;
2433 		struct in6_prefix pfx;
2434 
2435 		if (oldp && p + sizeof(struct in6_prefix) <= pe)
2436 		{
2437 			memset(&pfx, 0, sizeof(pfx));
2438 			ps = p;
2439 			pfx.prefix = pr->ndpr_prefix;
2440 
2441 			if (sa6_recoverscope(&pfx.prefix)) {
2442 				log(LOG_ERR,
2443 				    "scope error in prefix list (%s)\n",
2444 				    ip6_sprintf(&pfx.prefix.sin6_addr));
2445 				/* XXX: press on... */
2446 			}
2447 			pfx.raflags = pr->ndpr_raf;
2448 			pfx.prefixlen = pr->ndpr_plen;
2449 			pfx.vltime = pr->ndpr_vltime;
2450 			pfx.pltime = pr->ndpr_pltime;
2451 			pfx.if_index = pr->ndpr_ifp->if_index;
2452 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2453 				pfx.expire = 0;
2454 			else {
2455 				time_t maxexpire;
2456 
2457 				/* XXX: we assume time_t is signed. */
2458 				maxexpire = (-1) &
2459 				    ~((time_t)1 <<
2460 				    ((sizeof(maxexpire) * 8) - 1));
2461 				if (pr->ndpr_vltime <
2462 				    maxexpire - pr->ndpr_lastupdate) {
2463 					pfx.expire = pr->ndpr_lastupdate +
2464 						pr->ndpr_vltime;
2465 				} else
2466 					pfx.expire = maxexpire;
2467 			}
2468 			pfx.refcnt = pr->ndpr_refcnt;
2469 			pfx.flags = pr->ndpr_stateflags;
2470 			pfx.origin = PR_ORIG_RA;
2471 
2472 			p += sizeof(pfx); l += sizeof(pfx);
2473 
2474 			advrtrs = 0;
2475 			LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2476 				if (p + sizeof(sin6) > pe) {
2477 					advrtrs++;
2478 					continue;
2479 				}
2480 
2481 				sockaddr_in6_init(&sin6, &pfr->router->rtaddr,
2482 				    0, 0, 0);
2483 				if (sa6_recoverscope(&sin6)) {
2484 					log(LOG_ERR,
2485 					    "scope error in "
2486 					    "prefix list (%s)\n",
2487 					    ip6_sprintf(&pfr->router->rtaddr));
2488 				}
2489 				advrtrs++;
2490 				memcpy(p, &sin6, sizeof(sin6));
2491 				p += sizeof(sin6);
2492 				l += sizeof(sin6);
2493 			}
2494 			pfx.advrtrs = advrtrs;
2495 			memcpy(ps, &pfx, sizeof(pfx));
2496 		}
2497 		else {
2498 			l += sizeof(pfx);
2499 			advrtrs = 0;
2500 			LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2501 				advrtrs++;
2502 				l += sizeof(sin6);
2503 			}
2504 		}
2505 	}
2506 
2507 	if (oldp) {
2508 		*oldlenp = l;	/* (void *)d - (void *)oldp */
2509 		if (l > ol)
2510 			error = ENOMEM;
2511 	} else
2512 		*oldlenp = l;
2513 
2514 	splx(s);
2515 
2516 	return error;
2517 }
2518