1 /* $NetBSD: ip6_output.c,v 1.35 2001/04/11 04:57:53 itojun Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 66 */ 67 68 #include "opt_inet.h" 69 #include "opt_ipsec.h" 70 #include "opt_pfil_hooks.h" 71 72 #include <sys/param.h> 73 #include <sys/malloc.h> 74 #include <sys/mbuf.h> 75 #include <sys/errno.h> 76 #include <sys/protosw.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/systm.h> 80 #include <sys/proc.h> 81 82 #include <net/if.h> 83 #include <net/route.h> 84 #ifdef PFIL_HOOKS 85 #include <net/pfil.h> 86 #endif 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/ip6.h> 91 #include <netinet/icmp6.h> 92 #include <netinet6/ip6_var.h> 93 #include <netinet6/in6_pcb.h> 94 #include <netinet6/nd6.h> 95 96 #ifdef IPSEC 97 #include <netinet6/ipsec.h> 98 #include <netkey/key.h> 99 #endif /* IPSEC */ 100 101 #include "loop.h" 102 103 #include <net/net_osdep.h> 104 105 #ifdef IPV6FIREWALL 106 #include <netinet6/ip6_fw.h> 107 #endif 108 109 #ifdef PFIL_HOOKS 110 extern struct pfil_head inet6_pfil_hook; /* XXX */ 111 #endif 112 113 struct ip6_exthdrs { 114 struct mbuf *ip6e_ip6; 115 struct mbuf *ip6e_hbh; 116 struct mbuf *ip6e_dest1; 117 struct mbuf *ip6e_rthdr; 118 struct mbuf *ip6e_dest2; 119 }; 120 121 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 122 struct socket *)); 123 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 124 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 125 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 126 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 127 struct ip6_frag **)); 128 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 129 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 130 131 extern struct ifnet loif[NLOOP]; 132 133 /* 134 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 135 * header (with pri, len, nxt, hlim, src, dst). 136 * This function may modify ver and hlim only. 137 * The mbuf chain containing the packet will be freed. 138 * The mbuf opt, if present, will not be freed. 139 */ 140 int 141 ip6_output(m0, opt, ro, flags, im6o, ifpp) 142 struct mbuf *m0; 143 struct ip6_pktopts *opt; 144 struct route_in6 *ro; 145 int flags; 146 struct ip6_moptions *im6o; 147 struct ifnet **ifpp; /* XXX: just for statistics */ 148 { 149 struct ip6_hdr *ip6, *mhip6; 150 struct ifnet *ifp, *origifp; 151 struct mbuf *m = m0; 152 int hlen, tlen, len, off; 153 struct route_in6 ip6route; 154 struct sockaddr_in6 *dst; 155 int error = 0; 156 struct in6_ifaddr *ia; 157 u_long mtu; 158 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 159 struct ip6_exthdrs exthdrs; 160 struct in6_addr finaldst; 161 struct route_in6 *ro_pmtu = NULL; 162 int hdrsplit = 0; 163 int needipsec = 0; 164 #ifdef IPSEC 165 int needipsectun = 0; 166 struct socket *so; 167 struct secpolicy *sp = NULL; 168 169 /* for AH processing. stupid to have "socket" variable in IP layer... */ 170 so = ipsec_getsocket(m); 171 (void)ipsec_setsocket(m, NULL); 172 ip6 = mtod(m, struct ip6_hdr *); 173 #endif /* IPSEC */ 174 175 #define MAKE_EXTHDR(hp, mp) \ 176 do { \ 177 if (hp) { \ 178 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 179 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 180 ((eh)->ip6e_len + 1) << 3); \ 181 if (error) \ 182 goto freehdrs; \ 183 } \ 184 } while (0) 185 186 bzero(&exthdrs, sizeof(exthdrs)); 187 if (opt) { 188 /* Hop-by-Hop options header */ 189 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 190 /* Destination options header(1st part) */ 191 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 192 /* Routing header */ 193 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 194 /* Destination options header(2nd part) */ 195 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 196 } 197 198 #ifdef IPSEC 199 /* get a security policy for this packet */ 200 if (so == NULL) 201 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 202 else 203 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 204 205 if (sp == NULL) { 206 ipsec6stat.out_inval++; 207 goto freehdrs; 208 } 209 210 error = 0; 211 212 /* check policy */ 213 switch (sp->policy) { 214 case IPSEC_POLICY_DISCARD: 215 /* 216 * This packet is just discarded. 217 */ 218 ipsec6stat.out_polvio++; 219 goto freehdrs; 220 221 case IPSEC_POLICY_BYPASS: 222 case IPSEC_POLICY_NONE: 223 /* no need to do IPsec. */ 224 needipsec = 0; 225 break; 226 227 case IPSEC_POLICY_IPSEC: 228 if (sp->req == NULL) { 229 /* XXX should be panic ? */ 230 printf("ip6_output: No IPsec request specified.\n"); 231 error = EINVAL; 232 goto freehdrs; 233 } 234 needipsec = 1; 235 break; 236 237 case IPSEC_POLICY_ENTRUST: 238 default: 239 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 240 } 241 #endif /* IPSEC */ 242 243 /* 244 * Calculate the total length of the extension header chain. 245 * Keep the length of the unfragmentable part for fragmentation. 246 */ 247 optlen = 0; 248 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 249 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 250 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 251 unfragpartlen = optlen + sizeof(struct ip6_hdr); 252 /* NOTE: we don't add AH/ESP length here. do that later. */ 253 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 254 255 /* 256 * If we need IPsec, or there is at least one extension header, 257 * separate IP6 header from the payload. 258 */ 259 if ((needipsec || optlen) && !hdrsplit) { 260 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 261 m = NULL; 262 goto freehdrs; 263 } 264 m = exthdrs.ip6e_ip6; 265 hdrsplit++; 266 } 267 268 /* adjust pointer */ 269 ip6 = mtod(m, struct ip6_hdr *); 270 271 /* adjust mbuf packet header length */ 272 m->m_pkthdr.len += optlen; 273 plen = m->m_pkthdr.len - sizeof(*ip6); 274 275 /* If this is a jumbo payload, insert a jumbo payload option. */ 276 if (plen > IPV6_MAXPACKET) { 277 if (!hdrsplit) { 278 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 279 m = NULL; 280 goto freehdrs; 281 } 282 m = exthdrs.ip6e_ip6; 283 hdrsplit++; 284 } 285 /* adjust pointer */ 286 ip6 = mtod(m, struct ip6_hdr *); 287 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 288 goto freehdrs; 289 ip6->ip6_plen = 0; 290 } else 291 ip6->ip6_plen = htons(plen); 292 293 /* 294 * Concatenate headers and fill in next header fields. 295 * Here we have, on "m" 296 * IPv6 payload 297 * and we insert headers accordingly. Finally, we should be getting: 298 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 299 * 300 * during the header composing process, "m" points to IPv6 header. 301 * "mprev" points to an extension header prior to esp. 302 */ 303 { 304 u_char *nexthdrp = &ip6->ip6_nxt; 305 struct mbuf *mprev = m; 306 307 /* 308 * we treat dest2 specially. this makes IPsec processing 309 * much easier. 310 * 311 * result: IPv6 dest2 payload 312 * m and mprev will point to IPv6 header. 313 */ 314 if (exthdrs.ip6e_dest2) { 315 if (!hdrsplit) 316 panic("assumption failed: hdr not split"); 317 exthdrs.ip6e_dest2->m_next = m->m_next; 318 m->m_next = exthdrs.ip6e_dest2; 319 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 320 ip6->ip6_nxt = IPPROTO_DSTOPTS; 321 } 322 323 #define MAKE_CHAIN(m, mp, p, i)\ 324 do {\ 325 if (m) {\ 326 if (!hdrsplit) \ 327 panic("assumption failed: hdr not split"); \ 328 *mtod((m), u_char *) = *(p);\ 329 *(p) = (i);\ 330 p = mtod((m), u_char *);\ 331 (m)->m_next = (mp)->m_next;\ 332 (mp)->m_next = (m);\ 333 (mp) = (m);\ 334 }\ 335 } while (0) 336 /* 337 * result: IPv6 hbh dest1 rthdr dest2 payload 338 * m will point to IPv6 header. mprev will point to the 339 * extension header prior to dest2 (rthdr in the above case). 340 */ 341 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, 342 nexthdrp, IPPROTO_HOPOPTS); 343 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, 344 nexthdrp, IPPROTO_DSTOPTS); 345 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, 346 nexthdrp, IPPROTO_ROUTING); 347 348 #ifdef IPSEC 349 if (!needipsec) 350 goto skip_ipsec2; 351 352 /* 353 * pointers after IPsec headers are not valid any more. 354 * other pointers need a great care too. 355 * (IPsec routines should not mangle mbufs prior to AH/ESP) 356 */ 357 exthdrs.ip6e_dest2 = NULL; 358 359 { 360 struct ip6_rthdr *rh = NULL; 361 int segleft_org = 0; 362 struct ipsec_output_state state; 363 364 if (exthdrs.ip6e_rthdr) { 365 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 366 segleft_org = rh->ip6r_segleft; 367 rh->ip6r_segleft = 0; 368 } 369 370 bzero(&state, sizeof(state)); 371 state.m = m; 372 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 373 &needipsectun); 374 m = state.m; 375 if (error) { 376 /* mbuf is already reclaimed in ipsec6_output_trans. */ 377 m = NULL; 378 switch (error) { 379 case EHOSTUNREACH: 380 case ENETUNREACH: 381 case EMSGSIZE: 382 case ENOBUFS: 383 case ENOMEM: 384 break; 385 default: 386 printf("ip6_output (ipsec): error code %d\n", error); 387 /*fall through*/ 388 case ENOENT: 389 /* don't show these error codes to the user */ 390 error = 0; 391 break; 392 } 393 goto bad; 394 } 395 if (exthdrs.ip6e_rthdr) { 396 /* ah6_output doesn't modify mbuf chain */ 397 rh->ip6r_segleft = segleft_org; 398 } 399 } 400 skip_ipsec2:; 401 #endif 402 } 403 404 /* 405 * If there is a routing header, replace destination address field 406 * with the first hop of the routing header. 407 */ 408 if (exthdrs.ip6e_rthdr) { 409 struct ip6_rthdr *rh = 410 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 411 struct ip6_rthdr *)); 412 struct ip6_rthdr0 *rh0; 413 414 finaldst = ip6->ip6_dst; 415 switch (rh->ip6r_type) { 416 case IPV6_RTHDR_TYPE_0: 417 rh0 = (struct ip6_rthdr0 *)rh; 418 ip6->ip6_dst = rh0->ip6r0_addr[0]; 419 bcopy((caddr_t)&rh0->ip6r0_addr[1], 420 (caddr_t)&rh0->ip6r0_addr[0], 421 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1) 422 ); 423 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst; 424 break; 425 default: /* is it possible? */ 426 error = EINVAL; 427 goto bad; 428 } 429 } 430 431 /* Source address validation */ 432 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 433 (flags & IPV6_DADOUTPUT) == 0) { 434 error = EOPNOTSUPP; 435 ip6stat.ip6s_badscope++; 436 goto bad; 437 } 438 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 439 error = EOPNOTSUPP; 440 ip6stat.ip6s_badscope++; 441 goto bad; 442 } 443 444 ip6stat.ip6s_localout++; 445 446 /* 447 * Route packet. 448 */ 449 if (ro == 0) { 450 ro = &ip6route; 451 bzero((caddr_t)ro, sizeof(*ro)); 452 } 453 ro_pmtu = ro; 454 if (opt && opt->ip6po_rthdr) 455 ro = &opt->ip6po_route; 456 dst = (struct sockaddr_in6 *)&ro->ro_dst; 457 /* 458 * If there is a cached route, 459 * check that it is to the same destination 460 * and is still up. If not, free it and try again. 461 */ 462 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 463 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 464 RTFREE(ro->ro_rt); 465 ro->ro_rt = (struct rtentry *)0; 466 } 467 if (ro->ro_rt == 0) { 468 bzero(dst, sizeof(*dst)); 469 dst->sin6_family = AF_INET6; 470 dst->sin6_len = sizeof(struct sockaddr_in6); 471 dst->sin6_addr = ip6->ip6_dst; 472 } 473 #ifdef IPSEC 474 if (needipsec && needipsectun) { 475 struct ipsec_output_state state; 476 477 /* 478 * All the extension headers will become inaccessible 479 * (since they can be encrypted). 480 * Don't panic, we need no more updates to extension headers 481 * on inner IPv6 packet (since they are now encapsulated). 482 * 483 * IPv6 [ESP|AH] IPv6 [extension headers] payload 484 */ 485 bzero(&exthdrs, sizeof(exthdrs)); 486 exthdrs.ip6e_ip6 = m; 487 488 bzero(&state, sizeof(state)); 489 state.m = m; 490 state.ro = (struct route *)ro; 491 state.dst = (struct sockaddr *)dst; 492 493 error = ipsec6_output_tunnel(&state, sp, flags); 494 495 m = state.m; 496 ro = (struct route_in6 *)state.ro; 497 dst = (struct sockaddr_in6 *)state.dst; 498 if (error) { 499 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 500 m0 = m = NULL; 501 m = NULL; 502 switch (error) { 503 case EHOSTUNREACH: 504 case ENETUNREACH: 505 case EMSGSIZE: 506 case ENOBUFS: 507 case ENOMEM: 508 break; 509 default: 510 printf("ip6_output (ipsec): error code %d\n", error); 511 /*fall through*/ 512 case ENOENT: 513 /* don't show these error codes to the user */ 514 error = 0; 515 break; 516 } 517 goto bad; 518 } 519 520 exthdrs.ip6e_ip6 = m; 521 } 522 #endif /*IPSEC*/ 523 524 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 525 /* Unicast */ 526 527 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 528 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 529 /* xxx 530 * interface selection comes here 531 * if an interface is specified from an upper layer, 532 * ifp must point it. 533 */ 534 if (ro->ro_rt == 0) { 535 /* 536 * non-bsdi always clone routes, if parent is 537 * PRF_CLONING. 538 */ 539 rtalloc((struct route *)ro); 540 } 541 if (ro->ro_rt == 0) { 542 ip6stat.ip6s_noroute++; 543 error = EHOSTUNREACH; 544 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 545 goto bad; 546 } 547 ia = ifatoia6(ro->ro_rt->rt_ifa); 548 ifp = ro->ro_rt->rt_ifp; 549 ro->ro_rt->rt_use++; 550 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 551 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 552 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 553 554 in6_ifstat_inc(ifp, ifs6_out_request); 555 556 /* 557 * Check if the outgoing interface conflicts with 558 * the interface specified by ifi6_ifindex (if specified). 559 * Note that loopback interface is always okay. 560 * (this may happen when we are sending a packet to one of 561 * our own addresses.) 562 */ 563 if (opt && opt->ip6po_pktinfo 564 && opt->ip6po_pktinfo->ipi6_ifindex) { 565 if (!(ifp->if_flags & IFF_LOOPBACK) 566 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 567 ip6stat.ip6s_noroute++; 568 in6_ifstat_inc(ifp, ifs6_out_discard); 569 error = EHOSTUNREACH; 570 goto bad; 571 } 572 } 573 574 if (opt && opt->ip6po_hlim != -1) 575 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 576 } else { 577 /* Multicast */ 578 struct in6_multi *in6m; 579 580 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 581 582 /* 583 * See if the caller provided any multicast options 584 */ 585 ifp = NULL; 586 if (im6o != NULL) { 587 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 588 if (im6o->im6o_multicast_ifp != NULL) 589 ifp = im6o->im6o_multicast_ifp; 590 } else 591 ip6->ip6_hlim = ip6_defmcasthlim; 592 593 /* 594 * See if the caller provided the outgoing interface 595 * as an ancillary data. 596 * Boundary check for ifindex is assumed to be already done. 597 */ 598 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 599 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]; 600 601 /* 602 * If the destination is a node-local scope multicast, 603 * the packet should be loop-backed only. 604 */ 605 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 606 /* 607 * If the outgoing interface is already specified, 608 * it should be a loopback interface. 609 */ 610 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 611 ip6stat.ip6s_badscope++; 612 error = ENETUNREACH; /* XXX: better error? */ 613 /* XXX correct ifp? */ 614 in6_ifstat_inc(ifp, ifs6_out_discard); 615 goto bad; 616 } else { 617 ifp = &loif[0]; 618 } 619 } 620 621 if (opt && opt->ip6po_hlim != -1) 622 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 623 624 /* 625 * If caller did not provide an interface lookup a 626 * default in the routing table. This is either a 627 * default for the speicfied group (i.e. a host 628 * route), or a multicast default (a route for the 629 * ``net'' ff00::/8). 630 */ 631 if (ifp == NULL) { 632 if (ro->ro_rt == 0) { 633 ro->ro_rt = rtalloc1((struct sockaddr *) 634 &ro->ro_dst, 0 635 ); 636 } 637 if (ro->ro_rt == 0) { 638 ip6stat.ip6s_noroute++; 639 error = EHOSTUNREACH; 640 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 641 goto bad; 642 } 643 ia = ifatoia6(ro->ro_rt->rt_ifa); 644 ifp = ro->ro_rt->rt_ifp; 645 ro->ro_rt->rt_use++; 646 } 647 648 if ((flags & IPV6_FORWARDING) == 0) 649 in6_ifstat_inc(ifp, ifs6_out_request); 650 in6_ifstat_inc(ifp, ifs6_out_mcast); 651 652 /* 653 * Confirm that the outgoing interface supports multicast. 654 */ 655 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 656 ip6stat.ip6s_noroute++; 657 in6_ifstat_inc(ifp, ifs6_out_discard); 658 error = ENETUNREACH; 659 goto bad; 660 } 661 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 662 if (in6m != NULL && 663 (im6o == NULL || im6o->im6o_multicast_loop)) { 664 /* 665 * If we belong to the destination multicast group 666 * on the outgoing interface, and the caller did not 667 * forbid loopback, loop back a copy. 668 */ 669 ip6_mloopback(ifp, m, dst); 670 } else { 671 /* 672 * If we are acting as a multicast router, perform 673 * multicast forwarding as if the packet had just 674 * arrived on the interface to which we are about 675 * to send. The multicast forwarding function 676 * recursively calls this function, using the 677 * IPV6_FORWARDING flag to prevent infinite recursion. 678 * 679 * Multicasts that are looped back by ip6_mloopback(), 680 * above, will be forwarded by the ip6_input() routine, 681 * if necessary. 682 */ 683 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 684 if (ip6_mforward(ip6, ifp, m) != 0) { 685 m_freem(m); 686 goto done; 687 } 688 } 689 } 690 /* 691 * Multicasts with a hoplimit of zero may be looped back, 692 * above, but must not be transmitted on a network. 693 * Also, multicasts addressed to the loopback interface 694 * are not sent -- the above call to ip6_mloopback() will 695 * loop back a copy if this host actually belongs to the 696 * destination group on the loopback interface. 697 */ 698 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 699 m_freem(m); 700 goto done; 701 } 702 } 703 704 /* 705 * Fill the outgoing inteface to tell the upper layer 706 * to increment per-interface statistics. 707 */ 708 if (ifpp) 709 *ifpp = ifp; 710 711 /* 712 * Determine path MTU. 713 */ 714 if (ro_pmtu != ro) { 715 /* The first hop and the final destination may differ. */ 716 struct sockaddr_in6 *sin6_fin = 717 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 718 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 719 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, 720 &finaldst))) { 721 RTFREE(ro_pmtu->ro_rt); 722 ro_pmtu->ro_rt = (struct rtentry *)0; 723 } 724 if (ro_pmtu->ro_rt == 0) { 725 bzero(sin6_fin, sizeof(*sin6_fin)); 726 sin6_fin->sin6_family = AF_INET6; 727 sin6_fin->sin6_len = sizeof(struct sockaddr_in6); 728 sin6_fin->sin6_addr = finaldst; 729 730 rtalloc((struct route *)ro_pmtu); 731 } 732 } 733 if (ro_pmtu->ro_rt != NULL) { 734 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu; 735 736 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 737 if (mtu > ifmtu || mtu == 0) { 738 /* 739 * The MTU on the route is larger than the MTU on 740 * the interface! This shouldn't happen, unless the 741 * MTU of the interface has been changed after the 742 * interface was brought up. Change the MTU in the 743 * route to match the interface MTU (as long as the 744 * field isn't locked). 745 * 746 * if MTU on the route is 0, we need to fix the MTU. 747 * this case happens with path MTU discovery timeouts. 748 */ 749 mtu = ifmtu; 750 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 751 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */ 752 } 753 } else { 754 mtu = nd_ifinfo[ifp->if_index].linkmtu; 755 } 756 757 /* Fake scoped addresses */ 758 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 759 /* 760 * If source or destination address is a scoped address, and 761 * the packet is going to be sent to a loopback interface, 762 * we should keep the original interface. 763 */ 764 765 /* 766 * XXX: this is a very experimental and temporary solution. 767 * We eventually have sockaddr_in6 and use the sin6_scope_id 768 * field of the structure here. 769 * We rely on the consistency between two scope zone ids 770 * of source add destination, which should already be assured 771 * Larger scopes than link will be supported in the near 772 * future. 773 */ 774 origifp = NULL; 775 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 776 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])]; 777 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 778 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])]; 779 /* 780 * XXX: origifp can be NULL even in those two cases above. 781 * For example, if we remove the (only) link-local address 782 * from the loopback interface, and try to send a link-local 783 * address without link-id information. Then the source 784 * address is ::1, and the destination address is the 785 * link-local address with its s6_addr16[1] being zero. 786 * What is worse, if the packet goes to the loopback interface 787 * by a default rejected route, the null pointer would be 788 * passed to looutput, and the kernel would hang. 789 * The following last resort would prevent such disaster. 790 */ 791 if (origifp == NULL) 792 origifp = ifp; 793 } 794 else 795 origifp = ifp; 796 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 797 ip6->ip6_src.s6_addr16[1] = 0; 798 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 799 ip6->ip6_dst.s6_addr16[1] = 0; 800 801 /* 802 * If the outgoing packet contains a hop-by-hop options header, 803 * it must be examined and processed even by the source node. 804 * (RFC 2460, section 4.) 805 */ 806 if (exthdrs.ip6e_hbh) { 807 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 808 u_int32_t dummy1; /* XXX unused */ 809 u_int32_t dummy2; /* XXX unused */ 810 811 /* 812 * XXX: if we have to send an ICMPv6 error to the sender, 813 * we need the M_LOOP flag since icmp6_error() expects 814 * the IPv6 and the hop-by-hop options header are 815 * continuous unless the flag is set. 816 */ 817 m->m_flags |= M_LOOP; 818 m->m_pkthdr.rcvif = ifp; 819 if (ip6_process_hopopts(m, 820 (u_int8_t *)(hbh + 1), 821 ((hbh->ip6h_len + 1) << 3) - 822 sizeof(struct ip6_hbh), 823 &dummy1, &dummy2) < 0) { 824 /* m was already freed at this point */ 825 error = EINVAL;/* better error? */ 826 goto done; 827 } 828 m->m_flags &= ~M_LOOP; /* XXX */ 829 m->m_pkthdr.rcvif = NULL; 830 } 831 832 #ifdef PFIL_HOOKS 833 /* 834 * Run through list of hooks for output packets. 835 */ 836 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, 837 PFIL_OUT)) != 0) 838 goto done; 839 if (m == NULL) 840 goto done; 841 ip6 = mtod(m, struct ip6_hdr *); 842 #endif /* PFIL_HOOKS */ 843 /* 844 * Send the packet to the outgoing interface. 845 * If necessary, do IPv6 fragmentation before sending. 846 */ 847 tlen = m->m_pkthdr.len; 848 if (tlen <= mtu 849 #ifdef notyet 850 /* 851 * On any link that cannot convey a 1280-octet packet in one piece, 852 * link-specific fragmentation and reassembly must be provided at 853 * a layer below IPv6. [RFC 2460, sec.5] 854 * Thus if the interface has ability of link-level fragmentation, 855 * we can just send the packet even if the packet size is 856 * larger than the link's MTU. 857 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet... 858 */ 859 860 || ifp->if_flags & IFF_FRAGMENTABLE 861 #endif 862 ) 863 { 864 #ifdef IFA_STATS 865 struct in6_ifaddr *ia6; 866 ip6 = mtod(m, struct ip6_hdr *); 867 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 868 if (ia6) { 869 ia6->ia_ifa.ifa_data.ifad_outbytes += 870 m->m_pkthdr.len; 871 } 872 #endif 873 #ifdef IPSEC 874 /* clean ipsec history once it goes out of the node */ 875 ipsec_delaux(m); 876 #endif 877 #ifdef OLDIP6OUTPUT 878 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, 879 ro->ro_rt); 880 #else 881 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 882 #endif 883 goto done; 884 } else if (mtu < IPV6_MMTU) { 885 /* 886 * note that path MTU is never less than IPV6_MMTU 887 * (see icmp6_input). 888 */ 889 error = EMSGSIZE; 890 in6_ifstat_inc(ifp, ifs6_out_fragfail); 891 goto bad; 892 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 893 error = EMSGSIZE; 894 in6_ifstat_inc(ifp, ifs6_out_fragfail); 895 goto bad; 896 } else { 897 struct mbuf **mnext, *m_frgpart; 898 struct ip6_frag *ip6f; 899 u_int32_t id = htonl(ip6_id++); 900 u_char nextproto; 901 902 /* 903 * Too large for the destination or interface; 904 * fragment if possible. 905 * Must be able to put at least 8 bytes per fragment. 906 */ 907 hlen = unfragpartlen; 908 if (mtu > IPV6_MAXPACKET) 909 mtu = IPV6_MAXPACKET; 910 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 911 if (len < 8) { 912 error = EMSGSIZE; 913 in6_ifstat_inc(ifp, ifs6_out_fragfail); 914 goto bad; 915 } 916 917 mnext = &m->m_nextpkt; 918 919 /* 920 * Change the next header field of the last header in the 921 * unfragmentable part. 922 */ 923 if (exthdrs.ip6e_rthdr) { 924 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 925 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 926 } else if (exthdrs.ip6e_dest1) { 927 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 928 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 929 } else if (exthdrs.ip6e_hbh) { 930 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 931 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 932 } else { 933 nextproto = ip6->ip6_nxt; 934 ip6->ip6_nxt = IPPROTO_FRAGMENT; 935 } 936 937 /* 938 * Loop through length of segment after first fragment, 939 * make new header and copy data of each part and link onto chain. 940 */ 941 m0 = m; 942 for (off = hlen; off < tlen; off += len) { 943 MGETHDR(m, M_DONTWAIT, MT_HEADER); 944 if (!m) { 945 error = ENOBUFS; 946 ip6stat.ip6s_odropped++; 947 goto sendorfree; 948 } 949 m->m_flags = m0->m_flags & M_COPYFLAGS; 950 *mnext = m; 951 mnext = &m->m_nextpkt; 952 m->m_data += max_linkhdr; 953 mhip6 = mtod(m, struct ip6_hdr *); 954 *mhip6 = *ip6; 955 m->m_len = sizeof(*mhip6); 956 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 957 if (error) { 958 ip6stat.ip6s_odropped++; 959 goto sendorfree; 960 } 961 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 962 if (off + len >= tlen) 963 len = tlen - off; 964 else 965 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 966 mhip6->ip6_plen = htons((u_short)(len + hlen + 967 sizeof(*ip6f) - 968 sizeof(struct ip6_hdr))); 969 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 970 error = ENOBUFS; 971 ip6stat.ip6s_odropped++; 972 goto sendorfree; 973 } 974 m_cat(m, m_frgpart); 975 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 976 m->m_pkthdr.rcvif = (struct ifnet *)0; 977 ip6f->ip6f_reserved = 0; 978 ip6f->ip6f_ident = id; 979 ip6f->ip6f_nxt = nextproto; 980 ip6stat.ip6s_ofragments++; 981 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 982 } 983 984 in6_ifstat_inc(ifp, ifs6_out_fragok); 985 } 986 987 /* 988 * Remove leading garbages. 989 */ 990 sendorfree: 991 m = m0->m_nextpkt; 992 m0->m_nextpkt = 0; 993 m_freem(m0); 994 for (m0 = m; m; m = m0) { 995 m0 = m->m_nextpkt; 996 m->m_nextpkt = 0; 997 if (error == 0) { 998 #ifdef IFA_STATS 999 struct in6_ifaddr *ia6; 1000 ip6 = mtod(m, struct ip6_hdr *); 1001 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1002 if (ia6) { 1003 ia6->ia_ifa.ifa_data.ifad_outbytes += 1004 m->m_pkthdr.len; 1005 } 1006 #endif 1007 #ifdef IPSEC 1008 /* clean ipsec history once it goes out of the node */ 1009 ipsec_delaux(m); 1010 #endif 1011 #ifdef OLDIP6OUTPUT 1012 error = (*ifp->if_output)(ifp, m, 1013 (struct sockaddr *)dst, 1014 ro->ro_rt); 1015 #else 1016 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1017 #endif 1018 } else 1019 m_freem(m); 1020 } 1021 1022 if (error == 0) 1023 ip6stat.ip6s_fragmented++; 1024 1025 done: 1026 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1027 RTFREE(ro->ro_rt); 1028 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1029 RTFREE(ro_pmtu->ro_rt); 1030 } 1031 1032 #ifdef IPSEC 1033 if (sp != NULL) 1034 key_freesp(sp); 1035 #endif /* IPSEC */ 1036 1037 return(error); 1038 1039 freehdrs: 1040 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1041 m_freem(exthdrs.ip6e_dest1); 1042 m_freem(exthdrs.ip6e_rthdr); 1043 m_freem(exthdrs.ip6e_dest2); 1044 /* fall through */ 1045 bad: 1046 m_freem(m); 1047 goto done; 1048 } 1049 1050 static int 1051 ip6_copyexthdr(mp, hdr, hlen) 1052 struct mbuf **mp; 1053 caddr_t hdr; 1054 int hlen; 1055 { 1056 struct mbuf *m; 1057 1058 if (hlen > MCLBYTES) 1059 return(ENOBUFS); /* XXX */ 1060 1061 MGET(m, M_DONTWAIT, MT_DATA); 1062 if (!m) 1063 return(ENOBUFS); 1064 1065 if (hlen > MLEN) { 1066 MCLGET(m, M_DONTWAIT); 1067 if ((m->m_flags & M_EXT) == 0) { 1068 m_free(m); 1069 return(ENOBUFS); 1070 } 1071 } 1072 m->m_len = hlen; 1073 if (hdr) 1074 bcopy(hdr, mtod(m, caddr_t), hlen); 1075 1076 *mp = m; 1077 return(0); 1078 } 1079 1080 /* 1081 * Insert jumbo payload option. 1082 */ 1083 static int 1084 ip6_insert_jumboopt(exthdrs, plen) 1085 struct ip6_exthdrs *exthdrs; 1086 u_int32_t plen; 1087 { 1088 struct mbuf *mopt; 1089 u_char *optbuf; 1090 u_int32_t v; 1091 1092 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1093 1094 /* 1095 * If there is no hop-by-hop options header, allocate new one. 1096 * If there is one but it doesn't have enough space to store the 1097 * jumbo payload option, allocate a cluster to store the whole options. 1098 * Otherwise, use it to store the options. 1099 */ 1100 if (exthdrs->ip6e_hbh == 0) { 1101 MGET(mopt, M_DONTWAIT, MT_DATA); 1102 if (mopt == 0) 1103 return(ENOBUFS); 1104 mopt->m_len = JUMBOOPTLEN; 1105 optbuf = mtod(mopt, u_char *); 1106 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1107 exthdrs->ip6e_hbh = mopt; 1108 } else { 1109 struct ip6_hbh *hbh; 1110 1111 mopt = exthdrs->ip6e_hbh; 1112 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1113 /* 1114 * XXX assumption: 1115 * - exthdrs->ip6e_hbh is not referenced from places 1116 * other than exthdrs. 1117 * - exthdrs->ip6e_hbh is not an mbuf chain. 1118 */ 1119 int oldoptlen = mopt->m_len; 1120 struct mbuf *n; 1121 1122 /* 1123 * XXX: give up if the whole (new) hbh header does 1124 * not fit even in an mbuf cluster. 1125 */ 1126 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1127 return(ENOBUFS); 1128 1129 /* 1130 * As a consequence, we must always prepare a cluster 1131 * at this point. 1132 */ 1133 MGET(n, M_DONTWAIT, MT_DATA); 1134 if (n) { 1135 MCLGET(n, M_DONTWAIT); 1136 if ((n->m_flags & M_EXT) == 0) { 1137 m_freem(n); 1138 n = NULL; 1139 } 1140 } 1141 if (!n) 1142 return(ENOBUFS); 1143 n->m_len = oldoptlen + JUMBOOPTLEN; 1144 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1145 oldoptlen); 1146 optbuf = mtod(n, caddr_t) + oldoptlen; 1147 m_freem(mopt); 1148 mopt = exthdrs->ip6e_hbh = n; 1149 } else { 1150 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1151 mopt->m_len += JUMBOOPTLEN; 1152 } 1153 optbuf[0] = IP6OPT_PADN; 1154 optbuf[1] = 1; 1155 1156 /* 1157 * Adjust the header length according to the pad and 1158 * the jumbo payload option. 1159 */ 1160 hbh = mtod(mopt, struct ip6_hbh *); 1161 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1162 } 1163 1164 /* fill in the option. */ 1165 optbuf[2] = IP6OPT_JUMBO; 1166 optbuf[3] = 4; 1167 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1168 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1169 1170 /* finally, adjust the packet header length */ 1171 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1172 1173 return(0); 1174 #undef JUMBOOPTLEN 1175 } 1176 1177 /* 1178 * Insert fragment header and copy unfragmentable header portions. 1179 */ 1180 static int 1181 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1182 struct mbuf *m0, *m; 1183 int hlen; 1184 struct ip6_frag **frghdrp; 1185 { 1186 struct mbuf *n, *mlast; 1187 1188 if (hlen > sizeof(struct ip6_hdr)) { 1189 n = m_copym(m0, sizeof(struct ip6_hdr), 1190 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1191 if (n == 0) 1192 return(ENOBUFS); 1193 m->m_next = n; 1194 } else 1195 n = m; 1196 1197 /* Search for the last mbuf of unfragmentable part. */ 1198 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1199 ; 1200 1201 if ((mlast->m_flags & M_EXT) == 0 && 1202 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1203 /* use the trailing space of the last mbuf for the fragment hdr */ 1204 *frghdrp = 1205 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1206 mlast->m_len += sizeof(struct ip6_frag); 1207 m->m_pkthdr.len += sizeof(struct ip6_frag); 1208 } else { 1209 /* allocate a new mbuf for the fragment header */ 1210 struct mbuf *mfrg; 1211 1212 MGET(mfrg, M_DONTWAIT, MT_DATA); 1213 if (mfrg == 0) 1214 return(ENOBUFS); 1215 mfrg->m_len = sizeof(struct ip6_frag); 1216 *frghdrp = mtod(mfrg, struct ip6_frag *); 1217 mlast->m_next = mfrg; 1218 } 1219 1220 return(0); 1221 } 1222 1223 /* 1224 * IP6 socket option processing. 1225 */ 1226 int 1227 ip6_ctloutput(op, so, level, optname, mp) 1228 int op; 1229 struct socket *so; 1230 int level, optname; 1231 struct mbuf **mp; 1232 { 1233 struct in6pcb *in6p = sotoin6pcb(so); 1234 struct mbuf *m = *mp; 1235 int optval = 0; 1236 int error = 0; 1237 struct proc *p = curproc; /* XXX */ 1238 1239 if (level == IPPROTO_IPV6) { 1240 switch (op) { 1241 1242 case PRCO_SETOPT: 1243 switch (optname) { 1244 case IPV6_PKTOPTIONS: 1245 /* m is freed in ip6_pcbopts */ 1246 return(ip6_pcbopts(&in6p->in6p_outputopts, 1247 m, so)); 1248 case IPV6_HOPOPTS: 1249 case IPV6_DSTOPTS: 1250 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1251 error = EPERM; 1252 break; 1253 } 1254 /* fall through */ 1255 case IPV6_UNICAST_HOPS: 1256 case IPV6_RECVOPTS: 1257 case IPV6_RECVRETOPTS: 1258 case IPV6_RECVDSTADDR: 1259 case IPV6_PKTINFO: 1260 case IPV6_HOPLIMIT: 1261 case IPV6_RTHDR: 1262 case IPV6_CHECKSUM: 1263 case IPV6_FAITH: 1264 #ifndef INET6_BINDV6ONLY 1265 case IPV6_BINDV6ONLY: 1266 #endif 1267 if (!m || m->m_len != sizeof(int)) 1268 error = EINVAL; 1269 else { 1270 optval = *mtod(m, int *); 1271 switch (optname) { 1272 1273 case IPV6_UNICAST_HOPS: 1274 if (optval < -1 || optval >= 256) 1275 error = EINVAL; 1276 else { 1277 /* -1 = kernel default */ 1278 in6p->in6p_hops = optval; 1279 } 1280 break; 1281 #define OPTSET(bit) \ 1282 if (optval) \ 1283 in6p->in6p_flags |= bit; \ 1284 else \ 1285 in6p->in6p_flags &= ~bit; 1286 1287 case IPV6_RECVOPTS: 1288 OPTSET(IN6P_RECVOPTS); 1289 break; 1290 1291 case IPV6_RECVRETOPTS: 1292 OPTSET(IN6P_RECVRETOPTS); 1293 break; 1294 1295 case IPV6_RECVDSTADDR: 1296 OPTSET(IN6P_RECVDSTADDR); 1297 break; 1298 1299 case IPV6_PKTINFO: 1300 OPTSET(IN6P_PKTINFO); 1301 break; 1302 1303 case IPV6_HOPLIMIT: 1304 OPTSET(IN6P_HOPLIMIT); 1305 break; 1306 1307 case IPV6_HOPOPTS: 1308 OPTSET(IN6P_HOPOPTS); 1309 break; 1310 1311 case IPV6_DSTOPTS: 1312 OPTSET(IN6P_DSTOPTS); 1313 break; 1314 1315 case IPV6_RTHDR: 1316 OPTSET(IN6P_RTHDR); 1317 break; 1318 1319 case IPV6_CHECKSUM: 1320 in6p->in6p_cksum = optval; 1321 break; 1322 1323 case IPV6_FAITH: 1324 OPTSET(IN6P_FAITH); 1325 break; 1326 1327 #ifndef INET6_BINDV6ONLY 1328 case IPV6_BINDV6ONLY: 1329 OPTSET(IN6P_BINDV6ONLY); 1330 break; 1331 #endif 1332 } 1333 } 1334 break; 1335 #undef OPTSET 1336 1337 case IPV6_MULTICAST_IF: 1338 case IPV6_MULTICAST_HOPS: 1339 case IPV6_MULTICAST_LOOP: 1340 case IPV6_JOIN_GROUP: 1341 case IPV6_LEAVE_GROUP: 1342 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m); 1343 break; 1344 1345 case IPV6_PORTRANGE: 1346 optval = *mtod(m, int *); 1347 1348 switch (optval) { 1349 case IPV6_PORTRANGE_DEFAULT: 1350 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1351 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1352 break; 1353 1354 case IPV6_PORTRANGE_HIGH: 1355 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1356 in6p->in6p_flags |= IN6P_HIGHPORT; 1357 break; 1358 1359 case IPV6_PORTRANGE_LOW: 1360 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1361 in6p->in6p_flags |= IN6P_LOWPORT; 1362 break; 1363 1364 default: 1365 error = EINVAL; 1366 break; 1367 } 1368 break; 1369 1370 #ifdef IPSEC 1371 case IPV6_IPSEC_POLICY: 1372 { 1373 caddr_t req = NULL; 1374 size_t len = 0; 1375 1376 int priv = 0; 1377 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) 1378 priv = 0; 1379 else 1380 priv = 1; 1381 if (m) { 1382 req = mtod(m, caddr_t); 1383 len = m->m_len; 1384 } 1385 error = ipsec6_set_policy(in6p, 1386 optname, req, len, priv); 1387 } 1388 break; 1389 #endif /* IPSEC */ 1390 1391 default: 1392 error = ENOPROTOOPT; 1393 break; 1394 } 1395 if (m) 1396 (void)m_free(m); 1397 break; 1398 1399 case PRCO_GETOPT: 1400 switch (optname) { 1401 1402 case IPV6_OPTIONS: 1403 case IPV6_RETOPTS: 1404 #if 0 1405 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1406 if (in6p->in6p_options) { 1407 m->m_len = in6p->in6p_options->m_len; 1408 bcopy(mtod(in6p->in6p_options, caddr_t), 1409 mtod(m, caddr_t), 1410 (unsigned)m->m_len); 1411 } else 1412 m->m_len = 0; 1413 break; 1414 #else 1415 error = ENOPROTOOPT; 1416 break; 1417 #endif 1418 1419 case IPV6_PKTOPTIONS: 1420 if (in6p->in6p_options) { 1421 *mp = m_copym(in6p->in6p_options, 0, 1422 M_COPYALL, M_WAIT); 1423 } else { 1424 *mp = m_get(M_WAIT, MT_SOOPTS); 1425 (*mp)->m_len = 0; 1426 } 1427 break; 1428 1429 case IPV6_HOPOPTS: 1430 case IPV6_DSTOPTS: 1431 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1432 error = EPERM; 1433 break; 1434 } 1435 /* fall through */ 1436 case IPV6_UNICAST_HOPS: 1437 case IPV6_RECVOPTS: 1438 case IPV6_RECVRETOPTS: 1439 case IPV6_RECVDSTADDR: 1440 case IPV6_PORTRANGE: 1441 case IPV6_PKTINFO: 1442 case IPV6_HOPLIMIT: 1443 case IPV6_RTHDR: 1444 case IPV6_CHECKSUM: 1445 case IPV6_FAITH: 1446 #ifndef INET6_BINDV6ONLY 1447 case IPV6_BINDV6ONLY: 1448 #endif 1449 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1450 m->m_len = sizeof(int); 1451 switch (optname) { 1452 1453 case IPV6_UNICAST_HOPS: 1454 optval = in6p->in6p_hops; 1455 break; 1456 1457 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0) 1458 1459 case IPV6_RECVOPTS: 1460 optval = OPTBIT(IN6P_RECVOPTS); 1461 break; 1462 1463 case IPV6_RECVRETOPTS: 1464 optval = OPTBIT(IN6P_RECVRETOPTS); 1465 break; 1466 1467 case IPV6_RECVDSTADDR: 1468 optval = OPTBIT(IN6P_RECVDSTADDR); 1469 break; 1470 1471 case IPV6_PORTRANGE: 1472 { 1473 int flags; 1474 flags = in6p->in6p_flags; 1475 if (flags & IN6P_HIGHPORT) 1476 optval = IPV6_PORTRANGE_HIGH; 1477 else if (flags & IN6P_LOWPORT) 1478 optval = IPV6_PORTRANGE_LOW; 1479 else 1480 optval = 0; 1481 break; 1482 } 1483 1484 case IPV6_PKTINFO: 1485 optval = OPTBIT(IN6P_PKTINFO); 1486 break; 1487 1488 case IPV6_HOPLIMIT: 1489 optval = OPTBIT(IN6P_HOPLIMIT); 1490 break; 1491 1492 case IPV6_HOPOPTS: 1493 optval = OPTBIT(IN6P_HOPOPTS); 1494 break; 1495 1496 case IPV6_DSTOPTS: 1497 optval = OPTBIT(IN6P_DSTOPTS); 1498 break; 1499 1500 case IPV6_RTHDR: 1501 optval = OPTBIT(IN6P_RTHDR); 1502 break; 1503 1504 case IPV6_CHECKSUM: 1505 optval = in6p->in6p_cksum; 1506 break; 1507 1508 case IPV6_FAITH: 1509 optval = OPTBIT(IN6P_FAITH); 1510 break; 1511 1512 #ifndef INET6_BINDV6ONLY 1513 case IPV6_BINDV6ONLY: 1514 optval = OPTBIT(IN6P_BINDV6ONLY); 1515 break; 1516 #endif 1517 } 1518 *mtod(m, int *) = optval; 1519 break; 1520 1521 case IPV6_MULTICAST_IF: 1522 case IPV6_MULTICAST_HOPS: 1523 case IPV6_MULTICAST_LOOP: 1524 case IPV6_JOIN_GROUP: 1525 case IPV6_LEAVE_GROUP: 1526 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp); 1527 break; 1528 1529 #ifdef IPSEC 1530 case IPV6_IPSEC_POLICY: 1531 { 1532 caddr_t req = NULL; 1533 size_t len = 0; 1534 1535 if (m) { 1536 req = mtod(m, caddr_t); 1537 len = m->m_len; 1538 } 1539 error = ipsec6_get_policy(in6p, req, len, mp); 1540 break; 1541 } 1542 #endif /* IPSEC */ 1543 1544 default: 1545 error = ENOPROTOOPT; 1546 break; 1547 } 1548 break; 1549 } 1550 } else { 1551 error = EINVAL; 1552 if (op == PRCO_SETOPT && *mp) 1553 (void)m_free(*mp); 1554 } 1555 return(error); 1556 } 1557 1558 /* 1559 * Set up IP6 options in pcb for insertion in output packets. 1560 * Store in mbuf with pointer in pcbopt, adding pseudo-option 1561 * with destination address if source routed. 1562 */ 1563 static int 1564 ip6_pcbopts(pktopt, m, so) 1565 struct ip6_pktopts **pktopt; 1566 struct mbuf *m; 1567 struct socket *so; 1568 { 1569 struct ip6_pktopts *opt = *pktopt; 1570 int error = 0; 1571 struct proc *p = curproc; /* XXX */ 1572 int priv = 0; 1573 1574 /* turn off any old options. */ 1575 if (opt) { 1576 if (opt->ip6po_m) 1577 (void)m_free(opt->ip6po_m); 1578 } else 1579 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 1580 *pktopt = 0; 1581 1582 if (!m || m->m_len == 0) { 1583 /* 1584 * Only turning off any previous options. 1585 */ 1586 if (opt) 1587 free(opt, M_IP6OPT); 1588 if (m) 1589 (void)m_free(m); 1590 return(0); 1591 } 1592 1593 /* set options specified by user. */ 1594 if (p && !suser(p->p_ucred, &p->p_acflag)) 1595 priv = 1; 1596 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) { 1597 (void)m_free(m); 1598 return(error); 1599 } 1600 *pktopt = opt; 1601 return(0); 1602 } 1603 1604 /* 1605 * Set the IP6 multicast options in response to user setsockopt(). 1606 */ 1607 static int 1608 ip6_setmoptions(optname, im6op, m) 1609 int optname; 1610 struct ip6_moptions **im6op; 1611 struct mbuf *m; 1612 { 1613 int error = 0; 1614 u_int loop, ifindex; 1615 struct ipv6_mreq *mreq; 1616 struct ifnet *ifp; 1617 struct ip6_moptions *im6o = *im6op; 1618 struct route_in6 ro; 1619 struct sockaddr_in6 *dst; 1620 struct in6_multi_mship *imm; 1621 struct proc *p = curproc; /* XXX */ 1622 1623 if (im6o == NULL) { 1624 /* 1625 * No multicast option buffer attached to the pcb; 1626 * allocate one and initialize to default values. 1627 */ 1628 im6o = (struct ip6_moptions *) 1629 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1630 1631 if (im6o == NULL) 1632 return(ENOBUFS); 1633 *im6op = im6o; 1634 im6o->im6o_multicast_ifp = NULL; 1635 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1636 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1637 LIST_INIT(&im6o->im6o_memberships); 1638 } 1639 1640 switch (optname) { 1641 1642 case IPV6_MULTICAST_IF: 1643 /* 1644 * Select the interface for outgoing multicast packets. 1645 */ 1646 if (m == NULL || m->m_len != sizeof(u_int)) { 1647 error = EINVAL; 1648 break; 1649 } 1650 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 1651 if (ifindex < 0 || if_index < ifindex) { 1652 error = ENXIO; /* XXX EINVAL? */ 1653 break; 1654 } 1655 ifp = ifindex2ifnet[ifindex]; 1656 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1657 error = EADDRNOTAVAIL; 1658 break; 1659 } 1660 im6o->im6o_multicast_ifp = ifp; 1661 break; 1662 1663 case IPV6_MULTICAST_HOPS: 1664 { 1665 /* 1666 * Set the IP6 hoplimit for outgoing multicast packets. 1667 */ 1668 int optval; 1669 if (m == NULL || m->m_len != sizeof(int)) { 1670 error = EINVAL; 1671 break; 1672 } 1673 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 1674 if (optval < -1 || optval >= 256) 1675 error = EINVAL; 1676 else if (optval == -1) 1677 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1678 else 1679 im6o->im6o_multicast_hlim = optval; 1680 break; 1681 } 1682 1683 case IPV6_MULTICAST_LOOP: 1684 /* 1685 * Set the loopback flag for outgoing multicast packets. 1686 * Must be zero or one. 1687 */ 1688 if (m == NULL || m->m_len != sizeof(u_int)) { 1689 error = EINVAL; 1690 break; 1691 } 1692 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 1693 if (loop > 1) { 1694 error = EINVAL; 1695 break; 1696 } 1697 im6o->im6o_multicast_loop = loop; 1698 break; 1699 1700 case IPV6_JOIN_GROUP: 1701 /* 1702 * Add a multicast group membership. 1703 * Group must be a valid IP6 multicast address. 1704 */ 1705 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1706 error = EINVAL; 1707 break; 1708 } 1709 mreq = mtod(m, struct ipv6_mreq *); 1710 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1711 /* 1712 * We use the unspecified address to specify to accept 1713 * all multicast addresses. Only super user is allowed 1714 * to do this. 1715 */ 1716 if (suser(p->p_ucred, &p->p_acflag)) 1717 { 1718 error = EACCES; 1719 break; 1720 } 1721 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1722 error = EINVAL; 1723 break; 1724 } 1725 1726 /* 1727 * If the interface is specified, validate it. 1728 */ 1729 if (mreq->ipv6mr_interface < 0 1730 || if_index < mreq->ipv6mr_interface) { 1731 error = ENXIO; /* XXX EINVAL? */ 1732 break; 1733 } 1734 /* 1735 * If no interface was explicitly specified, choose an 1736 * appropriate one according to the given multicast address. 1737 */ 1738 if (mreq->ipv6mr_interface == 0) { 1739 /* 1740 * If the multicast address is in node-local scope, 1741 * the interface should be a loopback interface. 1742 * Otherwise, look up the routing table for the 1743 * address, and choose the outgoing interface. 1744 * XXX: is it a good approach? 1745 */ 1746 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 1747 ifp = &loif[0]; 1748 } else { 1749 ro.ro_rt = NULL; 1750 dst = (struct sockaddr_in6 *)&ro.ro_dst; 1751 bzero(dst, sizeof(*dst)); 1752 dst->sin6_len = sizeof(struct sockaddr_in6); 1753 dst->sin6_family = AF_INET6; 1754 dst->sin6_addr = mreq->ipv6mr_multiaddr; 1755 rtalloc((struct route *)&ro); 1756 if (ro.ro_rt == NULL) { 1757 error = EADDRNOTAVAIL; 1758 break; 1759 } 1760 ifp = ro.ro_rt->rt_ifp; 1761 rtfree(ro.ro_rt); 1762 } 1763 } else 1764 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1765 1766 /* 1767 * See if we found an interface, and confirm that it 1768 * supports multicast 1769 */ 1770 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1771 error = EADDRNOTAVAIL; 1772 break; 1773 } 1774 /* 1775 * Put interface index into the multicast address, 1776 * if the address has link-local scope. 1777 */ 1778 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1779 mreq->ipv6mr_multiaddr.s6_addr16[1] 1780 = htons(mreq->ipv6mr_interface); 1781 } 1782 /* 1783 * See if the membership already exists. 1784 */ 1785 for (imm = im6o->im6o_memberships.lh_first; 1786 imm != NULL; imm = imm->i6mm_chain.le_next) 1787 if (imm->i6mm_maddr->in6m_ifp == ifp && 1788 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1789 &mreq->ipv6mr_multiaddr)) 1790 break; 1791 if (imm != NULL) { 1792 error = EADDRINUSE; 1793 break; 1794 } 1795 /* 1796 * Everything looks good; add a new record to the multicast 1797 * address list for the given interface. 1798 */ 1799 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 1800 if (imm == NULL) { 1801 error = ENOBUFS; 1802 break; 1803 } 1804 if ((imm->i6mm_maddr = 1805 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 1806 free(imm, M_IPMADDR); 1807 break; 1808 } 1809 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 1810 break; 1811 1812 case IPV6_LEAVE_GROUP: 1813 /* 1814 * Drop a multicast group membership. 1815 * Group must be a valid IP6 multicast address. 1816 */ 1817 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1818 error = EINVAL; 1819 break; 1820 } 1821 mreq = mtod(m, struct ipv6_mreq *); 1822 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1823 if (suser(p->p_ucred, &p->p_acflag)) 1824 { 1825 error = EACCES; 1826 break; 1827 } 1828 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1829 error = EINVAL; 1830 break; 1831 } 1832 /* 1833 * If an interface address was specified, get a pointer 1834 * to its ifnet structure. 1835 */ 1836 if (mreq->ipv6mr_interface < 0 1837 || if_index < mreq->ipv6mr_interface) { 1838 error = ENXIO; /* XXX EINVAL? */ 1839 break; 1840 } 1841 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1842 /* 1843 * Put interface index into the multicast address, 1844 * if the address has link-local scope. 1845 */ 1846 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1847 mreq->ipv6mr_multiaddr.s6_addr16[1] 1848 = htons(mreq->ipv6mr_interface); 1849 } 1850 /* 1851 * Find the membership in the membership list. 1852 */ 1853 for (imm = im6o->im6o_memberships.lh_first; 1854 imm != NULL; imm = imm->i6mm_chain.le_next) { 1855 if ((ifp == NULL || 1856 imm->i6mm_maddr->in6m_ifp == ifp) && 1857 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1858 &mreq->ipv6mr_multiaddr)) 1859 break; 1860 } 1861 if (imm == NULL) { 1862 /* Unable to resolve interface */ 1863 error = EADDRNOTAVAIL; 1864 break; 1865 } 1866 /* 1867 * Give up the multicast address record to which the 1868 * membership points. 1869 */ 1870 LIST_REMOVE(imm, i6mm_chain); 1871 in6_delmulti(imm->i6mm_maddr); 1872 free(imm, M_IPMADDR); 1873 break; 1874 1875 default: 1876 error = EOPNOTSUPP; 1877 break; 1878 } 1879 1880 /* 1881 * If all options have default values, no need to keep the mbuf. 1882 */ 1883 if (im6o->im6o_multicast_ifp == NULL && 1884 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 1885 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 1886 im6o->im6o_memberships.lh_first == NULL) { 1887 free(*im6op, M_IPMOPTS); 1888 *im6op = NULL; 1889 } 1890 1891 return(error); 1892 } 1893 1894 /* 1895 * Return the IP6 multicast options in response to user getsockopt(). 1896 */ 1897 static int 1898 ip6_getmoptions(optname, im6o, mp) 1899 int optname; 1900 struct ip6_moptions *im6o; 1901 struct mbuf **mp; 1902 { 1903 u_int *hlim, *loop, *ifindex; 1904 1905 *mp = m_get(M_WAIT, MT_SOOPTS); 1906 1907 switch (optname) { 1908 1909 case IPV6_MULTICAST_IF: 1910 ifindex = mtod(*mp, u_int *); 1911 (*mp)->m_len = sizeof(u_int); 1912 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 1913 *ifindex = 0; 1914 else 1915 *ifindex = im6o->im6o_multicast_ifp->if_index; 1916 return(0); 1917 1918 case IPV6_MULTICAST_HOPS: 1919 hlim = mtod(*mp, u_int *); 1920 (*mp)->m_len = sizeof(u_int); 1921 if (im6o == NULL) 1922 *hlim = ip6_defmcasthlim; 1923 else 1924 *hlim = im6o->im6o_multicast_hlim; 1925 return(0); 1926 1927 case IPV6_MULTICAST_LOOP: 1928 loop = mtod(*mp, u_int *); 1929 (*mp)->m_len = sizeof(u_int); 1930 if (im6o == NULL) 1931 *loop = ip6_defmcasthlim; 1932 else 1933 *loop = im6o->im6o_multicast_loop; 1934 return(0); 1935 1936 default: 1937 return(EOPNOTSUPP); 1938 } 1939 } 1940 1941 /* 1942 * Discard the IP6 multicast options. 1943 */ 1944 void 1945 ip6_freemoptions(im6o) 1946 struct ip6_moptions *im6o; 1947 { 1948 struct in6_multi_mship *imm; 1949 1950 if (im6o == NULL) 1951 return; 1952 1953 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 1954 LIST_REMOVE(imm, i6mm_chain); 1955 if (imm->i6mm_maddr) 1956 in6_delmulti(imm->i6mm_maddr); 1957 free(imm, M_IPMADDR); 1958 } 1959 free(im6o, M_IPMOPTS); 1960 } 1961 1962 /* 1963 * Set IPv6 outgoing packet options based on advanced API. 1964 */ 1965 int 1966 ip6_setpktoptions(control, opt, priv) 1967 struct mbuf *control; 1968 struct ip6_pktopts *opt; 1969 int priv; 1970 { 1971 struct cmsghdr *cm = 0; 1972 1973 if (control == 0 || opt == 0) 1974 return(EINVAL); 1975 1976 bzero(opt, sizeof(*opt)); 1977 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */ 1978 1979 /* 1980 * XXX: Currently, we assume all the optional information is stored 1981 * in a single mbuf. 1982 */ 1983 if (control->m_next) 1984 return(EINVAL); 1985 1986 opt->ip6po_m = control; 1987 1988 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 1989 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1990 cm = mtod(control, struct cmsghdr *); 1991 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 1992 return(EINVAL); 1993 if (cm->cmsg_level != IPPROTO_IPV6) 1994 continue; 1995 1996 switch (cm->cmsg_type) { 1997 case IPV6_PKTINFO: 1998 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 1999 return(EINVAL); 2000 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 2001 if (opt->ip6po_pktinfo->ipi6_ifindex && 2002 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr)) 2003 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] = 2004 htons(opt->ip6po_pktinfo->ipi6_ifindex); 2005 2006 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index 2007 || opt->ip6po_pktinfo->ipi6_ifindex < 0) { 2008 return(ENXIO); 2009 } 2010 2011 /* 2012 * Check if the requested source address is indeed a 2013 * unicast address assigned to the node, and can be 2014 * used as the packet's source address. 2015 */ 2016 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 2017 struct ifaddr *ia; 2018 struct in6_ifaddr *ia6; 2019 struct sockaddr_in6 sin6; 2020 2021 bzero(&sin6, sizeof(sin6)); 2022 sin6.sin6_len = sizeof(sin6); 2023 sin6.sin6_family = AF_INET6; 2024 sin6.sin6_addr = 2025 opt->ip6po_pktinfo->ipi6_addr; 2026 ia = ifa_ifwithaddr(sin6tosa(&sin6)); 2027 if (ia == NULL || 2028 (opt->ip6po_pktinfo->ipi6_ifindex && 2029 (ia->ifa_ifp->if_index != 2030 opt->ip6po_pktinfo->ipi6_ifindex))) { 2031 return(EADDRNOTAVAIL); 2032 } 2033 ia6 = (struct in6_ifaddr *)ia; 2034 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) { 2035 return(EADDRNOTAVAIL); 2036 } 2037 2038 /* 2039 * Check if the requested source address is 2040 * indeed a unicast address assigned to the 2041 * node. 2042 */ 2043 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr)) 2044 return(EADDRNOTAVAIL); 2045 } 2046 break; 2047 2048 case IPV6_HOPLIMIT: 2049 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 2050 return(EINVAL); 2051 2052 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim, 2053 sizeof(opt->ip6po_hlim)); 2054 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255) 2055 return(EINVAL); 2056 break; 2057 2058 case IPV6_NEXTHOP: 2059 if (!priv) 2060 return(EPERM); 2061 2062 if (cm->cmsg_len < sizeof(u_char) || 2063 /* check if cmsg_len is large enough for sa_len */ 2064 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 2065 return(EINVAL); 2066 2067 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm); 2068 2069 break; 2070 2071 case IPV6_HOPOPTS: 2072 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2073 return(EINVAL); 2074 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm); 2075 if (cm->cmsg_len != 2076 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3)) 2077 return(EINVAL); 2078 break; 2079 2080 case IPV6_DSTOPTS: 2081 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2082 return(EINVAL); 2083 2084 /* 2085 * If there is no routing header yet, the destination 2086 * options header should be put on the 1st part. 2087 * Otherwise, the header should be on the 2nd part. 2088 * (See RFC 2460, section 4.1) 2089 */ 2090 if (opt->ip6po_rthdr == NULL) { 2091 opt->ip6po_dest1 = 2092 (struct ip6_dest *)CMSG_DATA(cm); 2093 if (cm->cmsg_len != 2094 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1) 2095 << 3)) 2096 return(EINVAL); 2097 } 2098 else { 2099 opt->ip6po_dest2 = 2100 (struct ip6_dest *)CMSG_DATA(cm); 2101 if (cm->cmsg_len != 2102 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) 2103 << 3)) 2104 return(EINVAL); 2105 } 2106 break; 2107 2108 case IPV6_RTHDR: 2109 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2110 return(EINVAL); 2111 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm); 2112 if (cm->cmsg_len != 2113 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3)) 2114 return(EINVAL); 2115 switch (opt->ip6po_rthdr->ip6r_type) { 2116 case IPV6_RTHDR_TYPE_0: 2117 if (opt->ip6po_rthdr->ip6r_segleft == 0) 2118 return(EINVAL); 2119 break; 2120 default: 2121 return(EINVAL); 2122 } 2123 break; 2124 2125 default: 2126 return(ENOPROTOOPT); 2127 } 2128 } 2129 2130 return(0); 2131 } 2132 2133 /* 2134 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2135 * packet to the input queue of a specified interface. Note that this 2136 * calls the output routine of the loopback "driver", but with an interface 2137 * pointer that might NOT be &loif -- easier than replicating that code here. 2138 */ 2139 void 2140 ip6_mloopback(ifp, m, dst) 2141 struct ifnet *ifp; 2142 struct mbuf *m; 2143 struct sockaddr_in6 *dst; 2144 { 2145 struct mbuf *copym; 2146 struct ip6_hdr *ip6; 2147 2148 copym = m_copy(m, 0, M_COPYALL); 2149 if (copym == NULL) 2150 return; 2151 2152 /* 2153 * Make sure to deep-copy IPv6 header portion in case the data 2154 * is in an mbuf cluster, so that we can safely override the IPv6 2155 * header portion later. 2156 */ 2157 if ((copym->m_flags & M_EXT) != 0 || 2158 copym->m_len < sizeof(struct ip6_hdr)) { 2159 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2160 if (copym == NULL) 2161 return; 2162 } 2163 2164 #ifdef DIAGNOSTIC 2165 if (copym->m_len < sizeof(*ip6)) { 2166 m_freem(copym); 2167 return; 2168 } 2169 #endif 2170 2171 ip6 = mtod(copym, struct ip6_hdr *); 2172 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 2173 ip6->ip6_src.s6_addr16[1] = 0; 2174 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 2175 ip6->ip6_dst.s6_addr16[1] = 0; 2176 2177 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL); 2178 } 2179 2180 /* 2181 * Chop IPv6 header off from the payload. 2182 */ 2183 static int 2184 ip6_splithdr(m, exthdrs) 2185 struct mbuf *m; 2186 struct ip6_exthdrs *exthdrs; 2187 { 2188 struct mbuf *mh; 2189 struct ip6_hdr *ip6; 2190 2191 ip6 = mtod(m, struct ip6_hdr *); 2192 if (m->m_len > sizeof(*ip6)) { 2193 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2194 if (mh == 0) { 2195 m_freem(m); 2196 return ENOBUFS; 2197 } 2198 M_COPY_PKTHDR(mh, m); 2199 MH_ALIGN(mh, sizeof(*ip6)); 2200 m->m_flags &= ~M_PKTHDR; 2201 m->m_len -= sizeof(*ip6); 2202 m->m_data += sizeof(*ip6); 2203 mh->m_next = m; 2204 m = mh; 2205 m->m_len = sizeof(*ip6); 2206 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2207 } 2208 exthdrs->ip6e_ip6 = m; 2209 return 0; 2210 } 2211 2212 /* 2213 * Compute IPv6 extension header length. 2214 */ 2215 int 2216 ip6_optlen(in6p) 2217 struct in6pcb *in6p; 2218 { 2219 int len; 2220 2221 if (!in6p->in6p_outputopts) 2222 return 0; 2223 2224 len = 0; 2225 #define elen(x) \ 2226 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2227 2228 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2229 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2230 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2231 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2232 return len; 2233 #undef elen 2234 } 2235