1 /* $NetBSD: ip6_output.c,v 1.175 2016/09/20 14:30:13 roy Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.175 2016/09/20 14:30:13 roy Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/malloc.h> 75 #include <sys/mbuf.h> 76 #include <sys/errno.h> 77 #include <sys/protosw.h> 78 #include <sys/socket.h> 79 #include <sys/socketvar.h> 80 #include <sys/syslog.h> 81 #include <sys/systm.h> 82 #include <sys/proc.h> 83 #include <sys/kauth.h> 84 85 #include <net/if.h> 86 #include <net/route.h> 87 #include <net/pfil.h> 88 89 #include <netinet/in.h> 90 #include <netinet/in_var.h> 91 #include <netinet/ip6.h> 92 #include <netinet/ip_var.h> 93 #include <netinet/icmp6.h> 94 #include <netinet/in_offload.h> 95 #include <netinet/portalgo.h> 96 #include <netinet6/in6_offload.h> 97 #include <netinet6/ip6_var.h> 98 #include <netinet6/ip6_private.h> 99 #include <netinet6/in6_pcb.h> 100 #include <netinet6/nd6.h> 101 #include <netinet6/ip6protosw.h> 102 #include <netinet6/scope6_var.h> 103 104 #ifdef IPSEC 105 #include <netipsec/ipsec.h> 106 #include <netipsec/ipsec6.h> 107 #include <netipsec/key.h> 108 #include <netipsec/xform.h> 109 #endif 110 111 112 #include <net/net_osdep.h> 113 114 extern pfil_head_t *inet6_pfil_hook; /* XXX */ 115 116 struct ip6_exthdrs { 117 struct mbuf *ip6e_ip6; 118 struct mbuf *ip6e_hbh; 119 struct mbuf *ip6e_dest1; 120 struct mbuf *ip6e_rthdr; 121 struct mbuf *ip6e_dest2; 122 }; 123 124 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 125 kauth_cred_t, int); 126 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 127 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t, 128 int, int, int); 129 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *); 130 static int ip6_getmoptions(struct sockopt *, struct in6pcb *); 131 static int ip6_copyexthdr(struct mbuf **, void *, int); 132 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 133 struct ip6_frag **); 134 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 135 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 136 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *, 137 const struct in6_addr *, u_long *, int *); 138 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 139 static int ip6_ifaddrvalid(const struct in6_addr *); 140 141 #ifdef RFC2292 142 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *); 143 #endif 144 145 /* 146 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 147 * header (with pri, len, nxt, hlim, src, dst). 148 * This function may modify ver and hlim only. 149 * The mbuf chain containing the packet will be freed. 150 * The mbuf opt, if present, will not be freed. 151 * 152 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 153 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 154 * which is rt_rmx.rmx_mtu. 155 */ 156 int 157 ip6_output( 158 struct mbuf *m0, 159 struct ip6_pktopts *opt, 160 struct route *ro, 161 int flags, 162 struct ip6_moptions *im6o, 163 struct socket *so, 164 struct ifnet **ifpp /* XXX: just for statistics */ 165 ) 166 { 167 struct ip6_hdr *ip6, *mhip6; 168 struct ifnet *ifp = NULL, *origifp = NULL; 169 struct mbuf *m = m0; 170 int hlen, tlen, len, off; 171 bool tso; 172 struct route ip6route; 173 struct rtentry *rt = NULL; 174 const struct sockaddr_in6 *dst; 175 struct sockaddr_in6 src_sa, dst_sa; 176 int error = 0; 177 struct in6_ifaddr *ia = NULL; 178 u_long mtu; 179 int alwaysfrag, dontfrag; 180 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 181 struct ip6_exthdrs exthdrs; 182 struct in6_addr finaldst, src0, dst0; 183 u_int32_t zone; 184 struct route *ro_pmtu = NULL; 185 int hdrsplit = 0; 186 int needipsec = 0; 187 #ifdef IPSEC 188 struct secpolicy *sp = NULL; 189 #endif 190 struct psref psref, psref_ia; 191 int bound = curlwp_bind(); 192 bool release_psref_ia = false; 193 194 #ifdef DIAGNOSTIC 195 if ((m->m_flags & M_PKTHDR) == 0) 196 panic("ip6_output: no HDR"); 197 198 if ((m->m_pkthdr.csum_flags & 199 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) { 200 panic("ip6_output: IPv4 checksum offload flags: %d", 201 m->m_pkthdr.csum_flags); 202 } 203 204 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 205 (M_CSUM_TCPv6|M_CSUM_UDPv6)) { 206 panic("ip6_output: conflicting checksum offload flags: %d", 207 m->m_pkthdr.csum_flags); 208 } 209 #endif 210 211 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr)); 212 213 #define MAKE_EXTHDR(hp, mp) \ 214 do { \ 215 if (hp) { \ 216 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 217 error = ip6_copyexthdr((mp), (void *)(hp), \ 218 ((eh)->ip6e_len + 1) << 3); \ 219 if (error) \ 220 goto freehdrs; \ 221 } \ 222 } while (/*CONSTCOND*/ 0) 223 224 memset(&exthdrs, 0, sizeof(exthdrs)); 225 if (opt) { 226 /* Hop-by-Hop options header */ 227 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 228 /* Destination options header(1st part) */ 229 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 230 /* Routing header */ 231 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 232 /* Destination options header(2nd part) */ 233 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 234 } 235 236 /* 237 * Calculate the total length of the extension header chain. 238 * Keep the length of the unfragmentable part for fragmentation. 239 */ 240 optlen = 0; 241 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 242 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 243 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 244 unfragpartlen = optlen + sizeof(struct ip6_hdr); 245 /* NOTE: we don't add AH/ESP length here. do that later. */ 246 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 247 248 #ifdef IPSEC 249 if (ipsec_used) { 250 /* Check the security policy (SP) for the packet */ 251 252 sp = ipsec6_check_policy(m, so, flags, &needipsec, &error); 253 if (error != 0) { 254 /* 255 * Hack: -EINVAL is used to signal that a packet 256 * should be silently discarded. This is typically 257 * because we asked key management for an SA and 258 * it was delayed (e.g. kicked up to IKE). 259 */ 260 if (error == -EINVAL) 261 error = 0; 262 goto freehdrs; 263 } 264 } 265 #endif /* IPSEC */ 266 267 268 if (needipsec && 269 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 270 in6_delayed_cksum(m); 271 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 272 } 273 274 275 /* 276 * If we need IPsec, or there is at least one extension header, 277 * separate IP6 header from the payload. 278 */ 279 if ((needipsec || optlen) && !hdrsplit) { 280 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 281 m = NULL; 282 goto freehdrs; 283 } 284 m = exthdrs.ip6e_ip6; 285 hdrsplit++; 286 } 287 288 /* adjust pointer */ 289 ip6 = mtod(m, struct ip6_hdr *); 290 291 /* adjust mbuf packet header length */ 292 m->m_pkthdr.len += optlen; 293 plen = m->m_pkthdr.len - sizeof(*ip6); 294 295 /* If this is a jumbo payload, insert a jumbo payload option. */ 296 if (plen > IPV6_MAXPACKET) { 297 if (!hdrsplit) { 298 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 299 m = NULL; 300 goto freehdrs; 301 } 302 m = exthdrs.ip6e_ip6; 303 hdrsplit++; 304 } 305 /* adjust pointer */ 306 ip6 = mtod(m, struct ip6_hdr *); 307 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 308 goto freehdrs; 309 optlen += 8; /* XXX JUMBOOPTLEN */ 310 ip6->ip6_plen = 0; 311 } else 312 ip6->ip6_plen = htons(plen); 313 314 /* 315 * Concatenate headers and fill in next header fields. 316 * Here we have, on "m" 317 * IPv6 payload 318 * and we insert headers accordingly. Finally, we should be getting: 319 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 320 * 321 * during the header composing process, "m" points to IPv6 header. 322 * "mprev" points to an extension header prior to esp. 323 */ 324 { 325 u_char *nexthdrp = &ip6->ip6_nxt; 326 struct mbuf *mprev = m; 327 328 /* 329 * we treat dest2 specially. this makes IPsec processing 330 * much easier. the goal here is to make mprev point the 331 * mbuf prior to dest2. 332 * 333 * result: IPv6 dest2 payload 334 * m and mprev will point to IPv6 header. 335 */ 336 if (exthdrs.ip6e_dest2) { 337 if (!hdrsplit) 338 panic("assumption failed: hdr not split"); 339 exthdrs.ip6e_dest2->m_next = m->m_next; 340 m->m_next = exthdrs.ip6e_dest2; 341 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 342 ip6->ip6_nxt = IPPROTO_DSTOPTS; 343 } 344 345 #define MAKE_CHAIN(m, mp, p, i)\ 346 do {\ 347 if (m) {\ 348 if (!hdrsplit) \ 349 panic("assumption failed: hdr not split"); \ 350 *mtod((m), u_char *) = *(p);\ 351 *(p) = (i);\ 352 p = mtod((m), u_char *);\ 353 (m)->m_next = (mp)->m_next;\ 354 (mp)->m_next = (m);\ 355 (mp) = (m);\ 356 }\ 357 } while (/*CONSTCOND*/ 0) 358 /* 359 * result: IPv6 hbh dest1 rthdr dest2 payload 360 * m will point to IPv6 header. mprev will point to the 361 * extension header prior to dest2 (rthdr in the above case). 362 */ 363 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 364 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 365 IPPROTO_DSTOPTS); 366 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 367 IPPROTO_ROUTING); 368 369 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, 370 sizeof(struct ip6_hdr) + optlen); 371 } 372 373 /* 374 * If there is a routing header, replace destination address field 375 * with the first hop of the routing header. 376 */ 377 if (exthdrs.ip6e_rthdr) { 378 struct ip6_rthdr *rh; 379 struct ip6_rthdr0 *rh0; 380 struct in6_addr *addr; 381 struct sockaddr_in6 sa; 382 383 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 384 struct ip6_rthdr *)); 385 finaldst = ip6->ip6_dst; 386 switch (rh->ip6r_type) { 387 case IPV6_RTHDR_TYPE_0: 388 rh0 = (struct ip6_rthdr0 *)rh; 389 addr = (struct in6_addr *)(rh0 + 1); 390 391 /* 392 * construct a sockaddr_in6 form of 393 * the first hop. 394 * 395 * XXX: we may not have enough 396 * information about its scope zone; 397 * there is no standard API to pass 398 * the information from the 399 * application. 400 */ 401 sockaddr_in6_init(&sa, addr, 0, 0, 0); 402 if ((error = sa6_embedscope(&sa, 403 ip6_use_defzone)) != 0) { 404 goto bad; 405 } 406 ip6->ip6_dst = sa.sin6_addr; 407 (void)memmove(&addr[0], &addr[1], 408 sizeof(struct in6_addr) * 409 (rh0->ip6r0_segleft - 1)); 410 addr[rh0->ip6r0_segleft - 1] = finaldst; 411 /* XXX */ 412 in6_clearscope(addr + rh0->ip6r0_segleft - 1); 413 break; 414 default: /* is it possible? */ 415 error = EINVAL; 416 goto bad; 417 } 418 } 419 420 /* Source address validation */ 421 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 422 (flags & IPV6_UNSPECSRC) == 0) { 423 error = EOPNOTSUPP; 424 IP6_STATINC(IP6_STAT_BADSCOPE); 425 goto bad; 426 } 427 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 428 error = EOPNOTSUPP; 429 IP6_STATINC(IP6_STAT_BADSCOPE); 430 goto bad; 431 } 432 433 IP6_STATINC(IP6_STAT_LOCALOUT); 434 435 /* 436 * Route packet. 437 */ 438 /* initialize cached route */ 439 if (ro == NULL) { 440 memset(&ip6route, 0, sizeof(ip6route)); 441 ro = &ip6route; 442 } 443 ro_pmtu = ro; 444 if (opt && opt->ip6po_rthdr) 445 ro = &opt->ip6po_route; 446 447 /* 448 * if specified, try to fill in the traffic class field. 449 * do not override if a non-zero value is already set. 450 * we check the diffserv field and the ecn field separately. 451 */ 452 if (opt && opt->ip6po_tclass >= 0) { 453 int mask = 0; 454 455 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 456 mask |= 0xfc; 457 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 458 mask |= 0x03; 459 if (mask != 0) 460 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 461 } 462 463 /* fill in or override the hop limit field, if necessary. */ 464 if (opt && opt->ip6po_hlim != -1) 465 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 466 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 467 if (im6o != NULL) 468 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 469 else 470 ip6->ip6_hlim = ip6_defmcasthlim; 471 } 472 473 #ifdef IPSEC 474 if (needipsec) { 475 int s = splsoftnet(); 476 error = ipsec6_process_packet(m, sp->req); 477 478 /* 479 * Preserve KAME behaviour: ENOENT can be returned 480 * when an SA acquire is in progress. Don't propagate 481 * this to user-level; it confuses applications. 482 * XXX this will go away when the SADB is redone. 483 */ 484 if (error == ENOENT) 485 error = 0; 486 splx(s); 487 goto done; 488 } 489 #endif /* IPSEC */ 490 491 /* adjust pointer */ 492 ip6 = mtod(m, struct ip6_hdr *); 493 494 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 495 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, 496 &ifp, &psref, &rt, 0)) != 0) { 497 if (ifp != NULL) 498 in6_ifstat_inc(ifp, ifs6_out_discard); 499 goto bad; 500 } 501 if (rt == NULL) { 502 /* 503 * If in6_selectroute() does not return a route entry, 504 * dst may not have been updated. 505 */ 506 error = rtcache_setdst(ro, sin6tosa(&dst_sa)); 507 if (error) { 508 goto bad; 509 } 510 } 511 512 /* 513 * then rt (for unicast) and ifp must be non-NULL valid values. 514 */ 515 if ((flags & IPV6_FORWARDING) == 0) { 516 /* XXX: the FORWARDING flag can be set for mrouting. */ 517 in6_ifstat_inc(ifp, ifs6_out_request); 518 } 519 if (rt != NULL) { 520 ia = (struct in6_ifaddr *)(rt->rt_ifa); 521 rt->rt_use++; 522 } 523 524 /* 525 * The outgoing interface must be in the zone of source and 526 * destination addresses. We should use ia_ifp to support the 527 * case of sending packets to an address of our own. 528 */ 529 if (ia != NULL && ia->ia_ifp) { 530 origifp = ia->ia_ifp; 531 if (if_is_deactivated(origifp)) 532 goto bad; 533 if_acquire_NOMPSAFE(origifp, &psref_ia); 534 release_psref_ia = true; 535 } else 536 origifp = ifp; 537 538 src0 = ip6->ip6_src; 539 if (in6_setscope(&src0, origifp, &zone)) 540 goto badscope; 541 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0); 542 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 543 goto badscope; 544 545 dst0 = ip6->ip6_dst; 546 if (in6_setscope(&dst0, origifp, &zone)) 547 goto badscope; 548 /* re-initialize to be sure */ 549 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 550 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) 551 goto badscope; 552 553 /* scope check is done. */ 554 555 /* Ensure we only send from a valid address. */ 556 if ((error = ip6_ifaddrvalid(&src0)) != 0) { 557 nd6log(LOG_ERR, 558 "refusing to send from invalid address %s (pid %d)\n", 559 ip6_sprintf(&src0), curproc->p_pid); 560 IP6_STATINC(IP6_STAT_ODROPPED); 561 in6_ifstat_inc(origifp, ifs6_out_discard); 562 if (error == 1) 563 /* 564 * Address exists, but is tentative or detached. 565 * We can't send from it because it's invalid, 566 * so we drop the packet. 567 */ 568 error = 0; 569 else 570 error = EADDRNOTAVAIL; 571 goto bad; 572 } 573 574 if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 575 dst = satocsin6(rtcache_getdst(ro)); 576 KASSERT(dst != NULL); 577 } else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) { 578 /* 579 * The nexthop is explicitly specified by the 580 * application. We assume the next hop is an IPv6 581 * address. 582 */ 583 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 584 } else if ((rt->rt_flags & RTF_GATEWAY)) 585 dst = (struct sockaddr_in6 *)rt->rt_gateway; 586 else 587 dst = satocsin6(rtcache_getdst(ro)); 588 589 /* 590 * XXXXXX: original code follows: 591 */ 592 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 593 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 594 else { 595 struct in6_multi *in6m; 596 597 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 598 599 in6_ifstat_inc(ifp, ifs6_out_mcast); 600 601 /* 602 * Confirm that the outgoing interface supports multicast. 603 */ 604 if (!(ifp->if_flags & IFF_MULTICAST)) { 605 IP6_STATINC(IP6_STAT_NOROUTE); 606 in6_ifstat_inc(ifp, ifs6_out_discard); 607 error = ENETUNREACH; 608 goto bad; 609 } 610 611 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 612 if (in6m != NULL && 613 (im6o == NULL || im6o->im6o_multicast_loop)) { 614 /* 615 * If we belong to the destination multicast group 616 * on the outgoing interface, and the caller did not 617 * forbid loopback, loop back a copy. 618 */ 619 KASSERT(dst != NULL); 620 ip6_mloopback(ifp, m, dst); 621 } else { 622 /* 623 * If we are acting as a multicast router, perform 624 * multicast forwarding as if the packet had just 625 * arrived on the interface to which we are about 626 * to send. The multicast forwarding function 627 * recursively calls this function, using the 628 * IPV6_FORWARDING flag to prevent infinite recursion. 629 * 630 * Multicasts that are looped back by ip6_mloopback(), 631 * above, will be forwarded by the ip6_input() routine, 632 * if necessary. 633 */ 634 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 635 if (ip6_mforward(ip6, ifp, m) != 0) { 636 m_freem(m); 637 goto done; 638 } 639 } 640 } 641 /* 642 * Multicasts with a hoplimit of zero may be looped back, 643 * above, but must not be transmitted on a network. 644 * Also, multicasts addressed to the loopback interface 645 * are not sent -- the above call to ip6_mloopback() will 646 * loop back a copy if this host actually belongs to the 647 * destination group on the loopback interface. 648 */ 649 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 650 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 651 m_freem(m); 652 goto done; 653 } 654 } 655 656 /* 657 * Fill the outgoing inteface to tell the upper layer 658 * to increment per-interface statistics. 659 */ 660 if (ifpp) 661 *ifpp = ifp; 662 663 /* Determine path MTU. */ 664 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 665 &alwaysfrag)) != 0) 666 goto bad; 667 668 /* 669 * The caller of this function may specify to use the minimum MTU 670 * in some cases. 671 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 672 * setting. The logic is a bit complicated; by default, unicast 673 * packets will follow path MTU while multicast packets will be sent at 674 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 675 * including unicast ones will be sent at the minimum MTU. Multicast 676 * packets will always be sent at the minimum MTU unless 677 * IP6PO_MINMTU_DISABLE is explicitly specified. 678 * See RFC 3542 for more details. 679 */ 680 if (mtu > IPV6_MMTU) { 681 if ((flags & IPV6_MINMTU)) 682 mtu = IPV6_MMTU; 683 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 684 mtu = IPV6_MMTU; 685 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 686 (opt == NULL || 687 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 688 mtu = IPV6_MMTU; 689 } 690 } 691 692 /* 693 * clear embedded scope identifiers if necessary. 694 * in6_clearscope will touch the addresses only when necessary. 695 */ 696 in6_clearscope(&ip6->ip6_src); 697 in6_clearscope(&ip6->ip6_dst); 698 699 /* 700 * If the outgoing packet contains a hop-by-hop options header, 701 * it must be examined and processed even by the source node. 702 * (RFC 2460, section 4.) 703 */ 704 if (ip6->ip6_nxt == IPV6_HOPOPTS) { 705 u_int32_t dummy1; /* XXX unused */ 706 u_int32_t dummy2; /* XXX unused */ 707 int hoff = sizeof(struct ip6_hdr); 708 709 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) { 710 /* m was already freed at this point */ 711 error = EINVAL;/* better error? */ 712 goto done; 713 } 714 715 ip6 = mtod(m, struct ip6_hdr *); 716 } 717 718 /* 719 * Run through list of hooks for output packets. 720 */ 721 if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0) 722 goto done; 723 if (m == NULL) 724 goto done; 725 ip6 = mtod(m, struct ip6_hdr *); 726 727 /* 728 * Send the packet to the outgoing interface. 729 * If necessary, do IPv6 fragmentation before sending. 730 * 731 * the logic here is rather complex: 732 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 733 * 1-a: send as is if tlen <= path mtu 734 * 1-b: fragment if tlen > path mtu 735 * 736 * 2: if user asks us not to fragment (dontfrag == 1) 737 * 2-a: send as is if tlen <= interface mtu 738 * 2-b: error if tlen > interface mtu 739 * 740 * 3: if we always need to attach fragment header (alwaysfrag == 1) 741 * always fragment 742 * 743 * 4: if dontfrag == 1 && alwaysfrag == 1 744 * error, as we cannot handle this conflicting request 745 */ 746 tlen = m->m_pkthdr.len; 747 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0; 748 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 749 dontfrag = 1; 750 else 751 dontfrag = 0; 752 753 if (dontfrag && alwaysfrag) { /* case 4 */ 754 /* conflicting request - can't transmit */ 755 error = EMSGSIZE; 756 goto bad; 757 } 758 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */ 759 /* 760 * Even if the DONTFRAG option is specified, we cannot send the 761 * packet when the data length is larger than the MTU of the 762 * outgoing interface. 763 * Notify the error by sending IPV6_PATHMTU ancillary data as 764 * well as returning an error code (the latter is not described 765 * in the API spec.) 766 */ 767 u_int32_t mtu32; 768 struct ip6ctlparam ip6cp; 769 770 mtu32 = (u_int32_t)mtu; 771 memset(&ip6cp, 0, sizeof(ip6cp)); 772 ip6cp.ip6c_cmdarg = (void *)&mtu32; 773 pfctlinput2(PRC_MSGSIZE, 774 rtcache_getdst(ro_pmtu), &ip6cp); 775 776 error = EMSGSIZE; 777 goto bad; 778 } 779 780 /* 781 * transmit packet without fragmentation 782 */ 783 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) { 784 /* case 1-a and 2-a */ 785 struct in6_ifaddr *ia6; 786 int sw_csum; 787 int s; 788 789 ip6 = mtod(m, struct ip6_hdr *); 790 s = pserialize_read_enter(); 791 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 792 if (ia6) { 793 /* Record statistics for this interface address. */ 794 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len; 795 } 796 pserialize_read_exit(s); 797 798 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 799 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 800 if (IN6_NEED_CHECKSUM(ifp, 801 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 802 in6_delayed_cksum(m); 803 } 804 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 805 } 806 807 KASSERT(dst != NULL); 808 if (__predict_true(!tso || 809 (ifp->if_capenable & IFCAP_TSOv6) != 0)) { 810 error = nd6_output(ifp, origifp, m, dst, rt); 811 } else { 812 error = ip6_tso_output(ifp, origifp, m, dst, rt); 813 } 814 goto done; 815 } 816 817 if (tso) { 818 error = EINVAL; /* XXX */ 819 goto bad; 820 } 821 822 /* 823 * try to fragment the packet. case 1-b and 3 824 */ 825 if (mtu < IPV6_MMTU) { 826 /* path MTU cannot be less than IPV6_MMTU */ 827 error = EMSGSIZE; 828 in6_ifstat_inc(ifp, ifs6_out_fragfail); 829 goto bad; 830 } else if (ip6->ip6_plen == 0) { 831 /* jumbo payload cannot be fragmented */ 832 error = EMSGSIZE; 833 in6_ifstat_inc(ifp, ifs6_out_fragfail); 834 goto bad; 835 } else { 836 struct mbuf **mnext, *m_frgpart; 837 struct ip6_frag *ip6f; 838 u_int32_t id = htonl(ip6_randomid()); 839 u_char nextproto; 840 #if 0 /* see below */ 841 struct ip6ctlparam ip6cp; 842 u_int32_t mtu32; 843 #endif 844 845 /* 846 * Too large for the destination or interface; 847 * fragment if possible. 848 * Must be able to put at least 8 bytes per fragment. 849 */ 850 hlen = unfragpartlen; 851 if (mtu > IPV6_MAXPACKET) 852 mtu = IPV6_MAXPACKET; 853 854 #if 0 855 /* 856 * It is believed this code is a leftover from the 857 * development of the IPV6_RECVPATHMTU sockopt and 858 * associated work to implement RFC3542. 859 * It's not entirely clear what the intent of the API 860 * is at this point, so disable this code for now. 861 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG 862 * will send notifications if the application requests. 863 */ 864 865 /* Notify a proper path MTU to applications. */ 866 mtu32 = (u_int32_t)mtu; 867 memset(&ip6cp, 0, sizeof(ip6cp)); 868 ip6cp.ip6c_cmdarg = (void *)&mtu32; 869 pfctlinput2(PRC_MSGSIZE, 870 rtcache_getdst(ro_pmtu), &ip6cp); 871 #endif 872 873 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 874 if (len < 8) { 875 error = EMSGSIZE; 876 in6_ifstat_inc(ifp, ifs6_out_fragfail); 877 goto bad; 878 } 879 880 mnext = &m->m_nextpkt; 881 882 /* 883 * Change the next header field of the last header in the 884 * unfragmentable part. 885 */ 886 if (exthdrs.ip6e_rthdr) { 887 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 888 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 889 } else if (exthdrs.ip6e_dest1) { 890 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 891 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 892 } else if (exthdrs.ip6e_hbh) { 893 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 894 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 895 } else { 896 nextproto = ip6->ip6_nxt; 897 ip6->ip6_nxt = IPPROTO_FRAGMENT; 898 } 899 900 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) 901 != 0) { 902 if (IN6_NEED_CHECKSUM(ifp, 903 m->m_pkthdr.csum_flags & 904 (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 905 in6_delayed_cksum(m); 906 } 907 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 908 } 909 910 /* 911 * Loop through length of segment after first fragment, 912 * make new header and copy data of each part and link onto 913 * chain. 914 */ 915 m0 = m; 916 for (off = hlen; off < tlen; off += len) { 917 struct mbuf *mlast; 918 919 MGETHDR(m, M_DONTWAIT, MT_HEADER); 920 if (!m) { 921 error = ENOBUFS; 922 IP6_STATINC(IP6_STAT_ODROPPED); 923 goto sendorfree; 924 } 925 m_reset_rcvif(m); 926 m->m_flags = m0->m_flags & M_COPYFLAGS; 927 *mnext = m; 928 mnext = &m->m_nextpkt; 929 m->m_data += max_linkhdr; 930 mhip6 = mtod(m, struct ip6_hdr *); 931 *mhip6 = *ip6; 932 m->m_len = sizeof(*mhip6); 933 /* 934 * ip6f must be valid if error is 0. But how 935 * can a compiler be expected to infer this? 936 */ 937 ip6f = NULL; 938 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 939 if (error) { 940 IP6_STATINC(IP6_STAT_ODROPPED); 941 goto sendorfree; 942 } 943 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 944 if (off + len >= tlen) 945 len = tlen - off; 946 else 947 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 948 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 949 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 950 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 951 error = ENOBUFS; 952 IP6_STATINC(IP6_STAT_ODROPPED); 953 goto sendorfree; 954 } 955 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 956 ; 957 mlast->m_next = m_frgpart; 958 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 959 m_reset_rcvif(m); 960 ip6f->ip6f_reserved = 0; 961 ip6f->ip6f_ident = id; 962 ip6f->ip6f_nxt = nextproto; 963 IP6_STATINC(IP6_STAT_OFRAGMENTS); 964 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 965 } 966 967 in6_ifstat_inc(ifp, ifs6_out_fragok); 968 } 969 970 /* 971 * Remove leading garbages. 972 */ 973 sendorfree: 974 m = m0->m_nextpkt; 975 m0->m_nextpkt = 0; 976 m_freem(m0); 977 for (m0 = m; m; m = m0) { 978 m0 = m->m_nextpkt; 979 m->m_nextpkt = 0; 980 if (error == 0) { 981 struct in6_ifaddr *ia6; 982 int s; 983 ip6 = mtod(m, struct ip6_hdr *); 984 s = pserialize_read_enter(); 985 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 986 if (ia6) { 987 /* 988 * Record statistics for this interface 989 * address. 990 */ 991 ia6->ia_ifa.ifa_data.ifad_outbytes += 992 m->m_pkthdr.len; 993 } 994 pserialize_read_exit(s); 995 KASSERT(dst != NULL); 996 error = nd6_output(ifp, origifp, m, dst, rt); 997 } else 998 m_freem(m); 999 } 1000 1001 if (error == 0) 1002 IP6_STATINC(IP6_STAT_FRAGMENTED); 1003 1004 done: 1005 if (ro == &ip6route) 1006 rtcache_free(&ip6route); 1007 1008 #ifdef IPSEC 1009 if (sp != NULL) 1010 KEY_FREESP(&sp); 1011 #endif /* IPSEC */ 1012 1013 if_put(ifp, &psref); 1014 if (release_psref_ia) 1015 if_put(origifp, &psref_ia); 1016 curlwp_bindx(bound); 1017 1018 return (error); 1019 1020 freehdrs: 1021 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1022 m_freem(exthdrs.ip6e_dest1); 1023 m_freem(exthdrs.ip6e_rthdr); 1024 m_freem(exthdrs.ip6e_dest2); 1025 /* FALLTHROUGH */ 1026 bad: 1027 m_freem(m); 1028 goto done; 1029 badscope: 1030 IP6_STATINC(IP6_STAT_BADSCOPE); 1031 in6_ifstat_inc(origifp, ifs6_out_discard); 1032 if (error == 0) 1033 error = EHOSTUNREACH; /* XXX */ 1034 goto bad; 1035 } 1036 1037 static int 1038 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen) 1039 { 1040 struct mbuf *m; 1041 1042 if (hlen > MCLBYTES) 1043 return (ENOBUFS); /* XXX */ 1044 1045 MGET(m, M_DONTWAIT, MT_DATA); 1046 if (!m) 1047 return (ENOBUFS); 1048 1049 if (hlen > MLEN) { 1050 MCLGET(m, M_DONTWAIT); 1051 if ((m->m_flags & M_EXT) == 0) { 1052 m_free(m); 1053 return (ENOBUFS); 1054 } 1055 } 1056 m->m_len = hlen; 1057 if (hdr) 1058 bcopy(hdr, mtod(m, void *), hlen); 1059 1060 *mp = m; 1061 return (0); 1062 } 1063 1064 /* 1065 * Process a delayed payload checksum calculation. 1066 */ 1067 void 1068 in6_delayed_cksum(struct mbuf *m) 1069 { 1070 uint16_t csum, offset; 1071 1072 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1073 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1074 KASSERT((m->m_pkthdr.csum_flags 1075 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0); 1076 1077 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data); 1078 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset); 1079 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) { 1080 csum = 0xffff; 1081 } 1082 1083 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data); 1084 if ((offset + sizeof(csum)) > m->m_len) { 1085 m_copyback(m, offset, sizeof(csum), &csum); 1086 } else { 1087 *(uint16_t *)(mtod(m, char *) + offset) = csum; 1088 } 1089 } 1090 1091 /* 1092 * Insert jumbo payload option. 1093 */ 1094 static int 1095 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1096 { 1097 struct mbuf *mopt; 1098 u_int8_t *optbuf; 1099 u_int32_t v; 1100 1101 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1102 1103 /* 1104 * If there is no hop-by-hop options header, allocate new one. 1105 * If there is one but it doesn't have enough space to store the 1106 * jumbo payload option, allocate a cluster to store the whole options. 1107 * Otherwise, use it to store the options. 1108 */ 1109 if (exthdrs->ip6e_hbh == 0) { 1110 MGET(mopt, M_DONTWAIT, MT_DATA); 1111 if (mopt == 0) 1112 return (ENOBUFS); 1113 mopt->m_len = JUMBOOPTLEN; 1114 optbuf = mtod(mopt, u_int8_t *); 1115 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1116 exthdrs->ip6e_hbh = mopt; 1117 } else { 1118 struct ip6_hbh *hbh; 1119 1120 mopt = exthdrs->ip6e_hbh; 1121 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1122 /* 1123 * XXX assumption: 1124 * - exthdrs->ip6e_hbh is not referenced from places 1125 * other than exthdrs. 1126 * - exthdrs->ip6e_hbh is not an mbuf chain. 1127 */ 1128 int oldoptlen = mopt->m_len; 1129 struct mbuf *n; 1130 1131 /* 1132 * XXX: give up if the whole (new) hbh header does 1133 * not fit even in an mbuf cluster. 1134 */ 1135 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1136 return (ENOBUFS); 1137 1138 /* 1139 * As a consequence, we must always prepare a cluster 1140 * at this point. 1141 */ 1142 MGET(n, M_DONTWAIT, MT_DATA); 1143 if (n) { 1144 MCLGET(n, M_DONTWAIT); 1145 if ((n->m_flags & M_EXT) == 0) { 1146 m_freem(n); 1147 n = NULL; 1148 } 1149 } 1150 if (!n) 1151 return (ENOBUFS); 1152 n->m_len = oldoptlen + JUMBOOPTLEN; 1153 bcopy(mtod(mopt, void *), mtod(n, void *), 1154 oldoptlen); 1155 optbuf = mtod(n, u_int8_t *) + oldoptlen; 1156 m_freem(mopt); 1157 mopt = exthdrs->ip6e_hbh = n; 1158 } else { 1159 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 1160 mopt->m_len += JUMBOOPTLEN; 1161 } 1162 optbuf[0] = IP6OPT_PADN; 1163 optbuf[1] = 0; 1164 1165 /* 1166 * Adjust the header length according to the pad and 1167 * the jumbo payload option. 1168 */ 1169 hbh = mtod(mopt, struct ip6_hbh *); 1170 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1171 } 1172 1173 /* fill in the option. */ 1174 optbuf[2] = IP6OPT_JUMBO; 1175 optbuf[3] = 4; 1176 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1177 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1178 1179 /* finally, adjust the packet header length */ 1180 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1181 1182 return (0); 1183 #undef JUMBOOPTLEN 1184 } 1185 1186 /* 1187 * Insert fragment header and copy unfragmentable header portions. 1188 * 1189 * *frghdrp will not be read, and it is guaranteed that either an 1190 * error is returned or that *frghdrp will point to space allocated 1191 * for the fragment header. 1192 */ 1193 static int 1194 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1195 struct ip6_frag **frghdrp) 1196 { 1197 struct mbuf *n, *mlast; 1198 1199 if (hlen > sizeof(struct ip6_hdr)) { 1200 n = m_copym(m0, sizeof(struct ip6_hdr), 1201 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1202 if (n == 0) 1203 return (ENOBUFS); 1204 m->m_next = n; 1205 } else 1206 n = m; 1207 1208 /* Search for the last mbuf of unfragmentable part. */ 1209 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1210 ; 1211 1212 if ((mlast->m_flags & M_EXT) == 0 && 1213 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1214 /* use the trailing space of the last mbuf for the fragment hdr */ 1215 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) + 1216 mlast->m_len); 1217 mlast->m_len += sizeof(struct ip6_frag); 1218 m->m_pkthdr.len += sizeof(struct ip6_frag); 1219 } else { 1220 /* allocate a new mbuf for the fragment header */ 1221 struct mbuf *mfrg; 1222 1223 MGET(mfrg, M_DONTWAIT, MT_DATA); 1224 if (mfrg == 0) 1225 return (ENOBUFS); 1226 mfrg->m_len = sizeof(struct ip6_frag); 1227 *frghdrp = mtod(mfrg, struct ip6_frag *); 1228 mlast->m_next = mfrg; 1229 } 1230 1231 return (0); 1232 } 1233 1234 static int 1235 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp, 1236 const struct in6_addr *dst, u_long *mtup, int *alwaysfragp) 1237 { 1238 struct rtentry *rt; 1239 u_int32_t mtu = 0; 1240 int alwaysfrag = 0; 1241 int error = 0; 1242 1243 if (ro_pmtu != ro) { 1244 union { 1245 struct sockaddr dst; 1246 struct sockaddr_in6 dst6; 1247 } u; 1248 1249 /* The first hop and the final destination may differ. */ 1250 sockaddr_in6_init(&u.dst6, dst, 0, 0, 0); 1251 rt = rtcache_lookup(ro_pmtu, &u.dst); 1252 } else 1253 rt = rtcache_validate(ro_pmtu); 1254 if (rt != NULL) { 1255 u_int32_t ifmtu; 1256 1257 if (ifp == NULL) 1258 ifp = rt->rt_ifp; 1259 ifmtu = IN6_LINKMTU(ifp); 1260 mtu = rt->rt_rmx.rmx_mtu; 1261 if (mtu == 0) 1262 mtu = ifmtu; 1263 else if (mtu < IPV6_MMTU) { 1264 /* 1265 * RFC2460 section 5, last paragraph: 1266 * if we record ICMPv6 too big message with 1267 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1268 * or smaller, with fragment header attached. 1269 * (fragment header is needed regardless from the 1270 * packet size, for translators to identify packets) 1271 */ 1272 alwaysfrag = 1; 1273 mtu = IPV6_MMTU; 1274 } else if (mtu > ifmtu) { 1275 /* 1276 * The MTU on the route is larger than the MTU on 1277 * the interface! This shouldn't happen, unless the 1278 * MTU of the interface has been changed after the 1279 * interface was brought up. Change the MTU in the 1280 * route to match the interface MTU (as long as the 1281 * field isn't locked). 1282 */ 1283 mtu = ifmtu; 1284 if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) 1285 rt->rt_rmx.rmx_mtu = mtu; 1286 } 1287 } else if (ifp) { 1288 mtu = IN6_LINKMTU(ifp); 1289 } else 1290 error = EHOSTUNREACH; /* XXX */ 1291 1292 *mtup = mtu; 1293 if (alwaysfragp) 1294 *alwaysfragp = alwaysfrag; 1295 return (error); 1296 } 1297 1298 /* 1299 * IP6 socket option processing. 1300 */ 1301 int 1302 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1303 { 1304 int optdatalen, uproto; 1305 void *optdata; 1306 struct in6pcb *in6p = sotoin6pcb(so); 1307 struct ip_moptions **mopts; 1308 int error, optval; 1309 int level, optname; 1310 1311 KASSERT(sopt != NULL); 1312 1313 level = sopt->sopt_level; 1314 optname = sopt->sopt_name; 1315 1316 error = optval = 0; 1317 uproto = (int)so->so_proto->pr_protocol; 1318 1319 switch (level) { 1320 case IPPROTO_IP: 1321 switch (optname) { 1322 case IP_ADD_MEMBERSHIP: 1323 case IP_DROP_MEMBERSHIP: 1324 case IP_MULTICAST_IF: 1325 case IP_MULTICAST_LOOP: 1326 case IP_MULTICAST_TTL: 1327 mopts = &in6p->in6p_v4moptions; 1328 switch (op) { 1329 case PRCO_GETOPT: 1330 return ip_getmoptions(*mopts, sopt); 1331 case PRCO_SETOPT: 1332 return ip_setmoptions(mopts, sopt); 1333 default: 1334 return EINVAL; 1335 } 1336 default: 1337 return ENOPROTOOPT; 1338 } 1339 case IPPROTO_IPV6: 1340 break; 1341 default: 1342 return ENOPROTOOPT; 1343 } 1344 switch (op) { 1345 case PRCO_SETOPT: 1346 switch (optname) { 1347 #ifdef RFC2292 1348 case IPV6_2292PKTOPTIONS: 1349 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt); 1350 break; 1351 #endif 1352 1353 /* 1354 * Use of some Hop-by-Hop options or some 1355 * Destination options, might require special 1356 * privilege. That is, normal applications 1357 * (without special privilege) might be forbidden 1358 * from setting certain options in outgoing packets, 1359 * and might never see certain options in received 1360 * packets. [RFC 2292 Section 6] 1361 * KAME specific note: 1362 * KAME prevents non-privileged users from sending or 1363 * receiving ANY hbh/dst options in order to avoid 1364 * overhead of parsing options in the kernel. 1365 */ 1366 case IPV6_RECVHOPOPTS: 1367 case IPV6_RECVDSTOPTS: 1368 case IPV6_RECVRTHDRDSTOPTS: 1369 error = kauth_authorize_network(kauth_cred_get(), 1370 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, 1371 NULL, NULL, NULL); 1372 if (error) 1373 break; 1374 /* FALLTHROUGH */ 1375 case IPV6_UNICAST_HOPS: 1376 case IPV6_HOPLIMIT: 1377 case IPV6_FAITH: 1378 1379 case IPV6_RECVPKTINFO: 1380 case IPV6_RECVHOPLIMIT: 1381 case IPV6_RECVRTHDR: 1382 case IPV6_RECVPATHMTU: 1383 case IPV6_RECVTCLASS: 1384 case IPV6_V6ONLY: 1385 error = sockopt_getint(sopt, &optval); 1386 if (error) 1387 break; 1388 switch (optname) { 1389 case IPV6_UNICAST_HOPS: 1390 if (optval < -1 || optval >= 256) 1391 error = EINVAL; 1392 else { 1393 /* -1 = kernel default */ 1394 in6p->in6p_hops = optval; 1395 } 1396 break; 1397 #define OPTSET(bit) \ 1398 do { \ 1399 if (optval) \ 1400 in6p->in6p_flags |= (bit); \ 1401 else \ 1402 in6p->in6p_flags &= ~(bit); \ 1403 } while (/*CONSTCOND*/ 0) 1404 1405 #ifdef RFC2292 1406 #define OPTSET2292(bit) \ 1407 do { \ 1408 in6p->in6p_flags |= IN6P_RFC2292; \ 1409 if (optval) \ 1410 in6p->in6p_flags |= (bit); \ 1411 else \ 1412 in6p->in6p_flags &= ~(bit); \ 1413 } while (/*CONSTCOND*/ 0) 1414 #endif 1415 1416 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1417 1418 case IPV6_RECVPKTINFO: 1419 #ifdef RFC2292 1420 /* cannot mix with RFC2292 */ 1421 if (OPTBIT(IN6P_RFC2292)) { 1422 error = EINVAL; 1423 break; 1424 } 1425 #endif 1426 OPTSET(IN6P_PKTINFO); 1427 break; 1428 1429 case IPV6_HOPLIMIT: 1430 { 1431 struct ip6_pktopts **optp; 1432 1433 #ifdef RFC2292 1434 /* cannot mix with RFC2292 */ 1435 if (OPTBIT(IN6P_RFC2292)) { 1436 error = EINVAL; 1437 break; 1438 } 1439 #endif 1440 optp = &in6p->in6p_outputopts; 1441 error = ip6_pcbopt(IPV6_HOPLIMIT, 1442 (u_char *)&optval, 1443 sizeof(optval), 1444 optp, 1445 kauth_cred_get(), uproto); 1446 break; 1447 } 1448 1449 case IPV6_RECVHOPLIMIT: 1450 #ifdef RFC2292 1451 /* cannot mix with RFC2292 */ 1452 if (OPTBIT(IN6P_RFC2292)) { 1453 error = EINVAL; 1454 break; 1455 } 1456 #endif 1457 OPTSET(IN6P_HOPLIMIT); 1458 break; 1459 1460 case IPV6_RECVHOPOPTS: 1461 #ifdef RFC2292 1462 /* cannot mix with RFC2292 */ 1463 if (OPTBIT(IN6P_RFC2292)) { 1464 error = EINVAL; 1465 break; 1466 } 1467 #endif 1468 OPTSET(IN6P_HOPOPTS); 1469 break; 1470 1471 case IPV6_RECVDSTOPTS: 1472 #ifdef RFC2292 1473 /* cannot mix with RFC2292 */ 1474 if (OPTBIT(IN6P_RFC2292)) { 1475 error = EINVAL; 1476 break; 1477 } 1478 #endif 1479 OPTSET(IN6P_DSTOPTS); 1480 break; 1481 1482 case IPV6_RECVRTHDRDSTOPTS: 1483 #ifdef RFC2292 1484 /* cannot mix with RFC2292 */ 1485 if (OPTBIT(IN6P_RFC2292)) { 1486 error = EINVAL; 1487 break; 1488 } 1489 #endif 1490 OPTSET(IN6P_RTHDRDSTOPTS); 1491 break; 1492 1493 case IPV6_RECVRTHDR: 1494 #ifdef RFC2292 1495 /* cannot mix with RFC2292 */ 1496 if (OPTBIT(IN6P_RFC2292)) { 1497 error = EINVAL; 1498 break; 1499 } 1500 #endif 1501 OPTSET(IN6P_RTHDR); 1502 break; 1503 1504 case IPV6_FAITH: 1505 OPTSET(IN6P_FAITH); 1506 break; 1507 1508 case IPV6_RECVPATHMTU: 1509 /* 1510 * We ignore this option for TCP 1511 * sockets. 1512 * (RFC3542 leaves this case 1513 * unspecified.) 1514 */ 1515 if (uproto != IPPROTO_TCP) 1516 OPTSET(IN6P_MTU); 1517 break; 1518 1519 case IPV6_V6ONLY: 1520 /* 1521 * make setsockopt(IPV6_V6ONLY) 1522 * available only prior to bind(2). 1523 * see ipng mailing list, Jun 22 2001. 1524 */ 1525 if (in6p->in6p_lport || 1526 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1527 error = EINVAL; 1528 break; 1529 } 1530 #ifdef INET6_BINDV6ONLY 1531 if (!optval) 1532 error = EINVAL; 1533 #else 1534 OPTSET(IN6P_IPV6_V6ONLY); 1535 #endif 1536 break; 1537 case IPV6_RECVTCLASS: 1538 #ifdef RFC2292 1539 /* cannot mix with RFC2292 XXX */ 1540 if (OPTBIT(IN6P_RFC2292)) { 1541 error = EINVAL; 1542 break; 1543 } 1544 #endif 1545 OPTSET(IN6P_TCLASS); 1546 break; 1547 1548 } 1549 break; 1550 1551 case IPV6_OTCLASS: 1552 { 1553 struct ip6_pktopts **optp; 1554 u_int8_t tclass; 1555 1556 error = sockopt_get(sopt, &tclass, sizeof(tclass)); 1557 if (error) 1558 break; 1559 optp = &in6p->in6p_outputopts; 1560 error = ip6_pcbopt(optname, 1561 (u_char *)&tclass, 1562 sizeof(tclass), 1563 optp, 1564 kauth_cred_get(), uproto); 1565 break; 1566 } 1567 1568 case IPV6_TCLASS: 1569 case IPV6_DONTFRAG: 1570 case IPV6_USE_MIN_MTU: 1571 case IPV6_PREFER_TEMPADDR: 1572 error = sockopt_getint(sopt, &optval); 1573 if (error) 1574 break; 1575 { 1576 struct ip6_pktopts **optp; 1577 optp = &in6p->in6p_outputopts; 1578 error = ip6_pcbopt(optname, 1579 (u_char *)&optval, 1580 sizeof(optval), 1581 optp, 1582 kauth_cred_get(), uproto); 1583 break; 1584 } 1585 1586 #ifdef RFC2292 1587 case IPV6_2292PKTINFO: 1588 case IPV6_2292HOPLIMIT: 1589 case IPV6_2292HOPOPTS: 1590 case IPV6_2292DSTOPTS: 1591 case IPV6_2292RTHDR: 1592 /* RFC 2292 */ 1593 error = sockopt_getint(sopt, &optval); 1594 if (error) 1595 break; 1596 1597 switch (optname) { 1598 case IPV6_2292PKTINFO: 1599 OPTSET2292(IN6P_PKTINFO); 1600 break; 1601 case IPV6_2292HOPLIMIT: 1602 OPTSET2292(IN6P_HOPLIMIT); 1603 break; 1604 case IPV6_2292HOPOPTS: 1605 /* 1606 * Check super-user privilege. 1607 * See comments for IPV6_RECVHOPOPTS. 1608 */ 1609 error = 1610 kauth_authorize_network(kauth_cred_get(), 1611 KAUTH_NETWORK_IPV6, 1612 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1613 NULL, NULL); 1614 if (error) 1615 return (error); 1616 OPTSET2292(IN6P_HOPOPTS); 1617 break; 1618 case IPV6_2292DSTOPTS: 1619 error = 1620 kauth_authorize_network(kauth_cred_get(), 1621 KAUTH_NETWORK_IPV6, 1622 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1623 NULL, NULL); 1624 if (error) 1625 return (error); 1626 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1627 break; 1628 case IPV6_2292RTHDR: 1629 OPTSET2292(IN6P_RTHDR); 1630 break; 1631 } 1632 break; 1633 #endif 1634 case IPV6_PKTINFO: 1635 case IPV6_HOPOPTS: 1636 case IPV6_RTHDR: 1637 case IPV6_DSTOPTS: 1638 case IPV6_RTHDRDSTOPTS: 1639 case IPV6_NEXTHOP: { 1640 /* new advanced API (RFC3542) */ 1641 void *optbuf; 1642 int optbuflen; 1643 struct ip6_pktopts **optp; 1644 1645 #ifdef RFC2292 1646 /* cannot mix with RFC2292 */ 1647 if (OPTBIT(IN6P_RFC2292)) { 1648 error = EINVAL; 1649 break; 1650 } 1651 #endif 1652 1653 optbuflen = sopt->sopt_size; 1654 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT); 1655 if (optbuf == NULL) { 1656 error = ENOBUFS; 1657 break; 1658 } 1659 1660 error = sockopt_get(sopt, optbuf, optbuflen); 1661 if (error) { 1662 free(optbuf, M_IP6OPT); 1663 break; 1664 } 1665 optp = &in6p->in6p_outputopts; 1666 error = ip6_pcbopt(optname, optbuf, optbuflen, 1667 optp, kauth_cred_get(), uproto); 1668 1669 free(optbuf, M_IP6OPT); 1670 break; 1671 } 1672 #undef OPTSET 1673 1674 case IPV6_MULTICAST_IF: 1675 case IPV6_MULTICAST_HOPS: 1676 case IPV6_MULTICAST_LOOP: 1677 case IPV6_JOIN_GROUP: 1678 case IPV6_LEAVE_GROUP: 1679 error = ip6_setmoptions(sopt, in6p); 1680 break; 1681 1682 case IPV6_PORTRANGE: 1683 error = sockopt_getint(sopt, &optval); 1684 if (error) 1685 break; 1686 1687 switch (optval) { 1688 case IPV6_PORTRANGE_DEFAULT: 1689 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1690 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1691 break; 1692 1693 case IPV6_PORTRANGE_HIGH: 1694 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1695 in6p->in6p_flags |= IN6P_HIGHPORT; 1696 break; 1697 1698 case IPV6_PORTRANGE_LOW: 1699 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1700 in6p->in6p_flags |= IN6P_LOWPORT; 1701 break; 1702 1703 default: 1704 error = EINVAL; 1705 break; 1706 } 1707 break; 1708 1709 case IPV6_PORTALGO: 1710 error = sockopt_getint(sopt, &optval); 1711 if (error) 1712 break; 1713 1714 error = portalgo_algo_index_select( 1715 (struct inpcb_hdr *)in6p, optval); 1716 break; 1717 1718 #if defined(IPSEC) 1719 case IPV6_IPSEC_POLICY: 1720 if (ipsec_enabled) { 1721 error = ipsec6_set_policy(in6p, optname, 1722 sopt->sopt_data, sopt->sopt_size, 1723 kauth_cred_get()); 1724 break; 1725 } 1726 /*FALLTHROUGH*/ 1727 #endif /* IPSEC */ 1728 1729 default: 1730 error = ENOPROTOOPT; 1731 break; 1732 } 1733 break; 1734 1735 case PRCO_GETOPT: 1736 switch (optname) { 1737 #ifdef RFC2292 1738 case IPV6_2292PKTOPTIONS: 1739 /* 1740 * RFC3542 (effectively) deprecated the 1741 * semantics of the 2292-style pktoptions. 1742 * Since it was not reliable in nature (i.e., 1743 * applications had to expect the lack of some 1744 * information after all), it would make sense 1745 * to simplify this part by always returning 1746 * empty data. 1747 */ 1748 break; 1749 #endif 1750 1751 case IPV6_RECVHOPOPTS: 1752 case IPV6_RECVDSTOPTS: 1753 case IPV6_RECVRTHDRDSTOPTS: 1754 case IPV6_UNICAST_HOPS: 1755 case IPV6_RECVPKTINFO: 1756 case IPV6_RECVHOPLIMIT: 1757 case IPV6_RECVRTHDR: 1758 case IPV6_RECVPATHMTU: 1759 1760 case IPV6_FAITH: 1761 case IPV6_V6ONLY: 1762 case IPV6_PORTRANGE: 1763 case IPV6_RECVTCLASS: 1764 switch (optname) { 1765 1766 case IPV6_RECVHOPOPTS: 1767 optval = OPTBIT(IN6P_HOPOPTS); 1768 break; 1769 1770 case IPV6_RECVDSTOPTS: 1771 optval = OPTBIT(IN6P_DSTOPTS); 1772 break; 1773 1774 case IPV6_RECVRTHDRDSTOPTS: 1775 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1776 break; 1777 1778 case IPV6_UNICAST_HOPS: 1779 optval = in6p->in6p_hops; 1780 break; 1781 1782 case IPV6_RECVPKTINFO: 1783 optval = OPTBIT(IN6P_PKTINFO); 1784 break; 1785 1786 case IPV6_RECVHOPLIMIT: 1787 optval = OPTBIT(IN6P_HOPLIMIT); 1788 break; 1789 1790 case IPV6_RECVRTHDR: 1791 optval = OPTBIT(IN6P_RTHDR); 1792 break; 1793 1794 case IPV6_RECVPATHMTU: 1795 optval = OPTBIT(IN6P_MTU); 1796 break; 1797 1798 case IPV6_FAITH: 1799 optval = OPTBIT(IN6P_FAITH); 1800 break; 1801 1802 case IPV6_V6ONLY: 1803 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1804 break; 1805 1806 case IPV6_PORTRANGE: 1807 { 1808 int flags; 1809 flags = in6p->in6p_flags; 1810 if (flags & IN6P_HIGHPORT) 1811 optval = IPV6_PORTRANGE_HIGH; 1812 else if (flags & IN6P_LOWPORT) 1813 optval = IPV6_PORTRANGE_LOW; 1814 else 1815 optval = 0; 1816 break; 1817 } 1818 case IPV6_RECVTCLASS: 1819 optval = OPTBIT(IN6P_TCLASS); 1820 break; 1821 1822 } 1823 if (error) 1824 break; 1825 error = sockopt_setint(sopt, optval); 1826 break; 1827 1828 case IPV6_PATHMTU: 1829 { 1830 u_long pmtu = 0; 1831 struct ip6_mtuinfo mtuinfo; 1832 struct route *ro = &in6p->in6p_route; 1833 1834 if (!(so->so_state & SS_ISCONNECTED)) 1835 return (ENOTCONN); 1836 /* 1837 * XXX: we dot not consider the case of source 1838 * routing, or optional information to specify 1839 * the outgoing interface. 1840 */ 1841 error = ip6_getpmtu(ro, NULL, NULL, 1842 &in6p->in6p_faddr, &pmtu, NULL); 1843 if (error) 1844 break; 1845 if (pmtu > IPV6_MAXPACKET) 1846 pmtu = IPV6_MAXPACKET; 1847 1848 memset(&mtuinfo, 0, sizeof(mtuinfo)); 1849 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1850 optdata = (void *)&mtuinfo; 1851 optdatalen = sizeof(mtuinfo); 1852 if (optdatalen > MCLBYTES) 1853 return (EMSGSIZE); /* XXX */ 1854 error = sockopt_set(sopt, optdata, optdatalen); 1855 break; 1856 } 1857 1858 #ifdef RFC2292 1859 case IPV6_2292PKTINFO: 1860 case IPV6_2292HOPLIMIT: 1861 case IPV6_2292HOPOPTS: 1862 case IPV6_2292RTHDR: 1863 case IPV6_2292DSTOPTS: 1864 switch (optname) { 1865 case IPV6_2292PKTINFO: 1866 optval = OPTBIT(IN6P_PKTINFO); 1867 break; 1868 case IPV6_2292HOPLIMIT: 1869 optval = OPTBIT(IN6P_HOPLIMIT); 1870 break; 1871 case IPV6_2292HOPOPTS: 1872 optval = OPTBIT(IN6P_HOPOPTS); 1873 break; 1874 case IPV6_2292RTHDR: 1875 optval = OPTBIT(IN6P_RTHDR); 1876 break; 1877 case IPV6_2292DSTOPTS: 1878 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1879 break; 1880 } 1881 error = sockopt_setint(sopt, optval); 1882 break; 1883 #endif 1884 case IPV6_PKTINFO: 1885 case IPV6_HOPOPTS: 1886 case IPV6_RTHDR: 1887 case IPV6_DSTOPTS: 1888 case IPV6_RTHDRDSTOPTS: 1889 case IPV6_NEXTHOP: 1890 case IPV6_OTCLASS: 1891 case IPV6_TCLASS: 1892 case IPV6_DONTFRAG: 1893 case IPV6_USE_MIN_MTU: 1894 case IPV6_PREFER_TEMPADDR: 1895 error = ip6_getpcbopt(in6p->in6p_outputopts, 1896 optname, sopt); 1897 break; 1898 1899 case IPV6_MULTICAST_IF: 1900 case IPV6_MULTICAST_HOPS: 1901 case IPV6_MULTICAST_LOOP: 1902 case IPV6_JOIN_GROUP: 1903 case IPV6_LEAVE_GROUP: 1904 error = ip6_getmoptions(sopt, in6p); 1905 break; 1906 1907 case IPV6_PORTALGO: 1908 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo; 1909 error = sockopt_setint(sopt, optval); 1910 break; 1911 1912 #if defined(IPSEC) 1913 case IPV6_IPSEC_POLICY: 1914 if (ipsec_used) { 1915 struct mbuf *m = NULL; 1916 1917 /* 1918 * XXX: this will return EINVAL as sopt is 1919 * empty 1920 */ 1921 error = ipsec6_get_policy(in6p, sopt->sopt_data, 1922 sopt->sopt_size, &m); 1923 if (!error) 1924 error = sockopt_setmbuf(sopt, m); 1925 break; 1926 } 1927 /*FALLTHROUGH*/ 1928 #endif /* IPSEC */ 1929 1930 default: 1931 error = ENOPROTOOPT; 1932 break; 1933 } 1934 break; 1935 } 1936 return (error); 1937 } 1938 1939 int 1940 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1941 { 1942 int error = 0, optval; 1943 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 1944 struct in6pcb *in6p = sotoin6pcb(so); 1945 int level, optname; 1946 1947 KASSERT(sopt != NULL); 1948 1949 level = sopt->sopt_level; 1950 optname = sopt->sopt_name; 1951 1952 if (level != IPPROTO_IPV6) { 1953 return ENOPROTOOPT; 1954 } 1955 1956 switch (optname) { 1957 case IPV6_CHECKSUM: 1958 /* 1959 * For ICMPv6 sockets, no modification allowed for checksum 1960 * offset, permit "no change" values to help existing apps. 1961 * 1962 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM 1963 * for an ICMPv6 socket will fail." The current 1964 * behavior does not meet RFC3542. 1965 */ 1966 switch (op) { 1967 case PRCO_SETOPT: 1968 error = sockopt_getint(sopt, &optval); 1969 if (error) 1970 break; 1971 if ((optval % 2) != 0) { 1972 /* the API assumes even offset values */ 1973 error = EINVAL; 1974 } else if (so->so_proto->pr_protocol == 1975 IPPROTO_ICMPV6) { 1976 if (optval != icmp6off) 1977 error = EINVAL; 1978 } else 1979 in6p->in6p_cksum = optval; 1980 break; 1981 1982 case PRCO_GETOPT: 1983 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 1984 optval = icmp6off; 1985 else 1986 optval = in6p->in6p_cksum; 1987 1988 error = sockopt_setint(sopt, optval); 1989 break; 1990 1991 default: 1992 error = EINVAL; 1993 break; 1994 } 1995 break; 1996 1997 default: 1998 error = ENOPROTOOPT; 1999 break; 2000 } 2001 2002 return (error); 2003 } 2004 2005 #ifdef RFC2292 2006 /* 2007 * Set up IP6 options in pcb for insertion in output packets or 2008 * specifying behavior of outgoing packets. 2009 */ 2010 static int 2011 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so, 2012 struct sockopt *sopt) 2013 { 2014 struct ip6_pktopts *opt = *pktopt; 2015 struct mbuf *m; 2016 int error = 0; 2017 2018 /* turn off any old options. */ 2019 if (opt) { 2020 #ifdef DIAGNOSTIC 2021 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2022 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2023 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2024 printf("ip6_pcbopts: all specified options are cleared.\n"); 2025 #endif 2026 ip6_clearpktopts(opt, -1); 2027 } else { 2028 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2029 if (opt == NULL) 2030 return (ENOBUFS); 2031 } 2032 *pktopt = NULL; 2033 2034 if (sopt == NULL || sopt->sopt_size == 0) { 2035 /* 2036 * Only turning off any previous options, regardless of 2037 * whether the opt is just created or given. 2038 */ 2039 free(opt, M_IP6OPT); 2040 return (0); 2041 } 2042 2043 /* set options specified by user. */ 2044 m = sockopt_getmbuf(sopt); 2045 if (m == NULL) { 2046 free(opt, M_IP6OPT); 2047 return (ENOBUFS); 2048 } 2049 2050 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(), 2051 so->so_proto->pr_protocol); 2052 m_freem(m); 2053 if (error != 0) { 2054 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2055 free(opt, M_IP6OPT); 2056 return (error); 2057 } 2058 *pktopt = opt; 2059 return (0); 2060 } 2061 #endif 2062 2063 /* 2064 * initialize ip6_pktopts. beware that there are non-zero default values in 2065 * the struct. 2066 */ 2067 void 2068 ip6_initpktopts(struct ip6_pktopts *opt) 2069 { 2070 2071 memset(opt, 0, sizeof(*opt)); 2072 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2073 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2074 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2075 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2076 } 2077 2078 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */ 2079 static int 2080 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2081 kauth_cred_t cred, int uproto) 2082 { 2083 struct ip6_pktopts *opt; 2084 2085 if (*pktopt == NULL) { 2086 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2087 M_NOWAIT); 2088 if (*pktopt == NULL) 2089 return (ENOBUFS); 2090 2091 ip6_initpktopts(*pktopt); 2092 } 2093 opt = *pktopt; 2094 2095 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2096 } 2097 2098 static int 2099 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2100 { 2101 void *optdata = NULL; 2102 int optdatalen = 0; 2103 struct ip6_ext *ip6e; 2104 int error = 0; 2105 struct in6_pktinfo null_pktinfo; 2106 int deftclass = 0, on; 2107 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2108 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2109 2110 switch (optname) { 2111 case IPV6_PKTINFO: 2112 if (pktopt && pktopt->ip6po_pktinfo) 2113 optdata = (void *)pktopt->ip6po_pktinfo; 2114 else { 2115 /* XXX: we don't have to do this every time... */ 2116 memset(&null_pktinfo, 0, sizeof(null_pktinfo)); 2117 optdata = (void *)&null_pktinfo; 2118 } 2119 optdatalen = sizeof(struct in6_pktinfo); 2120 break; 2121 case IPV6_OTCLASS: 2122 /* XXX */ 2123 return (EINVAL); 2124 case IPV6_TCLASS: 2125 if (pktopt && pktopt->ip6po_tclass >= 0) 2126 optdata = (void *)&pktopt->ip6po_tclass; 2127 else 2128 optdata = (void *)&deftclass; 2129 optdatalen = sizeof(int); 2130 break; 2131 case IPV6_HOPOPTS: 2132 if (pktopt && pktopt->ip6po_hbh) { 2133 optdata = (void *)pktopt->ip6po_hbh; 2134 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2135 optdatalen = (ip6e->ip6e_len + 1) << 3; 2136 } 2137 break; 2138 case IPV6_RTHDR: 2139 if (pktopt && pktopt->ip6po_rthdr) { 2140 optdata = (void *)pktopt->ip6po_rthdr; 2141 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2142 optdatalen = (ip6e->ip6e_len + 1) << 3; 2143 } 2144 break; 2145 case IPV6_RTHDRDSTOPTS: 2146 if (pktopt && pktopt->ip6po_dest1) { 2147 optdata = (void *)pktopt->ip6po_dest1; 2148 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2149 optdatalen = (ip6e->ip6e_len + 1) << 3; 2150 } 2151 break; 2152 case IPV6_DSTOPTS: 2153 if (pktopt && pktopt->ip6po_dest2) { 2154 optdata = (void *)pktopt->ip6po_dest2; 2155 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2156 optdatalen = (ip6e->ip6e_len + 1) << 3; 2157 } 2158 break; 2159 case IPV6_NEXTHOP: 2160 if (pktopt && pktopt->ip6po_nexthop) { 2161 optdata = (void *)pktopt->ip6po_nexthop; 2162 optdatalen = pktopt->ip6po_nexthop->sa_len; 2163 } 2164 break; 2165 case IPV6_USE_MIN_MTU: 2166 if (pktopt) 2167 optdata = (void *)&pktopt->ip6po_minmtu; 2168 else 2169 optdata = (void *)&defminmtu; 2170 optdatalen = sizeof(int); 2171 break; 2172 case IPV6_DONTFRAG: 2173 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2174 on = 1; 2175 else 2176 on = 0; 2177 optdata = (void *)&on; 2178 optdatalen = sizeof(on); 2179 break; 2180 case IPV6_PREFER_TEMPADDR: 2181 if (pktopt) 2182 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2183 else 2184 optdata = (void *)&defpreftemp; 2185 optdatalen = sizeof(int); 2186 break; 2187 default: /* should not happen */ 2188 #ifdef DIAGNOSTIC 2189 panic("ip6_getpcbopt: unexpected option\n"); 2190 #endif 2191 return (ENOPROTOOPT); 2192 } 2193 2194 error = sockopt_set(sopt, optdata, optdatalen); 2195 2196 return (error); 2197 } 2198 2199 void 2200 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2201 { 2202 if (optname == -1 || optname == IPV6_PKTINFO) { 2203 if (pktopt->ip6po_pktinfo) 2204 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2205 pktopt->ip6po_pktinfo = NULL; 2206 } 2207 if (optname == -1 || optname == IPV6_HOPLIMIT) 2208 pktopt->ip6po_hlim = -1; 2209 if (optname == -1 || optname == IPV6_TCLASS) 2210 pktopt->ip6po_tclass = -1; 2211 if (optname == -1 || optname == IPV6_NEXTHOP) { 2212 rtcache_free(&pktopt->ip6po_nextroute); 2213 if (pktopt->ip6po_nexthop) 2214 free(pktopt->ip6po_nexthop, M_IP6OPT); 2215 pktopt->ip6po_nexthop = NULL; 2216 } 2217 if (optname == -1 || optname == IPV6_HOPOPTS) { 2218 if (pktopt->ip6po_hbh) 2219 free(pktopt->ip6po_hbh, M_IP6OPT); 2220 pktopt->ip6po_hbh = NULL; 2221 } 2222 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2223 if (pktopt->ip6po_dest1) 2224 free(pktopt->ip6po_dest1, M_IP6OPT); 2225 pktopt->ip6po_dest1 = NULL; 2226 } 2227 if (optname == -1 || optname == IPV6_RTHDR) { 2228 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2229 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2230 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2231 rtcache_free(&pktopt->ip6po_route); 2232 } 2233 if (optname == -1 || optname == IPV6_DSTOPTS) { 2234 if (pktopt->ip6po_dest2) 2235 free(pktopt->ip6po_dest2, M_IP6OPT); 2236 pktopt->ip6po_dest2 = NULL; 2237 } 2238 } 2239 2240 #define PKTOPT_EXTHDRCPY(type) \ 2241 do { \ 2242 if (src->type) { \ 2243 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2244 dst->type = malloc(hlen, M_IP6OPT, canwait); \ 2245 if (dst->type == NULL) \ 2246 goto bad; \ 2247 memcpy(dst->type, src->type, hlen); \ 2248 } \ 2249 } while (/*CONSTCOND*/ 0) 2250 2251 static int 2252 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2253 { 2254 dst->ip6po_hlim = src->ip6po_hlim; 2255 dst->ip6po_tclass = src->ip6po_tclass; 2256 dst->ip6po_flags = src->ip6po_flags; 2257 dst->ip6po_minmtu = src->ip6po_minmtu; 2258 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2259 if (src->ip6po_pktinfo) { 2260 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2261 M_IP6OPT, canwait); 2262 if (dst->ip6po_pktinfo == NULL) 2263 goto bad; 2264 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2265 } 2266 if (src->ip6po_nexthop) { 2267 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2268 M_IP6OPT, canwait); 2269 if (dst->ip6po_nexthop == NULL) 2270 goto bad; 2271 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop, 2272 src->ip6po_nexthop->sa_len); 2273 } 2274 PKTOPT_EXTHDRCPY(ip6po_hbh); 2275 PKTOPT_EXTHDRCPY(ip6po_dest1); 2276 PKTOPT_EXTHDRCPY(ip6po_dest2); 2277 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2278 return (0); 2279 2280 bad: 2281 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 2282 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 2283 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 2284 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 2285 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 2286 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 2287 2288 return (ENOBUFS); 2289 } 2290 #undef PKTOPT_EXTHDRCPY 2291 2292 struct ip6_pktopts * 2293 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2294 { 2295 int error; 2296 struct ip6_pktopts *dst; 2297 2298 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2299 if (dst == NULL) 2300 return (NULL); 2301 ip6_initpktopts(dst); 2302 2303 if ((error = copypktopts(dst, src, canwait)) != 0) { 2304 free(dst, M_IP6OPT); 2305 return (NULL); 2306 } 2307 2308 return (dst); 2309 } 2310 2311 void 2312 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2313 { 2314 if (pktopt == NULL) 2315 return; 2316 2317 ip6_clearpktopts(pktopt, -1); 2318 2319 free(pktopt, M_IP6OPT); 2320 } 2321 2322 int 2323 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp, void *v, 2324 size_t l) 2325 { 2326 struct ipv6_mreq mreq; 2327 int error; 2328 struct in6_addr *ia = &mreq.ipv6mr_multiaddr; 2329 struct in_addr *ia4 = (void *)&ia->s6_addr32[3]; 2330 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2331 if (error != 0) 2332 return error; 2333 2334 if (IN6_IS_ADDR_UNSPECIFIED(ia)) { 2335 /* 2336 * We use the unspecified address to specify to accept 2337 * all multicast addresses. Only super user is allowed 2338 * to do this. 2339 */ 2340 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6, 2341 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL)) 2342 return EACCES; 2343 } else if (IN6_IS_ADDR_V4MAPPED(ia)) { 2344 // Don't bother if we are not going to use ifp. 2345 if (l == sizeof(*ia)) { 2346 memcpy(v, ia, l); 2347 return 0; 2348 } 2349 } else if (!IN6_IS_ADDR_MULTICAST(ia)) { 2350 return EINVAL; 2351 } 2352 2353 /* 2354 * If no interface was explicitly specified, choose an 2355 * appropriate one according to the given multicast address. 2356 */ 2357 if (mreq.ipv6mr_interface == 0) { 2358 struct rtentry *rt; 2359 union { 2360 struct sockaddr dst; 2361 struct sockaddr_in dst4; 2362 struct sockaddr_in6 dst6; 2363 } u; 2364 struct route ro; 2365 2366 /* 2367 * Look up the routing table for the 2368 * address, and choose the outgoing interface. 2369 * XXX: is it a good approach? 2370 */ 2371 memset(&ro, 0, sizeof(ro)); 2372 if (IN6_IS_ADDR_V4MAPPED(ia)) 2373 sockaddr_in_init(&u.dst4, ia4, 0); 2374 else 2375 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0); 2376 error = rtcache_setdst(&ro, &u.dst); 2377 if (error != 0) 2378 return error; 2379 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL; 2380 rtcache_free(&ro); 2381 } else { 2382 /* 2383 * If the interface is specified, validate it. 2384 */ 2385 if ((*ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) 2386 return ENXIO; /* XXX EINVAL? */ 2387 } 2388 if (sizeof(*ia) == l) 2389 memcpy(v, ia, l); 2390 else 2391 memcpy(v, ia4, l); 2392 return 0; 2393 } 2394 2395 /* 2396 * Set the IP6 multicast options in response to user setsockopt(). 2397 */ 2398 static int 2399 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p) 2400 { 2401 int error = 0; 2402 u_int loop, ifindex; 2403 struct ipv6_mreq mreq; 2404 struct in6_addr ia; 2405 struct ifnet *ifp; 2406 struct ip6_moptions *im6o = in6p->in6p_moptions; 2407 struct in6_multi_mship *imm; 2408 2409 if (im6o == NULL) { 2410 /* 2411 * No multicast option buffer attached to the pcb; 2412 * allocate one and initialize to default values. 2413 */ 2414 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT); 2415 if (im6o == NULL) 2416 return (ENOBUFS); 2417 in6p->in6p_moptions = im6o; 2418 im6o->im6o_multicast_if_index = 0; 2419 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2420 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2421 LIST_INIT(&im6o->im6o_memberships); 2422 } 2423 2424 switch (sopt->sopt_name) { 2425 2426 case IPV6_MULTICAST_IF: 2427 /* 2428 * Select the interface for outgoing multicast packets. 2429 */ 2430 error = sockopt_get(sopt, &ifindex, sizeof(ifindex)); 2431 if (error != 0) 2432 break; 2433 2434 if (ifindex != 0) { 2435 if ((ifp = if_byindex(ifindex)) == NULL) { 2436 error = ENXIO; /* XXX EINVAL? */ 2437 break; 2438 } 2439 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 2440 error = EADDRNOTAVAIL; 2441 break; 2442 } 2443 } else 2444 ifp = NULL; 2445 im6o->im6o_multicast_if_index = if_get_index(ifp); 2446 break; 2447 2448 case IPV6_MULTICAST_HOPS: 2449 { 2450 /* 2451 * Set the IP6 hoplimit for outgoing multicast packets. 2452 */ 2453 int optval; 2454 2455 error = sockopt_getint(sopt, &optval); 2456 if (error != 0) 2457 break; 2458 2459 if (optval < -1 || optval >= 256) 2460 error = EINVAL; 2461 else if (optval == -1) 2462 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2463 else 2464 im6o->im6o_multicast_hlim = optval; 2465 break; 2466 } 2467 2468 case IPV6_MULTICAST_LOOP: 2469 /* 2470 * Set the loopback flag for outgoing multicast packets. 2471 * Must be zero or one. 2472 */ 2473 error = sockopt_get(sopt, &loop, sizeof(loop)); 2474 if (error != 0) 2475 break; 2476 if (loop > 1) { 2477 error = EINVAL; 2478 break; 2479 } 2480 im6o->im6o_multicast_loop = loop; 2481 break; 2482 2483 case IPV6_JOIN_GROUP: 2484 /* 2485 * Add a multicast group membership. 2486 * Group must be a valid IP6 multicast address. 2487 */ 2488 if ((error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia)))) 2489 return error; 2490 2491 if (IN6_IS_ADDR_V4MAPPED(&ia)) { 2492 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt); 2493 break; 2494 } 2495 /* 2496 * See if we found an interface, and confirm that it 2497 * supports multicast 2498 */ 2499 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2500 error = EADDRNOTAVAIL; 2501 break; 2502 } 2503 2504 if (in6_setscope(&ia, ifp, NULL)) { 2505 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2506 break; 2507 } 2508 2509 /* 2510 * See if the membership already exists. 2511 */ 2512 for (imm = im6o->im6o_memberships.lh_first; 2513 imm != NULL; imm = imm->i6mm_chain.le_next) 2514 if (imm->i6mm_maddr->in6m_ifp == ifp && 2515 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2516 &ia)) 2517 break; 2518 if (imm != NULL) { 2519 error = EADDRINUSE; 2520 break; 2521 } 2522 /* 2523 * Everything looks good; add a new record to the multicast 2524 * address list for the given interface. 2525 */ 2526 imm = in6_joingroup(ifp, &ia, &error, 0); 2527 if (imm == NULL) 2528 break; 2529 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2530 break; 2531 2532 case IPV6_LEAVE_GROUP: 2533 /* 2534 * Drop a multicast group membership. 2535 * Group must be a valid IP6 multicast address. 2536 */ 2537 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2538 if (error != 0) 2539 break; 2540 2541 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) { 2542 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt); 2543 break; 2544 } 2545 /* 2546 * If an interface address was specified, get a pointer 2547 * to its ifnet structure. 2548 */ 2549 if (mreq.ipv6mr_interface != 0) { 2550 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) { 2551 error = ENXIO; /* XXX EINVAL? */ 2552 break; 2553 } 2554 } else 2555 ifp = NULL; 2556 2557 /* Fill in the scope zone ID */ 2558 if (ifp) { 2559 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) { 2560 /* XXX: should not happen */ 2561 error = EADDRNOTAVAIL; 2562 break; 2563 } 2564 } else if (mreq.ipv6mr_interface != 0) { 2565 /* 2566 * XXX: This case would happens when the (positive) 2567 * index is in the valid range, but the corresponding 2568 * interface has been detached dynamically. The above 2569 * check probably avoids such case to happen here, but 2570 * we check it explicitly for safety. 2571 */ 2572 error = EADDRNOTAVAIL; 2573 break; 2574 } else { /* ipv6mr_interface == 0 */ 2575 struct sockaddr_in6 sa6_mc; 2576 2577 /* 2578 * The API spec says as follows: 2579 * If the interface index is specified as 0, the 2580 * system may choose a multicast group membership to 2581 * drop by matching the multicast address only. 2582 * On the other hand, we cannot disambiguate the scope 2583 * zone unless an interface is provided. Thus, we 2584 * check if there's ambiguity with the default scope 2585 * zone as the last resort. 2586 */ 2587 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr, 2588 0, 0, 0); 2589 error = sa6_embedscope(&sa6_mc, ip6_use_defzone); 2590 if (error != 0) 2591 break; 2592 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr; 2593 } 2594 2595 /* 2596 * Find the membership in the membership list. 2597 */ 2598 for (imm = im6o->im6o_memberships.lh_first; 2599 imm != NULL; imm = imm->i6mm_chain.le_next) { 2600 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2601 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2602 &mreq.ipv6mr_multiaddr)) 2603 break; 2604 } 2605 if (imm == NULL) { 2606 /* Unable to resolve interface */ 2607 error = EADDRNOTAVAIL; 2608 break; 2609 } 2610 /* 2611 * Give up the multicast address record to which the 2612 * membership points. 2613 */ 2614 LIST_REMOVE(imm, i6mm_chain); 2615 in6_leavegroup(imm); 2616 break; 2617 2618 default: 2619 error = EOPNOTSUPP; 2620 break; 2621 } 2622 2623 /* 2624 * If all options have default values, no need to keep the mbuf. 2625 */ 2626 if (im6o->im6o_multicast_if_index == 0 && 2627 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2628 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2629 im6o->im6o_memberships.lh_first == NULL) { 2630 free(in6p->in6p_moptions, M_IPMOPTS); 2631 in6p->in6p_moptions = NULL; 2632 } 2633 2634 return (error); 2635 } 2636 2637 /* 2638 * Return the IP6 multicast options in response to user getsockopt(). 2639 */ 2640 static int 2641 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p) 2642 { 2643 u_int optval; 2644 int error; 2645 struct ip6_moptions *im6o = in6p->in6p_moptions; 2646 2647 switch (sopt->sopt_name) { 2648 case IPV6_MULTICAST_IF: 2649 if (im6o == NULL || im6o->im6o_multicast_if_index == 0) 2650 optval = 0; 2651 else 2652 optval = im6o->im6o_multicast_if_index; 2653 2654 error = sockopt_set(sopt, &optval, sizeof(optval)); 2655 break; 2656 2657 case IPV6_MULTICAST_HOPS: 2658 if (im6o == NULL) 2659 optval = ip6_defmcasthlim; 2660 else 2661 optval = im6o->im6o_multicast_hlim; 2662 2663 error = sockopt_set(sopt, &optval, sizeof(optval)); 2664 break; 2665 2666 case IPV6_MULTICAST_LOOP: 2667 if (im6o == NULL) 2668 optval = IPV6_DEFAULT_MULTICAST_LOOP; 2669 else 2670 optval = im6o->im6o_multicast_loop; 2671 2672 error = sockopt_set(sopt, &optval, sizeof(optval)); 2673 break; 2674 2675 default: 2676 error = EOPNOTSUPP; 2677 } 2678 2679 return (error); 2680 } 2681 2682 /* 2683 * Discard the IP6 multicast options. 2684 */ 2685 void 2686 ip6_freemoptions(struct ip6_moptions *im6o) 2687 { 2688 struct in6_multi_mship *imm; 2689 2690 if (im6o == NULL) 2691 return; 2692 2693 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2694 LIST_REMOVE(imm, i6mm_chain); 2695 in6_leavegroup(imm); 2696 } 2697 free(im6o, M_IPMOPTS); 2698 } 2699 2700 /* 2701 * Set IPv6 outgoing packet options based on advanced API. 2702 */ 2703 int 2704 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2705 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto) 2706 { 2707 struct cmsghdr *cm = 0; 2708 2709 if (control == NULL || opt == NULL) 2710 return (EINVAL); 2711 2712 ip6_initpktopts(opt); 2713 if (stickyopt) { 2714 int error; 2715 2716 /* 2717 * If stickyopt is provided, make a local copy of the options 2718 * for this particular packet, then override them by ancillary 2719 * objects. 2720 * XXX: copypktopts() does not copy the cached route to a next 2721 * hop (if any). This is not very good in terms of efficiency, 2722 * but we can allow this since this option should be rarely 2723 * used. 2724 */ 2725 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2726 return (error); 2727 } 2728 2729 /* 2730 * XXX: Currently, we assume all the optional information is stored 2731 * in a single mbuf. 2732 */ 2733 if (control->m_next) 2734 return (EINVAL); 2735 2736 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */ 2737 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2738 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2739 int error; 2740 2741 if (control->m_len < CMSG_LEN(0)) 2742 return (EINVAL); 2743 2744 cm = mtod(control, struct cmsghdr *); 2745 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2746 return (EINVAL); 2747 if (cm->cmsg_level != IPPROTO_IPV6) 2748 continue; 2749 2750 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2751 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2752 if (error) 2753 return (error); 2754 } 2755 2756 return (0); 2757 } 2758 2759 /* 2760 * Set a particular packet option, as a sticky option or an ancillary data 2761 * item. "len" can be 0 only when it's a sticky option. 2762 * We have 4 cases of combination of "sticky" and "cmsg": 2763 * "sticky=0, cmsg=0": impossible 2764 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2765 * "sticky=1, cmsg=0": RFC3542 socket option 2766 * "sticky=1, cmsg=1": RFC2292 socket option 2767 */ 2768 static int 2769 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2770 kauth_cred_t cred, int sticky, int cmsg, int uproto) 2771 { 2772 int minmtupolicy; 2773 int error; 2774 2775 if (!sticky && !cmsg) { 2776 #ifdef DIAGNOSTIC 2777 printf("ip6_setpktopt: impossible case\n"); 2778 #endif 2779 return (EINVAL); 2780 } 2781 2782 /* 2783 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2784 * not be specified in the context of RFC3542. Conversely, 2785 * RFC3542 types should not be specified in the context of RFC2292. 2786 */ 2787 if (!cmsg) { 2788 switch (optname) { 2789 case IPV6_2292PKTINFO: 2790 case IPV6_2292HOPLIMIT: 2791 case IPV6_2292NEXTHOP: 2792 case IPV6_2292HOPOPTS: 2793 case IPV6_2292DSTOPTS: 2794 case IPV6_2292RTHDR: 2795 case IPV6_2292PKTOPTIONS: 2796 return (ENOPROTOOPT); 2797 } 2798 } 2799 if (sticky && cmsg) { 2800 switch (optname) { 2801 case IPV6_PKTINFO: 2802 case IPV6_HOPLIMIT: 2803 case IPV6_NEXTHOP: 2804 case IPV6_HOPOPTS: 2805 case IPV6_DSTOPTS: 2806 case IPV6_RTHDRDSTOPTS: 2807 case IPV6_RTHDR: 2808 case IPV6_USE_MIN_MTU: 2809 case IPV6_DONTFRAG: 2810 case IPV6_OTCLASS: 2811 case IPV6_TCLASS: 2812 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */ 2813 return (ENOPROTOOPT); 2814 } 2815 } 2816 2817 switch (optname) { 2818 #ifdef RFC2292 2819 case IPV6_2292PKTINFO: 2820 #endif 2821 case IPV6_PKTINFO: 2822 { 2823 struct in6_pktinfo *pktinfo; 2824 2825 if (len != sizeof(struct in6_pktinfo)) 2826 return (EINVAL); 2827 2828 pktinfo = (struct in6_pktinfo *)buf; 2829 2830 /* 2831 * An application can clear any sticky IPV6_PKTINFO option by 2832 * doing a "regular" setsockopt with ipi6_addr being 2833 * in6addr_any and ipi6_ifindex being zero. 2834 * [RFC 3542, Section 6] 2835 */ 2836 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2837 pktinfo->ipi6_ifindex == 0 && 2838 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2839 ip6_clearpktopts(opt, optname); 2840 break; 2841 } 2842 2843 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2844 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2845 return (EINVAL); 2846 } 2847 2848 /* Validate the interface index if specified. */ 2849 if (pktinfo->ipi6_ifindex) { 2850 struct ifnet *ifp; 2851 int s = pserialize_read_enter(); 2852 ifp = if_byindex(pktinfo->ipi6_ifindex); 2853 if (ifp == NULL) { 2854 pserialize_read_exit(s); 2855 return ENXIO; 2856 } 2857 pserialize_read_exit(s); 2858 } 2859 2860 /* 2861 * We store the address anyway, and let in6_selectsrc() 2862 * validate the specified address. This is because ipi6_addr 2863 * may not have enough information about its scope zone, and 2864 * we may need additional information (such as outgoing 2865 * interface or the scope zone of a destination address) to 2866 * disambiguate the scope. 2867 * XXX: the delay of the validation may confuse the 2868 * application when it is used as a sticky option. 2869 */ 2870 if (opt->ip6po_pktinfo == NULL) { 2871 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2872 M_IP6OPT, M_NOWAIT); 2873 if (opt->ip6po_pktinfo == NULL) 2874 return (ENOBUFS); 2875 } 2876 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo)); 2877 break; 2878 } 2879 2880 #ifdef RFC2292 2881 case IPV6_2292HOPLIMIT: 2882 #endif 2883 case IPV6_HOPLIMIT: 2884 { 2885 int *hlimp; 2886 2887 /* 2888 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2889 * to simplify the ordering among hoplimit options. 2890 */ 2891 if (optname == IPV6_HOPLIMIT && sticky) 2892 return (ENOPROTOOPT); 2893 2894 if (len != sizeof(int)) 2895 return (EINVAL); 2896 hlimp = (int *)buf; 2897 if (*hlimp < -1 || *hlimp > 255) 2898 return (EINVAL); 2899 2900 opt->ip6po_hlim = *hlimp; 2901 break; 2902 } 2903 2904 case IPV6_OTCLASS: 2905 if (len != sizeof(u_int8_t)) 2906 return (EINVAL); 2907 2908 opt->ip6po_tclass = *(u_int8_t *)buf; 2909 break; 2910 2911 case IPV6_TCLASS: 2912 { 2913 int tclass; 2914 2915 if (len != sizeof(int)) 2916 return (EINVAL); 2917 tclass = *(int *)buf; 2918 if (tclass < -1 || tclass > 255) 2919 return (EINVAL); 2920 2921 opt->ip6po_tclass = tclass; 2922 break; 2923 } 2924 2925 #ifdef RFC2292 2926 case IPV6_2292NEXTHOP: 2927 #endif 2928 case IPV6_NEXTHOP: 2929 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 2930 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 2931 if (error) 2932 return (error); 2933 2934 if (len == 0) { /* just remove the option */ 2935 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2936 break; 2937 } 2938 2939 /* check if cmsg_len is large enough for sa_len */ 2940 if (len < sizeof(struct sockaddr) || len < *buf) 2941 return (EINVAL); 2942 2943 switch (((struct sockaddr *)buf)->sa_family) { 2944 case AF_INET6: 2945 { 2946 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2947 2948 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2949 return (EINVAL); 2950 2951 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2952 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2953 return (EINVAL); 2954 } 2955 if ((error = sa6_embedscope(sa6, ip6_use_defzone)) 2956 != 0) { 2957 return (error); 2958 } 2959 break; 2960 } 2961 case AF_LINK: /* eventually be supported? */ 2962 default: 2963 return (EAFNOSUPPORT); 2964 } 2965 2966 /* turn off the previous option, then set the new option. */ 2967 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2968 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2969 if (opt->ip6po_nexthop == NULL) 2970 return (ENOBUFS); 2971 memcpy(opt->ip6po_nexthop, buf, *buf); 2972 break; 2973 2974 #ifdef RFC2292 2975 case IPV6_2292HOPOPTS: 2976 #endif 2977 case IPV6_HOPOPTS: 2978 { 2979 struct ip6_hbh *hbh; 2980 int hbhlen; 2981 2982 /* 2983 * XXX: We don't allow a non-privileged user to set ANY HbH 2984 * options, since per-option restriction has too much 2985 * overhead. 2986 */ 2987 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 2988 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 2989 if (error) 2990 return (error); 2991 2992 if (len == 0) { 2993 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2994 break; /* just remove the option */ 2995 } 2996 2997 /* message length validation */ 2998 if (len < sizeof(struct ip6_hbh)) 2999 return (EINVAL); 3000 hbh = (struct ip6_hbh *)buf; 3001 hbhlen = (hbh->ip6h_len + 1) << 3; 3002 if (len != hbhlen) 3003 return (EINVAL); 3004 3005 /* turn off the previous option, then set the new option. */ 3006 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3007 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3008 if (opt->ip6po_hbh == NULL) 3009 return (ENOBUFS); 3010 memcpy(opt->ip6po_hbh, hbh, hbhlen); 3011 3012 break; 3013 } 3014 3015 #ifdef RFC2292 3016 case IPV6_2292DSTOPTS: 3017 #endif 3018 case IPV6_DSTOPTS: 3019 case IPV6_RTHDRDSTOPTS: 3020 { 3021 struct ip6_dest *dest, **newdest = NULL; 3022 int destlen; 3023 3024 /* XXX: see the comment for IPV6_HOPOPTS */ 3025 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 3026 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 3027 if (error) 3028 return (error); 3029 3030 if (len == 0) { 3031 ip6_clearpktopts(opt, optname); 3032 break; /* just remove the option */ 3033 } 3034 3035 /* message length validation */ 3036 if (len < sizeof(struct ip6_dest)) 3037 return (EINVAL); 3038 dest = (struct ip6_dest *)buf; 3039 destlen = (dest->ip6d_len + 1) << 3; 3040 if (len != destlen) 3041 return (EINVAL); 3042 /* 3043 * Determine the position that the destination options header 3044 * should be inserted; before or after the routing header. 3045 */ 3046 switch (optname) { 3047 case IPV6_2292DSTOPTS: 3048 /* 3049 * The old advanced API is ambiguous on this point. 3050 * Our approach is to determine the position based 3051 * according to the existence of a routing header. 3052 * Note, however, that this depends on the order of the 3053 * extension headers in the ancillary data; the 1st 3054 * part of the destination options header must appear 3055 * before the routing header in the ancillary data, 3056 * too. 3057 * RFC3542 solved the ambiguity by introducing 3058 * separate ancillary data or option types. 3059 */ 3060 if (opt->ip6po_rthdr == NULL) 3061 newdest = &opt->ip6po_dest1; 3062 else 3063 newdest = &opt->ip6po_dest2; 3064 break; 3065 case IPV6_RTHDRDSTOPTS: 3066 newdest = &opt->ip6po_dest1; 3067 break; 3068 case IPV6_DSTOPTS: 3069 newdest = &opt->ip6po_dest2; 3070 break; 3071 } 3072 3073 /* turn off the previous option, then set the new option. */ 3074 ip6_clearpktopts(opt, optname); 3075 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3076 if (*newdest == NULL) 3077 return (ENOBUFS); 3078 memcpy(*newdest, dest, destlen); 3079 3080 break; 3081 } 3082 3083 #ifdef RFC2292 3084 case IPV6_2292RTHDR: 3085 #endif 3086 case IPV6_RTHDR: 3087 { 3088 struct ip6_rthdr *rth; 3089 int rthlen; 3090 3091 if (len == 0) { 3092 ip6_clearpktopts(opt, IPV6_RTHDR); 3093 break; /* just remove the option */ 3094 } 3095 3096 /* message length validation */ 3097 if (len < sizeof(struct ip6_rthdr)) 3098 return (EINVAL); 3099 rth = (struct ip6_rthdr *)buf; 3100 rthlen = (rth->ip6r_len + 1) << 3; 3101 if (len != rthlen) 3102 return (EINVAL); 3103 switch (rth->ip6r_type) { 3104 case IPV6_RTHDR_TYPE_0: 3105 if (rth->ip6r_len == 0) /* must contain one addr */ 3106 return (EINVAL); 3107 if (rth->ip6r_len % 2) /* length must be even */ 3108 return (EINVAL); 3109 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3110 return (EINVAL); 3111 break; 3112 default: 3113 return (EINVAL); /* not supported */ 3114 } 3115 /* turn off the previous option */ 3116 ip6_clearpktopts(opt, IPV6_RTHDR); 3117 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3118 if (opt->ip6po_rthdr == NULL) 3119 return (ENOBUFS); 3120 memcpy(opt->ip6po_rthdr, rth, rthlen); 3121 break; 3122 } 3123 3124 case IPV6_USE_MIN_MTU: 3125 if (len != sizeof(int)) 3126 return (EINVAL); 3127 minmtupolicy = *(int *)buf; 3128 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3129 minmtupolicy != IP6PO_MINMTU_DISABLE && 3130 minmtupolicy != IP6PO_MINMTU_ALL) { 3131 return (EINVAL); 3132 } 3133 opt->ip6po_minmtu = minmtupolicy; 3134 break; 3135 3136 case IPV6_DONTFRAG: 3137 if (len != sizeof(int)) 3138 return (EINVAL); 3139 3140 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3141 /* 3142 * we ignore this option for TCP sockets. 3143 * (RFC3542 leaves this case unspecified.) 3144 */ 3145 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3146 } else 3147 opt->ip6po_flags |= IP6PO_DONTFRAG; 3148 break; 3149 3150 case IPV6_PREFER_TEMPADDR: 3151 { 3152 int preftemp; 3153 3154 if (len != sizeof(int)) 3155 return (EINVAL); 3156 preftemp = *(int *)buf; 3157 switch (preftemp) { 3158 case IP6PO_TEMPADDR_SYSTEM: 3159 case IP6PO_TEMPADDR_NOTPREFER: 3160 case IP6PO_TEMPADDR_PREFER: 3161 break; 3162 default: 3163 return (EINVAL); 3164 } 3165 opt->ip6po_prefer_tempaddr = preftemp; 3166 break; 3167 } 3168 3169 default: 3170 return (ENOPROTOOPT); 3171 } /* end of switch */ 3172 3173 return (0); 3174 } 3175 3176 /* 3177 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3178 * packet to the input queue of a specified interface. Note that this 3179 * calls the output routine of the loopback "driver", but with an interface 3180 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 3181 */ 3182 void 3183 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, 3184 const struct sockaddr_in6 *dst) 3185 { 3186 struct mbuf *copym; 3187 struct ip6_hdr *ip6; 3188 3189 copym = m_copy(m, 0, M_COPYALL); 3190 if (copym == NULL) 3191 return; 3192 3193 /* 3194 * Make sure to deep-copy IPv6 header portion in case the data 3195 * is in an mbuf cluster, so that we can safely override the IPv6 3196 * header portion later. 3197 */ 3198 if ((copym->m_flags & M_EXT) != 0 || 3199 copym->m_len < sizeof(struct ip6_hdr)) { 3200 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3201 if (copym == NULL) 3202 return; 3203 } 3204 3205 #ifdef DIAGNOSTIC 3206 if (copym->m_len < sizeof(*ip6)) { 3207 m_freem(copym); 3208 return; 3209 } 3210 #endif 3211 3212 ip6 = mtod(copym, struct ip6_hdr *); 3213 /* 3214 * clear embedded scope identifiers if necessary. 3215 * in6_clearscope will touch the addresses only when necessary. 3216 */ 3217 in6_clearscope(&ip6->ip6_src); 3218 in6_clearscope(&ip6->ip6_dst); 3219 3220 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL); 3221 } 3222 3223 /* 3224 * Chop IPv6 header off from the payload. 3225 */ 3226 static int 3227 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3228 { 3229 struct mbuf *mh; 3230 struct ip6_hdr *ip6; 3231 3232 ip6 = mtod(m, struct ip6_hdr *); 3233 if (m->m_len > sizeof(*ip6)) { 3234 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3235 if (mh == 0) { 3236 m_freem(m); 3237 return ENOBUFS; 3238 } 3239 M_MOVE_PKTHDR(mh, m); 3240 MH_ALIGN(mh, sizeof(*ip6)); 3241 m->m_len -= sizeof(*ip6); 3242 m->m_data += sizeof(*ip6); 3243 mh->m_next = m; 3244 m = mh; 3245 m->m_len = sizeof(*ip6); 3246 bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6)); 3247 } 3248 exthdrs->ip6e_ip6 = m; 3249 return 0; 3250 } 3251 3252 /* 3253 * Compute IPv6 extension header length. 3254 */ 3255 int 3256 ip6_optlen(struct in6pcb *in6p) 3257 { 3258 int len; 3259 3260 if (!in6p->in6p_outputopts) 3261 return 0; 3262 3263 len = 0; 3264 #define elen(x) \ 3265 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3266 3267 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3268 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3269 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3270 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3271 return len; 3272 #undef elen 3273 } 3274 3275 /* 3276 * Ensure sending address is valid. 3277 * Returns 0 on success, -1 if an error should be sent back or 1 3278 * if the packet could be dropped without error (protocol dependent). 3279 */ 3280 static int 3281 ip6_ifaddrvalid(const struct in6_addr *addr) 3282 { 3283 struct sockaddr_in6 sin6; 3284 int s, error; 3285 struct ifaddr *ifa; 3286 struct in6_ifaddr *ia6; 3287 3288 if (IN6_IS_ADDR_UNSPECIFIED(addr)) 3289 return 0; 3290 3291 memset(&sin6, 0, sizeof(sin6)); 3292 sin6.sin6_family = AF_INET6; 3293 sin6.sin6_len = sizeof(sin6); 3294 sin6.sin6_addr = *addr; 3295 3296 s = pserialize_read_enter(); 3297 ifa = ifa_ifwithaddr(sin6tosa(&sin6)); 3298 if ((ia6 = ifatoia6(ifa)) == NULL || 3299 ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED)) 3300 error = -1; 3301 else if (ia6->ia6_flags & (IN6_IFF_TENTATIVE | IN6_IFF_DETACHED)) 3302 error = 1; 3303 else 3304 error = 0; 3305 pserialize_read_exit(s); 3306 3307 return error; 3308 } 3309