1 /* $NetBSD: nd6.c,v 1.55 2001/11/13 00:57:04 lukem Exp $ */ 2 /* $KAME: nd6.c,v 1.151 2001/06/19 14:24:41 sumikawa Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * XXX 35 * KAME 970409 note: 36 * BSD/OS version heavily modifies this code, related to llinfo. 37 * Since we don't have BSD/OS version of net/route.c in our hand, 38 * I left the code mostly as it was in 970310. -- itojun 39 */ 40 41 #include <sys/cdefs.h> 42 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.55 2001/11/13 00:57:04 lukem Exp $"); 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/callout.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/socket.h> 50 #include <sys/sockio.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/protosw.h> 54 #include <sys/errno.h> 55 #include <sys/ioctl.h> 56 #include <sys/syslog.h> 57 #include <sys/queue.h> 58 59 #include <net/if.h> 60 #include <net/if_dl.h> 61 #include <net/if_types.h> 62 #include <net/if_atm.h> 63 #include <net/if_ieee1394.h> 64 #include <net/route.h> 65 66 #include <netinet/in.h> 67 #include <net/if_ether.h> 68 #include <netinet/if_inarp.h> 69 #include <net/if_fddi.h> 70 #include <netinet6/in6_var.h> 71 #include <netinet/ip6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet6/nd6.h> 74 #include <netinet6/in6_prefix.h> 75 #include <netinet/icmp6.h> 76 77 #include "loop.h" 78 extern struct ifnet loif[NLOOP]; 79 80 #include <net/net_osdep.h> 81 82 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 83 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 84 85 #define SIN6(s) ((struct sockaddr_in6 *)s) 86 #define SDL(s) ((struct sockaddr_dl *)s) 87 88 /* timer values */ 89 int nd6_prune = 1; /* walk list every 1 seconds */ 90 int nd6_delay = 5; /* delay first probe time 5 second */ 91 int nd6_umaxtries = 3; /* maximum unicast query */ 92 int nd6_mmaxtries = 3; /* maximum multicast query */ 93 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 94 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 95 96 /* preventing too many loops in ND option parsing */ 97 int nd6_maxndopt = 10; /* max # of ND options allowed */ 98 99 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 100 101 #ifdef ND6_DEBUG 102 int nd6_debug = 1; 103 #else 104 int nd6_debug = 0; 105 #endif 106 107 /* for debugging? */ 108 static int nd6_inuse, nd6_allocated; 109 110 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6}; 111 static size_t nd_ifinfo_indexlim = 8; 112 struct nd_ifinfo *nd_ifinfo = NULL; 113 struct nd_drhead nd_defrouter; 114 struct nd_prhead nd_prefix = { 0 }; 115 116 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 117 static struct sockaddr_in6 all1_sa; 118 119 static void nd6_slowtimo __P((void *)); 120 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int)); 121 122 struct callout nd6_slowtimo_ch; 123 struct callout nd6_timer_ch; 124 125 void 126 nd6_init() 127 { 128 static int nd6_init_done = 0; 129 int i; 130 131 if (nd6_init_done) { 132 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n"); 133 return; 134 } 135 136 all1_sa.sin6_family = AF_INET6; 137 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 138 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) 139 all1_sa.sin6_addr.s6_addr[i] = 0xff; 140 141 /* initialization of the default router list */ 142 TAILQ_INIT(&nd_defrouter); 143 144 nd6_init_done = 1; 145 146 /* start timer */ 147 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 148 nd6_slowtimo, NULL); 149 } 150 151 void 152 nd6_ifattach(ifp) 153 struct ifnet *ifp; 154 { 155 156 /* 157 * We have some arrays that should be indexed by if_index. 158 * since if_index will grow dynamically, they should grow too. 159 */ 160 if (nd_ifinfo == NULL || if_index >= nd_ifinfo_indexlim) { 161 size_t n; 162 caddr_t q; 163 164 while (if_index >= nd_ifinfo_indexlim) 165 nd_ifinfo_indexlim <<= 1; 166 167 /* grow nd_ifinfo */ 168 n = nd_ifinfo_indexlim * sizeof(struct nd_ifinfo); 169 q = (caddr_t)malloc(n, M_IP6NDP, M_WAITOK); 170 bzero(q, n); 171 if (nd_ifinfo) { 172 bcopy((caddr_t)nd_ifinfo, q, n/2); 173 free((caddr_t)nd_ifinfo, M_IP6NDP); 174 } 175 nd_ifinfo = (struct nd_ifinfo *)q; 176 } 177 178 #define ND nd_ifinfo[ifp->if_index] 179 180 /* 181 * Don't initialize if called twice. 182 * XXX: to detect this, we should choose a member that is never set 183 * before initialization of the ND structure itself. We formaly used 184 * the linkmtu member, which was not suitable because it could be 185 * initialized via "ifconfig mtu". 186 */ 187 if (ND.basereachable) 188 return; 189 190 #ifdef DIAGNOSTIC 191 if (!ifindex2ifnet[ifp->if_index]) 192 panic("nd6_ifattach: ifindex2ifnet is NULL"); 193 #endif 194 ND.linkmtu = ifindex2ifnet[ifp->if_index]->if_mtu; 195 ND.chlim = IPV6_DEFHLIM; 196 ND.basereachable = REACHABLE_TIME; 197 ND.reachable = ND_COMPUTE_RTIME(ND.basereachable); 198 ND.retrans = RETRANS_TIMER; 199 ND.receivedra = 0; 200 ND.flags = ND6_IFF_PERFORMNUD; 201 nd6_setmtu(ifp); 202 #undef ND 203 } 204 205 /* 206 * Reset ND level link MTU. This function is called when the physical MTU 207 * changes, which means we might have to adjust the ND level MTU. 208 */ 209 void 210 nd6_setmtu(ifp) 211 struct ifnet *ifp; 212 { 213 struct nd_ifinfo *ndi = &nd_ifinfo[ifp->if_index]; 214 u_long oldmaxmtu = ndi->maxmtu; 215 u_long oldlinkmtu = ndi->linkmtu; 216 217 switch (ifp->if_type) { 218 case IFT_ARCNET: /* XXX MTU handling needs more work */ 219 ndi->maxmtu = MIN(60480, ifp->if_mtu); 220 break; 221 case IFT_ETHER: 222 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); 223 break; 224 case IFT_ATM: 225 ndi->maxmtu = MIN(ATMMTU, ifp->if_mtu); 226 break; 227 case IFT_IEEE1394: 228 ndi->maxmtu = MIN(IEEE1394MTU, ifp->if_mtu); 229 break; 230 default: 231 ndi->maxmtu = ifp->if_mtu; 232 break; 233 } 234 235 if (oldmaxmtu != ndi->maxmtu) { 236 /* 237 * If the ND level MTU is not set yet, or if the maxmtu 238 * is reset to a smaller value than the ND level MTU, 239 * also reset the ND level MTU. 240 */ 241 if (ndi->linkmtu == 0 || 242 ndi->maxmtu < ndi->linkmtu) { 243 ndi->linkmtu = ndi->maxmtu; 244 /* also adjust in6_maxmtu if necessary. */ 245 if (oldlinkmtu == 0) { 246 /* 247 * XXX: the case analysis is grotty, but 248 * it is not efficient to call in6_setmaxmtu() 249 * here when we are during the initialization 250 * procedure. 251 */ 252 if (in6_maxmtu < ndi->linkmtu) 253 in6_maxmtu = ndi->linkmtu; 254 } else 255 in6_setmaxmtu(); 256 } 257 } 258 #undef MIN 259 } 260 261 void 262 nd6_option_init(opt, icmp6len, ndopts) 263 void *opt; 264 int icmp6len; 265 union nd_opts *ndopts; 266 { 267 bzero(ndopts, sizeof(*ndopts)); 268 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 269 ndopts->nd_opts_last 270 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 271 272 if (icmp6len == 0) { 273 ndopts->nd_opts_done = 1; 274 ndopts->nd_opts_search = NULL; 275 } 276 } 277 278 /* 279 * Take one ND option. 280 */ 281 struct nd_opt_hdr * 282 nd6_option(ndopts) 283 union nd_opts *ndopts; 284 { 285 struct nd_opt_hdr *nd_opt; 286 int olen; 287 288 if (!ndopts) 289 panic("ndopts == NULL in nd6_option\n"); 290 if (!ndopts->nd_opts_last) 291 panic("uninitialized ndopts in nd6_option\n"); 292 if (!ndopts->nd_opts_search) 293 return NULL; 294 if (ndopts->nd_opts_done) 295 return NULL; 296 297 nd_opt = ndopts->nd_opts_search; 298 299 /* make sure nd_opt_len is inside the buffer */ 300 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 301 bzero(ndopts, sizeof(*ndopts)); 302 return NULL; 303 } 304 305 olen = nd_opt->nd_opt_len << 3; 306 if (olen == 0) { 307 /* 308 * Message validation requires that all included 309 * options have a length that is greater than zero. 310 */ 311 bzero(ndopts, sizeof(*ndopts)); 312 return NULL; 313 } 314 315 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 316 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 317 /* option overruns the end of buffer, invalid */ 318 bzero(ndopts, sizeof(*ndopts)); 319 return NULL; 320 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 321 /* reached the end of options chain */ 322 ndopts->nd_opts_done = 1; 323 ndopts->nd_opts_search = NULL; 324 } 325 return nd_opt; 326 } 327 328 /* 329 * Parse multiple ND options. 330 * This function is much easier to use, for ND routines that do not need 331 * multiple options of the same type. 332 */ 333 int 334 nd6_options(ndopts) 335 union nd_opts *ndopts; 336 { 337 struct nd_opt_hdr *nd_opt; 338 int i = 0; 339 340 if (!ndopts) 341 panic("ndopts == NULL in nd6_options\n"); 342 if (!ndopts->nd_opts_last) 343 panic("uninitialized ndopts in nd6_options\n"); 344 if (!ndopts->nd_opts_search) 345 return 0; 346 347 while (1) { 348 nd_opt = nd6_option(ndopts); 349 if (!nd_opt && !ndopts->nd_opts_last) { 350 /* 351 * Message validation requires that all included 352 * options have a length that is greater than zero. 353 */ 354 icmp6stat.icp6s_nd_badopt++; 355 bzero(ndopts, sizeof(*ndopts)); 356 return -1; 357 } 358 359 if (!nd_opt) 360 goto skip1; 361 362 switch (nd_opt->nd_opt_type) { 363 case ND_OPT_SOURCE_LINKADDR: 364 case ND_OPT_TARGET_LINKADDR: 365 case ND_OPT_MTU: 366 case ND_OPT_REDIRECTED_HEADER: 367 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 368 nd6log((LOG_INFO, 369 "duplicated ND6 option found (type=%d)\n", 370 nd_opt->nd_opt_type)); 371 /* XXX bark? */ 372 } else { 373 ndopts->nd_opt_array[nd_opt->nd_opt_type] 374 = nd_opt; 375 } 376 break; 377 case ND_OPT_PREFIX_INFORMATION: 378 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 379 ndopts->nd_opt_array[nd_opt->nd_opt_type] 380 = nd_opt; 381 } 382 ndopts->nd_opts_pi_end = 383 (struct nd_opt_prefix_info *)nd_opt; 384 break; 385 default: 386 /* 387 * Unknown options must be silently ignored, 388 * to accomodate future extension to the protocol. 389 */ 390 nd6log((LOG_DEBUG, 391 "nd6_options: unsupported option %d - " 392 "option ignored\n", nd_opt->nd_opt_type)); 393 } 394 395 skip1: 396 i++; 397 if (i > nd6_maxndopt) { 398 icmp6stat.icp6s_nd_toomanyopt++; 399 nd6log((LOG_INFO, "too many loop in nd opt\n")); 400 break; 401 } 402 403 if (ndopts->nd_opts_done) 404 break; 405 } 406 407 return 0; 408 } 409 410 /* 411 * ND6 timer routine to expire default route list and prefix list 412 */ 413 void 414 nd6_timer(ignored_arg) 415 void *ignored_arg; 416 { 417 int s; 418 struct llinfo_nd6 *ln; 419 struct nd_defrouter *dr; 420 struct nd_prefix *pr; 421 long time_second = time.tv_sec; 422 423 s = splsoftnet(); 424 callout_reset(&nd6_timer_ch, nd6_prune * hz, 425 nd6_timer, NULL); 426 427 ln = llinfo_nd6.ln_next; 428 /* XXX BSD/OS separates this code -- itojun */ 429 while (ln && ln != &llinfo_nd6) { 430 struct rtentry *rt; 431 struct ifnet *ifp; 432 struct sockaddr_in6 *dst; 433 struct llinfo_nd6 *next = ln->ln_next; 434 /* XXX: used for the DELAY case only: */ 435 struct nd_ifinfo *ndi = NULL; 436 437 if ((rt = ln->ln_rt) == NULL) { 438 ln = next; 439 continue; 440 } 441 if ((ifp = rt->rt_ifp) == NULL) { 442 ln = next; 443 continue; 444 } 445 ndi = &nd_ifinfo[ifp->if_index]; 446 dst = (struct sockaddr_in6 *)rt_key(rt); 447 448 if (ln->ln_expire > time_second) { 449 ln = next; 450 continue; 451 } 452 453 /* sanity check */ 454 if (!rt) 455 panic("rt=0 in nd6_timer(ln=%p)\n", ln); 456 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) 457 panic("rt_llinfo(%p) is not equal to ln(%p)\n", 458 rt->rt_llinfo, ln); 459 if (!dst) 460 panic("dst=0 in nd6_timer(ln=%p)\n", ln); 461 462 switch (ln->ln_state) { 463 case ND6_LLINFO_INCOMPLETE: 464 if (ln->ln_asked < nd6_mmaxtries) { 465 ln->ln_asked++; 466 ln->ln_expire = time_second + 467 nd_ifinfo[ifp->if_index].retrans / 1000; 468 nd6_ns_output(ifp, NULL, &dst->sin6_addr, 469 ln, 0); 470 } else { 471 struct mbuf *m = ln->ln_hold; 472 if (m) { 473 if (rt->rt_ifp) { 474 /* 475 * Fake rcvif to make ICMP error 476 * more helpful in diagnosing 477 * for the receiver. 478 * XXX: should we consider 479 * older rcvif? 480 */ 481 m->m_pkthdr.rcvif = rt->rt_ifp; 482 } 483 icmp6_error(m, ICMP6_DST_UNREACH, 484 ICMP6_DST_UNREACH_ADDR, 0); 485 ln->ln_hold = NULL; 486 } 487 next = nd6_free(rt, 0); 488 } 489 break; 490 case ND6_LLINFO_REACHABLE: 491 if (ln->ln_expire) { 492 ln->ln_state = ND6_LLINFO_STALE; 493 ln->ln_expire = time_second + nd6_gctimer; 494 } 495 break; 496 497 case ND6_LLINFO_STALE: 498 /* Garbage Collection(RFC 2461 5.3) */ 499 if (ln->ln_expire) 500 next = nd6_free(rt, 1); 501 break; 502 503 case ND6_LLINFO_DELAY: 504 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 505 /* We need NUD */ 506 ln->ln_asked = 1; 507 ln->ln_state = ND6_LLINFO_PROBE; 508 ln->ln_expire = time_second + 509 ndi->retrans / 1000; 510 nd6_ns_output(ifp, &dst->sin6_addr, 511 &dst->sin6_addr, 512 ln, 0); 513 } else { 514 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 515 ln->ln_expire = time_second + nd6_gctimer; 516 } 517 break; 518 case ND6_LLINFO_PROBE: 519 if (ln->ln_asked < nd6_umaxtries) { 520 ln->ln_asked++; 521 ln->ln_expire = time_second + 522 nd_ifinfo[ifp->if_index].retrans / 1000; 523 nd6_ns_output(ifp, &dst->sin6_addr, 524 &dst->sin6_addr, ln, 0); 525 } else { 526 next = nd6_free(rt, 0); 527 } 528 break; 529 } 530 ln = next; 531 } 532 533 /* expire default router list */ 534 dr = TAILQ_FIRST(&nd_defrouter); 535 while (dr) { 536 if (dr->expire && dr->expire < time_second) { 537 struct nd_defrouter *t; 538 t = TAILQ_NEXT(dr, dr_entry); 539 defrtrlist_del(dr); 540 dr = t; 541 } else { 542 dr = TAILQ_NEXT(dr, dr_entry); 543 } 544 } 545 pr = nd_prefix.lh_first; 546 while (pr) { 547 struct in6_ifaddr *ia6; 548 struct in6_addrlifetime *lt6; 549 550 if (IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr)) 551 ia6 = NULL; 552 else 553 ia6 = in6ifa_ifpwithaddr(pr->ndpr_ifp, &pr->ndpr_addr); 554 555 if (ia6) { 556 /* check address lifetime */ 557 lt6 = &ia6->ia6_lifetime; 558 if (lt6->ia6t_preferred && lt6->ia6t_preferred < time_second) 559 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 560 if (lt6->ia6t_expire && lt6->ia6t_expire < time_second) { 561 if (!IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr)) 562 in6_ifdel(pr->ndpr_ifp, &pr->ndpr_addr); 563 /* xxx ND_OPT_PI_FLAG_ONLINK processing */ 564 } 565 } 566 567 /* 568 * check prefix lifetime. 569 * since pltime is just for autoconf, pltime processing for 570 * prefix is not necessary. 571 * 572 * we offset expire time by NDPR_KEEP_EXPIRE, so that we 573 * can use the old prefix information to validate the 574 * next prefix information to come. See prelist_update() 575 * for actual validation. 576 */ 577 if (pr->ndpr_expire 578 && pr->ndpr_expire + NDPR_KEEP_EXPIRED < time_second) { 579 struct nd_prefix *t; 580 t = pr->ndpr_next; 581 582 /* 583 * address expiration and prefix expiration are 584 * separate. NEVER perform in6_ifdel here. 585 */ 586 587 prelist_remove(pr); 588 pr = t; 589 } else 590 pr = pr->ndpr_next; 591 } 592 splx(s); 593 } 594 595 /* 596 * Nuke neighbor cache/prefix/default router management table, right before 597 * ifp goes away. 598 */ 599 void 600 nd6_purge(ifp) 601 struct ifnet *ifp; 602 { 603 struct llinfo_nd6 *ln, *nln; 604 struct nd_defrouter *dr, *ndr, drany; 605 struct nd_prefix *pr, *npr; 606 607 /* Nuke default router list entries toward ifp */ 608 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { 609 /* 610 * The first entry of the list may be stored in 611 * the routing table, so we'll delete it later. 612 */ 613 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) { 614 ndr = TAILQ_NEXT(dr, dr_entry); 615 if (dr->ifp == ifp) 616 defrtrlist_del(dr); 617 } 618 dr = TAILQ_FIRST(&nd_defrouter); 619 if (dr->ifp == ifp) 620 defrtrlist_del(dr); 621 } 622 623 /* Nuke prefix list entries toward ifp */ 624 for (pr = nd_prefix.lh_first; pr; pr = npr) { 625 npr = pr->ndpr_next; 626 if (pr->ndpr_ifp == ifp) { 627 if (!IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr)) 628 in6_ifdel(pr->ndpr_ifp, &pr->ndpr_addr); 629 prelist_remove(pr); 630 } 631 } 632 633 /* cancel default outgoing interface setting */ 634 if (nd6_defifindex == ifp->if_index) 635 nd6_setdefaultiface(0); 636 637 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 638 /* refresh default router list */ 639 bzero(&drany, sizeof(drany)); 640 defrouter_delreq(&drany, 0); 641 defrouter_select(); 642 } 643 644 /* 645 * Nuke neighbor cache entries for the ifp. 646 * Note that rt->rt_ifp may not be the same as ifp, 647 * due to KAME goto ours hack. See RTM_RESOLVE case in 648 * nd6_rtrequest(), and ip6_input(). 649 */ 650 ln = llinfo_nd6.ln_next; 651 while (ln && ln != &llinfo_nd6) { 652 struct rtentry *rt; 653 struct sockaddr_dl *sdl; 654 655 nln = ln->ln_next; 656 rt = ln->ln_rt; 657 if (rt && rt->rt_gateway && 658 rt->rt_gateway->sa_family == AF_LINK) { 659 sdl = (struct sockaddr_dl *)rt->rt_gateway; 660 if (sdl->sdl_index == ifp->if_index) 661 nln = nd6_free(rt, 0); 662 } 663 ln = nln; 664 } 665 } 666 667 struct rtentry * 668 nd6_lookup(addr6, create, ifp) 669 struct in6_addr *addr6; 670 int create; 671 struct ifnet *ifp; 672 { 673 struct rtentry *rt; 674 struct sockaddr_in6 sin6; 675 676 bzero(&sin6, sizeof(sin6)); 677 sin6.sin6_len = sizeof(struct sockaddr_in6); 678 sin6.sin6_family = AF_INET6; 679 sin6.sin6_addr = *addr6; 680 rt = rtalloc1((struct sockaddr *)&sin6, create); 681 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) { 682 /* 683 * This is the case for the default route. 684 * If we want to create a neighbor cache for the address, we 685 * should free the route for the destination and allocate an 686 * interface route. 687 */ 688 if (create) { 689 RTFREE(rt); 690 rt = 0; 691 } 692 } 693 if (!rt) { 694 if (create && ifp) { 695 int e; 696 697 /* 698 * If no route is available and create is set, 699 * we allocate a host route for the destination 700 * and treat it like an interface route. 701 * This hack is necessary for a neighbor which can't 702 * be covered by our own prefix. 703 */ 704 struct ifaddr *ifa = 705 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); 706 if (ifa == NULL) 707 return(NULL); 708 709 /* 710 * Create a new route. RTF_LLINFO is necessary 711 * to create a Neighbor Cache entry for the 712 * destination in nd6_rtrequest which will be 713 * called in rtrequest via ifa->ifa_rtrequest. 714 */ 715 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6, 716 ifa->ifa_addr, 717 (struct sockaddr *)&all1_sa, 718 (ifa->ifa_flags | 719 RTF_HOST | RTF_LLINFO) & 720 ~RTF_CLONING, 721 &rt)) != 0) { 722 #if 0 723 log(LOG_ERR, 724 "nd6_lookup: failed to add route for a " 725 "neighbor(%s), errno=%d\n", 726 ip6_sprintf(addr6), e); 727 #endif 728 return(NULL); 729 } 730 if (rt == NULL) 731 return(NULL); 732 if (rt->rt_llinfo) { 733 struct llinfo_nd6 *ln = 734 (struct llinfo_nd6 *)rt->rt_llinfo; 735 ln->ln_state = ND6_LLINFO_NOSTATE; 736 } 737 } else 738 return(NULL); 739 } 740 rt->rt_refcnt--; 741 /* 742 * Validation for the entry. 743 * XXX: we can't use rt->rt_ifp to check for the interface, since 744 * it might be the loopback interface if the entry is for our 745 * own address on a non-loopback interface. Instead, we should 746 * use rt->rt_ifa->ifa_ifp, which would specify the REAL interface. 747 */ 748 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || 749 rt->rt_gateway->sa_family != AF_LINK || 750 (ifp && rt->rt_ifa->ifa_ifp != ifp)) { 751 if (create) { 752 log(LOG_DEBUG, "nd6_lookup: failed to lookup %s (if = %s)\n", 753 ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec"); 754 } 755 return(0); 756 } 757 return(rt); 758 } 759 760 /* 761 * Detect if a given IPv6 address identifies a neighbor on a given link. 762 * XXX: should take care of the destination of a p2p link? 763 */ 764 int 765 nd6_is_addr_neighbor(addr, ifp) 766 struct sockaddr_in6 *addr; 767 struct ifnet *ifp; 768 { 769 struct ifaddr *ifa; 770 int i; 771 772 #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr) 773 #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr) 774 775 /* 776 * A link-local address is always a neighbor. 777 * XXX: we should use the sin6_scope_id field rather than the embedded 778 * interface index. 779 * XXX: a link does not necessarily specify a single interface. 780 */ 781 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) && 782 ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index) 783 return(1); 784 785 /* 786 * If the address matches one of our addresses, 787 * it should be a neighbor. 788 */ 789 for (ifa = ifp->if_addrlist.tqh_first; 790 ifa; 791 ifa = ifa->ifa_list.tqe_next) 792 { 793 if (ifa->ifa_addr->sa_family != AF_INET6) 794 next: continue; 795 796 for (i = 0; i < 4; i++) { 797 if ((IFADDR6(ifa).s6_addr32[i] ^ 798 addr->sin6_addr.s6_addr32[i]) & 799 IFMASK6(ifa).s6_addr32[i]) 800 goto next; 801 } 802 return(1); 803 } 804 805 /* 806 * Even if the address matches none of our addresses, it might be 807 * in the neighbor cache. 808 */ 809 if (nd6_lookup(&addr->sin6_addr, 0, ifp)) 810 return(1); 811 812 return(0); 813 #undef IFADDR6 814 #undef IFMASK6 815 } 816 817 /* 818 * Free an nd6 llinfo entry. 819 * Since the function would cause significant changes in the kernel, DO NOT 820 * make it global, unless you have a strong reason for the change, and are sure 821 * that the change is safe. 822 */ 823 static struct llinfo_nd6 * 824 nd6_free(rt, gc) 825 struct rtentry *rt; 826 int gc; 827 { 828 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next; 829 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; 830 struct nd_defrouter *dr; 831 832 /* 833 * we used to have pfctlinput(PRC_HOSTDEAD) here. 834 * even though it is not harmful, it was not really necessary. 835 */ 836 837 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 838 int s; 839 s = splsoftnet(); 840 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 841 rt->rt_ifp); 842 843 if (dr != NULL && dr->expire && 844 ln->ln_state == ND6_LLINFO_STALE && gc) { 845 /* 846 * If the reason for the deletion is just garbage 847 * collection, and the neighbor is an active default 848 * router, do not delete it. Instead, reset the GC 849 * timer using the router's lifetime. 850 * Simply deleting the entry would affect default 851 * router selection, which is not necessarily a good 852 * thing, especially when we're using router preference 853 * values. 854 * XXX: the check for ln_state would be redundant, 855 * but we intentionally keep it just in case. 856 */ 857 ln->ln_expire = dr->expire; 858 splx(s); 859 return(ln->ln_next); 860 } 861 862 if (ln->ln_router || dr) { 863 /* 864 * rt6_flush must be called whether or not the neighbor 865 * is in the Default Router List. 866 * See a corresponding comment in nd6_na_input(). 867 */ 868 rt6_flush(&in6, rt->rt_ifp); 869 } 870 871 if (dr) { 872 /* 873 * Unreachablity of a router might affect the default 874 * router selection and on-link detection of advertised 875 * prefixes. 876 */ 877 878 /* 879 * Temporarily fake the state to choose a new default 880 * router and to perform on-link determination of 881 * prefixes correctly. 882 * Below the state will be set correctly, 883 * or the entry itself will be deleted. 884 */ 885 ln->ln_state = ND6_LLINFO_INCOMPLETE; 886 887 /* 888 * Since defrouter_select() does not affect the 889 * on-link determination and MIP6 needs the check 890 * before the default router selection, we perform 891 * the check now. 892 */ 893 pfxlist_onlink_check(); 894 895 if (dr == TAILQ_FIRST(&nd_defrouter)) { 896 /* 897 * It is used as the current default router, 898 * so we have to move it to the end of the 899 * list and choose a new one. 900 * XXX: it is not very efficient if this is 901 * the only router. 902 */ 903 TAILQ_REMOVE(&nd_defrouter, dr, dr_entry); 904 TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry); 905 906 defrouter_select(); 907 } 908 } 909 splx(s); 910 } 911 912 /* 913 * Before deleting the entry, remember the next entry as the 914 * return value. We need this because pfxlist_onlink_check() above 915 * might have freed other entries (particularly the old next entry) as 916 * a side effect (XXX). 917 */ 918 next = ln->ln_next; 919 920 /* 921 * Detach the route from the routing tree and the list of neighbor 922 * caches, and disable the route entry not to be used in already 923 * cached routes. 924 */ 925 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0, 926 rt_mask(rt), 0, (struct rtentry **)0); 927 928 return(next); 929 } 930 931 /* 932 * Upper-layer reachability hint for Neighbor Unreachability Detection. 933 * 934 * XXX cost-effective metods? 935 */ 936 void 937 nd6_nud_hint(rt, dst6, force) 938 struct rtentry *rt; 939 struct in6_addr *dst6; 940 int force; 941 { 942 struct llinfo_nd6 *ln; 943 long time_second = time.tv_sec; 944 945 /* 946 * If the caller specified "rt", use that. Otherwise, resolve the 947 * routing table by supplied "dst6". 948 */ 949 if (!rt) { 950 if (!dst6) 951 return; 952 if (!(rt = nd6_lookup(dst6, 0, NULL))) 953 return; 954 } 955 956 if ((rt->rt_flags & RTF_GATEWAY) != 0 || 957 (rt->rt_flags & RTF_LLINFO) == 0 || 958 !rt->rt_llinfo || !rt->rt_gateway || 959 rt->rt_gateway->sa_family != AF_LINK) { 960 /* This is not a host route. */ 961 return; 962 } 963 964 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 965 if (ln->ln_state < ND6_LLINFO_REACHABLE) 966 return; 967 968 /* 969 * if we get upper-layer reachability confirmation many times, 970 * it is possible we have false information. 971 */ 972 if (!force) { 973 ln->ln_byhint++; 974 if (ln->ln_byhint > nd6_maxnudhint) 975 return; 976 } 977 978 ln->ln_state = ND6_LLINFO_REACHABLE; 979 if (ln->ln_expire) 980 ln->ln_expire = time_second + 981 nd_ifinfo[rt->rt_ifp->if_index].reachable; 982 } 983 984 void 985 nd6_rtrequest(req, rt, info) 986 int req; 987 struct rtentry *rt; 988 struct rt_addrinfo *info; /* xxx unused */ 989 { 990 struct sockaddr *gate = rt->rt_gateway; 991 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; 992 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 993 struct ifnet *ifp = rt->rt_ifp; 994 struct ifaddr *ifa; 995 long time_second = time.tv_sec; 996 997 if (rt->rt_flags & RTF_GATEWAY) 998 return; 999 1000 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { 1001 /* 1002 * This is probably an interface direct route for a link 1003 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1004 * We do not need special treatment below for such a route. 1005 * Moreover, the RTF_LLINFO flag which would be set below 1006 * would annoy the ndp(8) command. 1007 */ 1008 return; 1009 } 1010 1011 switch (req) { 1012 case RTM_ADD: 1013 /* 1014 * There is no backward compatibility :) 1015 * 1016 * if ((rt->rt_flags & RTF_HOST) == 0 && 1017 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1018 * rt->rt_flags |= RTF_CLONING; 1019 */ 1020 if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) { 1021 /* 1022 * Case 1: This route should come from 1023 * a route to interface. RTF_LLINFO flag is set 1024 * for a host route whose destination should be 1025 * treated as on-link. 1026 */ 1027 rt_setgate(rt, rt_key(rt), 1028 (struct sockaddr *)&null_sdl); 1029 gate = rt->rt_gateway; 1030 SDL(gate)->sdl_type = ifp->if_type; 1031 SDL(gate)->sdl_index = ifp->if_index; 1032 if (ln) 1033 ln->ln_expire = time_second; 1034 #if 1 1035 if (ln && ln->ln_expire == 0) { 1036 /* kludge for desktops */ 1037 #if 0 1038 printf("nd6_rtequest: time.tv_sec is zero; " 1039 "treat it as 1\n"); 1040 #endif 1041 ln->ln_expire = 1; 1042 } 1043 #endif 1044 if (rt->rt_flags & RTF_CLONING) 1045 break; 1046 } 1047 /* 1048 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1049 * We don't do that here since llinfo is not ready yet. 1050 * 1051 * There are also couple of other things to be discussed: 1052 * - unsolicited NA code needs improvement beforehand 1053 * - RFC2461 says we MAY send multicast unsolicited NA 1054 * (7.2.6 paragraph 4), however, it also says that we 1055 * SHOULD provide a mechanism to prevent multicast NA storm. 1056 * we don't have anything like it right now. 1057 * note that the mechanism needs a mutual agreement 1058 * between proxies, which means that we need to implement 1059 * a new protocol, or a new kludge. 1060 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1061 * we need to check ip6forwarding before sending it. 1062 * (or should we allow proxy ND configuration only for 1063 * routers? there's no mention about proxy ND from hosts) 1064 */ 1065 #if 0 1066 /* XXX it does not work */ 1067 if (rt->rt_flags & RTF_ANNOUNCE) 1068 nd6_na_output(ifp, 1069 &SIN6(rt_key(rt))->sin6_addr, 1070 &SIN6(rt_key(rt))->sin6_addr, 1071 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1072 1, NULL); 1073 #endif 1074 /* FALLTHROUGH */ 1075 case RTM_RESOLVE: 1076 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { 1077 /* 1078 * Address resolution isn't necessary for a point to 1079 * point link, so we can skip this test for a p2p link. 1080 */ 1081 if (gate->sa_family != AF_LINK || 1082 gate->sa_len < sizeof(null_sdl)) { 1083 log(LOG_DEBUG, 1084 "nd6_rtrequest: bad gateway value: %s\n", 1085 if_name(ifp)); 1086 break; 1087 } 1088 SDL(gate)->sdl_type = ifp->if_type; 1089 SDL(gate)->sdl_index = ifp->if_index; 1090 } 1091 if (ln != NULL) 1092 break; /* This happens on a route change */ 1093 /* 1094 * Case 2: This route may come from cloning, or a manual route 1095 * add with a LL address. 1096 */ 1097 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln)); 1098 rt->rt_llinfo = (caddr_t)ln; 1099 if (!ln) { 1100 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n"); 1101 break; 1102 } 1103 nd6_inuse++; 1104 nd6_allocated++; 1105 Bzero(ln, sizeof(*ln)); 1106 ln->ln_rt = rt; 1107 /* this is required for "ndp" command. - shin */ 1108 if (req == RTM_ADD) { 1109 /* 1110 * gate should have some valid AF_LINK entry, 1111 * and ln->ln_expire should have some lifetime 1112 * which is specified by ndp command. 1113 */ 1114 ln->ln_state = ND6_LLINFO_REACHABLE; 1115 ln->ln_byhint = 0; 1116 } else { 1117 /* 1118 * When req == RTM_RESOLVE, rt is created and 1119 * initialized in rtrequest(), so rt_expire is 0. 1120 */ 1121 ln->ln_state = ND6_LLINFO_NOSTATE; 1122 ln->ln_expire = time_second; 1123 } 1124 rt->rt_flags |= RTF_LLINFO; 1125 ln->ln_next = llinfo_nd6.ln_next; 1126 llinfo_nd6.ln_next = ln; 1127 ln->ln_prev = &llinfo_nd6; 1128 ln->ln_next->ln_prev = ln; 1129 1130 /* 1131 * check if rt_key(rt) is one of my address assigned 1132 * to the interface. 1133 */ 1134 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, 1135 &SIN6(rt_key(rt))->sin6_addr); 1136 if (ifa) { 1137 caddr_t macp = nd6_ifptomac(ifp); 1138 ln->ln_expire = 0; 1139 ln->ln_state = ND6_LLINFO_REACHABLE; 1140 ln->ln_byhint = 0; 1141 if (macp) { 1142 Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); 1143 SDL(gate)->sdl_alen = ifp->if_addrlen; 1144 } 1145 if (nd6_useloopback) { 1146 rt->rt_ifp = &loif[0]; /* XXX */ 1147 /* 1148 * Make sure rt_ifa be equal to the ifaddr 1149 * corresponding to the address. 1150 * We need this because when we refer 1151 * rt_ifa->ia6_flags in ip6_input, we assume 1152 * that the rt_ifa points to the address instead 1153 * of the loopback address. 1154 */ 1155 if (ifa != rt->rt_ifa) { 1156 IFAFREE(rt->rt_ifa); 1157 IFAREF(ifa); 1158 rt->rt_ifa = ifa; 1159 } 1160 } 1161 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1162 ln->ln_expire = 0; 1163 ln->ln_state = ND6_LLINFO_REACHABLE; 1164 ln->ln_byhint = 0; 1165 1166 /* join solicited node multicast for proxy ND */ 1167 if (ifp->if_flags & IFF_MULTICAST) { 1168 struct in6_addr llsol; 1169 int error; 1170 1171 llsol = SIN6(rt_key(rt))->sin6_addr; 1172 llsol.s6_addr16[0] = htons(0xff02); 1173 llsol.s6_addr16[1] = htons(ifp->if_index); 1174 llsol.s6_addr32[1] = 0; 1175 llsol.s6_addr32[2] = htonl(1); 1176 llsol.s6_addr8[12] = 0xff; 1177 1178 if (!in6_addmulti(&llsol, ifp, &error)) { 1179 nd6log((LOG_ERR, "%s: failed to join " 1180 "%s (errno=%d)\n", if_name(ifp), 1181 ip6_sprintf(&llsol), error)); 1182 } 1183 } 1184 } 1185 break; 1186 1187 case RTM_DELETE: 1188 if (!ln) 1189 break; 1190 /* leave from solicited node multicast for proxy ND */ 1191 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && 1192 (ifp->if_flags & IFF_MULTICAST) != 0) { 1193 struct in6_addr llsol; 1194 struct in6_multi *in6m; 1195 1196 llsol = SIN6(rt_key(rt))->sin6_addr; 1197 llsol.s6_addr16[0] = htons(0xff02); 1198 llsol.s6_addr16[1] = htons(ifp->if_index); 1199 llsol.s6_addr32[1] = 0; 1200 llsol.s6_addr32[2] = htonl(1); 1201 llsol.s6_addr8[12] = 0xff; 1202 1203 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1204 if (in6m) 1205 in6_delmulti(in6m); 1206 } 1207 nd6_inuse--; 1208 ln->ln_next->ln_prev = ln->ln_prev; 1209 ln->ln_prev->ln_next = ln->ln_next; 1210 ln->ln_prev = NULL; 1211 rt->rt_llinfo = 0; 1212 rt->rt_flags &= ~RTF_LLINFO; 1213 if (ln->ln_hold) 1214 m_freem(ln->ln_hold); 1215 Free((caddr_t)ln); 1216 } 1217 } 1218 1219 void 1220 nd6_p2p_rtrequest(req, rt, info) 1221 int req; 1222 struct rtentry *rt; 1223 struct rt_addrinfo *info; /* xxx unused */ 1224 { 1225 struct sockaddr *gate = rt->rt_gateway; 1226 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1227 struct ifnet *ifp = rt->rt_ifp; 1228 struct ifaddr *ifa; 1229 1230 if (rt->rt_flags & RTF_GATEWAY) 1231 return; 1232 1233 switch (req) { 1234 case RTM_ADD: 1235 /* 1236 * There is no backward compatibility :) 1237 * 1238 * if ((rt->rt_flags & RTF_HOST) == 0 && 1239 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1240 * rt->rt_flags |= RTF_CLONING; 1241 */ 1242 if (rt->rt_flags & RTF_CLONING) { 1243 /* 1244 * Case 1: This route should come from 1245 * a route to interface. 1246 */ 1247 rt_setgate(rt, rt_key(rt), 1248 (struct sockaddr *)&null_sdl); 1249 gate = rt->rt_gateway; 1250 SDL(gate)->sdl_type = ifp->if_type; 1251 SDL(gate)->sdl_index = ifp->if_index; 1252 break; 1253 } 1254 /* Announce a new entry if requested. */ 1255 if (rt->rt_flags & RTF_ANNOUNCE) 1256 nd6_na_output(ifp, 1257 &SIN6(rt_key(rt))->sin6_addr, 1258 &SIN6(rt_key(rt))->sin6_addr, 1259 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1260 1, NULL); 1261 /* FALLTHROUGH */ 1262 case RTM_RESOLVE: 1263 /* 1264 * check if rt_key(rt) is one of my address assigned 1265 * to the interface. 1266 */ 1267 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, 1268 &SIN6(rt_key(rt))->sin6_addr); 1269 if (ifa) { 1270 if (nd6_useloopback) { 1271 rt->rt_ifp = &loif[0]; /*XXX*/ 1272 } 1273 } 1274 break; 1275 } 1276 } 1277 1278 int 1279 nd6_ioctl(cmd, data, ifp) 1280 u_long cmd; 1281 caddr_t data; 1282 struct ifnet *ifp; 1283 { 1284 struct in6_drlist *drl = (struct in6_drlist *)data; 1285 struct in6_prlist *prl = (struct in6_prlist *)data; 1286 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1287 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1288 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1289 struct nd_defrouter *dr, any; 1290 struct nd_prefix *pr; 1291 struct rtentry *rt; 1292 int i = 0, error = 0; 1293 int s; 1294 1295 switch (cmd) { 1296 case SIOCGDRLST_IN6: 1297 bzero(drl, sizeof(*drl)); 1298 s = splsoftnet(); 1299 dr = TAILQ_FIRST(&nd_defrouter); 1300 while (dr && i < DRLSTSIZ) { 1301 drl->defrouter[i].rtaddr = dr->rtaddr; 1302 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) { 1303 /* XXX: need to this hack for KAME stack */ 1304 drl->defrouter[i].rtaddr.s6_addr16[1] = 0; 1305 } else 1306 log(LOG_ERR, 1307 "default router list contains a " 1308 "non-linklocal address(%s)\n", 1309 ip6_sprintf(&drl->defrouter[i].rtaddr)); 1310 1311 drl->defrouter[i].flags = dr->flags; 1312 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1313 drl->defrouter[i].expire = dr->expire; 1314 drl->defrouter[i].if_index = dr->ifp->if_index; 1315 i++; 1316 dr = TAILQ_NEXT(dr, dr_entry); 1317 } 1318 splx(s); 1319 break; 1320 case SIOCGPRLST_IN6: 1321 /* 1322 * XXX meaning of fields, especialy "raflags", is very 1323 * differnet between RA prefix list and RR/static prefix list. 1324 * how about separating ioctls into two? 1325 */ 1326 bzero(prl, sizeof(*prl)); 1327 s = splsoftnet(); 1328 pr = nd_prefix.lh_first; 1329 while (pr && i < PRLSTSIZ) { 1330 struct nd_pfxrouter *pfr; 1331 int j; 1332 1333 prl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1334 prl->prefix[i].raflags = pr->ndpr_raf; 1335 prl->prefix[i].prefixlen = pr->ndpr_plen; 1336 prl->prefix[i].vltime = pr->ndpr_vltime; 1337 prl->prefix[i].pltime = pr->ndpr_pltime; 1338 prl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1339 prl->prefix[i].expire = pr->ndpr_expire; 1340 1341 pfr = pr->ndpr_advrtrs.lh_first; 1342 j = 0; 1343 while (pfr) { 1344 if (j < DRLSTSIZ) { 1345 #define RTRADDR prl->prefix[i].advrtr[j] 1346 RTRADDR = pfr->router->rtaddr; 1347 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) { 1348 /* XXX: hack for KAME */ 1349 RTRADDR.s6_addr16[1] = 0; 1350 } else 1351 log(LOG_ERR, 1352 "a router(%s) advertises " 1353 "a prefix with " 1354 "non-link local address\n", 1355 ip6_sprintf(&RTRADDR)); 1356 #undef RTRADDR 1357 } 1358 j++; 1359 pfr = pfr->pfr_next; 1360 } 1361 prl->prefix[i].advrtrs = j; 1362 prl->prefix[i].origin = PR_ORIG_RA; 1363 1364 i++; 1365 pr = pr->ndpr_next; 1366 } 1367 { 1368 struct rr_prefix *rpp; 1369 1370 for (rpp = LIST_FIRST(&rr_prefix); rpp; 1371 rpp = LIST_NEXT(rpp, rp_entry)) { 1372 if (i >= PRLSTSIZ) 1373 break; 1374 prl->prefix[i].prefix = rpp->rp_prefix.sin6_addr; 1375 prl->prefix[i].raflags = rpp->rp_raf; 1376 prl->prefix[i].prefixlen = rpp->rp_plen; 1377 prl->prefix[i].vltime = rpp->rp_vltime; 1378 prl->prefix[i].pltime = rpp->rp_pltime; 1379 prl->prefix[i].if_index = rpp->rp_ifp->if_index; 1380 prl->prefix[i].expire = rpp->rp_expire; 1381 prl->prefix[i].advrtrs = 0; 1382 prl->prefix[i].origin = rpp->rp_origin; 1383 i++; 1384 } 1385 } 1386 splx(s); 1387 1388 break; 1389 case SIOCGIFINFO_IN6: 1390 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) { 1391 error = EINVAL; 1392 break; 1393 } 1394 ndi->ndi = nd_ifinfo[ifp->if_index]; 1395 break; 1396 case SIOCSIFINFO_FLAGS: 1397 /* XXX: almost all other fields of ndi->ndi is unused */ 1398 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) { 1399 error = EINVAL; 1400 break; 1401 } 1402 nd_ifinfo[ifp->if_index].flags = ndi->ndi.flags; 1403 break; 1404 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1405 /* flush default router list */ 1406 /* 1407 * xxx sumikawa: should not delete route if default 1408 * route equals to the top of default router list 1409 */ 1410 bzero(&any, sizeof(any)); 1411 defrouter_delreq(&any, 0); 1412 defrouter_select(); 1413 /* xxx sumikawa: flush prefix list */ 1414 break; 1415 case SIOCSPFXFLUSH_IN6: 1416 { 1417 /* flush all the prefix advertised by routers */ 1418 struct nd_prefix *pr, *next; 1419 1420 s = splsoftnet(); 1421 for (pr = nd_prefix.lh_first; pr; pr = next) { 1422 next = pr->ndpr_next; 1423 if (!IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr)) 1424 in6_ifdel(pr->ndpr_ifp, &pr->ndpr_addr); 1425 prelist_remove(pr); 1426 } 1427 splx(s); 1428 break; 1429 } 1430 case SIOCSRTRFLUSH_IN6: 1431 { 1432 /* flush all the default routers */ 1433 struct nd_defrouter *dr, *next; 1434 1435 s = splsoftnet(); 1436 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { 1437 /* 1438 * The first entry of the list may be stored in 1439 * the routing table, so we'll delete it later. 1440 */ 1441 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) { 1442 next = TAILQ_NEXT(dr, dr_entry); 1443 defrtrlist_del(dr); 1444 } 1445 defrtrlist_del(TAILQ_FIRST(&nd_defrouter)); 1446 } 1447 splx(s); 1448 break; 1449 } 1450 case SIOCGNBRINFO_IN6: 1451 { 1452 struct llinfo_nd6 *ln; 1453 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1454 1455 /* 1456 * XXX: KAME specific hack for scoped addresses 1457 * XXXX: for other scopes than link-local? 1458 */ 1459 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) || 1460 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) { 1461 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2]; 1462 1463 if (*idp == 0) 1464 *idp = htons(ifp->if_index); 1465 } 1466 1467 s = splsoftnet(); 1468 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) { 1469 error = EINVAL; 1470 splx(s); 1471 break; 1472 } 1473 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1474 nbi->state = ln->ln_state; 1475 nbi->asked = ln->ln_asked; 1476 nbi->isrouter = ln->ln_router; 1477 nbi->expire = ln->ln_expire; 1478 splx(s); 1479 1480 break; 1481 } 1482 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1483 ndif->ifindex = nd6_defifindex; 1484 break; 1485 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1486 return(nd6_setdefaultiface(ndif->ifindex)); 1487 break; 1488 } 1489 return(error); 1490 } 1491 1492 /* 1493 * Create neighbor cache entry and cache link-layer address, 1494 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1495 */ 1496 struct rtentry * 1497 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code) 1498 struct ifnet *ifp; 1499 struct in6_addr *from; 1500 char *lladdr; 1501 int lladdrlen; 1502 int type; /* ICMP6 type */ 1503 int code; /* type dependent information */ 1504 { 1505 struct rtentry *rt = NULL; 1506 struct llinfo_nd6 *ln = NULL; 1507 int is_newentry; 1508 struct sockaddr_dl *sdl = NULL; 1509 int do_update; 1510 int olladdr; 1511 int llchange; 1512 int newstate = 0; 1513 long time_second = time.tv_sec; 1514 1515 if (!ifp) 1516 panic("ifp == NULL in nd6_cache_lladdr"); 1517 if (!from) 1518 panic("from == NULL in nd6_cache_lladdr"); 1519 1520 /* nothing must be updated for unspecified address */ 1521 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1522 return NULL; 1523 1524 /* 1525 * Validation about ifp->if_addrlen and lladdrlen must be done in 1526 * the caller. 1527 * 1528 * XXX If the link does not have link-layer adderss, what should 1529 * we do? (ifp->if_addrlen == 0) 1530 * Spec says nothing in sections for RA, RS and NA. There's small 1531 * description on it in NS section (RFC 2461 7.2.3). 1532 */ 1533 1534 rt = nd6_lookup(from, 0, ifp); 1535 if (!rt) { 1536 #if 0 1537 /* nothing must be done if there's no lladdr */ 1538 if (!lladdr || !lladdrlen) 1539 return NULL; 1540 #endif 1541 1542 rt = nd6_lookup(from, 1, ifp); 1543 is_newentry = 1; 1544 } else { 1545 /* do nothing if static ndp is set */ 1546 if (rt->rt_flags & RTF_STATIC) 1547 return NULL; 1548 is_newentry = 0; 1549 } 1550 1551 if (!rt) 1552 return NULL; 1553 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { 1554 fail: 1555 (void)nd6_free(rt, 0); 1556 return NULL; 1557 } 1558 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1559 if (!ln) 1560 goto fail; 1561 if (!rt->rt_gateway) 1562 goto fail; 1563 if (rt->rt_gateway->sa_family != AF_LINK) 1564 goto fail; 1565 sdl = SDL(rt->rt_gateway); 1566 1567 olladdr = (sdl->sdl_alen) ? 1 : 0; 1568 if (olladdr && lladdr) { 1569 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) 1570 llchange = 1; 1571 else 1572 llchange = 0; 1573 } else 1574 llchange = 0; 1575 1576 /* 1577 * newentry olladdr lladdr llchange (*=record) 1578 * 0 n n -- (1) 1579 * 0 y n -- (2) 1580 * 0 n y -- (3) * STALE 1581 * 0 y y n (4) * 1582 * 0 y y y (5) * STALE 1583 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1584 * 1 -- y -- (7) * STALE 1585 */ 1586 1587 if (lladdr) { /* (3-5) and (7) */ 1588 /* 1589 * Record source link-layer address 1590 * XXX is it dependent to ifp->if_type? 1591 */ 1592 sdl->sdl_alen = ifp->if_addrlen; 1593 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); 1594 } 1595 1596 if (!is_newentry) { 1597 if ((!olladdr && lladdr) /* (3) */ 1598 || (olladdr && lladdr && llchange)) { /* (5) */ 1599 do_update = 1; 1600 newstate = ND6_LLINFO_STALE; 1601 } else /* (1-2,4) */ 1602 do_update = 0; 1603 } else { 1604 do_update = 1; 1605 if (!lladdr) /* (6) */ 1606 newstate = ND6_LLINFO_NOSTATE; 1607 else /* (7) */ 1608 newstate = ND6_LLINFO_STALE; 1609 } 1610 1611 if (do_update) { 1612 /* 1613 * Update the state of the neighbor cache. 1614 */ 1615 ln->ln_state = newstate; 1616 1617 if (ln->ln_state == ND6_LLINFO_STALE) { 1618 /* 1619 * XXX: since nd6_output() below will cause 1620 * state tansition to DELAY and reset the timer, 1621 * we must set the timer now, although it is actually 1622 * meaningless. 1623 */ 1624 ln->ln_expire = time_second + nd6_gctimer; 1625 1626 if (ln->ln_hold) { 1627 /* 1628 * we assume ifp is not a p2p here, so just 1629 * set the 2nd argument as the 1st one. 1630 */ 1631 nd6_output(ifp, ifp, ln->ln_hold, 1632 (struct sockaddr_in6 *)rt_key(rt), 1633 rt); 1634 ln->ln_hold = NULL; 1635 } 1636 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1637 /* probe right away */ 1638 ln->ln_expire = time_second; 1639 } 1640 } 1641 1642 /* 1643 * ICMP6 type dependent behavior. 1644 * 1645 * NS: clear IsRouter if new entry 1646 * RS: clear IsRouter 1647 * RA: set IsRouter if there's lladdr 1648 * redir: clear IsRouter if new entry 1649 * 1650 * RA case, (1): 1651 * The spec says that we must set IsRouter in the following cases: 1652 * - If lladdr exist, set IsRouter. This means (1-5). 1653 * - If it is old entry (!newentry), set IsRouter. This means (7). 1654 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1655 * A quetion arises for (1) case. (1) case has no lladdr in the 1656 * neighbor cache, this is similar to (6). 1657 * This case is rare but we figured that we MUST NOT set IsRouter. 1658 * 1659 * newentry olladdr lladdr llchange NS RS RA redir 1660 * D R 1661 * 0 n n -- (1) c ? s 1662 * 0 y n -- (2) c s s 1663 * 0 n y -- (3) c s s 1664 * 0 y y n (4) c s s 1665 * 0 y y y (5) c s s 1666 * 1 -- n -- (6) c c c s 1667 * 1 -- y -- (7) c c s c s 1668 * 1669 * (c=clear s=set) 1670 */ 1671 switch (type & 0xff) { 1672 case ND_NEIGHBOR_SOLICIT: 1673 /* 1674 * New entry must have is_router flag cleared. 1675 */ 1676 if (is_newentry) /* (6-7) */ 1677 ln->ln_router = 0; 1678 break; 1679 case ND_REDIRECT: 1680 /* 1681 * If the icmp is a redirect to a better router, always set the 1682 * is_router flag. Otherwise, if the entry is newly created, 1683 * clear the flag. [RFC 2461, sec 8.3] 1684 */ 1685 if (code == ND_REDIRECT_ROUTER) 1686 ln->ln_router = 1; 1687 else if (is_newentry) /* (6-7) */ 1688 ln->ln_router = 0; 1689 break; 1690 case ND_ROUTER_SOLICIT: 1691 /* 1692 * is_router flag must always be cleared. 1693 */ 1694 ln->ln_router = 0; 1695 break; 1696 case ND_ROUTER_ADVERT: 1697 /* 1698 * Mark an entry with lladdr as a router. 1699 */ 1700 if ((!is_newentry && (olladdr || lladdr)) /* (2-5) */ 1701 || (is_newentry && lladdr)) { /* (7) */ 1702 ln->ln_router = 1; 1703 } 1704 break; 1705 } 1706 1707 /* 1708 * When the link-layer address of a router changes, select the 1709 * best router again. In particular, when the neighbor entry is newly 1710 * created, it might affect the selection policy. 1711 * Question: can we restrict the first condition to the "is_newentry" 1712 * case? 1713 * XXX: when we hear an RA from a new router with the link-layer 1714 * address option, defrouter_select() is called twice, since 1715 * defrtrlist_update called the function as well. However, I believe 1716 * we can compromise the overhead, since it only happens the first 1717 * time. 1718 * XXX: although defrouter_select() should not have a bad effect 1719 * for those are not autoconfigured hosts, we explicitly avoid such 1720 * cases for safety. 1721 */ 1722 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv) 1723 defrouter_select(); 1724 1725 return rt; 1726 } 1727 1728 static void 1729 nd6_slowtimo(ignored_arg) 1730 void *ignored_arg; 1731 { 1732 int s = splsoftnet(); 1733 int i; 1734 struct nd_ifinfo *nd6if; 1735 1736 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1737 nd6_slowtimo, NULL); 1738 for (i = 1; i < if_index + 1; i++) { 1739 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) 1740 continue; 1741 nd6if = &nd_ifinfo[i]; 1742 if (nd6if->basereachable && /* already initialized */ 1743 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1744 /* 1745 * Since reachable time rarely changes by router 1746 * advertisements, we SHOULD insure that a new random 1747 * value gets recomputed at least once every few hours. 1748 * (RFC 2461, 6.3.4) 1749 */ 1750 nd6if->recalctm = nd6_recalc_reachtm_interval; 1751 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1752 } 1753 } 1754 splx(s); 1755 } 1756 1757 #define senderr(e) { error = (e); goto bad;} 1758 int 1759 nd6_output(ifp, origifp, m0, dst, rt0) 1760 struct ifnet *ifp; 1761 struct ifnet *origifp; 1762 struct mbuf *m0; 1763 struct sockaddr_in6 *dst; 1764 struct rtentry *rt0; 1765 { 1766 struct mbuf *m = m0; 1767 struct rtentry *rt = rt0; 1768 struct sockaddr_in6 *gw6 = NULL; 1769 struct llinfo_nd6 *ln = NULL; 1770 int error = 0; 1771 long time_second = time.tv_sec; 1772 1773 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1774 goto sendpkt; 1775 1776 if (nd6_need_cache(ifp) == 0) 1777 goto sendpkt; 1778 1779 /* 1780 * next hop determination. This routine is derived from ether_outpout. 1781 */ 1782 if (rt) { 1783 if ((rt->rt_flags & RTF_UP) == 0) { 1784 if ((rt0 = rt = rtalloc1((struct sockaddr *)dst, 1)) != 1785 NULL) 1786 { 1787 rt->rt_refcnt--; 1788 if (rt->rt_ifp != ifp) { 1789 /* XXX: loop care? */ 1790 return nd6_output(ifp, origifp, m0, 1791 dst, rt); 1792 } 1793 } else 1794 senderr(EHOSTUNREACH); 1795 } 1796 1797 if (rt->rt_flags & RTF_GATEWAY) { 1798 gw6 = (struct sockaddr_in6 *)rt->rt_gateway; 1799 1800 /* 1801 * We skip link-layer address resolution and NUD 1802 * if the gateway is not a neighbor from ND point 1803 * of view, regardless the value of the 1804 * nd_ifinfo.flags. 1805 * The second condition is a bit tricky: we skip 1806 * if the gateway is our own address, which is 1807 * sometimes used to install a route to a p2p link. 1808 */ 1809 if (!nd6_is_addr_neighbor(gw6, ifp) || 1810 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) { 1811 /* 1812 * We allow this kind of tricky route only 1813 * when the outgoing interface is p2p. 1814 * XXX: we may need a more generic rule here. 1815 */ 1816 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1817 senderr(EHOSTUNREACH); 1818 1819 goto sendpkt; 1820 } 1821 1822 if (rt->rt_gwroute == 0) 1823 goto lookup; 1824 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) { 1825 rtfree(rt); rt = rt0; 1826 lookup: 1827 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1); 1828 if ((rt = rt->rt_gwroute) == 0) 1829 senderr(EHOSTUNREACH); 1830 /* the "G" test below also prevents rt == rt0 */ 1831 if ((rt->rt_flags & RTF_GATEWAY) || 1832 (rt->rt_ifp != ifp)) { 1833 rt->rt_refcnt--; 1834 rt0->rt_gwroute = 0; 1835 senderr(EHOSTUNREACH); 1836 } 1837 } 1838 } 1839 } 1840 1841 /* 1842 * Address resolution or Neighbor Unreachability Detection 1843 * for the next hop. 1844 * At this point, the destination of the packet must be a unicast 1845 * or an anycast address(i.e. not a multicast). 1846 */ 1847 1848 /* Look up the neighbor cache for the nexthop */ 1849 if (rt && (rt->rt_flags & RTF_LLINFO) != 0) 1850 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1851 else { 1852 /* 1853 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 1854 * the condition below is not very efficient. But we believe 1855 * it is tolerable, because this should be a rare case. 1856 */ 1857 if (nd6_is_addr_neighbor(dst, ifp) && 1858 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL) 1859 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1860 } 1861 if (!ln || !rt) { 1862 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 1863 !(nd_ifinfo[ifp->if_index].flags & ND6_IFF_PERFORMNUD)) { 1864 log(LOG_DEBUG, 1865 "nd6_output: can't allocate llinfo for %s " 1866 "(ln=%p, rt=%p)\n", 1867 ip6_sprintf(&dst->sin6_addr), ln, rt); 1868 senderr(EIO); /* XXX: good error? */ 1869 } 1870 1871 goto sendpkt; /* send anyway */ 1872 } 1873 1874 /* We don't have to do link-layer address resolution on a p2p link. */ 1875 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 1876 ln->ln_state < ND6_LLINFO_REACHABLE) { 1877 ln->ln_state = ND6_LLINFO_STALE; 1878 ln->ln_expire = time_second + nd6_gctimer; 1879 } 1880 1881 /* 1882 * The first time we send a packet to a neighbor whose entry is 1883 * STALE, we have to change the state to DELAY and a sets a timer to 1884 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 1885 * neighbor unreachability detection on expiration. 1886 * (RFC 2461 7.3.3) 1887 */ 1888 if (ln->ln_state == ND6_LLINFO_STALE) { 1889 ln->ln_asked = 0; 1890 ln->ln_state = ND6_LLINFO_DELAY; 1891 ln->ln_expire = time_second + nd6_delay; 1892 } 1893 1894 /* 1895 * If the neighbor cache entry has a state other than INCOMPLETE 1896 * (i.e. its link-layer address is already resolved), just 1897 * send the packet. 1898 */ 1899 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1900 goto sendpkt; 1901 1902 /* 1903 * There is a neighbor cache entry, but no ethernet address 1904 * response yet. Replace the held mbuf (if any) with this 1905 * latest one. 1906 * This code conforms to the rate-limiting rule described in Section 1907 * 7.2.2 of RFC 2461, because the timer is set correctly after sending 1908 * an NS below. 1909 */ 1910 if (ln->ln_state == ND6_LLINFO_NOSTATE) 1911 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1912 if (ln->ln_hold) 1913 m_freem(ln->ln_hold); 1914 ln->ln_hold = m; 1915 if (ln->ln_expire) { 1916 if (ln->ln_asked < nd6_mmaxtries && 1917 ln->ln_expire < time_second) { 1918 ln->ln_asked++; 1919 ln->ln_expire = time_second + 1920 nd_ifinfo[ifp->if_index].retrans / 1000; 1921 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 1922 } 1923 } 1924 return(0); 1925 1926 sendpkt: 1927 1928 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 1929 return((*ifp->if_output)(origifp, m, (struct sockaddr *)dst, 1930 rt)); 1931 } 1932 return((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt)); 1933 1934 bad: 1935 if (m) 1936 m_freem(m); 1937 return (error); 1938 } 1939 #undef senderr 1940 1941 int 1942 nd6_need_cache(ifp) 1943 struct ifnet *ifp; 1944 { 1945 /* 1946 * XXX: we currently do not make neighbor cache on any interface 1947 * other than ARCnet, Ethernet, FDDI and GIF. 1948 * 1949 * RFC2893 says: 1950 * - unidirectional tunnels needs no ND 1951 */ 1952 switch (ifp->if_type) { 1953 case IFT_ARCNET: 1954 case IFT_ETHER: 1955 case IFT_FDDI: 1956 case IFT_IEEE1394: 1957 case IFT_GIF: /* XXX need more cases? */ 1958 return(1); 1959 default: 1960 return(0); 1961 } 1962 } 1963 1964 int 1965 nd6_storelladdr(ifp, rt, m, dst, desten) 1966 struct ifnet *ifp; 1967 struct rtentry *rt; 1968 struct mbuf *m; 1969 struct sockaddr *dst; 1970 u_char *desten; 1971 { 1972 struct sockaddr_dl *sdl; 1973 1974 if (m->m_flags & M_MCAST) { 1975 switch (ifp->if_type) { 1976 case IFT_ETHER: 1977 case IFT_FDDI: 1978 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 1979 desten); 1980 return(1); 1981 case IFT_IEEE1394: 1982 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen); 1983 return(1); 1984 case IFT_ARCNET: 1985 *desten = 0; 1986 return(1); 1987 default: 1988 m_freem(m); 1989 return(0); 1990 } 1991 } 1992 1993 if (rt == NULL) { 1994 /* this could happen, if we could not allocate memory */ 1995 m_freem(m); 1996 return(0); 1997 } 1998 if (rt->rt_gateway->sa_family != AF_LINK) { 1999 printf("nd6_storelladdr: something odd happens\n"); 2000 m_freem(m); 2001 return(0); 2002 } 2003 sdl = SDL(rt->rt_gateway); 2004 if (sdl->sdl_alen == 0) { 2005 /* this should be impossible, but we bark here for debugging */ 2006 printf("nd6_storelladdr: sdl_alen == 0\n"); 2007 m_freem(m); 2008 return(0); 2009 } 2010 2011 bcopy(LLADDR(sdl), desten, sdl->sdl_alen); 2012 return(1); 2013 } 2014