1 /* $NetBSD: nd6.c,v 1.56 2001/12/18 03:04:04 itojun Exp $ */ 2 /* $KAME: nd6.c,v 1.151 2001/06/19 14:24:41 sumikawa Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * XXX 35 * KAME 970409 note: 36 * BSD/OS version heavily modifies this code, related to llinfo. 37 * Since we don't have BSD/OS version of net/route.c in our hand, 38 * I left the code mostly as it was in 970310. -- itojun 39 */ 40 41 #include <sys/cdefs.h> 42 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.56 2001/12/18 03:04:04 itojun Exp $"); 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/callout.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/socket.h> 50 #include <sys/sockio.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/protosw.h> 54 #include <sys/errno.h> 55 #include <sys/ioctl.h> 56 #include <sys/syslog.h> 57 #include <sys/queue.h> 58 59 #include <net/if.h> 60 #include <net/if_dl.h> 61 #include <net/if_types.h> 62 #include <net/if_atm.h> 63 #include <net/if_ieee1394.h> 64 #include <net/route.h> 65 66 #include <netinet/in.h> 67 #include <net/if_ether.h> 68 #include <netinet/if_inarp.h> 69 #include <net/if_fddi.h> 70 #include <netinet6/in6_var.h> 71 #include <netinet/ip6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet6/nd6.h> 74 #include <netinet6/in6_prefix.h> 75 #include <netinet/icmp6.h> 76 77 #include "loop.h" 78 extern struct ifnet loif[NLOOP]; 79 80 #include <net/net_osdep.h> 81 82 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 83 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 84 85 #define SIN6(s) ((struct sockaddr_in6 *)s) 86 #define SDL(s) ((struct sockaddr_dl *)s) 87 88 /* timer values */ 89 int nd6_prune = 1; /* walk list every 1 seconds */ 90 int nd6_delay = 5; /* delay first probe time 5 second */ 91 int nd6_umaxtries = 3; /* maximum unicast query */ 92 int nd6_mmaxtries = 3; /* maximum multicast query */ 93 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 94 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 95 96 /* preventing too many loops in ND option parsing */ 97 int nd6_maxndopt = 10; /* max # of ND options allowed */ 98 99 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 100 101 #ifdef ND6_DEBUG 102 int nd6_debug = 1; 103 #else 104 int nd6_debug = 0; 105 #endif 106 107 /* for debugging? */ 108 static int nd6_inuse, nd6_allocated; 109 110 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6}; 111 static size_t nd_ifinfo_indexlim = 8; 112 struct nd_ifinfo *nd_ifinfo = NULL; 113 struct nd_drhead nd_defrouter; 114 struct nd_prhead nd_prefix = { 0 }; 115 116 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 117 static struct sockaddr_in6 all1_sa; 118 119 static void nd6_slowtimo __P((void *)); 120 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int)); 121 122 struct callout nd6_slowtimo_ch; 123 struct callout nd6_timer_ch; 124 125 void 126 nd6_init() 127 { 128 static int nd6_init_done = 0; 129 int i; 130 131 if (nd6_init_done) { 132 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n"); 133 return; 134 } 135 136 all1_sa.sin6_family = AF_INET6; 137 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 138 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) 139 all1_sa.sin6_addr.s6_addr[i] = 0xff; 140 141 /* initialization of the default router list */ 142 TAILQ_INIT(&nd_defrouter); 143 144 nd6_init_done = 1; 145 146 /* start timer */ 147 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 148 nd6_slowtimo, NULL); 149 } 150 151 void 152 nd6_ifattach(ifp) 153 struct ifnet *ifp; 154 { 155 156 /* 157 * We have some arrays that should be indexed by if_index. 158 * since if_index will grow dynamically, they should grow too. 159 */ 160 if (nd_ifinfo == NULL || if_index >= nd_ifinfo_indexlim) { 161 size_t n; 162 caddr_t q; 163 164 while (if_index >= nd_ifinfo_indexlim) 165 nd_ifinfo_indexlim <<= 1; 166 167 /* grow nd_ifinfo */ 168 n = nd_ifinfo_indexlim * sizeof(struct nd_ifinfo); 169 q = (caddr_t)malloc(n, M_IP6NDP, M_WAITOK); 170 bzero(q, n); 171 if (nd_ifinfo) { 172 bcopy((caddr_t)nd_ifinfo, q, n/2); 173 free((caddr_t)nd_ifinfo, M_IP6NDP); 174 } 175 nd_ifinfo = (struct nd_ifinfo *)q; 176 } 177 178 #define ND nd_ifinfo[ifp->if_index] 179 180 /* 181 * Don't initialize if called twice. 182 * XXX: to detect this, we should choose a member that is never set 183 * before initialization of the ND structure itself. We formaly used 184 * the linkmtu member, which was not suitable because it could be 185 * initialized via "ifconfig mtu". 186 */ 187 if (ND.basereachable) 188 return; 189 190 #ifdef DIAGNOSTIC 191 if (!ifindex2ifnet[ifp->if_index]) 192 panic("nd6_ifattach: ifindex2ifnet is NULL"); 193 #endif 194 ND.linkmtu = ifindex2ifnet[ifp->if_index]->if_mtu; 195 ND.chlim = IPV6_DEFHLIM; 196 ND.basereachable = REACHABLE_TIME; 197 ND.reachable = ND_COMPUTE_RTIME(ND.basereachable); 198 ND.retrans = RETRANS_TIMER; 199 ND.receivedra = 0; 200 ND.flags = ND6_IFF_PERFORMNUD; 201 nd6_setmtu(ifp); 202 #undef ND 203 } 204 205 /* 206 * Reset ND level link MTU. This function is called when the physical MTU 207 * changes, which means we might have to adjust the ND level MTU. 208 */ 209 void 210 nd6_setmtu(ifp) 211 struct ifnet *ifp; 212 { 213 struct nd_ifinfo *ndi = &nd_ifinfo[ifp->if_index]; 214 u_long oldmaxmtu = ndi->maxmtu; 215 u_long oldlinkmtu = ndi->linkmtu; 216 217 switch (ifp->if_type) { 218 case IFT_ARCNET: /* XXX MTU handling needs more work */ 219 ndi->maxmtu = MIN(60480, ifp->if_mtu); 220 break; 221 case IFT_ETHER: 222 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu); 223 break; 224 case IFT_ATM: 225 ndi->maxmtu = MIN(ATMMTU, ifp->if_mtu); 226 break; 227 case IFT_IEEE1394: 228 ndi->maxmtu = MIN(IEEE1394MTU, ifp->if_mtu); 229 break; 230 default: 231 ndi->maxmtu = ifp->if_mtu; 232 break; 233 } 234 235 if (oldmaxmtu != ndi->maxmtu) { 236 /* 237 * If the ND level MTU is not set yet, or if the maxmtu 238 * is reset to a smaller value than the ND level MTU, 239 * also reset the ND level MTU. 240 */ 241 if (ndi->linkmtu == 0 || 242 ndi->maxmtu < ndi->linkmtu) { 243 ndi->linkmtu = ndi->maxmtu; 244 /* also adjust in6_maxmtu if necessary. */ 245 if (oldlinkmtu == 0) { 246 /* 247 * XXX: the case analysis is grotty, but 248 * it is not efficient to call in6_setmaxmtu() 249 * here when we are during the initialization 250 * procedure. 251 */ 252 if (in6_maxmtu < ndi->linkmtu) 253 in6_maxmtu = ndi->linkmtu; 254 } else 255 in6_setmaxmtu(); 256 } 257 } 258 #undef MIN 259 } 260 261 void 262 nd6_option_init(opt, icmp6len, ndopts) 263 void *opt; 264 int icmp6len; 265 union nd_opts *ndopts; 266 { 267 bzero(ndopts, sizeof(*ndopts)); 268 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 269 ndopts->nd_opts_last 270 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 271 272 if (icmp6len == 0) { 273 ndopts->nd_opts_done = 1; 274 ndopts->nd_opts_search = NULL; 275 } 276 } 277 278 /* 279 * Take one ND option. 280 */ 281 struct nd_opt_hdr * 282 nd6_option(ndopts) 283 union nd_opts *ndopts; 284 { 285 struct nd_opt_hdr *nd_opt; 286 int olen; 287 288 if (!ndopts) 289 panic("ndopts == NULL in nd6_option\n"); 290 if (!ndopts->nd_opts_last) 291 panic("uninitialized ndopts in nd6_option\n"); 292 if (!ndopts->nd_opts_search) 293 return NULL; 294 if (ndopts->nd_opts_done) 295 return NULL; 296 297 nd_opt = ndopts->nd_opts_search; 298 299 /* make sure nd_opt_len is inside the buffer */ 300 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 301 bzero(ndopts, sizeof(*ndopts)); 302 return NULL; 303 } 304 305 olen = nd_opt->nd_opt_len << 3; 306 if (olen == 0) { 307 /* 308 * Message validation requires that all included 309 * options have a length that is greater than zero. 310 */ 311 bzero(ndopts, sizeof(*ndopts)); 312 return NULL; 313 } 314 315 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 316 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 317 /* option overruns the end of buffer, invalid */ 318 bzero(ndopts, sizeof(*ndopts)); 319 return NULL; 320 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 321 /* reached the end of options chain */ 322 ndopts->nd_opts_done = 1; 323 ndopts->nd_opts_search = NULL; 324 } 325 return nd_opt; 326 } 327 328 /* 329 * Parse multiple ND options. 330 * This function is much easier to use, for ND routines that do not need 331 * multiple options of the same type. 332 */ 333 int 334 nd6_options(ndopts) 335 union nd_opts *ndopts; 336 { 337 struct nd_opt_hdr *nd_opt; 338 int i = 0; 339 340 if (!ndopts) 341 panic("ndopts == NULL in nd6_options\n"); 342 if (!ndopts->nd_opts_last) 343 panic("uninitialized ndopts in nd6_options\n"); 344 if (!ndopts->nd_opts_search) 345 return 0; 346 347 while (1) { 348 nd_opt = nd6_option(ndopts); 349 if (!nd_opt && !ndopts->nd_opts_last) { 350 /* 351 * Message validation requires that all included 352 * options have a length that is greater than zero. 353 */ 354 icmp6stat.icp6s_nd_badopt++; 355 bzero(ndopts, sizeof(*ndopts)); 356 return -1; 357 } 358 359 if (!nd_opt) 360 goto skip1; 361 362 switch (nd_opt->nd_opt_type) { 363 case ND_OPT_SOURCE_LINKADDR: 364 case ND_OPT_TARGET_LINKADDR: 365 case ND_OPT_MTU: 366 case ND_OPT_REDIRECTED_HEADER: 367 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 368 nd6log((LOG_INFO, 369 "duplicated ND6 option found (type=%d)\n", 370 nd_opt->nd_opt_type)); 371 /* XXX bark? */ 372 } else { 373 ndopts->nd_opt_array[nd_opt->nd_opt_type] 374 = nd_opt; 375 } 376 break; 377 case ND_OPT_PREFIX_INFORMATION: 378 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 379 ndopts->nd_opt_array[nd_opt->nd_opt_type] 380 = nd_opt; 381 } 382 ndopts->nd_opts_pi_end = 383 (struct nd_opt_prefix_info *)nd_opt; 384 break; 385 default: 386 /* 387 * Unknown options must be silently ignored, 388 * to accomodate future extension to the protocol. 389 */ 390 nd6log((LOG_DEBUG, 391 "nd6_options: unsupported option %d - " 392 "option ignored\n", nd_opt->nd_opt_type)); 393 } 394 395 skip1: 396 i++; 397 if (i > nd6_maxndopt) { 398 icmp6stat.icp6s_nd_toomanyopt++; 399 nd6log((LOG_INFO, "too many loop in nd opt\n")); 400 break; 401 } 402 403 if (ndopts->nd_opts_done) 404 break; 405 } 406 407 return 0; 408 } 409 410 /* 411 * ND6 timer routine to expire default route list and prefix list 412 */ 413 void 414 nd6_timer(ignored_arg) 415 void *ignored_arg; 416 { 417 int s; 418 struct llinfo_nd6 *ln; 419 struct nd_defrouter *dr; 420 struct nd_prefix *pr; 421 long time_second = time.tv_sec; 422 423 s = splsoftnet(); 424 callout_reset(&nd6_timer_ch, nd6_prune * hz, 425 nd6_timer, NULL); 426 427 ln = llinfo_nd6.ln_next; 428 while (ln && ln != &llinfo_nd6) { 429 struct rtentry *rt; 430 struct ifnet *ifp; 431 struct sockaddr_in6 *dst; 432 struct llinfo_nd6 *next = ln->ln_next; 433 /* XXX: used for the DELAY case only: */ 434 struct nd_ifinfo *ndi = NULL; 435 436 if ((rt = ln->ln_rt) == NULL) { 437 ln = next; 438 continue; 439 } 440 if ((ifp = rt->rt_ifp) == NULL) { 441 ln = next; 442 continue; 443 } 444 ndi = &nd_ifinfo[ifp->if_index]; 445 dst = (struct sockaddr_in6 *)rt_key(rt); 446 447 if (ln->ln_expire > time_second) { 448 ln = next; 449 continue; 450 } 451 452 /* sanity check */ 453 if (!rt) 454 panic("rt=0 in nd6_timer(ln=%p)\n", ln); 455 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) 456 panic("rt_llinfo(%p) is not equal to ln(%p)\n", 457 rt->rt_llinfo, ln); 458 if (!dst) 459 panic("dst=0 in nd6_timer(ln=%p)\n", ln); 460 461 switch (ln->ln_state) { 462 case ND6_LLINFO_INCOMPLETE: 463 if (ln->ln_asked < nd6_mmaxtries) { 464 ln->ln_asked++; 465 ln->ln_expire = time_second + 466 nd_ifinfo[ifp->if_index].retrans / 1000; 467 nd6_ns_output(ifp, NULL, &dst->sin6_addr, 468 ln, 0); 469 } else { 470 struct mbuf *m = ln->ln_hold; 471 if (m) { 472 if (rt->rt_ifp) { 473 /* 474 * Fake rcvif to make ICMP error 475 * more helpful in diagnosing 476 * for the receiver. 477 * XXX: should we consider 478 * older rcvif? 479 */ 480 m->m_pkthdr.rcvif = rt->rt_ifp; 481 } 482 icmp6_error(m, ICMP6_DST_UNREACH, 483 ICMP6_DST_UNREACH_ADDR, 0); 484 ln->ln_hold = NULL; 485 } 486 next = nd6_free(rt, 0); 487 } 488 break; 489 case ND6_LLINFO_REACHABLE: 490 if (ln->ln_expire) { 491 ln->ln_state = ND6_LLINFO_STALE; 492 ln->ln_expire = time_second + nd6_gctimer; 493 } 494 break; 495 496 case ND6_LLINFO_STALE: 497 /* Garbage Collection(RFC 2461 5.3) */ 498 if (ln->ln_expire) 499 next = nd6_free(rt, 1); 500 break; 501 502 case ND6_LLINFO_DELAY: 503 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 504 /* We need NUD */ 505 ln->ln_asked = 1; 506 ln->ln_state = ND6_LLINFO_PROBE; 507 ln->ln_expire = time_second + 508 ndi->retrans / 1000; 509 nd6_ns_output(ifp, &dst->sin6_addr, 510 &dst->sin6_addr, 511 ln, 0); 512 } else { 513 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 514 ln->ln_expire = time_second + nd6_gctimer; 515 } 516 break; 517 case ND6_LLINFO_PROBE: 518 if (ln->ln_asked < nd6_umaxtries) { 519 ln->ln_asked++; 520 ln->ln_expire = time_second + 521 nd_ifinfo[ifp->if_index].retrans / 1000; 522 nd6_ns_output(ifp, &dst->sin6_addr, 523 &dst->sin6_addr, ln, 0); 524 } else { 525 next = nd6_free(rt, 0); 526 } 527 break; 528 } 529 ln = next; 530 } 531 532 /* expire default router list */ 533 dr = TAILQ_FIRST(&nd_defrouter); 534 while (dr) { 535 if (dr->expire && dr->expire < time_second) { 536 struct nd_defrouter *t; 537 t = TAILQ_NEXT(dr, dr_entry); 538 defrtrlist_del(dr); 539 dr = t; 540 } else { 541 dr = TAILQ_NEXT(dr, dr_entry); 542 } 543 } 544 pr = nd_prefix.lh_first; 545 while (pr) { 546 struct in6_ifaddr *ia6; 547 struct in6_addrlifetime *lt6; 548 549 if (IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr)) 550 ia6 = NULL; 551 else 552 ia6 = in6ifa_ifpwithaddr(pr->ndpr_ifp, &pr->ndpr_addr); 553 554 if (ia6) { 555 /* check address lifetime */ 556 lt6 = &ia6->ia6_lifetime; 557 if (lt6->ia6t_preferred && lt6->ia6t_preferred < time_second) 558 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 559 if (lt6->ia6t_expire && lt6->ia6t_expire < time_second) { 560 if (!IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr)) 561 in6_ifdel(pr->ndpr_ifp, &pr->ndpr_addr); 562 /* xxx ND_OPT_PI_FLAG_ONLINK processing */ 563 } 564 } 565 566 /* 567 * check prefix lifetime. 568 * since pltime is just for autoconf, pltime processing for 569 * prefix is not necessary. 570 * 571 * we offset expire time by NDPR_KEEP_EXPIRE, so that we 572 * can use the old prefix information to validate the 573 * next prefix information to come. See prelist_update() 574 * for actual validation. 575 */ 576 if (pr->ndpr_expire 577 && pr->ndpr_expire + NDPR_KEEP_EXPIRED < time_second) { 578 struct nd_prefix *t; 579 t = pr->ndpr_next; 580 581 /* 582 * address expiration and prefix expiration are 583 * separate. NEVER perform in6_ifdel here. 584 */ 585 586 prelist_remove(pr); 587 pr = t; 588 } else 589 pr = pr->ndpr_next; 590 } 591 splx(s); 592 } 593 594 /* 595 * Nuke neighbor cache/prefix/default router management table, right before 596 * ifp goes away. 597 */ 598 void 599 nd6_purge(ifp) 600 struct ifnet *ifp; 601 { 602 struct llinfo_nd6 *ln, *nln; 603 struct nd_defrouter *dr, *ndr, drany; 604 struct nd_prefix *pr, *npr; 605 606 /* Nuke default router list entries toward ifp */ 607 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { 608 /* 609 * The first entry of the list may be stored in 610 * the routing table, so we'll delete it later. 611 */ 612 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) { 613 ndr = TAILQ_NEXT(dr, dr_entry); 614 if (dr->ifp == ifp) 615 defrtrlist_del(dr); 616 } 617 dr = TAILQ_FIRST(&nd_defrouter); 618 if (dr->ifp == ifp) 619 defrtrlist_del(dr); 620 } 621 622 /* Nuke prefix list entries toward ifp */ 623 for (pr = nd_prefix.lh_first; pr; pr = npr) { 624 npr = pr->ndpr_next; 625 if (pr->ndpr_ifp == ifp) { 626 if (!IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr)) 627 in6_ifdel(pr->ndpr_ifp, &pr->ndpr_addr); 628 prelist_remove(pr); 629 } 630 } 631 632 /* cancel default outgoing interface setting */ 633 if (nd6_defifindex == ifp->if_index) 634 nd6_setdefaultiface(0); 635 636 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 637 /* refresh default router list */ 638 bzero(&drany, sizeof(drany)); 639 defrouter_delreq(&drany, 0); 640 defrouter_select(); 641 } 642 643 /* 644 * Nuke neighbor cache entries for the ifp. 645 * Note that rt->rt_ifp may not be the same as ifp, 646 * due to KAME goto ours hack. See RTM_RESOLVE case in 647 * nd6_rtrequest(), and ip6_input(). 648 */ 649 ln = llinfo_nd6.ln_next; 650 while (ln && ln != &llinfo_nd6) { 651 struct rtentry *rt; 652 struct sockaddr_dl *sdl; 653 654 nln = ln->ln_next; 655 rt = ln->ln_rt; 656 if (rt && rt->rt_gateway && 657 rt->rt_gateway->sa_family == AF_LINK) { 658 sdl = (struct sockaddr_dl *)rt->rt_gateway; 659 if (sdl->sdl_index == ifp->if_index) 660 nln = nd6_free(rt, 0); 661 } 662 ln = nln; 663 } 664 } 665 666 struct rtentry * 667 nd6_lookup(addr6, create, ifp) 668 struct in6_addr *addr6; 669 int create; 670 struct ifnet *ifp; 671 { 672 struct rtentry *rt; 673 struct sockaddr_in6 sin6; 674 675 bzero(&sin6, sizeof(sin6)); 676 sin6.sin6_len = sizeof(struct sockaddr_in6); 677 sin6.sin6_family = AF_INET6; 678 sin6.sin6_addr = *addr6; 679 rt = rtalloc1((struct sockaddr *)&sin6, create); 680 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) { 681 /* 682 * This is the case for the default route. 683 * If we want to create a neighbor cache for the address, we 684 * should free the route for the destination and allocate an 685 * interface route. 686 */ 687 if (create) { 688 RTFREE(rt); 689 rt = 0; 690 } 691 } 692 if (!rt) { 693 if (create && ifp) { 694 int e; 695 696 /* 697 * If no route is available and create is set, 698 * we allocate a host route for the destination 699 * and treat it like an interface route. 700 * This hack is necessary for a neighbor which can't 701 * be covered by our own prefix. 702 */ 703 struct ifaddr *ifa = 704 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); 705 if (ifa == NULL) 706 return(NULL); 707 708 /* 709 * Create a new route. RTF_LLINFO is necessary 710 * to create a Neighbor Cache entry for the 711 * destination in nd6_rtrequest which will be 712 * called in rtrequest via ifa->ifa_rtrequest. 713 */ 714 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6, 715 ifa->ifa_addr, 716 (struct sockaddr *)&all1_sa, 717 (ifa->ifa_flags | 718 RTF_HOST | RTF_LLINFO) & 719 ~RTF_CLONING, 720 &rt)) != 0) { 721 #if 0 722 log(LOG_ERR, 723 "nd6_lookup: failed to add route for a " 724 "neighbor(%s), errno=%d\n", 725 ip6_sprintf(addr6), e); 726 #endif 727 return(NULL); 728 } 729 if (rt == NULL) 730 return(NULL); 731 if (rt->rt_llinfo) { 732 struct llinfo_nd6 *ln = 733 (struct llinfo_nd6 *)rt->rt_llinfo; 734 ln->ln_state = ND6_LLINFO_NOSTATE; 735 } 736 } else 737 return(NULL); 738 } 739 rt->rt_refcnt--; 740 /* 741 * Validation for the entry. 742 * XXX: we can't use rt->rt_ifp to check for the interface, since 743 * it might be the loopback interface if the entry is for our 744 * own address on a non-loopback interface. Instead, we should 745 * use rt->rt_ifa->ifa_ifp, which would specify the REAL interface. 746 */ 747 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || 748 rt->rt_gateway->sa_family != AF_LINK || 749 (ifp && rt->rt_ifa->ifa_ifp != ifp)) { 750 if (create) { 751 log(LOG_DEBUG, "nd6_lookup: failed to lookup %s (if = %s)\n", 752 ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec"); 753 } 754 return(0); 755 } 756 return(rt); 757 } 758 759 /* 760 * Detect if a given IPv6 address identifies a neighbor on a given link. 761 * XXX: should take care of the destination of a p2p link? 762 */ 763 int 764 nd6_is_addr_neighbor(addr, ifp) 765 struct sockaddr_in6 *addr; 766 struct ifnet *ifp; 767 { 768 struct ifaddr *ifa; 769 int i; 770 771 #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr) 772 #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr) 773 774 /* 775 * A link-local address is always a neighbor. 776 * XXX: we should use the sin6_scope_id field rather than the embedded 777 * interface index. 778 * XXX: a link does not necessarily specify a single interface. 779 */ 780 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) && 781 ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index) 782 return(1); 783 784 /* 785 * If the address matches one of our addresses, 786 * it should be a neighbor. 787 */ 788 for (ifa = ifp->if_addrlist.tqh_first; 789 ifa; 790 ifa = ifa->ifa_list.tqe_next) 791 { 792 if (ifa->ifa_addr->sa_family != AF_INET6) 793 next: continue; 794 795 for (i = 0; i < 4; i++) { 796 if ((IFADDR6(ifa).s6_addr32[i] ^ 797 addr->sin6_addr.s6_addr32[i]) & 798 IFMASK6(ifa).s6_addr32[i]) 799 goto next; 800 } 801 return(1); 802 } 803 804 /* 805 * Even if the address matches none of our addresses, it might be 806 * in the neighbor cache. 807 */ 808 if (nd6_lookup(&addr->sin6_addr, 0, ifp)) 809 return(1); 810 811 return(0); 812 #undef IFADDR6 813 #undef IFMASK6 814 } 815 816 /* 817 * Free an nd6 llinfo entry. 818 * Since the function would cause significant changes in the kernel, DO NOT 819 * make it global, unless you have a strong reason for the change, and are sure 820 * that the change is safe. 821 */ 822 static struct llinfo_nd6 * 823 nd6_free(rt, gc) 824 struct rtentry *rt; 825 int gc; 826 { 827 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next; 828 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; 829 struct nd_defrouter *dr; 830 831 /* 832 * we used to have pfctlinput(PRC_HOSTDEAD) here. 833 * even though it is not harmful, it was not really necessary. 834 */ 835 836 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 837 int s; 838 s = splsoftnet(); 839 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 840 rt->rt_ifp); 841 842 if (dr != NULL && dr->expire && 843 ln->ln_state == ND6_LLINFO_STALE && gc) { 844 /* 845 * If the reason for the deletion is just garbage 846 * collection, and the neighbor is an active default 847 * router, do not delete it. Instead, reset the GC 848 * timer using the router's lifetime. 849 * Simply deleting the entry would affect default 850 * router selection, which is not necessarily a good 851 * thing, especially when we're using router preference 852 * values. 853 * XXX: the check for ln_state would be redundant, 854 * but we intentionally keep it just in case. 855 */ 856 ln->ln_expire = dr->expire; 857 splx(s); 858 return(ln->ln_next); 859 } 860 861 if (ln->ln_router || dr) { 862 /* 863 * rt6_flush must be called whether or not the neighbor 864 * is in the Default Router List. 865 * See a corresponding comment in nd6_na_input(). 866 */ 867 rt6_flush(&in6, rt->rt_ifp); 868 } 869 870 if (dr) { 871 /* 872 * Unreachablity of a router might affect the default 873 * router selection and on-link detection of advertised 874 * prefixes. 875 */ 876 877 /* 878 * Temporarily fake the state to choose a new default 879 * router and to perform on-link determination of 880 * prefixes correctly. 881 * Below the state will be set correctly, 882 * or the entry itself will be deleted. 883 */ 884 ln->ln_state = ND6_LLINFO_INCOMPLETE; 885 886 /* 887 * Since defrouter_select() does not affect the 888 * on-link determination and MIP6 needs the check 889 * before the default router selection, we perform 890 * the check now. 891 */ 892 pfxlist_onlink_check(); 893 894 if (dr == TAILQ_FIRST(&nd_defrouter)) { 895 /* 896 * It is used as the current default router, 897 * so we have to move it to the end of the 898 * list and choose a new one. 899 * XXX: it is not very efficient if this is 900 * the only router. 901 */ 902 TAILQ_REMOVE(&nd_defrouter, dr, dr_entry); 903 TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry); 904 905 defrouter_select(); 906 } 907 } 908 splx(s); 909 } 910 911 /* 912 * Before deleting the entry, remember the next entry as the 913 * return value. We need this because pfxlist_onlink_check() above 914 * might have freed other entries (particularly the old next entry) as 915 * a side effect (XXX). 916 */ 917 next = ln->ln_next; 918 919 /* 920 * Detach the route from the routing tree and the list of neighbor 921 * caches, and disable the route entry not to be used in already 922 * cached routes. 923 */ 924 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0, 925 rt_mask(rt), 0, (struct rtentry **)0); 926 927 return(next); 928 } 929 930 /* 931 * Upper-layer reachability hint for Neighbor Unreachability Detection. 932 * 933 * XXX cost-effective metods? 934 */ 935 void 936 nd6_nud_hint(rt, dst6, force) 937 struct rtentry *rt; 938 struct in6_addr *dst6; 939 int force; 940 { 941 struct llinfo_nd6 *ln; 942 long time_second = time.tv_sec; 943 944 /* 945 * If the caller specified "rt", use that. Otherwise, resolve the 946 * routing table by supplied "dst6". 947 */ 948 if (!rt) { 949 if (!dst6) 950 return; 951 if (!(rt = nd6_lookup(dst6, 0, NULL))) 952 return; 953 } 954 955 if ((rt->rt_flags & RTF_GATEWAY) != 0 || 956 (rt->rt_flags & RTF_LLINFO) == 0 || 957 !rt->rt_llinfo || !rt->rt_gateway || 958 rt->rt_gateway->sa_family != AF_LINK) { 959 /* This is not a host route. */ 960 return; 961 } 962 963 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 964 if (ln->ln_state < ND6_LLINFO_REACHABLE) 965 return; 966 967 /* 968 * if we get upper-layer reachability confirmation many times, 969 * it is possible we have false information. 970 */ 971 if (!force) { 972 ln->ln_byhint++; 973 if (ln->ln_byhint > nd6_maxnudhint) 974 return; 975 } 976 977 ln->ln_state = ND6_LLINFO_REACHABLE; 978 if (ln->ln_expire) 979 ln->ln_expire = time_second + 980 nd_ifinfo[rt->rt_ifp->if_index].reachable; 981 } 982 983 void 984 nd6_rtrequest(req, rt, info) 985 int req; 986 struct rtentry *rt; 987 struct rt_addrinfo *info; /* xxx unused */ 988 { 989 struct sockaddr *gate = rt->rt_gateway; 990 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; 991 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 992 struct ifnet *ifp = rt->rt_ifp; 993 struct ifaddr *ifa; 994 long time_second = time.tv_sec; 995 996 if ((rt->rt_flags & RTF_GATEWAY)) 997 return; 998 999 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { 1000 /* 1001 * This is probably an interface direct route for a link 1002 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1003 * We do not need special treatment below for such a route. 1004 * Moreover, the RTF_LLINFO flag which would be set below 1005 * would annoy the ndp(8) command. 1006 */ 1007 return; 1008 } 1009 1010 switch (req) { 1011 case RTM_ADD: 1012 /* 1013 * There is no backward compatibility :) 1014 * 1015 * if ((rt->rt_flags & RTF_HOST) == 0 && 1016 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1017 * rt->rt_flags |= RTF_CLONING; 1018 */ 1019 if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) { 1020 /* 1021 * Case 1: This route should come from 1022 * a route to interface. RTF_LLINFO flag is set 1023 * for a host route whose destination should be 1024 * treated as on-link. 1025 */ 1026 rt_setgate(rt, rt_key(rt), 1027 (struct sockaddr *)&null_sdl); 1028 gate = rt->rt_gateway; 1029 SDL(gate)->sdl_type = ifp->if_type; 1030 SDL(gate)->sdl_index = ifp->if_index; 1031 if (ln) 1032 ln->ln_expire = time_second; 1033 #if 1 1034 if (ln && ln->ln_expire == 0) { 1035 /* kludge for desktops */ 1036 #if 0 1037 printf("nd6_rtequest: time.tv_sec is zero; " 1038 "treat it as 1\n"); 1039 #endif 1040 ln->ln_expire = 1; 1041 } 1042 #endif 1043 if ((rt->rt_flags & RTF_CLONING)) 1044 break; 1045 } 1046 /* 1047 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1048 * We don't do that here since llinfo is not ready yet. 1049 * 1050 * There are also couple of other things to be discussed: 1051 * - unsolicited NA code needs improvement beforehand 1052 * - RFC2461 says we MAY send multicast unsolicited NA 1053 * (7.2.6 paragraph 4), however, it also says that we 1054 * SHOULD provide a mechanism to prevent multicast NA storm. 1055 * we don't have anything like it right now. 1056 * note that the mechanism needs a mutual agreement 1057 * between proxies, which means that we need to implement 1058 * a new protocol, or a new kludge. 1059 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1060 * we need to check ip6forwarding before sending it. 1061 * (or should we allow proxy ND configuration only for 1062 * routers? there's no mention about proxy ND from hosts) 1063 */ 1064 #if 0 1065 /* XXX it does not work */ 1066 if (rt->rt_flags & RTF_ANNOUNCE) 1067 nd6_na_output(ifp, 1068 &SIN6(rt_key(rt))->sin6_addr, 1069 &SIN6(rt_key(rt))->sin6_addr, 1070 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1071 1, NULL); 1072 #endif 1073 /* FALLTHROUGH */ 1074 case RTM_RESOLVE: 1075 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { 1076 /* 1077 * Address resolution isn't necessary for a point to 1078 * point link, so we can skip this test for a p2p link. 1079 */ 1080 if (gate->sa_family != AF_LINK || 1081 gate->sa_len < sizeof(null_sdl)) { 1082 log(LOG_DEBUG, 1083 "nd6_rtrequest: bad gateway value: %s\n", 1084 if_name(ifp)); 1085 break; 1086 } 1087 SDL(gate)->sdl_type = ifp->if_type; 1088 SDL(gate)->sdl_index = ifp->if_index; 1089 } 1090 if (ln != NULL) 1091 break; /* This happens on a route change */ 1092 /* 1093 * Case 2: This route may come from cloning, or a manual route 1094 * add with a LL address. 1095 */ 1096 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln)); 1097 rt->rt_llinfo = (caddr_t)ln; 1098 if (!ln) { 1099 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n"); 1100 break; 1101 } 1102 nd6_inuse++; 1103 nd6_allocated++; 1104 Bzero(ln, sizeof(*ln)); 1105 ln->ln_rt = rt; 1106 /* this is required for "ndp" command. - shin */ 1107 if (req == RTM_ADD) { 1108 /* 1109 * gate should have some valid AF_LINK entry, 1110 * and ln->ln_expire should have some lifetime 1111 * which is specified by ndp command. 1112 */ 1113 ln->ln_state = ND6_LLINFO_REACHABLE; 1114 ln->ln_byhint = 0; 1115 } else { 1116 /* 1117 * When req == RTM_RESOLVE, rt is created and 1118 * initialized in rtrequest(), so rt_expire is 0. 1119 */ 1120 ln->ln_state = ND6_LLINFO_NOSTATE; 1121 ln->ln_expire = time_second; 1122 } 1123 rt->rt_flags |= RTF_LLINFO; 1124 ln->ln_next = llinfo_nd6.ln_next; 1125 llinfo_nd6.ln_next = ln; 1126 ln->ln_prev = &llinfo_nd6; 1127 ln->ln_next->ln_prev = ln; 1128 1129 /* 1130 * check if rt_key(rt) is one of my address assigned 1131 * to the interface. 1132 */ 1133 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, 1134 &SIN6(rt_key(rt))->sin6_addr); 1135 if (ifa) { 1136 caddr_t macp = nd6_ifptomac(ifp); 1137 ln->ln_expire = 0; 1138 ln->ln_state = ND6_LLINFO_REACHABLE; 1139 ln->ln_byhint = 0; 1140 if (macp) { 1141 Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); 1142 SDL(gate)->sdl_alen = ifp->if_addrlen; 1143 } 1144 if (nd6_useloopback) { 1145 rt->rt_ifp = &loif[0]; /* XXX */ 1146 /* 1147 * Make sure rt_ifa be equal to the ifaddr 1148 * corresponding to the address. 1149 * We need this because when we refer 1150 * rt_ifa->ia6_flags in ip6_input, we assume 1151 * that the rt_ifa points to the address instead 1152 * of the loopback address. 1153 */ 1154 if (ifa != rt->rt_ifa) { 1155 IFAFREE(rt->rt_ifa); 1156 IFAREF(ifa); 1157 rt->rt_ifa = ifa; 1158 } 1159 } 1160 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1161 ln->ln_expire = 0; 1162 ln->ln_state = ND6_LLINFO_REACHABLE; 1163 ln->ln_byhint = 0; 1164 1165 /* join solicited node multicast for proxy ND */ 1166 if (ifp->if_flags & IFF_MULTICAST) { 1167 struct in6_addr llsol; 1168 int error; 1169 1170 llsol = SIN6(rt_key(rt))->sin6_addr; 1171 llsol.s6_addr16[0] = htons(0xff02); 1172 llsol.s6_addr16[1] = htons(ifp->if_index); 1173 llsol.s6_addr32[1] = 0; 1174 llsol.s6_addr32[2] = htonl(1); 1175 llsol.s6_addr8[12] = 0xff; 1176 1177 if (!in6_addmulti(&llsol, ifp, &error)) { 1178 nd6log((LOG_ERR, "%s: failed to join " 1179 "%s (errno=%d)\n", if_name(ifp), 1180 ip6_sprintf(&llsol), error)); 1181 } 1182 } 1183 } 1184 break; 1185 1186 case RTM_DELETE: 1187 if (!ln) 1188 break; 1189 /* leave from solicited node multicast for proxy ND */ 1190 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && 1191 (ifp->if_flags & IFF_MULTICAST) != 0) { 1192 struct in6_addr llsol; 1193 struct in6_multi *in6m; 1194 1195 llsol = SIN6(rt_key(rt))->sin6_addr; 1196 llsol.s6_addr16[0] = htons(0xff02); 1197 llsol.s6_addr16[1] = htons(ifp->if_index); 1198 llsol.s6_addr32[1] = 0; 1199 llsol.s6_addr32[2] = htonl(1); 1200 llsol.s6_addr8[12] = 0xff; 1201 1202 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1203 if (in6m) 1204 in6_delmulti(in6m); 1205 } 1206 nd6_inuse--; 1207 ln->ln_next->ln_prev = ln->ln_prev; 1208 ln->ln_prev->ln_next = ln->ln_next; 1209 ln->ln_prev = NULL; 1210 rt->rt_llinfo = 0; 1211 rt->rt_flags &= ~RTF_LLINFO; 1212 if (ln->ln_hold) 1213 m_freem(ln->ln_hold); 1214 Free((caddr_t)ln); 1215 } 1216 } 1217 1218 void 1219 nd6_p2p_rtrequest(req, rt, info) 1220 int req; 1221 struct rtentry *rt; 1222 struct rt_addrinfo *info; /* xxx unused */ 1223 { 1224 struct sockaddr *gate = rt->rt_gateway; 1225 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 1226 struct ifnet *ifp = rt->rt_ifp; 1227 struct ifaddr *ifa; 1228 1229 if (rt->rt_flags & RTF_GATEWAY) 1230 return; 1231 1232 switch (req) { 1233 case RTM_ADD: 1234 /* 1235 * There is no backward compatibility :) 1236 * 1237 * if ((rt->rt_flags & RTF_HOST) == 0 && 1238 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1239 * rt->rt_flags |= RTF_CLONING; 1240 */ 1241 if (rt->rt_flags & RTF_CLONING) { 1242 /* 1243 * Case 1: This route should come from 1244 * a route to interface. 1245 */ 1246 rt_setgate(rt, rt_key(rt), 1247 (struct sockaddr *)&null_sdl); 1248 gate = rt->rt_gateway; 1249 SDL(gate)->sdl_type = ifp->if_type; 1250 SDL(gate)->sdl_index = ifp->if_index; 1251 break; 1252 } 1253 /* Announce a new entry if requested. */ 1254 if (rt->rt_flags & RTF_ANNOUNCE) 1255 nd6_na_output(ifp, 1256 &SIN6(rt_key(rt))->sin6_addr, 1257 &SIN6(rt_key(rt))->sin6_addr, 1258 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1259 1, NULL); 1260 /* FALLTHROUGH */ 1261 case RTM_RESOLVE: 1262 /* 1263 * check if rt_key(rt) is one of my address assigned 1264 * to the interface. 1265 */ 1266 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp, 1267 &SIN6(rt_key(rt))->sin6_addr); 1268 if (ifa) { 1269 if (nd6_useloopback) { 1270 rt->rt_ifp = &loif[0]; /*XXX*/ 1271 } 1272 } 1273 break; 1274 } 1275 } 1276 1277 int 1278 nd6_ioctl(cmd, data, ifp) 1279 u_long cmd; 1280 caddr_t data; 1281 struct ifnet *ifp; 1282 { 1283 struct in6_drlist *drl = (struct in6_drlist *)data; 1284 struct in6_prlist *prl = (struct in6_prlist *)data; 1285 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1286 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1287 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1288 struct nd_defrouter *dr, any; 1289 struct nd_prefix *pr; 1290 struct rtentry *rt; 1291 int i = 0, error = 0; 1292 int s; 1293 1294 switch (cmd) { 1295 case SIOCGDRLST_IN6: 1296 bzero(drl, sizeof(*drl)); 1297 s = splsoftnet(); 1298 dr = TAILQ_FIRST(&nd_defrouter); 1299 while (dr && i < DRLSTSIZ) { 1300 drl->defrouter[i].rtaddr = dr->rtaddr; 1301 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) { 1302 /* XXX: need to this hack for KAME stack */ 1303 drl->defrouter[i].rtaddr.s6_addr16[1] = 0; 1304 } else 1305 log(LOG_ERR, 1306 "default router list contains a " 1307 "non-linklocal address(%s)\n", 1308 ip6_sprintf(&drl->defrouter[i].rtaddr)); 1309 1310 drl->defrouter[i].flags = dr->flags; 1311 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1312 drl->defrouter[i].expire = dr->expire; 1313 drl->defrouter[i].if_index = dr->ifp->if_index; 1314 i++; 1315 dr = TAILQ_NEXT(dr, dr_entry); 1316 } 1317 splx(s); 1318 break; 1319 case SIOCGPRLST_IN6: 1320 /* 1321 * XXX meaning of fields, especialy "raflags", is very 1322 * differnet between RA prefix list and RR/static prefix list. 1323 * how about separating ioctls into two? 1324 */ 1325 bzero(prl, sizeof(*prl)); 1326 s = splsoftnet(); 1327 pr = nd_prefix.lh_first; 1328 while (pr && i < PRLSTSIZ) { 1329 struct nd_pfxrouter *pfr; 1330 int j; 1331 1332 prl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1333 prl->prefix[i].raflags = pr->ndpr_raf; 1334 prl->prefix[i].prefixlen = pr->ndpr_plen; 1335 prl->prefix[i].vltime = pr->ndpr_vltime; 1336 prl->prefix[i].pltime = pr->ndpr_pltime; 1337 prl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1338 prl->prefix[i].expire = pr->ndpr_expire; 1339 1340 pfr = pr->ndpr_advrtrs.lh_first; 1341 j = 0; 1342 while (pfr) { 1343 if (j < DRLSTSIZ) { 1344 #define RTRADDR prl->prefix[i].advrtr[j] 1345 RTRADDR = pfr->router->rtaddr; 1346 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) { 1347 /* XXX: hack for KAME */ 1348 RTRADDR.s6_addr16[1] = 0; 1349 } else 1350 log(LOG_ERR, 1351 "a router(%s) advertises " 1352 "a prefix with " 1353 "non-link local address\n", 1354 ip6_sprintf(&RTRADDR)); 1355 #undef RTRADDR 1356 } 1357 j++; 1358 pfr = pfr->pfr_next; 1359 } 1360 prl->prefix[i].advrtrs = j; 1361 prl->prefix[i].origin = PR_ORIG_RA; 1362 1363 i++; 1364 pr = pr->ndpr_next; 1365 } 1366 { 1367 struct rr_prefix *rpp; 1368 1369 for (rpp = LIST_FIRST(&rr_prefix); rpp; 1370 rpp = LIST_NEXT(rpp, rp_entry)) { 1371 if (i >= PRLSTSIZ) 1372 break; 1373 prl->prefix[i].prefix = rpp->rp_prefix.sin6_addr; 1374 prl->prefix[i].raflags = rpp->rp_raf; 1375 prl->prefix[i].prefixlen = rpp->rp_plen; 1376 prl->prefix[i].vltime = rpp->rp_vltime; 1377 prl->prefix[i].pltime = rpp->rp_pltime; 1378 prl->prefix[i].if_index = rpp->rp_ifp->if_index; 1379 prl->prefix[i].expire = rpp->rp_expire; 1380 prl->prefix[i].advrtrs = 0; 1381 prl->prefix[i].origin = rpp->rp_origin; 1382 i++; 1383 } 1384 } 1385 splx(s); 1386 1387 break; 1388 case SIOCGIFINFO_IN6: 1389 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) { 1390 error = EINVAL; 1391 break; 1392 } 1393 ndi->ndi = nd_ifinfo[ifp->if_index]; 1394 break; 1395 case SIOCSIFINFO_FLAGS: 1396 /* XXX: almost all other fields of ndi->ndi is unused */ 1397 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) { 1398 error = EINVAL; 1399 break; 1400 } 1401 nd_ifinfo[ifp->if_index].flags = ndi->ndi.flags; 1402 break; 1403 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1404 /* flush default router list */ 1405 /* 1406 * xxx sumikawa: should not delete route if default 1407 * route equals to the top of default router list 1408 */ 1409 bzero(&any, sizeof(any)); 1410 defrouter_delreq(&any, 0); 1411 defrouter_select(); 1412 /* xxx sumikawa: flush prefix list */ 1413 break; 1414 case SIOCSPFXFLUSH_IN6: 1415 { 1416 /* flush all the prefix advertised by routers */ 1417 struct nd_prefix *pr, *next; 1418 1419 s = splsoftnet(); 1420 for (pr = nd_prefix.lh_first; pr; pr = next) { 1421 next = pr->ndpr_next; 1422 if (!IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr)) 1423 in6_ifdel(pr->ndpr_ifp, &pr->ndpr_addr); 1424 prelist_remove(pr); 1425 } 1426 splx(s); 1427 break; 1428 } 1429 case SIOCSRTRFLUSH_IN6: 1430 { 1431 /* flush all the default routers */ 1432 struct nd_defrouter *dr, *next; 1433 1434 s = splsoftnet(); 1435 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) { 1436 /* 1437 * The first entry of the list may be stored in 1438 * the routing table, so we'll delete it later. 1439 */ 1440 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) { 1441 next = TAILQ_NEXT(dr, dr_entry); 1442 defrtrlist_del(dr); 1443 } 1444 defrtrlist_del(TAILQ_FIRST(&nd_defrouter)); 1445 } 1446 splx(s); 1447 break; 1448 } 1449 case SIOCGNBRINFO_IN6: 1450 { 1451 struct llinfo_nd6 *ln; 1452 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1453 1454 /* 1455 * XXX: KAME specific hack for scoped addresses 1456 * XXXX: for other scopes than link-local? 1457 */ 1458 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) || 1459 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) { 1460 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2]; 1461 1462 if (*idp == 0) 1463 *idp = htons(ifp->if_index); 1464 } 1465 1466 s = splsoftnet(); 1467 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) { 1468 error = EINVAL; 1469 splx(s); 1470 break; 1471 } 1472 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1473 nbi->state = ln->ln_state; 1474 nbi->asked = ln->ln_asked; 1475 nbi->isrouter = ln->ln_router; 1476 nbi->expire = ln->ln_expire; 1477 splx(s); 1478 1479 break; 1480 } 1481 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1482 ndif->ifindex = nd6_defifindex; 1483 break; 1484 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1485 return(nd6_setdefaultiface(ndif->ifindex)); 1486 break; 1487 } 1488 return(error); 1489 } 1490 1491 /* 1492 * Create neighbor cache entry and cache link-layer address, 1493 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1494 */ 1495 struct rtentry * 1496 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code) 1497 struct ifnet *ifp; 1498 struct in6_addr *from; 1499 char *lladdr; 1500 int lladdrlen; 1501 int type; /* ICMP6 type */ 1502 int code; /* type dependent information */ 1503 { 1504 struct rtentry *rt = NULL; 1505 struct llinfo_nd6 *ln = NULL; 1506 int is_newentry; 1507 struct sockaddr_dl *sdl = NULL; 1508 int do_update; 1509 int olladdr; 1510 int llchange; 1511 int newstate = 0; 1512 long time_second = time.tv_sec; 1513 1514 if (!ifp) 1515 panic("ifp == NULL in nd6_cache_lladdr"); 1516 if (!from) 1517 panic("from == NULL in nd6_cache_lladdr"); 1518 1519 /* nothing must be updated for unspecified address */ 1520 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1521 return NULL; 1522 1523 /* 1524 * Validation about ifp->if_addrlen and lladdrlen must be done in 1525 * the caller. 1526 * 1527 * XXX If the link does not have link-layer adderss, what should 1528 * we do? (ifp->if_addrlen == 0) 1529 * Spec says nothing in sections for RA, RS and NA. There's small 1530 * description on it in NS section (RFC 2461 7.2.3). 1531 */ 1532 1533 rt = nd6_lookup(from, 0, ifp); 1534 if (!rt) { 1535 #if 0 1536 /* nothing must be done if there's no lladdr */ 1537 if (!lladdr || !lladdrlen) 1538 return NULL; 1539 #endif 1540 1541 rt = nd6_lookup(from, 1, ifp); 1542 is_newentry = 1; 1543 } else { 1544 /* do nothing if static ndp is set */ 1545 if (rt->rt_flags & RTF_STATIC) 1546 return NULL; 1547 is_newentry = 0; 1548 } 1549 1550 if (!rt) 1551 return NULL; 1552 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { 1553 fail: 1554 (void)nd6_free(rt, 0); 1555 return NULL; 1556 } 1557 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1558 if (!ln) 1559 goto fail; 1560 if (!rt->rt_gateway) 1561 goto fail; 1562 if (rt->rt_gateway->sa_family != AF_LINK) 1563 goto fail; 1564 sdl = SDL(rt->rt_gateway); 1565 1566 olladdr = (sdl->sdl_alen) ? 1 : 0; 1567 if (olladdr && lladdr) { 1568 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) 1569 llchange = 1; 1570 else 1571 llchange = 0; 1572 } else 1573 llchange = 0; 1574 1575 /* 1576 * newentry olladdr lladdr llchange (*=record) 1577 * 0 n n -- (1) 1578 * 0 y n -- (2) 1579 * 0 n y -- (3) * STALE 1580 * 0 y y n (4) * 1581 * 0 y y y (5) * STALE 1582 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1583 * 1 -- y -- (7) * STALE 1584 */ 1585 1586 if (lladdr) { /* (3-5) and (7) */ 1587 /* 1588 * Record source link-layer address 1589 * XXX is it dependent to ifp->if_type? 1590 */ 1591 sdl->sdl_alen = ifp->if_addrlen; 1592 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); 1593 } 1594 1595 if (!is_newentry) { 1596 if ((!olladdr && lladdr) /* (3) */ 1597 || (olladdr && lladdr && llchange)) { /* (5) */ 1598 do_update = 1; 1599 newstate = ND6_LLINFO_STALE; 1600 } else /* (1-2,4) */ 1601 do_update = 0; 1602 } else { 1603 do_update = 1; 1604 if (!lladdr) /* (6) */ 1605 newstate = ND6_LLINFO_NOSTATE; 1606 else /* (7) */ 1607 newstate = ND6_LLINFO_STALE; 1608 } 1609 1610 if (do_update) { 1611 /* 1612 * Update the state of the neighbor cache. 1613 */ 1614 ln->ln_state = newstate; 1615 1616 if (ln->ln_state == ND6_LLINFO_STALE) { 1617 /* 1618 * XXX: since nd6_output() below will cause 1619 * state tansition to DELAY and reset the timer, 1620 * we must set the timer now, although it is actually 1621 * meaningless. 1622 */ 1623 ln->ln_expire = time_second + nd6_gctimer; 1624 1625 if (ln->ln_hold) { 1626 /* 1627 * we assume ifp is not a p2p here, so just 1628 * set the 2nd argument as the 1st one. 1629 */ 1630 nd6_output(ifp, ifp, ln->ln_hold, 1631 (struct sockaddr_in6 *)rt_key(rt), 1632 rt); 1633 ln->ln_hold = NULL; 1634 } 1635 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1636 /* probe right away */ 1637 ln->ln_expire = time_second; 1638 } 1639 } 1640 1641 /* 1642 * ICMP6 type dependent behavior. 1643 * 1644 * NS: clear IsRouter if new entry 1645 * RS: clear IsRouter 1646 * RA: set IsRouter if there's lladdr 1647 * redir: clear IsRouter if new entry 1648 * 1649 * RA case, (1): 1650 * The spec says that we must set IsRouter in the following cases: 1651 * - If lladdr exist, set IsRouter. This means (1-5). 1652 * - If it is old entry (!newentry), set IsRouter. This means (7). 1653 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1654 * A quetion arises for (1) case. (1) case has no lladdr in the 1655 * neighbor cache, this is similar to (6). 1656 * This case is rare but we figured that we MUST NOT set IsRouter. 1657 * 1658 * newentry olladdr lladdr llchange NS RS RA redir 1659 * D R 1660 * 0 n n -- (1) c ? s 1661 * 0 y n -- (2) c s s 1662 * 0 n y -- (3) c s s 1663 * 0 y y n (4) c s s 1664 * 0 y y y (5) c s s 1665 * 1 -- n -- (6) c c c s 1666 * 1 -- y -- (7) c c s c s 1667 * 1668 * (c=clear s=set) 1669 */ 1670 switch (type & 0xff) { 1671 case ND_NEIGHBOR_SOLICIT: 1672 /* 1673 * New entry must have is_router flag cleared. 1674 */ 1675 if (is_newentry) /* (6-7) */ 1676 ln->ln_router = 0; 1677 break; 1678 case ND_REDIRECT: 1679 /* 1680 * If the icmp is a redirect to a better router, always set the 1681 * is_router flag. Otherwise, if the entry is newly created, 1682 * clear the flag. [RFC 2461, sec 8.3] 1683 */ 1684 if (code == ND_REDIRECT_ROUTER) 1685 ln->ln_router = 1; 1686 else if (is_newentry) /* (6-7) */ 1687 ln->ln_router = 0; 1688 break; 1689 case ND_ROUTER_SOLICIT: 1690 /* 1691 * is_router flag must always be cleared. 1692 */ 1693 ln->ln_router = 0; 1694 break; 1695 case ND_ROUTER_ADVERT: 1696 /* 1697 * Mark an entry with lladdr as a router. 1698 */ 1699 if ((!is_newentry && (olladdr || lladdr)) /* (2-5) */ 1700 || (is_newentry && lladdr)) { /* (7) */ 1701 ln->ln_router = 1; 1702 } 1703 break; 1704 } 1705 1706 /* 1707 * When the link-layer address of a router changes, select the 1708 * best router again. In particular, when the neighbor entry is newly 1709 * created, it might affect the selection policy. 1710 * Question: can we restrict the first condition to the "is_newentry" 1711 * case? 1712 * XXX: when we hear an RA from a new router with the link-layer 1713 * address option, defrouter_select() is called twice, since 1714 * defrtrlist_update called the function as well. However, I believe 1715 * we can compromise the overhead, since it only happens the first 1716 * time. 1717 * XXX: although defrouter_select() should not have a bad effect 1718 * for those are not autoconfigured hosts, we explicitly avoid such 1719 * cases for safety. 1720 */ 1721 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv) 1722 defrouter_select(); 1723 1724 return rt; 1725 } 1726 1727 static void 1728 nd6_slowtimo(ignored_arg) 1729 void *ignored_arg; 1730 { 1731 int s = splsoftnet(); 1732 int i; 1733 struct nd_ifinfo *nd6if; 1734 1735 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 1736 nd6_slowtimo, NULL); 1737 for (i = 1; i < if_index + 1; i++) { 1738 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) 1739 continue; 1740 nd6if = &nd_ifinfo[i]; 1741 if (nd6if->basereachable && /* already initialized */ 1742 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1743 /* 1744 * Since reachable time rarely changes by router 1745 * advertisements, we SHOULD insure that a new random 1746 * value gets recomputed at least once every few hours. 1747 * (RFC 2461, 6.3.4) 1748 */ 1749 nd6if->recalctm = nd6_recalc_reachtm_interval; 1750 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1751 } 1752 } 1753 splx(s); 1754 } 1755 1756 #define senderr(e) { error = (e); goto bad;} 1757 int 1758 nd6_output(ifp, origifp, m0, dst, rt0) 1759 struct ifnet *ifp; 1760 struct ifnet *origifp; 1761 struct mbuf *m0; 1762 struct sockaddr_in6 *dst; 1763 struct rtentry *rt0; 1764 { 1765 struct mbuf *m = m0; 1766 struct rtentry *rt = rt0; 1767 struct sockaddr_in6 *gw6 = NULL; 1768 struct llinfo_nd6 *ln = NULL; 1769 int error = 0; 1770 long time_second = time.tv_sec; 1771 1772 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1773 goto sendpkt; 1774 1775 if (nd6_need_cache(ifp) == 0) 1776 goto sendpkt; 1777 1778 /* 1779 * next hop determination. This routine is derived from ether_outpout. 1780 */ 1781 if (rt) { 1782 if ((rt->rt_flags & RTF_UP) == 0) { 1783 if ((rt0 = rt = rtalloc1((struct sockaddr *)dst, 1)) != 1784 NULL) 1785 { 1786 rt->rt_refcnt--; 1787 if (rt->rt_ifp != ifp) { 1788 /* XXX: loop care? */ 1789 return nd6_output(ifp, origifp, m0, 1790 dst, rt); 1791 } 1792 } else 1793 senderr(EHOSTUNREACH); 1794 } 1795 1796 if (rt->rt_flags & RTF_GATEWAY) { 1797 gw6 = (struct sockaddr_in6 *)rt->rt_gateway; 1798 1799 /* 1800 * We skip link-layer address resolution and NUD 1801 * if the gateway is not a neighbor from ND point 1802 * of view, regardless the value of nd_ifinfo.flags. 1803 * The second condition is a bit tricky; we skip 1804 * if the gateway is our own address, which is 1805 * sometimes used to install a route to a p2p link. 1806 */ 1807 if (!nd6_is_addr_neighbor(gw6, ifp) || 1808 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) { 1809 /* 1810 * We allow this kind of tricky route only 1811 * when the outgoing interface is p2p. 1812 * XXX: we may need a more generic rule here. 1813 */ 1814 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1815 senderr(EHOSTUNREACH); 1816 1817 goto sendpkt; 1818 } 1819 1820 if (rt->rt_gwroute == 0) 1821 goto lookup; 1822 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) { 1823 rtfree(rt); rt = rt0; 1824 lookup: 1825 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1); 1826 if ((rt = rt->rt_gwroute) == 0) 1827 senderr(EHOSTUNREACH); 1828 /* the "G" test below also prevents rt == rt0 */ 1829 if ((rt->rt_flags & RTF_GATEWAY) || 1830 (rt->rt_ifp != ifp)) { 1831 rt->rt_refcnt--; 1832 rt0->rt_gwroute = 0; 1833 senderr(EHOSTUNREACH); 1834 } 1835 } 1836 } 1837 } 1838 1839 /* 1840 * Address resolution or Neighbor Unreachability Detection 1841 * for the next hop. 1842 * At this point, the destination of the packet must be a unicast 1843 * or an anycast address(i.e. not a multicast). 1844 */ 1845 1846 /* Look up the neighbor cache for the nexthop */ 1847 if (rt && (rt->rt_flags & RTF_LLINFO) != 0) 1848 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1849 else { 1850 /* 1851 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 1852 * the condition below is not very efficient. But we believe 1853 * it is tolerable, because this should be a rare case. 1854 */ 1855 if (nd6_is_addr_neighbor(dst, ifp) && 1856 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL) 1857 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1858 } 1859 if (!ln || !rt) { 1860 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 1861 !(nd_ifinfo[ifp->if_index].flags & ND6_IFF_PERFORMNUD)) { 1862 log(LOG_DEBUG, 1863 "nd6_output: can't allocate llinfo for %s " 1864 "(ln=%p, rt=%p)\n", 1865 ip6_sprintf(&dst->sin6_addr), ln, rt); 1866 senderr(EIO); /* XXX: good error? */ 1867 } 1868 1869 goto sendpkt; /* send anyway */ 1870 } 1871 1872 /* We don't have to do link-layer address resolution on a p2p link. */ 1873 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 1874 ln->ln_state < ND6_LLINFO_REACHABLE) { 1875 ln->ln_state = ND6_LLINFO_STALE; 1876 ln->ln_expire = time_second + nd6_gctimer; 1877 } 1878 1879 /* 1880 * The first time we send a packet to a neighbor whose entry is 1881 * STALE, we have to change the state to DELAY and a sets a timer to 1882 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 1883 * neighbor unreachability detection on expiration. 1884 * (RFC 2461 7.3.3) 1885 */ 1886 if (ln->ln_state == ND6_LLINFO_STALE) { 1887 ln->ln_asked = 0; 1888 ln->ln_state = ND6_LLINFO_DELAY; 1889 ln->ln_expire = time_second + nd6_delay; 1890 } 1891 1892 /* 1893 * If the neighbor cache entry has a state other than INCOMPLETE 1894 * (i.e. its link-layer address is already resolved), just 1895 * send the packet. 1896 */ 1897 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1898 goto sendpkt; 1899 1900 /* 1901 * There is a neighbor cache entry, but no ethernet address 1902 * response yet. Replace the held mbuf (if any) with this 1903 * latest one. 1904 * This code conforms to the rate-limiting rule described in Section 1905 * 7.2.2 of RFC 2461, because the timer is set correctly after sending 1906 * an NS below. 1907 */ 1908 if (ln->ln_state == ND6_LLINFO_NOSTATE) 1909 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1910 if (ln->ln_hold) 1911 m_freem(ln->ln_hold); 1912 ln->ln_hold = m; 1913 if (ln->ln_expire) { 1914 if (ln->ln_asked < nd6_mmaxtries && 1915 ln->ln_expire < time_second) { 1916 ln->ln_asked++; 1917 ln->ln_expire = time_second + 1918 nd_ifinfo[ifp->if_index].retrans / 1000; 1919 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 1920 } 1921 } 1922 return(0); 1923 1924 sendpkt: 1925 1926 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 1927 return((*ifp->if_output)(origifp, m, (struct sockaddr *)dst, 1928 rt)); 1929 } 1930 return((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt)); 1931 1932 bad: 1933 if (m) 1934 m_freem(m); 1935 return (error); 1936 } 1937 #undef senderr 1938 1939 int 1940 nd6_need_cache(ifp) 1941 struct ifnet *ifp; 1942 { 1943 /* 1944 * XXX: we currently do not make neighbor cache on any interface 1945 * other than ARCnet, Ethernet, FDDI and GIF. 1946 * 1947 * RFC2893 says: 1948 * - unidirectional tunnels needs no ND 1949 */ 1950 switch (ifp->if_type) { 1951 case IFT_ARCNET: 1952 case IFT_ETHER: 1953 case IFT_FDDI: 1954 case IFT_IEEE1394: 1955 case IFT_GIF: /* XXX need more cases? */ 1956 return(1); 1957 default: 1958 return(0); 1959 } 1960 } 1961 1962 int 1963 nd6_storelladdr(ifp, rt, m, dst, desten) 1964 struct ifnet *ifp; 1965 struct rtentry *rt; 1966 struct mbuf *m; 1967 struct sockaddr *dst; 1968 u_char *desten; 1969 { 1970 struct sockaddr_dl *sdl; 1971 1972 if (m->m_flags & M_MCAST) { 1973 switch (ifp->if_type) { 1974 case IFT_ETHER: 1975 case IFT_FDDI: 1976 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 1977 desten); 1978 return(1); 1979 case IFT_IEEE1394: 1980 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen); 1981 return(1); 1982 case IFT_ARCNET: 1983 *desten = 0; 1984 return(1); 1985 default: 1986 m_freem(m); 1987 return(0); 1988 } 1989 } 1990 1991 if (rt == NULL) { 1992 /* this could happen, if we could not allocate memory */ 1993 m_freem(m); 1994 return(0); 1995 } 1996 if (rt->rt_gateway->sa_family != AF_LINK) { 1997 printf("nd6_storelladdr: something odd happens\n"); 1998 m_freem(m); 1999 return(0); 2000 } 2001 sdl = SDL(rt->rt_gateway); 2002 if (sdl->sdl_alen == 0) { 2003 /* this should be impossible, but we bark here for debugging */ 2004 printf("nd6_storelladdr: sdl_alen == 0, dst=%s, if=%s\n", 2005 ip6_sprintf(&SIN6(dst)->sin6_addr), if_name(ifp)); 2006 m_freem(m); 2007 return(0); 2008 } 2009 2010 bcopy(LLADDR(sdl), desten, sdl->sdl_alen); 2011 return(1); 2012 } 2013