1 /* $NetBSD: nd6.c,v 1.96 2006/01/21 00:15:36 rpaulo Exp $ */ 2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.96 2006/01/21 00:15:36 rpaulo Exp $"); 35 36 #include "opt_ipsec.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/callout.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/time.h> 46 #include <sys/kernel.h> 47 #include <sys/protosw.h> 48 #include <sys/errno.h> 49 #include <sys/ioctl.h> 50 #include <sys/syslog.h> 51 #include <sys/queue.h> 52 53 #include <net/if.h> 54 #include <net/if_dl.h> 55 #include <net/if_types.h> 56 #include <net/route.h> 57 #include <net/if_ether.h> 58 #include <net/if_fddi.h> 59 #include <net/if_arc.h> 60 61 #include <netinet/in.h> 62 #include <netinet6/in6_var.h> 63 #include <netinet/ip6.h> 64 #include <netinet6/ip6_var.h> 65 #include <netinet6/scope6_var.h> 66 #include <netinet6/nd6.h> 67 #include <netinet/icmp6.h> 68 69 #ifdef IPSEC 70 #include <netinet6/ipsec.h> 71 #endif 72 73 #include <net/net_osdep.h> 74 75 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 76 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 77 78 #define SIN6(s) ((struct sockaddr_in6 *)s) 79 #define SDL(s) ((struct sockaddr_dl *)s) 80 81 /* timer values */ 82 int nd6_prune = 1; /* walk list every 1 seconds */ 83 int nd6_delay = 5; /* delay first probe time 5 second */ 84 int nd6_umaxtries = 3; /* maximum unicast query */ 85 int nd6_mmaxtries = 3; /* maximum multicast query */ 86 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 87 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 88 89 /* preventing too many loops in ND option parsing */ 90 int nd6_maxndopt = 10; /* max # of ND options allowed */ 91 92 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 93 94 #ifdef ND6_DEBUG 95 int nd6_debug = 1; 96 #else 97 int nd6_debug = 0; 98 #endif 99 100 /* for debugging? */ 101 static int nd6_inuse, nd6_allocated; 102 103 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6}; 104 struct nd_drhead nd_defrouter; 105 struct nd_prhead nd_prefix = { 0 }; 106 107 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 108 static struct sockaddr_in6 all1_sa; 109 110 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *)); 111 static void nd6_slowtimo __P((void *)); 112 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int)); 113 static void nd6_llinfo_timer __P((void *)); 114 115 struct callout nd6_slowtimo_ch = CALLOUT_INITIALIZER; 116 struct callout nd6_timer_ch = CALLOUT_INITIALIZER; 117 118 static int fill_drlist __P((void *, size_t *, size_t)); 119 static int fill_prlist __P((void *, size_t *, size_t)); 120 121 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery"); 122 123 void 124 nd6_init() 125 { 126 static int nd6_init_done = 0; 127 int i; 128 129 if (nd6_init_done) { 130 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n"); 131 return; 132 } 133 134 all1_sa.sin6_family = AF_INET6; 135 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 136 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) 137 all1_sa.sin6_addr.s6_addr[i] = 0xff; 138 139 /* initialization of the default router list */ 140 TAILQ_INIT(&nd_defrouter); 141 142 nd6_init_done = 1; 143 144 /* start timer */ 145 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 146 nd6_slowtimo, NULL); 147 } 148 149 struct nd_ifinfo * 150 nd6_ifattach(ifp) 151 struct ifnet *ifp; 152 { 153 struct nd_ifinfo *nd; 154 155 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK); 156 bzero(nd, sizeof(*nd)); 157 158 nd->initialized = 1; 159 160 nd->chlim = IPV6_DEFHLIM; 161 nd->basereachable = REACHABLE_TIME; 162 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 163 nd->retrans = RETRANS_TIMER; 164 /* 165 * Note that the default value of ip6_accept_rtadv is 0, which means 166 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV 167 * here. 168 */ 169 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV); 170 171 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 172 nd6_setmtu0(ifp, nd); 173 174 return nd; 175 } 176 177 void 178 nd6_ifdetach(nd) 179 struct nd_ifinfo *nd; 180 { 181 182 free(nd, M_IP6NDP); 183 } 184 185 void 186 nd6_setmtu(ifp) 187 struct ifnet *ifp; 188 { 189 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 190 } 191 192 void 193 nd6_setmtu0(ifp, ndi) 194 struct ifnet *ifp; 195 struct nd_ifinfo *ndi; 196 { 197 u_int32_t omaxmtu; 198 199 omaxmtu = ndi->maxmtu; 200 201 switch (ifp->if_type) { 202 case IFT_ARCNET: 203 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 204 break; 205 case IFT_FDDI: 206 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); 207 break; 208 default: 209 ndi->maxmtu = ifp->if_mtu; 210 break; 211 } 212 213 /* 214 * Decreasing the interface MTU under IPV6 minimum MTU may cause 215 * undesirable situation. We thus notify the operator of the change 216 * explicitly. The check for omaxmtu is necessary to restrict the 217 * log to the case of changing the MTU, not initializing it. 218 */ 219 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 220 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too" 221 " small for IPv6 which needs %lu\n", 222 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long) 223 IPV6_MMTU); 224 } 225 226 if (ndi->maxmtu > in6_maxmtu) 227 in6_setmaxmtu(); /* check all interfaces just in case */ 228 } 229 230 void 231 nd6_option_init(opt, icmp6len, ndopts) 232 void *opt; 233 int icmp6len; 234 union nd_opts *ndopts; 235 { 236 237 bzero(ndopts, sizeof(*ndopts)); 238 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 239 ndopts->nd_opts_last 240 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 241 242 if (icmp6len == 0) { 243 ndopts->nd_opts_done = 1; 244 ndopts->nd_opts_search = NULL; 245 } 246 } 247 248 /* 249 * Take one ND option. 250 */ 251 struct nd_opt_hdr * 252 nd6_option(ndopts) 253 union nd_opts *ndopts; 254 { 255 struct nd_opt_hdr *nd_opt; 256 int olen; 257 258 if (!ndopts) 259 panic("ndopts == NULL in nd6_option"); 260 if (!ndopts->nd_opts_last) 261 panic("uninitialized ndopts in nd6_option"); 262 if (!ndopts->nd_opts_search) 263 return NULL; 264 if (ndopts->nd_opts_done) 265 return NULL; 266 267 nd_opt = ndopts->nd_opts_search; 268 269 /* make sure nd_opt_len is inside the buffer */ 270 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 271 bzero(ndopts, sizeof(*ndopts)); 272 return NULL; 273 } 274 275 olen = nd_opt->nd_opt_len << 3; 276 if (olen == 0) { 277 /* 278 * Message validation requires that all included 279 * options have a length that is greater than zero. 280 */ 281 bzero(ndopts, sizeof(*ndopts)); 282 return NULL; 283 } 284 285 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 286 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 287 /* option overruns the end of buffer, invalid */ 288 bzero(ndopts, sizeof(*ndopts)); 289 return NULL; 290 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 291 /* reached the end of options chain */ 292 ndopts->nd_opts_done = 1; 293 ndopts->nd_opts_search = NULL; 294 } 295 return nd_opt; 296 } 297 298 /* 299 * Parse multiple ND options. 300 * This function is much easier to use, for ND routines that do not need 301 * multiple options of the same type. 302 */ 303 int 304 nd6_options(ndopts) 305 union nd_opts *ndopts; 306 { 307 struct nd_opt_hdr *nd_opt; 308 int i = 0; 309 310 if (!ndopts) 311 panic("ndopts == NULL in nd6_options"); 312 if (!ndopts->nd_opts_last) 313 panic("uninitialized ndopts in nd6_options"); 314 if (!ndopts->nd_opts_search) 315 return 0; 316 317 while (1) { 318 nd_opt = nd6_option(ndopts); 319 if (!nd_opt && !ndopts->nd_opts_last) { 320 /* 321 * Message validation requires that all included 322 * options have a length that is greater than zero. 323 */ 324 icmp6stat.icp6s_nd_badopt++; 325 bzero(ndopts, sizeof(*ndopts)); 326 return -1; 327 } 328 329 if (!nd_opt) 330 goto skip1; 331 332 switch (nd_opt->nd_opt_type) { 333 case ND_OPT_SOURCE_LINKADDR: 334 case ND_OPT_TARGET_LINKADDR: 335 case ND_OPT_MTU: 336 case ND_OPT_REDIRECTED_HEADER: 337 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 338 nd6log((LOG_INFO, 339 "duplicated ND6 option found (type=%d)\n", 340 nd_opt->nd_opt_type)); 341 /* XXX bark? */ 342 } else { 343 ndopts->nd_opt_array[nd_opt->nd_opt_type] 344 = nd_opt; 345 } 346 break; 347 case ND_OPT_PREFIX_INFORMATION: 348 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 349 ndopts->nd_opt_array[nd_opt->nd_opt_type] 350 = nd_opt; 351 } 352 ndopts->nd_opts_pi_end = 353 (struct nd_opt_prefix_info *)nd_opt; 354 break; 355 default: 356 /* 357 * Unknown options must be silently ignored, 358 * to accomodate future extension to the protocol. 359 */ 360 nd6log((LOG_DEBUG, 361 "nd6_options: unsupported option %d - " 362 "option ignored\n", nd_opt->nd_opt_type)); 363 } 364 365 skip1: 366 i++; 367 if (i > nd6_maxndopt) { 368 icmp6stat.icp6s_nd_toomanyopt++; 369 nd6log((LOG_INFO, "too many loop in nd opt\n")); 370 break; 371 } 372 373 if (ndopts->nd_opts_done) 374 break; 375 } 376 377 return 0; 378 } 379 380 /* 381 * ND6 timer routine to handle ND6 entries 382 */ 383 void 384 nd6_llinfo_settimer(ln, xtick) 385 struct llinfo_nd6 *ln; 386 long xtick; 387 { 388 int s; 389 390 s = splsoftnet(); 391 392 if (xtick < 0) { 393 ln->ln_expire = 0; 394 ln->ln_ntick = 0; 395 callout_stop(&ln->ln_timer_ch); 396 } else { 397 ln->ln_expire = time.tv_sec + xtick / hz; 398 if (xtick > INT_MAX) { 399 ln->ln_ntick = xtick - INT_MAX; 400 callout_reset(&ln->ln_timer_ch, INT_MAX, 401 nd6_llinfo_timer, ln); 402 } else { 403 ln->ln_ntick = 0; 404 callout_reset(&ln->ln_timer_ch, xtick, 405 nd6_llinfo_timer, ln); 406 } 407 } 408 409 splx(s); 410 } 411 412 static void 413 nd6_llinfo_timer(arg) 414 void *arg; 415 { 416 int s; 417 struct llinfo_nd6 *ln; 418 struct rtentry *rt; 419 const struct sockaddr_in6 *dst; 420 struct ifnet *ifp; 421 struct nd_ifinfo *ndi = NULL; 422 423 s = splsoftnet(); 424 425 ln = (struct llinfo_nd6 *)arg; 426 427 if (ln->ln_ntick > 0) { 428 if (ln->ln_ntick > INT_MAX) { 429 ln->ln_ntick -= INT_MAX; 430 nd6_llinfo_settimer(ln, INT_MAX); 431 } else { 432 ln->ln_ntick = 0; 433 nd6_llinfo_settimer(ln, ln->ln_ntick); 434 } 435 splx(s); 436 return; 437 } 438 439 if ((rt = ln->ln_rt) == NULL) 440 panic("ln->ln_rt == NULL"); 441 if ((ifp = rt->rt_ifp) == NULL) 442 panic("ln->ln_rt->rt_ifp == NULL"); 443 ndi = ND_IFINFO(ifp); 444 dst = (struct sockaddr_in6 *)rt_key(rt); 445 446 /* sanity check */ 447 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) 448 panic("rt_llinfo(%p) is not equal to ln(%p)", 449 rt->rt_llinfo, ln); 450 if (!dst) 451 panic("dst=0 in nd6_timer(ln=%p)", ln); 452 453 switch (ln->ln_state) { 454 case ND6_LLINFO_INCOMPLETE: 455 if (ln->ln_asked < nd6_mmaxtries) { 456 ln->ln_asked++; 457 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 458 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 459 } else { 460 struct mbuf *m = ln->ln_hold; 461 if (m) { 462 /* 463 * assuming every packet in ln_hold has 464 * the same IP header 465 */ 466 ln->ln_hold = NULL; 467 icmp6_error2(m, ICMP6_DST_UNREACH, 468 ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp); 469 } 470 (void)nd6_free(rt, 0); 471 ln = NULL; 472 } 473 break; 474 case ND6_LLINFO_REACHABLE: 475 if (!ND6_LLINFO_PERMANENT(ln)) { 476 ln->ln_state = ND6_LLINFO_STALE; 477 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 478 } 479 break; 480 481 case ND6_LLINFO_STALE: 482 /* Garbage Collection(RFC 2461 5.3) */ 483 if (!ND6_LLINFO_PERMANENT(ln)) { 484 (void)nd6_free(rt, 1); 485 ln = NULL; 486 } 487 break; 488 489 case ND6_LLINFO_DELAY: 490 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 491 /* We need NUD */ 492 ln->ln_asked = 1; 493 ln->ln_state = ND6_LLINFO_PROBE; 494 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 495 nd6_ns_output(ifp, &dst->sin6_addr, 496 &dst->sin6_addr, ln, 0); 497 } else { 498 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 499 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 500 } 501 break; 502 case ND6_LLINFO_PROBE: 503 if (ln->ln_asked < nd6_umaxtries) { 504 ln->ln_asked++; 505 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 506 nd6_ns_output(ifp, &dst->sin6_addr, 507 &dst->sin6_addr, ln, 0); 508 } else { 509 (void)nd6_free(rt, 0); 510 ln = NULL; 511 } 512 break; 513 } 514 515 splx(s); 516 } 517 518 /* 519 * ND6 timer routine to expire default route list and prefix list 520 */ 521 void 522 nd6_timer(ignored_arg) 523 void *ignored_arg; 524 { 525 int s; 526 struct nd_defrouter *dr; 527 struct nd_prefix *pr; 528 struct in6_ifaddr *ia6, *nia6; 529 530 s = splsoftnet(); 531 callout_reset(&nd6_timer_ch, nd6_prune * hz, 532 nd6_timer, NULL); 533 534 /* expire default router list */ 535 dr = TAILQ_FIRST(&nd_defrouter); 536 while (dr) { 537 if (dr->expire && dr->expire < time.tv_sec) { 538 struct nd_defrouter *t; 539 t = TAILQ_NEXT(dr, dr_entry); 540 defrtrlist_del(dr); 541 dr = t; 542 } else { 543 dr = TAILQ_NEXT(dr, dr_entry); 544 } 545 } 546 547 /* 548 * expire interface addresses. 549 * in the past the loop was inside prefix expiry processing. 550 * However, from a stricter speci-confrmance standpoint, we should 551 * rather separate address lifetimes and prefix lifetimes. 552 */ 553 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) { 554 nia6 = ia6->ia_next; 555 /* check address lifetime */ 556 if (IFA6_IS_INVALID(ia6)) { 557 in6_purgeaddr(&ia6->ia_ifa); 558 } 559 if (IFA6_IS_DEPRECATED(ia6)) { 560 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 561 } else { 562 /* 563 * A new RA might have made a deprecated address 564 * preferred. 565 */ 566 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 567 } 568 } 569 570 /* expire prefix list */ 571 pr = nd_prefix.lh_first; 572 while (pr) { 573 /* 574 * check prefix lifetime. 575 * since pltime is just for autoconf, pltime processing for 576 * prefix is not necessary. 577 */ 578 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 579 time.tv_sec - pr->ndpr_lastupdate > pr->ndpr_vltime) { 580 struct nd_prefix *t; 581 t = pr->ndpr_next; 582 583 /* 584 * address expiration and prefix expiration are 585 * separate. NEVER perform in6_purgeaddr here. 586 */ 587 588 prelist_remove(pr); 589 pr = t; 590 } else 591 pr = pr->ndpr_next; 592 } 593 splx(s); 594 } 595 596 /* 597 * Nuke neighbor cache/prefix/default router management table, right before 598 * ifp goes away. 599 */ 600 void 601 nd6_purge(ifp) 602 struct ifnet *ifp; 603 { 604 struct llinfo_nd6 *ln, *nln; 605 struct nd_defrouter *dr, *ndr; 606 struct nd_prefix *pr, *npr; 607 608 /* 609 * Nuke default router list entries toward ifp. 610 * We defer removal of default router list entries that is installed 611 * in the routing table, in order to keep additional side effects as 612 * small as possible. 613 */ 614 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) { 615 ndr = TAILQ_NEXT(dr, dr_entry); 616 if (dr->installed) 617 continue; 618 619 if (dr->ifp == ifp) 620 defrtrlist_del(dr); 621 } 622 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) { 623 ndr = TAILQ_NEXT(dr, dr_entry); 624 if (!dr->installed) 625 continue; 626 627 if (dr->ifp == ifp) 628 defrtrlist_del(dr); 629 } 630 631 /* Nuke prefix list entries toward ifp */ 632 for (pr = nd_prefix.lh_first; pr; pr = npr) { 633 npr = pr->ndpr_next; 634 if (pr->ndpr_ifp == ifp) { 635 /* 636 * Because if_detach() does *not* release prefixes 637 * while purging addresses the reference count will 638 * still be above zero. We therefore reset it to 639 * make sure that the prefix really gets purged. 640 */ 641 pr->ndpr_refcnt = 0; 642 /* 643 * Previously, pr->ndpr_addr is removed as well, 644 * but I strongly believe we don't have to do it. 645 * nd6_purge() is only called from in6_ifdetach(), 646 * which removes all the associated interface addresses 647 * by itself. 648 * (jinmei@kame.net 20010129) 649 */ 650 prelist_remove(pr); 651 } 652 } 653 654 /* cancel default outgoing interface setting */ 655 if (nd6_defifindex == ifp->if_index) 656 nd6_setdefaultiface(0); 657 658 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 659 /* refresh default router list */ 660 defrouter_select(); 661 } 662 663 /* 664 * Nuke neighbor cache entries for the ifp. 665 * Note that rt->rt_ifp may not be the same as ifp, 666 * due to KAME goto ours hack. See RTM_RESOLVE case in 667 * nd6_rtrequest(), and ip6_input(). 668 */ 669 ln = llinfo_nd6.ln_next; 670 while (ln && ln != &llinfo_nd6) { 671 struct rtentry *rt; 672 struct sockaddr_dl *sdl; 673 674 nln = ln->ln_next; 675 rt = ln->ln_rt; 676 if (rt && rt->rt_gateway && 677 rt->rt_gateway->sa_family == AF_LINK) { 678 sdl = (struct sockaddr_dl *)rt->rt_gateway; 679 if (sdl->sdl_index == ifp->if_index) 680 nln = nd6_free(rt, 0); 681 } 682 ln = nln; 683 } 684 } 685 686 struct rtentry * 687 nd6_lookup(addr6, create, ifp) 688 struct in6_addr *addr6; 689 int create; 690 struct ifnet *ifp; 691 { 692 struct rtentry *rt; 693 struct sockaddr_in6 sin6; 694 695 bzero(&sin6, sizeof(sin6)); 696 sin6.sin6_len = sizeof(struct sockaddr_in6); 697 sin6.sin6_family = AF_INET6; 698 sin6.sin6_addr = *addr6; 699 rt = rtalloc1((struct sockaddr *)&sin6, create); 700 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) { 701 /* 702 * This is the case for the default route. 703 * If we want to create a neighbor cache for the address, we 704 * should free the route for the destination and allocate an 705 * interface route. 706 */ 707 if (create) { 708 RTFREE(rt); 709 rt = 0; 710 } 711 } 712 if (!rt) { 713 if (create && ifp) { 714 int e; 715 716 /* 717 * If no route is available and create is set, 718 * we allocate a host route for the destination 719 * and treat it like an interface route. 720 * This hack is necessary for a neighbor which can't 721 * be covered by our own prefix. 722 */ 723 struct ifaddr *ifa = 724 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); 725 if (ifa == NULL) 726 return (NULL); 727 728 /* 729 * Create a new route. RTF_LLINFO is necessary 730 * to create a Neighbor Cache entry for the 731 * destination in nd6_rtrequest which will be 732 * called in rtrequest via ifa->ifa_rtrequest. 733 */ 734 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6, 735 ifa->ifa_addr, (struct sockaddr *)&all1_sa, 736 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) & 737 ~RTF_CLONING, &rt)) != 0) { 738 #if 0 739 log(LOG_ERR, 740 "nd6_lookup: failed to add route for a " 741 "neighbor(%s), errno=%d\n", 742 ip6_sprintf(addr6), e); 743 #endif 744 return (NULL); 745 } 746 if (rt == NULL) 747 return (NULL); 748 if (rt->rt_llinfo) { 749 struct llinfo_nd6 *ln = 750 (struct llinfo_nd6 *)rt->rt_llinfo; 751 ln->ln_state = ND6_LLINFO_NOSTATE; 752 } 753 } else 754 return (NULL); 755 } 756 rt->rt_refcnt--; 757 /* 758 * Validation for the entry. 759 * Note that the check for rt_llinfo is necessary because a cloned 760 * route from a parent route that has the L flag (e.g. the default 761 * route to a p2p interface) may have the flag, too, while the 762 * destination is not actually a neighbor. 763 * XXX: we can't use rt->rt_ifp to check for the interface, since 764 * it might be the loopback interface if the entry is for our 765 * own address on a non-loopback interface. Instead, we should 766 * use rt->rt_ifa->ifa_ifp, which would specify the REAL 767 * interface. 768 */ 769 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || 770 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || 771 (ifp && rt->rt_ifa->ifa_ifp != ifp)) { 772 if (create) { 773 nd6log((LOG_DEBUG, 774 "nd6_lookup: failed to lookup %s (if = %s)\n", 775 ip6_sprintf(addr6), 776 ifp ? if_name(ifp) : "unspec")); 777 } 778 return (NULL); 779 } 780 return (rt); 781 } 782 783 /* 784 * Detect if a given IPv6 address identifies a neighbor on a given link. 785 * XXX: should take care of the destination of a p2p link? 786 */ 787 int 788 nd6_is_addr_neighbor(addr, ifp) 789 struct sockaddr_in6 *addr; 790 struct ifnet *ifp; 791 { 792 struct nd_prefix *pr; 793 794 /* 795 * A link-local address is always a neighbor. 796 * XXX: a link does not necessarily specify a single interface. 797 */ 798 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 799 struct sockaddr_in6 sin6_copy; 800 u_int32_t zone; 801 802 /* 803 * We need sin6_copy since sa6_recoverscope() may modify the 804 * content (XXX). 805 */ 806 sin6_copy = *addr; 807 if (sa6_recoverscope(&sin6_copy)) 808 return (0); /* XXX: should be impossible */ 809 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 810 return (0); 811 if (sin6_copy.sin6_scope_id == zone) 812 return (1); 813 else 814 return (0); 815 } 816 817 /* 818 * If the address matches one of our on-link prefixes, it should be a 819 * neighbor. 820 */ 821 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 822 if (pr->ndpr_ifp != ifp) 823 continue; 824 825 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) 826 continue; 827 828 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 829 &addr->sin6_addr, &pr->ndpr_mask)) 830 return (1); 831 } 832 833 /* 834 * If the default router list is empty, all addresses are regarded 835 * as on-link, and thus, as a neighbor. 836 * XXX: we restrict the condition to hosts, because routers usually do 837 * not have the "default router list". 838 */ 839 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL && 840 nd6_defifindex == ifp->if_index) { 841 return (1); 842 } 843 844 /* 845 * Even if the address matches none of our addresses, it might be 846 * in the neighbor cache. 847 */ 848 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL) 849 return (1); 850 851 return (0); 852 } 853 854 /* 855 * Free an nd6 llinfo entry. 856 * Since the function would cause significant changes in the kernel, DO NOT 857 * make it global, unless you have a strong reason for the change, and are sure 858 * that the change is safe. 859 */ 860 static struct llinfo_nd6 * 861 nd6_free(rt, gc) 862 struct rtentry *rt; 863 int gc; 864 { 865 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next; 866 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; 867 struct nd_defrouter *dr; 868 869 /* 870 * we used to have pfctlinput(PRC_HOSTDEAD) here. 871 * even though it is not harmful, it was not really necessary. 872 */ 873 874 /* cancel timer */ 875 nd6_llinfo_settimer(ln, -1); 876 877 if (!ip6_forwarding) { 878 int s; 879 s = splsoftnet(); 880 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 881 rt->rt_ifp); 882 883 if (dr != NULL && dr->expire && 884 ln->ln_state == ND6_LLINFO_STALE && gc) { 885 /* 886 * If the reason for the deletion is just garbage 887 * collection, and the neighbor is an active default 888 * router, do not delete it. Instead, reset the GC 889 * timer using the router's lifetime. 890 * Simply deleting the entry would affect default 891 * router selection, which is not necessarily a good 892 * thing, especially when we're using router preference 893 * values. 894 * XXX: the check for ln_state would be redundant, 895 * but we intentionally keep it just in case. 896 */ 897 if (dr->expire > time.tv_sec) 898 nd6_llinfo_settimer(ln, 899 (dr->expire - time.tv_sec) * hz); 900 else 901 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 902 splx(s); 903 return (ln->ln_next); 904 } 905 906 if (ln->ln_router || dr) { 907 /* 908 * rt6_flush must be called whether or not the neighbor 909 * is in the Default Router List. 910 * See a corresponding comment in nd6_na_input(). 911 */ 912 rt6_flush(&in6, rt->rt_ifp); 913 } 914 915 if (dr) { 916 /* 917 * Unreachablity of a router might affect the default 918 * router selection and on-link detection of advertised 919 * prefixes. 920 */ 921 922 /* 923 * Temporarily fake the state to choose a new default 924 * router and to perform on-link determination of 925 * prefixes correctly. 926 * Below the state will be set correctly, 927 * or the entry itself will be deleted. 928 */ 929 ln->ln_state = ND6_LLINFO_INCOMPLETE; 930 931 /* 932 * Since defrouter_select() does not affect the 933 * on-link determination and MIP6 needs the check 934 * before the default router selection, we perform 935 * the check now. 936 */ 937 pfxlist_onlink_check(); 938 939 /* 940 * refresh default router list 941 */ 942 defrouter_select(); 943 } 944 splx(s); 945 } 946 947 /* 948 * Before deleting the entry, remember the next entry as the 949 * return value. We need this because pfxlist_onlink_check() above 950 * might have freed other entries (particularly the old next entry) as 951 * a side effect (XXX). 952 */ 953 next = ln->ln_next; 954 955 /* 956 * Detach the route from the routing tree and the list of neighbor 957 * caches, and disable the route entry not to be used in already 958 * cached routes. 959 */ 960 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0, 961 rt_mask(rt), 0, (struct rtentry **)0); 962 963 return (next); 964 } 965 966 /* 967 * Upper-layer reachability hint for Neighbor Unreachability Detection. 968 * 969 * XXX cost-effective metods? 970 */ 971 void 972 nd6_nud_hint(rt, dst6, force) 973 struct rtentry *rt; 974 struct in6_addr *dst6; 975 int force; 976 { 977 struct llinfo_nd6 *ln; 978 979 /* 980 * If the caller specified "rt", use that. Otherwise, resolve the 981 * routing table by supplied "dst6". 982 */ 983 if (!rt) { 984 if (!dst6) 985 return; 986 if (!(rt = nd6_lookup(dst6, 0, NULL))) 987 return; 988 } 989 990 if ((rt->rt_flags & RTF_GATEWAY) != 0 || 991 (rt->rt_flags & RTF_LLINFO) == 0 || 992 !rt->rt_llinfo || !rt->rt_gateway || 993 rt->rt_gateway->sa_family != AF_LINK) { 994 /* This is not a host route. */ 995 return; 996 } 997 998 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 999 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1000 return; 1001 1002 /* 1003 * if we get upper-layer reachability confirmation many times, 1004 * it is possible we have false information. 1005 */ 1006 if (!force) { 1007 ln->ln_byhint++; 1008 if (ln->ln_byhint > nd6_maxnudhint) 1009 return; 1010 } 1011 1012 ln->ln_state = ND6_LLINFO_REACHABLE; 1013 if (!ND6_LLINFO_PERMANENT(ln)) { 1014 nd6_llinfo_settimer(ln, 1015 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz); 1016 } 1017 } 1018 1019 void 1020 nd6_rtrequest(req, rt, info) 1021 int req; 1022 struct rtentry *rt; 1023 struct rt_addrinfo *info; /* xxx unused */ 1024 { 1025 struct sockaddr *gate = rt->rt_gateway; 1026 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1027 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1028 struct ifnet *ifp = rt->rt_ifp; 1029 struct ifaddr *ifa; 1030 1031 if ((rt->rt_flags & RTF_GATEWAY) != 0) 1032 return; 1033 1034 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { 1035 /* 1036 * This is probably an interface direct route for a link 1037 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1038 * We do not need special treatment below for such a route. 1039 * Moreover, the RTF_LLINFO flag which would be set below 1040 * would annoy the ndp(8) command. 1041 */ 1042 return; 1043 } 1044 1045 if (req == RTM_RESOLVE && 1046 (nd6_need_cache(ifp) == 0 || /* stf case */ 1047 !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) { 1048 /* 1049 * FreeBSD and BSD/OS often make a cloned host route based 1050 * on a less-specific route (e.g. the default route). 1051 * If the less specific route does not have a "gateway" 1052 * (this is the case when the route just goes to a p2p or an 1053 * stf interface), we'll mistakenly make a neighbor cache for 1054 * the host route, and will see strange neighbor solicitation 1055 * for the corresponding destination. In order to avoid the 1056 * confusion, we check if the destination of the route is 1057 * a neighbor in terms of neighbor discovery, and stop the 1058 * process if not. Additionally, we remove the LLINFO flag 1059 * so that ndp(8) will not try to get the neighbor information 1060 * of the destination. 1061 */ 1062 rt->rt_flags &= ~RTF_LLINFO; 1063 return; 1064 } 1065 1066 switch (req) { 1067 case RTM_ADD: 1068 /* 1069 * There is no backward compatibility :) 1070 * 1071 * if ((rt->rt_flags & RTF_HOST) == 0 && 1072 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1073 * rt->rt_flags |= RTF_CLONING; 1074 */ 1075 if ((rt->rt_flags & RTF_CLONING) || 1076 ((rt->rt_flags & RTF_LLINFO) && !ln)) { 1077 /* 1078 * Case 1: This route should come from a route to 1079 * interface (RTF_CLONING case) or the route should be 1080 * treated as on-link but is currently not 1081 * (RTF_LLINFO && !ln case). 1082 */ 1083 rt_setgate(rt, rt_key(rt), 1084 (struct sockaddr *)&null_sdl); 1085 gate = rt->rt_gateway; 1086 SDL(gate)->sdl_type = ifp->if_type; 1087 SDL(gate)->sdl_index = ifp->if_index; 1088 if (ln) 1089 nd6_llinfo_settimer(ln, 0); 1090 if ((rt->rt_flags & RTF_CLONING) != 0) 1091 break; 1092 } 1093 /* 1094 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1095 * We don't do that here since llinfo is not ready yet. 1096 * 1097 * There are also couple of other things to be discussed: 1098 * - unsolicited NA code needs improvement beforehand 1099 * - RFC2461 says we MAY send multicast unsolicited NA 1100 * (7.2.6 paragraph 4), however, it also says that we 1101 * SHOULD provide a mechanism to prevent multicast NA storm. 1102 * we don't have anything like it right now. 1103 * note that the mechanism needs a mutual agreement 1104 * between proxies, which means that we need to implement 1105 * a new protocol, or a new kludge. 1106 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1107 * we need to check ip6forwarding before sending it. 1108 * (or should we allow proxy ND configuration only for 1109 * routers? there's no mention about proxy ND from hosts) 1110 */ 1111 #if 0 1112 /* XXX it does not work */ 1113 if (rt->rt_flags & RTF_ANNOUNCE) 1114 nd6_na_output(ifp, 1115 &SIN6(rt_key(rt))->sin6_addr, 1116 &SIN6(rt_key(rt))->sin6_addr, 1117 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1118 1, NULL); 1119 #endif 1120 /* FALLTHROUGH */ 1121 case RTM_RESOLVE: 1122 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 1123 /* 1124 * Address resolution isn't necessary for a point to 1125 * point link, so we can skip this test for a p2p link. 1126 */ 1127 if (gate->sa_family != AF_LINK || 1128 gate->sa_len < sizeof(null_sdl)) { 1129 log(LOG_DEBUG, 1130 "nd6_rtrequest: bad gateway value: %s\n", 1131 if_name(ifp)); 1132 break; 1133 } 1134 SDL(gate)->sdl_type = ifp->if_type; 1135 SDL(gate)->sdl_index = ifp->if_index; 1136 } 1137 if (ln != NULL) 1138 break; /* This happens on a route change */ 1139 /* 1140 * Case 2: This route may come from cloning, or a manual route 1141 * add with a LL address. 1142 */ 1143 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln)); 1144 rt->rt_llinfo = (caddr_t)ln; 1145 if (!ln) { 1146 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n"); 1147 break; 1148 } 1149 nd6_inuse++; 1150 nd6_allocated++; 1151 Bzero(ln, sizeof(*ln)); 1152 ln->ln_rt = rt; 1153 callout_init(&ln->ln_timer_ch); 1154 /* this is required for "ndp" command. - shin */ 1155 if (req == RTM_ADD) { 1156 /* 1157 * gate should have some valid AF_LINK entry, 1158 * and ln->ln_expire should have some lifetime 1159 * which is specified by ndp command. 1160 */ 1161 ln->ln_state = ND6_LLINFO_REACHABLE; 1162 ln->ln_byhint = 0; 1163 } else { 1164 /* 1165 * When req == RTM_RESOLVE, rt is created and 1166 * initialized in rtrequest(), so rt_expire is 0. 1167 */ 1168 ln->ln_state = ND6_LLINFO_NOSTATE; 1169 nd6_llinfo_settimer(ln, 0); 1170 } 1171 rt->rt_flags |= RTF_LLINFO; 1172 ln->ln_next = llinfo_nd6.ln_next; 1173 llinfo_nd6.ln_next = ln; 1174 ln->ln_prev = &llinfo_nd6; 1175 ln->ln_next->ln_prev = ln; 1176 1177 /* 1178 * check if rt_key(rt) is one of my address assigned 1179 * to the interface. 1180 */ 1181 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, 1182 &SIN6(rt_key(rt))->sin6_addr); 1183 if (ifa) { 1184 caddr_t macp = nd6_ifptomac(ifp); 1185 nd6_llinfo_settimer(ln, -1); 1186 ln->ln_state = ND6_LLINFO_REACHABLE; 1187 ln->ln_byhint = 0; 1188 if (macp) { 1189 Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); 1190 SDL(gate)->sdl_alen = ifp->if_addrlen; 1191 } 1192 if (nd6_useloopback) { 1193 rt->rt_ifp = lo0ifp; /* XXX */ 1194 /* 1195 * Make sure rt_ifa be equal to the ifaddr 1196 * corresponding to the address. 1197 * We need this because when we refer 1198 * rt_ifa->ia6_flags in ip6_input, we assume 1199 * that the rt_ifa points to the address instead 1200 * of the loopback address. 1201 */ 1202 if (ifa != rt->rt_ifa) { 1203 IFAFREE(rt->rt_ifa); 1204 IFAREF(ifa); 1205 rt->rt_ifa = ifa; 1206 } 1207 } 1208 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1209 nd6_llinfo_settimer(ln, -1); 1210 ln->ln_state = ND6_LLINFO_REACHABLE; 1211 ln->ln_byhint = 0; 1212 1213 /* join solicited node multicast for proxy ND */ 1214 if (ifp->if_flags & IFF_MULTICAST) { 1215 struct in6_addr llsol; 1216 int error; 1217 1218 llsol = SIN6(rt_key(rt))->sin6_addr; 1219 llsol.s6_addr32[0] = htonl(0xff020000); 1220 llsol.s6_addr32[1] = 0; 1221 llsol.s6_addr32[2] = htonl(1); 1222 llsol.s6_addr8[12] = 0xff; 1223 if (in6_setscope(&llsol, ifp, NULL)) 1224 break; 1225 if (!in6_addmulti(&llsol, ifp, &error)) { 1226 nd6log((LOG_ERR, "%s: failed to join " 1227 "%s (errno=%d)\n", if_name(ifp), 1228 ip6_sprintf(&llsol), error)); 1229 } 1230 } 1231 } 1232 break; 1233 1234 case RTM_DELETE: 1235 if (!ln) 1236 break; 1237 /* leave from solicited node multicast for proxy ND */ 1238 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && 1239 (ifp->if_flags & IFF_MULTICAST) != 0) { 1240 struct in6_addr llsol; 1241 struct in6_multi *in6m; 1242 1243 llsol = SIN6(rt_key(rt))->sin6_addr; 1244 llsol.s6_addr32[0] = htonl(0xff020000); 1245 llsol.s6_addr32[1] = 0; 1246 llsol.s6_addr32[2] = htonl(1); 1247 llsol.s6_addr8[12] = 0xff; 1248 if (in6_setscope(&llsol, ifp, NULL) == 0) { 1249 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1250 if (in6m) 1251 in6_delmulti(in6m); 1252 } else 1253 ; /* XXX: should not happen. bark here? */ 1254 } 1255 nd6_inuse--; 1256 ln->ln_next->ln_prev = ln->ln_prev; 1257 ln->ln_prev->ln_next = ln->ln_next; 1258 ln->ln_prev = NULL; 1259 nd6_llinfo_settimer(ln, -1); 1260 rt->rt_llinfo = 0; 1261 rt->rt_flags &= ~RTF_LLINFO; 1262 if (ln->ln_hold) 1263 m_freem(ln->ln_hold); 1264 Free((caddr_t)ln); 1265 } 1266 } 1267 1268 int 1269 nd6_ioctl(cmd, data, ifp) 1270 u_long cmd; 1271 caddr_t data; 1272 struct ifnet *ifp; 1273 { 1274 struct in6_drlist *drl = (struct in6_drlist *)data; 1275 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1276 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1277 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1278 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1279 struct nd_defrouter *dr; 1280 struct nd_prefix *pr; 1281 struct rtentry *rt; 1282 int i = 0, error = 0; 1283 int s; 1284 1285 switch (cmd) { 1286 case SIOCGDRLST_IN6: 1287 /* 1288 * obsolete API, use sysctl under net.inet6.icmp6 1289 */ 1290 bzero(drl, sizeof(*drl)); 1291 s = splsoftnet(); 1292 dr = TAILQ_FIRST(&nd_defrouter); 1293 while (dr && i < DRLSTSIZ) { 1294 drl->defrouter[i].rtaddr = dr->rtaddr; 1295 in6_clearscope(&drl->defrouter[i].rtaddr); 1296 1297 drl->defrouter[i].flags = dr->flags; 1298 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1299 drl->defrouter[i].expire = dr->expire; 1300 drl->defrouter[i].if_index = dr->ifp->if_index; 1301 i++; 1302 dr = TAILQ_NEXT(dr, dr_entry); 1303 } 1304 splx(s); 1305 break; 1306 case SIOCGPRLST_IN6: 1307 /* 1308 * obsolete API, use sysctl under net.inet6.icmp6 1309 * 1310 * XXX the structure in6_prlist was changed in backward- 1311 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1312 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1313 */ 1314 /* 1315 * XXX meaning of fields, especialy "raflags", is very 1316 * differnet between RA prefix list and RR/static prefix list. 1317 * how about separating ioctls into two? 1318 */ 1319 bzero(oprl, sizeof(*oprl)); 1320 s = splsoftnet(); 1321 pr = nd_prefix.lh_first; 1322 while (pr && i < PRLSTSIZ) { 1323 struct nd_pfxrouter *pfr; 1324 int j; 1325 1326 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1327 oprl->prefix[i].raflags = pr->ndpr_raf; 1328 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1329 oprl->prefix[i].vltime = pr->ndpr_vltime; 1330 oprl->prefix[i].pltime = pr->ndpr_pltime; 1331 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1332 oprl->prefix[i].expire = pr->ndpr_expire; 1333 1334 pfr = pr->ndpr_advrtrs.lh_first; 1335 j = 0; 1336 while (pfr) { 1337 if (j < DRLSTSIZ) { 1338 #define RTRADDR oprl->prefix[i].advrtr[j] 1339 RTRADDR = pfr->router->rtaddr; 1340 in6_clearscope(&RTRADDR); 1341 #undef RTRADDR 1342 } 1343 j++; 1344 pfr = pfr->pfr_next; 1345 } 1346 oprl->prefix[i].advrtrs = j; 1347 oprl->prefix[i].origin = PR_ORIG_RA; 1348 1349 i++; 1350 pr = pr->ndpr_next; 1351 } 1352 splx(s); 1353 1354 break; 1355 case OSIOCGIFINFO_IN6: 1356 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1357 bzero(&ndi->ndi, sizeof(ndi->ndi)); 1358 ndi->ndi.linkmtu = IN6_LINKMTU(ifp); 1359 ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu; 1360 ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable; 1361 ndi->ndi.reachable = ND_IFINFO(ifp)->reachable; 1362 ndi->ndi.retrans = ND_IFINFO(ifp)->retrans; 1363 ndi->ndi.flags = ND_IFINFO(ifp)->flags; 1364 ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm; 1365 ndi->ndi.chlim = ND_IFINFO(ifp)->chlim; 1366 break; 1367 case SIOCGIFINFO_IN6: 1368 ndi->ndi = *ND_IFINFO(ifp); 1369 break; 1370 case SIOCSIFINFO_FLAGS: 1371 ND_IFINFO(ifp)->flags = ndi->ndi.flags; 1372 break; 1373 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1374 /* sync kernel routing table with the default router list */ 1375 defrouter_reset(); 1376 defrouter_select(); 1377 break; 1378 case SIOCSPFXFLUSH_IN6: 1379 { 1380 /* flush all the prefix advertised by routers */ 1381 struct nd_prefix *pfx, *next; 1382 1383 s = splsoftnet(); 1384 for (pfx = nd_prefix.lh_first; pfx; pfx = next) { 1385 struct in6_ifaddr *ia, *ia_next; 1386 1387 next = pfx->ndpr_next; 1388 1389 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr)) 1390 continue; /* XXX */ 1391 1392 /* do we really have to remove addresses as well? */ 1393 for (ia = in6_ifaddr; ia; ia = ia_next) { 1394 /* ia might be removed. keep the next ptr. */ 1395 ia_next = ia->ia_next; 1396 1397 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1398 continue; 1399 1400 if (ia->ia6_ndpr == pfx) 1401 in6_purgeaddr(&ia->ia_ifa); 1402 } 1403 prelist_remove(pfx); 1404 } 1405 splx(s); 1406 break; 1407 } 1408 case SIOCSRTRFLUSH_IN6: 1409 { 1410 /* flush all the default routers */ 1411 struct nd_defrouter *drtr, *next; 1412 1413 s = splsoftnet(); 1414 defrouter_reset(); 1415 for (drtr = TAILQ_FIRST(&nd_defrouter); drtr; drtr = next) { 1416 next = TAILQ_NEXT(drtr, dr_entry); 1417 defrtrlist_del(drtr); 1418 } 1419 defrouter_select(); 1420 splx(s); 1421 break; 1422 } 1423 case SIOCGNBRINFO_IN6: 1424 { 1425 struct llinfo_nd6 *ln; 1426 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1427 1428 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1429 return (error); 1430 1431 s = splsoftnet(); 1432 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL || 1433 (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) { 1434 error = EINVAL; 1435 splx(s); 1436 break; 1437 } 1438 nbi->state = ln->ln_state; 1439 nbi->asked = ln->ln_asked; 1440 nbi->isrouter = ln->ln_router; 1441 nbi->expire = ln->ln_expire; 1442 splx(s); 1443 1444 break; 1445 } 1446 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1447 ndif->ifindex = nd6_defifindex; 1448 break; 1449 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1450 return (nd6_setdefaultiface(ndif->ifindex)); 1451 } 1452 return (error); 1453 } 1454 1455 /* 1456 * Create neighbor cache entry and cache link-layer address, 1457 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1458 */ 1459 struct rtentry * 1460 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code) 1461 struct ifnet *ifp; 1462 struct in6_addr *from; 1463 char *lladdr; 1464 int lladdrlen; 1465 int type; /* ICMP6 type */ 1466 int code; /* type dependent information */ 1467 { 1468 struct rtentry *rt = NULL; 1469 struct llinfo_nd6 *ln = NULL; 1470 int is_newentry; 1471 struct sockaddr_dl *sdl = NULL; 1472 int do_update; 1473 int olladdr; 1474 int llchange; 1475 int newstate = 0; 1476 1477 if (!ifp) 1478 panic("ifp == NULL in nd6_cache_lladdr"); 1479 if (!from) 1480 panic("from == NULL in nd6_cache_lladdr"); 1481 1482 /* nothing must be updated for unspecified address */ 1483 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1484 return NULL; 1485 1486 /* 1487 * Validation about ifp->if_addrlen and lladdrlen must be done in 1488 * the caller. 1489 * 1490 * XXX If the link does not have link-layer adderss, what should 1491 * we do? (ifp->if_addrlen == 0) 1492 * Spec says nothing in sections for RA, RS and NA. There's small 1493 * description on it in NS section (RFC 2461 7.2.3). 1494 */ 1495 1496 rt = nd6_lookup(from, 0, ifp); 1497 if (!rt) { 1498 #if 0 1499 /* nothing must be done if there's no lladdr */ 1500 if (!lladdr || !lladdrlen) 1501 return NULL; 1502 #endif 1503 1504 rt = nd6_lookup(from, 1, ifp); 1505 is_newentry = 1; 1506 } else { 1507 /* do nothing if static ndp is set */ 1508 if (rt->rt_flags & RTF_STATIC) 1509 return NULL; 1510 is_newentry = 0; 1511 } 1512 1513 if (!rt) 1514 return NULL; 1515 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { 1516 fail: 1517 (void)nd6_free(rt, 0); 1518 return NULL; 1519 } 1520 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1521 if (!ln) 1522 goto fail; 1523 if (!rt->rt_gateway) 1524 goto fail; 1525 if (rt->rt_gateway->sa_family != AF_LINK) 1526 goto fail; 1527 sdl = SDL(rt->rt_gateway); 1528 1529 olladdr = (sdl->sdl_alen) ? 1 : 0; 1530 if (olladdr && lladdr) { 1531 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) 1532 llchange = 1; 1533 else 1534 llchange = 0; 1535 } else 1536 llchange = 0; 1537 1538 /* 1539 * newentry olladdr lladdr llchange (*=record) 1540 * 0 n n -- (1) 1541 * 0 y n -- (2) 1542 * 0 n y -- (3) * STALE 1543 * 0 y y n (4) * 1544 * 0 y y y (5) * STALE 1545 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1546 * 1 -- y -- (7) * STALE 1547 */ 1548 1549 if (lladdr) { /* (3-5) and (7) */ 1550 /* 1551 * Record source link-layer address 1552 * XXX is it dependent to ifp->if_type? 1553 */ 1554 sdl->sdl_alen = ifp->if_addrlen; 1555 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); 1556 } 1557 1558 if (!is_newentry) { 1559 if ((!olladdr && lladdr) || /* (3) */ 1560 (olladdr && lladdr && llchange)) { /* (5) */ 1561 do_update = 1; 1562 newstate = ND6_LLINFO_STALE; 1563 } else /* (1-2,4) */ 1564 do_update = 0; 1565 } else { 1566 do_update = 1; 1567 if (!lladdr) /* (6) */ 1568 newstate = ND6_LLINFO_NOSTATE; 1569 else /* (7) */ 1570 newstate = ND6_LLINFO_STALE; 1571 } 1572 1573 if (do_update) { 1574 /* 1575 * Update the state of the neighbor cache. 1576 */ 1577 ln->ln_state = newstate; 1578 1579 if (ln->ln_state == ND6_LLINFO_STALE) { 1580 /* 1581 * XXX: since nd6_output() below will cause 1582 * state tansition to DELAY and reset the timer, 1583 * we must set the timer now, although it is actually 1584 * meaningless. 1585 */ 1586 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 1587 1588 if (ln->ln_hold) { 1589 /* 1590 * we assume ifp is not a p2p here, so just 1591 * set the 2nd argument as the 1st one. 1592 */ 1593 nd6_output(ifp, ifp, ln->ln_hold, 1594 (struct sockaddr_in6 *)rt_key(rt), rt); 1595 ln->ln_hold = NULL; 1596 } 1597 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1598 /* probe right away */ 1599 nd6_llinfo_settimer((void *)ln, 0); 1600 } 1601 } 1602 1603 /* 1604 * ICMP6 type dependent behavior. 1605 * 1606 * NS: clear IsRouter if new entry 1607 * RS: clear IsRouter 1608 * RA: set IsRouter if there's lladdr 1609 * redir: clear IsRouter if new entry 1610 * 1611 * RA case, (1): 1612 * The spec says that we must set IsRouter in the following cases: 1613 * - If lladdr exist, set IsRouter. This means (1-5). 1614 * - If it is old entry (!newentry), set IsRouter. This means (7). 1615 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1616 * A quetion arises for (1) case. (1) case has no lladdr in the 1617 * neighbor cache, this is similar to (6). 1618 * This case is rare but we figured that we MUST NOT set IsRouter. 1619 * 1620 * newentry olladdr lladdr llchange NS RS RA redir 1621 * D R 1622 * 0 n n -- (1) c ? s 1623 * 0 y n -- (2) c s s 1624 * 0 n y -- (3) c s s 1625 * 0 y y n (4) c s s 1626 * 0 y y y (5) c s s 1627 * 1 -- n -- (6) c c c s 1628 * 1 -- y -- (7) c c s c s 1629 * 1630 * (c=clear s=set) 1631 */ 1632 switch (type & 0xff) { 1633 case ND_NEIGHBOR_SOLICIT: 1634 /* 1635 * New entry must have is_router flag cleared. 1636 */ 1637 if (is_newentry) /* (6-7) */ 1638 ln->ln_router = 0; 1639 break; 1640 case ND_REDIRECT: 1641 /* 1642 * If the icmp is a redirect to a better router, always set the 1643 * is_router flag. Otherwise, if the entry is newly created, 1644 * clear the flag. [RFC 2461, sec 8.3] 1645 */ 1646 if (code == ND_REDIRECT_ROUTER) 1647 ln->ln_router = 1; 1648 else if (is_newentry) /* (6-7) */ 1649 ln->ln_router = 0; 1650 break; 1651 case ND_ROUTER_SOLICIT: 1652 /* 1653 * is_router flag must always be cleared. 1654 */ 1655 ln->ln_router = 0; 1656 break; 1657 case ND_ROUTER_ADVERT: 1658 /* 1659 * Mark an entry with lladdr as a router. 1660 */ 1661 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 1662 (is_newentry && lladdr)) { /* (7) */ 1663 ln->ln_router = 1; 1664 } 1665 break; 1666 } 1667 1668 /* 1669 * When the link-layer address of a router changes, select the 1670 * best router again. In particular, when the neighbor entry is newly 1671 * created, it might affect the selection policy. 1672 * Question: can we restrict the first condition to the "is_newentry" 1673 * case? 1674 * XXX: when we hear an RA from a new router with the link-layer 1675 * address option, defrouter_select() is called twice, since 1676 * defrtrlist_update called the function as well. However, I believe 1677 * we can compromise the overhead, since it only happens the first 1678 * time. 1679 * XXX: although defrouter_select() should not have a bad effect 1680 * for those are not autoconfigured hosts, we explicitly avoid such 1681 * cases for safety. 1682 */ 1683 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv) 1684 defrouter_select(); 1685 1686 return rt; 1687 } 1688 1689 static void 1690 nd6_slowtimo(ignored_arg) 1691 void *ignored_arg; 1692 { 1693 int s = splsoftnet(); 1694 struct nd_ifinfo *nd6if; 1695 struct ifnet *ifp; 1696 1697 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1698 nd6_slowtimo, NULL); 1699 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 1700 { 1701 nd6if = ND_IFINFO(ifp); 1702 if (nd6if->basereachable && /* already initialized */ 1703 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1704 /* 1705 * Since reachable time rarely changes by router 1706 * advertisements, we SHOULD insure that a new random 1707 * value gets recomputed at least once every few hours. 1708 * (RFC 2461, 6.3.4) 1709 */ 1710 nd6if->recalctm = nd6_recalc_reachtm_interval; 1711 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1712 } 1713 } 1714 splx(s); 1715 } 1716 1717 #define senderr(e) { error = (e); goto bad;} 1718 int 1719 nd6_output(ifp, origifp, m0, dst, rt0) 1720 struct ifnet *ifp; 1721 struct ifnet *origifp; 1722 struct mbuf *m0; 1723 struct sockaddr_in6 *dst; 1724 struct rtentry *rt0; 1725 { 1726 struct mbuf *m = m0; 1727 struct rtentry *rt = rt0; 1728 struct sockaddr_in6 *gw6 = NULL; 1729 struct llinfo_nd6 *ln = NULL; 1730 int error = 0; 1731 1732 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1733 goto sendpkt; 1734 1735 if (nd6_need_cache(ifp) == 0) 1736 goto sendpkt; 1737 1738 /* 1739 * next hop determination. This routine is derived from ether_outpout. 1740 */ 1741 if (rt) { 1742 if ((rt->rt_flags & RTF_UP) == 0) { 1743 if ((rt0 = rt = rtalloc1((struct sockaddr *)dst, 1744 1)) != NULL) 1745 { 1746 rt->rt_refcnt--; 1747 if (rt->rt_ifp != ifp) 1748 senderr(EHOSTUNREACH); 1749 } else 1750 senderr(EHOSTUNREACH); 1751 } 1752 1753 if (rt->rt_flags & RTF_GATEWAY) { 1754 gw6 = (struct sockaddr_in6 *)rt->rt_gateway; 1755 1756 /* 1757 * We skip link-layer address resolution and NUD 1758 * if the gateway is not a neighbor from ND point 1759 * of view, regardless of the value of nd_ifinfo.flags. 1760 * The second condition is a bit tricky; we skip 1761 * if the gateway is our own address, which is 1762 * sometimes used to install a route to a p2p link. 1763 */ 1764 if (!nd6_is_addr_neighbor(gw6, ifp) || 1765 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) { 1766 /* 1767 * We allow this kind of tricky route only 1768 * when the outgoing interface is p2p. 1769 * XXX: we may need a more generic rule here. 1770 */ 1771 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1772 senderr(EHOSTUNREACH); 1773 1774 goto sendpkt; 1775 } 1776 1777 if (rt->rt_gwroute == 0) 1778 goto lookup; 1779 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) { 1780 rtfree(rt); rt = rt0; 1781 lookup: 1782 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1); 1783 if ((rt = rt->rt_gwroute) == 0) 1784 senderr(EHOSTUNREACH); 1785 /* the "G" test below also prevents rt == rt0 */ 1786 if ((rt->rt_flags & RTF_GATEWAY) || 1787 (rt->rt_ifp != ifp)) { 1788 rt->rt_refcnt--; 1789 rt0->rt_gwroute = 0; 1790 senderr(EHOSTUNREACH); 1791 } 1792 } 1793 } 1794 } 1795 1796 /* 1797 * Address resolution or Neighbor Unreachability Detection 1798 * for the next hop. 1799 * At this point, the destination of the packet must be a unicast 1800 * or an anycast address(i.e. not a multicast). 1801 */ 1802 1803 /* Look up the neighbor cache for the nexthop */ 1804 if (rt && (rt->rt_flags & RTF_LLINFO) != 0) 1805 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1806 else { 1807 /* 1808 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 1809 * the condition below is not very efficient. But we believe 1810 * it is tolerable, because this should be a rare case. 1811 */ 1812 if (nd6_is_addr_neighbor(dst, ifp) && 1813 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL) 1814 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1815 } 1816 if (!ln || !rt) { 1817 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 1818 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 1819 log(LOG_DEBUG, 1820 "nd6_output: can't allocate llinfo for %s " 1821 "(ln=%p, rt=%p)\n", 1822 ip6_sprintf(&dst->sin6_addr), ln, rt); 1823 senderr(EIO); /* XXX: good error? */ 1824 } 1825 1826 goto sendpkt; /* send anyway */ 1827 } 1828 1829 /* We don't have to do link-layer address resolution on a p2p link. */ 1830 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 1831 ln->ln_state < ND6_LLINFO_REACHABLE) { 1832 ln->ln_state = ND6_LLINFO_STALE; 1833 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 1834 } 1835 1836 /* 1837 * The first time we send a packet to a neighbor whose entry is 1838 * STALE, we have to change the state to DELAY and a sets a timer to 1839 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 1840 * neighbor unreachability detection on expiration. 1841 * (RFC 2461 7.3.3) 1842 */ 1843 if (ln->ln_state == ND6_LLINFO_STALE) { 1844 ln->ln_asked = 0; 1845 ln->ln_state = ND6_LLINFO_DELAY; 1846 nd6_llinfo_settimer(ln, nd6_delay * hz); 1847 } 1848 1849 /* 1850 * If the neighbor cache entry has a state other than INCOMPLETE 1851 * (i.e. its link-layer address is already resolved), just 1852 * send the packet. 1853 */ 1854 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1855 goto sendpkt; 1856 1857 /* 1858 * There is a neighbor cache entry, but no ethernet address 1859 * response yet. Replace the held mbuf (if any) with this 1860 * latest one. 1861 */ 1862 if (ln->ln_state == ND6_LLINFO_NOSTATE) 1863 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1864 if (ln->ln_hold) 1865 m_freem(ln->ln_hold); 1866 ln->ln_hold = m; 1867 /* 1868 * If there has been no NS for the neighbor after entering the 1869 * INCOMPLETE state, send the first solicitation. 1870 */ 1871 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) { 1872 ln->ln_asked++; 1873 nd6_llinfo_settimer(ln, 1874 (long)ND_IFINFO(ifp)->retrans * hz / 1000); 1875 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 1876 } 1877 return (0); 1878 1879 sendpkt: 1880 1881 #ifdef IPSEC 1882 /* clean ipsec history once it goes out of the node */ 1883 ipsec_delaux(m); 1884 #endif 1885 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 1886 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst, 1887 rt)); 1888 } 1889 return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt)); 1890 1891 bad: 1892 if (m) 1893 m_freem(m); 1894 return (error); 1895 } 1896 #undef senderr 1897 1898 int 1899 nd6_need_cache(ifp) 1900 struct ifnet *ifp; 1901 { 1902 /* 1903 * XXX: we currently do not make neighbor cache on any interface 1904 * other than ARCnet, Ethernet, FDDI and GIF. 1905 * 1906 * RFC2893 says: 1907 * - unidirectional tunnels needs no ND 1908 */ 1909 switch (ifp->if_type) { 1910 case IFT_ARCNET: 1911 case IFT_ETHER: 1912 case IFT_FDDI: 1913 case IFT_IEEE1394: 1914 case IFT_GIF: /* XXX need more cases? */ 1915 return (1); 1916 default: 1917 return (0); 1918 } 1919 } 1920 1921 int 1922 nd6_storelladdr(ifp, rt, m, dst, desten) 1923 struct ifnet *ifp; 1924 struct rtentry *rt; 1925 struct mbuf *m; 1926 struct sockaddr *dst; 1927 u_char *desten; 1928 { 1929 struct sockaddr_dl *sdl; 1930 1931 if (m->m_flags & M_MCAST) { 1932 switch (ifp->if_type) { 1933 case IFT_ETHER: 1934 case IFT_FDDI: 1935 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 1936 desten); 1937 return (1); 1938 case IFT_IEEE1394: 1939 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen); 1940 return (1); 1941 case IFT_ARCNET: 1942 *desten = 0; 1943 return (1); 1944 default: 1945 m_freem(m); 1946 return (0); 1947 } 1948 } 1949 1950 if (rt == NULL) { 1951 /* this could happen, if we could not allocate memory */ 1952 m_freem(m); 1953 return (0); 1954 } 1955 if (rt->rt_gateway->sa_family != AF_LINK) { 1956 printf("nd6_storelladdr: something odd happens\n"); 1957 m_freem(m); 1958 return (0); 1959 } 1960 sdl = SDL(rt->rt_gateway); 1961 if (sdl->sdl_alen == 0) { 1962 /* this should be impossible, but we bark here for debugging */ 1963 printf("nd6_storelladdr: sdl_alen == 0, dst=%s, if=%s\n", 1964 ip6_sprintf(&SIN6(dst)->sin6_addr), if_name(ifp)); 1965 m_freem(m); 1966 return (0); 1967 } 1968 1969 bcopy(LLADDR(sdl), desten, sdl->sdl_alen); 1970 return (1); 1971 } 1972 1973 int 1974 nd6_sysctl(name, oldp, oldlenp, newp, newlen) 1975 int name; 1976 void *oldp; /* syscall arg, need copyout */ 1977 size_t *oldlenp; 1978 void *newp; /* syscall arg, need copyin */ 1979 size_t newlen; 1980 { 1981 void *p; 1982 size_t ol; 1983 int error; 1984 1985 error = 0; 1986 1987 if (newp) 1988 return EPERM; 1989 if (oldp && !oldlenp) 1990 return EINVAL; 1991 ol = oldlenp ? *oldlenp : 0; 1992 1993 if (oldp) { 1994 p = malloc(*oldlenp, M_TEMP, M_WAITOK); 1995 if (!p) 1996 return ENOMEM; 1997 } else 1998 p = NULL; 1999 switch (name) { 2000 case ICMPV6CTL_ND6_DRLIST: 2001 error = fill_drlist(p, oldlenp, ol); 2002 if (!error && p && oldp) 2003 error = copyout(p, oldp, *oldlenp); 2004 break; 2005 2006 case ICMPV6CTL_ND6_PRLIST: 2007 error = fill_prlist(p, oldlenp, ol); 2008 if (!error && p && oldp) 2009 error = copyout(p, oldp, *oldlenp); 2010 break; 2011 2012 default: 2013 error = ENOPROTOOPT; 2014 break; 2015 } 2016 if (p) 2017 free(p, M_TEMP); 2018 2019 return (error); 2020 } 2021 2022 static int 2023 fill_drlist(oldp, oldlenp, ol) 2024 void *oldp; 2025 size_t *oldlenp, ol; 2026 { 2027 int error = 0, s; 2028 struct in6_defrouter *d = NULL, *de = NULL; 2029 struct nd_defrouter *dr; 2030 size_t l; 2031 2032 s = splsoftnet(); 2033 2034 if (oldp) { 2035 d = (struct in6_defrouter *)oldp; 2036 de = (struct in6_defrouter *)((caddr_t)oldp + *oldlenp); 2037 } 2038 l = 0; 2039 2040 for (dr = TAILQ_FIRST(&nd_defrouter); dr; 2041 dr = TAILQ_NEXT(dr, dr_entry)) { 2042 2043 if (oldp && d + 1 <= de) { 2044 bzero(d, sizeof(*d)); 2045 d->rtaddr.sin6_family = AF_INET6; 2046 d->rtaddr.sin6_len = sizeof(struct sockaddr_in6); 2047 d->rtaddr.sin6_addr = dr->rtaddr; 2048 if (sa6_recoverscope(&d->rtaddr)) { 2049 log(LOG_ERR, 2050 "scope error in router list (%s)\n", 2051 ip6_sprintf(&d->rtaddr.sin6_addr)); 2052 /* XXX: press on... */ 2053 } 2054 d->flags = dr->flags; 2055 d->rtlifetime = dr->rtlifetime; 2056 d->expire = dr->expire; 2057 d->if_index = dr->ifp->if_index; 2058 } 2059 2060 l += sizeof(*d); 2061 if (d) 2062 d++; 2063 } 2064 2065 if (oldp) { 2066 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */ 2067 if (l > ol) 2068 error = ENOMEM; 2069 } else 2070 *oldlenp = l; 2071 2072 splx(s); 2073 2074 return (error); 2075 } 2076 2077 static int 2078 fill_prlist(oldp, oldlenp, ol) 2079 void *oldp; 2080 size_t *oldlenp, ol; 2081 { 2082 int error = 0, s; 2083 struct nd_prefix *pr; 2084 struct in6_prefix *p = NULL; 2085 struct in6_prefix *pe = NULL; 2086 size_t l; 2087 2088 s = splsoftnet(); 2089 2090 if (oldp) { 2091 p = (struct in6_prefix *)oldp; 2092 pe = (struct in6_prefix *)((caddr_t)oldp + *oldlenp); 2093 } 2094 l = 0; 2095 2096 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 2097 u_short advrtrs; 2098 size_t advance; 2099 struct sockaddr_in6 *sin6; 2100 struct sockaddr_in6 *s6; 2101 struct nd_pfxrouter *pfr; 2102 2103 if (oldp && p + 1 <= pe) 2104 { 2105 bzero(p, sizeof(*p)); 2106 sin6 = (struct sockaddr_in6 *)(p + 1); 2107 2108 p->prefix = pr->ndpr_prefix; 2109 if (sa6_recoverscope(&p->prefix)) { 2110 log(LOG_ERR, 2111 "scope error in prefix list (%s)\n", 2112 ip6_sprintf(&p->prefix.sin6_addr)); 2113 /* XXX: press on... */ 2114 } 2115 p->raflags = pr->ndpr_raf; 2116 p->prefixlen = pr->ndpr_plen; 2117 p->vltime = pr->ndpr_vltime; 2118 p->pltime = pr->ndpr_pltime; 2119 p->if_index = pr->ndpr_ifp->if_index; 2120 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2121 p->expire = 0; 2122 else { 2123 time_t maxexpire; 2124 2125 /* XXX: we assume time_t is signed. */ 2126 maxexpire = (-1) & 2127 ~(1 << ((sizeof(maxexpire) * 8) - 1)); 2128 if (pr->ndpr_vltime < 2129 maxexpire - pr->ndpr_lastupdate) { 2130 p->expire = pr->ndpr_lastupdate + 2131 pr->ndpr_vltime; 2132 } else 2133 p->expire = maxexpire; 2134 } 2135 p->refcnt = pr->ndpr_refcnt; 2136 p->flags = pr->ndpr_stateflags; 2137 p->origin = PR_ORIG_RA; 2138 advrtrs = 0; 2139 for (pfr = pr->ndpr_advrtrs.lh_first; pfr; 2140 pfr = pfr->pfr_next) { 2141 if ((void *)&sin6[advrtrs + 1] > (void *)pe) { 2142 advrtrs++; 2143 continue; 2144 } 2145 s6 = &sin6[advrtrs]; 2146 s6->sin6_family = AF_INET6; 2147 s6->sin6_len = sizeof(struct sockaddr_in6); 2148 s6->sin6_addr = pfr->router->rtaddr; 2149 s6->sin6_scope_id = 0; 2150 if (sa6_recoverscope(s6)) { 2151 log(LOG_ERR, 2152 "scope error in " 2153 "prefix list (%s)\n", 2154 ip6_sprintf(&pfr->router->rtaddr)); 2155 } 2156 advrtrs++; 2157 } 2158 p->advrtrs = advrtrs; 2159 } 2160 else { 2161 advrtrs = 0; 2162 for (pfr = pr->ndpr_advrtrs.lh_first; pfr; 2163 pfr = pfr->pfr_next) 2164 advrtrs++; 2165 } 2166 2167 advance = sizeof(*p) + sizeof(*sin6) * advrtrs; 2168 l += advance; 2169 if (p) 2170 p = (struct in6_prefix *)((caddr_t)p + advance); 2171 } 2172 2173 if (oldp) { 2174 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */ 2175 if (l > ol) 2176 error = ENOMEM; 2177 } else 2178 *oldlenp = l; 2179 2180 splx(s); 2181 2182 return (error); 2183 } 2184