1 /* $NetBSD: nd6.c,v 1.90 2004/05/19 17:45:05 itojun Exp $ */ 2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.90 2004/05/19 17:45:05 itojun Exp $"); 35 36 #include "opt_ipsec.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/callout.h> 41 #include <sys/malloc.h> 42 #include <sys/mbuf.h> 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 #include <sys/time.h> 46 #include <sys/kernel.h> 47 #include <sys/protosw.h> 48 #include <sys/errno.h> 49 #include <sys/ioctl.h> 50 #include <sys/syslog.h> 51 #include <sys/queue.h> 52 53 #include <net/if.h> 54 #include <net/if_dl.h> 55 #include <net/if_types.h> 56 #include <net/route.h> 57 #include <net/if_ether.h> 58 #include <net/if_fddi.h> 59 #include <net/if_arc.h> 60 61 #include <netinet/in.h> 62 #include <netinet6/in6_var.h> 63 #include <netinet/ip6.h> 64 #include <netinet6/ip6_var.h> 65 #include <netinet6/nd6.h> 66 #include <netinet/icmp6.h> 67 68 #ifdef IPSEC 69 #include <netinet6/ipsec.h> 70 #endif 71 72 #include "loop.h" 73 extern struct ifnet loif[NLOOP]; 74 75 #include <net/net_osdep.h> 76 77 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 78 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 79 80 #define SIN6(s) ((struct sockaddr_in6 *)s) 81 #define SDL(s) ((struct sockaddr_dl *)s) 82 83 /* timer values */ 84 int nd6_prune = 1; /* walk list every 1 seconds */ 85 int nd6_delay = 5; /* delay first probe time 5 second */ 86 int nd6_umaxtries = 3; /* maximum unicast query */ 87 int nd6_mmaxtries = 3; /* maximum multicast query */ 88 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 89 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 90 91 /* preventing too many loops in ND option parsing */ 92 int nd6_maxndopt = 10; /* max # of ND options allowed */ 93 94 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 95 96 #ifdef ND6_DEBUG 97 int nd6_debug = 1; 98 #else 99 int nd6_debug = 0; 100 #endif 101 102 /* for debugging? */ 103 static int nd6_inuse, nd6_allocated; 104 105 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6}; 106 struct nd_drhead nd_defrouter; 107 struct nd_prhead nd_prefix = { 0 }; 108 109 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 110 static struct sockaddr_in6 all1_sa; 111 112 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *)); 113 static void nd6_slowtimo __P((void *)); 114 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int)); 115 static void nd6_llinfo_timer __P((void *)); 116 117 struct callout nd6_slowtimo_ch = CALLOUT_INITIALIZER; 118 struct callout nd6_timer_ch = CALLOUT_INITIALIZER; 119 120 static int fill_drlist __P((void *, size_t *, size_t)); 121 static int fill_prlist __P((void *, size_t *, size_t)); 122 123 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery"); 124 125 void 126 nd6_init() 127 { 128 static int nd6_init_done = 0; 129 int i; 130 131 if (nd6_init_done) { 132 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n"); 133 return; 134 } 135 136 all1_sa.sin6_family = AF_INET6; 137 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 138 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) 139 all1_sa.sin6_addr.s6_addr[i] = 0xff; 140 141 /* initialization of the default router list */ 142 TAILQ_INIT(&nd_defrouter); 143 144 nd6_init_done = 1; 145 146 /* start timer */ 147 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 148 nd6_slowtimo, NULL); 149 } 150 151 struct nd_ifinfo * 152 nd6_ifattach(ifp) 153 struct ifnet *ifp; 154 { 155 struct nd_ifinfo *nd; 156 157 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK); 158 bzero(nd, sizeof(*nd)); 159 160 nd->initialized = 1; 161 162 nd->chlim = IPV6_DEFHLIM; 163 nd->basereachable = REACHABLE_TIME; 164 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 165 nd->retrans = RETRANS_TIMER; 166 /* 167 * Note that the default value of ip6_accept_rtadv is 0, which means 168 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV 169 * here. 170 */ 171 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV); 172 173 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 174 nd6_setmtu0(ifp, nd); 175 176 return nd; 177 } 178 179 void 180 nd6_ifdetach(nd) 181 struct nd_ifinfo *nd; 182 { 183 184 free(nd, M_IP6NDP); 185 } 186 187 void 188 nd6_setmtu(ifp) 189 struct ifnet *ifp; 190 { 191 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 192 } 193 194 void 195 nd6_setmtu0(ifp, ndi) 196 struct ifnet *ifp; 197 struct nd_ifinfo *ndi; 198 { 199 u_int32_t omaxmtu; 200 201 omaxmtu = ndi->maxmtu; 202 203 switch (ifp->if_type) { 204 case IFT_ARCNET: 205 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 206 break; 207 case IFT_FDDI: 208 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); 209 break; 210 default: 211 ndi->maxmtu = ifp->if_mtu; 212 break; 213 } 214 215 /* 216 * Decreasing the interface MTU under IPV6 minimum MTU may cause 217 * undesirable situation. We thus notify the operator of the change 218 * explicitly. The check for omaxmtu is necessary to restrict the 219 * log to the case of changing the MTU, not initializing it. 220 */ 221 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 222 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too" 223 " small for IPv6 which needs %lu\n", 224 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long) 225 IPV6_MMTU); 226 } 227 228 if (ndi->maxmtu > in6_maxmtu) 229 in6_setmaxmtu(); /* check all interfaces just in case */ 230 } 231 232 void 233 nd6_option_init(opt, icmp6len, ndopts) 234 void *opt; 235 int icmp6len; 236 union nd_opts *ndopts; 237 { 238 239 bzero(ndopts, sizeof(*ndopts)); 240 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 241 ndopts->nd_opts_last 242 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 243 244 if (icmp6len == 0) { 245 ndopts->nd_opts_done = 1; 246 ndopts->nd_opts_search = NULL; 247 } 248 } 249 250 /* 251 * Take one ND option. 252 */ 253 struct nd_opt_hdr * 254 nd6_option(ndopts) 255 union nd_opts *ndopts; 256 { 257 struct nd_opt_hdr *nd_opt; 258 int olen; 259 260 if (!ndopts) 261 panic("ndopts == NULL in nd6_option"); 262 if (!ndopts->nd_opts_last) 263 panic("uninitialized ndopts in nd6_option"); 264 if (!ndopts->nd_opts_search) 265 return NULL; 266 if (ndopts->nd_opts_done) 267 return NULL; 268 269 nd_opt = ndopts->nd_opts_search; 270 271 /* make sure nd_opt_len is inside the buffer */ 272 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 273 bzero(ndopts, sizeof(*ndopts)); 274 return NULL; 275 } 276 277 olen = nd_opt->nd_opt_len << 3; 278 if (olen == 0) { 279 /* 280 * Message validation requires that all included 281 * options have a length that is greater than zero. 282 */ 283 bzero(ndopts, sizeof(*ndopts)); 284 return NULL; 285 } 286 287 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 288 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 289 /* option overruns the end of buffer, invalid */ 290 bzero(ndopts, sizeof(*ndopts)); 291 return NULL; 292 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 293 /* reached the end of options chain */ 294 ndopts->nd_opts_done = 1; 295 ndopts->nd_opts_search = NULL; 296 } 297 return nd_opt; 298 } 299 300 /* 301 * Parse multiple ND options. 302 * This function is much easier to use, for ND routines that do not need 303 * multiple options of the same type. 304 */ 305 int 306 nd6_options(ndopts) 307 union nd_opts *ndopts; 308 { 309 struct nd_opt_hdr *nd_opt; 310 int i = 0; 311 312 if (!ndopts) 313 panic("ndopts == NULL in nd6_options"); 314 if (!ndopts->nd_opts_last) 315 panic("uninitialized ndopts in nd6_options"); 316 if (!ndopts->nd_opts_search) 317 return 0; 318 319 while (1) { 320 nd_opt = nd6_option(ndopts); 321 if (!nd_opt && !ndopts->nd_opts_last) { 322 /* 323 * Message validation requires that all included 324 * options have a length that is greater than zero. 325 */ 326 icmp6stat.icp6s_nd_badopt++; 327 bzero(ndopts, sizeof(*ndopts)); 328 return -1; 329 } 330 331 if (!nd_opt) 332 goto skip1; 333 334 switch (nd_opt->nd_opt_type) { 335 case ND_OPT_SOURCE_LINKADDR: 336 case ND_OPT_TARGET_LINKADDR: 337 case ND_OPT_MTU: 338 case ND_OPT_REDIRECTED_HEADER: 339 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 340 nd6log((LOG_INFO, 341 "duplicated ND6 option found (type=%d)\n", 342 nd_opt->nd_opt_type)); 343 /* XXX bark? */ 344 } else { 345 ndopts->nd_opt_array[nd_opt->nd_opt_type] 346 = nd_opt; 347 } 348 break; 349 case ND_OPT_PREFIX_INFORMATION: 350 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 351 ndopts->nd_opt_array[nd_opt->nd_opt_type] 352 = nd_opt; 353 } 354 ndopts->nd_opts_pi_end = 355 (struct nd_opt_prefix_info *)nd_opt; 356 break; 357 default: 358 /* 359 * Unknown options must be silently ignored, 360 * to accomodate future extension to the protocol. 361 */ 362 nd6log((LOG_DEBUG, 363 "nd6_options: unsupported option %d - " 364 "option ignored\n", nd_opt->nd_opt_type)); 365 } 366 367 skip1: 368 i++; 369 if (i > nd6_maxndopt) { 370 icmp6stat.icp6s_nd_toomanyopt++; 371 nd6log((LOG_INFO, "too many loop in nd opt\n")); 372 break; 373 } 374 375 if (ndopts->nd_opts_done) 376 break; 377 } 378 379 return 0; 380 } 381 382 /* 383 * ND6 timer routine to handle ND6 entries 384 */ 385 void 386 nd6_llinfo_settimer(ln, tick) 387 struct llinfo_nd6 *ln; 388 long tick; 389 { 390 int s; 391 392 s = splsoftnet(); 393 394 if (tick < 0) { 395 ln->ln_expire = 0; 396 ln->ln_ntick = 0; 397 callout_stop(&ln->ln_timer_ch); 398 } else { 399 ln->ln_expire = time.tv_sec + tick / hz; 400 if (tick > INT_MAX) { 401 ln->ln_ntick = tick - INT_MAX; 402 callout_reset(&ln->ln_timer_ch, INT_MAX, 403 nd6_llinfo_timer, ln); 404 } else { 405 ln->ln_ntick = 0; 406 callout_reset(&ln->ln_timer_ch, tick, 407 nd6_llinfo_timer, ln); 408 } 409 } 410 411 splx(s); 412 } 413 414 static void 415 nd6_llinfo_timer(arg) 416 void *arg; 417 { 418 int s; 419 struct llinfo_nd6 *ln; 420 struct rtentry *rt; 421 const struct sockaddr_in6 *dst; 422 struct ifnet *ifp; 423 struct nd_ifinfo *ndi = NULL; 424 425 s = splsoftnet(); 426 427 ln = (struct llinfo_nd6 *)arg; 428 429 if (ln->ln_ntick > 0) { 430 if (ln->ln_ntick > INT_MAX) { 431 ln->ln_ntick -= INT_MAX; 432 nd6_llinfo_settimer(ln, INT_MAX); 433 } else { 434 ln->ln_ntick = 0; 435 nd6_llinfo_settimer(ln, ln->ln_ntick); 436 } 437 splx(s); 438 return; 439 } 440 441 if ((rt = ln->ln_rt) == NULL) 442 panic("ln->ln_rt == NULL"); 443 if ((ifp = rt->rt_ifp) == NULL) 444 panic("ln->ln_rt->rt_ifp == NULL"); 445 ndi = ND_IFINFO(ifp); 446 dst = (struct sockaddr_in6 *)rt_key(rt); 447 448 /* sanity check */ 449 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) 450 panic("rt_llinfo(%p) is not equal to ln(%p)", 451 rt->rt_llinfo, ln); 452 if (!dst) 453 panic("dst=0 in nd6_timer(ln=%p)", ln); 454 455 switch (ln->ln_state) { 456 case ND6_LLINFO_INCOMPLETE: 457 if (ln->ln_asked < nd6_mmaxtries) { 458 ln->ln_asked++; 459 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 460 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 461 } else { 462 struct mbuf *m = ln->ln_hold; 463 if (m) { 464 ln->ln_hold = NULL; 465 /* 466 * Fake rcvif to make the ICMP error 467 * more helpful in diagnosing for the 468 * receiver. 469 * XXX: should we consider 470 * older rcvif? 471 */ 472 m->m_pkthdr.rcvif = rt->rt_ifp; 473 474 icmp6_error(m, ICMP6_DST_UNREACH, 475 ICMP6_DST_UNREACH_ADDR, 0); 476 } 477 (void)nd6_free(rt, 0); 478 ln = NULL; 479 } 480 break; 481 case ND6_LLINFO_REACHABLE: 482 if (!ND6_LLINFO_PERMANENT(ln)) { 483 ln->ln_state = ND6_LLINFO_STALE; 484 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 485 } 486 break; 487 488 case ND6_LLINFO_STALE: 489 /* Garbage Collection(RFC 2461 5.3) */ 490 if (!ND6_LLINFO_PERMANENT(ln)) { 491 (void)nd6_free(rt, 1); 492 ln = NULL; 493 } 494 break; 495 496 case ND6_LLINFO_DELAY: 497 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 498 /* We need NUD */ 499 ln->ln_asked = 1; 500 ln->ln_state = ND6_LLINFO_PROBE; 501 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 502 nd6_ns_output(ifp, &dst->sin6_addr, 503 &dst->sin6_addr, ln, 0); 504 } else { 505 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 506 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 507 } 508 break; 509 case ND6_LLINFO_PROBE: 510 if (ln->ln_asked < nd6_umaxtries) { 511 ln->ln_asked++; 512 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 513 nd6_ns_output(ifp, &dst->sin6_addr, 514 &dst->sin6_addr, ln, 0); 515 } else { 516 (void)nd6_free(rt, 0); 517 ln = NULL; 518 } 519 break; 520 } 521 522 splx(s); 523 } 524 525 /* 526 * ND6 timer routine to expire default route list and prefix list 527 */ 528 void 529 nd6_timer(ignored_arg) 530 void *ignored_arg; 531 { 532 int s; 533 struct nd_defrouter *dr; 534 struct nd_prefix *pr; 535 struct in6_ifaddr *ia6, *nia6; 536 537 s = splsoftnet(); 538 callout_reset(&nd6_timer_ch, nd6_prune * hz, 539 nd6_timer, NULL); 540 541 /* expire default router list */ 542 dr = TAILQ_FIRST(&nd_defrouter); 543 while (dr) { 544 if (dr->expire && dr->expire < time.tv_sec) { 545 struct nd_defrouter *t; 546 t = TAILQ_NEXT(dr, dr_entry); 547 defrtrlist_del(dr); 548 dr = t; 549 } else { 550 dr = TAILQ_NEXT(dr, dr_entry); 551 } 552 } 553 554 /* 555 * expire interface addresses. 556 * in the past the loop was inside prefix expiry processing. 557 * However, from a stricter speci-confrmance standpoint, we should 558 * rather separate address lifetimes and prefix lifetimes. 559 */ 560 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) { 561 nia6 = ia6->ia_next; 562 /* check address lifetime */ 563 if (IFA6_IS_INVALID(ia6)) { 564 in6_purgeaddr(&ia6->ia_ifa); 565 } 566 if (IFA6_IS_DEPRECATED(ia6)) { 567 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 568 } else { 569 /* 570 * A new RA might have made a deprecated address 571 * preferred. 572 */ 573 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 574 } 575 } 576 577 /* expire prefix list */ 578 pr = nd_prefix.lh_first; 579 while (pr) { 580 /* 581 * check prefix lifetime. 582 * since pltime is just for autoconf, pltime processing for 583 * prefix is not necessary. 584 */ 585 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 586 time.tv_sec - pr->ndpr_lastupdate > pr->ndpr_vltime) { 587 struct nd_prefix *t; 588 t = pr->ndpr_next; 589 590 /* 591 * address expiration and prefix expiration are 592 * separate. NEVER perform in6_purgeaddr here. 593 */ 594 595 prelist_remove(pr); 596 pr = t; 597 } else 598 pr = pr->ndpr_next; 599 } 600 splx(s); 601 } 602 603 /* 604 * Nuke neighbor cache/prefix/default router management table, right before 605 * ifp goes away. 606 */ 607 void 608 nd6_purge(ifp) 609 struct ifnet *ifp; 610 { 611 struct llinfo_nd6 *ln, *nln; 612 struct nd_defrouter *dr, *ndr; 613 struct nd_prefix *pr, *npr; 614 615 /* 616 * Nuke default router list entries toward ifp. 617 * We defer removal of default router list entries that is installed 618 * in the routing table, in order to keep additional side effects as 619 * small as possible. 620 */ 621 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) { 622 ndr = TAILQ_NEXT(dr, dr_entry); 623 if (dr->installed) 624 continue; 625 626 if (dr->ifp == ifp) 627 defrtrlist_del(dr); 628 } 629 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) { 630 ndr = TAILQ_NEXT(dr, dr_entry); 631 if (!dr->installed) 632 continue; 633 634 if (dr->ifp == ifp) 635 defrtrlist_del(dr); 636 } 637 638 /* Nuke prefix list entries toward ifp */ 639 for (pr = nd_prefix.lh_first; pr; pr = npr) { 640 npr = pr->ndpr_next; 641 if (pr->ndpr_ifp == ifp) { 642 /* 643 * Previously, pr->ndpr_addr is removed as well, 644 * but I strongly believe we don't have to do it. 645 * nd6_purge() is only called from in6_ifdetach(), 646 * which removes all the associated interface addresses 647 * by itself. 648 * (jinmei@kame.net 20010129) 649 */ 650 prelist_remove(pr); 651 } 652 } 653 654 /* cancel default outgoing interface setting */ 655 if (nd6_defifindex == ifp->if_index) 656 nd6_setdefaultiface(0); 657 658 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 659 /* refresh default router list */ 660 defrouter_select(); 661 } 662 663 /* 664 * Nuke neighbor cache entries for the ifp. 665 * Note that rt->rt_ifp may not be the same as ifp, 666 * due to KAME goto ours hack. See RTM_RESOLVE case in 667 * nd6_rtrequest(), and ip6_input(). 668 */ 669 ln = llinfo_nd6.ln_next; 670 while (ln && ln != &llinfo_nd6) { 671 struct rtentry *rt; 672 struct sockaddr_dl *sdl; 673 674 nln = ln->ln_next; 675 rt = ln->ln_rt; 676 if (rt && rt->rt_gateway && 677 rt->rt_gateway->sa_family == AF_LINK) { 678 sdl = (struct sockaddr_dl *)rt->rt_gateway; 679 if (sdl->sdl_index == ifp->if_index) 680 nln = nd6_free(rt, 0); 681 } 682 ln = nln; 683 } 684 } 685 686 struct rtentry * 687 nd6_lookup(addr6, create, ifp) 688 struct in6_addr *addr6; 689 int create; 690 struct ifnet *ifp; 691 { 692 struct rtentry *rt; 693 struct sockaddr_in6 sin6; 694 695 bzero(&sin6, sizeof(sin6)); 696 sin6.sin6_len = sizeof(struct sockaddr_in6); 697 sin6.sin6_family = AF_INET6; 698 sin6.sin6_addr = *addr6; 699 rt = rtalloc1((struct sockaddr *)&sin6, create); 700 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) { 701 /* 702 * This is the case for the default route. 703 * If we want to create a neighbor cache for the address, we 704 * should free the route for the destination and allocate an 705 * interface route. 706 */ 707 if (create) { 708 RTFREE(rt); 709 rt = 0; 710 } 711 } 712 if (!rt) { 713 if (create && ifp) { 714 int e; 715 716 /* 717 * If no route is available and create is set, 718 * we allocate a host route for the destination 719 * and treat it like an interface route. 720 * This hack is necessary for a neighbor which can't 721 * be covered by our own prefix. 722 */ 723 struct ifaddr *ifa = 724 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); 725 if (ifa == NULL) 726 return (NULL); 727 728 /* 729 * Create a new route. RTF_LLINFO is necessary 730 * to create a Neighbor Cache entry for the 731 * destination in nd6_rtrequest which will be 732 * called in rtrequest via ifa->ifa_rtrequest. 733 */ 734 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6, 735 ifa->ifa_addr, (struct sockaddr *)&all1_sa, 736 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) & 737 ~RTF_CLONING, &rt)) != 0) { 738 #if 0 739 log(LOG_ERR, 740 "nd6_lookup: failed to add route for a " 741 "neighbor(%s), errno=%d\n", 742 ip6_sprintf(addr6), e); 743 #endif 744 return (NULL); 745 } 746 if (rt == NULL) 747 return (NULL); 748 if (rt->rt_llinfo) { 749 struct llinfo_nd6 *ln = 750 (struct llinfo_nd6 *)rt->rt_llinfo; 751 ln->ln_state = ND6_LLINFO_NOSTATE; 752 } 753 } else 754 return (NULL); 755 } 756 rt->rt_refcnt--; 757 /* 758 * Validation for the entry. 759 * Note that the check for rt_llinfo is necessary because a cloned 760 * route from a parent route that has the L flag (e.g. the default 761 * route to a p2p interface) may have the flag, too, while the 762 * destination is not actually a neighbor. 763 * XXX: we can't use rt->rt_ifp to check for the interface, since 764 * it might be the loopback interface if the entry is for our 765 * own address on a non-loopback interface. Instead, we should 766 * use rt->rt_ifa->ifa_ifp, which would specify the REAL 767 * interface. 768 */ 769 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || 770 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || 771 (ifp && rt->rt_ifa->ifa_ifp != ifp)) { 772 if (create) { 773 nd6log((LOG_DEBUG, 774 "nd6_lookup: failed to lookup %s (if = %s)\n", 775 ip6_sprintf(addr6), 776 ifp ? if_name(ifp) : "unspec")); 777 } 778 return (NULL); 779 } 780 return (rt); 781 } 782 783 /* 784 * Detect if a given IPv6 address identifies a neighbor on a given link. 785 * XXX: should take care of the destination of a p2p link? 786 */ 787 int 788 nd6_is_addr_neighbor(addr, ifp) 789 struct sockaddr_in6 *addr; 790 struct ifnet *ifp; 791 { 792 struct nd_prefix *pr; 793 794 /* 795 * A link-local address is always a neighbor. 796 * XXX: we should use the sin6_scope_id field rather than the embedded 797 * interface index. 798 * XXX: a link does not necessarily specify a single interface. 799 */ 800 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) && 801 ntohs(addr->sin6_addr.s6_addr16[1]) == ifp->if_index) 802 return (1); 803 804 /* 805 * If the address matches one of our on-link prefixes, it should be a 806 * neighbor. 807 */ 808 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 809 if (pr->ndpr_ifp != ifp) 810 continue; 811 812 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) 813 continue; 814 815 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 816 &addr->sin6_addr, &pr->ndpr_mask)) 817 return (1); 818 } 819 820 /* 821 * If the default router list is empty, all addresses are regarded 822 * as on-link, and thus, as a neighbor. 823 * XXX: we restrict the condition to hosts, because routers usually do 824 * not have the "default router list". 825 */ 826 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL && 827 nd6_defifindex == ifp->if_index) { 828 return (1); 829 } 830 831 /* 832 * Even if the address matches none of our addresses, it might be 833 * in the neighbor cache. 834 */ 835 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL) 836 return (1); 837 838 return (0); 839 } 840 841 /* 842 * Free an nd6 llinfo entry. 843 * Since the function would cause significant changes in the kernel, DO NOT 844 * make it global, unless you have a strong reason for the change, and are sure 845 * that the change is safe. 846 */ 847 static struct llinfo_nd6 * 848 nd6_free(rt, gc) 849 struct rtentry *rt; 850 int gc; 851 { 852 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next; 853 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; 854 struct nd_defrouter *dr; 855 856 /* 857 * we used to have pfctlinput(PRC_HOSTDEAD) here. 858 * even though it is not harmful, it was not really necessary. 859 */ 860 861 /* cancel timer */ 862 nd6_llinfo_settimer(ln, -1); 863 864 if (!ip6_forwarding) { 865 int s; 866 s = splsoftnet(); 867 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 868 rt->rt_ifp); 869 870 if (dr != NULL && dr->expire && 871 ln->ln_state == ND6_LLINFO_STALE && gc) { 872 /* 873 * If the reason for the deletion is just garbage 874 * collection, and the neighbor is an active default 875 * router, do not delete it. Instead, reset the GC 876 * timer using the router's lifetime. 877 * Simply deleting the entry would affect default 878 * router selection, which is not necessarily a good 879 * thing, especially when we're using router preference 880 * values. 881 * XXX: the check for ln_state would be redundant, 882 * but we intentionally keep it just in case. 883 */ 884 if (dr->expire > time.tv_sec * hz) 885 nd6_llinfo_settimer(ln, 886 dr->expire - time.tv_sec * hz); 887 else 888 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 889 splx(s); 890 return (ln->ln_next); 891 } 892 893 if (ln->ln_router || dr) { 894 /* 895 * rt6_flush must be called whether or not the neighbor 896 * is in the Default Router List. 897 * See a corresponding comment in nd6_na_input(). 898 */ 899 rt6_flush(&in6, rt->rt_ifp); 900 } 901 902 if (dr) { 903 /* 904 * Unreachablity of a router might affect the default 905 * router selection and on-link detection of advertised 906 * prefixes. 907 */ 908 909 /* 910 * Temporarily fake the state to choose a new default 911 * router and to perform on-link determination of 912 * prefixes correctly. 913 * Below the state will be set correctly, 914 * or the entry itself will be deleted. 915 */ 916 ln->ln_state = ND6_LLINFO_INCOMPLETE; 917 918 /* 919 * Since defrouter_select() does not affect the 920 * on-link determination and MIP6 needs the check 921 * before the default router selection, we perform 922 * the check now. 923 */ 924 pfxlist_onlink_check(); 925 926 /* 927 * refresh default router list 928 */ 929 defrouter_select(); 930 } 931 splx(s); 932 } 933 934 /* 935 * Before deleting the entry, remember the next entry as the 936 * return value. We need this because pfxlist_onlink_check() above 937 * might have freed other entries (particularly the old next entry) as 938 * a side effect (XXX). 939 */ 940 next = ln->ln_next; 941 942 /* 943 * Detach the route from the routing tree and the list of neighbor 944 * caches, and disable the route entry not to be used in already 945 * cached routes. 946 */ 947 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0, 948 rt_mask(rt), 0, (struct rtentry **)0); 949 950 return (next); 951 } 952 953 /* 954 * Upper-layer reachability hint for Neighbor Unreachability Detection. 955 * 956 * XXX cost-effective metods? 957 */ 958 void 959 nd6_nud_hint(rt, dst6, force) 960 struct rtentry *rt; 961 struct in6_addr *dst6; 962 int force; 963 { 964 struct llinfo_nd6 *ln; 965 966 /* 967 * If the caller specified "rt", use that. Otherwise, resolve the 968 * routing table by supplied "dst6". 969 */ 970 if (!rt) { 971 if (!dst6) 972 return; 973 if (!(rt = nd6_lookup(dst6, 0, NULL))) 974 return; 975 } 976 977 if ((rt->rt_flags & RTF_GATEWAY) != 0 || 978 (rt->rt_flags & RTF_LLINFO) == 0 || 979 !rt->rt_llinfo || !rt->rt_gateway || 980 rt->rt_gateway->sa_family != AF_LINK) { 981 /* This is not a host route. */ 982 return; 983 } 984 985 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 986 if (ln->ln_state < ND6_LLINFO_REACHABLE) 987 return; 988 989 /* 990 * if we get upper-layer reachability confirmation many times, 991 * it is possible we have false information. 992 */ 993 if (!force) { 994 ln->ln_byhint++; 995 if (ln->ln_byhint > nd6_maxnudhint) 996 return; 997 } 998 999 ln->ln_state = ND6_LLINFO_REACHABLE; 1000 if (!ND6_LLINFO_PERMANENT(ln)) { 1001 nd6_llinfo_settimer(ln, 1002 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz); 1003 } 1004 } 1005 1006 void 1007 nd6_rtrequest(req, rt, info) 1008 int req; 1009 struct rtentry *rt; 1010 struct rt_addrinfo *info; /* xxx unused */ 1011 { 1012 struct sockaddr *gate = rt->rt_gateway; 1013 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1014 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1015 struct ifnet *ifp = rt->rt_ifp; 1016 struct ifaddr *ifa; 1017 1018 if ((rt->rt_flags & RTF_GATEWAY) != 0) 1019 return; 1020 1021 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { 1022 /* 1023 * This is probably an interface direct route for a link 1024 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1025 * We do not need special treatment below for such a route. 1026 * Moreover, the RTF_LLINFO flag which would be set below 1027 * would annoy the ndp(8) command. 1028 */ 1029 return; 1030 } 1031 1032 if (req == RTM_RESOLVE && 1033 (nd6_need_cache(ifp) == 0 || /* stf case */ 1034 !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) { 1035 /* 1036 * FreeBSD and BSD/OS often make a cloned host route based 1037 * on a less-specific route (e.g. the default route). 1038 * If the less specific route does not have a "gateway" 1039 * (this is the case when the route just goes to a p2p or an 1040 * stf interface), we'll mistakenly make a neighbor cache for 1041 * the host route, and will see strange neighbor solicitation 1042 * for the corresponding destination. In order to avoid the 1043 * confusion, we check if the destination of the route is 1044 * a neighbor in terms of neighbor discovery, and stop the 1045 * process if not. Additionally, we remove the LLINFO flag 1046 * so that ndp(8) will not try to get the neighbor information 1047 * of the destination. 1048 */ 1049 rt->rt_flags &= ~RTF_LLINFO; 1050 return; 1051 } 1052 1053 switch (req) { 1054 case RTM_ADD: 1055 /* 1056 * There is no backward compatibility :) 1057 * 1058 * if ((rt->rt_flags & RTF_HOST) == 0 && 1059 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1060 * rt->rt_flags |= RTF_CLONING; 1061 */ 1062 if ((rt->rt_flags & RTF_CLONING) || 1063 ((rt->rt_flags & RTF_LLINFO) && !ln)) { 1064 /* 1065 * Case 1: This route should come from a route to 1066 * interface (RTF_CLONING case) or the route should be 1067 * treated as on-link but is currently not 1068 * (RTF_LLINFO && !ln case). 1069 */ 1070 rt_setgate(rt, rt_key(rt), 1071 (struct sockaddr *)&null_sdl); 1072 gate = rt->rt_gateway; 1073 SDL(gate)->sdl_type = ifp->if_type; 1074 SDL(gate)->sdl_index = ifp->if_index; 1075 if (ln) 1076 nd6_llinfo_settimer(ln, 0); 1077 if ((rt->rt_flags & RTF_CLONING) != 0) 1078 break; 1079 } 1080 /* 1081 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1082 * We don't do that here since llinfo is not ready yet. 1083 * 1084 * There are also couple of other things to be discussed: 1085 * - unsolicited NA code needs improvement beforehand 1086 * - RFC2461 says we MAY send multicast unsolicited NA 1087 * (7.2.6 paragraph 4), however, it also says that we 1088 * SHOULD provide a mechanism to prevent multicast NA storm. 1089 * we don't have anything like it right now. 1090 * note that the mechanism needs a mutual agreement 1091 * between proxies, which means that we need to implement 1092 * a new protocol, or a new kludge. 1093 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1094 * we need to check ip6forwarding before sending it. 1095 * (or should we allow proxy ND configuration only for 1096 * routers? there's no mention about proxy ND from hosts) 1097 */ 1098 #if 0 1099 /* XXX it does not work */ 1100 if (rt->rt_flags & RTF_ANNOUNCE) 1101 nd6_na_output(ifp, 1102 &SIN6(rt_key(rt))->sin6_addr, 1103 &SIN6(rt_key(rt))->sin6_addr, 1104 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1105 1, NULL); 1106 #endif 1107 /* FALLTHROUGH */ 1108 case RTM_RESOLVE: 1109 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 1110 /* 1111 * Address resolution isn't necessary for a point to 1112 * point link, so we can skip this test for a p2p link. 1113 */ 1114 if (gate->sa_family != AF_LINK || 1115 gate->sa_len < sizeof(null_sdl)) { 1116 log(LOG_DEBUG, 1117 "nd6_rtrequest: bad gateway value: %s\n", 1118 if_name(ifp)); 1119 break; 1120 } 1121 SDL(gate)->sdl_type = ifp->if_type; 1122 SDL(gate)->sdl_index = ifp->if_index; 1123 } 1124 if (ln != NULL) 1125 break; /* This happens on a route change */ 1126 /* 1127 * Case 2: This route may come from cloning, or a manual route 1128 * add with a LL address. 1129 */ 1130 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln)); 1131 rt->rt_llinfo = (caddr_t)ln; 1132 if (!ln) { 1133 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n"); 1134 break; 1135 } 1136 nd6_inuse++; 1137 nd6_allocated++; 1138 Bzero(ln, sizeof(*ln)); 1139 ln->ln_rt = rt; 1140 callout_init(&ln->ln_timer_ch); 1141 /* this is required for "ndp" command. - shin */ 1142 if (req == RTM_ADD) { 1143 /* 1144 * gate should have some valid AF_LINK entry, 1145 * and ln->ln_expire should have some lifetime 1146 * which is specified by ndp command. 1147 */ 1148 ln->ln_state = ND6_LLINFO_REACHABLE; 1149 ln->ln_byhint = 0; 1150 } else { 1151 /* 1152 * When req == RTM_RESOLVE, rt is created and 1153 * initialized in rtrequest(), so rt_expire is 0. 1154 */ 1155 ln->ln_state = ND6_LLINFO_NOSTATE; 1156 nd6_llinfo_settimer(ln, 0); 1157 } 1158 rt->rt_flags |= RTF_LLINFO; 1159 ln->ln_next = llinfo_nd6.ln_next; 1160 llinfo_nd6.ln_next = ln; 1161 ln->ln_prev = &llinfo_nd6; 1162 ln->ln_next->ln_prev = ln; 1163 1164 /* 1165 * check if rt_key(rt) is one of my address assigned 1166 * to the interface. 1167 */ 1168 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, 1169 &SIN6(rt_key(rt))->sin6_addr); 1170 if (ifa) { 1171 caddr_t macp = nd6_ifptomac(ifp); 1172 nd6_llinfo_settimer(ln, -1); 1173 ln->ln_state = ND6_LLINFO_REACHABLE; 1174 ln->ln_byhint = 0; 1175 if (macp) { 1176 Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); 1177 SDL(gate)->sdl_alen = ifp->if_addrlen; 1178 } 1179 if (nd6_useloopback) { 1180 rt->rt_ifp = &loif[0]; /* XXX */ 1181 /* 1182 * Make sure rt_ifa be equal to the ifaddr 1183 * corresponding to the address. 1184 * We need this because when we refer 1185 * rt_ifa->ia6_flags in ip6_input, we assume 1186 * that the rt_ifa points to the address instead 1187 * of the loopback address. 1188 */ 1189 if (ifa != rt->rt_ifa) { 1190 IFAFREE(rt->rt_ifa); 1191 IFAREF(ifa); 1192 rt->rt_ifa = ifa; 1193 } 1194 } 1195 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1196 nd6_llinfo_settimer(ln, -1); 1197 ln->ln_state = ND6_LLINFO_REACHABLE; 1198 ln->ln_byhint = 0; 1199 1200 /* join solicited node multicast for proxy ND */ 1201 if (ifp->if_flags & IFF_MULTICAST) { 1202 struct in6_addr llsol; 1203 int error; 1204 1205 llsol = SIN6(rt_key(rt))->sin6_addr; 1206 llsol.s6_addr16[0] = htons(0xff02); 1207 llsol.s6_addr16[1] = htons(ifp->if_index); 1208 llsol.s6_addr32[1] = 0; 1209 llsol.s6_addr32[2] = htonl(1); 1210 llsol.s6_addr8[12] = 0xff; 1211 1212 if (!in6_addmulti(&llsol, ifp, &error)) { 1213 nd6log((LOG_ERR, "%s: failed to join " 1214 "%s (errno=%d)\n", if_name(ifp), 1215 ip6_sprintf(&llsol), error)); 1216 } 1217 } 1218 } 1219 break; 1220 1221 case RTM_DELETE: 1222 if (!ln) 1223 break; 1224 /* leave from solicited node multicast for proxy ND */ 1225 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && 1226 (ifp->if_flags & IFF_MULTICAST) != 0) { 1227 struct in6_addr llsol; 1228 struct in6_multi *in6m; 1229 1230 llsol = SIN6(rt_key(rt))->sin6_addr; 1231 llsol.s6_addr16[0] = htons(0xff02); 1232 llsol.s6_addr16[1] = htons(ifp->if_index); 1233 llsol.s6_addr32[1] = 0; 1234 llsol.s6_addr32[2] = htonl(1); 1235 llsol.s6_addr8[12] = 0xff; 1236 1237 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1238 if (in6m) 1239 in6_delmulti(in6m); 1240 } 1241 nd6_inuse--; 1242 ln->ln_next->ln_prev = ln->ln_prev; 1243 ln->ln_prev->ln_next = ln->ln_next; 1244 ln->ln_prev = NULL; 1245 nd6_llinfo_settimer(ln, -1); 1246 rt->rt_llinfo = 0; 1247 rt->rt_flags &= ~RTF_LLINFO; 1248 if (ln->ln_hold) 1249 m_freem(ln->ln_hold); 1250 Free((caddr_t)ln); 1251 } 1252 } 1253 1254 int 1255 nd6_ioctl(cmd, data, ifp) 1256 u_long cmd; 1257 caddr_t data; 1258 struct ifnet *ifp; 1259 { 1260 struct in6_drlist *drl = (struct in6_drlist *)data; 1261 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1262 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1263 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1264 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1265 struct nd_defrouter *dr; 1266 struct nd_prefix *pr; 1267 struct rtentry *rt; 1268 int i = 0, error = 0; 1269 int s; 1270 1271 switch (cmd) { 1272 case SIOCGDRLST_IN6: 1273 /* 1274 * obsolete API, use sysctl under net.inet6.icmp6 1275 */ 1276 bzero(drl, sizeof(*drl)); 1277 s = splsoftnet(); 1278 dr = TAILQ_FIRST(&nd_defrouter); 1279 while (dr && i < DRLSTSIZ) { 1280 drl->defrouter[i].rtaddr = dr->rtaddr; 1281 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) { 1282 /* XXX: need to this hack for KAME stack */ 1283 drl->defrouter[i].rtaddr.s6_addr16[1] = 0; 1284 } else 1285 log(LOG_ERR, 1286 "default router list contains a " 1287 "non-linklocal address(%s)\n", 1288 ip6_sprintf(&drl->defrouter[i].rtaddr)); 1289 1290 drl->defrouter[i].flags = dr->flags; 1291 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1292 drl->defrouter[i].expire = dr->expire; 1293 drl->defrouter[i].if_index = dr->ifp->if_index; 1294 i++; 1295 dr = TAILQ_NEXT(dr, dr_entry); 1296 } 1297 splx(s); 1298 break; 1299 case SIOCGPRLST_IN6: 1300 /* 1301 * obsolete API, use sysctl under net.inet6.icmp6 1302 * 1303 * XXX the structure in6_prlist was changed in backward- 1304 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1305 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1306 */ 1307 /* 1308 * XXX meaning of fields, especialy "raflags", is very 1309 * differnet between RA prefix list and RR/static prefix list. 1310 * how about separating ioctls into two? 1311 */ 1312 bzero(oprl, sizeof(*oprl)); 1313 s = splsoftnet(); 1314 pr = nd_prefix.lh_first; 1315 while (pr && i < PRLSTSIZ) { 1316 struct nd_pfxrouter *pfr; 1317 int j; 1318 1319 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1320 oprl->prefix[i].raflags = pr->ndpr_raf; 1321 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1322 oprl->prefix[i].vltime = pr->ndpr_vltime; 1323 oprl->prefix[i].pltime = pr->ndpr_pltime; 1324 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1325 oprl->prefix[i].expire = pr->ndpr_expire; 1326 1327 pfr = pr->ndpr_advrtrs.lh_first; 1328 j = 0; 1329 while (pfr) { 1330 if (j < DRLSTSIZ) { 1331 #define RTRADDR oprl->prefix[i].advrtr[j] 1332 RTRADDR = pfr->router->rtaddr; 1333 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) { 1334 /* XXX: hack for KAME */ 1335 RTRADDR.s6_addr16[1] = 0; 1336 } else 1337 log(LOG_ERR, 1338 "a router(%s) advertises " 1339 "a prefix with " 1340 "non-link local address\n", 1341 ip6_sprintf(&RTRADDR)); 1342 #undef RTRADDR 1343 } 1344 j++; 1345 pfr = pfr->pfr_next; 1346 } 1347 oprl->prefix[i].advrtrs = j; 1348 oprl->prefix[i].origin = PR_ORIG_RA; 1349 1350 i++; 1351 pr = pr->ndpr_next; 1352 } 1353 splx(s); 1354 1355 break; 1356 case OSIOCGIFINFO_IN6: 1357 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1358 bzero(&ndi->ndi, sizeof(ndi->ndi)); 1359 ndi->ndi.linkmtu = IN6_LINKMTU(ifp); 1360 ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu; 1361 ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable; 1362 ndi->ndi.reachable = ND_IFINFO(ifp)->reachable; 1363 ndi->ndi.retrans = ND_IFINFO(ifp)->retrans; 1364 ndi->ndi.flags = ND_IFINFO(ifp)->flags; 1365 ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm; 1366 ndi->ndi.chlim = ND_IFINFO(ifp)->chlim; 1367 break; 1368 case SIOCGIFINFO_IN6: 1369 ndi->ndi = *ND_IFINFO(ifp); 1370 break; 1371 case SIOCSIFINFO_FLAGS: 1372 ND_IFINFO(ifp)->flags = ndi->ndi.flags; 1373 break; 1374 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1375 /* sync kernel routing table with the default router list */ 1376 defrouter_reset(); 1377 defrouter_select(); 1378 break; 1379 case SIOCSPFXFLUSH_IN6: 1380 { 1381 /* flush all the prefix advertised by routers */ 1382 struct nd_prefix *pr, *next; 1383 1384 s = splsoftnet(); 1385 for (pr = nd_prefix.lh_first; pr; pr = next) { 1386 struct in6_ifaddr *ia, *ia_next; 1387 1388 next = pr->ndpr_next; 1389 1390 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1391 continue; /* XXX */ 1392 1393 /* do we really have to remove addresses as well? */ 1394 for (ia = in6_ifaddr; ia; ia = ia_next) { 1395 /* ia might be removed. keep the next ptr. */ 1396 ia_next = ia->ia_next; 1397 1398 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1399 continue; 1400 1401 if (ia->ia6_ndpr == pr) 1402 in6_purgeaddr(&ia->ia_ifa); 1403 } 1404 prelist_remove(pr); 1405 } 1406 splx(s); 1407 break; 1408 } 1409 case SIOCSRTRFLUSH_IN6: 1410 { 1411 /* flush all the default routers */ 1412 struct nd_defrouter *dr, *next; 1413 1414 s = splsoftnet(); 1415 defrouter_reset(); 1416 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) { 1417 next = TAILQ_NEXT(dr, dr_entry); 1418 defrtrlist_del(dr); 1419 } 1420 defrouter_select(); 1421 splx(s); 1422 break; 1423 } 1424 case SIOCGNBRINFO_IN6: 1425 { 1426 struct llinfo_nd6 *ln; 1427 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1428 1429 /* 1430 * XXX: KAME specific hack for scoped addresses 1431 * XXXX: for other scopes than link-local? 1432 */ 1433 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) || 1434 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) { 1435 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2]; 1436 1437 if (*idp == 0) 1438 *idp = htons(ifp->if_index); 1439 } 1440 1441 s = splsoftnet(); 1442 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL || 1443 (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) { 1444 error = EINVAL; 1445 splx(s); 1446 break; 1447 } 1448 nbi->state = ln->ln_state; 1449 nbi->asked = ln->ln_asked; 1450 nbi->isrouter = ln->ln_router; 1451 nbi->expire = ln->ln_expire; 1452 splx(s); 1453 1454 break; 1455 } 1456 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1457 ndif->ifindex = nd6_defifindex; 1458 break; 1459 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1460 return (nd6_setdefaultiface(ndif->ifindex)); 1461 } 1462 return (error); 1463 } 1464 1465 /* 1466 * Create neighbor cache entry and cache link-layer address, 1467 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1468 */ 1469 struct rtentry * 1470 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code) 1471 struct ifnet *ifp; 1472 struct in6_addr *from; 1473 char *lladdr; 1474 int lladdrlen; 1475 int type; /* ICMP6 type */ 1476 int code; /* type dependent information */ 1477 { 1478 struct rtentry *rt = NULL; 1479 struct llinfo_nd6 *ln = NULL; 1480 int is_newentry; 1481 struct sockaddr_dl *sdl = NULL; 1482 int do_update; 1483 int olladdr; 1484 int llchange; 1485 int newstate = 0; 1486 1487 if (!ifp) 1488 panic("ifp == NULL in nd6_cache_lladdr"); 1489 if (!from) 1490 panic("from == NULL in nd6_cache_lladdr"); 1491 1492 /* nothing must be updated for unspecified address */ 1493 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1494 return NULL; 1495 1496 /* 1497 * Validation about ifp->if_addrlen and lladdrlen must be done in 1498 * the caller. 1499 * 1500 * XXX If the link does not have link-layer adderss, what should 1501 * we do? (ifp->if_addrlen == 0) 1502 * Spec says nothing in sections for RA, RS and NA. There's small 1503 * description on it in NS section (RFC 2461 7.2.3). 1504 */ 1505 1506 rt = nd6_lookup(from, 0, ifp); 1507 if (!rt) { 1508 #if 0 1509 /* nothing must be done if there's no lladdr */ 1510 if (!lladdr || !lladdrlen) 1511 return NULL; 1512 #endif 1513 1514 rt = nd6_lookup(from, 1, ifp); 1515 is_newentry = 1; 1516 } else { 1517 /* do nothing if static ndp is set */ 1518 if (rt->rt_flags & RTF_STATIC) 1519 return NULL; 1520 is_newentry = 0; 1521 } 1522 1523 if (!rt) 1524 return NULL; 1525 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { 1526 fail: 1527 (void)nd6_free(rt, 0); 1528 return NULL; 1529 } 1530 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1531 if (!ln) 1532 goto fail; 1533 if (!rt->rt_gateway) 1534 goto fail; 1535 if (rt->rt_gateway->sa_family != AF_LINK) 1536 goto fail; 1537 sdl = SDL(rt->rt_gateway); 1538 1539 olladdr = (sdl->sdl_alen) ? 1 : 0; 1540 if (olladdr && lladdr) { 1541 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) 1542 llchange = 1; 1543 else 1544 llchange = 0; 1545 } else 1546 llchange = 0; 1547 1548 /* 1549 * newentry olladdr lladdr llchange (*=record) 1550 * 0 n n -- (1) 1551 * 0 y n -- (2) 1552 * 0 n y -- (3) * STALE 1553 * 0 y y n (4) * 1554 * 0 y y y (5) * STALE 1555 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1556 * 1 -- y -- (7) * STALE 1557 */ 1558 1559 if (lladdr) { /* (3-5) and (7) */ 1560 /* 1561 * Record source link-layer address 1562 * XXX is it dependent to ifp->if_type? 1563 */ 1564 sdl->sdl_alen = ifp->if_addrlen; 1565 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); 1566 } 1567 1568 if (!is_newentry) { 1569 if ((!olladdr && lladdr) || /* (3) */ 1570 (olladdr && lladdr && llchange)) { /* (5) */ 1571 do_update = 1; 1572 newstate = ND6_LLINFO_STALE; 1573 } else /* (1-2,4) */ 1574 do_update = 0; 1575 } else { 1576 do_update = 1; 1577 if (!lladdr) /* (6) */ 1578 newstate = ND6_LLINFO_NOSTATE; 1579 else /* (7) */ 1580 newstate = ND6_LLINFO_STALE; 1581 } 1582 1583 if (do_update) { 1584 /* 1585 * Update the state of the neighbor cache. 1586 */ 1587 ln->ln_state = newstate; 1588 1589 if (ln->ln_state == ND6_LLINFO_STALE) { 1590 /* 1591 * XXX: since nd6_output() below will cause 1592 * state tansition to DELAY and reset the timer, 1593 * we must set the timer now, although it is actually 1594 * meaningless. 1595 */ 1596 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 1597 1598 if (ln->ln_hold) { 1599 /* 1600 * we assume ifp is not a p2p here, so just 1601 * set the 2nd argument as the 1st one. 1602 */ 1603 nd6_output(ifp, ifp, ln->ln_hold, 1604 (struct sockaddr_in6 *)rt_key(rt), rt); 1605 ln->ln_hold = NULL; 1606 } 1607 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1608 /* probe right away */ 1609 nd6_llinfo_settimer((void *)ln, 0); 1610 } 1611 } 1612 1613 /* 1614 * ICMP6 type dependent behavior. 1615 * 1616 * NS: clear IsRouter if new entry 1617 * RS: clear IsRouter 1618 * RA: set IsRouter if there's lladdr 1619 * redir: clear IsRouter if new entry 1620 * 1621 * RA case, (1): 1622 * The spec says that we must set IsRouter in the following cases: 1623 * - If lladdr exist, set IsRouter. This means (1-5). 1624 * - If it is old entry (!newentry), set IsRouter. This means (7). 1625 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1626 * A quetion arises for (1) case. (1) case has no lladdr in the 1627 * neighbor cache, this is similar to (6). 1628 * This case is rare but we figured that we MUST NOT set IsRouter. 1629 * 1630 * newentry olladdr lladdr llchange NS RS RA redir 1631 * D R 1632 * 0 n n -- (1) c ? s 1633 * 0 y n -- (2) c s s 1634 * 0 n y -- (3) c s s 1635 * 0 y y n (4) c s s 1636 * 0 y y y (5) c s s 1637 * 1 -- n -- (6) c c c s 1638 * 1 -- y -- (7) c c s c s 1639 * 1640 * (c=clear s=set) 1641 */ 1642 switch (type & 0xff) { 1643 case ND_NEIGHBOR_SOLICIT: 1644 /* 1645 * New entry must have is_router flag cleared. 1646 */ 1647 if (is_newentry) /* (6-7) */ 1648 ln->ln_router = 0; 1649 break; 1650 case ND_REDIRECT: 1651 /* 1652 * If the icmp is a redirect to a better router, always set the 1653 * is_router flag. Otherwise, if the entry is newly created, 1654 * clear the flag. [RFC 2461, sec 8.3] 1655 */ 1656 if (code == ND_REDIRECT_ROUTER) 1657 ln->ln_router = 1; 1658 else if (is_newentry) /* (6-7) */ 1659 ln->ln_router = 0; 1660 break; 1661 case ND_ROUTER_SOLICIT: 1662 /* 1663 * is_router flag must always be cleared. 1664 */ 1665 ln->ln_router = 0; 1666 break; 1667 case ND_ROUTER_ADVERT: 1668 /* 1669 * Mark an entry with lladdr as a router. 1670 */ 1671 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 1672 (is_newentry && lladdr)) { /* (7) */ 1673 ln->ln_router = 1; 1674 } 1675 break; 1676 } 1677 1678 /* 1679 * When the link-layer address of a router changes, select the 1680 * best router again. In particular, when the neighbor entry is newly 1681 * created, it might affect the selection policy. 1682 * Question: can we restrict the first condition to the "is_newentry" 1683 * case? 1684 * XXX: when we hear an RA from a new router with the link-layer 1685 * address option, defrouter_select() is called twice, since 1686 * defrtrlist_update called the function as well. However, I believe 1687 * we can compromise the overhead, since it only happens the first 1688 * time. 1689 * XXX: although defrouter_select() should not have a bad effect 1690 * for those are not autoconfigured hosts, we explicitly avoid such 1691 * cases for safety. 1692 */ 1693 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv) 1694 defrouter_select(); 1695 1696 return rt; 1697 } 1698 1699 static void 1700 nd6_slowtimo(ignored_arg) 1701 void *ignored_arg; 1702 { 1703 int s = splsoftnet(); 1704 struct nd_ifinfo *nd6if; 1705 struct ifnet *ifp; 1706 1707 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1708 nd6_slowtimo, NULL); 1709 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 1710 { 1711 nd6if = ND_IFINFO(ifp); 1712 if (nd6if->basereachable && /* already initialized */ 1713 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1714 /* 1715 * Since reachable time rarely changes by router 1716 * advertisements, we SHOULD insure that a new random 1717 * value gets recomputed at least once every few hours. 1718 * (RFC 2461, 6.3.4) 1719 */ 1720 nd6if->recalctm = nd6_recalc_reachtm_interval; 1721 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1722 } 1723 } 1724 splx(s); 1725 } 1726 1727 #define senderr(e) { error = (e); goto bad;} 1728 int 1729 nd6_output(ifp, origifp, m0, dst, rt0) 1730 struct ifnet *ifp; 1731 struct ifnet *origifp; 1732 struct mbuf *m0; 1733 struct sockaddr_in6 *dst; 1734 struct rtentry *rt0; 1735 { 1736 struct mbuf *m = m0; 1737 struct rtentry *rt = rt0; 1738 struct sockaddr_in6 *gw6 = NULL; 1739 struct llinfo_nd6 *ln = NULL; 1740 int error = 0; 1741 1742 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1743 goto sendpkt; 1744 1745 if (nd6_need_cache(ifp) == 0) 1746 goto sendpkt; 1747 1748 /* 1749 * next hop determination. This routine is derived from ether_outpout. 1750 */ 1751 if (rt) { 1752 if ((rt->rt_flags & RTF_UP) == 0) { 1753 if ((rt0 = rt = rtalloc1((struct sockaddr *)dst, 1754 1)) != NULL) 1755 { 1756 rt->rt_refcnt--; 1757 if (rt->rt_ifp != ifp) 1758 senderr(EHOSTUNREACH); 1759 } else 1760 senderr(EHOSTUNREACH); 1761 } 1762 1763 if (rt->rt_flags & RTF_GATEWAY) { 1764 gw6 = (struct sockaddr_in6 *)rt->rt_gateway; 1765 1766 /* 1767 * We skip link-layer address resolution and NUD 1768 * if the gateway is not a neighbor from ND point 1769 * of view, regardless of the value of nd_ifinfo.flags. 1770 * The second condition is a bit tricky; we skip 1771 * if the gateway is our own address, which is 1772 * sometimes used to install a route to a p2p link. 1773 */ 1774 if (!nd6_is_addr_neighbor(gw6, ifp) || 1775 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) { 1776 /* 1777 * We allow this kind of tricky route only 1778 * when the outgoing interface is p2p. 1779 * XXX: we may need a more generic rule here. 1780 */ 1781 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1782 senderr(EHOSTUNREACH); 1783 1784 goto sendpkt; 1785 } 1786 1787 if (rt->rt_gwroute == 0) 1788 goto lookup; 1789 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) { 1790 rtfree(rt); rt = rt0; 1791 lookup: 1792 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1); 1793 if ((rt = rt->rt_gwroute) == 0) 1794 senderr(EHOSTUNREACH); 1795 /* the "G" test below also prevents rt == rt0 */ 1796 if ((rt->rt_flags & RTF_GATEWAY) || 1797 (rt->rt_ifp != ifp)) { 1798 rt->rt_refcnt--; 1799 rt0->rt_gwroute = 0; 1800 senderr(EHOSTUNREACH); 1801 } 1802 } 1803 } 1804 } 1805 1806 /* 1807 * Address resolution or Neighbor Unreachability Detection 1808 * for the next hop. 1809 * At this point, the destination of the packet must be a unicast 1810 * or an anycast address(i.e. not a multicast). 1811 */ 1812 1813 /* Look up the neighbor cache for the nexthop */ 1814 if (rt && (rt->rt_flags & RTF_LLINFO) != 0) 1815 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1816 else { 1817 /* 1818 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 1819 * the condition below is not very efficient. But we believe 1820 * it is tolerable, because this should be a rare case. 1821 */ 1822 if (nd6_is_addr_neighbor(dst, ifp) && 1823 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL) 1824 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1825 } 1826 if (!ln || !rt) { 1827 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 1828 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 1829 log(LOG_DEBUG, 1830 "nd6_output: can't allocate llinfo for %s " 1831 "(ln=%p, rt=%p)\n", 1832 ip6_sprintf(&dst->sin6_addr), ln, rt); 1833 senderr(EIO); /* XXX: good error? */ 1834 } 1835 1836 goto sendpkt; /* send anyway */ 1837 } 1838 1839 /* We don't have to do link-layer address resolution on a p2p link. */ 1840 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 1841 ln->ln_state < ND6_LLINFO_REACHABLE) { 1842 ln->ln_state = ND6_LLINFO_STALE; 1843 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 1844 } 1845 1846 /* 1847 * The first time we send a packet to a neighbor whose entry is 1848 * STALE, we have to change the state to DELAY and a sets a timer to 1849 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 1850 * neighbor unreachability detection on expiration. 1851 * (RFC 2461 7.3.3) 1852 */ 1853 if (ln->ln_state == ND6_LLINFO_STALE) { 1854 ln->ln_asked = 0; 1855 ln->ln_state = ND6_LLINFO_DELAY; 1856 nd6_llinfo_settimer(ln, nd6_delay * hz); 1857 } 1858 1859 /* 1860 * If the neighbor cache entry has a state other than INCOMPLETE 1861 * (i.e. its link-layer address is already resolved), just 1862 * send the packet. 1863 */ 1864 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1865 goto sendpkt; 1866 1867 /* 1868 * There is a neighbor cache entry, but no ethernet address 1869 * response yet. Replace the held mbuf (if any) with this 1870 * latest one. 1871 */ 1872 if (ln->ln_state == ND6_LLINFO_NOSTATE) 1873 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1874 if (ln->ln_hold) 1875 m_freem(ln->ln_hold); 1876 ln->ln_hold = m; 1877 /* 1878 * If there has been no NS for the neighbor after entering the 1879 * INCOMPLETE state, send the first solicitation. 1880 */ 1881 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) { 1882 ln->ln_asked++; 1883 nd6_llinfo_settimer(ln, 1884 (long)ND_IFINFO(ifp)->retrans * hz / 1000); 1885 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 1886 } 1887 return (0); 1888 1889 sendpkt: 1890 1891 #ifdef IPSEC 1892 /* clean ipsec history once it goes out of the node */ 1893 ipsec_delaux(m); 1894 #endif 1895 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 1896 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst, 1897 rt)); 1898 } 1899 return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt)); 1900 1901 bad: 1902 if (m) 1903 m_freem(m); 1904 return (error); 1905 } 1906 #undef senderr 1907 1908 int 1909 nd6_need_cache(ifp) 1910 struct ifnet *ifp; 1911 { 1912 /* 1913 * XXX: we currently do not make neighbor cache on any interface 1914 * other than ARCnet, Ethernet, FDDI and GIF. 1915 * 1916 * RFC2893 says: 1917 * - unidirectional tunnels needs no ND 1918 */ 1919 switch (ifp->if_type) { 1920 case IFT_ARCNET: 1921 case IFT_ETHER: 1922 case IFT_FDDI: 1923 case IFT_IEEE1394: 1924 case IFT_GIF: /* XXX need more cases? */ 1925 return (1); 1926 default: 1927 return (0); 1928 } 1929 } 1930 1931 int 1932 nd6_storelladdr(ifp, rt, m, dst, desten) 1933 struct ifnet *ifp; 1934 struct rtentry *rt; 1935 struct mbuf *m; 1936 struct sockaddr *dst; 1937 u_char *desten; 1938 { 1939 struct sockaddr_dl *sdl; 1940 1941 if (m->m_flags & M_MCAST) { 1942 switch (ifp->if_type) { 1943 case IFT_ETHER: 1944 case IFT_FDDI: 1945 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 1946 desten); 1947 return (1); 1948 case IFT_IEEE1394: 1949 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen); 1950 return (1); 1951 case IFT_ARCNET: 1952 *desten = 0; 1953 return (1); 1954 default: 1955 m_freem(m); 1956 return (0); 1957 } 1958 } 1959 1960 if (rt == NULL) { 1961 /* this could happen, if we could not allocate memory */ 1962 m_freem(m); 1963 return (0); 1964 } 1965 if (rt->rt_gateway->sa_family != AF_LINK) { 1966 printf("nd6_storelladdr: something odd happens\n"); 1967 m_freem(m); 1968 return (0); 1969 } 1970 sdl = SDL(rt->rt_gateway); 1971 if (sdl->sdl_alen == 0) { 1972 /* this should be impossible, but we bark here for debugging */ 1973 printf("nd6_storelladdr: sdl_alen == 0, dst=%s, if=%s\n", 1974 ip6_sprintf(&SIN6(dst)->sin6_addr), if_name(ifp)); 1975 m_freem(m); 1976 return (0); 1977 } 1978 1979 bcopy(LLADDR(sdl), desten, sdl->sdl_alen); 1980 return (1); 1981 } 1982 1983 int 1984 nd6_sysctl(name, oldp, oldlenp, newp, newlen) 1985 int name; 1986 void *oldp; /* syscall arg, need copyout */ 1987 size_t *oldlenp; 1988 void *newp; /* syscall arg, need copyin */ 1989 size_t newlen; 1990 { 1991 void *p; 1992 size_t ol; 1993 int error; 1994 1995 error = 0; 1996 1997 if (newp) 1998 return EPERM; 1999 if (oldp && !oldlenp) 2000 return EINVAL; 2001 ol = oldlenp ? *oldlenp : 0; 2002 2003 if (oldp) { 2004 p = malloc(*oldlenp, M_TEMP, M_WAITOK); 2005 if (!p) 2006 return ENOMEM; 2007 } else 2008 p = NULL; 2009 switch (name) { 2010 case ICMPV6CTL_ND6_DRLIST: 2011 error = fill_drlist(p, oldlenp, ol); 2012 if (!error && p && oldp) 2013 error = copyout(p, oldp, *oldlenp); 2014 break; 2015 2016 case ICMPV6CTL_ND6_PRLIST: 2017 error = fill_prlist(p, oldlenp, ol); 2018 if (!error && p && oldp) 2019 error = copyout(p, oldp, *oldlenp); 2020 break; 2021 2022 default: 2023 error = ENOPROTOOPT; 2024 break; 2025 } 2026 if (p) 2027 free(p, M_TEMP); 2028 2029 return (error); 2030 } 2031 2032 static int 2033 fill_drlist(oldp, oldlenp, ol) 2034 void *oldp; 2035 size_t *oldlenp, ol; 2036 { 2037 int error = 0, s; 2038 struct in6_defrouter *d = NULL, *de = NULL; 2039 struct nd_defrouter *dr; 2040 size_t l; 2041 2042 s = splsoftnet(); 2043 2044 if (oldp) { 2045 d = (struct in6_defrouter *)oldp; 2046 de = (struct in6_defrouter *)((caddr_t)oldp + *oldlenp); 2047 } 2048 l = 0; 2049 2050 for (dr = TAILQ_FIRST(&nd_defrouter); dr; 2051 dr = TAILQ_NEXT(dr, dr_entry)) { 2052 2053 if (oldp && d + 1 <= de) { 2054 bzero(d, sizeof(*d)); 2055 d->rtaddr.sin6_family = AF_INET6; 2056 d->rtaddr.sin6_len = sizeof(struct sockaddr_in6); 2057 d->rtaddr.sin6_addr = dr->rtaddr; 2058 in6_recoverscope(&d->rtaddr, &d->rtaddr.sin6_addr, 2059 dr->ifp); 2060 d->flags = dr->flags; 2061 d->rtlifetime = dr->rtlifetime; 2062 d->expire = dr->expire; 2063 d->if_index = dr->ifp->if_index; 2064 } 2065 2066 l += sizeof(*d); 2067 if (d) 2068 d++; 2069 } 2070 2071 if (oldp) { 2072 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */ 2073 if (l > ol) 2074 error = ENOMEM; 2075 } else 2076 *oldlenp = l; 2077 2078 splx(s); 2079 2080 return (error); 2081 } 2082 2083 static int 2084 fill_prlist(oldp, oldlenp, ol) 2085 void *oldp; 2086 size_t *oldlenp, ol; 2087 { 2088 int error = 0, s; 2089 struct nd_prefix *pr; 2090 struct in6_prefix *p = NULL; 2091 struct in6_prefix *pe = NULL; 2092 size_t l; 2093 2094 s = splsoftnet(); 2095 2096 if (oldp) { 2097 p = (struct in6_prefix *)oldp; 2098 pe = (struct in6_prefix *)((caddr_t)oldp + *oldlenp); 2099 } 2100 l = 0; 2101 2102 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) { 2103 u_short advrtrs; 2104 size_t advance; 2105 struct sockaddr_in6 *sin6; 2106 struct sockaddr_in6 *s6; 2107 struct nd_pfxrouter *pfr; 2108 2109 if (oldp && p + 1 <= pe) 2110 { 2111 bzero(p, sizeof(*p)); 2112 sin6 = (struct sockaddr_in6 *)(p + 1); 2113 2114 p->prefix = pr->ndpr_prefix; 2115 if (in6_recoverscope(&p->prefix, 2116 &p->prefix.sin6_addr, pr->ndpr_ifp) != 0) 2117 log(LOG_ERR, 2118 "scope error in prefix list (%s)\n", 2119 ip6_sprintf(&p->prefix.sin6_addr)); 2120 p->raflags = pr->ndpr_raf; 2121 p->prefixlen = pr->ndpr_plen; 2122 p->vltime = pr->ndpr_vltime; 2123 p->pltime = pr->ndpr_pltime; 2124 p->if_index = pr->ndpr_ifp->if_index; 2125 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2126 p->expire = 0; 2127 else { 2128 time_t maxexpire; 2129 2130 /* XXX: we assume time_t is signed. */ 2131 maxexpire = (-1) & 2132 ~(1 << ((sizeof(maxexpire) * 8) - 1)); 2133 if (pr->ndpr_vltime < 2134 maxexpire - pr->ndpr_lastupdate) { 2135 p->expire = pr->ndpr_lastupdate + 2136 pr->ndpr_vltime; 2137 } else 2138 p->expire = maxexpire; 2139 } 2140 p->refcnt = pr->ndpr_refcnt; 2141 p->flags = pr->ndpr_stateflags; 2142 p->origin = PR_ORIG_RA; 2143 advrtrs = 0; 2144 for (pfr = pr->ndpr_advrtrs.lh_first; pfr; 2145 pfr = pfr->pfr_next) { 2146 if ((void *)&sin6[advrtrs + 1] > (void *)pe) { 2147 advrtrs++; 2148 continue; 2149 } 2150 s6 = &sin6[advrtrs]; 2151 s6->sin6_family = AF_INET6; 2152 s6->sin6_len = sizeof(struct sockaddr_in6); 2153 s6->sin6_addr = pfr->router->rtaddr; 2154 in6_recoverscope(s6, &s6->sin6_addr, 2155 pfr->router->ifp); 2156 advrtrs++; 2157 } 2158 p->advrtrs = advrtrs; 2159 } 2160 else { 2161 advrtrs = 0; 2162 for (pfr = pr->ndpr_advrtrs.lh_first; pfr; 2163 pfr = pfr->pfr_next) 2164 advrtrs++; 2165 } 2166 2167 advance = sizeof(*p) + sizeof(*sin6) * advrtrs; 2168 l += advance; 2169 if (p) 2170 p = (struct in6_prefix *)((caddr_t)p + advance); 2171 } 2172 2173 if (oldp) { 2174 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */ 2175 if (l > ol) 2176 error = ENOMEM; 2177 } else 2178 *oldlenp = l; 2179 2180 splx(s); 2181 2182 return (error); 2183 } 2184