xref: /netbsd-src/sys/netinet6/nd6.c (revision 46f5119e40af2e51998f686b2fdcc76b5488f7f3)
1 /*	$NetBSD: nd6.c,v 1.136 2010/07/15 19:15:30 dyoung Exp $	*/
2 /*	$KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.136 2010/07/15 19:15:30 dyoung Exp $");
35 
36 #include "opt_ipsec.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/socketvar.h>
45 #include <sys/sockio.h>
46 #include <sys/time.h>
47 #include <sys/kernel.h>
48 #include <sys/protosw.h>
49 #include <sys/errno.h>
50 #include <sys/ioctl.h>
51 #include <sys/syslog.h>
52 #include <sys/queue.h>
53 
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_types.h>
57 #include <net/route.h>
58 #include <net/if_ether.h>
59 #include <net/if_fddi.h>
60 #include <net/if_arc.h>
61 
62 #include <netinet/in.h>
63 #include <netinet6/in6_var.h>
64 #include <netinet/ip6.h>
65 #include <netinet6/ip6_var.h>
66 #include <netinet6/scope6_var.h>
67 #include <netinet6/nd6.h>
68 #include <netinet/icmp6.h>
69 #include <netinet6/icmp6_private.h>
70 
71 #ifdef IPSEC
72 #include <netinet6/ipsec.h>
73 #endif
74 
75 #include <net/net_osdep.h>
76 
77 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
78 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
79 
80 /* timer values */
81 int	nd6_prune	= 1;	/* walk list every 1 seconds */
82 int	nd6_delay	= 5;	/* delay first probe time 5 second */
83 int	nd6_umaxtries	= 3;	/* maximum unicast query */
84 int	nd6_mmaxtries	= 3;	/* maximum multicast query */
85 int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
86 int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
87 
88 /* preventing too many loops in ND option parsing */
89 int nd6_maxndopt = 10;	/* max # of ND options allowed */
90 
91 int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
92 
93 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
94 
95 #ifdef ND6_DEBUG
96 int nd6_debug = 1;
97 #else
98 int nd6_debug = 0;
99 #endif
100 
101 /* for debugging? */
102 static int nd6_inuse, nd6_allocated;
103 
104 struct llinfo_nd6 llinfo_nd6 = {
105 	.ln_prev = &llinfo_nd6,
106 	.ln_next = &llinfo_nd6,
107 };
108 struct nd_drhead nd_defrouter;
109 struct nd_prhead nd_prefix = { 0 };
110 
111 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
112 static const struct sockaddr_in6 all1_sa = {
113 	  .sin6_family = AF_INET6
114 	, .sin6_len = sizeof(struct sockaddr_in6)
115 	, .sin6_addr = {.s6_addr = {0xff, 0xff, 0xff, 0xff,
116 				    0xff, 0xff, 0xff, 0xff,
117 				    0xff, 0xff, 0xff, 0xff,
118 				    0xff, 0xff, 0xff, 0xff}}
119 };
120 
121 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
122 static void nd6_slowtimo(void *);
123 static int regen_tmpaddr(struct in6_ifaddr *);
124 static struct llinfo_nd6 *nd6_free(struct rtentry *, int);
125 static void nd6_llinfo_timer(void *);
126 static void clear_llinfo_pqueue(struct llinfo_nd6 *);
127 
128 callout_t nd6_slowtimo_ch;
129 callout_t nd6_timer_ch;
130 extern callout_t in6_tmpaddrtimer_ch;
131 
132 static int fill_drlist(void *, size_t *, size_t);
133 static int fill_prlist(void *, size_t *, size_t);
134 
135 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
136 
137 void
138 nd6_init(void)
139 {
140 	static int nd6_init_done = 0;
141 
142 	if (nd6_init_done) {
143 		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
144 		return;
145 	}
146 
147 	/* initialization of the default router list */
148 	TAILQ_INIT(&nd_defrouter);
149 
150 	nd6_init_done = 1;
151 
152 	callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
153 	callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
154 
155 	/* start timer */
156 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
157 	    nd6_slowtimo, NULL);
158 }
159 
160 struct nd_ifinfo *
161 nd6_ifattach(struct ifnet *ifp)
162 {
163 	struct nd_ifinfo *nd;
164 
165 	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
166 	memset(nd, 0, sizeof(*nd));
167 
168 	nd->initialized = 1;
169 
170 	nd->chlim = IPV6_DEFHLIM;
171 	nd->basereachable = REACHABLE_TIME;
172 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
173 	nd->retrans = RETRANS_TIMER;
174 	/*
175 	 * Note that the default value of ip6_accept_rtadv is 0.
176 	 * Because we do not set ND6_IFF_OVERRIDE_RTADV here, we won't
177 	 * accept RAs by default.
178 	 */
179 	nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV;
180 
181 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
182 	nd6_setmtu0(ifp, nd);
183 
184 	return nd;
185 }
186 
187 void
188 nd6_ifdetach(struct nd_ifinfo *nd)
189 {
190 
191 	free(nd, M_IP6NDP);
192 }
193 
194 void
195 nd6_setmtu(struct ifnet *ifp)
196 {
197 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
198 }
199 
200 void
201 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
202 {
203 	u_int32_t omaxmtu;
204 
205 	omaxmtu = ndi->maxmtu;
206 
207 	switch (ifp->if_type) {
208 	case IFT_ARCNET:
209 		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
210 		break;
211 	case IFT_FDDI:
212 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
213 		break;
214 	default:
215 		ndi->maxmtu = ifp->if_mtu;
216 		break;
217 	}
218 
219 	/*
220 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
221 	 * undesirable situation.  We thus notify the operator of the change
222 	 * explicitly.  The check for omaxmtu is necessary to restrict the
223 	 * log to the case of changing the MTU, not initializing it.
224 	 */
225 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
226 		log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
227 		    " small for IPv6 which needs %lu\n",
228 		    if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
229 		    IPV6_MMTU);
230 	}
231 
232 	if (ndi->maxmtu > in6_maxmtu)
233 		in6_setmaxmtu(); /* check all interfaces just in case */
234 }
235 
236 void
237 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
238 {
239 
240 	memset(ndopts, 0, sizeof(*ndopts));
241 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
242 	ndopts->nd_opts_last
243 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
244 
245 	if (icmp6len == 0) {
246 		ndopts->nd_opts_done = 1;
247 		ndopts->nd_opts_search = NULL;
248 	}
249 }
250 
251 /*
252  * Take one ND option.
253  */
254 struct nd_opt_hdr *
255 nd6_option(union nd_opts *ndopts)
256 {
257 	struct nd_opt_hdr *nd_opt;
258 	int olen;
259 
260 	if (ndopts == NULL)
261 		panic("ndopts == NULL in nd6_option");
262 	if (ndopts->nd_opts_last == NULL)
263 		panic("uninitialized ndopts in nd6_option");
264 	if (ndopts->nd_opts_search == NULL)
265 		return NULL;
266 	if (ndopts->nd_opts_done)
267 		return NULL;
268 
269 	nd_opt = ndopts->nd_opts_search;
270 
271 	/* make sure nd_opt_len is inside the buffer */
272 	if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
273 		memset(ndopts, 0, sizeof(*ndopts));
274 		return NULL;
275 	}
276 
277 	olen = nd_opt->nd_opt_len << 3;
278 	if (olen == 0) {
279 		/*
280 		 * Message validation requires that all included
281 		 * options have a length that is greater than zero.
282 		 */
283 		memset(ndopts, 0, sizeof(*ndopts));
284 		return NULL;
285 	}
286 
287 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
288 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
289 		/* option overruns the end of buffer, invalid */
290 		memset(ndopts, 0, sizeof(*ndopts));
291 		return NULL;
292 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
293 		/* reached the end of options chain */
294 		ndopts->nd_opts_done = 1;
295 		ndopts->nd_opts_search = NULL;
296 	}
297 	return nd_opt;
298 }
299 
300 /*
301  * Parse multiple ND options.
302  * This function is much easier to use, for ND routines that do not need
303  * multiple options of the same type.
304  */
305 int
306 nd6_options(union nd_opts *ndopts)
307 {
308 	struct nd_opt_hdr *nd_opt;
309 	int i = 0;
310 
311 	if (ndopts == NULL)
312 		panic("ndopts == NULL in nd6_options");
313 	if (ndopts->nd_opts_last == NULL)
314 		panic("uninitialized ndopts in nd6_options");
315 	if (ndopts->nd_opts_search == NULL)
316 		return 0;
317 
318 	while (1) {
319 		nd_opt = nd6_option(ndopts);
320 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
321 			/*
322 			 * Message validation requires that all included
323 			 * options have a length that is greater than zero.
324 			 */
325 			ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
326 			memset(ndopts, 0, sizeof(*ndopts));
327 			return -1;
328 		}
329 
330 		if (nd_opt == NULL)
331 			goto skip1;
332 
333 		switch (nd_opt->nd_opt_type) {
334 		case ND_OPT_SOURCE_LINKADDR:
335 		case ND_OPT_TARGET_LINKADDR:
336 		case ND_OPT_MTU:
337 		case ND_OPT_REDIRECTED_HEADER:
338 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
339 				nd6log((LOG_INFO,
340 				    "duplicated ND6 option found (type=%d)\n",
341 				    nd_opt->nd_opt_type));
342 				/* XXX bark? */
343 			} else {
344 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
345 					= nd_opt;
346 			}
347 			break;
348 		case ND_OPT_PREFIX_INFORMATION:
349 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
350 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
351 					= nd_opt;
352 			}
353 			ndopts->nd_opts_pi_end =
354 				(struct nd_opt_prefix_info *)nd_opt;
355 			break;
356 		default:
357 			/*
358 			 * Unknown options must be silently ignored,
359 			 * to accommodate future extension to the protocol.
360 			 */
361 			nd6log((LOG_DEBUG,
362 			    "nd6_options: unsupported option %d - "
363 			    "option ignored\n", nd_opt->nd_opt_type));
364 		}
365 
366 skip1:
367 		i++;
368 		if (i > nd6_maxndopt) {
369 			ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
370 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
371 			break;
372 		}
373 
374 		if (ndopts->nd_opts_done)
375 			break;
376 	}
377 
378 	return 0;
379 }
380 
381 /*
382  * ND6 timer routine to handle ND6 entries
383  */
384 void
385 nd6_llinfo_settimer(struct llinfo_nd6 *ln, long xtick)
386 {
387 	int s;
388 
389 	s = splsoftnet();
390 
391 	if (xtick < 0) {
392 		ln->ln_expire = 0;
393 		ln->ln_ntick = 0;
394 		callout_stop(&ln->ln_timer_ch);
395 	} else {
396 		ln->ln_expire = time_second + xtick / hz;
397 		if (xtick > INT_MAX) {
398 			ln->ln_ntick = xtick - INT_MAX;
399 			callout_reset(&ln->ln_timer_ch, INT_MAX,
400 			    nd6_llinfo_timer, ln);
401 		} else {
402 			ln->ln_ntick = 0;
403 			callout_reset(&ln->ln_timer_ch, xtick,
404 			    nd6_llinfo_timer, ln);
405 		}
406 	}
407 
408 	splx(s);
409 }
410 
411 static void
412 nd6_llinfo_timer(void *arg)
413 {
414 	struct llinfo_nd6 *ln;
415 	struct rtentry *rt;
416 	const struct sockaddr_in6 *dst;
417 	struct ifnet *ifp;
418 	struct nd_ifinfo *ndi = NULL;
419 
420 	mutex_enter(softnet_lock);
421 	KERNEL_LOCK(1, NULL);
422 
423 	ln = (struct llinfo_nd6 *)arg;
424 
425 	if (ln->ln_ntick > 0) {
426 		nd6_llinfo_settimer(ln, ln->ln_ntick);
427 		KERNEL_UNLOCK_ONE(NULL);
428 		mutex_exit(softnet_lock);
429 		return;
430 	}
431 
432 	if ((rt = ln->ln_rt) == NULL)
433 		panic("ln->ln_rt == NULL");
434 	if ((ifp = rt->rt_ifp) == NULL)
435 		panic("ln->ln_rt->rt_ifp == NULL");
436 	ndi = ND_IFINFO(ifp);
437 	dst = satocsin6(rt_getkey(rt));
438 
439 	/* sanity check */
440 	if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
441 		panic("rt_llinfo(%p) is not equal to ln(%p)",
442 		      rt->rt_llinfo, ln);
443 	if (!dst)
444 		panic("dst=0 in nd6_timer(ln=%p)", ln);
445 
446 	switch (ln->ln_state) {
447 	case ND6_LLINFO_INCOMPLETE:
448 		if (ln->ln_asked < nd6_mmaxtries) {
449 			ln->ln_asked++;
450 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
451 			nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
452 		} else {
453 			struct mbuf *m = ln->ln_hold;
454 			if (m) {
455 				struct mbuf *m0;
456 
457 				/*
458 				 * assuming every packet in ln_hold has
459 				 * the same IP header
460 				 */
461 				m0 = m->m_nextpkt;
462 				m->m_nextpkt = NULL;
463 				icmp6_error2(m, ICMP6_DST_UNREACH,
464 				    ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
465 
466 				ln->ln_hold = m0;
467 				clear_llinfo_pqueue(ln);
468  			}
469 			(void)nd6_free(rt, 0);
470 			ln = NULL;
471 		}
472 		break;
473 	case ND6_LLINFO_REACHABLE:
474 		if (!ND6_LLINFO_PERMANENT(ln)) {
475 			ln->ln_state = ND6_LLINFO_STALE;
476 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
477 		}
478 		break;
479 
480 	case ND6_LLINFO_STALE:
481 		/* Garbage Collection(RFC 2461 5.3) */
482 		if (!ND6_LLINFO_PERMANENT(ln)) {
483 			(void)nd6_free(rt, 1);
484 			ln = NULL;
485 		}
486 		break;
487 
488 	case ND6_LLINFO_DELAY:
489 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
490 			/* We need NUD */
491 			ln->ln_asked = 1;
492 			ln->ln_state = ND6_LLINFO_PROBE;
493 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
494 			nd6_ns_output(ifp, &dst->sin6_addr,
495 			    &dst->sin6_addr, ln, 0);
496 		} else {
497 			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
498 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
499 		}
500 		break;
501 	case ND6_LLINFO_PROBE:
502 		if (ln->ln_asked < nd6_umaxtries) {
503 			ln->ln_asked++;
504 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
505 			nd6_ns_output(ifp, &dst->sin6_addr,
506 			    &dst->sin6_addr, ln, 0);
507 		} else {
508 			(void)nd6_free(rt, 0);
509 			ln = NULL;
510 		}
511 		break;
512 	}
513 
514 	KERNEL_UNLOCK_ONE(NULL);
515 	mutex_exit(softnet_lock);
516 }
517 
518 /*
519  * ND6 timer routine to expire default route list and prefix list
520  */
521 void
522 nd6_timer(void *ignored_arg)
523 {
524 	struct nd_defrouter *next_dr, *dr;
525 	struct nd_prefix *next_pr, *pr;
526 	struct in6_ifaddr *ia6, *nia6;
527 	struct in6_addrlifetime *lt6;
528 
529 	callout_reset(&nd6_timer_ch, nd6_prune * hz,
530 	    nd6_timer, NULL);
531 
532 	mutex_enter(softnet_lock);
533 	KERNEL_LOCK(1, NULL);
534 
535 	/* expire default router list */
536 
537 	for (dr = TAILQ_FIRST(&nd_defrouter); dr != NULL; dr = next_dr) {
538 		next_dr = TAILQ_NEXT(dr, dr_entry);
539 		if (dr->expire && dr->expire < time_second) {
540 			defrtrlist_del(dr);
541 		}
542 	}
543 
544 	/*
545 	 * expire interface addresses.
546 	 * in the past the loop was inside prefix expiry processing.
547 	 * However, from a stricter speci-confrmance standpoint, we should
548 	 * rather separate address lifetimes and prefix lifetimes.
549 	 */
550   addrloop:
551 	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
552 		nia6 = ia6->ia_next;
553 		/* check address lifetime */
554 		lt6 = &ia6->ia6_lifetime;
555 		if (IFA6_IS_INVALID(ia6)) {
556 			int regen = 0;
557 
558 			/*
559 			 * If the expiring address is temporary, try
560 			 * regenerating a new one.  This would be useful when
561 			 * we suspended a laptop PC, then turned it on after a
562 			 * period that could invalidate all temporary
563 			 * addresses.  Although we may have to restart the
564 			 * loop (see below), it must be after purging the
565 			 * address.  Otherwise, we'd see an infinite loop of
566 			 * regeneration.
567 			 */
568 			if (ip6_use_tempaddr &&
569 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
570 				if (regen_tmpaddr(ia6) == 0)
571 					regen = 1;
572 			}
573 
574  			in6_purgeaddr(&ia6->ia_ifa);
575 
576 			if (regen)
577 				goto addrloop; /* XXX: see below */
578 		} else if (IFA6_IS_DEPRECATED(ia6)) {
579 			int oldflags = ia6->ia6_flags;
580 
581  			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
582 
583 			/*
584 			 * If a temporary address has just become deprecated,
585 			 * regenerate a new one if possible.
586 			 */
587 			if (ip6_use_tempaddr &&
588 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
589 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
590 
591 				if (regen_tmpaddr(ia6) == 0) {
592 					/*
593 					 * A new temporary address is
594 					 * generated.
595 					 * XXX: this means the address chain
596 					 * has changed while we are still in
597 					 * the loop.  Although the change
598 					 * would not cause disaster (because
599 					 * it's not a deletion, but an
600 					 * addition,) we'd rather restart the
601 					 * loop just for safety.  Or does this
602 					 * significantly reduce performance??
603 					 */
604 					goto addrloop;
605 				}
606 			}
607 		} else {
608 			/*
609 			 * A new RA might have made a deprecated address
610 			 * preferred.
611 			 */
612 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
613 		}
614 	}
615 
616 	/* expire prefix list */
617 	for (pr = LIST_FIRST(&nd_prefix); pr != NULL; pr = next_pr) {
618 		next_pr = LIST_NEXT(pr, ndpr_entry);
619 		/*
620 		 * check prefix lifetime.
621 		 * since pltime is just for autoconf, pltime processing for
622 		 * prefix is not necessary.
623 		 */
624 		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
625 		    time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
626 
627 			/*
628 			 * address expiration and prefix expiration are
629 			 * separate.  NEVER perform in6_purgeaddr here.
630 			 */
631 
632 			prelist_remove(pr);
633 		}
634 	}
635 
636 	KERNEL_UNLOCK_ONE(NULL);
637 	mutex_exit(softnet_lock);
638 }
639 
640 /* ia6: deprecated/invalidated temporary address */
641 static int
642 regen_tmpaddr(struct in6_ifaddr *ia6)
643 {
644 	struct ifaddr *ifa;
645 	struct ifnet *ifp;
646 	struct in6_ifaddr *public_ifa6 = NULL;
647 
648 	ifp = ia6->ia_ifa.ifa_ifp;
649 	IFADDR_FOREACH(ifa, ifp) {
650 		struct in6_ifaddr *it6;
651 
652 		if (ifa->ifa_addr->sa_family != AF_INET6)
653 			continue;
654 
655 		it6 = (struct in6_ifaddr *)ifa;
656 
657 		/* ignore no autoconf addresses. */
658 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
659 			continue;
660 
661 		/* ignore autoconf addresses with different prefixes. */
662 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
663 			continue;
664 
665 		/*
666 		 * Now we are looking at an autoconf address with the same
667 		 * prefix as ours.  If the address is temporary and is still
668 		 * preferred, do not create another one.  It would be rare, but
669 		 * could happen, for example, when we resume a laptop PC after
670 		 * a long period.
671 		 */
672 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
673 		    !IFA6_IS_DEPRECATED(it6)) {
674 			public_ifa6 = NULL;
675 			break;
676 		}
677 
678 		/*
679 		 * This is a public autoconf address that has the same prefix
680 		 * as ours.  If it is preferred, keep it.  We can't break the
681 		 * loop here, because there may be a still-preferred temporary
682 		 * address with the prefix.
683 		 */
684 		if (!IFA6_IS_DEPRECATED(it6))
685 		    public_ifa6 = it6;
686 	}
687 
688 	if (public_ifa6 != NULL) {
689 		int e;
690 
691 		/*
692 		 * Random factor is introduced in the preferred lifetime, so
693 		 * we do not need additional delay (3rd arg to in6_tmpifadd).
694 		 */
695 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
696 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
697 			    " tmp addr, errno=%d\n", e);
698 			return -1;
699 		}
700 		return 0;
701 	}
702 
703 	return -1;
704 }
705 
706 bool
707 nd6_accepts_rtadv(const struct nd_ifinfo *ndi)
708 {
709 	switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) {
710 	case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV:
711 		return true;
712 	case ND6_IFF_ACCEPT_RTADV:
713 		return ip6_accept_rtadv != 0;
714 	case ND6_IFF_OVERRIDE_RTADV:
715 	case 0:
716 	default:
717 		return false;
718 	}
719 }
720 
721 /*
722  * Nuke neighbor cache/prefix/default router management table, right before
723  * ifp goes away.
724  */
725 void
726 nd6_purge(struct ifnet *ifp)
727 {
728 	struct nd_ifinfo *ndi = ND_IFINFO(ifp);
729 	struct llinfo_nd6 *ln, *nln;
730 	struct nd_defrouter *dr, *ndr;
731 	struct nd_prefix *pr, *npr;
732 
733 	/*
734 	 * Nuke default router list entries toward ifp.
735 	 * We defer removal of default router list entries that is installed
736 	 * in the routing table, in order to keep additional side effects as
737 	 * small as possible.
738 	 */
739 	for (dr = TAILQ_FIRST(&nd_defrouter); dr != NULL; dr = ndr) {
740 		ndr = TAILQ_NEXT(dr, dr_entry);
741 		if (dr->installed)
742 			continue;
743 
744 		if (dr->ifp == ifp)
745 			defrtrlist_del(dr);
746 	}
747 	for (dr = TAILQ_FIRST(&nd_defrouter); dr != NULL; dr = ndr) {
748 		ndr = TAILQ_NEXT(dr, dr_entry);
749 		if (!dr->installed)
750 			continue;
751 
752 		if (dr->ifp == ifp)
753 			defrtrlist_del(dr);
754 	}
755 
756 	/* Nuke prefix list entries toward ifp */
757 	for (pr = LIST_FIRST(&nd_prefix); pr != NULL; pr = npr) {
758 		npr = LIST_NEXT(pr, ndpr_entry);
759 		if (pr->ndpr_ifp == ifp) {
760 			/*
761 			 * Because if_detach() does *not* release prefixes
762 			 * while purging addresses the reference count will
763 			 * still be above zero. We therefore reset it to
764 			 * make sure that the prefix really gets purged.
765 			 */
766 			pr->ndpr_refcnt = 0;
767 			/*
768 			 * Previously, pr->ndpr_addr is removed as well,
769 			 * but I strongly believe we don't have to do it.
770 			 * nd6_purge() is only called from in6_ifdetach(),
771 			 * which removes all the associated interface addresses
772 			 * by itself.
773 			 * (jinmei@kame.net 20010129)
774 			 */
775 			prelist_remove(pr);
776 		}
777 	}
778 
779 	/* cancel default outgoing interface setting */
780 	if (nd6_defifindex == ifp->if_index)
781 		nd6_setdefaultiface(0);
782 
783 	/* XXX: too restrictive? */
784 	if (!ip6_forwarding && ndi && nd6_accepts_rtadv(ndi)) {
785 		/* refresh default router list */
786 		defrouter_select();
787 	}
788 
789 	/*
790 	 * Nuke neighbor cache entries for the ifp.
791 	 * Note that rt->rt_ifp may not be the same as ifp,
792 	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
793 	 * nd6_rtrequest(), and ip6_input().
794 	 */
795 	ln = llinfo_nd6.ln_next;
796 	while (ln != NULL && ln != &llinfo_nd6) {
797 		struct rtentry *rt;
798 		const struct sockaddr_dl *sdl;
799 
800 		nln = ln->ln_next;
801 		rt = ln->ln_rt;
802 		if (rt && rt->rt_gateway &&
803 		    rt->rt_gateway->sa_family == AF_LINK) {
804 			sdl = satocsdl(rt->rt_gateway);
805 			if (sdl->sdl_index == ifp->if_index)
806 				nln = nd6_free(rt, 0);
807 		}
808 		ln = nln;
809 	}
810 }
811 
812 struct rtentry *
813 nd6_lookup(const struct in6_addr *addr6, int create, struct ifnet *ifp)
814 {
815 	struct rtentry *rt;
816 	struct sockaddr_in6 sin6;
817 
818 	sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
819 	rt = rtalloc1((struct sockaddr *)&sin6, create);
820 	if (rt != NULL && (rt->rt_flags & RTF_LLINFO) == 0) {
821 		/*
822 		 * This is the case for the default route.
823 		 * If we want to create a neighbor cache for the address, we
824 		 * should free the route for the destination and allocate an
825 		 * interface route.
826 		 */
827 		if (create) {
828 			RTFREE(rt);
829 			rt = NULL;
830 		}
831 	}
832 	if (rt != NULL)
833 		;
834 	else if (create && ifp) {
835 		int e;
836 
837 		/*
838 		 * If no route is available and create is set,
839 		 * we allocate a host route for the destination
840 		 * and treat it like an interface route.
841 		 * This hack is necessary for a neighbor which can't
842 		 * be covered by our own prefix.
843 		 */
844 		struct ifaddr *ifa =
845 		    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
846 		if (ifa == NULL)
847 			return NULL;
848 
849 		/*
850 		 * Create a new route.  RTF_LLINFO is necessary
851 		 * to create a Neighbor Cache entry for the
852 		 * destination in nd6_rtrequest which will be
853 		 * called in rtrequest via ifa->ifa_rtrequest.
854 		 */
855 		if ((e = rtrequest(RTM_ADD, (const struct sockaddr *)&sin6,
856 		    ifa->ifa_addr, (const struct sockaddr *)&all1_sa,
857 		    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
858 		    ~RTF_CLONING, &rt)) != 0) {
859 #if 0
860 			log(LOG_ERR,
861 			    "nd6_lookup: failed to add route for a "
862 			    "neighbor(%s), errno=%d\n",
863 			    ip6_sprintf(addr6), e);
864 #endif
865 			return NULL;
866 		}
867 		if (rt == NULL)
868 			return NULL;
869 		if (rt->rt_llinfo) {
870 			struct llinfo_nd6 *ln =
871 			    (struct llinfo_nd6 *)rt->rt_llinfo;
872 			ln->ln_state = ND6_LLINFO_NOSTATE;
873 		}
874 	} else
875 		return NULL;
876 	rt->rt_refcnt--;
877 	/*
878 	 * Validation for the entry.
879 	 * Note that the check for rt_llinfo is necessary because a cloned
880 	 * route from a parent route that has the L flag (e.g. the default
881 	 * route to a p2p interface) may have the flag, too, while the
882 	 * destination is not actually a neighbor.
883 	 * XXX: we can't use rt->rt_ifp to check for the interface, since
884 	 *      it might be the loopback interface if the entry is for our
885 	 *      own address on a non-loopback interface. Instead, we should
886 	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
887 	 *	interface.
888 	 * Note also that ifa_ifp and ifp may differ when we connect two
889 	 * interfaces to a same link, install a link prefix to an interface,
890 	 * and try to install a neighbor cache on an interface that does not
891 	 * have a route to the prefix.
892 	 */
893 	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
894 	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
895 	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
896 		if (create) {
897 			nd6log((LOG_DEBUG,
898 			    "nd6_lookup: failed to lookup %s (if = %s)\n",
899 			    ip6_sprintf(addr6),
900 			    ifp ? if_name(ifp) : "unspec"));
901 		}
902 		return NULL;
903 	}
904 	return rt;
905 }
906 
907 /*
908  * Detect if a given IPv6 address identifies a neighbor on a given link.
909  * XXX: should take care of the destination of a p2p link?
910  */
911 int
912 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
913 {
914 	struct nd_prefix *pr;
915 
916 	/*
917 	 * A link-local address is always a neighbor.
918 	 * XXX: a link does not necessarily specify a single interface.
919 	 */
920 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
921 		struct sockaddr_in6 sin6_copy;
922 		u_int32_t zone;
923 
924 		/*
925 		 * We need sin6_copy since sa6_recoverscope() may modify the
926 		 * content (XXX).
927 		 */
928 		sin6_copy = *addr;
929 		if (sa6_recoverscope(&sin6_copy))
930 			return 0; /* XXX: should be impossible */
931 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
932 			return 0;
933 		if (sin6_copy.sin6_scope_id == zone)
934 			return 1;
935 		else
936 			return 0;
937 	}
938 
939 	/*
940 	 * If the address matches one of our on-link prefixes, it should be a
941 	 * neighbor.
942 	 */
943 	LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
944 		if (pr->ndpr_ifp != ifp)
945 			continue;
946 
947 		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
948 			continue;
949 
950 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
951 		    &addr->sin6_addr, &pr->ndpr_mask))
952 			return 1;
953 	}
954 
955 	/*
956 	 * If the default router list is empty, all addresses are regarded
957 	 * as on-link, and thus, as a neighbor.
958 	 * XXX: we restrict the condition to hosts, because routers usually do
959 	 * not have the "default router list".
960 	 */
961 	if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
962 	    nd6_defifindex == ifp->if_index) {
963 		return 1;
964 	}
965 
966 	/*
967 	 * Even if the address matches none of our addresses, it might be
968 	 * in the neighbor cache.
969 	 */
970 	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
971 		return 1;
972 
973 	return 0;
974 }
975 
976 /*
977  * Free an nd6 llinfo entry.
978  * Since the function would cause significant changes in the kernel, DO NOT
979  * make it global, unless you have a strong reason for the change, and are sure
980  * that the change is safe.
981  */
982 static struct llinfo_nd6 *
983 nd6_free(struct rtentry *rt, int gc)
984 {
985 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
986 	struct in6_addr in6 = satocsin6(rt_getkey(rt))->sin6_addr;
987 	struct nd_defrouter *dr;
988 
989 	/*
990 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
991 	 * even though it is not harmful, it was not really necessary.
992 	 */
993 
994 	/* cancel timer */
995 	nd6_llinfo_settimer(ln, -1);
996 
997 	if (!ip6_forwarding) {
998 		int s;
999 		s = splsoftnet();
1000 		dr = defrouter_lookup(&satocsin6(rt_getkey(rt))->sin6_addr,
1001 		    rt->rt_ifp);
1002 
1003 		if (dr != NULL && dr->expire &&
1004 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1005 			/*
1006 			 * If the reason for the deletion is just garbage
1007 			 * collection, and the neighbor is an active default
1008 			 * router, do not delete it.  Instead, reset the GC
1009 			 * timer using the router's lifetime.
1010 			 * Simply deleting the entry would affect default
1011 			 * router selection, which is not necessarily a good
1012 			 * thing, especially when we're using router preference
1013 			 * values.
1014 			 * XXX: the check for ln_state would be redundant,
1015 			 *      but we intentionally keep it just in case.
1016 			 */
1017 			if (dr->expire > time_second)
1018 				nd6_llinfo_settimer(ln,
1019 				    (dr->expire - time_second) * hz);
1020 			else
1021 				nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1022 			splx(s);
1023 			return ln->ln_next;
1024 		}
1025 
1026 		if (ln->ln_router || dr) {
1027 			/*
1028 			 * rt6_flush must be called whether or not the neighbor
1029 			 * is in the Default Router List.
1030 			 * See a corresponding comment in nd6_na_input().
1031 			 */
1032 			rt6_flush(&in6, rt->rt_ifp);
1033 		}
1034 
1035 		if (dr) {
1036 			/*
1037 			 * Unreachablity of a router might affect the default
1038 			 * router selection and on-link detection of advertised
1039 			 * prefixes.
1040 			 */
1041 
1042 			/*
1043 			 * Temporarily fake the state to choose a new default
1044 			 * router and to perform on-link determination of
1045 			 * prefixes correctly.
1046 			 * Below the state will be set correctly,
1047 			 * or the entry itself will be deleted.
1048 			 */
1049 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1050 
1051 			/*
1052 			 * Since defrouter_select() does not affect the
1053 			 * on-link determination and MIP6 needs the check
1054 			 * before the default router selection, we perform
1055 			 * the check now.
1056 			 */
1057 			pfxlist_onlink_check();
1058 
1059 			/*
1060 			 * refresh default router list
1061 			 */
1062 			defrouter_select();
1063 		}
1064 		splx(s);
1065 	}
1066 
1067 	/*
1068 	 * Before deleting the entry, remember the next entry as the
1069 	 * return value.  We need this because pfxlist_onlink_check() above
1070 	 * might have freed other entries (particularly the old next entry) as
1071 	 * a side effect (XXX).
1072 	 */
1073 	next = ln->ln_next;
1074 
1075 	/*
1076 	 * Detach the route from the routing tree and the list of neighbor
1077 	 * caches, and disable the route entry not to be used in already
1078 	 * cached routes.
1079 	 */
1080 	rtrequest(RTM_DELETE, rt_getkey(rt), NULL, rt_mask(rt), 0, NULL);
1081 
1082 	return next;
1083 }
1084 
1085 /*
1086  * Upper-layer reachability hint for Neighbor Unreachability Detection.
1087  *
1088  * XXX cost-effective methods?
1089  */
1090 void
1091 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1092 {
1093 	struct llinfo_nd6 *ln;
1094 
1095 	/*
1096 	 * If the caller specified "rt", use that.  Otherwise, resolve the
1097 	 * routing table by supplied "dst6".
1098 	 */
1099 	if (rt == NULL) {
1100 		if (dst6 == NULL)
1101 			return;
1102 		if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1103 			return;
1104 	}
1105 
1106 	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1107 	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1108 	    !rt->rt_llinfo || !rt->rt_gateway ||
1109 	    rt->rt_gateway->sa_family != AF_LINK) {
1110 		/* This is not a host route. */
1111 		return;
1112 	}
1113 
1114 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1115 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1116 		return;
1117 
1118 	/*
1119 	 * if we get upper-layer reachability confirmation many times,
1120 	 * it is possible we have false information.
1121 	 */
1122 	if (!force) {
1123 		ln->ln_byhint++;
1124 		if (ln->ln_byhint > nd6_maxnudhint)
1125 			return;
1126 	}
1127 
1128 	ln->ln_state = ND6_LLINFO_REACHABLE;
1129 	if (!ND6_LLINFO_PERMANENT(ln)) {
1130 		nd6_llinfo_settimer(ln,
1131 		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1132 	}
1133 }
1134 
1135 void
1136 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
1137 {
1138 	struct sockaddr *gate = rt->rt_gateway;
1139 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1140 	struct ifnet *ifp = rt->rt_ifp;
1141 	uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
1142 	struct ifaddr *ifa;
1143 
1144 	RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1145 
1146 	if (req == RTM_LLINFO_UPD) {
1147 		int rc;
1148 		struct in6_addr *in6;
1149 		struct in6_addr in6_all;
1150 		int anycast;
1151 
1152 		if ((ifa = info->rti_ifa) == NULL)
1153 			return;
1154 
1155 		in6 = &ifatoia6(ifa)->ia_addr.sin6_addr;
1156 		anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST;
1157 
1158 		in6_all = in6addr_linklocal_allnodes;
1159 		if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) {
1160 			log(LOG_ERR, "%s: failed to set scope %s "
1161 			    "(errno=%d)\n", __func__, if_name(ifp), rc);
1162 			return;
1163 		}
1164 
1165 		/* XXX don't set Override for proxy addresses */
1166 		nd6_na_output(ifa->ifa_ifp, &in6_all, in6,
1167 		    (anycast ? 0 : ND_NA_FLAG_OVERRIDE)
1168 #if 0
1169 		    | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0)
1170 #endif
1171 		    , 1, NULL);
1172 		return;
1173 	}
1174 
1175 	if ((rt->rt_flags & RTF_GATEWAY) != 0)
1176 		return;
1177 
1178 	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1179 		RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1180 		/*
1181 		 * This is probably an interface direct route for a link
1182 		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1183 		 * We do not need special treatment below for such a route.
1184 		 * Moreover, the RTF_LLINFO flag which would be set below
1185 		 * would annoy the ndp(8) command.
1186 		 */
1187 		return;
1188 	}
1189 
1190 	if (req == RTM_RESOLVE &&
1191 	    (nd6_need_cache(ifp) == 0 || /* stf case */
1192 	     !nd6_is_addr_neighbor(satocsin6(rt_getkey(rt)), ifp))) {
1193 		RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1194 		/*
1195 		 * FreeBSD and BSD/OS often make a cloned host route based
1196 		 * on a less-specific route (e.g. the default route).
1197 		 * If the less specific route does not have a "gateway"
1198 		 * (this is the case when the route just goes to a p2p or an
1199 		 * stf interface), we'll mistakenly make a neighbor cache for
1200 		 * the host route, and will see strange neighbor solicitation
1201 		 * for the corresponding destination.  In order to avoid the
1202 		 * confusion, we check if the destination of the route is
1203 		 * a neighbor in terms of neighbor discovery, and stop the
1204 		 * process if not.  Additionally, we remove the LLINFO flag
1205 		 * so that ndp(8) will not try to get the neighbor information
1206 		 * of the destination.
1207 		 */
1208 		rt->rt_flags &= ~RTF_LLINFO;
1209 		return;
1210 	}
1211 
1212 	switch (req) {
1213 	case RTM_ADD:
1214 		RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1215 		/*
1216 		 * There is no backward compatibility :)
1217 		 *
1218 		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1219 		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1220 		 *	   rt->rt_flags |= RTF_CLONING;
1221 		 */
1222 		if ((rt->rt_flags & RTF_CLONING) ||
1223 		    ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1224 			union {
1225 				struct sockaddr sa;
1226 				struct sockaddr_dl sdl;
1227 				struct sockaddr_storage ss;
1228 			} u;
1229 			/*
1230 			 * Case 1: This route should come from a route to
1231 			 * interface (RTF_CLONING case) or the route should be
1232 			 * treated as on-link but is currently not
1233 			 * (RTF_LLINFO && ln == NULL case).
1234 			 */
1235 			if (sockaddr_dl_init(&u.sdl, sizeof(u.ss),
1236 			    ifp->if_index, ifp->if_type,
1237 			    NULL, namelen, NULL, addrlen) == NULL) {
1238 				printf("%s.%d: sockaddr_dl_init(, %zu, ) "
1239 				    "failed on %s\n", __func__, __LINE__,
1240 				    sizeof(u.ss), if_name(ifp));
1241 			}
1242 			rt_setgate(rt, &u.sa);
1243 			gate = rt->rt_gateway;
1244 			RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1245 			if (ln != NULL)
1246 				nd6_llinfo_settimer(ln, 0);
1247 			RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1248 			if ((rt->rt_flags & RTF_CLONING) != 0)
1249 				break;
1250 		}
1251 		RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1252 		/*
1253 		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1254 		 * We don't do that here since llinfo is not ready yet.
1255 		 *
1256 		 * There are also couple of other things to be discussed:
1257 		 * - unsolicited NA code needs improvement beforehand
1258 		 * - RFC2461 says we MAY send multicast unsolicited NA
1259 		 *   (7.2.6 paragraph 4), however, it also says that we
1260 		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1261 		 *   we don't have anything like it right now.
1262 		 *   note that the mechanism needs a mutual agreement
1263 		 *   between proxies, which means that we need to implement
1264 		 *   a new protocol, or a new kludge.
1265 		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1266 		 *   we need to check ip6forwarding before sending it.
1267 		 *   (or should we allow proxy ND configuration only for
1268 		 *   routers?  there's no mention about proxy ND from hosts)
1269 		 */
1270 #if 0
1271 		/* XXX it does not work */
1272 		if (rt->rt_flags & RTF_ANNOUNCE)
1273 			nd6_na_output(ifp,
1274 			      &satocsin6(rt_getkey(rt))->sin6_addr,
1275 			      &satocsin6(rt_getkey(rt))->sin6_addr,
1276 			      ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1277 			      1, NULL);
1278 #endif
1279 		/* FALLTHROUGH */
1280 	case RTM_RESOLVE:
1281 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1282 			RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1283 			/*
1284 			 * Address resolution isn't necessary for a point to
1285 			 * point link, so we can skip this test for a p2p link.
1286 			 */
1287 			if (gate->sa_family != AF_LINK ||
1288 			    gate->sa_len <
1289 			    sockaddr_dl_measure(namelen, addrlen)) {
1290 				log(LOG_DEBUG,
1291 				    "nd6_rtrequest: bad gateway value: %s\n",
1292 				    if_name(ifp));
1293 				break;
1294 			}
1295 			satosdl(gate)->sdl_type = ifp->if_type;
1296 			satosdl(gate)->sdl_index = ifp->if_index;
1297 			RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1298 		}
1299 		if (ln != NULL)
1300 			break;	/* This happens on a route change */
1301 		RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1302 		/*
1303 		 * Case 2: This route may come from cloning, or a manual route
1304 		 * add with a LL address.
1305 		 */
1306 		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1307 		rt->rt_llinfo = ln;
1308 		RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1309 		if (ln == NULL) {
1310 			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1311 			break;
1312 		}
1313 		RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1314 		nd6_inuse++;
1315 		nd6_allocated++;
1316 		memset(ln, 0, sizeof(*ln));
1317 		ln->ln_rt = rt;
1318 		callout_init(&ln->ln_timer_ch, CALLOUT_MPSAFE);
1319 		/* this is required for "ndp" command. - shin */
1320 		if (req == RTM_ADD) {
1321 		        /*
1322 			 * gate should have some valid AF_LINK entry,
1323 			 * and ln->ln_expire should have some lifetime
1324 			 * which is specified by ndp command.
1325 			 */
1326 			ln->ln_state = ND6_LLINFO_REACHABLE;
1327 			ln->ln_byhint = 0;
1328 		} else {
1329 		        /*
1330 			 * When req == RTM_RESOLVE, rt is created and
1331 			 * initialized in rtrequest(), so rt_expire is 0.
1332 			 */
1333 			ln->ln_state = ND6_LLINFO_NOSTATE;
1334 			nd6_llinfo_settimer(ln, 0);
1335 		}
1336 		RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1337 		rt->rt_flags |= RTF_LLINFO;
1338 		ln->ln_next = llinfo_nd6.ln_next;
1339 		llinfo_nd6.ln_next = ln;
1340 		ln->ln_prev = &llinfo_nd6;
1341 		ln->ln_next->ln_prev = ln;
1342 
1343 		RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1344 		/*
1345 		 * check if rt_getkey(rt) is an address assigned
1346 		 * to the interface.
1347 		 */
1348 		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp,
1349 		    &satocsin6(rt_getkey(rt))->sin6_addr);
1350 		RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1351 		if (ifa != NULL) {
1352 			const void *mac;
1353 			nd6_llinfo_settimer(ln, -1);
1354 			ln->ln_state = ND6_LLINFO_REACHABLE;
1355 			ln->ln_byhint = 0;
1356 			if ((mac = nd6_ifptomac(ifp)) != NULL) {
1357 				/* XXX check for error */
1358 				if (sockaddr_dl_setaddr(satosdl(gate),
1359 				    gate->sa_len, mac,
1360 				    ifp->if_addrlen) == NULL) {
1361 					printf("%s.%d: "
1362 					    "sockaddr_dl_setaddr(, %d, ) "
1363 					    "failed on %s\n", __func__,
1364 					    __LINE__, gate->sa_len,
1365 					    if_name(ifp));
1366 				}
1367 			}
1368 			if (nd6_useloopback) {
1369 				ifp = rt->rt_ifp = lo0ifp;	/* XXX */
1370 				/*
1371 				 * Make sure rt_ifa be equal to the ifaddr
1372 				 * corresponding to the address.
1373 				 * We need this because when we refer
1374 				 * rt_ifa->ia6_flags in ip6_input, we assume
1375 				 * that the rt_ifa points to the address instead
1376 				 * of the loopback address.
1377 				 */
1378 				if (ifa != rt->rt_ifa)
1379 					rt_replace_ifa(rt, ifa);
1380 				rt->rt_flags &= ~RTF_CLONED;
1381 			}
1382 		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1383 			nd6_llinfo_settimer(ln, -1);
1384 			ln->ln_state = ND6_LLINFO_REACHABLE;
1385 			ln->ln_byhint = 0;
1386 
1387 			/* join solicited node multicast for proxy ND */
1388 			if (ifp->if_flags & IFF_MULTICAST) {
1389 				struct in6_addr llsol;
1390 				int error;
1391 
1392 				llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1393 				llsol.s6_addr32[0] = htonl(0xff020000);
1394 				llsol.s6_addr32[1] = 0;
1395 				llsol.s6_addr32[2] = htonl(1);
1396 				llsol.s6_addr8[12] = 0xff;
1397 				if (in6_setscope(&llsol, ifp, NULL))
1398 					break;
1399 				if (!in6_addmulti(&llsol, ifp, &error, 0)) {
1400 					nd6log((LOG_ERR, "%s: failed to join "
1401 					    "%s (errno=%d)\n", if_name(ifp),
1402 					    ip6_sprintf(&llsol), error));
1403 				}
1404 			}
1405 		}
1406 		break;
1407 
1408 	case RTM_DELETE:
1409 		if (ln == NULL)
1410 			break;
1411 		/* leave from solicited node multicast for proxy ND */
1412 		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1413 		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1414 			struct in6_addr llsol;
1415 			struct in6_multi *in6m;
1416 
1417 			llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1418 			llsol.s6_addr32[0] = htonl(0xff020000);
1419 			llsol.s6_addr32[1] = 0;
1420 			llsol.s6_addr32[2] = htonl(1);
1421 			llsol.s6_addr8[12] = 0xff;
1422 			if (in6_setscope(&llsol, ifp, NULL) == 0) {
1423 				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1424 				if (in6m)
1425 					in6_delmulti(in6m);
1426 			}
1427 		}
1428 		nd6_inuse--;
1429 		ln->ln_next->ln_prev = ln->ln_prev;
1430 		ln->ln_prev->ln_next = ln->ln_next;
1431 		ln->ln_prev = NULL;
1432 		nd6_llinfo_settimer(ln, -1);
1433 		rt->rt_llinfo = 0;
1434 		rt->rt_flags &= ~RTF_LLINFO;
1435 		clear_llinfo_pqueue(ln);
1436 		Free(ln);
1437 	}
1438 }
1439 
1440 int
1441 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
1442 {
1443 	struct in6_drlist *drl = (struct in6_drlist *)data;
1444 	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1445 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1446 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1447 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1448 	struct nd_defrouter *dr;
1449 	struct nd_prefix *pr;
1450 	struct rtentry *rt;
1451 	int i = 0, error = 0;
1452 	int s;
1453 
1454 	switch (cmd) {
1455 	case SIOCGDRLST_IN6:
1456 		/*
1457 		 * obsolete API, use sysctl under net.inet6.icmp6
1458 		 */
1459 		memset(drl, 0, sizeof(*drl));
1460 		s = splsoftnet();
1461 		TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
1462 			if (i >= DRLSTSIZ)
1463 				break;
1464 			drl->defrouter[i].rtaddr = dr->rtaddr;
1465 			in6_clearscope(&drl->defrouter[i].rtaddr);
1466 
1467 			drl->defrouter[i].flags = dr->flags;
1468 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1469 			drl->defrouter[i].expire = dr->expire;
1470 			drl->defrouter[i].if_index = dr->ifp->if_index;
1471 			i++;
1472 		}
1473 		splx(s);
1474 		break;
1475 	case SIOCGPRLST_IN6:
1476 		/*
1477 		 * obsolete API, use sysctl under net.inet6.icmp6
1478 		 *
1479 		 * XXX the structure in6_prlist was changed in backward-
1480 		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1481 		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1482 		 */
1483 		/*
1484 		 * XXX meaning of fields, especialy "raflags", is very
1485 		 * differnet between RA prefix list and RR/static prefix list.
1486 		 * how about separating ioctls into two?
1487 		 */
1488 		memset(oprl, 0, sizeof(*oprl));
1489 		s = splsoftnet();
1490 		LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
1491 			struct nd_pfxrouter *pfr;
1492 			int j;
1493 
1494 			if (i >= PRLSTSIZ)
1495 				break;
1496 			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1497 			oprl->prefix[i].raflags = pr->ndpr_raf;
1498 			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1499 			oprl->prefix[i].vltime = pr->ndpr_vltime;
1500 			oprl->prefix[i].pltime = pr->ndpr_pltime;
1501 			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1502 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1503 				oprl->prefix[i].expire = 0;
1504 			else {
1505 				time_t maxexpire;
1506 
1507 				/* XXX: we assume time_t is signed. */
1508 				maxexpire = (-1) &
1509 				    ~((time_t)1 <<
1510 				    ((sizeof(maxexpire) * 8) - 1));
1511 				if (pr->ndpr_vltime <
1512 				    maxexpire - pr->ndpr_lastupdate) {
1513 					oprl->prefix[i].expire =
1514 						 pr->ndpr_lastupdate +
1515 						pr->ndpr_vltime;
1516 				} else
1517 					oprl->prefix[i].expire = maxexpire;
1518 			}
1519 
1520 			j = 0;
1521 			LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
1522 				if (j < DRLSTSIZ) {
1523 #define RTRADDR oprl->prefix[i].advrtr[j]
1524 					RTRADDR = pfr->router->rtaddr;
1525 					in6_clearscope(&RTRADDR);
1526 #undef RTRADDR
1527 				}
1528 				j++;
1529 			}
1530 			oprl->prefix[i].advrtrs = j;
1531 			oprl->prefix[i].origin = PR_ORIG_RA;
1532 
1533 			i++;
1534 		}
1535 		splx(s);
1536 
1537 		break;
1538 	case OSIOCGIFINFO_IN6:
1539 #define ND	ndi->ndi
1540 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1541 		memset(&ND, 0, sizeof(ND));
1542 		ND.linkmtu = IN6_LINKMTU(ifp);
1543 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1544 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1545 		ND.reachable = ND_IFINFO(ifp)->reachable;
1546 		ND.retrans = ND_IFINFO(ifp)->retrans;
1547 		ND.flags = ND_IFINFO(ifp)->flags;
1548 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1549 		ND.chlim = ND_IFINFO(ifp)->chlim;
1550 		break;
1551 	case SIOCGIFINFO_IN6:
1552 		ND = *ND_IFINFO(ifp);
1553 		break;
1554 	case SIOCSIFINFO_IN6:
1555 		/*
1556 		 * used to change host variables from userland.
1557 		 * intented for a use on router to reflect RA configurations.
1558 		 */
1559 		/* 0 means 'unspecified' */
1560 		if (ND.linkmtu != 0) {
1561 			if (ND.linkmtu < IPV6_MMTU ||
1562 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1563 				error = EINVAL;
1564 				break;
1565 			}
1566 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1567 		}
1568 
1569 		if (ND.basereachable != 0) {
1570 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1571 
1572 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1573 			if (ND.basereachable != obasereachable)
1574 				ND_IFINFO(ifp)->reachable =
1575 				    ND_COMPUTE_RTIME(ND.basereachable);
1576 		}
1577 		if (ND.retrans != 0)
1578 			ND_IFINFO(ifp)->retrans = ND.retrans;
1579 		if (ND.chlim != 0)
1580 			ND_IFINFO(ifp)->chlim = ND.chlim;
1581 		/* FALLTHROUGH */
1582 	case SIOCSIFINFO_FLAGS:
1583 		ND_IFINFO(ifp)->flags = ND.flags;
1584 		break;
1585 #undef ND
1586 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1587 		/* sync kernel routing table with the default router list */
1588 		defrouter_reset();
1589 		defrouter_select();
1590 		break;
1591 	case SIOCSPFXFLUSH_IN6:
1592 	{
1593 		/* flush all the prefix advertised by routers */
1594 		struct nd_prefix *pfx, *next;
1595 
1596 		s = splsoftnet();
1597 		for (pfx = LIST_FIRST(&nd_prefix); pfx; pfx = next) {
1598 			struct in6_ifaddr *ia, *ia_next;
1599 
1600 			next = LIST_NEXT(pfx, ndpr_entry);
1601 
1602 			if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
1603 				continue; /* XXX */
1604 
1605 			/* do we really have to remove addresses as well? */
1606 			for (ia = in6_ifaddr; ia; ia = ia_next) {
1607 				/* ia might be removed.  keep the next ptr. */
1608 				ia_next = ia->ia_next;
1609 
1610 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1611 					continue;
1612 
1613 				if (ia->ia6_ndpr == pfx)
1614 					in6_purgeaddr(&ia->ia_ifa);
1615 			}
1616 			prelist_remove(pfx);
1617 		}
1618 		splx(s);
1619 		break;
1620 	}
1621 	case SIOCSRTRFLUSH_IN6:
1622 	{
1623 		/* flush all the default routers */
1624 		struct nd_defrouter *drtr, *next;
1625 
1626 		s = splsoftnet();
1627 		defrouter_reset();
1628 		for (drtr = TAILQ_FIRST(&nd_defrouter); drtr; drtr = next) {
1629 			next = TAILQ_NEXT(drtr, dr_entry);
1630 			defrtrlist_del(drtr);
1631 		}
1632 		defrouter_select();
1633 		splx(s);
1634 		break;
1635 	}
1636 	case SIOCGNBRINFO_IN6:
1637 	{
1638 		struct llinfo_nd6 *ln;
1639 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1640 
1641 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1642 			return error;
1643 
1644 		s = splsoftnet();
1645 		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL ||
1646 		    (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) {
1647 			error = EINVAL;
1648 			splx(s);
1649 			break;
1650 		}
1651 		nbi->state = ln->ln_state;
1652 		nbi->asked = ln->ln_asked;
1653 		nbi->isrouter = ln->ln_router;
1654 		nbi->expire = ln->ln_expire;
1655 		splx(s);
1656 
1657 		break;
1658 	}
1659 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1660 		ndif->ifindex = nd6_defifindex;
1661 		break;
1662 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1663 		return nd6_setdefaultiface(ndif->ifindex);
1664 	}
1665 	return error;
1666 }
1667 
1668 void
1669 nd6_llinfo_release_pkts(struct llinfo_nd6 *ln, struct ifnet *ifp,
1670     struct rtentry *rt)
1671 {
1672 	struct mbuf *m_hold, *m_hold_next;
1673 
1674 	for (m_hold = ln->ln_hold, ln->ln_hold = NULL;
1675 	     m_hold != NULL;
1676 	     m_hold = m_hold_next) {
1677 		m_hold_next = m_hold->m_nextpkt;
1678 		m_hold->m_nextpkt = NULL;
1679 
1680 		/*
1681 		 * we assume ifp is not a p2p here, so
1682 		 * just set the 2nd argument as the
1683 		 * 1st one.
1684 		 */
1685 		nd6_output(ifp, ifp, m_hold, satocsin6(rt_getkey(rt)), rt);
1686 	}
1687 }
1688 
1689 /*
1690  * Create neighbor cache entry and cache link-layer address,
1691  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1692  */
1693 struct rtentry *
1694 nd6_cache_lladdr(
1695     struct ifnet *ifp,
1696     struct in6_addr *from,
1697     char *lladdr,
1698     int lladdrlen,
1699     int type,	/* ICMP6 type */
1700     int code	/* type dependent information */
1701 )
1702 {
1703 	struct nd_ifinfo *ndi = ND_IFINFO(ifp);
1704 	struct rtentry *rt = NULL;
1705 	struct llinfo_nd6 *ln = NULL;
1706 	int is_newentry;
1707 	struct sockaddr_dl *sdl = NULL;
1708 	int do_update;
1709 	int olladdr;
1710 	int llchange;
1711 	int newstate = 0;
1712 
1713 	if (ifp == NULL)
1714 		panic("ifp == NULL in nd6_cache_lladdr");
1715 	if (from == NULL)
1716 		panic("from == NULL in nd6_cache_lladdr");
1717 
1718 	/* nothing must be updated for unspecified address */
1719 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1720 		return NULL;
1721 
1722 	/*
1723 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1724 	 * the caller.
1725 	 *
1726 	 * XXX If the link does not have link-layer adderss, what should
1727 	 * we do? (ifp->if_addrlen == 0)
1728 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1729 	 * description on it in NS section (RFC 2461 7.2.3).
1730 	 */
1731 
1732 	rt = nd6_lookup(from, 0, ifp);
1733 	if (rt == NULL) {
1734 #if 0
1735 		/* nothing must be done if there's no lladdr */
1736 		if (!lladdr || !lladdrlen)
1737 			return NULL;
1738 #endif
1739 
1740 		rt = nd6_lookup(from, 1, ifp);
1741 		is_newentry = 1;
1742 	} else {
1743 		/* do nothing if static ndp is set */
1744 		if (rt->rt_flags & RTF_STATIC)
1745 			return NULL;
1746 		is_newentry = 0;
1747 	}
1748 
1749 	if (rt == NULL)
1750 		return NULL;
1751 	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1752 fail:
1753 		(void)nd6_free(rt, 0);
1754 		return NULL;
1755 	}
1756 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1757 	if (ln == NULL)
1758 		goto fail;
1759 	if (rt->rt_gateway == NULL)
1760 		goto fail;
1761 	if (rt->rt_gateway->sa_family != AF_LINK)
1762 		goto fail;
1763 	sdl = satosdl(rt->rt_gateway);
1764 
1765 	olladdr = (sdl->sdl_alen) ? 1 : 0;
1766 	if (olladdr && lladdr) {
1767 		if (memcmp(lladdr, CLLADDR(sdl), ifp->if_addrlen))
1768 			llchange = 1;
1769 		else
1770 			llchange = 0;
1771 	} else
1772 		llchange = 0;
1773 
1774 	/*
1775 	 * newentry olladdr  lladdr  llchange	(*=record)
1776 	 *	0	n	n	--	(1)
1777 	 *	0	y	n	--	(2)
1778 	 *	0	n	y	--	(3) * STALE
1779 	 *	0	y	y	n	(4) *
1780 	 *	0	y	y	y	(5) * STALE
1781 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1782 	 *	1	--	y	--	(7) * STALE
1783 	 */
1784 
1785 	if (lladdr) {		/* (3-5) and (7) */
1786 		/*
1787 		 * Record source link-layer address
1788 		 * XXX is it dependent to ifp->if_type?
1789 		 */
1790 		/* XXX check for error */
1791 		if (sockaddr_dl_setaddr(sdl, sdl->sdl_len, lladdr,
1792 		    ifp->if_addrlen) == NULL) {
1793 			printf("%s.%d: sockaddr_dl_setaddr(, %d, ) "
1794 			    "failed on %s\n", __func__, __LINE__,
1795 			    sdl->sdl_len, if_name(ifp));
1796 		}
1797 	}
1798 
1799 	if (!is_newentry) {
1800 		if ((!olladdr && lladdr) ||		/* (3) */
1801 		    (olladdr && lladdr && llchange)) {	/* (5) */
1802 			do_update = 1;
1803 			newstate = ND6_LLINFO_STALE;
1804 		} else					/* (1-2,4) */
1805 			do_update = 0;
1806 	} else {
1807 		do_update = 1;
1808 		if (lladdr == NULL)			/* (6) */
1809 			newstate = ND6_LLINFO_NOSTATE;
1810 		else					/* (7) */
1811 			newstate = ND6_LLINFO_STALE;
1812 	}
1813 
1814 	if (do_update) {
1815 		/*
1816 		 * Update the state of the neighbor cache.
1817 		 */
1818 		ln->ln_state = newstate;
1819 
1820 		if (ln->ln_state == ND6_LLINFO_STALE) {
1821 			/*
1822 			 * XXX: since nd6_output() below will cause
1823 			 * state tansition to DELAY and reset the timer,
1824 			 * we must set the timer now, although it is actually
1825 			 * meaningless.
1826 			 */
1827 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1828 
1829 			nd6_llinfo_release_pkts(ln, ifp, rt);
1830 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1831 			/* probe right away */
1832 			nd6_llinfo_settimer((void *)ln, 0);
1833 		}
1834 	}
1835 
1836 	/*
1837 	 * ICMP6 type dependent behavior.
1838 	 *
1839 	 * NS: clear IsRouter if new entry
1840 	 * RS: clear IsRouter
1841 	 * RA: set IsRouter if there's lladdr
1842 	 * redir: clear IsRouter if new entry
1843 	 *
1844 	 * RA case, (1):
1845 	 * The spec says that we must set IsRouter in the following cases:
1846 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1847 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1848 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1849 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1850 	 * neighbor cache, this is similar to (6).
1851 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1852 	 *
1853 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1854 	 *							D R
1855 	 *	0	n	n	--	(1)	c   ?     s
1856 	 *	0	y	n	--	(2)	c   s     s
1857 	 *	0	n	y	--	(3)	c   s     s
1858 	 *	0	y	y	n	(4)	c   s     s
1859 	 *	0	y	y	y	(5)	c   s     s
1860 	 *	1	--	n	--	(6) c	c 	c s
1861 	 *	1	--	y	--	(7) c	c   s	c s
1862 	 *
1863 	 *					(c=clear s=set)
1864 	 */
1865 	switch (type & 0xff) {
1866 	case ND_NEIGHBOR_SOLICIT:
1867 		/*
1868 		 * New entry must have is_router flag cleared.
1869 		 */
1870 		if (is_newentry)	/* (6-7) */
1871 			ln->ln_router = 0;
1872 		break;
1873 	case ND_REDIRECT:
1874 		/*
1875 		 * If the icmp is a redirect to a better router, always set the
1876 		 * is_router flag.  Otherwise, if the entry is newly created,
1877 		 * clear the flag.  [RFC 2461, sec 8.3]
1878 		 */
1879 		if (code == ND_REDIRECT_ROUTER)
1880 			ln->ln_router = 1;
1881 		else if (is_newentry) /* (6-7) */
1882 			ln->ln_router = 0;
1883 		break;
1884 	case ND_ROUTER_SOLICIT:
1885 		/*
1886 		 * is_router flag must always be cleared.
1887 		 */
1888 		ln->ln_router = 0;
1889 		break;
1890 	case ND_ROUTER_ADVERT:
1891 		/*
1892 		 * Mark an entry with lladdr as a router.
1893 		 */
1894 		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1895 		    (is_newentry && lladdr)) {			/* (7) */
1896 			ln->ln_router = 1;
1897 		}
1898 		break;
1899 	}
1900 
1901 	/*
1902 	 * When the link-layer address of a router changes, select the
1903 	 * best router again.  In particular, when the neighbor entry is newly
1904 	 * created, it might affect the selection policy.
1905 	 * Question: can we restrict the first condition to the "is_newentry"
1906 	 * case?
1907 	 * XXX: when we hear an RA from a new router with the link-layer
1908 	 * address option, defrouter_select() is called twice, since
1909 	 * defrtrlist_update called the function as well.  However, I believe
1910 	 * we can compromise the overhead, since it only happens the first
1911 	 * time.
1912 	 * XXX: although defrouter_select() should not have a bad effect
1913 	 * for those are not autoconfigured hosts, we explicitly avoid such
1914 	 * cases for safety.
1915 	 */
1916 	if (do_update && ln->ln_router && !ip6_forwarding &&
1917 	    nd6_accepts_rtadv(ndi))
1918 		defrouter_select();
1919 
1920 	return rt;
1921 }
1922 
1923 static void
1924 nd6_slowtimo(void *ignored_arg)
1925 {
1926 	struct nd_ifinfo *nd6if;
1927 	struct ifnet *ifp;
1928 
1929 	mutex_enter(softnet_lock);
1930 	KERNEL_LOCK(1, NULL);
1931       	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1932 	    nd6_slowtimo, NULL);
1933 	TAILQ_FOREACH(ifp, &ifnet, if_list) {
1934 		nd6if = ND_IFINFO(ifp);
1935 		if (nd6if->basereachable && /* already initialized */
1936 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1937 			/*
1938 			 * Since reachable time rarely changes by router
1939 			 * advertisements, we SHOULD insure that a new random
1940 			 * value gets recomputed at least once every few hours.
1941 			 * (RFC 2461, 6.3.4)
1942 			 */
1943 			nd6if->recalctm = nd6_recalc_reachtm_interval;
1944 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1945 		}
1946 	}
1947 	KERNEL_UNLOCK_ONE(NULL);
1948 	mutex_exit(softnet_lock);
1949 }
1950 
1951 #define senderr(e) { error = (e); goto bad;}
1952 int
1953 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
1954     const struct sockaddr_in6 *dst, struct rtentry *rt0)
1955 {
1956 	struct mbuf *m = m0;
1957 	struct rtentry *rt = rt0;
1958 	struct sockaddr_in6 *gw6 = NULL;
1959 	struct llinfo_nd6 *ln = NULL;
1960 	int error = 0;
1961 
1962 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1963 		goto sendpkt;
1964 
1965 	if (nd6_need_cache(ifp) == 0)
1966 		goto sendpkt;
1967 
1968 	/*
1969 	 * next hop determination.  This routine is derived from ether_output.
1970 	 */
1971 	if (rt) {
1972 		if ((rt->rt_flags & RTF_UP) == 0) {
1973 			if ((rt0 = rt = rtalloc1(sin6tocsa(dst), 1)) != NULL) {
1974 				rt->rt_refcnt--;
1975 				if (rt->rt_ifp != ifp)
1976 					senderr(EHOSTUNREACH);
1977 			} else
1978 				senderr(EHOSTUNREACH);
1979 		}
1980 
1981 		if (rt->rt_flags & RTF_GATEWAY) {
1982 			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1983 
1984 			/*
1985 			 * We skip link-layer address resolution and NUD
1986 			 * if the gateway is not a neighbor from ND point
1987 			 * of view, regardless of the value of nd_ifinfo.flags.
1988 			 * The second condition is a bit tricky; we skip
1989 			 * if the gateway is our own address, which is
1990 			 * sometimes used to install a route to a p2p link.
1991 			 */
1992 			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1993 			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1994 				/*
1995 				 * We allow this kind of tricky route only
1996 				 * when the outgoing interface is p2p.
1997 				 * XXX: we may need a more generic rule here.
1998 				 */
1999 				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
2000 					senderr(EHOSTUNREACH);
2001 
2002 				goto sendpkt;
2003 			}
2004 
2005 			if (rt->rt_gwroute == NULL)
2006 				goto lookup;
2007 			if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
2008 				rtfree(rt); rt = rt0;
2009 			lookup:
2010 				rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
2011 				if ((rt = rt->rt_gwroute) == NULL)
2012 					senderr(EHOSTUNREACH);
2013 				/* the "G" test below also prevents rt == rt0 */
2014 				if ((rt->rt_flags & RTF_GATEWAY) ||
2015 				    (rt->rt_ifp != ifp)) {
2016 					rt->rt_refcnt--;
2017 					rt0->rt_gwroute = NULL;
2018 					senderr(EHOSTUNREACH);
2019 				}
2020 			}
2021 		}
2022 	}
2023 
2024 	/*
2025 	 * Address resolution or Neighbor Unreachability Detection
2026 	 * for the next hop.
2027 	 * At this point, the destination of the packet must be a unicast
2028 	 * or an anycast address(i.e. not a multicast).
2029 	 */
2030 
2031 	/* Look up the neighbor cache for the nexthop */
2032 	if (rt != NULL && (rt->rt_flags & RTF_LLINFO) != 0)
2033 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2034 	else {
2035 		/*
2036 		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2037 		 * the condition below is not very efficient.  But we believe
2038 		 * it is tolerable, because this should be a rare case.
2039 		 */
2040 		if (nd6_is_addr_neighbor(dst, ifp) &&
2041 		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2042 			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2043 	}
2044 	if (ln == NULL || rt == NULL) {
2045 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2046 		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2047 			log(LOG_DEBUG,
2048 			    "nd6_output: can't allocate llinfo for %s "
2049 			    "(ln=%p, rt=%p)\n",
2050 			    ip6_sprintf(&dst->sin6_addr), ln, rt);
2051 			senderr(EIO);	/* XXX: good error? */
2052 		}
2053 
2054 		goto sendpkt;	/* send anyway */
2055 	}
2056 
2057 	/* We don't have to do link-layer address resolution on a p2p link. */
2058 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2059 	    ln->ln_state < ND6_LLINFO_REACHABLE) {
2060 		ln->ln_state = ND6_LLINFO_STALE;
2061 		nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2062 	}
2063 
2064 	/*
2065 	 * The first time we send a packet to a neighbor whose entry is
2066 	 * STALE, we have to change the state to DELAY and a sets a timer to
2067 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2068 	 * neighbor unreachability detection on expiration.
2069 	 * (RFC 2461 7.3.3)
2070 	 */
2071 	if (ln->ln_state == ND6_LLINFO_STALE) {
2072 		ln->ln_asked = 0;
2073 		ln->ln_state = ND6_LLINFO_DELAY;
2074 		nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2075 	}
2076 
2077 	/*
2078 	 * If the neighbor cache entry has a state other than INCOMPLETE
2079 	 * (i.e. its link-layer address is already resolved), just
2080 	 * send the packet.
2081 	 */
2082 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2083 		goto sendpkt;
2084 
2085 	/*
2086 	 * There is a neighbor cache entry, but no ethernet address
2087 	 * response yet.  Append this latest packet to the end of the
2088 	 * packet queue in the mbuf, unless the number of the packet
2089 	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
2090 	 * the oldest packet in the queue will be removed.
2091 	 */
2092 	if (ln->ln_state == ND6_LLINFO_NOSTATE)
2093 		ln->ln_state = ND6_LLINFO_INCOMPLETE;
2094 	if (ln->ln_hold) {
2095 		struct mbuf *m_hold;
2096 		int i;
2097 
2098 		i = 0;
2099 		for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2100 			i++;
2101 			if (m_hold->m_nextpkt == NULL) {
2102 				m_hold->m_nextpkt = m;
2103 				break;
2104 			}
2105 		}
2106 		while (i >= nd6_maxqueuelen) {
2107 			m_hold = ln->ln_hold;
2108 			ln->ln_hold = ln->ln_hold->m_nextpkt;
2109 			m_freem(m_hold);
2110 			i--;
2111 		}
2112 	} else {
2113 		ln->ln_hold = m;
2114 	}
2115 
2116 	/*
2117 	 * If there has been no NS for the neighbor after entering the
2118 	 * INCOMPLETE state, send the first solicitation.
2119 	 */
2120 	if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2121 		ln->ln_asked++;
2122 		nd6_llinfo_settimer(ln,
2123 		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2124 		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2125 	}
2126 	return 0;
2127 
2128   sendpkt:
2129 	/* discard the packet if IPv6 operation is disabled on the interface */
2130 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2131 		error = ENETDOWN; /* better error? */
2132 		goto bad;
2133 	}
2134 
2135 #ifdef IPSEC
2136 	/* clean ipsec history once it goes out of the node */
2137 	ipsec_delaux(m);
2138 #endif
2139 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2140 		return (*ifp->if_output)(origifp, m, sin6tocsa(dst), rt);
2141 	return (*ifp->if_output)(ifp, m, sin6tocsa(dst), rt);
2142 
2143   bad:
2144 	if (m != NULL)
2145 		m_freem(m);
2146 	return error;
2147 }
2148 #undef senderr
2149 
2150 int
2151 nd6_need_cache(struct ifnet *ifp)
2152 {
2153 	/*
2154 	 * XXX: we currently do not make neighbor cache on any interface
2155 	 * other than ARCnet, Ethernet, FDDI and GIF.
2156 	 *
2157 	 * RFC2893 says:
2158 	 * - unidirectional tunnels needs no ND
2159 	 */
2160 	switch (ifp->if_type) {
2161 	case IFT_ARCNET:
2162 	case IFT_ETHER:
2163 	case IFT_FDDI:
2164 	case IFT_IEEE1394:
2165 	case IFT_CARP:
2166 	case IFT_GIF:		/* XXX need more cases? */
2167 	case IFT_PPP:
2168 	case IFT_TUNNEL:
2169 		return 1;
2170 	default:
2171 		return 0;
2172 	}
2173 }
2174 
2175 int
2176 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
2177     struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst,
2178     size_t dstsize)
2179 {
2180 	const struct sockaddr_dl *sdl;
2181 
2182 	if (m->m_flags & M_MCAST) {
2183 		switch (ifp->if_type) {
2184 		case IFT_ETHER:
2185 		case IFT_FDDI:
2186 			ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
2187 			    lldst);
2188 			return 1;
2189 		case IFT_IEEE1394:
2190 			memcpy(lldst, ifp->if_broadcastaddr,
2191 			    MIN(dstsize, ifp->if_addrlen));
2192 			return 1;
2193 		case IFT_ARCNET:
2194 			*lldst = 0;
2195 			return 1;
2196 		default:
2197 			m_freem(m);
2198 			return 0;
2199 		}
2200 	}
2201 
2202 	if (rt == NULL) {
2203 		/* this could happen, if we could not allocate memory */
2204 		m_freem(m);
2205 		return 0;
2206 	}
2207 	if (rt->rt_gateway->sa_family != AF_LINK) {
2208 		printf("%s: something odd happens\n", __func__);
2209 		m_freem(m);
2210 		return 0;
2211 	}
2212 	sdl = satocsdl(rt->rt_gateway);
2213 	if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
2214 		/* this should be impossible, but we bark here for debugging */
2215 		printf("%s: sdl_alen == %" PRIu8 ", dst=%s, if=%s\n", __func__,
2216 		    sdl->sdl_alen, ip6_sprintf(&satocsin6(dst)->sin6_addr),
2217 		    if_name(ifp));
2218 		m_freem(m);
2219 		return 0;
2220 	}
2221 
2222 	memcpy(lldst, CLLADDR(sdl), MIN(dstsize, sdl->sdl_alen));
2223 	return 1;
2224 }
2225 
2226 static void
2227 clear_llinfo_pqueue(struct llinfo_nd6 *ln)
2228 {
2229 	struct mbuf *m_hold, *m_hold_next;
2230 
2231 	for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2232 		m_hold_next = m_hold->m_nextpkt;
2233 		m_hold->m_nextpkt = NULL;
2234 		m_freem(m_hold);
2235 	}
2236 
2237 	ln->ln_hold = NULL;
2238 	return;
2239 }
2240 
2241 int
2242 nd6_sysctl(
2243     int name,
2244     void *oldp,	/* syscall arg, need copyout */
2245     size_t *oldlenp,
2246     void *newp,	/* syscall arg, need copyin */
2247     size_t newlen
2248 )
2249 {
2250 	void *p;
2251 	size_t ol;
2252 	int error;
2253 
2254 	error = 0;
2255 
2256 	if (newp)
2257 		return EPERM;
2258 	if (oldp && !oldlenp)
2259 		return EINVAL;
2260 	ol = oldlenp ? *oldlenp : 0;
2261 
2262 	if (oldp) {
2263 		p = malloc(*oldlenp, M_TEMP, M_WAITOK);
2264 		if (p == NULL)
2265 			return ENOMEM;
2266 	} else
2267 		p = NULL;
2268 	switch (name) {
2269 	case ICMPV6CTL_ND6_DRLIST:
2270 		error = fill_drlist(p, oldlenp, ol);
2271 		if (!error && p != NULL && oldp != NULL)
2272 			error = copyout(p, oldp, *oldlenp);
2273 		break;
2274 
2275 	case ICMPV6CTL_ND6_PRLIST:
2276 		error = fill_prlist(p, oldlenp, ol);
2277 		if (!error && p != NULL && oldp != NULL)
2278 			error = copyout(p, oldp, *oldlenp);
2279 		break;
2280 
2281 	case ICMPV6CTL_ND6_MAXQLEN:
2282 		break;
2283 
2284 	default:
2285 		error = ENOPROTOOPT;
2286 		break;
2287 	}
2288 	if (p)
2289 		free(p, M_TEMP);
2290 
2291 	return error;
2292 }
2293 
2294 static int
2295 fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
2296 {
2297 	int error = 0, s;
2298 	struct in6_defrouter *d = NULL, *de = NULL;
2299 	struct nd_defrouter *dr;
2300 	size_t l;
2301 
2302 	s = splsoftnet();
2303 
2304 	if (oldp) {
2305 		d = (struct in6_defrouter *)oldp;
2306 		de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
2307 	}
2308 	l = 0;
2309 
2310 	TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
2311 
2312 		if (oldp && d + 1 <= de) {
2313 			memset(d, 0, sizeof(*d));
2314 			sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
2315 			if (sa6_recoverscope(&d->rtaddr)) {
2316 				log(LOG_ERR,
2317 				    "scope error in router list (%s)\n",
2318 				    ip6_sprintf(&d->rtaddr.sin6_addr));
2319 				/* XXX: press on... */
2320 			}
2321 			d->flags = dr->flags;
2322 			d->rtlifetime = dr->rtlifetime;
2323 			d->expire = dr->expire;
2324 			d->if_index = dr->ifp->if_index;
2325 		}
2326 
2327 		l += sizeof(*d);
2328 		if (d)
2329 			d++;
2330 	}
2331 
2332 	if (oldp) {
2333 		if (l > ol)
2334 			error = ENOMEM;
2335 	}
2336 	if (oldlenp)
2337 		*oldlenp = l;	/* (void *)d - (void *)oldp */
2338 
2339 	splx(s);
2340 
2341 	return error;
2342 }
2343 
2344 static int
2345 fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
2346 {
2347 	int error = 0, s;
2348 	struct nd_prefix *pr;
2349 	struct in6_prefix *p = NULL;
2350 	struct in6_prefix *pe = NULL;
2351 	size_t l;
2352 
2353 	s = splsoftnet();
2354 
2355 	if (oldp) {
2356 		p = (struct in6_prefix *)oldp;
2357 		pe = (struct in6_prefix *)((char *)oldp + *oldlenp);
2358 	}
2359 	l = 0;
2360 
2361 	LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
2362 		u_short advrtrs;
2363 		size_t advance;
2364 		struct sockaddr_in6 *sin6;
2365 		struct sockaddr_in6 *s6;
2366 		struct nd_pfxrouter *pfr;
2367 
2368 		if (oldp && p + 1 <= pe)
2369 		{
2370 			memset(p, 0, sizeof(*p));
2371 			sin6 = (struct sockaddr_in6 *)(p + 1);
2372 
2373 			p->prefix = pr->ndpr_prefix;
2374 			if (sa6_recoverscope(&p->prefix)) {
2375 				log(LOG_ERR,
2376 				    "scope error in prefix list (%s)\n",
2377 				    ip6_sprintf(&p->prefix.sin6_addr));
2378 				/* XXX: press on... */
2379 			}
2380 			p->raflags = pr->ndpr_raf;
2381 			p->prefixlen = pr->ndpr_plen;
2382 			p->vltime = pr->ndpr_vltime;
2383 			p->pltime = pr->ndpr_pltime;
2384 			p->if_index = pr->ndpr_ifp->if_index;
2385 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2386 				p->expire = 0;
2387 			else {
2388 				time_t maxexpire;
2389 
2390 				/* XXX: we assume time_t is signed. */
2391 				maxexpire = (-1) &
2392 				    ~((time_t)1 <<
2393 				    ((sizeof(maxexpire) * 8) - 1));
2394 				if (pr->ndpr_vltime <
2395 				    maxexpire - pr->ndpr_lastupdate) {
2396 					p->expire = pr->ndpr_lastupdate +
2397 						pr->ndpr_vltime;
2398 				} else
2399 					p->expire = maxexpire;
2400 			}
2401 			p->refcnt = pr->ndpr_refcnt;
2402 			p->flags = pr->ndpr_stateflags;
2403 			p->origin = PR_ORIG_RA;
2404 			advrtrs = 0;
2405 			LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2406 				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2407 					advrtrs++;
2408 					continue;
2409 				}
2410 				s6 = &sin6[advrtrs];
2411 				sockaddr_in6_init(s6, &pfr->router->rtaddr,
2412 				    0, 0, 0);
2413 				if (sa6_recoverscope(s6)) {
2414 					log(LOG_ERR,
2415 					    "scope error in "
2416 					    "prefix list (%s)\n",
2417 					    ip6_sprintf(&pfr->router->rtaddr));
2418 				}
2419 				advrtrs++;
2420 			}
2421 			p->advrtrs = advrtrs;
2422 		}
2423 		else {
2424 			advrtrs = 0;
2425 			LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
2426 				advrtrs++;
2427 		}
2428 
2429 		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2430 		l += advance;
2431 		if (p)
2432 			p = (struct in6_prefix *)((char *)p + advance);
2433 	}
2434 
2435 	if (oldp) {
2436 		*oldlenp = l;	/* (void *)d - (void *)oldp */
2437 		if (l > ol)
2438 			error = ENOMEM;
2439 	} else
2440 		*oldlenp = l;
2441 
2442 	splx(s);
2443 
2444 	return error;
2445 }
2446