1 /* $NetBSD: ip6_output.c,v 1.182 2017/01/16 15:44:47 christos Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.182 2017/01/16 15:44:47 christos Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/malloc.h> 75 #include <sys/mbuf.h> 76 #include <sys/errno.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/syslog.h> 80 #include <sys/systm.h> 81 #include <sys/proc.h> 82 #include <sys/kauth.h> 83 84 #include <net/if.h> 85 #include <net/route.h> 86 #include <net/pfil.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/ip6.h> 91 #include <netinet/ip_var.h> 92 #include <netinet/icmp6.h> 93 #include <netinet/in_offload.h> 94 #include <netinet/portalgo.h> 95 #include <netinet6/in6_offload.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/ip6_private.h> 98 #include <netinet6/in6_pcb.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6protosw.h> 101 #include <netinet6/scope6_var.h> 102 103 #ifdef IPSEC 104 #include <netipsec/ipsec.h> 105 #include <netipsec/ipsec6.h> 106 #include <netipsec/key.h> 107 #include <netipsec/xform.h> 108 #endif 109 110 111 #include <net/net_osdep.h> 112 113 extern pfil_head_t *inet6_pfil_hook; /* XXX */ 114 115 struct ip6_exthdrs { 116 struct mbuf *ip6e_ip6; 117 struct mbuf *ip6e_hbh; 118 struct mbuf *ip6e_dest1; 119 struct mbuf *ip6e_rthdr; 120 struct mbuf *ip6e_dest2; 121 }; 122 123 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 124 kauth_cred_t, int); 125 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 126 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t, 127 int, int, int); 128 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *); 129 static int ip6_getmoptions(struct sockopt *, struct in6pcb *); 130 static int ip6_copyexthdr(struct mbuf **, void *, int); 131 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 132 struct ip6_frag **); 133 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 134 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 135 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *); 136 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 137 static int ip6_ifaddrvalid(const struct in6_addr *); 138 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *); 139 140 #ifdef RFC2292 141 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *); 142 #endif 143 144 static int 145 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6) 146 { 147 struct ip6_rthdr0 *rh0; 148 struct in6_addr *addr; 149 struct sockaddr_in6 sa; 150 int error = 0; 151 152 switch (rh->ip6r_type) { 153 case IPV6_RTHDR_TYPE_0: 154 rh0 = (struct ip6_rthdr0 *)rh; 155 addr = (struct in6_addr *)(rh0 + 1); 156 157 /* 158 * construct a sockaddr_in6 form of the first hop. 159 * 160 * XXX we may not have enough information about its scope zone; 161 * there is no standard API to pass the information from the 162 * application. 163 */ 164 sockaddr_in6_init(&sa, addr, 0, 0, 0); 165 error = sa6_embedscope(&sa, ip6_use_defzone); 166 if (error != 0) 167 break; 168 (void)memmove(&addr[0], &addr[1], 169 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)); 170 addr[rh0->ip6r0_segleft - 1] = ip6->ip6_dst; 171 ip6->ip6_dst = sa.sin6_addr; 172 /* XXX */ 173 in6_clearscope(addr + rh0->ip6r0_segleft - 1); 174 break; 175 default: /* is it possible? */ 176 error = EINVAL; 177 } 178 179 return error; 180 } 181 182 /* 183 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 184 * header (with pri, len, nxt, hlim, src, dst). 185 * This function may modify ver and hlim only. 186 * The mbuf chain containing the packet will be freed. 187 * The mbuf opt, if present, will not be freed. 188 * 189 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 190 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 191 * which is rt_rmx.rmx_mtu. 192 */ 193 int 194 ip6_output( 195 struct mbuf *m0, 196 struct ip6_pktopts *opt, 197 struct route *ro, 198 int flags, 199 struct ip6_moptions *im6o, 200 struct socket *so, 201 struct ifnet **ifpp /* XXX: just for statistics */ 202 ) 203 { 204 struct ip6_hdr *ip6, *mhip6; 205 struct ifnet *ifp = NULL, *origifp = NULL; 206 struct mbuf *m = m0; 207 int hlen, tlen, len, off; 208 bool tso; 209 struct route ip6route; 210 struct rtentry *rt = NULL, *rt_pmtu; 211 const struct sockaddr_in6 *dst; 212 struct sockaddr_in6 src_sa, dst_sa; 213 int error = 0; 214 struct in6_ifaddr *ia = NULL; 215 u_long mtu; 216 int alwaysfrag, dontfrag; 217 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 218 struct ip6_exthdrs exthdrs; 219 struct in6_addr finaldst, src0, dst0; 220 u_int32_t zone; 221 struct route *ro_pmtu = NULL; 222 int hdrsplit = 0; 223 int needipsec = 0; 224 #ifdef IPSEC 225 struct secpolicy *sp = NULL; 226 #endif 227 struct psref psref, psref_ia; 228 int bound = curlwp_bind(); 229 bool release_psref_ia = false; 230 231 #ifdef DIAGNOSTIC 232 if ((m->m_flags & M_PKTHDR) == 0) 233 panic("ip6_output: no HDR"); 234 235 if ((m->m_pkthdr.csum_flags & 236 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) { 237 panic("ip6_output: IPv4 checksum offload flags: %d", 238 m->m_pkthdr.csum_flags); 239 } 240 241 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 242 (M_CSUM_TCPv6|M_CSUM_UDPv6)) { 243 panic("ip6_output: conflicting checksum offload flags: %d", 244 m->m_pkthdr.csum_flags); 245 } 246 #endif 247 248 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr)); 249 250 #define MAKE_EXTHDR(hp, mp) \ 251 do { \ 252 if (hp) { \ 253 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 254 error = ip6_copyexthdr((mp), (void *)(hp), \ 255 ((eh)->ip6e_len + 1) << 3); \ 256 if (error) \ 257 goto freehdrs; \ 258 } \ 259 } while (/*CONSTCOND*/ 0) 260 261 memset(&exthdrs, 0, sizeof(exthdrs)); 262 if (opt) { 263 /* Hop-by-Hop options header */ 264 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 265 /* Destination options header(1st part) */ 266 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 267 /* Routing header */ 268 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 269 /* Destination options header(2nd part) */ 270 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 271 } 272 273 /* 274 * Calculate the total length of the extension header chain. 275 * Keep the length of the unfragmentable part for fragmentation. 276 */ 277 optlen = 0; 278 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 279 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 280 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 281 unfragpartlen = optlen + sizeof(struct ip6_hdr); 282 /* NOTE: we don't add AH/ESP length here. do that later. */ 283 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 284 285 #ifdef IPSEC 286 if (ipsec_used) { 287 /* Check the security policy (SP) for the packet */ 288 289 sp = ipsec6_check_policy(m, so, flags, &needipsec, &error); 290 if (error != 0) { 291 /* 292 * Hack: -EINVAL is used to signal that a packet 293 * should be silently discarded. This is typically 294 * because we asked key management for an SA and 295 * it was delayed (e.g. kicked up to IKE). 296 */ 297 if (error == -EINVAL) 298 error = 0; 299 goto freehdrs; 300 } 301 } 302 #endif /* IPSEC */ 303 304 305 if (needipsec && 306 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 307 in6_delayed_cksum(m); 308 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 309 } 310 311 312 /* 313 * If we need IPsec, or there is at least one extension header, 314 * separate IP6 header from the payload. 315 */ 316 if ((needipsec || optlen) && !hdrsplit) { 317 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 318 m = NULL; 319 goto freehdrs; 320 } 321 m = exthdrs.ip6e_ip6; 322 hdrsplit++; 323 } 324 325 /* adjust pointer */ 326 ip6 = mtod(m, struct ip6_hdr *); 327 328 /* adjust mbuf packet header length */ 329 m->m_pkthdr.len += optlen; 330 plen = m->m_pkthdr.len - sizeof(*ip6); 331 332 /* If this is a jumbo payload, insert a jumbo payload option. */ 333 if (plen > IPV6_MAXPACKET) { 334 if (!hdrsplit) { 335 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 336 m = NULL; 337 goto freehdrs; 338 } 339 m = exthdrs.ip6e_ip6; 340 hdrsplit++; 341 } 342 /* adjust pointer */ 343 ip6 = mtod(m, struct ip6_hdr *); 344 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 345 goto freehdrs; 346 optlen += 8; /* XXX JUMBOOPTLEN */ 347 ip6->ip6_plen = 0; 348 } else 349 ip6->ip6_plen = htons(plen); 350 351 /* 352 * Concatenate headers and fill in next header fields. 353 * Here we have, on "m" 354 * IPv6 payload 355 * and we insert headers accordingly. Finally, we should be getting: 356 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 357 * 358 * during the header composing process, "m" points to IPv6 header. 359 * "mprev" points to an extension header prior to esp. 360 */ 361 { 362 u_char *nexthdrp = &ip6->ip6_nxt; 363 struct mbuf *mprev = m; 364 365 /* 366 * we treat dest2 specially. this makes IPsec processing 367 * much easier. the goal here is to make mprev point the 368 * mbuf prior to dest2. 369 * 370 * result: IPv6 dest2 payload 371 * m and mprev will point to IPv6 header. 372 */ 373 if (exthdrs.ip6e_dest2) { 374 if (!hdrsplit) 375 panic("assumption failed: hdr not split"); 376 exthdrs.ip6e_dest2->m_next = m->m_next; 377 m->m_next = exthdrs.ip6e_dest2; 378 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 379 ip6->ip6_nxt = IPPROTO_DSTOPTS; 380 } 381 382 #define MAKE_CHAIN(m, mp, p, i)\ 383 do {\ 384 if (m) {\ 385 if (!hdrsplit) \ 386 panic("assumption failed: hdr not split"); \ 387 *mtod((m), u_char *) = *(p);\ 388 *(p) = (i);\ 389 p = mtod((m), u_char *);\ 390 (m)->m_next = (mp)->m_next;\ 391 (mp)->m_next = (m);\ 392 (mp) = (m);\ 393 }\ 394 } while (/*CONSTCOND*/ 0) 395 /* 396 * result: IPv6 hbh dest1 rthdr dest2 payload 397 * m will point to IPv6 header. mprev will point to the 398 * extension header prior to dest2 (rthdr in the above case). 399 */ 400 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 401 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 402 IPPROTO_DSTOPTS); 403 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 404 IPPROTO_ROUTING); 405 406 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, 407 sizeof(struct ip6_hdr) + optlen); 408 } 409 410 /* Need to save for pmtu */ 411 finaldst = ip6->ip6_dst; 412 413 /* 414 * If there is a routing header, replace destination address field 415 * with the first hop of the routing header. 416 */ 417 if (exthdrs.ip6e_rthdr) { 418 struct ip6_rthdr *rh; 419 420 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 421 struct ip6_rthdr *)); 422 423 error = ip6_handle_rthdr(rh, ip6); 424 if (error != 0) 425 goto bad; 426 } 427 428 /* Source address validation */ 429 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 430 (flags & IPV6_UNSPECSRC) == 0) { 431 error = EOPNOTSUPP; 432 IP6_STATINC(IP6_STAT_BADSCOPE); 433 goto bad; 434 } 435 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 436 error = EOPNOTSUPP; 437 IP6_STATINC(IP6_STAT_BADSCOPE); 438 goto bad; 439 } 440 441 IP6_STATINC(IP6_STAT_LOCALOUT); 442 443 /* 444 * Route packet. 445 */ 446 /* initialize cached route */ 447 if (ro == NULL) { 448 memset(&ip6route, 0, sizeof(ip6route)); 449 ro = &ip6route; 450 } 451 ro_pmtu = ro; 452 if (opt && opt->ip6po_rthdr) 453 ro = &opt->ip6po_route; 454 455 /* 456 * if specified, try to fill in the traffic class field. 457 * do not override if a non-zero value is already set. 458 * we check the diffserv field and the ecn field separately. 459 */ 460 if (opt && opt->ip6po_tclass >= 0) { 461 int mask = 0; 462 463 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 464 mask |= 0xfc; 465 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 466 mask |= 0x03; 467 if (mask != 0) 468 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 469 } 470 471 /* fill in or override the hop limit field, if necessary. */ 472 if (opt && opt->ip6po_hlim != -1) 473 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 474 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 475 if (im6o != NULL) 476 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 477 else 478 ip6->ip6_hlim = ip6_defmcasthlim; 479 } 480 481 #ifdef IPSEC 482 if (needipsec) { 483 int s = splsoftnet(); 484 error = ipsec6_process_packet(m, sp->req); 485 486 /* 487 * Preserve KAME behaviour: ENOENT can be returned 488 * when an SA acquire is in progress. Don't propagate 489 * this to user-level; it confuses applications. 490 * XXX this will go away when the SADB is redone. 491 */ 492 if (error == ENOENT) 493 error = 0; 494 splx(s); 495 goto done; 496 } 497 #endif /* IPSEC */ 498 499 /* adjust pointer */ 500 ip6 = mtod(m, struct ip6_hdr *); 501 502 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 503 504 /* We do not need a route for multicast */ 505 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 506 struct in6_pktinfo *pi = NULL; 507 508 /* 509 * If the outgoing interface for the address is specified by 510 * the caller, use it. 511 */ 512 if (opt && (pi = opt->ip6po_pktinfo) != NULL) { 513 /* XXX boundary check is assumed to be already done. */ 514 ifp = if_get_byindex(pi->ipi6_ifindex, &psref); 515 } else if (im6o != NULL) { 516 ifp = if_get_byindex(im6o->im6o_multicast_if_index, 517 &psref); 518 } 519 } 520 521 if (ifp == NULL) { 522 error = in6_selectroute(&dst_sa, opt, &ro, &rt, true); 523 if (error != 0) 524 goto bad; 525 ifp = if_get_byindex(rt->rt_ifp->if_index, &psref); 526 } 527 528 if (rt == NULL) { 529 /* 530 * If in6_selectroute() does not return a route entry, 531 * dst may not have been updated. 532 */ 533 error = rtcache_setdst(ro, sin6tosa(&dst_sa)); 534 if (error) { 535 goto bad; 536 } 537 } 538 539 /* 540 * then rt (for unicast) and ifp must be non-NULL valid values. 541 */ 542 if ((flags & IPV6_FORWARDING) == 0) { 543 /* XXX: the FORWARDING flag can be set for mrouting. */ 544 in6_ifstat_inc(ifp, ifs6_out_request); 545 } 546 if (rt != NULL) { 547 ia = (struct in6_ifaddr *)(rt->rt_ifa); 548 rt->rt_use++; 549 } 550 551 /* 552 * The outgoing interface must be in the zone of source and 553 * destination addresses. We should use ia_ifp to support the 554 * case of sending packets to an address of our own. 555 */ 556 if (ia != NULL && ia->ia_ifp) { 557 origifp = ia->ia_ifp; 558 if (if_is_deactivated(origifp)) 559 goto bad; 560 if_acquire_NOMPSAFE(origifp, &psref_ia); 561 release_psref_ia = true; 562 } else 563 origifp = ifp; 564 565 src0 = ip6->ip6_src; 566 if (in6_setscope(&src0, origifp, &zone)) 567 goto badscope; 568 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0); 569 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 570 goto badscope; 571 572 dst0 = ip6->ip6_dst; 573 if (in6_setscope(&dst0, origifp, &zone)) 574 goto badscope; 575 /* re-initialize to be sure */ 576 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 577 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) 578 goto badscope; 579 580 /* scope check is done. */ 581 582 /* Ensure we only send from a valid address. */ 583 if ((error = ip6_ifaddrvalid(&src0)) != 0) { 584 char ip6buf[INET6_ADDRSTRLEN]; 585 nd6log(LOG_ERR, 586 "refusing to send from invalid address %s (pid %d)\n", 587 IN6_PRINT(ip6buf, &src0), curproc->p_pid); 588 IP6_STATINC(IP6_STAT_ODROPPED); 589 in6_ifstat_inc(origifp, ifs6_out_discard); 590 if (error == 1) 591 /* 592 * Address exists, but is tentative or detached. 593 * We can't send from it because it's invalid, 594 * so we drop the packet. 595 */ 596 error = 0; 597 else 598 error = EADDRNOTAVAIL; 599 goto bad; 600 } 601 602 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) && 603 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 604 dst = satocsin6(rt->rt_gateway); 605 else 606 dst = satocsin6(rtcache_getdst(ro)); 607 608 /* 609 * XXXXXX: original code follows: 610 */ 611 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 612 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 613 else { 614 struct in6_multi *in6m; 615 616 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 617 618 in6_ifstat_inc(ifp, ifs6_out_mcast); 619 620 /* 621 * Confirm that the outgoing interface supports multicast. 622 */ 623 if (!(ifp->if_flags & IFF_MULTICAST)) { 624 IP6_STATINC(IP6_STAT_NOROUTE); 625 in6_ifstat_inc(ifp, ifs6_out_discard); 626 error = ENETUNREACH; 627 goto bad; 628 } 629 630 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 631 if (in6m != NULL && 632 (im6o == NULL || im6o->im6o_multicast_loop)) { 633 /* 634 * If we belong to the destination multicast group 635 * on the outgoing interface, and the caller did not 636 * forbid loopback, loop back a copy. 637 */ 638 KASSERT(dst != NULL); 639 ip6_mloopback(ifp, m, dst); 640 } else { 641 /* 642 * If we are acting as a multicast router, perform 643 * multicast forwarding as if the packet had just 644 * arrived on the interface to which we are about 645 * to send. The multicast forwarding function 646 * recursively calls this function, using the 647 * IPV6_FORWARDING flag to prevent infinite recursion. 648 * 649 * Multicasts that are looped back by ip6_mloopback(), 650 * above, will be forwarded by the ip6_input() routine, 651 * if necessary. 652 */ 653 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 654 if (ip6_mforward(ip6, ifp, m) != 0) { 655 m_freem(m); 656 goto done; 657 } 658 } 659 } 660 /* 661 * Multicasts with a hoplimit of zero may be looped back, 662 * above, but must not be transmitted on a network. 663 * Also, multicasts addressed to the loopback interface 664 * are not sent -- the above call to ip6_mloopback() will 665 * loop back a copy if this host actually belongs to the 666 * destination group on the loopback interface. 667 */ 668 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 669 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 670 m_freem(m); 671 goto done; 672 } 673 } 674 675 /* 676 * Fill the outgoing inteface to tell the upper layer 677 * to increment per-interface statistics. 678 */ 679 if (ifpp) 680 *ifpp = ifp; 681 682 /* Determine path MTU. */ 683 /* 684 * ro_pmtu represent final destination while 685 * ro might represent immediate destination. 686 * Use ro_pmtu destination since MTU might differ. 687 */ 688 if (ro_pmtu != ro) { 689 union { 690 struct sockaddr dst; 691 struct sockaddr_in6 dst6; 692 } u; 693 694 /* ro_pmtu may not have a cache */ 695 sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0); 696 rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst); 697 } else 698 rt_pmtu = rt; 699 error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag); 700 if (rt_pmtu != NULL && rt_pmtu != rt) 701 rtcache_unref(rt_pmtu, ro_pmtu); 702 if (error != 0) 703 goto bad; 704 705 /* 706 * The caller of this function may specify to use the minimum MTU 707 * in some cases. 708 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 709 * setting. The logic is a bit complicated; by default, unicast 710 * packets will follow path MTU while multicast packets will be sent at 711 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 712 * including unicast ones will be sent at the minimum MTU. Multicast 713 * packets will always be sent at the minimum MTU unless 714 * IP6PO_MINMTU_DISABLE is explicitly specified. 715 * See RFC 3542 for more details. 716 */ 717 if (mtu > IPV6_MMTU) { 718 if ((flags & IPV6_MINMTU)) 719 mtu = IPV6_MMTU; 720 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 721 mtu = IPV6_MMTU; 722 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 723 (opt == NULL || 724 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 725 mtu = IPV6_MMTU; 726 } 727 } 728 729 /* 730 * clear embedded scope identifiers if necessary. 731 * in6_clearscope will touch the addresses only when necessary. 732 */ 733 in6_clearscope(&ip6->ip6_src); 734 in6_clearscope(&ip6->ip6_dst); 735 736 /* 737 * If the outgoing packet contains a hop-by-hop options header, 738 * it must be examined and processed even by the source node. 739 * (RFC 2460, section 4.) 740 */ 741 if (ip6->ip6_nxt == IPV6_HOPOPTS) { 742 u_int32_t dummy1; /* XXX unused */ 743 u_int32_t dummy2; /* XXX unused */ 744 int hoff = sizeof(struct ip6_hdr); 745 746 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) { 747 /* m was already freed at this point */ 748 error = EINVAL;/* better error? */ 749 goto done; 750 } 751 752 ip6 = mtod(m, struct ip6_hdr *); 753 } 754 755 /* 756 * Run through list of hooks for output packets. 757 */ 758 if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0) 759 goto done; 760 if (m == NULL) 761 goto done; 762 ip6 = mtod(m, struct ip6_hdr *); 763 764 /* 765 * Send the packet to the outgoing interface. 766 * If necessary, do IPv6 fragmentation before sending. 767 * 768 * the logic here is rather complex: 769 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 770 * 1-a: send as is if tlen <= path mtu 771 * 1-b: fragment if tlen > path mtu 772 * 773 * 2: if user asks us not to fragment (dontfrag == 1) 774 * 2-a: send as is if tlen <= interface mtu 775 * 2-b: error if tlen > interface mtu 776 * 777 * 3: if we always need to attach fragment header (alwaysfrag == 1) 778 * always fragment 779 * 780 * 4: if dontfrag == 1 && alwaysfrag == 1 781 * error, as we cannot handle this conflicting request 782 */ 783 tlen = m->m_pkthdr.len; 784 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0; 785 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 786 dontfrag = 1; 787 else 788 dontfrag = 0; 789 790 if (dontfrag && alwaysfrag) { /* case 4 */ 791 /* conflicting request - can't transmit */ 792 error = EMSGSIZE; 793 goto bad; 794 } 795 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */ 796 /* 797 * Even if the DONTFRAG option is specified, we cannot send the 798 * packet when the data length is larger than the MTU of the 799 * outgoing interface. 800 * Notify the error by sending IPV6_PATHMTU ancillary data as 801 * well as returning an error code (the latter is not described 802 * in the API spec.) 803 */ 804 u_int32_t mtu32; 805 struct ip6ctlparam ip6cp; 806 807 mtu32 = (u_int32_t)mtu; 808 memset(&ip6cp, 0, sizeof(ip6cp)); 809 ip6cp.ip6c_cmdarg = (void *)&mtu32; 810 pfctlinput2(PRC_MSGSIZE, 811 rtcache_getdst(ro_pmtu), &ip6cp); 812 813 error = EMSGSIZE; 814 goto bad; 815 } 816 817 /* 818 * transmit packet without fragmentation 819 */ 820 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) { 821 /* case 1-a and 2-a */ 822 struct in6_ifaddr *ia6; 823 int sw_csum; 824 int s; 825 826 ip6 = mtod(m, struct ip6_hdr *); 827 s = pserialize_read_enter(); 828 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 829 if (ia6) { 830 /* Record statistics for this interface address. */ 831 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len; 832 } 833 pserialize_read_exit(s); 834 835 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 836 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 837 if (IN6_NEED_CHECKSUM(ifp, 838 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 839 in6_delayed_cksum(m); 840 } 841 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 842 } 843 844 KASSERT(dst != NULL); 845 if (__predict_true(!tso || 846 (ifp->if_capenable & IFCAP_TSOv6) != 0)) { 847 error = nd6_output(ifp, origifp, m, dst, rt); 848 } else { 849 error = ip6_tso_output(ifp, origifp, m, dst, rt); 850 } 851 goto done; 852 } 853 854 if (tso) { 855 error = EINVAL; /* XXX */ 856 goto bad; 857 } 858 859 /* 860 * try to fragment the packet. case 1-b and 3 861 */ 862 if (mtu < IPV6_MMTU) { 863 /* path MTU cannot be less than IPV6_MMTU */ 864 error = EMSGSIZE; 865 in6_ifstat_inc(ifp, ifs6_out_fragfail); 866 goto bad; 867 } else if (ip6->ip6_plen == 0) { 868 /* jumbo payload cannot be fragmented */ 869 error = EMSGSIZE; 870 in6_ifstat_inc(ifp, ifs6_out_fragfail); 871 goto bad; 872 } else { 873 struct mbuf **mnext, *m_frgpart; 874 struct ip6_frag *ip6f; 875 u_int32_t id = htonl(ip6_randomid()); 876 u_char nextproto; 877 #if 0 /* see below */ 878 struct ip6ctlparam ip6cp; 879 u_int32_t mtu32; 880 #endif 881 882 /* 883 * Too large for the destination or interface; 884 * fragment if possible. 885 * Must be able to put at least 8 bytes per fragment. 886 */ 887 hlen = unfragpartlen; 888 if (mtu > IPV6_MAXPACKET) 889 mtu = IPV6_MAXPACKET; 890 891 #if 0 892 /* 893 * It is believed this code is a leftover from the 894 * development of the IPV6_RECVPATHMTU sockopt and 895 * associated work to implement RFC3542. 896 * It's not entirely clear what the intent of the API 897 * is at this point, so disable this code for now. 898 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG 899 * will send notifications if the application requests. 900 */ 901 902 /* Notify a proper path MTU to applications. */ 903 mtu32 = (u_int32_t)mtu; 904 memset(&ip6cp, 0, sizeof(ip6cp)); 905 ip6cp.ip6c_cmdarg = (void *)&mtu32; 906 pfctlinput2(PRC_MSGSIZE, 907 rtcache_getdst(ro_pmtu), &ip6cp); 908 #endif 909 910 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 911 if (len < 8) { 912 error = EMSGSIZE; 913 in6_ifstat_inc(ifp, ifs6_out_fragfail); 914 goto bad; 915 } 916 917 mnext = &m->m_nextpkt; 918 919 /* 920 * Change the next header field of the last header in the 921 * unfragmentable part. 922 */ 923 if (exthdrs.ip6e_rthdr) { 924 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 925 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 926 } else if (exthdrs.ip6e_dest1) { 927 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 928 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 929 } else if (exthdrs.ip6e_hbh) { 930 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 931 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 932 } else { 933 nextproto = ip6->ip6_nxt; 934 ip6->ip6_nxt = IPPROTO_FRAGMENT; 935 } 936 937 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) 938 != 0) { 939 if (IN6_NEED_CHECKSUM(ifp, 940 m->m_pkthdr.csum_flags & 941 (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 942 in6_delayed_cksum(m); 943 } 944 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 945 } 946 947 /* 948 * Loop through length of segment after first fragment, 949 * make new header and copy data of each part and link onto 950 * chain. 951 */ 952 m0 = m; 953 for (off = hlen; off < tlen; off += len) { 954 struct mbuf *mlast; 955 956 MGETHDR(m, M_DONTWAIT, MT_HEADER); 957 if (!m) { 958 error = ENOBUFS; 959 IP6_STATINC(IP6_STAT_ODROPPED); 960 goto sendorfree; 961 } 962 m_reset_rcvif(m); 963 m->m_flags = m0->m_flags & M_COPYFLAGS; 964 *mnext = m; 965 mnext = &m->m_nextpkt; 966 m->m_data += max_linkhdr; 967 mhip6 = mtod(m, struct ip6_hdr *); 968 *mhip6 = *ip6; 969 m->m_len = sizeof(*mhip6); 970 /* 971 * ip6f must be valid if error is 0. But how 972 * can a compiler be expected to infer this? 973 */ 974 ip6f = NULL; 975 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 976 if (error) { 977 IP6_STATINC(IP6_STAT_ODROPPED); 978 goto sendorfree; 979 } 980 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 981 if (off + len >= tlen) 982 len = tlen - off; 983 else 984 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 985 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 986 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 987 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 988 error = ENOBUFS; 989 IP6_STATINC(IP6_STAT_ODROPPED); 990 goto sendorfree; 991 } 992 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 993 ; 994 mlast->m_next = m_frgpart; 995 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 996 m_reset_rcvif(m); 997 ip6f->ip6f_reserved = 0; 998 ip6f->ip6f_ident = id; 999 ip6f->ip6f_nxt = nextproto; 1000 IP6_STATINC(IP6_STAT_OFRAGMENTS); 1001 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1002 } 1003 1004 in6_ifstat_inc(ifp, ifs6_out_fragok); 1005 } 1006 1007 /* 1008 * Remove leading garbages. 1009 */ 1010 sendorfree: 1011 m = m0->m_nextpkt; 1012 m0->m_nextpkt = 0; 1013 m_freem(m0); 1014 for (m0 = m; m; m = m0) { 1015 m0 = m->m_nextpkt; 1016 m->m_nextpkt = 0; 1017 if (error == 0) { 1018 struct in6_ifaddr *ia6; 1019 int s; 1020 ip6 = mtod(m, struct ip6_hdr *); 1021 s = pserialize_read_enter(); 1022 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1023 if (ia6) { 1024 /* 1025 * Record statistics for this interface 1026 * address. 1027 */ 1028 ia6->ia_ifa.ifa_data.ifad_outbytes += 1029 m->m_pkthdr.len; 1030 } 1031 pserialize_read_exit(s); 1032 KASSERT(dst != NULL); 1033 error = nd6_output(ifp, origifp, m, dst, rt); 1034 } else 1035 m_freem(m); 1036 } 1037 1038 if (error == 0) 1039 IP6_STATINC(IP6_STAT_FRAGMENTED); 1040 1041 done: 1042 rtcache_unref(rt, ro); 1043 if (ro == &ip6route) 1044 rtcache_free(&ip6route); 1045 1046 #ifdef IPSEC 1047 if (sp != NULL) 1048 KEY_FREESP(&sp); 1049 #endif /* IPSEC */ 1050 1051 if_put(ifp, &psref); 1052 if (release_psref_ia) 1053 if_put(origifp, &psref_ia); 1054 curlwp_bindx(bound); 1055 1056 return (error); 1057 1058 freehdrs: 1059 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1060 m_freem(exthdrs.ip6e_dest1); 1061 m_freem(exthdrs.ip6e_rthdr); 1062 m_freem(exthdrs.ip6e_dest2); 1063 /* FALLTHROUGH */ 1064 bad: 1065 m_freem(m); 1066 goto done; 1067 badscope: 1068 IP6_STATINC(IP6_STAT_BADSCOPE); 1069 in6_ifstat_inc(origifp, ifs6_out_discard); 1070 if (error == 0) 1071 error = EHOSTUNREACH; /* XXX */ 1072 goto bad; 1073 } 1074 1075 static int 1076 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen) 1077 { 1078 struct mbuf *m; 1079 1080 if (hlen > MCLBYTES) 1081 return (ENOBUFS); /* XXX */ 1082 1083 MGET(m, M_DONTWAIT, MT_DATA); 1084 if (!m) 1085 return (ENOBUFS); 1086 1087 if (hlen > MLEN) { 1088 MCLGET(m, M_DONTWAIT); 1089 if ((m->m_flags & M_EXT) == 0) { 1090 m_free(m); 1091 return (ENOBUFS); 1092 } 1093 } 1094 m->m_len = hlen; 1095 if (hdr) 1096 bcopy(hdr, mtod(m, void *), hlen); 1097 1098 *mp = m; 1099 return (0); 1100 } 1101 1102 /* 1103 * Process a delayed payload checksum calculation. 1104 */ 1105 void 1106 in6_delayed_cksum(struct mbuf *m) 1107 { 1108 uint16_t csum, offset; 1109 1110 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1111 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1112 KASSERT((m->m_pkthdr.csum_flags 1113 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0); 1114 1115 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data); 1116 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset); 1117 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) { 1118 csum = 0xffff; 1119 } 1120 1121 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data); 1122 if ((offset + sizeof(csum)) > m->m_len) { 1123 m_copyback(m, offset, sizeof(csum), &csum); 1124 } else { 1125 *(uint16_t *)(mtod(m, char *) + offset) = csum; 1126 } 1127 } 1128 1129 /* 1130 * Insert jumbo payload option. 1131 */ 1132 static int 1133 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1134 { 1135 struct mbuf *mopt; 1136 u_int8_t *optbuf; 1137 u_int32_t v; 1138 1139 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1140 1141 /* 1142 * If there is no hop-by-hop options header, allocate new one. 1143 * If there is one but it doesn't have enough space to store the 1144 * jumbo payload option, allocate a cluster to store the whole options. 1145 * Otherwise, use it to store the options. 1146 */ 1147 if (exthdrs->ip6e_hbh == 0) { 1148 MGET(mopt, M_DONTWAIT, MT_DATA); 1149 if (mopt == 0) 1150 return (ENOBUFS); 1151 mopt->m_len = JUMBOOPTLEN; 1152 optbuf = mtod(mopt, u_int8_t *); 1153 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1154 exthdrs->ip6e_hbh = mopt; 1155 } else { 1156 struct ip6_hbh *hbh; 1157 1158 mopt = exthdrs->ip6e_hbh; 1159 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1160 /* 1161 * XXX assumption: 1162 * - exthdrs->ip6e_hbh is not referenced from places 1163 * other than exthdrs. 1164 * - exthdrs->ip6e_hbh is not an mbuf chain. 1165 */ 1166 int oldoptlen = mopt->m_len; 1167 struct mbuf *n; 1168 1169 /* 1170 * XXX: give up if the whole (new) hbh header does 1171 * not fit even in an mbuf cluster. 1172 */ 1173 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1174 return (ENOBUFS); 1175 1176 /* 1177 * As a consequence, we must always prepare a cluster 1178 * at this point. 1179 */ 1180 MGET(n, M_DONTWAIT, MT_DATA); 1181 if (n) { 1182 MCLGET(n, M_DONTWAIT); 1183 if ((n->m_flags & M_EXT) == 0) { 1184 m_freem(n); 1185 n = NULL; 1186 } 1187 } 1188 if (!n) 1189 return (ENOBUFS); 1190 n->m_len = oldoptlen + JUMBOOPTLEN; 1191 bcopy(mtod(mopt, void *), mtod(n, void *), 1192 oldoptlen); 1193 optbuf = mtod(n, u_int8_t *) + oldoptlen; 1194 m_freem(mopt); 1195 mopt = exthdrs->ip6e_hbh = n; 1196 } else { 1197 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 1198 mopt->m_len += JUMBOOPTLEN; 1199 } 1200 optbuf[0] = IP6OPT_PADN; 1201 optbuf[1] = 0; 1202 1203 /* 1204 * Adjust the header length according to the pad and 1205 * the jumbo payload option. 1206 */ 1207 hbh = mtod(mopt, struct ip6_hbh *); 1208 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1209 } 1210 1211 /* fill in the option. */ 1212 optbuf[2] = IP6OPT_JUMBO; 1213 optbuf[3] = 4; 1214 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1215 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1216 1217 /* finally, adjust the packet header length */ 1218 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1219 1220 return (0); 1221 #undef JUMBOOPTLEN 1222 } 1223 1224 /* 1225 * Insert fragment header and copy unfragmentable header portions. 1226 * 1227 * *frghdrp will not be read, and it is guaranteed that either an 1228 * error is returned or that *frghdrp will point to space allocated 1229 * for the fragment header. 1230 */ 1231 static int 1232 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1233 struct ip6_frag **frghdrp) 1234 { 1235 struct mbuf *n, *mlast; 1236 1237 if (hlen > sizeof(struct ip6_hdr)) { 1238 n = m_copym(m0, sizeof(struct ip6_hdr), 1239 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1240 if (n == 0) 1241 return (ENOBUFS); 1242 m->m_next = n; 1243 } else 1244 n = m; 1245 1246 /* Search for the last mbuf of unfragmentable part. */ 1247 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1248 ; 1249 1250 if ((mlast->m_flags & M_EXT) == 0 && 1251 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1252 /* use the trailing space of the last mbuf for the fragment hdr */ 1253 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) + 1254 mlast->m_len); 1255 mlast->m_len += sizeof(struct ip6_frag); 1256 m->m_pkthdr.len += sizeof(struct ip6_frag); 1257 } else { 1258 /* allocate a new mbuf for the fragment header */ 1259 struct mbuf *mfrg; 1260 1261 MGET(mfrg, M_DONTWAIT, MT_DATA); 1262 if (mfrg == 0) 1263 return (ENOBUFS); 1264 mfrg->m_len = sizeof(struct ip6_frag); 1265 *frghdrp = mtod(mfrg, struct ip6_frag *); 1266 mlast->m_next = mfrg; 1267 } 1268 1269 return (0); 1270 } 1271 1272 static int 1273 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup, 1274 int *alwaysfragp) 1275 { 1276 u_int32_t mtu = 0; 1277 int alwaysfrag = 0; 1278 int error = 0; 1279 1280 if (rt != NULL) { 1281 u_int32_t ifmtu; 1282 1283 if (ifp == NULL) 1284 ifp = rt->rt_ifp; 1285 ifmtu = IN6_LINKMTU(ifp); 1286 mtu = rt->rt_rmx.rmx_mtu; 1287 if (mtu == 0) 1288 mtu = ifmtu; 1289 else if (mtu < IPV6_MMTU) { 1290 /* 1291 * RFC2460 section 5, last paragraph: 1292 * if we record ICMPv6 too big message with 1293 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1294 * or smaller, with fragment header attached. 1295 * (fragment header is needed regardless from the 1296 * packet size, for translators to identify packets) 1297 */ 1298 alwaysfrag = 1; 1299 mtu = IPV6_MMTU; 1300 } else if (mtu > ifmtu) { 1301 /* 1302 * The MTU on the route is larger than the MTU on 1303 * the interface! This shouldn't happen, unless the 1304 * MTU of the interface has been changed after the 1305 * interface was brought up. Change the MTU in the 1306 * route to match the interface MTU (as long as the 1307 * field isn't locked). 1308 */ 1309 mtu = ifmtu; 1310 if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) 1311 rt->rt_rmx.rmx_mtu = mtu; 1312 } 1313 } else if (ifp) { 1314 mtu = IN6_LINKMTU(ifp); 1315 } else 1316 error = EHOSTUNREACH; /* XXX */ 1317 1318 *mtup = mtu; 1319 if (alwaysfragp) 1320 *alwaysfragp = alwaysfrag; 1321 return (error); 1322 } 1323 1324 /* 1325 * IP6 socket option processing. 1326 */ 1327 int 1328 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1329 { 1330 int optdatalen, uproto; 1331 void *optdata; 1332 struct in6pcb *in6p = sotoin6pcb(so); 1333 struct ip_moptions **mopts; 1334 int error, optval; 1335 int level, optname; 1336 1337 KASSERT(sopt != NULL); 1338 1339 level = sopt->sopt_level; 1340 optname = sopt->sopt_name; 1341 1342 error = optval = 0; 1343 uproto = (int)so->so_proto->pr_protocol; 1344 1345 switch (level) { 1346 case IPPROTO_IP: 1347 switch (optname) { 1348 case IP_ADD_MEMBERSHIP: 1349 case IP_DROP_MEMBERSHIP: 1350 case IP_MULTICAST_IF: 1351 case IP_MULTICAST_LOOP: 1352 case IP_MULTICAST_TTL: 1353 mopts = &in6p->in6p_v4moptions; 1354 switch (op) { 1355 case PRCO_GETOPT: 1356 return ip_getmoptions(*mopts, sopt); 1357 case PRCO_SETOPT: 1358 return ip_setmoptions(mopts, sopt); 1359 default: 1360 return EINVAL; 1361 } 1362 default: 1363 return ENOPROTOOPT; 1364 } 1365 case IPPROTO_IPV6: 1366 break; 1367 default: 1368 return ENOPROTOOPT; 1369 } 1370 switch (op) { 1371 case PRCO_SETOPT: 1372 switch (optname) { 1373 #ifdef RFC2292 1374 case IPV6_2292PKTOPTIONS: 1375 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt); 1376 break; 1377 #endif 1378 1379 /* 1380 * Use of some Hop-by-Hop options or some 1381 * Destination options, might require special 1382 * privilege. That is, normal applications 1383 * (without special privilege) might be forbidden 1384 * from setting certain options in outgoing packets, 1385 * and might never see certain options in received 1386 * packets. [RFC 2292 Section 6] 1387 * KAME specific note: 1388 * KAME prevents non-privileged users from sending or 1389 * receiving ANY hbh/dst options in order to avoid 1390 * overhead of parsing options in the kernel. 1391 */ 1392 case IPV6_RECVHOPOPTS: 1393 case IPV6_RECVDSTOPTS: 1394 case IPV6_RECVRTHDRDSTOPTS: 1395 error = kauth_authorize_network(kauth_cred_get(), 1396 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, 1397 NULL, NULL, NULL); 1398 if (error) 1399 break; 1400 /* FALLTHROUGH */ 1401 case IPV6_UNICAST_HOPS: 1402 case IPV6_HOPLIMIT: 1403 case IPV6_FAITH: 1404 1405 case IPV6_RECVPKTINFO: 1406 case IPV6_RECVHOPLIMIT: 1407 case IPV6_RECVRTHDR: 1408 case IPV6_RECVPATHMTU: 1409 case IPV6_RECVTCLASS: 1410 case IPV6_V6ONLY: 1411 error = sockopt_getint(sopt, &optval); 1412 if (error) 1413 break; 1414 switch (optname) { 1415 case IPV6_UNICAST_HOPS: 1416 if (optval < -1 || optval >= 256) 1417 error = EINVAL; 1418 else { 1419 /* -1 = kernel default */ 1420 in6p->in6p_hops = optval; 1421 } 1422 break; 1423 #define OPTSET(bit) \ 1424 do { \ 1425 if (optval) \ 1426 in6p->in6p_flags |= (bit); \ 1427 else \ 1428 in6p->in6p_flags &= ~(bit); \ 1429 } while (/*CONSTCOND*/ 0) 1430 1431 #ifdef RFC2292 1432 #define OPTSET2292(bit) \ 1433 do { \ 1434 in6p->in6p_flags |= IN6P_RFC2292; \ 1435 if (optval) \ 1436 in6p->in6p_flags |= (bit); \ 1437 else \ 1438 in6p->in6p_flags &= ~(bit); \ 1439 } while (/*CONSTCOND*/ 0) 1440 #endif 1441 1442 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1443 1444 case IPV6_RECVPKTINFO: 1445 #ifdef RFC2292 1446 /* cannot mix with RFC2292 */ 1447 if (OPTBIT(IN6P_RFC2292)) { 1448 error = EINVAL; 1449 break; 1450 } 1451 #endif 1452 OPTSET(IN6P_PKTINFO); 1453 break; 1454 1455 case IPV6_HOPLIMIT: 1456 { 1457 struct ip6_pktopts **optp; 1458 1459 #ifdef RFC2292 1460 /* cannot mix with RFC2292 */ 1461 if (OPTBIT(IN6P_RFC2292)) { 1462 error = EINVAL; 1463 break; 1464 } 1465 #endif 1466 optp = &in6p->in6p_outputopts; 1467 error = ip6_pcbopt(IPV6_HOPLIMIT, 1468 (u_char *)&optval, 1469 sizeof(optval), 1470 optp, 1471 kauth_cred_get(), uproto); 1472 break; 1473 } 1474 1475 case IPV6_RECVHOPLIMIT: 1476 #ifdef RFC2292 1477 /* cannot mix with RFC2292 */ 1478 if (OPTBIT(IN6P_RFC2292)) { 1479 error = EINVAL; 1480 break; 1481 } 1482 #endif 1483 OPTSET(IN6P_HOPLIMIT); 1484 break; 1485 1486 case IPV6_RECVHOPOPTS: 1487 #ifdef RFC2292 1488 /* cannot mix with RFC2292 */ 1489 if (OPTBIT(IN6P_RFC2292)) { 1490 error = EINVAL; 1491 break; 1492 } 1493 #endif 1494 OPTSET(IN6P_HOPOPTS); 1495 break; 1496 1497 case IPV6_RECVDSTOPTS: 1498 #ifdef RFC2292 1499 /* cannot mix with RFC2292 */ 1500 if (OPTBIT(IN6P_RFC2292)) { 1501 error = EINVAL; 1502 break; 1503 } 1504 #endif 1505 OPTSET(IN6P_DSTOPTS); 1506 break; 1507 1508 case IPV6_RECVRTHDRDSTOPTS: 1509 #ifdef RFC2292 1510 /* cannot mix with RFC2292 */ 1511 if (OPTBIT(IN6P_RFC2292)) { 1512 error = EINVAL; 1513 break; 1514 } 1515 #endif 1516 OPTSET(IN6P_RTHDRDSTOPTS); 1517 break; 1518 1519 case IPV6_RECVRTHDR: 1520 #ifdef RFC2292 1521 /* cannot mix with RFC2292 */ 1522 if (OPTBIT(IN6P_RFC2292)) { 1523 error = EINVAL; 1524 break; 1525 } 1526 #endif 1527 OPTSET(IN6P_RTHDR); 1528 break; 1529 1530 case IPV6_FAITH: 1531 OPTSET(IN6P_FAITH); 1532 break; 1533 1534 case IPV6_RECVPATHMTU: 1535 /* 1536 * We ignore this option for TCP 1537 * sockets. 1538 * (RFC3542 leaves this case 1539 * unspecified.) 1540 */ 1541 if (uproto != IPPROTO_TCP) 1542 OPTSET(IN6P_MTU); 1543 break; 1544 1545 case IPV6_V6ONLY: 1546 /* 1547 * make setsockopt(IPV6_V6ONLY) 1548 * available only prior to bind(2). 1549 * see ipng mailing list, Jun 22 2001. 1550 */ 1551 if (in6p->in6p_lport || 1552 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1553 error = EINVAL; 1554 break; 1555 } 1556 #ifdef INET6_BINDV6ONLY 1557 if (!optval) 1558 error = EINVAL; 1559 #else 1560 OPTSET(IN6P_IPV6_V6ONLY); 1561 #endif 1562 break; 1563 case IPV6_RECVTCLASS: 1564 #ifdef RFC2292 1565 /* cannot mix with RFC2292 XXX */ 1566 if (OPTBIT(IN6P_RFC2292)) { 1567 error = EINVAL; 1568 break; 1569 } 1570 #endif 1571 OPTSET(IN6P_TCLASS); 1572 break; 1573 1574 } 1575 break; 1576 1577 case IPV6_OTCLASS: 1578 { 1579 struct ip6_pktopts **optp; 1580 u_int8_t tclass; 1581 1582 error = sockopt_get(sopt, &tclass, sizeof(tclass)); 1583 if (error) 1584 break; 1585 optp = &in6p->in6p_outputopts; 1586 error = ip6_pcbopt(optname, 1587 (u_char *)&tclass, 1588 sizeof(tclass), 1589 optp, 1590 kauth_cred_get(), uproto); 1591 break; 1592 } 1593 1594 case IPV6_TCLASS: 1595 case IPV6_DONTFRAG: 1596 case IPV6_USE_MIN_MTU: 1597 case IPV6_PREFER_TEMPADDR: 1598 error = sockopt_getint(sopt, &optval); 1599 if (error) 1600 break; 1601 { 1602 struct ip6_pktopts **optp; 1603 optp = &in6p->in6p_outputopts; 1604 error = ip6_pcbopt(optname, 1605 (u_char *)&optval, 1606 sizeof(optval), 1607 optp, 1608 kauth_cred_get(), uproto); 1609 break; 1610 } 1611 1612 #ifdef RFC2292 1613 case IPV6_2292PKTINFO: 1614 case IPV6_2292HOPLIMIT: 1615 case IPV6_2292HOPOPTS: 1616 case IPV6_2292DSTOPTS: 1617 case IPV6_2292RTHDR: 1618 /* RFC 2292 */ 1619 error = sockopt_getint(sopt, &optval); 1620 if (error) 1621 break; 1622 1623 switch (optname) { 1624 case IPV6_2292PKTINFO: 1625 OPTSET2292(IN6P_PKTINFO); 1626 break; 1627 case IPV6_2292HOPLIMIT: 1628 OPTSET2292(IN6P_HOPLIMIT); 1629 break; 1630 case IPV6_2292HOPOPTS: 1631 /* 1632 * Check super-user privilege. 1633 * See comments for IPV6_RECVHOPOPTS. 1634 */ 1635 error = 1636 kauth_authorize_network(kauth_cred_get(), 1637 KAUTH_NETWORK_IPV6, 1638 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1639 NULL, NULL); 1640 if (error) 1641 return (error); 1642 OPTSET2292(IN6P_HOPOPTS); 1643 break; 1644 case IPV6_2292DSTOPTS: 1645 error = 1646 kauth_authorize_network(kauth_cred_get(), 1647 KAUTH_NETWORK_IPV6, 1648 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1649 NULL, NULL); 1650 if (error) 1651 return (error); 1652 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1653 break; 1654 case IPV6_2292RTHDR: 1655 OPTSET2292(IN6P_RTHDR); 1656 break; 1657 } 1658 break; 1659 #endif 1660 case IPV6_PKTINFO: 1661 case IPV6_HOPOPTS: 1662 case IPV6_RTHDR: 1663 case IPV6_DSTOPTS: 1664 case IPV6_RTHDRDSTOPTS: 1665 case IPV6_NEXTHOP: { 1666 /* new advanced API (RFC3542) */ 1667 void *optbuf; 1668 int optbuflen; 1669 struct ip6_pktopts **optp; 1670 1671 #ifdef RFC2292 1672 /* cannot mix with RFC2292 */ 1673 if (OPTBIT(IN6P_RFC2292)) { 1674 error = EINVAL; 1675 break; 1676 } 1677 #endif 1678 1679 optbuflen = sopt->sopt_size; 1680 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT); 1681 if (optbuf == NULL) { 1682 error = ENOBUFS; 1683 break; 1684 } 1685 1686 error = sockopt_get(sopt, optbuf, optbuflen); 1687 if (error) { 1688 free(optbuf, M_IP6OPT); 1689 break; 1690 } 1691 optp = &in6p->in6p_outputopts; 1692 error = ip6_pcbopt(optname, optbuf, optbuflen, 1693 optp, kauth_cred_get(), uproto); 1694 1695 free(optbuf, M_IP6OPT); 1696 break; 1697 } 1698 #undef OPTSET 1699 1700 case IPV6_MULTICAST_IF: 1701 case IPV6_MULTICAST_HOPS: 1702 case IPV6_MULTICAST_LOOP: 1703 case IPV6_JOIN_GROUP: 1704 case IPV6_LEAVE_GROUP: 1705 error = ip6_setmoptions(sopt, in6p); 1706 break; 1707 1708 case IPV6_PORTRANGE: 1709 error = sockopt_getint(sopt, &optval); 1710 if (error) 1711 break; 1712 1713 switch (optval) { 1714 case IPV6_PORTRANGE_DEFAULT: 1715 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1716 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1717 break; 1718 1719 case IPV6_PORTRANGE_HIGH: 1720 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1721 in6p->in6p_flags |= IN6P_HIGHPORT; 1722 break; 1723 1724 case IPV6_PORTRANGE_LOW: 1725 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1726 in6p->in6p_flags |= IN6P_LOWPORT; 1727 break; 1728 1729 default: 1730 error = EINVAL; 1731 break; 1732 } 1733 break; 1734 1735 case IPV6_PORTALGO: 1736 error = sockopt_getint(sopt, &optval); 1737 if (error) 1738 break; 1739 1740 error = portalgo_algo_index_select( 1741 (struct inpcb_hdr *)in6p, optval); 1742 break; 1743 1744 #if defined(IPSEC) 1745 case IPV6_IPSEC_POLICY: 1746 if (ipsec_enabled) { 1747 error = ipsec6_set_policy(in6p, optname, 1748 sopt->sopt_data, sopt->sopt_size, 1749 kauth_cred_get()); 1750 break; 1751 } 1752 /*FALLTHROUGH*/ 1753 #endif /* IPSEC */ 1754 1755 default: 1756 error = ENOPROTOOPT; 1757 break; 1758 } 1759 break; 1760 1761 case PRCO_GETOPT: 1762 switch (optname) { 1763 #ifdef RFC2292 1764 case IPV6_2292PKTOPTIONS: 1765 /* 1766 * RFC3542 (effectively) deprecated the 1767 * semantics of the 2292-style pktoptions. 1768 * Since it was not reliable in nature (i.e., 1769 * applications had to expect the lack of some 1770 * information after all), it would make sense 1771 * to simplify this part by always returning 1772 * empty data. 1773 */ 1774 break; 1775 #endif 1776 1777 case IPV6_RECVHOPOPTS: 1778 case IPV6_RECVDSTOPTS: 1779 case IPV6_RECVRTHDRDSTOPTS: 1780 case IPV6_UNICAST_HOPS: 1781 case IPV6_RECVPKTINFO: 1782 case IPV6_RECVHOPLIMIT: 1783 case IPV6_RECVRTHDR: 1784 case IPV6_RECVPATHMTU: 1785 1786 case IPV6_FAITH: 1787 case IPV6_V6ONLY: 1788 case IPV6_PORTRANGE: 1789 case IPV6_RECVTCLASS: 1790 switch (optname) { 1791 1792 case IPV6_RECVHOPOPTS: 1793 optval = OPTBIT(IN6P_HOPOPTS); 1794 break; 1795 1796 case IPV6_RECVDSTOPTS: 1797 optval = OPTBIT(IN6P_DSTOPTS); 1798 break; 1799 1800 case IPV6_RECVRTHDRDSTOPTS: 1801 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1802 break; 1803 1804 case IPV6_UNICAST_HOPS: 1805 optval = in6p->in6p_hops; 1806 break; 1807 1808 case IPV6_RECVPKTINFO: 1809 optval = OPTBIT(IN6P_PKTINFO); 1810 break; 1811 1812 case IPV6_RECVHOPLIMIT: 1813 optval = OPTBIT(IN6P_HOPLIMIT); 1814 break; 1815 1816 case IPV6_RECVRTHDR: 1817 optval = OPTBIT(IN6P_RTHDR); 1818 break; 1819 1820 case IPV6_RECVPATHMTU: 1821 optval = OPTBIT(IN6P_MTU); 1822 break; 1823 1824 case IPV6_FAITH: 1825 optval = OPTBIT(IN6P_FAITH); 1826 break; 1827 1828 case IPV6_V6ONLY: 1829 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1830 break; 1831 1832 case IPV6_PORTRANGE: 1833 { 1834 int flags; 1835 flags = in6p->in6p_flags; 1836 if (flags & IN6P_HIGHPORT) 1837 optval = IPV6_PORTRANGE_HIGH; 1838 else if (flags & IN6P_LOWPORT) 1839 optval = IPV6_PORTRANGE_LOW; 1840 else 1841 optval = 0; 1842 break; 1843 } 1844 case IPV6_RECVTCLASS: 1845 optval = OPTBIT(IN6P_TCLASS); 1846 break; 1847 1848 } 1849 if (error) 1850 break; 1851 error = sockopt_setint(sopt, optval); 1852 break; 1853 1854 case IPV6_PATHMTU: 1855 { 1856 u_long pmtu = 0; 1857 struct ip6_mtuinfo mtuinfo; 1858 struct route *ro = &in6p->in6p_route; 1859 struct rtentry *rt; 1860 union { 1861 struct sockaddr dst; 1862 struct sockaddr_in6 dst6; 1863 } u; 1864 1865 if (!(so->so_state & SS_ISCONNECTED)) 1866 return (ENOTCONN); 1867 /* 1868 * XXX: we dot not consider the case of source 1869 * routing, or optional information to specify 1870 * the outgoing interface. 1871 */ 1872 sockaddr_in6_init(&u.dst6, &in6p->in6p_faddr, 0, 0, 0); 1873 rt = rtcache_lookup(ro, &u.dst); 1874 error = ip6_getpmtu(rt, NULL, &pmtu, NULL); 1875 rtcache_unref(rt, ro); 1876 if (error) 1877 break; 1878 if (pmtu > IPV6_MAXPACKET) 1879 pmtu = IPV6_MAXPACKET; 1880 1881 memset(&mtuinfo, 0, sizeof(mtuinfo)); 1882 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1883 optdata = (void *)&mtuinfo; 1884 optdatalen = sizeof(mtuinfo); 1885 if (optdatalen > MCLBYTES) 1886 return (EMSGSIZE); /* XXX */ 1887 error = sockopt_set(sopt, optdata, optdatalen); 1888 break; 1889 } 1890 1891 #ifdef RFC2292 1892 case IPV6_2292PKTINFO: 1893 case IPV6_2292HOPLIMIT: 1894 case IPV6_2292HOPOPTS: 1895 case IPV6_2292RTHDR: 1896 case IPV6_2292DSTOPTS: 1897 switch (optname) { 1898 case IPV6_2292PKTINFO: 1899 optval = OPTBIT(IN6P_PKTINFO); 1900 break; 1901 case IPV6_2292HOPLIMIT: 1902 optval = OPTBIT(IN6P_HOPLIMIT); 1903 break; 1904 case IPV6_2292HOPOPTS: 1905 optval = OPTBIT(IN6P_HOPOPTS); 1906 break; 1907 case IPV6_2292RTHDR: 1908 optval = OPTBIT(IN6P_RTHDR); 1909 break; 1910 case IPV6_2292DSTOPTS: 1911 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1912 break; 1913 } 1914 error = sockopt_setint(sopt, optval); 1915 break; 1916 #endif 1917 case IPV6_PKTINFO: 1918 case IPV6_HOPOPTS: 1919 case IPV6_RTHDR: 1920 case IPV6_DSTOPTS: 1921 case IPV6_RTHDRDSTOPTS: 1922 case IPV6_NEXTHOP: 1923 case IPV6_OTCLASS: 1924 case IPV6_TCLASS: 1925 case IPV6_DONTFRAG: 1926 case IPV6_USE_MIN_MTU: 1927 case IPV6_PREFER_TEMPADDR: 1928 error = ip6_getpcbopt(in6p->in6p_outputopts, 1929 optname, sopt); 1930 break; 1931 1932 case IPV6_MULTICAST_IF: 1933 case IPV6_MULTICAST_HOPS: 1934 case IPV6_MULTICAST_LOOP: 1935 case IPV6_JOIN_GROUP: 1936 case IPV6_LEAVE_GROUP: 1937 error = ip6_getmoptions(sopt, in6p); 1938 break; 1939 1940 case IPV6_PORTALGO: 1941 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo; 1942 error = sockopt_setint(sopt, optval); 1943 break; 1944 1945 #if defined(IPSEC) 1946 case IPV6_IPSEC_POLICY: 1947 if (ipsec_used) { 1948 struct mbuf *m = NULL; 1949 1950 /* 1951 * XXX: this will return EINVAL as sopt is 1952 * empty 1953 */ 1954 error = ipsec6_get_policy(in6p, sopt->sopt_data, 1955 sopt->sopt_size, &m); 1956 if (!error) 1957 error = sockopt_setmbuf(sopt, m); 1958 break; 1959 } 1960 /*FALLTHROUGH*/ 1961 #endif /* IPSEC */ 1962 1963 default: 1964 error = ENOPROTOOPT; 1965 break; 1966 } 1967 break; 1968 } 1969 return (error); 1970 } 1971 1972 int 1973 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1974 { 1975 int error = 0, optval; 1976 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 1977 struct in6pcb *in6p = sotoin6pcb(so); 1978 int level, optname; 1979 1980 KASSERT(sopt != NULL); 1981 1982 level = sopt->sopt_level; 1983 optname = sopt->sopt_name; 1984 1985 if (level != IPPROTO_IPV6) { 1986 return ENOPROTOOPT; 1987 } 1988 1989 switch (optname) { 1990 case IPV6_CHECKSUM: 1991 /* 1992 * For ICMPv6 sockets, no modification allowed for checksum 1993 * offset, permit "no change" values to help existing apps. 1994 * 1995 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM 1996 * for an ICMPv6 socket will fail." The current 1997 * behavior does not meet RFC3542. 1998 */ 1999 switch (op) { 2000 case PRCO_SETOPT: 2001 error = sockopt_getint(sopt, &optval); 2002 if (error) 2003 break; 2004 if ((optval % 2) != 0) { 2005 /* the API assumes even offset values */ 2006 error = EINVAL; 2007 } else if (so->so_proto->pr_protocol == 2008 IPPROTO_ICMPV6) { 2009 if (optval != icmp6off) 2010 error = EINVAL; 2011 } else 2012 in6p->in6p_cksum = optval; 2013 break; 2014 2015 case PRCO_GETOPT: 2016 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2017 optval = icmp6off; 2018 else 2019 optval = in6p->in6p_cksum; 2020 2021 error = sockopt_setint(sopt, optval); 2022 break; 2023 2024 default: 2025 error = EINVAL; 2026 break; 2027 } 2028 break; 2029 2030 default: 2031 error = ENOPROTOOPT; 2032 break; 2033 } 2034 2035 return (error); 2036 } 2037 2038 #ifdef RFC2292 2039 /* 2040 * Set up IP6 options in pcb for insertion in output packets or 2041 * specifying behavior of outgoing packets. 2042 */ 2043 static int 2044 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so, 2045 struct sockopt *sopt) 2046 { 2047 struct ip6_pktopts *opt = *pktopt; 2048 struct mbuf *m; 2049 int error = 0; 2050 2051 /* turn off any old options. */ 2052 if (opt) { 2053 #ifdef DIAGNOSTIC 2054 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2055 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2056 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2057 printf("ip6_pcbopts: all specified options are cleared.\n"); 2058 #endif 2059 ip6_clearpktopts(opt, -1); 2060 } else { 2061 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2062 if (opt == NULL) 2063 return (ENOBUFS); 2064 } 2065 *pktopt = NULL; 2066 2067 if (sopt == NULL || sopt->sopt_size == 0) { 2068 /* 2069 * Only turning off any previous options, regardless of 2070 * whether the opt is just created or given. 2071 */ 2072 free(opt, M_IP6OPT); 2073 return (0); 2074 } 2075 2076 /* set options specified by user. */ 2077 m = sockopt_getmbuf(sopt); 2078 if (m == NULL) { 2079 free(opt, M_IP6OPT); 2080 return (ENOBUFS); 2081 } 2082 2083 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(), 2084 so->so_proto->pr_protocol); 2085 m_freem(m); 2086 if (error != 0) { 2087 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2088 free(opt, M_IP6OPT); 2089 return (error); 2090 } 2091 *pktopt = opt; 2092 return (0); 2093 } 2094 #endif 2095 2096 /* 2097 * initialize ip6_pktopts. beware that there are non-zero default values in 2098 * the struct. 2099 */ 2100 void 2101 ip6_initpktopts(struct ip6_pktopts *opt) 2102 { 2103 2104 memset(opt, 0, sizeof(*opt)); 2105 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2106 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2107 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2108 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2109 } 2110 2111 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */ 2112 static int 2113 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2114 kauth_cred_t cred, int uproto) 2115 { 2116 struct ip6_pktopts *opt; 2117 2118 if (*pktopt == NULL) { 2119 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2120 M_NOWAIT); 2121 if (*pktopt == NULL) 2122 return (ENOBUFS); 2123 2124 ip6_initpktopts(*pktopt); 2125 } 2126 opt = *pktopt; 2127 2128 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2129 } 2130 2131 static int 2132 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2133 { 2134 void *optdata = NULL; 2135 int optdatalen = 0; 2136 struct ip6_ext *ip6e; 2137 int error = 0; 2138 struct in6_pktinfo null_pktinfo; 2139 int deftclass = 0, on; 2140 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2141 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2142 2143 switch (optname) { 2144 case IPV6_PKTINFO: 2145 if (pktopt && pktopt->ip6po_pktinfo) 2146 optdata = (void *)pktopt->ip6po_pktinfo; 2147 else { 2148 /* XXX: we don't have to do this every time... */ 2149 memset(&null_pktinfo, 0, sizeof(null_pktinfo)); 2150 optdata = (void *)&null_pktinfo; 2151 } 2152 optdatalen = sizeof(struct in6_pktinfo); 2153 break; 2154 case IPV6_OTCLASS: 2155 /* XXX */ 2156 return (EINVAL); 2157 case IPV6_TCLASS: 2158 if (pktopt && pktopt->ip6po_tclass >= 0) 2159 optdata = (void *)&pktopt->ip6po_tclass; 2160 else 2161 optdata = (void *)&deftclass; 2162 optdatalen = sizeof(int); 2163 break; 2164 case IPV6_HOPOPTS: 2165 if (pktopt && pktopt->ip6po_hbh) { 2166 optdata = (void *)pktopt->ip6po_hbh; 2167 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2168 optdatalen = (ip6e->ip6e_len + 1) << 3; 2169 } 2170 break; 2171 case IPV6_RTHDR: 2172 if (pktopt && pktopt->ip6po_rthdr) { 2173 optdata = (void *)pktopt->ip6po_rthdr; 2174 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2175 optdatalen = (ip6e->ip6e_len + 1) << 3; 2176 } 2177 break; 2178 case IPV6_RTHDRDSTOPTS: 2179 if (pktopt && pktopt->ip6po_dest1) { 2180 optdata = (void *)pktopt->ip6po_dest1; 2181 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2182 optdatalen = (ip6e->ip6e_len + 1) << 3; 2183 } 2184 break; 2185 case IPV6_DSTOPTS: 2186 if (pktopt && pktopt->ip6po_dest2) { 2187 optdata = (void *)pktopt->ip6po_dest2; 2188 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2189 optdatalen = (ip6e->ip6e_len + 1) << 3; 2190 } 2191 break; 2192 case IPV6_NEXTHOP: 2193 if (pktopt && pktopt->ip6po_nexthop) { 2194 optdata = (void *)pktopt->ip6po_nexthop; 2195 optdatalen = pktopt->ip6po_nexthop->sa_len; 2196 } 2197 break; 2198 case IPV6_USE_MIN_MTU: 2199 if (pktopt) 2200 optdata = (void *)&pktopt->ip6po_minmtu; 2201 else 2202 optdata = (void *)&defminmtu; 2203 optdatalen = sizeof(int); 2204 break; 2205 case IPV6_DONTFRAG: 2206 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2207 on = 1; 2208 else 2209 on = 0; 2210 optdata = (void *)&on; 2211 optdatalen = sizeof(on); 2212 break; 2213 case IPV6_PREFER_TEMPADDR: 2214 if (pktopt) 2215 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2216 else 2217 optdata = (void *)&defpreftemp; 2218 optdatalen = sizeof(int); 2219 break; 2220 default: /* should not happen */ 2221 #ifdef DIAGNOSTIC 2222 panic("ip6_getpcbopt: unexpected option\n"); 2223 #endif 2224 return (ENOPROTOOPT); 2225 } 2226 2227 error = sockopt_set(sopt, optdata, optdatalen); 2228 2229 return (error); 2230 } 2231 2232 void 2233 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2234 { 2235 if (optname == -1 || optname == IPV6_PKTINFO) { 2236 if (pktopt->ip6po_pktinfo) 2237 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2238 pktopt->ip6po_pktinfo = NULL; 2239 } 2240 if (optname == -1 || optname == IPV6_HOPLIMIT) 2241 pktopt->ip6po_hlim = -1; 2242 if (optname == -1 || optname == IPV6_TCLASS) 2243 pktopt->ip6po_tclass = -1; 2244 if (optname == -1 || optname == IPV6_NEXTHOP) { 2245 rtcache_free(&pktopt->ip6po_nextroute); 2246 if (pktopt->ip6po_nexthop) 2247 free(pktopt->ip6po_nexthop, M_IP6OPT); 2248 pktopt->ip6po_nexthop = NULL; 2249 } 2250 if (optname == -1 || optname == IPV6_HOPOPTS) { 2251 if (pktopt->ip6po_hbh) 2252 free(pktopt->ip6po_hbh, M_IP6OPT); 2253 pktopt->ip6po_hbh = NULL; 2254 } 2255 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2256 if (pktopt->ip6po_dest1) 2257 free(pktopt->ip6po_dest1, M_IP6OPT); 2258 pktopt->ip6po_dest1 = NULL; 2259 } 2260 if (optname == -1 || optname == IPV6_RTHDR) { 2261 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2262 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2263 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2264 rtcache_free(&pktopt->ip6po_route); 2265 } 2266 if (optname == -1 || optname == IPV6_DSTOPTS) { 2267 if (pktopt->ip6po_dest2) 2268 free(pktopt->ip6po_dest2, M_IP6OPT); 2269 pktopt->ip6po_dest2 = NULL; 2270 } 2271 } 2272 2273 #define PKTOPT_EXTHDRCPY(type) \ 2274 do { \ 2275 if (src->type) { \ 2276 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2277 dst->type = malloc(hlen, M_IP6OPT, canwait); \ 2278 if (dst->type == NULL) \ 2279 goto bad; \ 2280 memcpy(dst->type, src->type, hlen); \ 2281 } \ 2282 } while (/*CONSTCOND*/ 0) 2283 2284 static int 2285 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2286 { 2287 dst->ip6po_hlim = src->ip6po_hlim; 2288 dst->ip6po_tclass = src->ip6po_tclass; 2289 dst->ip6po_flags = src->ip6po_flags; 2290 dst->ip6po_minmtu = src->ip6po_minmtu; 2291 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2292 if (src->ip6po_pktinfo) { 2293 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2294 M_IP6OPT, canwait); 2295 if (dst->ip6po_pktinfo == NULL) 2296 goto bad; 2297 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2298 } 2299 if (src->ip6po_nexthop) { 2300 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2301 M_IP6OPT, canwait); 2302 if (dst->ip6po_nexthop == NULL) 2303 goto bad; 2304 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop, 2305 src->ip6po_nexthop->sa_len); 2306 } 2307 PKTOPT_EXTHDRCPY(ip6po_hbh); 2308 PKTOPT_EXTHDRCPY(ip6po_dest1); 2309 PKTOPT_EXTHDRCPY(ip6po_dest2); 2310 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2311 return (0); 2312 2313 bad: 2314 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 2315 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 2316 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 2317 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 2318 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 2319 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 2320 2321 return (ENOBUFS); 2322 } 2323 #undef PKTOPT_EXTHDRCPY 2324 2325 struct ip6_pktopts * 2326 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2327 { 2328 int error; 2329 struct ip6_pktopts *dst; 2330 2331 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2332 if (dst == NULL) 2333 return (NULL); 2334 ip6_initpktopts(dst); 2335 2336 if ((error = copypktopts(dst, src, canwait)) != 0) { 2337 free(dst, M_IP6OPT); 2338 return (NULL); 2339 } 2340 2341 return (dst); 2342 } 2343 2344 void 2345 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2346 { 2347 if (pktopt == NULL) 2348 return; 2349 2350 ip6_clearpktopts(pktopt, -1); 2351 2352 free(pktopt, M_IP6OPT); 2353 } 2354 2355 int 2356 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp, void *v, 2357 size_t l) 2358 { 2359 struct ipv6_mreq mreq; 2360 int error; 2361 struct in6_addr *ia = &mreq.ipv6mr_multiaddr; 2362 struct in_addr *ia4 = (void *)&ia->s6_addr32[3]; 2363 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2364 if (error != 0) 2365 return error; 2366 2367 if (IN6_IS_ADDR_UNSPECIFIED(ia)) { 2368 /* 2369 * We use the unspecified address to specify to accept 2370 * all multicast addresses. Only super user is allowed 2371 * to do this. 2372 */ 2373 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6, 2374 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL)) 2375 return EACCES; 2376 } else if (IN6_IS_ADDR_V4MAPPED(ia)) { 2377 // Don't bother if we are not going to use ifp. 2378 if (l == sizeof(*ia)) { 2379 memcpy(v, ia, l); 2380 return 0; 2381 } 2382 } else if (!IN6_IS_ADDR_MULTICAST(ia)) { 2383 return EINVAL; 2384 } 2385 2386 /* 2387 * If no interface was explicitly specified, choose an 2388 * appropriate one according to the given multicast address. 2389 */ 2390 if (mreq.ipv6mr_interface == 0) { 2391 struct rtentry *rt; 2392 union { 2393 struct sockaddr dst; 2394 struct sockaddr_in dst4; 2395 struct sockaddr_in6 dst6; 2396 } u; 2397 struct route ro; 2398 2399 /* 2400 * Look up the routing table for the 2401 * address, and choose the outgoing interface. 2402 * XXX: is it a good approach? 2403 */ 2404 memset(&ro, 0, sizeof(ro)); 2405 if (IN6_IS_ADDR_V4MAPPED(ia)) 2406 sockaddr_in_init(&u.dst4, ia4, 0); 2407 else 2408 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0); 2409 error = rtcache_setdst(&ro, &u.dst); 2410 if (error != 0) 2411 return error; 2412 rt = rtcache_init(&ro); 2413 *ifp = rt != NULL ? rt->rt_ifp : NULL; 2414 /* FIXME *ifp is NOMPSAFE */ 2415 rtcache_unref(rt, &ro); 2416 rtcache_free(&ro); 2417 } else { 2418 /* 2419 * If the interface is specified, validate it. 2420 */ 2421 if ((*ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) 2422 return ENXIO; /* XXX EINVAL? */ 2423 } 2424 if (sizeof(*ia) == l) 2425 memcpy(v, ia, l); 2426 else 2427 memcpy(v, ia4, l); 2428 return 0; 2429 } 2430 2431 /* 2432 * Set the IP6 multicast options in response to user setsockopt(). 2433 */ 2434 static int 2435 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p) 2436 { 2437 int error = 0; 2438 u_int loop, ifindex; 2439 struct ipv6_mreq mreq; 2440 struct in6_addr ia; 2441 struct ifnet *ifp; 2442 struct ip6_moptions *im6o = in6p->in6p_moptions; 2443 struct in6_multi_mship *imm; 2444 2445 if (im6o == NULL) { 2446 /* 2447 * No multicast option buffer attached to the pcb; 2448 * allocate one and initialize to default values. 2449 */ 2450 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT); 2451 if (im6o == NULL) 2452 return (ENOBUFS); 2453 in6p->in6p_moptions = im6o; 2454 im6o->im6o_multicast_if_index = 0; 2455 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2456 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2457 LIST_INIT(&im6o->im6o_memberships); 2458 } 2459 2460 switch (sopt->sopt_name) { 2461 2462 case IPV6_MULTICAST_IF: 2463 /* 2464 * Select the interface for outgoing multicast packets. 2465 */ 2466 error = sockopt_get(sopt, &ifindex, sizeof(ifindex)); 2467 if (error != 0) 2468 break; 2469 2470 if (ifindex != 0) { 2471 if ((ifp = if_byindex(ifindex)) == NULL) { 2472 error = ENXIO; /* XXX EINVAL? */ 2473 break; 2474 } 2475 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 2476 error = EADDRNOTAVAIL; 2477 break; 2478 } 2479 } else 2480 ifp = NULL; 2481 im6o->im6o_multicast_if_index = if_get_index(ifp); 2482 break; 2483 2484 case IPV6_MULTICAST_HOPS: 2485 { 2486 /* 2487 * Set the IP6 hoplimit for outgoing multicast packets. 2488 */ 2489 int optval; 2490 2491 error = sockopt_getint(sopt, &optval); 2492 if (error != 0) 2493 break; 2494 2495 if (optval < -1 || optval >= 256) 2496 error = EINVAL; 2497 else if (optval == -1) 2498 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2499 else 2500 im6o->im6o_multicast_hlim = optval; 2501 break; 2502 } 2503 2504 case IPV6_MULTICAST_LOOP: 2505 /* 2506 * Set the loopback flag for outgoing multicast packets. 2507 * Must be zero or one. 2508 */ 2509 error = sockopt_get(sopt, &loop, sizeof(loop)); 2510 if (error != 0) 2511 break; 2512 if (loop > 1) { 2513 error = EINVAL; 2514 break; 2515 } 2516 im6o->im6o_multicast_loop = loop; 2517 break; 2518 2519 case IPV6_JOIN_GROUP: 2520 /* 2521 * Add a multicast group membership. 2522 * Group must be a valid IP6 multicast address. 2523 */ 2524 if ((error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia)))) 2525 return error; 2526 2527 if (IN6_IS_ADDR_V4MAPPED(&ia)) { 2528 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt); 2529 break; 2530 } 2531 /* 2532 * See if we found an interface, and confirm that it 2533 * supports multicast 2534 */ 2535 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2536 error = EADDRNOTAVAIL; 2537 break; 2538 } 2539 2540 if (in6_setscope(&ia, ifp, NULL)) { 2541 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2542 break; 2543 } 2544 2545 /* 2546 * See if the membership already exists. 2547 */ 2548 for (imm = im6o->im6o_memberships.lh_first; 2549 imm != NULL; imm = imm->i6mm_chain.le_next) 2550 if (imm->i6mm_maddr->in6m_ifp == ifp && 2551 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2552 &ia)) 2553 break; 2554 if (imm != NULL) { 2555 error = EADDRINUSE; 2556 break; 2557 } 2558 /* 2559 * Everything looks good; add a new record to the multicast 2560 * address list for the given interface. 2561 */ 2562 imm = in6_joingroup(ifp, &ia, &error, 0); 2563 if (imm == NULL) 2564 break; 2565 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2566 break; 2567 2568 case IPV6_LEAVE_GROUP: 2569 /* 2570 * Drop a multicast group membership. 2571 * Group must be a valid IP6 multicast address. 2572 */ 2573 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2574 if (error != 0) 2575 break; 2576 2577 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) { 2578 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt); 2579 break; 2580 } 2581 /* 2582 * If an interface address was specified, get a pointer 2583 * to its ifnet structure. 2584 */ 2585 if (mreq.ipv6mr_interface != 0) { 2586 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) { 2587 error = ENXIO; /* XXX EINVAL? */ 2588 break; 2589 } 2590 } else 2591 ifp = NULL; 2592 2593 /* Fill in the scope zone ID */ 2594 if (ifp) { 2595 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) { 2596 /* XXX: should not happen */ 2597 error = EADDRNOTAVAIL; 2598 break; 2599 } 2600 } else if (mreq.ipv6mr_interface != 0) { 2601 /* 2602 * XXX: This case would happens when the (positive) 2603 * index is in the valid range, but the corresponding 2604 * interface has been detached dynamically. The above 2605 * check probably avoids such case to happen here, but 2606 * we check it explicitly for safety. 2607 */ 2608 error = EADDRNOTAVAIL; 2609 break; 2610 } else { /* ipv6mr_interface == 0 */ 2611 struct sockaddr_in6 sa6_mc; 2612 2613 /* 2614 * The API spec says as follows: 2615 * If the interface index is specified as 0, the 2616 * system may choose a multicast group membership to 2617 * drop by matching the multicast address only. 2618 * On the other hand, we cannot disambiguate the scope 2619 * zone unless an interface is provided. Thus, we 2620 * check if there's ambiguity with the default scope 2621 * zone as the last resort. 2622 */ 2623 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr, 2624 0, 0, 0); 2625 error = sa6_embedscope(&sa6_mc, ip6_use_defzone); 2626 if (error != 0) 2627 break; 2628 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr; 2629 } 2630 2631 /* 2632 * Find the membership in the membership list. 2633 */ 2634 for (imm = im6o->im6o_memberships.lh_first; 2635 imm != NULL; imm = imm->i6mm_chain.le_next) { 2636 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2637 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2638 &mreq.ipv6mr_multiaddr)) 2639 break; 2640 } 2641 if (imm == NULL) { 2642 /* Unable to resolve interface */ 2643 error = EADDRNOTAVAIL; 2644 break; 2645 } 2646 /* 2647 * Give up the multicast address record to which the 2648 * membership points. 2649 */ 2650 LIST_REMOVE(imm, i6mm_chain); 2651 in6_leavegroup(imm); 2652 break; 2653 2654 default: 2655 error = EOPNOTSUPP; 2656 break; 2657 } 2658 2659 /* 2660 * If all options have default values, no need to keep the mbuf. 2661 */ 2662 if (im6o->im6o_multicast_if_index == 0 && 2663 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2664 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2665 im6o->im6o_memberships.lh_first == NULL) { 2666 free(in6p->in6p_moptions, M_IPMOPTS); 2667 in6p->in6p_moptions = NULL; 2668 } 2669 2670 return (error); 2671 } 2672 2673 /* 2674 * Return the IP6 multicast options in response to user getsockopt(). 2675 */ 2676 static int 2677 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p) 2678 { 2679 u_int optval; 2680 int error; 2681 struct ip6_moptions *im6o = in6p->in6p_moptions; 2682 2683 switch (sopt->sopt_name) { 2684 case IPV6_MULTICAST_IF: 2685 if (im6o == NULL || im6o->im6o_multicast_if_index == 0) 2686 optval = 0; 2687 else 2688 optval = im6o->im6o_multicast_if_index; 2689 2690 error = sockopt_set(sopt, &optval, sizeof(optval)); 2691 break; 2692 2693 case IPV6_MULTICAST_HOPS: 2694 if (im6o == NULL) 2695 optval = ip6_defmcasthlim; 2696 else 2697 optval = im6o->im6o_multicast_hlim; 2698 2699 error = sockopt_set(sopt, &optval, sizeof(optval)); 2700 break; 2701 2702 case IPV6_MULTICAST_LOOP: 2703 if (im6o == NULL) 2704 optval = IPV6_DEFAULT_MULTICAST_LOOP; 2705 else 2706 optval = im6o->im6o_multicast_loop; 2707 2708 error = sockopt_set(sopt, &optval, sizeof(optval)); 2709 break; 2710 2711 default: 2712 error = EOPNOTSUPP; 2713 } 2714 2715 return (error); 2716 } 2717 2718 /* 2719 * Discard the IP6 multicast options. 2720 */ 2721 void 2722 ip6_freemoptions(struct ip6_moptions *im6o) 2723 { 2724 struct in6_multi_mship *imm; 2725 2726 if (im6o == NULL) 2727 return; 2728 2729 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2730 LIST_REMOVE(imm, i6mm_chain); 2731 in6_leavegroup(imm); 2732 } 2733 free(im6o, M_IPMOPTS); 2734 } 2735 2736 /* 2737 * Set IPv6 outgoing packet options based on advanced API. 2738 */ 2739 int 2740 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2741 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto) 2742 { 2743 struct cmsghdr *cm = 0; 2744 2745 if (control == NULL || opt == NULL) 2746 return (EINVAL); 2747 2748 ip6_initpktopts(opt); 2749 if (stickyopt) { 2750 int error; 2751 2752 /* 2753 * If stickyopt is provided, make a local copy of the options 2754 * for this particular packet, then override them by ancillary 2755 * objects. 2756 * XXX: copypktopts() does not copy the cached route to a next 2757 * hop (if any). This is not very good in terms of efficiency, 2758 * but we can allow this since this option should be rarely 2759 * used. 2760 */ 2761 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2762 return (error); 2763 } 2764 2765 /* 2766 * XXX: Currently, we assume all the optional information is stored 2767 * in a single mbuf. 2768 */ 2769 if (control->m_next) 2770 return (EINVAL); 2771 2772 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */ 2773 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2774 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2775 int error; 2776 2777 if (control->m_len < CMSG_LEN(0)) 2778 return (EINVAL); 2779 2780 cm = mtod(control, struct cmsghdr *); 2781 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2782 return (EINVAL); 2783 if (cm->cmsg_level != IPPROTO_IPV6) 2784 continue; 2785 2786 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2787 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2788 if (error) 2789 return (error); 2790 } 2791 2792 return (0); 2793 } 2794 2795 /* 2796 * Set a particular packet option, as a sticky option or an ancillary data 2797 * item. "len" can be 0 only when it's a sticky option. 2798 * We have 4 cases of combination of "sticky" and "cmsg": 2799 * "sticky=0, cmsg=0": impossible 2800 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2801 * "sticky=1, cmsg=0": RFC3542 socket option 2802 * "sticky=1, cmsg=1": RFC2292 socket option 2803 */ 2804 static int 2805 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2806 kauth_cred_t cred, int sticky, int cmsg, int uproto) 2807 { 2808 int minmtupolicy; 2809 int error; 2810 2811 if (!sticky && !cmsg) { 2812 #ifdef DIAGNOSTIC 2813 printf("ip6_setpktopt: impossible case\n"); 2814 #endif 2815 return (EINVAL); 2816 } 2817 2818 /* 2819 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2820 * not be specified in the context of RFC3542. Conversely, 2821 * RFC3542 types should not be specified in the context of RFC2292. 2822 */ 2823 if (!cmsg) { 2824 switch (optname) { 2825 case IPV6_2292PKTINFO: 2826 case IPV6_2292HOPLIMIT: 2827 case IPV6_2292NEXTHOP: 2828 case IPV6_2292HOPOPTS: 2829 case IPV6_2292DSTOPTS: 2830 case IPV6_2292RTHDR: 2831 case IPV6_2292PKTOPTIONS: 2832 return (ENOPROTOOPT); 2833 } 2834 } 2835 if (sticky && cmsg) { 2836 switch (optname) { 2837 case IPV6_PKTINFO: 2838 case IPV6_HOPLIMIT: 2839 case IPV6_NEXTHOP: 2840 case IPV6_HOPOPTS: 2841 case IPV6_DSTOPTS: 2842 case IPV6_RTHDRDSTOPTS: 2843 case IPV6_RTHDR: 2844 case IPV6_USE_MIN_MTU: 2845 case IPV6_DONTFRAG: 2846 case IPV6_OTCLASS: 2847 case IPV6_TCLASS: 2848 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */ 2849 return (ENOPROTOOPT); 2850 } 2851 } 2852 2853 switch (optname) { 2854 #ifdef RFC2292 2855 case IPV6_2292PKTINFO: 2856 #endif 2857 case IPV6_PKTINFO: 2858 { 2859 struct in6_pktinfo *pktinfo; 2860 2861 if (len != sizeof(struct in6_pktinfo)) 2862 return (EINVAL); 2863 2864 pktinfo = (struct in6_pktinfo *)buf; 2865 2866 /* 2867 * An application can clear any sticky IPV6_PKTINFO option by 2868 * doing a "regular" setsockopt with ipi6_addr being 2869 * in6addr_any and ipi6_ifindex being zero. 2870 * [RFC 3542, Section 6] 2871 */ 2872 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2873 pktinfo->ipi6_ifindex == 0 && 2874 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2875 ip6_clearpktopts(opt, optname); 2876 break; 2877 } 2878 2879 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2880 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2881 return (EINVAL); 2882 } 2883 2884 /* Validate the interface index if specified. */ 2885 if (pktinfo->ipi6_ifindex) { 2886 struct ifnet *ifp; 2887 int s = pserialize_read_enter(); 2888 ifp = if_byindex(pktinfo->ipi6_ifindex); 2889 if (ifp == NULL) { 2890 pserialize_read_exit(s); 2891 return ENXIO; 2892 } 2893 pserialize_read_exit(s); 2894 } 2895 2896 /* 2897 * We store the address anyway, and let in6_selectsrc() 2898 * validate the specified address. This is because ipi6_addr 2899 * may not have enough information about its scope zone, and 2900 * we may need additional information (such as outgoing 2901 * interface or the scope zone of a destination address) to 2902 * disambiguate the scope. 2903 * XXX: the delay of the validation may confuse the 2904 * application when it is used as a sticky option. 2905 */ 2906 if (opt->ip6po_pktinfo == NULL) { 2907 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2908 M_IP6OPT, M_NOWAIT); 2909 if (opt->ip6po_pktinfo == NULL) 2910 return (ENOBUFS); 2911 } 2912 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo)); 2913 break; 2914 } 2915 2916 #ifdef RFC2292 2917 case IPV6_2292HOPLIMIT: 2918 #endif 2919 case IPV6_HOPLIMIT: 2920 { 2921 int *hlimp; 2922 2923 /* 2924 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2925 * to simplify the ordering among hoplimit options. 2926 */ 2927 if (optname == IPV6_HOPLIMIT && sticky) 2928 return (ENOPROTOOPT); 2929 2930 if (len != sizeof(int)) 2931 return (EINVAL); 2932 hlimp = (int *)buf; 2933 if (*hlimp < -1 || *hlimp > 255) 2934 return (EINVAL); 2935 2936 opt->ip6po_hlim = *hlimp; 2937 break; 2938 } 2939 2940 case IPV6_OTCLASS: 2941 if (len != sizeof(u_int8_t)) 2942 return (EINVAL); 2943 2944 opt->ip6po_tclass = *(u_int8_t *)buf; 2945 break; 2946 2947 case IPV6_TCLASS: 2948 { 2949 int tclass; 2950 2951 if (len != sizeof(int)) 2952 return (EINVAL); 2953 tclass = *(int *)buf; 2954 if (tclass < -1 || tclass > 255) 2955 return (EINVAL); 2956 2957 opt->ip6po_tclass = tclass; 2958 break; 2959 } 2960 2961 #ifdef RFC2292 2962 case IPV6_2292NEXTHOP: 2963 #endif 2964 case IPV6_NEXTHOP: 2965 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 2966 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 2967 if (error) 2968 return (error); 2969 2970 if (len == 0) { /* just remove the option */ 2971 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2972 break; 2973 } 2974 2975 /* check if cmsg_len is large enough for sa_len */ 2976 if (len < sizeof(struct sockaddr) || len < *buf) 2977 return (EINVAL); 2978 2979 switch (((struct sockaddr *)buf)->sa_family) { 2980 case AF_INET6: 2981 { 2982 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2983 2984 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2985 return (EINVAL); 2986 2987 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2988 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2989 return (EINVAL); 2990 } 2991 if ((error = sa6_embedscope(sa6, ip6_use_defzone)) 2992 != 0) { 2993 return (error); 2994 } 2995 break; 2996 } 2997 case AF_LINK: /* eventually be supported? */ 2998 default: 2999 return (EAFNOSUPPORT); 3000 } 3001 3002 /* turn off the previous option, then set the new option. */ 3003 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3004 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3005 if (opt->ip6po_nexthop == NULL) 3006 return (ENOBUFS); 3007 memcpy(opt->ip6po_nexthop, buf, *buf); 3008 break; 3009 3010 #ifdef RFC2292 3011 case IPV6_2292HOPOPTS: 3012 #endif 3013 case IPV6_HOPOPTS: 3014 { 3015 struct ip6_hbh *hbh; 3016 int hbhlen; 3017 3018 /* 3019 * XXX: We don't allow a non-privileged user to set ANY HbH 3020 * options, since per-option restriction has too much 3021 * overhead. 3022 */ 3023 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 3024 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 3025 if (error) 3026 return (error); 3027 3028 if (len == 0) { 3029 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3030 break; /* just remove the option */ 3031 } 3032 3033 /* message length validation */ 3034 if (len < sizeof(struct ip6_hbh)) 3035 return (EINVAL); 3036 hbh = (struct ip6_hbh *)buf; 3037 hbhlen = (hbh->ip6h_len + 1) << 3; 3038 if (len != hbhlen) 3039 return (EINVAL); 3040 3041 /* turn off the previous option, then set the new option. */ 3042 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3043 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3044 if (opt->ip6po_hbh == NULL) 3045 return (ENOBUFS); 3046 memcpy(opt->ip6po_hbh, hbh, hbhlen); 3047 3048 break; 3049 } 3050 3051 #ifdef RFC2292 3052 case IPV6_2292DSTOPTS: 3053 #endif 3054 case IPV6_DSTOPTS: 3055 case IPV6_RTHDRDSTOPTS: 3056 { 3057 struct ip6_dest *dest, **newdest = NULL; 3058 int destlen; 3059 3060 /* XXX: see the comment for IPV6_HOPOPTS */ 3061 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 3062 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 3063 if (error) 3064 return (error); 3065 3066 if (len == 0) { 3067 ip6_clearpktopts(opt, optname); 3068 break; /* just remove the option */ 3069 } 3070 3071 /* message length validation */ 3072 if (len < sizeof(struct ip6_dest)) 3073 return (EINVAL); 3074 dest = (struct ip6_dest *)buf; 3075 destlen = (dest->ip6d_len + 1) << 3; 3076 if (len != destlen) 3077 return (EINVAL); 3078 /* 3079 * Determine the position that the destination options header 3080 * should be inserted; before or after the routing header. 3081 */ 3082 switch (optname) { 3083 case IPV6_2292DSTOPTS: 3084 /* 3085 * The old advanced API is ambiguous on this point. 3086 * Our approach is to determine the position based 3087 * according to the existence of a routing header. 3088 * Note, however, that this depends on the order of the 3089 * extension headers in the ancillary data; the 1st 3090 * part of the destination options header must appear 3091 * before the routing header in the ancillary data, 3092 * too. 3093 * RFC3542 solved the ambiguity by introducing 3094 * separate ancillary data or option types. 3095 */ 3096 if (opt->ip6po_rthdr == NULL) 3097 newdest = &opt->ip6po_dest1; 3098 else 3099 newdest = &opt->ip6po_dest2; 3100 break; 3101 case IPV6_RTHDRDSTOPTS: 3102 newdest = &opt->ip6po_dest1; 3103 break; 3104 case IPV6_DSTOPTS: 3105 newdest = &opt->ip6po_dest2; 3106 break; 3107 } 3108 3109 /* turn off the previous option, then set the new option. */ 3110 ip6_clearpktopts(opt, optname); 3111 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3112 if (*newdest == NULL) 3113 return (ENOBUFS); 3114 memcpy(*newdest, dest, destlen); 3115 3116 break; 3117 } 3118 3119 #ifdef RFC2292 3120 case IPV6_2292RTHDR: 3121 #endif 3122 case IPV6_RTHDR: 3123 { 3124 struct ip6_rthdr *rth; 3125 int rthlen; 3126 3127 if (len == 0) { 3128 ip6_clearpktopts(opt, IPV6_RTHDR); 3129 break; /* just remove the option */ 3130 } 3131 3132 /* message length validation */ 3133 if (len < sizeof(struct ip6_rthdr)) 3134 return (EINVAL); 3135 rth = (struct ip6_rthdr *)buf; 3136 rthlen = (rth->ip6r_len + 1) << 3; 3137 if (len != rthlen) 3138 return (EINVAL); 3139 switch (rth->ip6r_type) { 3140 case IPV6_RTHDR_TYPE_0: 3141 if (rth->ip6r_len == 0) /* must contain one addr */ 3142 return (EINVAL); 3143 if (rth->ip6r_len % 2) /* length must be even */ 3144 return (EINVAL); 3145 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3146 return (EINVAL); 3147 break; 3148 default: 3149 return (EINVAL); /* not supported */ 3150 } 3151 /* turn off the previous option */ 3152 ip6_clearpktopts(opt, IPV6_RTHDR); 3153 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3154 if (opt->ip6po_rthdr == NULL) 3155 return (ENOBUFS); 3156 memcpy(opt->ip6po_rthdr, rth, rthlen); 3157 break; 3158 } 3159 3160 case IPV6_USE_MIN_MTU: 3161 if (len != sizeof(int)) 3162 return (EINVAL); 3163 minmtupolicy = *(int *)buf; 3164 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3165 minmtupolicy != IP6PO_MINMTU_DISABLE && 3166 minmtupolicy != IP6PO_MINMTU_ALL) { 3167 return (EINVAL); 3168 } 3169 opt->ip6po_minmtu = minmtupolicy; 3170 break; 3171 3172 case IPV6_DONTFRAG: 3173 if (len != sizeof(int)) 3174 return (EINVAL); 3175 3176 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3177 /* 3178 * we ignore this option for TCP sockets. 3179 * (RFC3542 leaves this case unspecified.) 3180 */ 3181 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3182 } else 3183 opt->ip6po_flags |= IP6PO_DONTFRAG; 3184 break; 3185 3186 case IPV6_PREFER_TEMPADDR: 3187 { 3188 int preftemp; 3189 3190 if (len != sizeof(int)) 3191 return (EINVAL); 3192 preftemp = *(int *)buf; 3193 switch (preftemp) { 3194 case IP6PO_TEMPADDR_SYSTEM: 3195 case IP6PO_TEMPADDR_NOTPREFER: 3196 case IP6PO_TEMPADDR_PREFER: 3197 break; 3198 default: 3199 return (EINVAL); 3200 } 3201 opt->ip6po_prefer_tempaddr = preftemp; 3202 break; 3203 } 3204 3205 default: 3206 return (ENOPROTOOPT); 3207 } /* end of switch */ 3208 3209 return (0); 3210 } 3211 3212 /* 3213 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3214 * packet to the input queue of a specified interface. Note that this 3215 * calls the output routine of the loopback "driver", but with an interface 3216 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 3217 */ 3218 void 3219 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, 3220 const struct sockaddr_in6 *dst) 3221 { 3222 struct mbuf *copym; 3223 struct ip6_hdr *ip6; 3224 3225 copym = m_copy(m, 0, M_COPYALL); 3226 if (copym == NULL) 3227 return; 3228 3229 /* 3230 * Make sure to deep-copy IPv6 header portion in case the data 3231 * is in an mbuf cluster, so that we can safely override the IPv6 3232 * header portion later. 3233 */ 3234 if ((copym->m_flags & M_EXT) != 0 || 3235 copym->m_len < sizeof(struct ip6_hdr)) { 3236 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3237 if (copym == NULL) 3238 return; 3239 } 3240 3241 #ifdef DIAGNOSTIC 3242 if (copym->m_len < sizeof(*ip6)) { 3243 m_freem(copym); 3244 return; 3245 } 3246 #endif 3247 3248 ip6 = mtod(copym, struct ip6_hdr *); 3249 /* 3250 * clear embedded scope identifiers if necessary. 3251 * in6_clearscope will touch the addresses only when necessary. 3252 */ 3253 in6_clearscope(&ip6->ip6_src); 3254 in6_clearscope(&ip6->ip6_dst); 3255 3256 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL); 3257 } 3258 3259 /* 3260 * Chop IPv6 header off from the payload. 3261 */ 3262 static int 3263 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3264 { 3265 struct mbuf *mh; 3266 struct ip6_hdr *ip6; 3267 3268 ip6 = mtod(m, struct ip6_hdr *); 3269 if (m->m_len > sizeof(*ip6)) { 3270 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3271 if (mh == 0) { 3272 m_freem(m); 3273 return ENOBUFS; 3274 } 3275 M_MOVE_PKTHDR(mh, m); 3276 MH_ALIGN(mh, sizeof(*ip6)); 3277 m->m_len -= sizeof(*ip6); 3278 m->m_data += sizeof(*ip6); 3279 mh->m_next = m; 3280 m = mh; 3281 m->m_len = sizeof(*ip6); 3282 bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6)); 3283 } 3284 exthdrs->ip6e_ip6 = m; 3285 return 0; 3286 } 3287 3288 /* 3289 * Compute IPv6 extension header length. 3290 */ 3291 int 3292 ip6_optlen(struct in6pcb *in6p) 3293 { 3294 int len; 3295 3296 if (!in6p->in6p_outputopts) 3297 return 0; 3298 3299 len = 0; 3300 #define elen(x) \ 3301 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3302 3303 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3304 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3305 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3306 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3307 return len; 3308 #undef elen 3309 } 3310 3311 /* 3312 * Ensure sending address is valid. 3313 * Returns 0 on success, -1 if an error should be sent back or 1 3314 * if the packet could be dropped without error (protocol dependent). 3315 */ 3316 static int 3317 ip6_ifaddrvalid(const struct in6_addr *addr) 3318 { 3319 struct sockaddr_in6 sin6; 3320 int s, error; 3321 struct ifaddr *ifa; 3322 struct in6_ifaddr *ia6; 3323 3324 if (IN6_IS_ADDR_UNSPECIFIED(addr)) 3325 return 0; 3326 3327 memset(&sin6, 0, sizeof(sin6)); 3328 sin6.sin6_family = AF_INET6; 3329 sin6.sin6_len = sizeof(sin6); 3330 sin6.sin6_addr = *addr; 3331 3332 s = pserialize_read_enter(); 3333 ifa = ifa_ifwithaddr(sin6tosa(&sin6)); 3334 if ((ia6 = ifatoia6(ifa)) == NULL || 3335 ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED)) 3336 error = -1; 3337 else if (ia6->ia6_flags & (IN6_IFF_TENTATIVE | IN6_IFF_DETACHED)) 3338 error = 1; 3339 else 3340 error = 0; 3341 pserialize_read_exit(s); 3342 3343 return error; 3344 } 3345