1 /* $NetBSD: ip6_output.c,v 1.95 2006/03/05 23:47:08 rpaulo Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.95 2006/03/05 23:47:08 rpaulo Exp $"); 66 67 #include "opt_inet.h" 68 #include "opt_ipsec.h" 69 #include "opt_pfil_hooks.h" 70 71 #include <sys/param.h> 72 #include <sys/malloc.h> 73 #include <sys/mbuf.h> 74 #include <sys/errno.h> 75 #include <sys/protosw.h> 76 #include <sys/socket.h> 77 #include <sys/socketvar.h> 78 #include <sys/systm.h> 79 #include <sys/proc.h> 80 81 #include <net/if.h> 82 #include <net/route.h> 83 #ifdef PFIL_HOOKS 84 #include <net/pfil.h> 85 #endif 86 87 #include <netinet/in.h> 88 #include <netinet/in_var.h> 89 #include <netinet/ip6.h> 90 #include <netinet/icmp6.h> 91 #include <netinet/in_offload.h> 92 #include <netinet6/ip6_var.h> 93 #include <netinet6/in6_pcb.h> 94 #include <netinet6/nd6.h> 95 #include <netinet6/ip6protosw.h> 96 #include <netinet6/scope6_var.h> 97 98 #ifdef IPSEC 99 #include <netinet6/ipsec.h> 100 #include <netkey/key.h> 101 #endif /* IPSEC */ 102 103 #include <net/net_osdep.h> 104 105 #ifdef PFIL_HOOKS 106 extern struct pfil_head inet6_pfil_hook; /* XXX */ 107 #endif 108 109 struct ip6_exthdrs { 110 struct mbuf *ip6e_ip6; 111 struct mbuf *ip6e_hbh; 112 struct mbuf *ip6e_dest1; 113 struct mbuf *ip6e_rthdr; 114 struct mbuf *ip6e_dest2; 115 }; 116 117 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 118 struct socket *)); 119 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 120 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 121 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 122 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 123 struct ip6_frag **)); 124 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 125 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 126 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *, 127 struct ifnet *, struct in6_addr *, u_long *, int *)); 128 129 #define IN6_NEED_CHECKSUM(ifp, csum_flags) \ 130 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \ 131 (((csum_flags) & M_CSUM_UDPv6) != 0 && udp_do_loopback_cksum) || \ 132 (((csum_flags) & M_CSUM_TCPv6) != 0 && tcp_do_loopback_cksum))) 133 134 /* 135 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 136 * header (with pri, len, nxt, hlim, src, dst). 137 * This function may modify ver and hlim only. 138 * The mbuf chain containing the packet will be freed. 139 * The mbuf opt, if present, will not be freed. 140 * 141 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 142 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 143 * which is rt_rmx.rmx_mtu. 144 */ 145 int 146 ip6_output(m0, opt, ro, flags, im6o, so, ifpp) 147 struct mbuf *m0; 148 struct ip6_pktopts *opt; 149 struct route_in6 *ro; 150 int flags; 151 struct ip6_moptions *im6o; 152 struct socket *so; 153 struct ifnet **ifpp; /* XXX: just for statistics */ 154 { 155 struct ip6_hdr *ip6, *mhip6; 156 struct ifnet *ifp, *origifp; 157 struct mbuf *m = m0; 158 int hlen, tlen, len, off; 159 struct route_in6 ip6route; 160 struct rtentry *rt = NULL; 161 struct sockaddr_in6 *dst, src_sa, dst_sa; 162 int error = 0; 163 struct in6_ifaddr *ia = NULL; 164 u_long mtu; 165 int alwaysfrag, dontfrag; 166 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 167 struct ip6_exthdrs exthdrs; 168 struct in6_addr finaldst, src0, dst0; 169 u_int32_t zone; 170 struct route_in6 *ro_pmtu = NULL; 171 int hdrsplit = 0; 172 int needipsec = 0; 173 #ifdef IPSEC 174 int needipsectun = 0; 175 struct secpolicy *sp = NULL; 176 177 ip6 = mtod(m, struct ip6_hdr *); 178 #endif /* IPSEC */ 179 180 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr)); 181 182 #define MAKE_EXTHDR(hp, mp) \ 183 do { \ 184 if (hp) { \ 185 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 186 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 187 ((eh)->ip6e_len + 1) << 3); \ 188 if (error) \ 189 goto freehdrs; \ 190 } \ 191 } while (/*CONSTCOND*/ 0) 192 193 bzero(&exthdrs, sizeof(exthdrs)); 194 if (opt) { 195 /* Hop-by-Hop options header */ 196 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 197 /* Destination options header(1st part) */ 198 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 199 /* Routing header */ 200 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 201 /* Destination options header(2nd part) */ 202 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 203 } 204 205 #ifdef IPSEC 206 if ((flags & IPV6_FORWARDING) != 0) { 207 needipsec = 0; 208 goto skippolicycheck; 209 } 210 211 /* get a security policy for this packet */ 212 if (so == NULL) 213 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 214 else { 215 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp, 216 IPSEC_DIR_OUTBOUND)) { 217 needipsec = 0; 218 goto skippolicycheck; 219 } 220 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 221 } 222 223 if (sp == NULL) { 224 ipsec6stat.out_inval++; 225 goto freehdrs; 226 } 227 228 error = 0; 229 230 /* check policy */ 231 switch (sp->policy) { 232 case IPSEC_POLICY_DISCARD: 233 /* 234 * This packet is just discarded. 235 */ 236 ipsec6stat.out_polvio++; 237 goto freehdrs; 238 239 case IPSEC_POLICY_BYPASS: 240 case IPSEC_POLICY_NONE: 241 /* no need to do IPsec. */ 242 needipsec = 0; 243 break; 244 245 case IPSEC_POLICY_IPSEC: 246 if (sp->req == NULL) { 247 /* XXX should be panic ? */ 248 printf("ip6_output: No IPsec request specified.\n"); 249 error = EINVAL; 250 goto freehdrs; 251 } 252 needipsec = 1; 253 break; 254 255 case IPSEC_POLICY_ENTRUST: 256 default: 257 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 258 } 259 260 skippolicycheck:; 261 #endif /* IPSEC */ 262 263 if (needipsec && 264 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 265 in6_delayed_cksum(m); 266 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 267 } 268 269 /* 270 * Calculate the total length of the extension header chain. 271 * Keep the length of the unfragmentable part for fragmentation. 272 */ 273 optlen = 0; 274 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 275 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 276 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 277 unfragpartlen = optlen + sizeof(struct ip6_hdr); 278 /* NOTE: we don't add AH/ESP length here. do that later. */ 279 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 280 281 /* 282 * If we need IPsec, or there is at least one extension header, 283 * separate IP6 header from the payload. 284 */ 285 if ((needipsec || optlen) && !hdrsplit) { 286 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 287 m = NULL; 288 goto freehdrs; 289 } 290 m = exthdrs.ip6e_ip6; 291 hdrsplit++; 292 } 293 294 /* adjust pointer */ 295 ip6 = mtod(m, struct ip6_hdr *); 296 297 /* adjust mbuf packet header length */ 298 m->m_pkthdr.len += optlen; 299 plen = m->m_pkthdr.len - sizeof(*ip6); 300 301 /* If this is a jumbo payload, insert a jumbo payload option. */ 302 if (plen > IPV6_MAXPACKET) { 303 if (!hdrsplit) { 304 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 305 m = NULL; 306 goto freehdrs; 307 } 308 m = exthdrs.ip6e_ip6; 309 hdrsplit++; 310 } 311 /* adjust pointer */ 312 ip6 = mtod(m, struct ip6_hdr *); 313 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 314 goto freehdrs; 315 optlen += 8; /* XXX JUMBOOPTLEN */ 316 ip6->ip6_plen = 0; 317 } else 318 ip6->ip6_plen = htons(plen); 319 320 /* 321 * Concatenate headers and fill in next header fields. 322 * Here we have, on "m" 323 * IPv6 payload 324 * and we insert headers accordingly. Finally, we should be getting: 325 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 326 * 327 * during the header composing process, "m" points to IPv6 header. 328 * "mprev" points to an extension header prior to esp. 329 */ 330 { 331 u_char *nexthdrp = &ip6->ip6_nxt; 332 struct mbuf *mprev = m; 333 334 /* 335 * we treat dest2 specially. this makes IPsec processing 336 * much easier. the goal here is to make mprev point the 337 * mbuf prior to dest2. 338 * 339 * result: IPv6 dest2 payload 340 * m and mprev will point to IPv6 header. 341 */ 342 if (exthdrs.ip6e_dest2) { 343 if (!hdrsplit) 344 panic("assumption failed: hdr not split"); 345 exthdrs.ip6e_dest2->m_next = m->m_next; 346 m->m_next = exthdrs.ip6e_dest2; 347 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 348 ip6->ip6_nxt = IPPROTO_DSTOPTS; 349 } 350 351 #define MAKE_CHAIN(m, mp, p, i)\ 352 do {\ 353 if (m) {\ 354 if (!hdrsplit) \ 355 panic("assumption failed: hdr not split"); \ 356 *mtod((m), u_char *) = *(p);\ 357 *(p) = (i);\ 358 p = mtod((m), u_char *);\ 359 (m)->m_next = (mp)->m_next;\ 360 (mp)->m_next = (m);\ 361 (mp) = (m);\ 362 }\ 363 } while (/*CONSTCOND*/ 0) 364 /* 365 * result: IPv6 hbh dest1 rthdr dest2 payload 366 * m will point to IPv6 header. mprev will point to the 367 * extension header prior to dest2 (rthdr in the above case). 368 */ 369 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 370 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 371 IPPROTO_DSTOPTS); 372 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 373 IPPROTO_ROUTING); 374 375 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, 376 sizeof(struct ip6_hdr) + optlen); 377 378 #ifdef IPSEC 379 if (!needipsec) 380 goto skip_ipsec2; 381 382 /* 383 * pointers after IPsec headers are not valid any more. 384 * other pointers need a great care too. 385 * (IPsec routines should not mangle mbufs prior to AH/ESP) 386 */ 387 exthdrs.ip6e_dest2 = NULL; 388 389 { 390 struct ip6_rthdr *rh = NULL; 391 int segleft_org = 0; 392 struct ipsec_output_state state; 393 394 if (exthdrs.ip6e_rthdr) { 395 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 396 segleft_org = rh->ip6r_segleft; 397 rh->ip6r_segleft = 0; 398 } 399 400 bzero(&state, sizeof(state)); 401 state.m = m; 402 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 403 &needipsectun); 404 m = state.m; 405 if (error) { 406 /* mbuf is already reclaimed in ipsec6_output_trans. */ 407 m = NULL; 408 switch (error) { 409 case EHOSTUNREACH: 410 case ENETUNREACH: 411 case EMSGSIZE: 412 case ENOBUFS: 413 case ENOMEM: 414 break; 415 default: 416 printf("ip6_output (ipsec): error code %d\n", error); 417 /* FALLTHROUGH */ 418 case ENOENT: 419 /* don't show these error codes to the user */ 420 error = 0; 421 break; 422 } 423 goto bad; 424 } 425 if (exthdrs.ip6e_rthdr) { 426 /* ah6_output doesn't modify mbuf chain */ 427 rh->ip6r_segleft = segleft_org; 428 } 429 } 430 skip_ipsec2:; 431 #endif 432 } 433 434 /* 435 * If there is a routing header, replace destination address field 436 * with the first hop of the routing header. 437 */ 438 if (exthdrs.ip6e_rthdr) { 439 struct ip6_rthdr *rh; 440 struct ip6_rthdr0 *rh0; 441 struct in6_addr *addr; 442 struct sockaddr_in6 sa; 443 444 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 445 struct ip6_rthdr *)); 446 finaldst = ip6->ip6_dst; 447 switch (rh->ip6r_type) { 448 case IPV6_RTHDR_TYPE_0: 449 rh0 = (struct ip6_rthdr0 *)rh; 450 addr = (struct in6_addr *)(rh0 + 1); 451 452 /* 453 * construct a sockaddr_in6 form of 454 * the first hop. 455 * 456 * XXX: we may not have enough 457 * information about its scope zone; 458 * there is no standard API to pass 459 * the information from the 460 * application. 461 */ 462 bzero(&sa, sizeof(sa)); 463 sa.sin6_family = AF_INET6; 464 sa.sin6_len = sizeof(sa); 465 sa.sin6_addr = addr[0]; 466 if ((error = sa6_embedscope(&sa, 467 ip6_use_defzone)) != 0) { 468 goto bad; 469 } 470 ip6->ip6_dst = sa.sin6_addr; 471 (void)memmove(&addr[0], &addr[1], 472 sizeof(struct in6_addr) * 473 (rh0->ip6r0_segleft - 1)); 474 addr[rh0->ip6r0_segleft - 1] = finaldst; 475 /* XXX */ 476 in6_clearscope(addr + rh0->ip6r0_segleft - 1); 477 break; 478 default: /* is it possible? */ 479 error = EINVAL; 480 goto bad; 481 } 482 } 483 484 /* Source address validation */ 485 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 486 (flags & IPV6_UNSPECSRC) == 0) { 487 error = EOPNOTSUPP; 488 ip6stat.ip6s_badscope++; 489 goto bad; 490 } 491 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 492 error = EOPNOTSUPP; 493 ip6stat.ip6s_badscope++; 494 goto bad; 495 } 496 497 ip6stat.ip6s_localout++; 498 499 /* 500 * Route packet. 501 */ 502 /* initialize cached route */ 503 if (ro == 0) { 504 ro = &ip6route; 505 bzero((caddr_t)ro, sizeof(*ro)); 506 } 507 ro_pmtu = ro; 508 if (opt && opt->ip6po_rthdr) 509 ro = &opt->ip6po_route; 510 dst = (struct sockaddr_in6 *)&ro->ro_dst; 511 512 #ifdef notyet /* this will be available with the RFC3542 support */ 513 /* 514 * if specified, try to fill in the traffic class field. 515 * do not override if a non-zero value is already set. 516 * we check the diffserv field and the ecn field separately. 517 */ 518 if (opt && opt->ip6po_tclass >= 0) { 519 int mask = 0; 520 521 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 522 mask |= 0xfc; 523 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 524 mask |= 0x03; 525 if (mask != 0) 526 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 527 } 528 #endif 529 530 /* fill in or override the hop limit field, if necessary. */ 531 if (opt && opt->ip6po_hlim != -1) 532 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 533 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 534 if (im6o != NULL) 535 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 536 else 537 ip6->ip6_hlim = ip6_defmcasthlim; 538 } 539 540 #ifdef IPSEC 541 if (needipsec && needipsectun) { 542 struct ipsec_output_state state; 543 544 /* 545 * All the extension headers will become inaccessible 546 * (since they can be encrypted). 547 * Don't panic, we need no more updates to extension headers 548 * on inner IPv6 packet (since they are now encapsulated). 549 * 550 * IPv6 [ESP|AH] IPv6 [extension headers] payload 551 */ 552 bzero(&exthdrs, sizeof(exthdrs)); 553 exthdrs.ip6e_ip6 = m; 554 555 bzero(&state, sizeof(state)); 556 state.m = m; 557 state.ro = (struct route *)ro; 558 state.dst = (struct sockaddr *)dst; 559 560 error = ipsec6_output_tunnel(&state, sp, flags); 561 562 m = state.m; 563 ro_pmtu = ro = (struct route_in6 *)state.ro; 564 dst = (struct sockaddr_in6 *)state.dst; 565 if (error) { 566 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 567 m0 = m = NULL; 568 m = NULL; 569 switch (error) { 570 case EHOSTUNREACH: 571 case ENETUNREACH: 572 case EMSGSIZE: 573 case ENOBUFS: 574 case ENOMEM: 575 break; 576 default: 577 printf("ip6_output (ipsec): error code %d\n", error); 578 /* FALLTHROUGH */ 579 case ENOENT: 580 /* don't show these error codes to the user */ 581 error = 0; 582 break; 583 } 584 goto bad; 585 } 586 587 exthdrs.ip6e_ip6 = m; 588 } 589 #endif /* IPSEC */ 590 591 /* adjust pointer */ 592 ip6 = mtod(m, struct ip6_hdr *); 593 594 bzero(&dst_sa, sizeof(dst_sa)); 595 dst_sa.sin6_family = AF_INET6; 596 dst_sa.sin6_len = sizeof(dst_sa); 597 dst_sa.sin6_addr = ip6->ip6_dst; 598 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, &rt, 0)) 599 != 0) { 600 switch (error) { 601 case EHOSTUNREACH: 602 ip6stat.ip6s_noroute++; 603 break; 604 case EADDRNOTAVAIL: 605 default: 606 break; /* XXX statistics? */ 607 } 608 if (ifp != NULL) 609 in6_ifstat_inc(ifp, ifs6_out_discard); 610 goto bad; 611 } 612 if (rt == NULL) { 613 /* 614 * If in6_selectroute() does not return a route entry, 615 * dst may not have been updated. 616 */ 617 *dst = dst_sa; /* XXX */ 618 } 619 620 /* 621 * then rt (for unicast) and ifp must be non-NULL valid values. 622 */ 623 if ((flags & IPV6_FORWARDING) == 0) { 624 /* XXX: the FORWARDING flag can be set for mrouting. */ 625 in6_ifstat_inc(ifp, ifs6_out_request); 626 } 627 if (rt != NULL) { 628 ia = (struct in6_ifaddr *)(rt->rt_ifa); 629 rt->rt_use++; 630 } 631 632 /* 633 * The outgoing interface must be in the zone of source and 634 * destination addresses. We should use ia_ifp to support the 635 * case of sending packets to an address of our own. 636 */ 637 if (ia != NULL && ia->ia_ifp) 638 origifp = ia->ia_ifp; 639 else 640 origifp = ifp; 641 642 src0 = ip6->ip6_src; 643 if (in6_setscope(&src0, origifp, &zone)) 644 goto badscope; 645 bzero(&src_sa, sizeof(src_sa)); 646 src_sa.sin6_family = AF_INET6; 647 src_sa.sin6_len = sizeof(src_sa); 648 src_sa.sin6_addr = ip6->ip6_src; 649 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 650 goto badscope; 651 652 dst0 = ip6->ip6_dst; 653 if (in6_setscope(&dst0, origifp, &zone)) 654 goto badscope; 655 /* re-initialize to be sure */ 656 bzero(&dst_sa, sizeof(dst_sa)); 657 dst_sa.sin6_family = AF_INET6; 658 dst_sa.sin6_len = sizeof(dst_sa); 659 dst_sa.sin6_addr = ip6->ip6_dst; 660 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) 661 goto badscope; 662 663 /* scope check is done. */ 664 goto routefound; 665 666 badscope: 667 ip6stat.ip6s_badscope++; 668 in6_ifstat_inc(origifp, ifs6_out_discard); 669 if (error == 0) 670 error = EHOSTUNREACH; /* XXX */ 671 goto bad; 672 673 routefound: 674 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 675 #ifdef notyet /* this will be available with the RFC3542 support */ 676 if (opt && opt->ip6po_nextroute.ro_rt) { 677 /* 678 * The nexthop is explicitly specified by the 679 * application. We assume the next hop is an IPv6 680 * address. 681 */ 682 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 683 } else 684 #endif 685 if ((rt->rt_flags & RTF_GATEWAY)) 686 dst = (struct sockaddr_in6 *)rt->rt_gateway; 687 } 688 689 /* 690 * XXXXXX: original code follows: 691 */ 692 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 693 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 694 else { 695 struct in6_multi *in6m; 696 697 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 698 699 in6_ifstat_inc(ifp, ifs6_out_mcast); 700 701 /* 702 * Confirm that the outgoing interface supports multicast. 703 */ 704 if (!(ifp->if_flags & IFF_MULTICAST)) { 705 ip6stat.ip6s_noroute++; 706 in6_ifstat_inc(ifp, ifs6_out_discard); 707 error = ENETUNREACH; 708 goto bad; 709 } 710 711 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 712 if (in6m != NULL && 713 (im6o == NULL || im6o->im6o_multicast_loop)) { 714 /* 715 * If we belong to the destination multicast group 716 * on the outgoing interface, and the caller did not 717 * forbid loopback, loop back a copy. 718 */ 719 ip6_mloopback(ifp, m, dst); 720 } else { 721 /* 722 * If we are acting as a multicast router, perform 723 * multicast forwarding as if the packet had just 724 * arrived on the interface to which we are about 725 * to send. The multicast forwarding function 726 * recursively calls this function, using the 727 * IPV6_FORWARDING flag to prevent infinite recursion. 728 * 729 * Multicasts that are looped back by ip6_mloopback(), 730 * above, will be forwarded by the ip6_input() routine, 731 * if necessary. 732 */ 733 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 734 if (ip6_mforward(ip6, ifp, m) != 0) { 735 m_freem(m); 736 goto done; 737 } 738 } 739 } 740 /* 741 * Multicasts with a hoplimit of zero may be looped back, 742 * above, but must not be transmitted on a network. 743 * Also, multicasts addressed to the loopback interface 744 * are not sent -- the above call to ip6_mloopback() will 745 * loop back a copy if this host actually belongs to the 746 * destination group on the loopback interface. 747 */ 748 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 749 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 750 m_freem(m); 751 goto done; 752 } 753 } 754 755 /* 756 * Fill the outgoing inteface to tell the upper layer 757 * to increment per-interface statistics. 758 */ 759 if (ifpp) 760 *ifpp = ifp; 761 762 /* Determine path MTU. */ 763 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 764 &alwaysfrag)) != 0) 765 goto bad; 766 #ifdef IPSEC 767 if (needipsectun) 768 mtu = IPV6_MMTU; 769 #endif 770 771 /* 772 * The caller of this function may specify to use the minimum MTU 773 * in some cases. 774 */ 775 if (mtu > IPV6_MMTU) { 776 if ((flags & IPV6_MINMTU)) 777 mtu = IPV6_MMTU; 778 } 779 780 /* 781 * clear embedded scope identifiers if necessary. 782 * in6_clearscope will touch the addresses only when necessary. 783 */ 784 in6_clearscope(&ip6->ip6_src); 785 in6_clearscope(&ip6->ip6_dst); 786 787 /* 788 * If the outgoing packet contains a hop-by-hop options header, 789 * it must be examined and processed even by the source node. 790 * (RFC 2460, section 4.) 791 */ 792 if (exthdrs.ip6e_hbh) { 793 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 794 u_int32_t dummy1; /* XXX unused */ 795 u_int32_t dummy2; /* XXX unused */ 796 797 /* 798 * XXX: if we have to send an ICMPv6 error to the sender, 799 * we need the M_LOOP flag since icmp6_error() expects 800 * the IPv6 and the hop-by-hop options header are 801 * continuous unless the flag is set. 802 */ 803 m->m_flags |= M_LOOP; 804 m->m_pkthdr.rcvif = ifp; 805 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 806 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 807 &dummy1, &dummy2) < 0) { 808 /* m was already freed at this point */ 809 error = EINVAL;/* better error? */ 810 goto done; 811 } 812 m->m_flags &= ~M_LOOP; /* XXX */ 813 m->m_pkthdr.rcvif = NULL; 814 } 815 816 #ifdef PFIL_HOOKS 817 /* 818 * Run through list of hooks for output packets. 819 */ 820 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0) 821 goto done; 822 if (m == NULL) 823 goto done; 824 ip6 = mtod(m, struct ip6_hdr *); 825 #endif /* PFIL_HOOKS */ 826 /* 827 * Send the packet to the outgoing interface. 828 * If necessary, do IPv6 fragmentation before sending. 829 * 830 * the logic here is rather complex: 831 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 832 * 1-a: send as is if tlen <= path mtu 833 * 1-b: fragment if tlen > path mtu 834 * 835 * 2: if user asks us not to fragment (dontfrag == 1) 836 * 2-a: send as is if tlen <= interface mtu 837 * 2-b: error if tlen > interface mtu 838 * 839 * 3: if we always need to attach fragment header (alwaysfrag == 1) 840 * always fragment 841 * 842 * 4: if dontfrag == 1 && alwaysfrag == 1 843 * error, as we cannot handle this conflicting request 844 */ 845 tlen = m->m_pkthdr.len; 846 847 dontfrag = 0; 848 if (dontfrag && alwaysfrag) { /* case 4 */ 849 /* conflicting request - can't transmit */ 850 error = EMSGSIZE; 851 goto bad; 852 } 853 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */ 854 /* 855 * Even if the DONTFRAG option is specified, we cannot send the 856 * packet when the data length is larger than the MTU of the 857 * outgoing interface. 858 * Notify the error by sending IPV6_PATHMTU ancillary data as 859 * well as returning an error code (the latter is not described 860 * in the API spec.) 861 */ 862 u_int32_t mtu32; 863 struct ip6ctlparam ip6cp; 864 865 mtu32 = (u_int32_t)mtu; 866 bzero(&ip6cp, sizeof(ip6cp)); 867 ip6cp.ip6c_cmdarg = (void *)&mtu32; 868 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 869 (void *)&ip6cp); 870 871 error = EMSGSIZE; 872 goto bad; 873 } 874 875 /* 876 * transmit packet without fragmentation 877 */ 878 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 879 struct in6_ifaddr *ia6; 880 int sw_csum; 881 882 ip6 = mtod(m, struct ip6_hdr *); 883 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 884 if (ia6) { 885 /* Record statistics for this interface address. */ 886 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len; 887 } 888 #ifdef IPSEC 889 /* clean ipsec history once it goes out of the node */ 890 ipsec_delaux(m); 891 #endif 892 893 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 894 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 895 if (IN6_NEED_CHECKSUM(ifp, 896 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 897 in6_delayed_cksum(m); 898 } 899 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 900 } 901 902 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 903 goto done; 904 } 905 906 /* 907 * try to fragment the packet. case 1-b and 3 908 */ 909 if (mtu < IPV6_MMTU) { 910 /* path MTU cannot be less than IPV6_MMTU */ 911 error = EMSGSIZE; 912 in6_ifstat_inc(ifp, ifs6_out_fragfail); 913 goto bad; 914 } else if (ip6->ip6_plen == 0) { 915 /* jumbo payload cannot be fragmented */ 916 error = EMSGSIZE; 917 in6_ifstat_inc(ifp, ifs6_out_fragfail); 918 goto bad; 919 } else { 920 struct mbuf **mnext, *m_frgpart; 921 struct ip6_frag *ip6f; 922 u_int32_t id = htonl(ip6_randomid()); 923 u_char nextproto; 924 struct ip6ctlparam ip6cp; 925 u_int32_t mtu32; 926 927 /* 928 * Too large for the destination or interface; 929 * fragment if possible. 930 * Must be able to put at least 8 bytes per fragment. 931 */ 932 hlen = unfragpartlen; 933 if (mtu > IPV6_MAXPACKET) 934 mtu = IPV6_MAXPACKET; 935 936 /* Notify a proper path MTU to applications. */ 937 mtu32 = (u_int32_t)mtu; 938 bzero(&ip6cp, sizeof(ip6cp)); 939 ip6cp.ip6c_cmdarg = (void *)&mtu32; 940 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 941 (void *)&ip6cp); 942 943 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 944 if (len < 8) { 945 error = EMSGSIZE; 946 in6_ifstat_inc(ifp, ifs6_out_fragfail); 947 goto bad; 948 } 949 950 mnext = &m->m_nextpkt; 951 952 /* 953 * Change the next header field of the last header in the 954 * unfragmentable part. 955 */ 956 if (exthdrs.ip6e_rthdr) { 957 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 958 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 959 } else if (exthdrs.ip6e_dest1) { 960 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 961 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 962 } else if (exthdrs.ip6e_hbh) { 963 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 964 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 965 } else { 966 nextproto = ip6->ip6_nxt; 967 ip6->ip6_nxt = IPPROTO_FRAGMENT; 968 } 969 970 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) 971 != 0) { 972 if (IN6_NEED_CHECKSUM(ifp, 973 m->m_pkthdr.csum_flags & 974 (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 975 in6_delayed_cksum(m); 976 } 977 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 978 } 979 980 /* 981 * Loop through length of segment after first fragment, 982 * make new header and copy data of each part and link onto 983 * chain. 984 */ 985 m0 = m; 986 for (off = hlen; off < tlen; off += len) { 987 struct mbuf *mlast; 988 989 MGETHDR(m, M_DONTWAIT, MT_HEADER); 990 if (!m) { 991 error = ENOBUFS; 992 ip6stat.ip6s_odropped++; 993 goto sendorfree; 994 } 995 m->m_pkthdr.rcvif = NULL; 996 m->m_flags = m0->m_flags & M_COPYFLAGS; 997 *mnext = m; 998 mnext = &m->m_nextpkt; 999 m->m_data += max_linkhdr; 1000 mhip6 = mtod(m, struct ip6_hdr *); 1001 *mhip6 = *ip6; 1002 m->m_len = sizeof(*mhip6); 1003 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1004 if (error) { 1005 ip6stat.ip6s_odropped++; 1006 goto sendorfree; 1007 } 1008 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 1009 if (off + len >= tlen) 1010 len = tlen - off; 1011 else 1012 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1013 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 1014 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1015 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1016 error = ENOBUFS; 1017 ip6stat.ip6s_odropped++; 1018 goto sendorfree; 1019 } 1020 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 1021 ; 1022 mlast->m_next = m_frgpart; 1023 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1024 m->m_pkthdr.rcvif = (struct ifnet *)0; 1025 ip6f->ip6f_reserved = 0; 1026 ip6f->ip6f_ident = id; 1027 ip6f->ip6f_nxt = nextproto; 1028 ip6stat.ip6s_ofragments++; 1029 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1030 } 1031 1032 in6_ifstat_inc(ifp, ifs6_out_fragok); 1033 } 1034 1035 /* 1036 * Remove leading garbages. 1037 */ 1038 sendorfree: 1039 m = m0->m_nextpkt; 1040 m0->m_nextpkt = 0; 1041 m_freem(m0); 1042 for (m0 = m; m; m = m0) { 1043 m0 = m->m_nextpkt; 1044 m->m_nextpkt = 0; 1045 if (error == 0) { 1046 struct in6_ifaddr *ia6; 1047 ip6 = mtod(m, struct ip6_hdr *); 1048 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1049 if (ia6) { 1050 /* 1051 * Record statistics for this interface 1052 * address. 1053 */ 1054 ia6->ia_ifa.ifa_data.ifad_outbytes += 1055 m->m_pkthdr.len; 1056 } 1057 #ifdef IPSEC 1058 /* clean ipsec history once it goes out of the node */ 1059 ipsec_delaux(m); 1060 #endif 1061 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1062 } else 1063 m_freem(m); 1064 } 1065 1066 if (error == 0) 1067 ip6stat.ip6s_fragmented++; 1068 1069 done: 1070 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1071 RTFREE(ro->ro_rt); 1072 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1073 RTFREE(ro_pmtu->ro_rt); 1074 } 1075 1076 #ifdef IPSEC 1077 if (sp != NULL) 1078 key_freesp(sp); 1079 #endif /* IPSEC */ 1080 1081 return (error); 1082 1083 freehdrs: 1084 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1085 m_freem(exthdrs.ip6e_dest1); 1086 m_freem(exthdrs.ip6e_rthdr); 1087 m_freem(exthdrs.ip6e_dest2); 1088 /* FALLTHROUGH */ 1089 bad: 1090 m_freem(m); 1091 goto done; 1092 } 1093 1094 static int 1095 ip6_copyexthdr(mp, hdr, hlen) 1096 struct mbuf **mp; 1097 caddr_t hdr; 1098 int hlen; 1099 { 1100 struct mbuf *m; 1101 1102 if (hlen > MCLBYTES) 1103 return (ENOBUFS); /* XXX */ 1104 1105 MGET(m, M_DONTWAIT, MT_DATA); 1106 if (!m) 1107 return (ENOBUFS); 1108 1109 if (hlen > MLEN) { 1110 MCLGET(m, M_DONTWAIT); 1111 if ((m->m_flags & M_EXT) == 0) { 1112 m_free(m); 1113 return (ENOBUFS); 1114 } 1115 } 1116 m->m_len = hlen; 1117 if (hdr) 1118 bcopy(hdr, mtod(m, caddr_t), hlen); 1119 1120 *mp = m; 1121 return (0); 1122 } 1123 1124 /* 1125 * Process a delayed payload checksum calculation. 1126 */ 1127 void 1128 in6_delayed_cksum(struct mbuf *m) 1129 { 1130 uint16_t csum, offset; 1131 1132 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1133 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1134 KASSERT((m->m_pkthdr.csum_flags 1135 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0); 1136 1137 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data); 1138 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset); 1139 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) { 1140 csum = 0xffff; 1141 } 1142 1143 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data); 1144 if ((offset + sizeof(csum)) > m->m_len) { 1145 m_copyback(m, offset, sizeof(csum), &csum); 1146 } else { 1147 *(uint16_t *)(mtod(m, caddr_t) + offset) = csum; 1148 } 1149 } 1150 1151 /* 1152 * Insert jumbo payload option. 1153 */ 1154 static int 1155 ip6_insert_jumboopt(exthdrs, plen) 1156 struct ip6_exthdrs *exthdrs; 1157 u_int32_t plen; 1158 { 1159 struct mbuf *mopt; 1160 u_int8_t *optbuf; 1161 u_int32_t v; 1162 1163 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1164 1165 /* 1166 * If there is no hop-by-hop options header, allocate new one. 1167 * If there is one but it doesn't have enough space to store the 1168 * jumbo payload option, allocate a cluster to store the whole options. 1169 * Otherwise, use it to store the options. 1170 */ 1171 if (exthdrs->ip6e_hbh == 0) { 1172 MGET(mopt, M_DONTWAIT, MT_DATA); 1173 if (mopt == 0) 1174 return (ENOBUFS); 1175 mopt->m_len = JUMBOOPTLEN; 1176 optbuf = mtod(mopt, u_int8_t *); 1177 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1178 exthdrs->ip6e_hbh = mopt; 1179 } else { 1180 struct ip6_hbh *hbh; 1181 1182 mopt = exthdrs->ip6e_hbh; 1183 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1184 /* 1185 * XXX assumption: 1186 * - exthdrs->ip6e_hbh is not referenced from places 1187 * other than exthdrs. 1188 * - exthdrs->ip6e_hbh is not an mbuf chain. 1189 */ 1190 int oldoptlen = mopt->m_len; 1191 struct mbuf *n; 1192 1193 /* 1194 * XXX: give up if the whole (new) hbh header does 1195 * not fit even in an mbuf cluster. 1196 */ 1197 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1198 return (ENOBUFS); 1199 1200 /* 1201 * As a consequence, we must always prepare a cluster 1202 * at this point. 1203 */ 1204 MGET(n, M_DONTWAIT, MT_DATA); 1205 if (n) { 1206 MCLGET(n, M_DONTWAIT); 1207 if ((n->m_flags & M_EXT) == 0) { 1208 m_freem(n); 1209 n = NULL; 1210 } 1211 } 1212 if (!n) 1213 return (ENOBUFS); 1214 n->m_len = oldoptlen + JUMBOOPTLEN; 1215 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1216 oldoptlen); 1217 optbuf = mtod(n, u_int8_t *) + oldoptlen; 1218 m_freem(mopt); 1219 mopt = exthdrs->ip6e_hbh = n; 1220 } else { 1221 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 1222 mopt->m_len += JUMBOOPTLEN; 1223 } 1224 optbuf[0] = IP6OPT_PADN; 1225 optbuf[1] = 0; 1226 1227 /* 1228 * Adjust the header length according to the pad and 1229 * the jumbo payload option. 1230 */ 1231 hbh = mtod(mopt, struct ip6_hbh *); 1232 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1233 } 1234 1235 /* fill in the option. */ 1236 optbuf[2] = IP6OPT_JUMBO; 1237 optbuf[3] = 4; 1238 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1239 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1240 1241 /* finally, adjust the packet header length */ 1242 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1243 1244 return (0); 1245 #undef JUMBOOPTLEN 1246 } 1247 1248 /* 1249 * Insert fragment header and copy unfragmentable header portions. 1250 */ 1251 static int 1252 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1253 struct mbuf *m0, *m; 1254 int hlen; 1255 struct ip6_frag **frghdrp; 1256 { 1257 struct mbuf *n, *mlast; 1258 1259 if (hlen > sizeof(struct ip6_hdr)) { 1260 n = m_copym(m0, sizeof(struct ip6_hdr), 1261 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1262 if (n == 0) 1263 return (ENOBUFS); 1264 m->m_next = n; 1265 } else 1266 n = m; 1267 1268 /* Search for the last mbuf of unfragmentable part. */ 1269 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1270 ; 1271 1272 if ((mlast->m_flags & M_EXT) == 0 && 1273 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1274 /* use the trailing space of the last mbuf for the fragment hdr */ 1275 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1276 mlast->m_len); 1277 mlast->m_len += sizeof(struct ip6_frag); 1278 m->m_pkthdr.len += sizeof(struct ip6_frag); 1279 } else { 1280 /* allocate a new mbuf for the fragment header */ 1281 struct mbuf *mfrg; 1282 1283 MGET(mfrg, M_DONTWAIT, MT_DATA); 1284 if (mfrg == 0) 1285 return (ENOBUFS); 1286 mfrg->m_len = sizeof(struct ip6_frag); 1287 *frghdrp = mtod(mfrg, struct ip6_frag *); 1288 mlast->m_next = mfrg; 1289 } 1290 1291 return (0); 1292 } 1293 1294 static int 1295 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp) 1296 struct route_in6 *ro_pmtu, *ro; 1297 struct ifnet *ifp; 1298 struct in6_addr *dst; 1299 u_long *mtup; 1300 int *alwaysfragp; 1301 { 1302 u_int32_t mtu = 0; 1303 int alwaysfrag = 0; 1304 int error = 0; 1305 1306 if (ro_pmtu != ro) { 1307 /* The first hop and the final destination may differ. */ 1308 struct sockaddr_in6 *sa6_dst = 1309 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1310 if (ro_pmtu->ro_rt && 1311 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1312 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1313 RTFREE(ro_pmtu->ro_rt); 1314 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1315 } 1316 if (ro_pmtu->ro_rt == NULL) { 1317 bzero(sa6_dst, sizeof(*sa6_dst)); /* for safety */ 1318 sa6_dst->sin6_family = AF_INET6; 1319 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1320 sa6_dst->sin6_addr = *dst; 1321 1322 rtalloc((struct route *)ro_pmtu); 1323 } 1324 } 1325 if (ro_pmtu->ro_rt) { 1326 u_int32_t ifmtu; 1327 1328 if (ifp == NULL) 1329 ifp = ro_pmtu->ro_rt->rt_ifp; 1330 ifmtu = IN6_LINKMTU(ifp); 1331 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1332 if (mtu == 0) 1333 mtu = ifmtu; 1334 else if (mtu < IPV6_MMTU) { 1335 /* 1336 * RFC2460 section 5, last paragraph: 1337 * if we record ICMPv6 too big message with 1338 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1339 * or smaller, with fragment header attached. 1340 * (fragment header is needed regardless from the 1341 * packet size, for translators to identify packets) 1342 */ 1343 alwaysfrag = 1; 1344 mtu = IPV6_MMTU; 1345 } else if (mtu > ifmtu) { 1346 /* 1347 * The MTU on the route is larger than the MTU on 1348 * the interface! This shouldn't happen, unless the 1349 * MTU of the interface has been changed after the 1350 * interface was brought up. Change the MTU in the 1351 * route to match the interface MTU (as long as the 1352 * field isn't locked). 1353 */ 1354 mtu = ifmtu; 1355 if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU)) 1356 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1357 } 1358 } else if (ifp) { 1359 mtu = IN6_LINKMTU(ifp); 1360 } else 1361 error = EHOSTUNREACH; /* XXX */ 1362 1363 *mtup = mtu; 1364 if (alwaysfragp) 1365 *alwaysfragp = alwaysfrag; 1366 return (error); 1367 } 1368 1369 /* 1370 * IP6 socket option processing. 1371 */ 1372 int 1373 ip6_ctloutput(op, so, level, optname, mp) 1374 int op; 1375 struct socket *so; 1376 int level, optname; 1377 struct mbuf **mp; 1378 { 1379 struct in6pcb *in6p = sotoin6pcb(so); 1380 struct mbuf *m = *mp; 1381 int optval = 0; 1382 int error = 0; 1383 struct proc *p = curproc; /* XXX */ 1384 1385 if (level == IPPROTO_IPV6) { 1386 switch (op) { 1387 case PRCO_SETOPT: 1388 switch (optname) { 1389 case IPV6_PKTOPTIONS: 1390 /* m is freed in ip6_pcbopts */ 1391 return (ip6_pcbopts(&in6p->in6p_outputopts, 1392 m, so)); 1393 case IPV6_HOPOPTS: 1394 case IPV6_DSTOPTS: 1395 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1396 error = EPERM; 1397 break; 1398 } 1399 /* FALLTHROUGH */ 1400 case IPV6_UNICAST_HOPS: 1401 case IPV6_RECVOPTS: 1402 case IPV6_RECVRETOPTS: 1403 case IPV6_RECVDSTADDR: 1404 case IPV6_PKTINFO: 1405 case IPV6_HOPLIMIT: 1406 case IPV6_RTHDR: 1407 case IPV6_FAITH: 1408 case IPV6_V6ONLY: 1409 case IPV6_USE_MIN_MTU: 1410 if (!m || m->m_len != sizeof(int)) { 1411 error = EINVAL; 1412 break; 1413 } 1414 optval = *mtod(m, int *); 1415 switch (optname) { 1416 1417 case IPV6_UNICAST_HOPS: 1418 if (optval < -1 || optval >= 256) 1419 error = EINVAL; 1420 else { 1421 /* -1 = kernel default */ 1422 in6p->in6p_hops = optval; 1423 } 1424 break; 1425 #define OPTSET(bit) \ 1426 do { \ 1427 if (optval) \ 1428 in6p->in6p_flags |= (bit); \ 1429 else \ 1430 in6p->in6p_flags &= ~(bit); \ 1431 } while (/*CONSTCOND*/ 0) 1432 1433 case IPV6_RECVOPTS: 1434 OPTSET(IN6P_RECVOPTS); 1435 break; 1436 1437 case IPV6_RECVRETOPTS: 1438 OPTSET(IN6P_RECVRETOPTS); 1439 break; 1440 1441 case IPV6_RECVDSTADDR: 1442 OPTSET(IN6P_RECVDSTADDR); 1443 break; 1444 1445 case IPV6_PKTINFO: 1446 OPTSET(IN6P_PKTINFO); 1447 break; 1448 1449 case IPV6_HOPLIMIT: 1450 OPTSET(IN6P_HOPLIMIT); 1451 break; 1452 1453 case IPV6_HOPOPTS: 1454 OPTSET(IN6P_HOPOPTS); 1455 break; 1456 1457 case IPV6_DSTOPTS: 1458 OPTSET(IN6P_DSTOPTS); 1459 break; 1460 1461 case IPV6_RTHDR: 1462 OPTSET(IN6P_RTHDR); 1463 break; 1464 1465 case IPV6_FAITH: 1466 OPTSET(IN6P_FAITH); 1467 break; 1468 1469 case IPV6_USE_MIN_MTU: 1470 OPTSET(IN6P_MINMTU); 1471 break; 1472 1473 case IPV6_V6ONLY: 1474 /* 1475 * make setsockopt(IPV6_V6ONLY) 1476 * available only prior to bind(2). 1477 * see ipng mailing list, Jun 22 2001. 1478 */ 1479 if (in6p->in6p_lport || 1480 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1481 error = EINVAL; 1482 break; 1483 } 1484 #ifdef INET6_BINDV6ONLY 1485 if (!optval) 1486 error = EINVAL; 1487 #else 1488 OPTSET(IN6P_IPV6_V6ONLY); 1489 #endif 1490 break; 1491 } 1492 break; 1493 #undef OPTSET 1494 1495 case IPV6_MULTICAST_IF: 1496 case IPV6_MULTICAST_HOPS: 1497 case IPV6_MULTICAST_LOOP: 1498 case IPV6_JOIN_GROUP: 1499 case IPV6_LEAVE_GROUP: 1500 error = ip6_setmoptions(optname, 1501 &in6p->in6p_moptions, m); 1502 break; 1503 1504 case IPV6_PORTRANGE: 1505 optval = *mtod(m, int *); 1506 1507 switch (optval) { 1508 case IPV6_PORTRANGE_DEFAULT: 1509 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1510 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1511 break; 1512 1513 case IPV6_PORTRANGE_HIGH: 1514 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1515 in6p->in6p_flags |= IN6P_HIGHPORT; 1516 break; 1517 1518 case IPV6_PORTRANGE_LOW: 1519 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1520 in6p->in6p_flags |= IN6P_LOWPORT; 1521 break; 1522 1523 default: 1524 error = EINVAL; 1525 break; 1526 } 1527 break; 1528 1529 #ifdef IPSEC 1530 case IPV6_IPSEC_POLICY: 1531 { 1532 caddr_t req = NULL; 1533 size_t len = 0; 1534 1535 int priv = 0; 1536 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) 1537 priv = 0; 1538 else 1539 priv = 1; 1540 if (m) { 1541 req = mtod(m, caddr_t); 1542 len = m->m_len; 1543 } 1544 error = ipsec6_set_policy(in6p, 1545 optname, req, len, priv); 1546 } 1547 break; 1548 #endif /* IPSEC */ 1549 1550 default: 1551 error = ENOPROTOOPT; 1552 break; 1553 } 1554 if (m) 1555 (void)m_free(m); 1556 break; 1557 1558 case PRCO_GETOPT: 1559 switch (optname) { 1560 1561 case IPV6_OPTIONS: 1562 case IPV6_RETOPTS: 1563 error = ENOPROTOOPT; 1564 break; 1565 1566 case IPV6_PKTOPTIONS: 1567 if (in6p->in6p_options) { 1568 *mp = m_copym(in6p->in6p_options, 0, 1569 M_COPYALL, M_WAIT); 1570 } else { 1571 *mp = m_get(M_WAIT, MT_SOOPTS); 1572 (*mp)->m_len = 0; 1573 } 1574 break; 1575 1576 case IPV6_HOPOPTS: 1577 case IPV6_DSTOPTS: 1578 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1579 error = EPERM; 1580 break; 1581 } 1582 /* FALLTHROUGH */ 1583 case IPV6_UNICAST_HOPS: 1584 case IPV6_RECVOPTS: 1585 case IPV6_RECVRETOPTS: 1586 case IPV6_RECVDSTADDR: 1587 case IPV6_PORTRANGE: 1588 case IPV6_PKTINFO: 1589 case IPV6_HOPLIMIT: 1590 case IPV6_RTHDR: 1591 case IPV6_FAITH: 1592 case IPV6_V6ONLY: 1593 case IPV6_USE_MIN_MTU: 1594 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1595 m->m_len = sizeof(int); 1596 switch (optname) { 1597 1598 case IPV6_UNICAST_HOPS: 1599 optval = in6p->in6p_hops; 1600 break; 1601 1602 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0) 1603 1604 case IPV6_RECVOPTS: 1605 optval = OPTBIT(IN6P_RECVOPTS); 1606 break; 1607 1608 case IPV6_RECVRETOPTS: 1609 optval = OPTBIT(IN6P_RECVRETOPTS); 1610 break; 1611 1612 case IPV6_RECVDSTADDR: 1613 optval = OPTBIT(IN6P_RECVDSTADDR); 1614 break; 1615 1616 case IPV6_PORTRANGE: 1617 { 1618 int flags; 1619 flags = in6p->in6p_flags; 1620 if (flags & IN6P_HIGHPORT) 1621 optval = IPV6_PORTRANGE_HIGH; 1622 else if (flags & IN6P_LOWPORT) 1623 optval = IPV6_PORTRANGE_LOW; 1624 else 1625 optval = 0; 1626 break; 1627 } 1628 1629 case IPV6_PKTINFO: 1630 optval = OPTBIT(IN6P_PKTINFO); 1631 break; 1632 1633 case IPV6_HOPLIMIT: 1634 optval = OPTBIT(IN6P_HOPLIMIT); 1635 break; 1636 1637 case IPV6_HOPOPTS: 1638 optval = OPTBIT(IN6P_HOPOPTS); 1639 break; 1640 1641 case IPV6_DSTOPTS: 1642 optval = OPTBIT(IN6P_DSTOPTS); 1643 break; 1644 1645 case IPV6_RTHDR: 1646 optval = OPTBIT(IN6P_RTHDR); 1647 break; 1648 1649 case IPV6_FAITH: 1650 optval = OPTBIT(IN6P_FAITH); 1651 break; 1652 1653 case IPV6_V6ONLY: 1654 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1655 break; 1656 1657 case IPV6_USE_MIN_MTU: 1658 optval = OPTBIT(IN6P_MINMTU); 1659 break; 1660 } 1661 *mtod(m, int *) = optval; 1662 break; 1663 1664 case IPV6_MULTICAST_IF: 1665 case IPV6_MULTICAST_HOPS: 1666 case IPV6_MULTICAST_LOOP: 1667 case IPV6_JOIN_GROUP: 1668 case IPV6_LEAVE_GROUP: 1669 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp); 1670 break; 1671 1672 #if 0 /* defined(IPSEC) */ 1673 /* XXX: code broken */ 1674 case IPV6_IPSEC_POLICY: 1675 { 1676 caddr_t req = NULL; 1677 size_t len = 0; 1678 1679 if (m) { 1680 req = mtod(m, caddr_t); 1681 len = m->m_len; 1682 } 1683 error = ipsec6_get_policy(in6p, req, len, mp); 1684 break; 1685 } 1686 #endif /* IPSEC */ 1687 1688 default: 1689 error = ENOPROTOOPT; 1690 break; 1691 } 1692 break; 1693 } 1694 } else { 1695 error = EINVAL; 1696 if (op == PRCO_SETOPT && *mp) 1697 (void)m_free(*mp); 1698 } 1699 return (error); 1700 } 1701 1702 int 1703 ip6_raw_ctloutput(op, so, level, optname, mp) 1704 int op; 1705 struct socket *so; 1706 int level, optname; 1707 struct mbuf **mp; 1708 { 1709 int error = 0, optval, optlen; 1710 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 1711 struct in6pcb *in6p = sotoin6pcb(so); 1712 struct mbuf *m = *mp; 1713 1714 optlen = m ? m->m_len : 0; 1715 1716 if (level != IPPROTO_IPV6) { 1717 if (op == PRCO_SETOPT && *mp) 1718 (void)m_free(*mp); 1719 return (EINVAL); 1720 } 1721 1722 switch (optname) { 1723 case IPV6_CHECKSUM: 1724 /* 1725 * For ICMPv6 sockets, no modification allowed for checksum 1726 * offset, permit "no change" values to help existing apps. 1727 * 1728 * XXX 2292bis says: "An attempt to set IPV6_CHECKSUM 1729 * for an ICMPv6 socket will fail." 1730 * The current behavior does not meet 2292bis. 1731 */ 1732 switch (op) { 1733 case PRCO_SETOPT: 1734 if (optlen != sizeof(int)) { 1735 error = EINVAL; 1736 break; 1737 } 1738 optval = *mtod(m, int *); 1739 if ((optval % 2) != 0) { 1740 /* the API assumes even offset values */ 1741 error = EINVAL; 1742 } else if (so->so_proto->pr_protocol == 1743 IPPROTO_ICMPV6) { 1744 if (optval != icmp6off) 1745 error = EINVAL; 1746 } else 1747 in6p->in6p_cksum = optval; 1748 break; 1749 1750 case PRCO_GETOPT: 1751 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 1752 optval = icmp6off; 1753 else 1754 optval = in6p->in6p_cksum; 1755 1756 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1757 m->m_len = sizeof(int); 1758 *mtod(m, int *) = optval; 1759 break; 1760 1761 default: 1762 error = EINVAL; 1763 break; 1764 } 1765 break; 1766 1767 default: 1768 error = ENOPROTOOPT; 1769 break; 1770 } 1771 1772 if (op == PRCO_SETOPT && m) 1773 (void)m_free(m); 1774 1775 return (error); 1776 } 1777 1778 /* 1779 * Set up IP6 options in pcb for insertion in output packets. 1780 * Store in mbuf with pointer in pcbopt, adding pseudo-option 1781 * with destination address if source routed. 1782 */ 1783 static int 1784 ip6_pcbopts(pktopt, m, so) 1785 struct ip6_pktopts **pktopt; 1786 struct mbuf *m; 1787 struct socket *so; 1788 { 1789 struct ip6_pktopts *opt = *pktopt; 1790 int error = 0; 1791 struct proc *p = curproc; /* XXX */ 1792 int priv = 0; 1793 1794 /* turn off any old options. */ 1795 if (opt) { 1796 if (opt->ip6po_m) 1797 (void)m_free(opt->ip6po_m); 1798 } else 1799 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 1800 *pktopt = 0; 1801 1802 if (!m || m->m_len == 0) { 1803 /* 1804 * Only turning off any previous options. 1805 */ 1806 free(opt, M_IP6OPT); 1807 if (m) 1808 (void)m_free(m); 1809 return (0); 1810 } 1811 1812 /* set options specified by user. */ 1813 if (p && !suser(p->p_ucred, &p->p_acflag)) 1814 priv = 1; 1815 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) { 1816 (void)m_free(m); 1817 free(opt, M_IP6OPT); 1818 return (error); 1819 } 1820 *pktopt = opt; 1821 return (0); 1822 } 1823 1824 /* 1825 * Set the IP6 multicast options in response to user setsockopt(). 1826 */ 1827 static int 1828 ip6_setmoptions(optname, im6op, m) 1829 int optname; 1830 struct ip6_moptions **im6op; 1831 struct mbuf *m; 1832 { 1833 int error = 0; 1834 u_int loop, ifindex; 1835 struct ipv6_mreq *mreq; 1836 struct ifnet *ifp; 1837 struct ip6_moptions *im6o = *im6op; 1838 struct route_in6 ro; 1839 struct in6_multi_mship *imm; 1840 struct proc *p = curproc; /* XXX */ 1841 1842 if (im6o == NULL) { 1843 /* 1844 * No multicast option buffer attached to the pcb; 1845 * allocate one and initialize to default values. 1846 */ 1847 im6o = (struct ip6_moptions *) 1848 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1849 1850 if (im6o == NULL) 1851 return (ENOBUFS); 1852 *im6op = im6o; 1853 im6o->im6o_multicast_ifp = NULL; 1854 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1855 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1856 LIST_INIT(&im6o->im6o_memberships); 1857 } 1858 1859 switch (optname) { 1860 1861 case IPV6_MULTICAST_IF: 1862 /* 1863 * Select the interface for outgoing multicast packets. 1864 */ 1865 if (m == NULL || m->m_len != sizeof(u_int)) { 1866 error = EINVAL; 1867 break; 1868 } 1869 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 1870 if (ifindex != 0) { 1871 if (ifindex < 0 || if_indexlim <= ifindex || 1872 !ifindex2ifnet[ifindex]) { 1873 error = ENXIO; /* XXX EINVAL? */ 1874 break; 1875 } 1876 ifp = ifindex2ifnet[ifindex]; 1877 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 1878 error = EADDRNOTAVAIL; 1879 break; 1880 } 1881 } else 1882 ifp = NULL; 1883 im6o->im6o_multicast_ifp = ifp; 1884 break; 1885 1886 case IPV6_MULTICAST_HOPS: 1887 { 1888 /* 1889 * Set the IP6 hoplimit for outgoing multicast packets. 1890 */ 1891 int optval; 1892 if (m == NULL || m->m_len != sizeof(int)) { 1893 error = EINVAL; 1894 break; 1895 } 1896 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 1897 if (optval < -1 || optval >= 256) 1898 error = EINVAL; 1899 else if (optval == -1) 1900 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1901 else 1902 im6o->im6o_multicast_hlim = optval; 1903 break; 1904 } 1905 1906 case IPV6_MULTICAST_LOOP: 1907 /* 1908 * Set the loopback flag for outgoing multicast packets. 1909 * Must be zero or one. 1910 */ 1911 if (m == NULL || m->m_len != sizeof(u_int)) { 1912 error = EINVAL; 1913 break; 1914 } 1915 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 1916 if (loop > 1) { 1917 error = EINVAL; 1918 break; 1919 } 1920 im6o->im6o_multicast_loop = loop; 1921 break; 1922 1923 case IPV6_JOIN_GROUP: 1924 /* 1925 * Add a multicast group membership. 1926 * Group must be a valid IP6 multicast address. 1927 */ 1928 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1929 error = EINVAL; 1930 break; 1931 } 1932 mreq = mtod(m, struct ipv6_mreq *); 1933 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1934 /* 1935 * We use the unspecified address to specify to accept 1936 * all multicast addresses. Only super user is allowed 1937 * to do this. 1938 */ 1939 if (suser(p->p_ucred, &p->p_acflag)) 1940 { 1941 error = EACCES; 1942 break; 1943 } 1944 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1945 error = EINVAL; 1946 break; 1947 } 1948 1949 /* 1950 * If no interface was explicitly specified, choose an 1951 * appropriate one according to the given multicast address. 1952 */ 1953 if (mreq->ipv6mr_interface == 0) { 1954 struct sockaddr_in6 *dst; 1955 1956 /* 1957 * Look up the routing table for the 1958 * address, and choose the outgoing interface. 1959 * XXX: is it a good approach? 1960 */ 1961 ro.ro_rt = NULL; 1962 dst = (struct sockaddr_in6 *)&ro.ro_dst; 1963 bzero(dst, sizeof(*dst)); 1964 dst->sin6_family = AF_INET6; 1965 dst->sin6_len = sizeof(*dst); 1966 dst->sin6_addr = mreq->ipv6mr_multiaddr; 1967 rtalloc((struct route *)&ro); 1968 if (ro.ro_rt == NULL) { 1969 error = EADDRNOTAVAIL; 1970 break; 1971 } 1972 ifp = ro.ro_rt->rt_ifp; 1973 rtfree(ro.ro_rt); 1974 } else { 1975 /* 1976 * If the interface is specified, validate it. 1977 */ 1978 if (mreq->ipv6mr_interface < 0 || 1979 if_indexlim <= mreq->ipv6mr_interface || 1980 !ifindex2ifnet[mreq->ipv6mr_interface]) { 1981 error = ENXIO; /* XXX EINVAL? */ 1982 break; 1983 } 1984 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1985 } 1986 1987 /* 1988 * See if we found an interface, and confirm that it 1989 * supports multicast 1990 */ 1991 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1992 error = EADDRNOTAVAIL; 1993 break; 1994 } 1995 1996 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) { 1997 error = EADDRNOTAVAIL; /* XXX: should not happen */ 1998 break; 1999 } 2000 2001 /* 2002 * See if the membership already exists. 2003 */ 2004 for (imm = im6o->im6o_memberships.lh_first; 2005 imm != NULL; imm = imm->i6mm_chain.le_next) 2006 if (imm->i6mm_maddr->in6m_ifp == ifp && 2007 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2008 &mreq->ipv6mr_multiaddr)) 2009 break; 2010 if (imm != NULL) { 2011 error = EADDRINUSE; 2012 break; 2013 } 2014 /* 2015 * Everything looks good; add a new record to the multicast 2016 * address list for the given interface. 2017 */ 2018 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0); 2019 if (imm == NULL) 2020 break; 2021 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2022 break; 2023 2024 case IPV6_LEAVE_GROUP: 2025 /* 2026 * Drop a multicast group membership. 2027 * Group must be a valid IP6 multicast address. 2028 */ 2029 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2030 error = EINVAL; 2031 break; 2032 } 2033 mreq = mtod(m, struct ipv6_mreq *); 2034 2035 /* 2036 * If an interface address was specified, get a pointer 2037 * to its ifnet structure. 2038 */ 2039 if (mreq->ipv6mr_interface != 0) { 2040 if (mreq->ipv6mr_interface < 0 || 2041 if_indexlim <= mreq->ipv6mr_interface || 2042 !ifindex2ifnet[mreq->ipv6mr_interface]) { 2043 error = ENXIO; /* XXX EINVAL? */ 2044 break; 2045 } 2046 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 2047 } else 2048 ifp = NULL; 2049 2050 /* Fill in the scope zone ID */ 2051 if (ifp) { 2052 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) { 2053 /* XXX: should not happen */ 2054 error = EADDRNOTAVAIL; 2055 break; 2056 } 2057 } else if (mreq->ipv6mr_interface != 0) { 2058 /* 2059 * XXX: This case would happens when the (positive) 2060 * index is in the valid range, but the corresponding 2061 * interface has been detached dynamically. The above 2062 * check probably avoids such case to happen here, but 2063 * we check it explicitly for safety. 2064 */ 2065 error = EADDRNOTAVAIL; 2066 break; 2067 } else { /* ipv6mr_interface == 0 */ 2068 struct sockaddr_in6 sa6_mc; 2069 2070 /* 2071 * The API spec says as follows: 2072 * If the interface index is specified as 0, the 2073 * system may choose a multicast group membership to 2074 * drop by matching the multicast address only. 2075 * On the other hand, we cannot disambiguate the scope 2076 * zone unless an interface is provided. Thus, we 2077 * check if there's ambiguity with the default scope 2078 * zone as the last resort. 2079 */ 2080 bzero(&sa6_mc, sizeof(sa6_mc)); 2081 sa6_mc.sin6_family = AF_INET6; 2082 sa6_mc.sin6_len = sizeof(sa6_mc); 2083 sa6_mc.sin6_addr = mreq->ipv6mr_multiaddr; 2084 error = sa6_embedscope(&sa6_mc, ip6_use_defzone); 2085 if (error != 0) 2086 break; 2087 mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr; 2088 } 2089 2090 /* 2091 * Find the membership in the membership list. 2092 */ 2093 for (imm = im6o->im6o_memberships.lh_first; 2094 imm != NULL; imm = imm->i6mm_chain.le_next) { 2095 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2096 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2097 &mreq->ipv6mr_multiaddr)) 2098 break; 2099 } 2100 if (imm == NULL) { 2101 /* Unable to resolve interface */ 2102 error = EADDRNOTAVAIL; 2103 break; 2104 } 2105 /* 2106 * Give up the multicast address record to which the 2107 * membership points. 2108 */ 2109 LIST_REMOVE(imm, i6mm_chain); 2110 in6_leavegroup(imm); 2111 break; 2112 2113 default: 2114 error = EOPNOTSUPP; 2115 break; 2116 } 2117 2118 /* 2119 * If all options have default values, no need to keep the mbuf. 2120 */ 2121 if (im6o->im6o_multicast_ifp == NULL && 2122 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2123 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2124 im6o->im6o_memberships.lh_first == NULL) { 2125 free(*im6op, M_IPMOPTS); 2126 *im6op = NULL; 2127 } 2128 2129 return (error); 2130 } 2131 2132 /* 2133 * Return the IP6 multicast options in response to user getsockopt(). 2134 */ 2135 static int 2136 ip6_getmoptions(optname, im6o, mp) 2137 int optname; 2138 struct ip6_moptions *im6o; 2139 struct mbuf **mp; 2140 { 2141 u_int *hlim, *loop, *ifindex; 2142 2143 *mp = m_get(M_WAIT, MT_SOOPTS); 2144 2145 switch (optname) { 2146 2147 case IPV6_MULTICAST_IF: 2148 ifindex = mtod(*mp, u_int *); 2149 (*mp)->m_len = sizeof(u_int); 2150 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2151 *ifindex = 0; 2152 else 2153 *ifindex = im6o->im6o_multicast_ifp->if_index; 2154 return (0); 2155 2156 case IPV6_MULTICAST_HOPS: 2157 hlim = mtod(*mp, u_int *); 2158 (*mp)->m_len = sizeof(u_int); 2159 if (im6o == NULL) 2160 *hlim = ip6_defmcasthlim; 2161 else 2162 *hlim = im6o->im6o_multicast_hlim; 2163 return (0); 2164 2165 case IPV6_MULTICAST_LOOP: 2166 loop = mtod(*mp, u_int *); 2167 (*mp)->m_len = sizeof(u_int); 2168 if (im6o == NULL) 2169 *loop = ip6_defmcasthlim; 2170 else 2171 *loop = im6o->im6o_multicast_loop; 2172 return (0); 2173 2174 default: 2175 return (EOPNOTSUPP); 2176 } 2177 } 2178 2179 /* 2180 * Discard the IP6 multicast options. 2181 */ 2182 void 2183 ip6_freemoptions(im6o) 2184 struct ip6_moptions *im6o; 2185 { 2186 struct in6_multi_mship *imm; 2187 2188 if (im6o == NULL) 2189 return; 2190 2191 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2192 LIST_REMOVE(imm, i6mm_chain); 2193 in6_leavegroup(imm); 2194 } 2195 free(im6o, M_IPMOPTS); 2196 } 2197 2198 /* 2199 * Set IPv6 outgoing packet options based on advanced API. 2200 */ 2201 int 2202 ip6_setpktoptions(control, opt, priv) 2203 struct mbuf *control; 2204 struct ip6_pktopts *opt; 2205 int priv; 2206 { 2207 struct cmsghdr *cm = 0; 2208 2209 if (control == 0 || opt == 0) 2210 return (EINVAL); 2211 2212 bzero(opt, sizeof(*opt)); 2213 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */ 2214 2215 /* 2216 * XXX: Currently, we assume all the optional information is stored 2217 * in a single mbuf. 2218 */ 2219 if (control->m_next) 2220 return (EINVAL); 2221 2222 opt->ip6po_m = control; 2223 2224 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2225 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2226 cm = mtod(control, struct cmsghdr *); 2227 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2228 return (EINVAL); 2229 if (cm->cmsg_level != IPPROTO_IPV6) 2230 continue; 2231 2232 switch (cm->cmsg_type) { 2233 case IPV6_PKTINFO: 2234 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 2235 return (EINVAL); 2236 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 2237 if (opt->ip6po_pktinfo->ipi6_ifindex >= if_indexlim || 2238 opt->ip6po_pktinfo->ipi6_ifindex < 0) 2239 return (ENXIO); 2240 if (opt->ip6po_pktinfo->ipi6_ifindex > 0 && 2241 !ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]) 2242 return (ENXIO); 2243 2244 if (opt->ip6po_pktinfo->ipi6_ifindex) { 2245 struct ifnet *ifp; 2246 int error; 2247 2248 /* ipi6_ifindex must be valid here */ 2249 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]; 2250 error = in6_setscope(&opt->ip6po_pktinfo->ipi6_addr, 2251 ifp, NULL); 2252 if (error != 0) 2253 return (error); 2254 } 2255 2256 /* 2257 * Check if the requested source address is indeed a 2258 * unicast address assigned to the node, and can be 2259 * used as the packet's source address. 2260 */ 2261 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 2262 struct ifaddr *ia; 2263 struct in6_ifaddr *ia6; 2264 struct sockaddr_in6 sin6; 2265 2266 bzero(&sin6, sizeof(sin6)); 2267 sin6.sin6_len = sizeof(sin6); 2268 sin6.sin6_family = AF_INET6; 2269 sin6.sin6_addr = 2270 opt->ip6po_pktinfo->ipi6_addr; 2271 ia = ifa_ifwithaddr(sin6tosa(&sin6)); 2272 if (ia == NULL || 2273 (opt->ip6po_pktinfo->ipi6_ifindex && 2274 (ia->ifa_ifp->if_index != 2275 opt->ip6po_pktinfo->ipi6_ifindex))) { 2276 return (EADDRNOTAVAIL); 2277 } 2278 ia6 = (struct in6_ifaddr *)ia; 2279 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) { 2280 return (EADDRNOTAVAIL); 2281 } 2282 2283 /* 2284 * Check if the requested source address is 2285 * indeed a unicast address assigned to the 2286 * node. 2287 */ 2288 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr)) 2289 return (EADDRNOTAVAIL); 2290 } 2291 break; 2292 2293 case IPV6_HOPLIMIT: 2294 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 2295 return (EINVAL); 2296 else { 2297 int t; 2298 2299 bcopy(CMSG_DATA(cm), &t, sizeof(t)); 2300 if (t < -1 || t > 255) 2301 return (EINVAL); 2302 opt->ip6po_hlim = t; 2303 } 2304 break; 2305 2306 case IPV6_NEXTHOP: 2307 if (!priv) 2308 return (EPERM); 2309 2310 /* check if cmsg_len is large enough for sa_len */ 2311 if (cm->cmsg_len < sizeof(u_char) || 2312 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 2313 return (EINVAL); 2314 2315 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm); 2316 2317 break; 2318 2319 case IPV6_HOPOPTS: 2320 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2321 return (EINVAL); 2322 else { 2323 struct ip6_hbh *t; 2324 2325 t = (struct ip6_hbh *)CMSG_DATA(cm); 2326 if (cm->cmsg_len != 2327 CMSG_LEN((t->ip6h_len + 1) << 3)) 2328 return (EINVAL); 2329 opt->ip6po_hbh = t; 2330 } 2331 break; 2332 2333 case IPV6_DSTOPTS: 2334 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2335 return (EINVAL); 2336 2337 /* 2338 * If there is no routing header yet, the destination 2339 * options header should be put on the 1st part. 2340 * Otherwise, the header should be on the 2nd part. 2341 * (See RFC 2460, section 4.1) 2342 */ 2343 if (opt->ip6po_rthdr == NULL) { 2344 struct ip6_dest *t; 2345 2346 t = (struct ip6_dest *)CMSG_DATA(cm); 2347 if (cm->cmsg_len != 2348 CMSG_LEN((t->ip6d_len + 1) << 3)); 2349 return (EINVAL); 2350 opt->ip6po_dest1 = t; 2351 } 2352 else { 2353 struct ip6_dest *t; 2354 2355 t = (struct ip6_dest *)CMSG_DATA(cm); 2356 if (cm->cmsg_len != 2357 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) << 3)) 2358 return (EINVAL); 2359 opt->ip6po_dest2 = t; 2360 } 2361 break; 2362 2363 case IPV6_RTHDR: 2364 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2365 return (EINVAL); 2366 else { 2367 struct ip6_rthdr *t; 2368 2369 t = (struct ip6_rthdr *)CMSG_DATA(cm); 2370 if (cm->cmsg_len != 2371 CMSG_LEN((t->ip6r_len + 1) << 3)) 2372 return (EINVAL); 2373 switch (t->ip6r_type) { 2374 case IPV6_RTHDR_TYPE_0: 2375 if (t->ip6r_segleft == 0) 2376 return (EINVAL); 2377 break; 2378 default: 2379 return (EINVAL); 2380 } 2381 opt->ip6po_rthdr = t; 2382 } 2383 break; 2384 2385 default: 2386 return (ENOPROTOOPT); 2387 } 2388 } 2389 2390 return (0); 2391 } 2392 2393 /* 2394 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2395 * packet to the input queue of a specified interface. Note that this 2396 * calls the output routine of the loopback "driver", but with an interface 2397 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 2398 */ 2399 void 2400 ip6_mloopback(ifp, m, dst) 2401 struct ifnet *ifp; 2402 struct mbuf *m; 2403 struct sockaddr_in6 *dst; 2404 { 2405 struct mbuf *copym; 2406 struct ip6_hdr *ip6; 2407 2408 copym = m_copy(m, 0, M_COPYALL); 2409 if (copym == NULL) 2410 return; 2411 2412 /* 2413 * Make sure to deep-copy IPv6 header portion in case the data 2414 * is in an mbuf cluster, so that we can safely override the IPv6 2415 * header portion later. 2416 */ 2417 if ((copym->m_flags & M_EXT) != 0 || 2418 copym->m_len < sizeof(struct ip6_hdr)) { 2419 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2420 if (copym == NULL) 2421 return; 2422 } 2423 2424 #ifdef DIAGNOSTIC 2425 if (copym->m_len < sizeof(*ip6)) { 2426 m_freem(copym); 2427 return; 2428 } 2429 #endif 2430 2431 ip6 = mtod(copym, struct ip6_hdr *); 2432 /* 2433 * clear embedded scope identifiers if necessary. 2434 * in6_clearscope will touch the addresses only when necessary. 2435 */ 2436 in6_clearscope(&ip6->ip6_src); 2437 in6_clearscope(&ip6->ip6_dst); 2438 2439 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL); 2440 } 2441 2442 /* 2443 * Chop IPv6 header off from the payload. 2444 */ 2445 static int 2446 ip6_splithdr(m, exthdrs) 2447 struct mbuf *m; 2448 struct ip6_exthdrs *exthdrs; 2449 { 2450 struct mbuf *mh; 2451 struct ip6_hdr *ip6; 2452 2453 ip6 = mtod(m, struct ip6_hdr *); 2454 if (m->m_len > sizeof(*ip6)) { 2455 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2456 if (mh == 0) { 2457 m_freem(m); 2458 return ENOBUFS; 2459 } 2460 M_MOVE_PKTHDR(mh, m); 2461 MH_ALIGN(mh, sizeof(*ip6)); 2462 m->m_len -= sizeof(*ip6); 2463 m->m_data += sizeof(*ip6); 2464 mh->m_next = m; 2465 m = mh; 2466 m->m_len = sizeof(*ip6); 2467 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2468 } 2469 exthdrs->ip6e_ip6 = m; 2470 return 0; 2471 } 2472 2473 /* 2474 * Compute IPv6 extension header length. 2475 */ 2476 int 2477 ip6_optlen(in6p) 2478 struct in6pcb *in6p; 2479 { 2480 int len; 2481 2482 if (!in6p->in6p_outputopts) 2483 return 0; 2484 2485 len = 0; 2486 #define elen(x) \ 2487 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2488 2489 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2490 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2491 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2492 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2493 return len; 2494 #undef elen 2495 } 2496