1 /* $NetBSD: nd6.c,v 1.247 2018/03/06 10:57:00 roy Exp $ */ 2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.247 2018/03/06 10:57:00 roy Exp $"); 35 36 #ifdef _KERNEL_OPT 37 #include "opt_net_mpsafe.h" 38 #endif 39 40 #include "bridge.h" 41 #include "carp.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/callout.h> 46 #include <sys/kmem.h> 47 #include <sys/mbuf.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/sockio.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/errno.h> 54 #include <sys/ioctl.h> 55 #include <sys/syslog.h> 56 #include <sys/queue.h> 57 #include <sys/cprng.h> 58 #include <sys/workqueue.h> 59 60 #include <net/if.h> 61 #include <net/if_dl.h> 62 #include <net/if_llatbl.h> 63 #include <net/if_types.h> 64 #include <net/route.h> 65 #include <net/if_ether.h> 66 #include <net/if_fddi.h> 67 #include <net/if_arc.h> 68 69 #include <netinet/in.h> 70 #include <netinet6/in6_var.h> 71 #include <netinet/ip6.h> 72 #include <netinet6/ip6_var.h> 73 #include <netinet6/scope6_var.h> 74 #include <netinet6/nd6.h> 75 #include <netinet6/in6_ifattach.h> 76 #include <netinet/icmp6.h> 77 #include <netinet6/icmp6_private.h> 78 79 #include <net/net_osdep.h> 80 81 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 82 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 83 84 /* timer values */ 85 int nd6_prune = 1; /* walk list every 1 seconds */ 86 int nd6_delay = 5; /* delay first probe time 5 second */ 87 int nd6_umaxtries = 3; /* maximum unicast query */ 88 int nd6_mmaxtries = 3; /* maximum multicast query */ 89 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 90 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 91 92 /* preventing too many loops in ND option parsing */ 93 int nd6_maxndopt = 10; /* max # of ND options allowed */ 94 95 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 96 97 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */ 98 99 #ifdef ND6_DEBUG 100 int nd6_debug = 1; 101 #else 102 int nd6_debug = 0; 103 #endif 104 105 krwlock_t nd6_lock __cacheline_aligned; 106 107 struct nd_drhead nd_defrouter; 108 struct nd_prhead nd_prefix = { 0 }; 109 110 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 111 112 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 113 static void nd6_slowtimo(void *); 114 static int regen_tmpaddr(const struct in6_ifaddr *); 115 static void nd6_free(struct llentry *, int); 116 static void nd6_llinfo_timer(void *); 117 static void nd6_timer(void *); 118 static void nd6_timer_work(struct work *, void *); 119 static void clear_llinfo_pqueue(struct llentry *); 120 static struct nd_opt_hdr *nd6_option(union nd_opts *); 121 122 static callout_t nd6_slowtimo_ch; 123 static callout_t nd6_timer_ch; 124 static struct workqueue *nd6_timer_wq; 125 static struct work nd6_timer_wk; 126 127 static int fill_drlist(void *, size_t *); 128 static int fill_prlist(void *, size_t *); 129 130 static struct ifnet *nd6_defifp; 131 static int nd6_defifindex; 132 133 static int nd6_setdefaultiface(int); 134 135 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery"); 136 137 void 138 nd6_init(void) 139 { 140 int error; 141 142 rw_init(&nd6_lock); 143 144 /* initialization of the default router list */ 145 ND_DEFROUTER_LIST_INIT(); 146 147 callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE); 148 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE); 149 150 error = workqueue_create(&nd6_timer_wq, "nd6_timer", 151 nd6_timer_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE); 152 if (error) 153 panic("%s: workqueue_create failed (%d)\n", __func__, error); 154 155 /* start timer */ 156 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 157 nd6_slowtimo, NULL); 158 callout_reset(&nd6_timer_ch, hz, nd6_timer, NULL); 159 } 160 161 struct nd_ifinfo * 162 nd6_ifattach(struct ifnet *ifp) 163 { 164 struct nd_ifinfo *nd; 165 166 nd = kmem_zalloc(sizeof(*nd), KM_SLEEP); 167 168 nd->initialized = 1; 169 170 nd->chlim = IPV6_DEFHLIM; 171 nd->basereachable = REACHABLE_TIME; 172 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 173 nd->retrans = RETRANS_TIMER; 174 175 nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV; 176 177 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 178 * A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL 179 * because one of its members should. */ 180 if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 181 (ifp->if_flags & IFF_LOOPBACK)) 182 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 183 184 /* A loopback interface does not need to accept RTADV. 185 * A bridge interface should not accept RTADV 186 * because one of its members should. */ 187 if (ip6_accept_rtadv && 188 !(ifp->if_flags & IFF_LOOPBACK) && 189 !(ifp->if_type != IFT_BRIDGE)) 190 nd->flags |= ND6_IFF_ACCEPT_RTADV; 191 192 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 193 nd6_setmtu0(ifp, nd); 194 195 return nd; 196 } 197 198 void 199 nd6_ifdetach(struct ifnet *ifp, struct in6_ifextra *ext) 200 { 201 202 /* Ensure all IPv6 addresses are purged before calling nd6_purge */ 203 if_purgeaddrs(ifp, AF_INET6, in6_purgeaddr); 204 nd6_purge(ifp, ext); 205 kmem_free(ext->nd_ifinfo, sizeof(struct nd_ifinfo)); 206 } 207 208 void 209 nd6_setmtu(struct ifnet *ifp) 210 { 211 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 212 } 213 214 void 215 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 216 { 217 u_int32_t omaxmtu; 218 219 omaxmtu = ndi->maxmtu; 220 221 switch (ifp->if_type) { 222 case IFT_ARCNET: 223 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */ 224 break; 225 case IFT_FDDI: 226 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); 227 break; 228 default: 229 ndi->maxmtu = ifp->if_mtu; 230 break; 231 } 232 233 /* 234 * Decreasing the interface MTU under IPV6 minimum MTU may cause 235 * undesirable situation. We thus notify the operator of the change 236 * explicitly. The check for omaxmtu is necessary to restrict the 237 * log to the case of changing the MTU, not initializing it. 238 */ 239 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 240 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too" 241 " small for IPv6 which needs %lu\n", 242 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long) 243 IPV6_MMTU); 244 } 245 246 if (ndi->maxmtu > in6_maxmtu) 247 in6_setmaxmtu(); /* check all interfaces just in case */ 248 } 249 250 void 251 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 252 { 253 254 memset(ndopts, 0, sizeof(*ndopts)); 255 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 256 ndopts->nd_opts_last 257 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 258 259 if (icmp6len == 0) { 260 ndopts->nd_opts_done = 1; 261 ndopts->nd_opts_search = NULL; 262 } 263 } 264 265 /* 266 * Take one ND option. 267 */ 268 static struct nd_opt_hdr * 269 nd6_option(union nd_opts *ndopts) 270 { 271 struct nd_opt_hdr *nd_opt; 272 int olen; 273 274 KASSERT(ndopts != NULL); 275 KASSERT(ndopts->nd_opts_last != NULL); 276 277 if (ndopts->nd_opts_search == NULL) 278 return NULL; 279 if (ndopts->nd_opts_done) 280 return NULL; 281 282 nd_opt = ndopts->nd_opts_search; 283 284 /* make sure nd_opt_len is inside the buffer */ 285 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) { 286 memset(ndopts, 0, sizeof(*ndopts)); 287 return NULL; 288 } 289 290 olen = nd_opt->nd_opt_len << 3; 291 if (olen == 0) { 292 /* 293 * Message validation requires that all included 294 * options have a length that is greater than zero. 295 */ 296 memset(ndopts, 0, sizeof(*ndopts)); 297 return NULL; 298 } 299 300 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen); 301 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 302 /* option overruns the end of buffer, invalid */ 303 memset(ndopts, 0, sizeof(*ndopts)); 304 return NULL; 305 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 306 /* reached the end of options chain */ 307 ndopts->nd_opts_done = 1; 308 ndopts->nd_opts_search = NULL; 309 } 310 return nd_opt; 311 } 312 313 /* 314 * Parse multiple ND options. 315 * This function is much easier to use, for ND routines that do not need 316 * multiple options of the same type. 317 */ 318 int 319 nd6_options(union nd_opts *ndopts) 320 { 321 struct nd_opt_hdr *nd_opt; 322 int i = 0; 323 324 KASSERT(ndopts != NULL); 325 KASSERT(ndopts->nd_opts_last != NULL); 326 327 if (ndopts->nd_opts_search == NULL) 328 return 0; 329 330 while (1) { 331 nd_opt = nd6_option(ndopts); 332 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 333 /* 334 * Message validation requires that all included 335 * options have a length that is greater than zero. 336 */ 337 ICMP6_STATINC(ICMP6_STAT_ND_BADOPT); 338 memset(ndopts, 0, sizeof(*ndopts)); 339 return -1; 340 } 341 342 if (nd_opt == NULL) 343 goto skip1; 344 345 switch (nd_opt->nd_opt_type) { 346 case ND_OPT_SOURCE_LINKADDR: 347 case ND_OPT_TARGET_LINKADDR: 348 case ND_OPT_MTU: 349 case ND_OPT_REDIRECTED_HEADER: 350 case ND_OPT_NONCE: 351 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 352 nd6log(LOG_INFO, 353 "duplicated ND6 option found (type=%d)\n", 354 nd_opt->nd_opt_type); 355 /* XXX bark? */ 356 } else { 357 ndopts->nd_opt_array[nd_opt->nd_opt_type] 358 = nd_opt; 359 } 360 break; 361 case ND_OPT_PREFIX_INFORMATION: 362 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 363 ndopts->nd_opt_array[nd_opt->nd_opt_type] 364 = nd_opt; 365 } 366 ndopts->nd_opts_pi_end = 367 (struct nd_opt_prefix_info *)nd_opt; 368 break; 369 default: 370 /* 371 * Unknown options must be silently ignored, 372 * to accommodate future extension to the protocol. 373 */ 374 nd6log(LOG_DEBUG, 375 "nd6_options: unsupported option %d - " 376 "option ignored\n", nd_opt->nd_opt_type); 377 } 378 379 skip1: 380 i++; 381 if (i > nd6_maxndopt) { 382 ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT); 383 nd6log(LOG_INFO, "too many loop in nd opt\n"); 384 break; 385 } 386 387 if (ndopts->nd_opts_done) 388 break; 389 } 390 391 return 0; 392 } 393 394 /* 395 * ND6 timer routine to handle ND6 entries 396 */ 397 void 398 nd6_llinfo_settimer(struct llentry *ln, time_t xtick) 399 { 400 401 CTASSERT(sizeof(time_t) > sizeof(int)); 402 LLE_WLOCK_ASSERT(ln); 403 404 KASSERT(xtick >= 0); 405 406 /* 407 * We have to take care of a reference leak which occurs if 408 * callout_reset overwrites a pending callout schedule. Unfortunately 409 * we don't have a mean to know the overwrite, so we need to know it 410 * using callout_stop. We need to call callout_pending first to exclude 411 * the case that the callout has never been scheduled. 412 */ 413 if (callout_pending(&ln->la_timer)) { 414 bool expired = callout_stop(&ln->la_timer); 415 if (!expired) 416 LLE_REMREF(ln); 417 } 418 419 ln->ln_expire = time_uptime + xtick / hz; 420 LLE_ADDREF(ln); 421 if (xtick > INT_MAX) { 422 ln->ln_ntick = xtick - INT_MAX; 423 callout_reset(&ln->ln_timer_ch, INT_MAX, 424 nd6_llinfo_timer, ln); 425 } else { 426 ln->ln_ntick = 0; 427 callout_reset(&ln->ln_timer_ch, xtick, 428 nd6_llinfo_timer, ln); 429 } 430 } 431 432 /* 433 * Gets source address of the first packet in hold queue 434 * and stores it in @src. 435 * Returns pointer to @src (if hold queue is not empty) or NULL. 436 */ 437 static struct in6_addr * 438 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 439 { 440 struct ip6_hdr *hip6; 441 442 if (ln == NULL || ln->ln_hold == NULL) 443 return NULL; 444 445 /* 446 * assuming every packet in ln_hold has the same IP header 447 */ 448 hip6 = mtod(ln->ln_hold, struct ip6_hdr *); 449 /* XXX pullup? */ 450 if (sizeof(*hip6) < ln->ln_hold->m_len) 451 *src = hip6->ip6_src; 452 else 453 src = NULL; 454 455 return src; 456 } 457 458 static void 459 nd6_llinfo_timer(void *arg) 460 { 461 struct llentry *ln = arg; 462 struct ifnet *ifp; 463 struct nd_ifinfo *ndi = NULL; 464 bool send_ns = false; 465 const struct in6_addr *daddr6 = NULL; 466 467 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE(); 468 469 LLE_WLOCK(ln); 470 if ((ln->la_flags & LLE_LINKED) == 0) 471 goto out; 472 if (ln->ln_ntick > 0) { 473 nd6_llinfo_settimer(ln, ln->ln_ntick); 474 goto out; 475 } 476 477 478 ifp = ln->lle_tbl->llt_ifp; 479 KASSERT(ifp != NULL); 480 481 ndi = ND_IFINFO(ifp); 482 483 switch (ln->ln_state) { 484 case ND6_LLINFO_INCOMPLETE: 485 if (ln->ln_asked < nd6_mmaxtries) { 486 ln->ln_asked++; 487 send_ns = true; 488 } else { 489 struct mbuf *m = ln->ln_hold; 490 if (m) { 491 struct mbuf *m0; 492 493 /* 494 * assuming every packet in ln_hold has 495 * the same IP header 496 */ 497 m0 = m->m_nextpkt; 498 m->m_nextpkt = NULL; 499 ln->ln_hold = m0; 500 clear_llinfo_pqueue(ln); 501 } 502 nd6_free(ln, 0); 503 ln = NULL; 504 if (m != NULL) { 505 icmp6_error2(m, ICMP6_DST_UNREACH, 506 ICMP6_DST_UNREACH_ADDR, 0, ifp); 507 } 508 } 509 break; 510 case ND6_LLINFO_REACHABLE: 511 if (!ND6_LLINFO_PERMANENT(ln)) { 512 ln->ln_state = ND6_LLINFO_STALE; 513 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 514 } 515 break; 516 517 case ND6_LLINFO_PURGE: 518 case ND6_LLINFO_STALE: 519 /* Garbage Collection(RFC 2461 5.3) */ 520 if (!ND6_LLINFO_PERMANENT(ln)) { 521 nd6_free(ln, 1); 522 ln = NULL; 523 } 524 break; 525 526 case ND6_LLINFO_DELAY: 527 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 528 /* We need NUD */ 529 ln->ln_asked = 1; 530 ln->ln_state = ND6_LLINFO_PROBE; 531 daddr6 = &ln->r_l3addr.addr6; 532 send_ns = true; 533 } else { 534 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 535 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 536 } 537 break; 538 case ND6_LLINFO_PROBE: 539 if (ln->ln_asked < nd6_umaxtries) { 540 ln->ln_asked++; 541 daddr6 = &ln->r_l3addr.addr6; 542 send_ns = true; 543 } else { 544 nd6_free(ln, 0); 545 ln = NULL; 546 } 547 break; 548 } 549 550 if (send_ns) { 551 struct in6_addr src, *psrc; 552 const struct in6_addr *taddr6 = &ln->r_l3addr.addr6; 553 554 nd6_llinfo_settimer(ln, ndi->retrans * hz / 1000); 555 psrc = nd6_llinfo_get_holdsrc(ln, &src); 556 LLE_FREE_LOCKED(ln); 557 ln = NULL; 558 nd6_ns_output(ifp, daddr6, taddr6, psrc, NULL); 559 } 560 561 out: 562 if (ln != NULL) 563 LLE_FREE_LOCKED(ln); 564 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 565 } 566 567 /* 568 * ND6 timer routine to expire default route list and prefix list 569 */ 570 static void 571 nd6_timer_work(struct work *wk, void *arg) 572 { 573 struct nd_defrouter *next_dr, *dr; 574 struct nd_prefix *next_pr, *pr; 575 struct in6_ifaddr *ia6, *nia6; 576 int s, bound; 577 struct psref psref; 578 579 callout_reset(&nd6_timer_ch, nd6_prune * hz, 580 nd6_timer, NULL); 581 582 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE(); 583 584 /* expire default router list */ 585 586 ND6_WLOCK(); 587 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, next_dr) { 588 if (dr->expire && dr->expire < time_uptime) { 589 nd6_defrtrlist_del(dr, NULL); 590 } 591 } 592 ND6_UNLOCK(); 593 594 /* 595 * expire interface addresses. 596 * in the past the loop was inside prefix expiry processing. 597 * However, from a stricter speci-confrmance standpoint, we should 598 * rather separate address lifetimes and prefix lifetimes. 599 */ 600 bound = curlwp_bind(); 601 addrloop: 602 s = pserialize_read_enter(); 603 for (ia6 = IN6_ADDRLIST_READER_FIRST(); ia6; ia6 = nia6) { 604 nia6 = IN6_ADDRLIST_READER_NEXT(ia6); 605 606 ia6_acquire(ia6, &psref); 607 pserialize_read_exit(s); 608 609 /* check address lifetime */ 610 if (IFA6_IS_INVALID(ia6)) { 611 int regen = 0; 612 struct ifnet *ifp; 613 614 /* 615 * If the expiring address is temporary, try 616 * regenerating a new one. This would be useful when 617 * we suspended a laptop PC, then turned it on after a 618 * period that could invalidate all temporary 619 * addresses. Although we may have to restart the 620 * loop (see below), it must be after purging the 621 * address. Otherwise, we'd see an infinite loop of 622 * regeneration. 623 */ 624 if (ip6_use_tempaddr && 625 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 626 IFNET_LOCK(ia6->ia_ifa.ifa_ifp); 627 if (regen_tmpaddr(ia6) == 0) 628 regen = 1; 629 IFNET_UNLOCK(ia6->ia_ifa.ifa_ifp); 630 } 631 632 ifp = ia6->ia_ifa.ifa_ifp; 633 IFNET_LOCK(ifp); 634 /* 635 * Need to take the lock first to prevent if_detach 636 * from running in6_purgeaddr concurrently. 637 */ 638 if (!if_is_deactivated(ifp)) { 639 ia6_release(ia6, &psref); 640 in6_purgeaddr(&ia6->ia_ifa); 641 } else { 642 /* 643 * ifp is being destroyed, ia6 will be destroyed 644 * by if_detach. 645 */ 646 ia6_release(ia6, &psref); 647 } 648 ia6 = NULL; 649 IFNET_UNLOCK(ifp); 650 651 if (regen) 652 goto addrloop; /* XXX: see below */ 653 } else if (IFA6_IS_DEPRECATED(ia6)) { 654 int oldflags = ia6->ia6_flags; 655 656 if ((oldflags & IN6_IFF_DEPRECATED) == 0) { 657 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 658 rt_newaddrmsg(RTM_NEWADDR, 659 (struct ifaddr *)ia6, 0, NULL); 660 } 661 662 /* 663 * If a temporary address has just become deprecated, 664 * regenerate a new one if possible. 665 */ 666 if (ip6_use_tempaddr && 667 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 668 (oldflags & IN6_IFF_DEPRECATED) == 0) { 669 670 if (regen_tmpaddr(ia6) == 0) { 671 /* 672 * A new temporary address is 673 * generated. 674 * XXX: this means the address chain 675 * has changed while we are still in 676 * the loop. Although the change 677 * would not cause disaster (because 678 * it's not a deletion, but an 679 * addition,) we'd rather restart the 680 * loop just for safety. Or does this 681 * significantly reduce performance?? 682 */ 683 ia6_release(ia6, &psref); 684 goto addrloop; 685 } 686 } 687 } else { 688 /* 689 * A new RA might have made a deprecated address 690 * preferred. 691 */ 692 if (ia6->ia6_flags & IN6_IFF_DEPRECATED) { 693 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 694 rt_newaddrmsg(RTM_NEWADDR, 695 (struct ifaddr *)ia6, 0, NULL); 696 } 697 } 698 s = pserialize_read_enter(); 699 ia6_release(ia6, &psref); 700 } 701 pserialize_read_exit(s); 702 curlwp_bindx(bound); 703 704 /* expire prefix list */ 705 ND6_WLOCK(); 706 ND_PREFIX_LIST_FOREACH_SAFE(pr, next_pr) { 707 /* 708 * check prefix lifetime. 709 * since pltime is just for autoconf, pltime processing for 710 * prefix is not necessary. 711 */ 712 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 713 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) { 714 /* 715 * Just invalidate the prefix here. Removing it 716 * will be done when purging an associated address. 717 */ 718 KASSERT(pr->ndpr_refcnt > 0); 719 nd6_invalidate_prefix(pr); 720 } 721 } 722 ND6_UNLOCK(); 723 724 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 725 } 726 727 static void 728 nd6_timer(void *ignored_arg) 729 { 730 731 workqueue_enqueue(nd6_timer_wq, &nd6_timer_wk, NULL); 732 } 733 734 /* ia6: deprecated/invalidated temporary address */ 735 static int 736 regen_tmpaddr(const struct in6_ifaddr *ia6) 737 { 738 struct ifaddr *ifa; 739 struct ifnet *ifp; 740 struct in6_ifaddr *public_ifa6 = NULL; 741 int s; 742 743 ifp = ia6->ia_ifa.ifa_ifp; 744 s = pserialize_read_enter(); 745 IFADDR_READER_FOREACH(ifa, ifp) { 746 struct in6_ifaddr *it6; 747 748 if (ifa->ifa_addr->sa_family != AF_INET6) 749 continue; 750 751 it6 = (struct in6_ifaddr *)ifa; 752 753 /* ignore no autoconf addresses. */ 754 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 755 continue; 756 757 /* ignore autoconf addresses with different prefixes. */ 758 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 759 continue; 760 761 /* 762 * Now we are looking at an autoconf address with the same 763 * prefix as ours. If the address is temporary and is still 764 * preferred, do not create another one. It would be rare, but 765 * could happen, for example, when we resume a laptop PC after 766 * a long period. 767 */ 768 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 769 !IFA6_IS_DEPRECATED(it6)) { 770 public_ifa6 = NULL; 771 break; 772 } 773 774 /* 775 * This is a public autoconf address that has the same prefix 776 * as ours. If it is preferred, keep it. We can't break the 777 * loop here, because there may be a still-preferred temporary 778 * address with the prefix. 779 */ 780 if (!IFA6_IS_DEPRECATED(it6)) 781 public_ifa6 = it6; 782 } 783 784 if (public_ifa6 != NULL) { 785 int e; 786 struct psref psref; 787 788 ia6_acquire(public_ifa6, &psref); 789 pserialize_read_exit(s); 790 /* 791 * Random factor is introduced in the preferred lifetime, so 792 * we do not need additional delay (3rd arg to in6_tmpifadd). 793 */ 794 ND6_WLOCK(); 795 e = in6_tmpifadd(public_ifa6, 0, 0); 796 ND6_UNLOCK(); 797 if (e != 0) { 798 ia6_release(public_ifa6, &psref); 799 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 800 " tmp addr, errno=%d\n", e); 801 return -1; 802 } 803 ia6_release(public_ifa6, &psref); 804 return 0; 805 } 806 pserialize_read_exit(s); 807 808 return -1; 809 } 810 811 bool 812 nd6_accepts_rtadv(const struct nd_ifinfo *ndi) 813 { 814 switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) { 815 case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV: 816 return true; 817 case ND6_IFF_ACCEPT_RTADV: 818 return ip6_accept_rtadv != 0; 819 case ND6_IFF_OVERRIDE_RTADV: 820 case 0: 821 default: 822 return false; 823 } 824 } 825 826 /* 827 * Nuke neighbor cache/prefix/default router management table, right before 828 * ifp goes away. 829 */ 830 void 831 nd6_purge(struct ifnet *ifp, struct in6_ifextra *ext) 832 { 833 struct nd_defrouter *dr, *ndr; 834 struct nd_prefix *pr, *npr; 835 836 /* 837 * During detach, the ND info might be already removed, but 838 * then is explitly passed as argument. 839 * Otherwise get it from ifp->if_afdata. 840 */ 841 if (ext == NULL) 842 ext = ifp->if_afdata[AF_INET6]; 843 if (ext == NULL) 844 return; 845 846 ND6_WLOCK(); 847 /* 848 * Nuke default router list entries toward ifp. 849 * We defer removal of default router list entries that is installed 850 * in the routing table, in order to keep additional side effects as 851 * small as possible. 852 */ 853 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, ndr) { 854 if (dr->installed) 855 continue; 856 857 if (dr->ifp == ifp) { 858 KASSERT(ext != NULL); 859 nd6_defrtrlist_del(dr, ext); 860 } 861 } 862 863 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, ndr) { 864 if (!dr->installed) 865 continue; 866 867 if (dr->ifp == ifp) { 868 KASSERT(ext != NULL); 869 nd6_defrtrlist_del(dr, ext); 870 } 871 } 872 873 /* Nuke prefix list entries toward ifp */ 874 ND_PREFIX_LIST_FOREACH_SAFE(pr, npr) { 875 if (pr->ndpr_ifp == ifp) { 876 /* 877 * All addresses referencing pr should be already freed. 878 */ 879 KASSERT(pr->ndpr_refcnt == 0); 880 nd6_prelist_remove(pr); 881 } 882 } 883 884 /* cancel default outgoing interface setting */ 885 if (nd6_defifindex == ifp->if_index) 886 nd6_setdefaultiface(0); 887 888 /* XXX: too restrictive? */ 889 if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) { 890 struct nd_ifinfo *ndi = ND_IFINFO(ifp); 891 if (ndi && nd6_accepts_rtadv(ndi)) { 892 /* refresh default router list */ 893 nd6_defrouter_select(); 894 } 895 } 896 ND6_UNLOCK(); 897 898 /* 899 * We may not need to nuke the neighbor cache entries here 900 * because the neighbor cache is kept in if_afdata[AF_INET6]. 901 * nd6_purge() is invoked by in6_ifdetach() which is called 902 * from if_detach() where everything gets purged. However 903 * in6_ifdetach is directly called from vlan(4), so we still 904 * need to purge entries here. 905 */ 906 if (ext->lltable != NULL) 907 lltable_purge_entries(ext->lltable); 908 } 909 910 void 911 nd6_assert_purged(struct ifnet *ifp) 912 { 913 struct nd_defrouter *dr; 914 struct nd_prefix *pr; 915 char ip6buf[INET6_ADDRSTRLEN] __diagused; 916 917 ND6_RLOCK(); 918 ND_DEFROUTER_LIST_FOREACH(dr) { 919 KASSERTMSG(dr->ifp != ifp, 920 "defrouter %s remains on %s", 921 IN6_PRINT(ip6buf, &dr->rtaddr), ifp->if_xname); 922 } 923 924 ND_PREFIX_LIST_FOREACH(pr) { 925 KASSERTMSG(pr->ndpr_ifp != ifp, 926 "prefix %s/%d remains on %s", 927 IN6_PRINT(ip6buf, &pr->ndpr_prefix.sin6_addr), 928 pr->ndpr_plen, ifp->if_xname); 929 } 930 ND6_UNLOCK(); 931 } 932 933 struct llentry * 934 nd6_lookup(const struct in6_addr *addr6, const struct ifnet *ifp, bool wlock) 935 { 936 struct sockaddr_in6 sin6; 937 struct llentry *ln; 938 939 sockaddr_in6_init(&sin6, addr6, 0, 0, 0); 940 941 IF_AFDATA_RLOCK(ifp); 942 ln = lla_lookup(LLTABLE6(ifp), wlock ? LLE_EXCLUSIVE : 0, 943 sin6tosa(&sin6)); 944 IF_AFDATA_RUNLOCK(ifp); 945 946 return ln; 947 } 948 949 struct llentry * 950 nd6_create(const struct in6_addr *addr6, const struct ifnet *ifp) 951 { 952 struct sockaddr_in6 sin6; 953 struct llentry *ln; 954 struct rtentry *rt; 955 956 sockaddr_in6_init(&sin6, addr6, 0, 0, 0); 957 rt = rtalloc1(sin6tosa(&sin6), 0); 958 959 IF_AFDATA_WLOCK(ifp); 960 ln = lla_create(LLTABLE6(ifp), LLE_EXCLUSIVE, sin6tosa(&sin6), rt); 961 IF_AFDATA_WUNLOCK(ifp); 962 963 if (rt != NULL) 964 rt_unref(rt); 965 if (ln != NULL) 966 ln->ln_state = ND6_LLINFO_NOSTATE; 967 968 return ln; 969 } 970 971 /* 972 * Test whether a given IPv6 address is a neighbor or not, ignoring 973 * the actual neighbor cache. The neighbor cache is ignored in order 974 * to not reenter the routing code from within itself. 975 */ 976 static int 977 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 978 { 979 struct nd_prefix *pr; 980 struct ifaddr *dstaddr; 981 int s; 982 983 /* 984 * A link-local address is always a neighbor. 985 * XXX: a link does not necessarily specify a single interface. 986 */ 987 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 988 struct sockaddr_in6 sin6_copy; 989 u_int32_t zone; 990 991 /* 992 * We need sin6_copy since sa6_recoverscope() may modify the 993 * content (XXX). 994 */ 995 sin6_copy = *addr; 996 if (sa6_recoverscope(&sin6_copy)) 997 return 0; /* XXX: should be impossible */ 998 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 999 return 0; 1000 if (sin6_copy.sin6_scope_id == zone) 1001 return 1; 1002 else 1003 return 0; 1004 } 1005 1006 /* 1007 * If the address matches one of our addresses, 1008 * it should be a neighbor. 1009 * If the address matches one of our on-link prefixes, it should be a 1010 * neighbor. 1011 */ 1012 ND6_RLOCK(); 1013 ND_PREFIX_LIST_FOREACH(pr) { 1014 if (pr->ndpr_ifp != ifp) 1015 continue; 1016 1017 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) { 1018 struct rtentry *rt; 1019 1020 rt = rtalloc1(sin6tosa(&pr->ndpr_prefix), 0); 1021 if (rt == NULL) 1022 continue; 1023 /* 1024 * This is the case where multiple interfaces 1025 * have the same prefix, but only one is installed 1026 * into the routing table and that prefix entry 1027 * is not the one being examined here. In the case 1028 * where RADIX_MPATH is enabled, multiple route 1029 * entries (of the same rt_key value) will be 1030 * installed because the interface addresses all 1031 * differ. 1032 */ 1033 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1034 &satocsin6(rt_getkey(rt))->sin6_addr)) { 1035 rt_unref(rt); 1036 continue; 1037 } 1038 rt_unref(rt); 1039 } 1040 1041 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1042 &addr->sin6_addr, &pr->ndpr_mask)) { 1043 ND6_UNLOCK(); 1044 return 1; 1045 } 1046 } 1047 ND6_UNLOCK(); 1048 1049 /* 1050 * If the address is assigned on the node of the other side of 1051 * a p2p interface, the address should be a neighbor. 1052 */ 1053 s = pserialize_read_enter(); 1054 dstaddr = ifa_ifwithdstaddr(sin6tocsa(addr)); 1055 if (dstaddr != NULL) { 1056 if (dstaddr->ifa_ifp == ifp) { 1057 pserialize_read_exit(s); 1058 return 1; 1059 } 1060 } 1061 pserialize_read_exit(s); 1062 1063 /* 1064 * If the default router list is empty, all addresses are regarded 1065 * as on-link, and thus, as a neighbor. 1066 */ 1067 ND6_RLOCK(); 1068 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1069 ND_DEFROUTER_LIST_EMPTY() && nd6_defifindex == ifp->if_index) { 1070 ND6_UNLOCK(); 1071 return 1; 1072 } 1073 ND6_UNLOCK(); 1074 1075 return 0; 1076 } 1077 1078 /* 1079 * Detect if a given IPv6 address identifies a neighbor on a given link. 1080 * XXX: should take care of the destination of a p2p link? 1081 */ 1082 int 1083 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1084 { 1085 struct nd_prefix *pr; 1086 struct llentry *ln; 1087 struct rtentry *rt; 1088 1089 /* 1090 * A link-local address is always a neighbor. 1091 * XXX: a link does not necessarily specify a single interface. 1092 */ 1093 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1094 struct sockaddr_in6 sin6_copy; 1095 u_int32_t zone; 1096 1097 /* 1098 * We need sin6_copy since sa6_recoverscope() may modify the 1099 * content (XXX). 1100 */ 1101 sin6_copy = *addr; 1102 if (sa6_recoverscope(&sin6_copy)) 1103 return 0; /* XXX: should be impossible */ 1104 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1105 return 0; 1106 if (sin6_copy.sin6_scope_id == zone) 1107 return 1; 1108 else 1109 return 0; 1110 } 1111 1112 /* 1113 * If the address matches one of our on-link prefixes, it should be a 1114 * neighbor. 1115 */ 1116 ND6_RLOCK(); 1117 ND_PREFIX_LIST_FOREACH(pr) { 1118 if (pr->ndpr_ifp != ifp) 1119 continue; 1120 1121 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) 1122 continue; 1123 1124 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1125 &addr->sin6_addr, &pr->ndpr_mask)) { 1126 ND6_UNLOCK(); 1127 return 1; 1128 } 1129 } 1130 1131 /* 1132 * If the default router list is empty, all addresses are regarded 1133 * as on-link, and thus, as a neighbor. 1134 * XXX: we restrict the condition to hosts, because routers usually do 1135 * not have the "default router list". 1136 */ 1137 if (!ip6_forwarding && ND_DEFROUTER_LIST_EMPTY() && 1138 nd6_defifindex == ifp->if_index) { 1139 ND6_UNLOCK(); 1140 return 1; 1141 } 1142 ND6_UNLOCK(); 1143 1144 if (nd6_is_new_addr_neighbor(addr, ifp)) 1145 return 1; 1146 1147 /* 1148 * Even if the address matches none of our addresses, it might be 1149 * in the neighbor cache or a connected route. 1150 */ 1151 ln = nd6_lookup(&addr->sin6_addr, ifp, false); 1152 if (ln != NULL) { 1153 LLE_RUNLOCK(ln); 1154 return 1; 1155 } 1156 1157 rt = rtalloc1(sin6tocsa(addr), 0); 1158 if (rt == NULL) 1159 return 0; 1160 1161 if ((rt->rt_flags & RTF_CONNECTED) && (rt->rt_ifp == ifp 1162 #if NBRIDGE > 0 1163 || rt->rt_ifp->if_bridge == ifp->if_bridge 1164 #endif 1165 #if NCARP > 0 1166 || (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) || 1167 (rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)|| 1168 (ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP && 1169 rt->rt_ifp->if_carpdev == ifp->if_carpdev) 1170 #endif 1171 )) { 1172 rt_unref(rt); 1173 return 1; 1174 } 1175 rt_unref(rt); 1176 1177 return 0; 1178 } 1179 1180 /* 1181 * Free an nd6 llinfo entry. 1182 * Since the function would cause significant changes in the kernel, DO NOT 1183 * make it global, unless you have a strong reason for the change, and are sure 1184 * that the change is safe. 1185 */ 1186 static void 1187 nd6_free(struct llentry *ln, int gc) 1188 { 1189 struct nd_defrouter *dr; 1190 struct ifnet *ifp; 1191 struct in6_addr *in6; 1192 1193 KASSERT(ln != NULL); 1194 LLE_WLOCK_ASSERT(ln); 1195 1196 ifp = ln->lle_tbl->llt_ifp; 1197 in6 = &ln->r_l3addr.addr6; 1198 /* 1199 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1200 * even though it is not harmful, it was not really necessary. 1201 */ 1202 1203 if (!ip6_forwarding) { 1204 ND6_WLOCK(); 1205 dr = nd6_defrouter_lookup(in6, ifp); 1206 1207 if (dr != NULL && dr->expire && 1208 ln->ln_state == ND6_LLINFO_STALE && gc) { 1209 /* 1210 * If the reason for the deletion is just garbage 1211 * collection, and the neighbor is an active default 1212 * router, do not delete it. Instead, reset the GC 1213 * timer using the router's lifetime. 1214 * Simply deleting the entry would affect default 1215 * router selection, which is not necessarily a good 1216 * thing, especially when we're using router preference 1217 * values. 1218 * XXX: the check for ln_state would be redundant, 1219 * but we intentionally keep it just in case. 1220 */ 1221 if (dr->expire > time_uptime) 1222 nd6_llinfo_settimer(ln, 1223 (dr->expire - time_uptime) * hz); 1224 else 1225 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 1226 ND6_UNLOCK(); 1227 LLE_WUNLOCK(ln); 1228 return; 1229 } 1230 1231 if (ln->ln_router || dr) { 1232 /* 1233 * We need to unlock to avoid a LOR with nd6_rt_flush() 1234 * with the rnh and for the calls to 1235 * nd6_pfxlist_onlink_check() and nd6_defrouter_select() in the 1236 * block further down for calls into nd6_lookup(). 1237 * We still hold a ref. 1238 */ 1239 LLE_WUNLOCK(ln); 1240 1241 /* 1242 * nd6_rt_flush must be called whether or not the neighbor 1243 * is in the Default Router List. 1244 * See a corresponding comment in nd6_na_input(). 1245 */ 1246 nd6_rt_flush(in6, ifp); 1247 } 1248 1249 if (dr) { 1250 /* 1251 * Unreachablity of a router might affect the default 1252 * router selection and on-link detection of advertised 1253 * prefixes. 1254 */ 1255 1256 /* 1257 * Temporarily fake the state to choose a new default 1258 * router and to perform on-link determination of 1259 * prefixes correctly. 1260 * Below the state will be set correctly, 1261 * or the entry itself will be deleted. 1262 */ 1263 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1264 1265 /* 1266 * Since nd6_defrouter_select() does not affect the 1267 * on-link determination and MIP6 needs the check 1268 * before the default router selection, we perform 1269 * the check now. 1270 */ 1271 nd6_pfxlist_onlink_check(); 1272 1273 /* 1274 * refresh default router list 1275 */ 1276 nd6_defrouter_select(); 1277 } 1278 1279 #ifdef __FreeBSD__ 1280 /* 1281 * If this entry was added by an on-link redirect, remove the 1282 * corresponding host route. 1283 */ 1284 if (ln->la_flags & LLE_REDIRECT) 1285 nd6_free_redirect(ln); 1286 #endif 1287 ND6_UNLOCK(); 1288 1289 if (ln->ln_router || dr) 1290 LLE_WLOCK(ln); 1291 } 1292 1293 /* 1294 * Save to unlock. We still hold an extra reference and will not 1295 * free(9) in llentry_free() if someone else holds one as well. 1296 */ 1297 LLE_WUNLOCK(ln); 1298 IF_AFDATA_LOCK(ifp); 1299 LLE_WLOCK(ln); 1300 1301 lltable_free_entry(LLTABLE6(ifp), ln); 1302 1303 IF_AFDATA_UNLOCK(ifp); 1304 } 1305 1306 /* 1307 * Upper-layer reachability hint for Neighbor Unreachability Detection. 1308 * 1309 * XXX cost-effective methods? 1310 */ 1311 void 1312 nd6_nud_hint(struct rtentry *rt) 1313 { 1314 struct llentry *ln; 1315 struct ifnet *ifp; 1316 1317 if (rt == NULL) 1318 return; 1319 1320 ifp = rt->rt_ifp; 1321 ln = nd6_lookup(&(satocsin6(rt_getkey(rt)))->sin6_addr, ifp, true); 1322 if (ln == NULL) 1323 return; 1324 1325 if (ln->ln_state < ND6_LLINFO_REACHABLE) 1326 goto done; 1327 1328 /* 1329 * if we get upper-layer reachability confirmation many times, 1330 * it is possible we have false information. 1331 */ 1332 ln->ln_byhint++; 1333 if (ln->ln_byhint > nd6_maxnudhint) 1334 goto done; 1335 1336 ln->ln_state = ND6_LLINFO_REACHABLE; 1337 if (!ND6_LLINFO_PERMANENT(ln)) 1338 nd6_llinfo_settimer(ln, ND_IFINFO(rt->rt_ifp)->reachable * hz); 1339 1340 done: 1341 LLE_WUNLOCK(ln); 1342 1343 return; 1344 } 1345 1346 struct gc_args { 1347 int gc_entries; 1348 const struct in6_addr *skip_in6; 1349 }; 1350 1351 static int 1352 nd6_purge_entry(struct lltable *llt, struct llentry *ln, void *farg) 1353 { 1354 struct gc_args *args = farg; 1355 int *n = &args->gc_entries; 1356 const struct in6_addr *skip_in6 = args->skip_in6; 1357 1358 if (*n <= 0) 1359 return 0; 1360 1361 if (ND6_LLINFO_PERMANENT(ln)) 1362 return 0; 1363 1364 if (IN6_ARE_ADDR_EQUAL(&ln->r_l3addr.addr6, skip_in6)) 1365 return 0; 1366 1367 LLE_WLOCK(ln); 1368 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1369 ln->ln_state = ND6_LLINFO_STALE; 1370 else 1371 ln->ln_state = ND6_LLINFO_PURGE; 1372 nd6_llinfo_settimer(ln, 0); 1373 LLE_WUNLOCK(ln); 1374 1375 (*n)--; 1376 return 0; 1377 } 1378 1379 static void 1380 nd6_gc_neighbors(struct lltable *llt, const struct in6_addr *in6) 1381 { 1382 1383 if (ip6_neighborgcthresh >= 0 && 1384 lltable_get_entry_count(llt) >= ip6_neighborgcthresh) { 1385 struct gc_args gc_args = {10, in6}; 1386 /* 1387 * XXX entries that are "less recently used" should be 1388 * freed first. 1389 */ 1390 lltable_foreach_lle(llt, nd6_purge_entry, &gc_args); 1391 } 1392 } 1393 1394 void 1395 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info) 1396 { 1397 struct sockaddr *gate = rt->rt_gateway; 1398 struct ifnet *ifp = rt->rt_ifp; 1399 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen; 1400 struct ifaddr *ifa; 1401 1402 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1403 1404 if (req == RTM_LLINFO_UPD) { 1405 int rc; 1406 struct in6_addr *in6; 1407 struct in6_addr in6_all; 1408 int anycast; 1409 1410 if ((ifa = info->rti_ifa) == NULL) 1411 return; 1412 1413 in6 = &ifatoia6(ifa)->ia_addr.sin6_addr; 1414 anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST; 1415 1416 in6_all = in6addr_linklocal_allnodes; 1417 if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) { 1418 log(LOG_ERR, "%s: failed to set scope %s " 1419 "(errno=%d)\n", __func__, if_name(ifp), rc); 1420 return; 1421 } 1422 1423 /* XXX don't set Override for proxy addresses */ 1424 nd6_na_output(ifa->ifa_ifp, &in6_all, in6, 1425 (anycast ? 0 : ND_NA_FLAG_OVERRIDE) 1426 #if 0 1427 | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0) 1428 #endif 1429 , 1, NULL); 1430 return; 1431 } 1432 1433 if ((rt->rt_flags & RTF_GATEWAY) != 0) 1434 return; 1435 1436 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { 1437 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1438 /* 1439 * This is probably an interface direct route for a link 1440 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1441 * We do not need special treatment below for such a route. 1442 * Moreover, the RTF_LLINFO flag which would be set below 1443 * would annoy the ndp(8) command. 1444 */ 1445 return; 1446 } 1447 1448 switch (req) { 1449 case RTM_ADD: { 1450 struct psref psref; 1451 1452 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1453 /* 1454 * There is no backward compatibility :) 1455 * 1456 * if ((rt->rt_flags & RTF_HOST) == 0 && 1457 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1458 * rt->rt_flags |= RTF_CLONING; 1459 */ 1460 /* XXX should move to route.c? */ 1461 if (rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL)) { 1462 union { 1463 struct sockaddr sa; 1464 struct sockaddr_dl sdl; 1465 struct sockaddr_storage ss; 1466 } u; 1467 /* 1468 * Case 1: This route should come from a route to 1469 * interface (RTF_CLONING case) or the route should be 1470 * treated as on-link but is currently not 1471 * (RTF_LLINFO && ln == NULL case). 1472 */ 1473 if (sockaddr_dl_init(&u.sdl, sizeof(u.ss), 1474 ifp->if_index, ifp->if_type, 1475 NULL, namelen, NULL, addrlen) == NULL) { 1476 printf("%s.%d: sockaddr_dl_init(, %zu, ) " 1477 "failed on %s\n", __func__, __LINE__, 1478 sizeof(u.ss), if_name(ifp)); 1479 } 1480 rt_setgate(rt, &u.sa); 1481 gate = rt->rt_gateway; 1482 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1483 if (gate == NULL) { 1484 log(LOG_ERR, 1485 "%s: rt_setgate failed on %s\n", __func__, 1486 if_name(ifp)); 1487 break; 1488 } 1489 1490 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1491 if ((rt->rt_flags & RTF_CONNECTED) != 0) 1492 break; 1493 } 1494 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1495 /* 1496 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here. 1497 * We don't do that here since llinfo is not ready yet. 1498 * 1499 * There are also couple of other things to be discussed: 1500 * - unsolicited NA code needs improvement beforehand 1501 * - RFC2461 says we MAY send multicast unsolicited NA 1502 * (7.2.6 paragraph 4), however, it also says that we 1503 * SHOULD provide a mechanism to prevent multicast NA storm. 1504 * we don't have anything like it right now. 1505 * note that the mechanism needs a mutual agreement 1506 * between proxies, which means that we need to implement 1507 * a new protocol, or a new kludge. 1508 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1509 * we need to check ip6forwarding before sending it. 1510 * (or should we allow proxy ND configuration only for 1511 * routers? there's no mention about proxy ND from hosts) 1512 */ 1513 #if 0 1514 /* XXX it does not work */ 1515 if (rt->rt_flags & RTF_ANNOUNCE) 1516 nd6_na_output(ifp, 1517 &satocsin6(rt_getkey(rt))->sin6_addr, 1518 &satocsin6(rt_getkey(rt))->sin6_addr, 1519 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1520 1, NULL); 1521 #endif 1522 1523 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 1524 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1525 /* 1526 * Address resolution isn't necessary for a point to 1527 * point link, so we can skip this test for a p2p link. 1528 */ 1529 if (gate->sa_family != AF_LINK || 1530 gate->sa_len < 1531 sockaddr_dl_measure(namelen, addrlen)) { 1532 log(LOG_DEBUG, 1533 "nd6_rtrequest: bad gateway value: %s\n", 1534 if_name(ifp)); 1535 break; 1536 } 1537 satosdl(gate)->sdl_type = ifp->if_type; 1538 satosdl(gate)->sdl_index = ifp->if_index; 1539 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1540 } 1541 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt)); 1542 1543 /* 1544 * When called from rt_ifa_addlocal, we cannot depend on that 1545 * the address (rt_getkey(rt)) exits in the address list of the 1546 * interface. So check RTF_LOCAL instead. 1547 */ 1548 if (rt->rt_flags & RTF_LOCAL) { 1549 if (nd6_useloopback) 1550 rt->rt_ifp = lo0ifp; /* XXX */ 1551 break; 1552 } 1553 1554 /* 1555 * check if rt_getkey(rt) is an address assigned 1556 * to the interface. 1557 */ 1558 ifa = (struct ifaddr *)in6ifa_ifpwithaddr_psref(ifp, 1559 &satocsin6(rt_getkey(rt))->sin6_addr, &psref); 1560 if (ifa != NULL) { 1561 if (nd6_useloopback) { 1562 rt->rt_ifp = lo0ifp; /* XXX */ 1563 /* 1564 * Make sure rt_ifa be equal to the ifaddr 1565 * corresponding to the address. 1566 * We need this because when we refer 1567 * rt_ifa->ia6_flags in ip6_input, we assume 1568 * that the rt_ifa points to the address instead 1569 * of the loopback address. 1570 */ 1571 if (ifa != rt->rt_ifa) 1572 rt_replace_ifa(rt, ifa); 1573 } 1574 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1575 /* join solicited node multicast for proxy ND */ 1576 if (ifp->if_flags & IFF_MULTICAST) { 1577 struct in6_addr llsol; 1578 int error; 1579 1580 llsol = satocsin6(rt_getkey(rt))->sin6_addr; 1581 llsol.s6_addr32[0] = htonl(0xff020000); 1582 llsol.s6_addr32[1] = 0; 1583 llsol.s6_addr32[2] = htonl(1); 1584 llsol.s6_addr8[12] = 0xff; 1585 if (in6_setscope(&llsol, ifp, NULL)) 1586 goto out; 1587 if (!in6_addmulti(&llsol, ifp, &error, 0)) { 1588 char ip6buf[INET6_ADDRSTRLEN]; 1589 nd6log(LOG_ERR, "%s: failed to join " 1590 "%s (errno=%d)\n", if_name(ifp), 1591 IN6_PRINT(ip6buf, &llsol), error); 1592 } 1593 } 1594 } 1595 out: 1596 ifa_release(ifa, &psref); 1597 /* 1598 * If we have too many cache entries, initiate immediate 1599 * purging for some entries. 1600 */ 1601 if (rt->rt_ifp != NULL) 1602 nd6_gc_neighbors(LLTABLE6(rt->rt_ifp), NULL); 1603 break; 1604 } 1605 1606 case RTM_DELETE: 1607 /* leave from solicited node multicast for proxy ND */ 1608 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && 1609 (ifp->if_flags & IFF_MULTICAST) != 0) { 1610 struct in6_addr llsol; 1611 struct in6_multi *in6m; 1612 1613 llsol = satocsin6(rt_getkey(rt))->sin6_addr; 1614 llsol.s6_addr32[0] = htonl(0xff020000); 1615 llsol.s6_addr32[1] = 0; 1616 llsol.s6_addr32[2] = htonl(1); 1617 llsol.s6_addr8[12] = 0xff; 1618 if (in6_setscope(&llsol, ifp, NULL) == 0) { 1619 in6m = in6_lookup_multi(&llsol, ifp); 1620 if (in6m) 1621 in6_delmulti(in6m); 1622 } 1623 } 1624 break; 1625 } 1626 } 1627 1628 int 1629 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp) 1630 { 1631 struct in6_drlist *drl = (struct in6_drlist *)data; 1632 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1633 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1634 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1635 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1636 struct nd_defrouter *dr; 1637 struct nd_prefix *pr; 1638 int i = 0, error = 0; 1639 1640 switch (cmd) { 1641 case SIOCGDRLST_IN6: 1642 /* 1643 * obsolete API, use sysctl under net.inet6.icmp6 1644 */ 1645 memset(drl, 0, sizeof(*drl)); 1646 ND6_RLOCK(); 1647 ND_DEFROUTER_LIST_FOREACH(dr) { 1648 if (i >= DRLSTSIZ) 1649 break; 1650 drl->defrouter[i].rtaddr = dr->rtaddr; 1651 in6_clearscope(&drl->defrouter[i].rtaddr); 1652 1653 drl->defrouter[i].flags = dr->flags; 1654 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1655 drl->defrouter[i].expire = dr->expire ? 1656 time_mono_to_wall(dr->expire) : 0; 1657 drl->defrouter[i].if_index = dr->ifp->if_index; 1658 i++; 1659 } 1660 ND6_UNLOCK(); 1661 break; 1662 case SIOCGPRLST_IN6: 1663 /* 1664 * obsolete API, use sysctl under net.inet6.icmp6 1665 * 1666 * XXX the structure in6_prlist was changed in backward- 1667 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1668 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1669 */ 1670 /* 1671 * XXX meaning of fields, especialy "raflags", is very 1672 * differnet between RA prefix list and RR/static prefix list. 1673 * how about separating ioctls into two? 1674 */ 1675 memset(oprl, 0, sizeof(*oprl)); 1676 ND6_RLOCK(); 1677 ND_PREFIX_LIST_FOREACH(pr) { 1678 struct nd_pfxrouter *pfr; 1679 int j; 1680 1681 if (i >= PRLSTSIZ) 1682 break; 1683 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1684 oprl->prefix[i].raflags = pr->ndpr_raf; 1685 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1686 oprl->prefix[i].vltime = pr->ndpr_vltime; 1687 oprl->prefix[i].pltime = pr->ndpr_pltime; 1688 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1689 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 1690 oprl->prefix[i].expire = 0; 1691 else { 1692 time_t maxexpire; 1693 1694 /* XXX: we assume time_t is signed. */ 1695 maxexpire = (-1) & 1696 ~((time_t)1 << 1697 ((sizeof(maxexpire) * 8) - 1)); 1698 if (pr->ndpr_vltime < 1699 maxexpire - pr->ndpr_lastupdate) { 1700 time_t expire; 1701 expire = pr->ndpr_lastupdate + 1702 pr->ndpr_vltime; 1703 oprl->prefix[i].expire = expire ? 1704 time_mono_to_wall(expire) : 0; 1705 } else 1706 oprl->prefix[i].expire = maxexpire; 1707 } 1708 1709 j = 0; 1710 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 1711 if (j < DRLSTSIZ) { 1712 #define RTRADDR oprl->prefix[i].advrtr[j] 1713 RTRADDR = pfr->router->rtaddr; 1714 in6_clearscope(&RTRADDR); 1715 #undef RTRADDR 1716 } 1717 j++; 1718 } 1719 oprl->prefix[i].advrtrs = j; 1720 oprl->prefix[i].origin = PR_ORIG_RA; 1721 1722 i++; 1723 } 1724 ND6_UNLOCK(); 1725 1726 break; 1727 case OSIOCGIFINFO_IN6: 1728 #define ND ndi->ndi 1729 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1730 memset(&ND, 0, sizeof(ND)); 1731 ND.linkmtu = IN6_LINKMTU(ifp); 1732 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1733 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1734 ND.reachable = ND_IFINFO(ifp)->reachable; 1735 ND.retrans = ND_IFINFO(ifp)->retrans; 1736 ND.flags = ND_IFINFO(ifp)->flags; 1737 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1738 ND.chlim = ND_IFINFO(ifp)->chlim; 1739 break; 1740 case SIOCGIFINFO_IN6: 1741 ND = *ND_IFINFO(ifp); 1742 break; 1743 case SIOCSIFINFO_IN6: 1744 /* 1745 * used to change host variables from userland. 1746 * intented for a use on router to reflect RA configurations. 1747 */ 1748 /* 0 means 'unspecified' */ 1749 if (ND.linkmtu != 0) { 1750 if (ND.linkmtu < IPV6_MMTU || 1751 ND.linkmtu > IN6_LINKMTU(ifp)) { 1752 error = EINVAL; 1753 break; 1754 } 1755 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1756 } 1757 1758 if (ND.basereachable != 0) { 1759 int obasereachable = ND_IFINFO(ifp)->basereachable; 1760 1761 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1762 if (ND.basereachable != obasereachable) 1763 ND_IFINFO(ifp)->reachable = 1764 ND_COMPUTE_RTIME(ND.basereachable); 1765 } 1766 if (ND.retrans != 0) 1767 ND_IFINFO(ifp)->retrans = ND.retrans; 1768 if (ND.chlim != 0) 1769 ND_IFINFO(ifp)->chlim = ND.chlim; 1770 /* FALLTHROUGH */ 1771 case SIOCSIFINFO_FLAGS: 1772 { 1773 struct ifaddr *ifa; 1774 struct in6_ifaddr *ia; 1775 int s; 1776 1777 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1778 !(ND.flags & ND6_IFF_IFDISABLED)) 1779 { 1780 /* 1781 * If the interface is marked as ND6_IFF_IFDISABLED and 1782 * has a link-local address with IN6_IFF_DUPLICATED, 1783 * do not clear ND6_IFF_IFDISABLED. 1784 * See RFC 4862, section 5.4.5. 1785 */ 1786 int duplicated_linklocal = 0; 1787 1788 s = pserialize_read_enter(); 1789 IFADDR_READER_FOREACH(ifa, ifp) { 1790 if (ifa->ifa_addr->sa_family != AF_INET6) 1791 continue; 1792 ia = (struct in6_ifaddr *)ifa; 1793 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1794 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1795 { 1796 duplicated_linklocal = 1; 1797 break; 1798 } 1799 } 1800 pserialize_read_exit(s); 1801 1802 if (duplicated_linklocal) { 1803 ND.flags |= ND6_IFF_IFDISABLED; 1804 log(LOG_ERR, "Cannot enable an interface" 1805 " with a link-local address marked" 1806 " duplicate.\n"); 1807 } else { 1808 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1809 if (ifp->if_flags & IFF_UP) 1810 in6_if_up(ifp); 1811 } 1812 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1813 (ND.flags & ND6_IFF_IFDISABLED)) { 1814 int bound = curlwp_bind(); 1815 /* Mark all IPv6 addresses as tentative. */ 1816 1817 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1818 s = pserialize_read_enter(); 1819 IFADDR_READER_FOREACH(ifa, ifp) { 1820 struct psref psref; 1821 if (ifa->ifa_addr->sa_family != AF_INET6) 1822 continue; 1823 ifa_acquire(ifa, &psref); 1824 pserialize_read_exit(s); 1825 1826 nd6_dad_stop(ifa); 1827 1828 ia = (struct in6_ifaddr *)ifa; 1829 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1830 1831 s = pserialize_read_enter(); 1832 ifa_release(ifa, &psref); 1833 } 1834 pserialize_read_exit(s); 1835 curlwp_bindx(bound); 1836 } 1837 1838 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1839 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1840 /* auto_linklocal 0->1 transition */ 1841 1842 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1843 in6_ifattach(ifp, NULL); 1844 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1845 ifp->if_flags & IFF_UP) 1846 { 1847 /* 1848 * When the IF already has 1849 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1850 * address is assigned, and IFF_UP, try to 1851 * assign one. 1852 */ 1853 int haslinklocal = 0; 1854 1855 s = pserialize_read_enter(); 1856 IFADDR_READER_FOREACH(ifa, ifp) { 1857 if (ifa->ifa_addr->sa_family !=AF_INET6) 1858 continue; 1859 ia = (struct in6_ifaddr *)ifa; 1860 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){ 1861 haslinklocal = 1; 1862 break; 1863 } 1864 } 1865 pserialize_read_exit(s); 1866 if (!haslinklocal) 1867 in6_ifattach(ifp, NULL); 1868 } 1869 } 1870 } 1871 ND_IFINFO(ifp)->flags = ND.flags; 1872 break; 1873 #undef ND 1874 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1875 /* sync kernel routing table with the default router list */ 1876 ND6_WLOCK(); 1877 nd6_defrouter_reset(); 1878 nd6_defrouter_select(); 1879 ND6_UNLOCK(); 1880 break; 1881 case SIOCSPFXFLUSH_IN6: 1882 { 1883 /* flush all the prefix advertised by routers */ 1884 struct nd_prefix *pfx, *next; 1885 1886 restart: 1887 ND6_WLOCK(); 1888 ND_PREFIX_LIST_FOREACH_SAFE(pfx, next) { 1889 struct in6_ifaddr *ia, *ia_next; 1890 int _s; 1891 1892 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr)) 1893 continue; /* XXX */ 1894 1895 /* do we really have to remove addresses as well? */ 1896 _s = pserialize_read_enter(); 1897 for (ia = IN6_ADDRLIST_READER_FIRST(); ia; 1898 ia = ia_next) { 1899 struct ifnet *ifa_ifp; 1900 int bound; 1901 struct psref psref; 1902 1903 /* ia might be removed. keep the next ptr. */ 1904 ia_next = IN6_ADDRLIST_READER_NEXT(ia); 1905 1906 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1907 continue; 1908 1909 if (ia->ia6_ndpr != pfx) 1910 continue; 1911 1912 bound = curlwp_bind(); 1913 ia6_acquire(ia, &psref); 1914 pserialize_read_exit(_s); 1915 ND6_UNLOCK(); 1916 1917 ifa_ifp = ia->ia_ifa.ifa_ifp; 1918 if (ifa_ifp == ifp) { 1919 /* Already have IFNET_LOCK(ifp) */ 1920 KASSERT(!if_is_deactivated(ifp)); 1921 ia6_release(ia, &psref); 1922 in6_purgeaddr(&ia->ia_ifa); 1923 curlwp_bindx(bound); 1924 goto restart; 1925 } 1926 IFNET_LOCK(ifa_ifp); 1927 /* 1928 * Need to take the lock first to prevent 1929 * if_detach from running in6_purgeaddr 1930 * concurrently. 1931 */ 1932 if (!if_is_deactivated(ifa_ifp)) { 1933 ia6_release(ia, &psref); 1934 in6_purgeaddr(&ia->ia_ifa); 1935 } else { 1936 /* 1937 * ifp is being destroyed, ia will be 1938 * destroyed by if_detach. 1939 */ 1940 ia6_release(ia, &psref); 1941 /* XXX may cause busy loop */ 1942 } 1943 IFNET_UNLOCK(ifa_ifp); 1944 curlwp_bindx(bound); 1945 goto restart; 1946 } 1947 pserialize_read_exit(_s); 1948 1949 KASSERT(pfx->ndpr_refcnt == 0); 1950 nd6_prelist_remove(pfx); 1951 } 1952 ND6_UNLOCK(); 1953 break; 1954 } 1955 case SIOCSRTRFLUSH_IN6: 1956 { 1957 /* flush all the default routers */ 1958 struct nd_defrouter *drtr, *next; 1959 1960 ND6_WLOCK(); 1961 nd6_defrouter_reset(); 1962 ND_DEFROUTER_LIST_FOREACH_SAFE(drtr, next) { 1963 nd6_defrtrlist_del(drtr, NULL); 1964 } 1965 nd6_defrouter_select(); 1966 ND6_UNLOCK(); 1967 break; 1968 } 1969 case SIOCGNBRINFO_IN6: 1970 { 1971 struct llentry *ln; 1972 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1973 1974 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1975 return error; 1976 1977 ln = nd6_lookup(&nb_addr, ifp, false); 1978 if (ln == NULL) { 1979 error = EINVAL; 1980 break; 1981 } 1982 nbi->state = ln->ln_state; 1983 nbi->asked = ln->ln_asked; 1984 nbi->isrouter = ln->ln_router; 1985 nbi->expire = ln->ln_expire ? 1986 time_mono_to_wall(ln->ln_expire) : 0; 1987 LLE_RUNLOCK(ln); 1988 1989 break; 1990 } 1991 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1992 ndif->ifindex = nd6_defifindex; 1993 break; 1994 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1995 return nd6_setdefaultiface(ndif->ifindex); 1996 } 1997 return error; 1998 } 1999 2000 void 2001 nd6_llinfo_release_pkts(struct llentry *ln, struct ifnet *ifp) 2002 { 2003 struct mbuf *m_hold, *m_hold_next; 2004 struct sockaddr_in6 sin6; 2005 2006 LLE_WLOCK_ASSERT(ln); 2007 2008 sockaddr_in6_init(&sin6, &ln->r_l3addr.addr6, 0, 0, 0); 2009 2010 m_hold = ln->la_hold, ln->la_hold = NULL, ln->la_numheld = 0; 2011 2012 LLE_WUNLOCK(ln); 2013 for (; m_hold != NULL; m_hold = m_hold_next) { 2014 m_hold_next = m_hold->m_nextpkt; 2015 m_hold->m_nextpkt = NULL; 2016 2017 /* 2018 * we assume ifp is not a p2p here, so 2019 * just set the 2nd argument as the 2020 * 1st one. 2021 */ 2022 ip6_if_output(ifp, ifp, m_hold, &sin6, NULL); 2023 } 2024 LLE_WLOCK(ln); 2025 } 2026 2027 /* 2028 * Create neighbor cache entry and cache link-layer address, 2029 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 2030 */ 2031 void 2032 nd6_cache_lladdr( 2033 struct ifnet *ifp, 2034 struct in6_addr *from, 2035 char *lladdr, 2036 int lladdrlen, 2037 int type, /* ICMP6 type */ 2038 int code /* type dependent information */ 2039 ) 2040 { 2041 struct nd_ifinfo *ndi = ND_IFINFO(ifp); 2042 struct llentry *ln = NULL; 2043 int is_newentry; 2044 int do_update; 2045 int olladdr; 2046 int llchange; 2047 int newstate = 0; 2048 uint16_t router = 0; 2049 2050 KASSERT(ifp != NULL); 2051 KASSERT(from != NULL); 2052 2053 /* nothing must be updated for unspecified address */ 2054 if (IN6_IS_ADDR_UNSPECIFIED(from)) 2055 return; 2056 2057 /* 2058 * Validation about ifp->if_addrlen and lladdrlen must be done in 2059 * the caller. 2060 * 2061 * XXX If the link does not have link-layer adderss, what should 2062 * we do? (ifp->if_addrlen == 0) 2063 * Spec says nothing in sections for RA, RS and NA. There's small 2064 * description on it in NS section (RFC 2461 7.2.3). 2065 */ 2066 2067 ln = nd6_lookup(from, ifp, true); 2068 if (ln == NULL) { 2069 #if 0 2070 /* nothing must be done if there's no lladdr */ 2071 if (!lladdr || !lladdrlen) 2072 return NULL; 2073 #endif 2074 2075 ln = nd6_create(from, ifp); 2076 is_newentry = 1; 2077 } else { 2078 /* do nothing if static ndp is set */ 2079 if (ln->la_flags & LLE_STATIC) { 2080 LLE_WUNLOCK(ln); 2081 return; 2082 } 2083 is_newentry = 0; 2084 } 2085 2086 if (ln == NULL) 2087 return; 2088 2089 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2090 if (olladdr && lladdr) { 2091 llchange = memcmp(lladdr, &ln->ll_addr, ifp->if_addrlen); 2092 } else 2093 llchange = 0; 2094 2095 /* 2096 * newentry olladdr lladdr llchange (*=record) 2097 * 0 n n -- (1) 2098 * 0 y n -- (2) 2099 * 0 n y -- (3) * STALE 2100 * 0 y y n (4) * 2101 * 0 y y y (5) * STALE 2102 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2103 * 1 -- y -- (7) * STALE 2104 */ 2105 2106 if (lladdr) { /* (3-5) and (7) */ 2107 /* 2108 * Record source link-layer address 2109 * XXX is it dependent to ifp->if_type? 2110 */ 2111 memcpy(&ln->ll_addr, lladdr, ifp->if_addrlen); 2112 ln->la_flags |= LLE_VALID; 2113 } 2114 2115 if (!is_newentry) { 2116 if ((!olladdr && lladdr) || /* (3) */ 2117 (olladdr && lladdr && llchange)) { /* (5) */ 2118 do_update = 1; 2119 newstate = ND6_LLINFO_STALE; 2120 } else /* (1-2,4) */ 2121 do_update = 0; 2122 } else { 2123 do_update = 1; 2124 if (lladdr == NULL) /* (6) */ 2125 newstate = ND6_LLINFO_NOSTATE; 2126 else /* (7) */ 2127 newstate = ND6_LLINFO_STALE; 2128 } 2129 2130 if (do_update) { 2131 /* 2132 * Update the state of the neighbor cache. 2133 */ 2134 ln->ln_state = newstate; 2135 2136 if (ln->ln_state == ND6_LLINFO_STALE) { 2137 /* 2138 * XXX: since nd6_output() below will cause 2139 * state tansition to DELAY and reset the timer, 2140 * we must set the timer now, although it is actually 2141 * meaningless. 2142 */ 2143 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 2144 2145 nd6_llinfo_release_pkts(ln, ifp); 2146 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 2147 /* probe right away */ 2148 nd6_llinfo_settimer((void *)ln, 0); 2149 } 2150 } 2151 2152 /* 2153 * ICMP6 type dependent behavior. 2154 * 2155 * NS: clear IsRouter if new entry 2156 * RS: clear IsRouter 2157 * RA: set IsRouter if there's lladdr 2158 * redir: clear IsRouter if new entry 2159 * 2160 * RA case, (1): 2161 * The spec says that we must set IsRouter in the following cases: 2162 * - If lladdr exist, set IsRouter. This means (1-5). 2163 * - If it is old entry (!newentry), set IsRouter. This means (7). 2164 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 2165 * A quetion arises for (1) case. (1) case has no lladdr in the 2166 * neighbor cache, this is similar to (6). 2167 * This case is rare but we figured that we MUST NOT set IsRouter. 2168 * 2169 * newentry olladdr lladdr llchange NS RS RA redir 2170 * D R 2171 * 0 n n -- (1) c ? s 2172 * 0 y n -- (2) c s s 2173 * 0 n y -- (3) c s s 2174 * 0 y y n (4) c s s 2175 * 0 y y y (5) c s s 2176 * 1 -- n -- (6) c c c s 2177 * 1 -- y -- (7) c c s c s 2178 * 2179 * (c=clear s=set) 2180 */ 2181 switch (type & 0xff) { 2182 case ND_NEIGHBOR_SOLICIT: 2183 /* 2184 * New entry must have is_router flag cleared. 2185 */ 2186 if (is_newentry) /* (6-7) */ 2187 ln->ln_router = 0; 2188 break; 2189 case ND_REDIRECT: 2190 /* 2191 * If the icmp is a redirect to a better router, always set the 2192 * is_router flag. Otherwise, if the entry is newly created, 2193 * clear the flag. [RFC 2461, sec 8.3] 2194 */ 2195 if (code == ND_REDIRECT_ROUTER) 2196 ln->ln_router = 1; 2197 else if (is_newentry) /* (6-7) */ 2198 ln->ln_router = 0; 2199 break; 2200 case ND_ROUTER_SOLICIT: 2201 /* 2202 * is_router flag must always be cleared. 2203 */ 2204 ln->ln_router = 0; 2205 break; 2206 case ND_ROUTER_ADVERT: 2207 /* 2208 * Mark an entry with lladdr as a router. 2209 */ 2210 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 2211 (is_newentry && lladdr)) { /* (7) */ 2212 ln->ln_router = 1; 2213 } 2214 break; 2215 } 2216 2217 #if 0 2218 /* XXX should we send rtmsg as it used to be? */ 2219 if (do_update) 2220 rt_newmsg(RTM_CHANGE, rt); /* tell user process */ 2221 #endif 2222 2223 if (ln != NULL) { 2224 router = ln->ln_router; 2225 LLE_WUNLOCK(ln); 2226 } 2227 2228 /* 2229 * If we have too many cache entries, initiate immediate 2230 * purging for some entries. 2231 */ 2232 if (is_newentry) 2233 nd6_gc_neighbors(LLTABLE6(ifp), &ln->r_l3addr.addr6); 2234 2235 /* 2236 * When the link-layer address of a router changes, select the 2237 * best router again. In particular, when the neighbor entry is newly 2238 * created, it might affect the selection policy. 2239 * Question: can we restrict the first condition to the "is_newentry" 2240 * case? 2241 * XXX: when we hear an RA from a new router with the link-layer 2242 * address option, nd6_defrouter_select() is called twice, since 2243 * defrtrlist_update called the function as well. However, I believe 2244 * we can compromise the overhead, since it only happens the first 2245 * time. 2246 * XXX: although nd6_defrouter_select() should not have a bad effect 2247 * for those are not autoconfigured hosts, we explicitly avoid such 2248 * cases for safety. 2249 */ 2250 if (do_update && router && !ip6_forwarding && 2251 nd6_accepts_rtadv(ndi)) { 2252 ND6_WLOCK(); 2253 nd6_defrouter_select(); 2254 ND6_UNLOCK(); 2255 } 2256 } 2257 2258 static void 2259 nd6_slowtimo(void *ignored_arg) 2260 { 2261 struct nd_ifinfo *nd6if; 2262 struct ifnet *ifp; 2263 int s; 2264 2265 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE(); 2266 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2267 nd6_slowtimo, NULL); 2268 2269 s = pserialize_read_enter(); 2270 IFNET_READER_FOREACH(ifp) { 2271 nd6if = ND_IFINFO(ifp); 2272 if (nd6if->basereachable && /* already initialized */ 2273 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2274 /* 2275 * Since reachable time rarely changes by router 2276 * advertisements, we SHOULD insure that a new random 2277 * value gets recomputed at least once every few hours. 2278 * (RFC 2461, 6.3.4) 2279 */ 2280 nd6if->recalctm = nd6_recalc_reachtm_interval; 2281 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2282 } 2283 } 2284 pserialize_read_exit(s); 2285 2286 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE(); 2287 } 2288 2289 /* 2290 * Return 0 if a neighbor cache is found. Return EWOULDBLOCK if a cache is not 2291 * found and trying to resolve a neighbor; in this case the mbuf is queued in 2292 * the list. Otherwise return errno after freeing the mbuf. 2293 */ 2294 int 2295 nd6_resolve(struct ifnet *ifp, const struct rtentry *rt, struct mbuf *m, 2296 const struct sockaddr *_dst, uint8_t *lldst, size_t dstsize) 2297 { 2298 struct llentry *ln = NULL; 2299 bool created = false; 2300 const struct sockaddr_in6 *dst = satocsin6(_dst); 2301 2302 /* discard the packet if IPv6 operation is disabled on the interface */ 2303 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2304 m_freem(m); 2305 return ENETDOWN; /* better error? */ 2306 } 2307 2308 /* 2309 * Address resolution or Neighbor Unreachability Detection 2310 * for the next hop. 2311 * At this point, the destination of the packet must be a unicast 2312 * or an anycast address(i.e. not a multicast). 2313 */ 2314 2315 /* Look up the neighbor cache for the nexthop */ 2316 ln = nd6_lookup(&dst->sin6_addr, ifp, false); 2317 2318 if (ln != NULL && (ln->la_flags & LLE_VALID) != 0) { 2319 KASSERT(ln->ln_state > ND6_LLINFO_INCOMPLETE); 2320 /* Fast path */ 2321 memcpy(lldst, &ln->ll_addr, MIN(dstsize, ifp->if_addrlen)); 2322 LLE_RUNLOCK(ln); 2323 return 0; 2324 } 2325 if (ln != NULL) 2326 LLE_RUNLOCK(ln); 2327 2328 /* Slow path */ 2329 ln = nd6_lookup(&dst->sin6_addr, ifp, true); 2330 if (ln == NULL && nd6_is_addr_neighbor(dst, ifp)) { 2331 struct sockaddr_in6 sin6; 2332 /* 2333 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2334 * the condition below is not very efficient. But we believe 2335 * it is tolerable, because this should be a rare case. 2336 */ 2337 ln = nd6_create(&dst->sin6_addr, ifp); 2338 if (ln == NULL) { 2339 char ip6buf[INET6_ADDRSTRLEN]; 2340 log(LOG_DEBUG, 2341 "%s: can't allocate llinfo for %s " 2342 "(ln=%p, rt=%p)\n", __func__, 2343 IN6_PRINT(ip6buf, &dst->sin6_addr), ln, rt); 2344 m_freem(m); 2345 return ENOBUFS; 2346 } 2347 2348 sockaddr_in6_init(&sin6, &ln->r_l3addr.addr6, 0, 0, 0); 2349 rt_clonedmsg(sin6tosa(&sin6), ifp, rt); 2350 2351 created = true; 2352 } 2353 2354 if (ln == NULL) { 2355 m_freem(m); 2356 return ENETDOWN; /* better error? */ 2357 } 2358 2359 LLE_WLOCK_ASSERT(ln); 2360 2361 /* We don't have to do link-layer address resolution on a p2p link. */ 2362 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 2363 ln->ln_state < ND6_LLINFO_REACHABLE) { 2364 ln->ln_state = ND6_LLINFO_STALE; 2365 nd6_llinfo_settimer(ln, nd6_gctimer * hz); 2366 } 2367 2368 /* 2369 * The first time we send a packet to a neighbor whose entry is 2370 * STALE, we have to change the state to DELAY and a sets a timer to 2371 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2372 * neighbor unreachability detection on expiration. 2373 * (RFC 2461 7.3.3) 2374 */ 2375 if (ln->ln_state == ND6_LLINFO_STALE) { 2376 ln->ln_asked = 0; 2377 ln->ln_state = ND6_LLINFO_DELAY; 2378 nd6_llinfo_settimer(ln, nd6_delay * hz); 2379 } 2380 2381 /* 2382 * There is a neighbor cache entry, but no ethernet address 2383 * response yet. Append this latest packet to the end of the 2384 * packet queue in the mbuf, unless the number of the packet 2385 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen, 2386 * the oldest packet in the queue will be removed. 2387 */ 2388 if (ln->ln_state == ND6_LLINFO_NOSTATE) 2389 ln->ln_state = ND6_LLINFO_INCOMPLETE; 2390 if (ln->ln_hold) { 2391 struct mbuf *m_hold; 2392 int i; 2393 2394 i = 0; 2395 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) { 2396 i++; 2397 if (m_hold->m_nextpkt == NULL) { 2398 m_hold->m_nextpkt = m; 2399 break; 2400 } 2401 } 2402 while (i >= nd6_maxqueuelen) { 2403 m_hold = ln->ln_hold; 2404 ln->ln_hold = ln->ln_hold->m_nextpkt; 2405 m_freem(m_hold); 2406 i--; 2407 } 2408 } else { 2409 ln->ln_hold = m; 2410 } 2411 2412 /* 2413 * If there has been no NS for the neighbor after entering the 2414 * INCOMPLETE state, send the first solicitation. 2415 */ 2416 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) { 2417 struct in6_addr src, *psrc; 2418 2419 ln->ln_asked++; 2420 nd6_llinfo_settimer(ln, ND_IFINFO(ifp)->retrans * hz / 1000); 2421 psrc = nd6_llinfo_get_holdsrc(ln, &src); 2422 LLE_WUNLOCK(ln); 2423 ln = NULL; 2424 nd6_ns_output(ifp, NULL, &dst->sin6_addr, psrc, NULL); 2425 } else { 2426 /* We did the lookup so we need to do the unlock here. */ 2427 LLE_WUNLOCK(ln); 2428 } 2429 2430 if (created) 2431 nd6_gc_neighbors(LLTABLE6(ifp), &dst->sin6_addr); 2432 2433 return EWOULDBLOCK; 2434 } 2435 2436 int 2437 nd6_need_cache(struct ifnet *ifp) 2438 { 2439 /* 2440 * XXX: we currently do not make neighbor cache on any interface 2441 * other than ARCnet, Ethernet, FDDI and GIF. 2442 * 2443 * RFC2893 says: 2444 * - unidirectional tunnels needs no ND 2445 */ 2446 switch (ifp->if_type) { 2447 case IFT_ARCNET: 2448 case IFT_ETHER: 2449 case IFT_FDDI: 2450 case IFT_IEEE1394: 2451 case IFT_CARP: 2452 case IFT_GIF: /* XXX need more cases? */ 2453 case IFT_PPP: 2454 case IFT_TUNNEL: 2455 return 1; 2456 default: 2457 return 0; 2458 } 2459 } 2460 2461 static void 2462 clear_llinfo_pqueue(struct llentry *ln) 2463 { 2464 struct mbuf *m_hold, *m_hold_next; 2465 2466 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) { 2467 m_hold_next = m_hold->m_nextpkt; 2468 m_hold->m_nextpkt = NULL; 2469 m_freem(m_hold); 2470 } 2471 2472 ln->ln_hold = NULL; 2473 return; 2474 } 2475 2476 int 2477 nd6_sysctl( 2478 int name, 2479 void *oldp, /* syscall arg, need copyout */ 2480 size_t *oldlenp, 2481 void *newp, /* syscall arg, need copyin */ 2482 size_t newlen 2483 ) 2484 { 2485 int (*fill_func)(void *, size_t *); 2486 2487 if (newp) 2488 return EPERM; 2489 2490 switch (name) { 2491 case ICMPV6CTL_ND6_DRLIST: 2492 fill_func = fill_drlist; 2493 break; 2494 2495 case ICMPV6CTL_ND6_PRLIST: 2496 fill_func = fill_prlist; 2497 break; 2498 2499 case ICMPV6CTL_ND6_MAXQLEN: 2500 return 0; 2501 2502 default: 2503 return ENOPROTOOPT; 2504 } 2505 2506 if (oldlenp == NULL) 2507 return EINVAL; 2508 2509 size_t ol; 2510 int error = (*fill_func)(NULL, &ol); /* calc len needed */ 2511 if (error) 2512 return error; 2513 2514 if (oldp == NULL) { 2515 *oldlenp = ol; 2516 return 0; 2517 } 2518 2519 ol = *oldlenp = min(ol, *oldlenp); 2520 if (ol == 0) 2521 return 0; 2522 2523 void *p = kmem_alloc(ol, KM_SLEEP); 2524 error = (*fill_func)(p, oldlenp); 2525 if (!error) 2526 error = copyout(p, oldp, *oldlenp); 2527 kmem_free(p, ol); 2528 2529 return error; 2530 } 2531 2532 static int 2533 fill_drlist(void *oldp, size_t *oldlenp) 2534 { 2535 int error = 0; 2536 struct in6_defrouter *d = NULL, *de = NULL; 2537 struct nd_defrouter *dr; 2538 size_t l; 2539 2540 if (oldp) { 2541 d = (struct in6_defrouter *)oldp; 2542 de = (struct in6_defrouter *)((char *)oldp + *oldlenp); 2543 } 2544 l = 0; 2545 2546 ND6_RLOCK(); 2547 ND_DEFROUTER_LIST_FOREACH(dr) { 2548 2549 if (oldp && d + 1 <= de) { 2550 memset(d, 0, sizeof(*d)); 2551 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0); 2552 if (sa6_recoverscope(&d->rtaddr)) { 2553 char ip6buf[INET6_ADDRSTRLEN]; 2554 log(LOG_ERR, 2555 "scope error in router list (%s)\n", 2556 IN6_PRINT(ip6buf, &d->rtaddr.sin6_addr)); 2557 /* XXX: press on... */ 2558 } 2559 d->flags = dr->flags; 2560 d->rtlifetime = dr->rtlifetime; 2561 d->expire = dr->expire ? 2562 time_mono_to_wall(dr->expire) : 0; 2563 d->if_index = dr->ifp->if_index; 2564 } 2565 2566 l += sizeof(*d); 2567 if (d) 2568 d++; 2569 } 2570 ND6_UNLOCK(); 2571 2572 *oldlenp = l; /* (void *)d - (void *)oldp */ 2573 2574 return error; 2575 } 2576 2577 static int 2578 fill_prlist(void *oldp, size_t *oldlenp) 2579 { 2580 int error = 0; 2581 struct nd_prefix *pr; 2582 uint8_t *p = NULL, *ps = NULL; 2583 uint8_t *pe = NULL; 2584 size_t l; 2585 char ip6buf[INET6_ADDRSTRLEN]; 2586 2587 if (oldp) { 2588 ps = p = (uint8_t*)oldp; 2589 pe = (uint8_t*)oldp + *oldlenp; 2590 } 2591 l = 0; 2592 2593 ND6_RLOCK(); 2594 ND_PREFIX_LIST_FOREACH(pr) { 2595 u_short advrtrs; 2596 struct sockaddr_in6 sin6; 2597 struct nd_pfxrouter *pfr; 2598 struct in6_prefix pfx; 2599 2600 if (oldp && p + sizeof(struct in6_prefix) <= pe) 2601 { 2602 memset(&pfx, 0, sizeof(pfx)); 2603 ps = p; 2604 pfx.prefix = pr->ndpr_prefix; 2605 2606 if (sa6_recoverscope(&pfx.prefix)) { 2607 log(LOG_ERR, 2608 "scope error in prefix list (%s)\n", 2609 IN6_PRINT(ip6buf, &pfx.prefix.sin6_addr)); 2610 /* XXX: press on... */ 2611 } 2612 pfx.raflags = pr->ndpr_raf; 2613 pfx.prefixlen = pr->ndpr_plen; 2614 pfx.vltime = pr->ndpr_vltime; 2615 pfx.pltime = pr->ndpr_pltime; 2616 pfx.if_index = pr->ndpr_ifp->if_index; 2617 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2618 pfx.expire = 0; 2619 else { 2620 time_t maxexpire; 2621 2622 /* XXX: we assume time_t is signed. */ 2623 maxexpire = (-1) & 2624 ~((time_t)1 << 2625 ((sizeof(maxexpire) * 8) - 1)); 2626 if (pr->ndpr_vltime < 2627 maxexpire - pr->ndpr_lastupdate) { 2628 pfx.expire = pr->ndpr_lastupdate + 2629 pr->ndpr_vltime; 2630 } else 2631 pfx.expire = maxexpire; 2632 } 2633 pfx.refcnt = pr->ndpr_refcnt; 2634 pfx.flags = pr->ndpr_stateflags; 2635 pfx.origin = PR_ORIG_RA; 2636 2637 p += sizeof(pfx); l += sizeof(pfx); 2638 2639 advrtrs = 0; 2640 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2641 if (p + sizeof(sin6) > pe) { 2642 advrtrs++; 2643 continue; 2644 } 2645 2646 sockaddr_in6_init(&sin6, &pfr->router->rtaddr, 2647 0, 0, 0); 2648 if (sa6_recoverscope(&sin6)) { 2649 log(LOG_ERR, 2650 "scope error in " 2651 "prefix list (%s)\n", 2652 IN6_PRINT(ip6buf, 2653 &pfr->router->rtaddr)); 2654 } 2655 advrtrs++; 2656 memcpy(p, &sin6, sizeof(sin6)); 2657 p += sizeof(sin6); 2658 l += sizeof(sin6); 2659 } 2660 pfx.advrtrs = advrtrs; 2661 memcpy(ps, &pfx, sizeof(pfx)); 2662 } 2663 else { 2664 l += sizeof(pfx); 2665 advrtrs = 0; 2666 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2667 advrtrs++; 2668 l += sizeof(sin6); 2669 } 2670 } 2671 } 2672 ND6_UNLOCK(); 2673 2674 *oldlenp = l; 2675 2676 return error; 2677 } 2678 2679 static int 2680 nd6_setdefaultiface(int ifindex) 2681 { 2682 ifnet_t *ifp; 2683 int error = 0; 2684 int s; 2685 2686 s = pserialize_read_enter(); 2687 ifp = if_byindex(ifindex); 2688 if (ifp == NULL) { 2689 pserialize_read_exit(s); 2690 return EINVAL; 2691 } 2692 if (nd6_defifindex != ifindex) { 2693 nd6_defifindex = ifindex; 2694 nd6_defifp = nd6_defifindex > 0 ? ifp : NULL; 2695 2696 /* 2697 * Our current implementation assumes one-to-one maping between 2698 * interfaces and links, so it would be natural to use the 2699 * default interface as the default link. 2700 */ 2701 scope6_setdefault(nd6_defifp); 2702 } 2703 pserialize_read_exit(s); 2704 2705 return (error); 2706 } 2707