xref: /netbsd-src/sys/netinet6/ip6_output.c (revision e5548b402ae4c44fb816de42c7bba9581ce23ef5)
1 /*	$NetBSD: ip6_output.c,v 1.93 2005/12/11 12:25:02 christos Exp $	*/
2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.93 2005/12/11 12:25:02 christos Exp $");
66 
67 #include "opt_inet.h"
68 #include "opt_ipsec.h"
69 #include "opt_pfil_hooks.h"
70 
71 #include <sys/param.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/errno.h>
75 #include <sys/protosw.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80 
81 #include <net/if.h>
82 #include <net/route.h>
83 #ifdef PFIL_HOOKS
84 #include <net/pfil.h>
85 #endif
86 
87 #include <netinet/in.h>
88 #include <netinet/in_var.h>
89 #include <netinet/ip6.h>
90 #include <netinet/icmp6.h>
91 #include <netinet/in_offload.h>
92 #include <netinet6/ip6_var.h>
93 #include <netinet6/in6_pcb.h>
94 #include <netinet6/nd6.h>
95 #include <netinet6/ip6protosw.h>
96 
97 #ifdef IPSEC
98 #include <netinet6/ipsec.h>
99 #include <netkey/key.h>
100 #endif /* IPSEC */
101 
102 #include <net/net_osdep.h>
103 
104 #ifdef PFIL_HOOKS
105 extern struct pfil_head inet6_pfil_hook;	/* XXX */
106 #endif
107 
108 struct ip6_exthdrs {
109 	struct mbuf *ip6e_ip6;
110 	struct mbuf *ip6e_hbh;
111 	struct mbuf *ip6e_dest1;
112 	struct mbuf *ip6e_rthdr;
113 	struct mbuf *ip6e_dest2;
114 };
115 
116 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
117 	struct socket *));
118 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
119 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
120 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
121 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
122 	struct ip6_frag **));
123 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
124 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
125 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
126 	struct ifnet *, struct in6_addr *, u_long *, int *));
127 
128 #define	IN6_NEED_CHECKSUM(ifp, csum_flags) \
129 	(__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
130 	(((csum_flags) & M_CSUM_UDPv6) != 0 && udp_do_loopback_cksum) || \
131 	(((csum_flags) & M_CSUM_TCPv6) != 0 && tcp_do_loopback_cksum)))
132 
133 /*
134  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
135  * header (with pri, len, nxt, hlim, src, dst).
136  * This function may modify ver and hlim only.
137  * The mbuf chain containing the packet will be freed.
138  * The mbuf opt, if present, will not be freed.
139  *
140  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
141  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
142  * which is rt_rmx.rmx_mtu.
143  */
144 int
145 ip6_output(m0, opt, ro, flags, im6o, so, ifpp)
146 	struct mbuf *m0;
147 	struct ip6_pktopts *opt;
148 	struct route_in6 *ro;
149 	int flags;
150 	struct ip6_moptions *im6o;
151 	struct socket *so;
152 	struct ifnet **ifpp;		/* XXX: just for statistics */
153 {
154 	struct ip6_hdr *ip6, *mhip6;
155 	struct ifnet *ifp, *origifp;
156 	struct mbuf *m = m0;
157 	int hlen, tlen, len, off;
158 	struct route_in6 ip6route;
159 	struct sockaddr_in6 *dst;
160 	int error = 0;
161 	u_long mtu;
162 	int alwaysfrag, dontfrag;
163 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
164 	struct ip6_exthdrs exthdrs;
165 	struct in6_addr finaldst;
166 	struct route_in6 *ro_pmtu = NULL;
167 	int hdrsplit = 0;
168 	int needipsec = 0;
169 #ifdef IPSEC
170 	int needipsectun = 0;
171 	struct secpolicy *sp = NULL;
172 
173 	ip6 = mtod(m, struct ip6_hdr *);
174 #endif /* IPSEC */
175 
176 	M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
177 
178 #define MAKE_EXTHDR(hp, mp)						\
179     do {								\
180 	if (hp) {							\
181 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
182 		error = ip6_copyexthdr((mp), (caddr_t)(hp), 		\
183 		    ((eh)->ip6e_len + 1) << 3);				\
184 		if (error)						\
185 			goto freehdrs;					\
186 	}								\
187     } while (/*CONSTCOND*/ 0)
188 
189 	bzero(&exthdrs, sizeof(exthdrs));
190 	if (opt) {
191 		/* Hop-by-Hop options header */
192 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
193 		/* Destination options header(1st part) */
194 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
195 		/* Routing header */
196 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
197 		/* Destination options header(2nd part) */
198 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
199 	}
200 
201 #ifdef IPSEC
202 	if ((flags & IPV6_FORWARDING) != 0) {
203 		needipsec = 0;
204 		goto skippolicycheck;
205 	}
206 
207 	/* get a security policy for this packet */
208 	if (so == NULL)
209 		sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
210 	else {
211 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
212 					 IPSEC_DIR_OUTBOUND)) {
213 			needipsec = 0;
214 			goto skippolicycheck;
215 		}
216 		sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
217 	}
218 
219 	if (sp == NULL) {
220 		ipsec6stat.out_inval++;
221 		goto freehdrs;
222 	}
223 
224 	error = 0;
225 
226 	/* check policy */
227 	switch (sp->policy) {
228 	case IPSEC_POLICY_DISCARD:
229 		/*
230 		 * This packet is just discarded.
231 		 */
232 		ipsec6stat.out_polvio++;
233 		goto freehdrs;
234 
235 	case IPSEC_POLICY_BYPASS:
236 	case IPSEC_POLICY_NONE:
237 		/* no need to do IPsec. */
238 		needipsec = 0;
239 		break;
240 
241 	case IPSEC_POLICY_IPSEC:
242 		if (sp->req == NULL) {
243 			/* XXX should be panic ? */
244 			printf("ip6_output: No IPsec request specified.\n");
245 			error = EINVAL;
246 			goto freehdrs;
247 		}
248 		needipsec = 1;
249 		break;
250 
251 	case IPSEC_POLICY_ENTRUST:
252 	default:
253 		printf("ip6_output: Invalid policy found. %d\n", sp->policy);
254 	}
255 
256   skippolicycheck:;
257 #endif /* IPSEC */
258 
259 	if (needipsec &&
260 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
261 		in6_delayed_cksum(m);
262 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
263 	}
264 
265 	/*
266 	 * Calculate the total length of the extension header chain.
267 	 * Keep the length of the unfragmentable part for fragmentation.
268 	 */
269 	optlen = 0;
270 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
271 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
272 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
273 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
274 	/* NOTE: we don't add AH/ESP length here. do that later. */
275 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
276 
277 	/*
278 	 * If we need IPsec, or there is at least one extension header,
279 	 * separate IP6 header from the payload.
280 	 */
281 	if ((needipsec || optlen) && !hdrsplit) {
282 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
283 			m = NULL;
284 			goto freehdrs;
285 		}
286 		m = exthdrs.ip6e_ip6;
287 		hdrsplit++;
288 	}
289 
290 	/* adjust pointer */
291 	ip6 = mtod(m, struct ip6_hdr *);
292 
293 	/* adjust mbuf packet header length */
294 	m->m_pkthdr.len += optlen;
295 	plen = m->m_pkthdr.len - sizeof(*ip6);
296 
297 	/* If this is a jumbo payload, insert a jumbo payload option. */
298 	if (plen > IPV6_MAXPACKET) {
299 		if (!hdrsplit) {
300 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
301 				m = NULL;
302 				goto freehdrs;
303 			}
304 			m = exthdrs.ip6e_ip6;
305 			hdrsplit++;
306 		}
307 		/* adjust pointer */
308 		ip6 = mtod(m, struct ip6_hdr *);
309 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
310 			goto freehdrs;
311 		optlen += 8; /* XXX JUMBOOPTLEN */
312 		ip6->ip6_plen = 0;
313 	} else
314 		ip6->ip6_plen = htons(plen);
315 
316 	/*
317 	 * Concatenate headers and fill in next header fields.
318 	 * Here we have, on "m"
319 	 *	IPv6 payload
320 	 * and we insert headers accordingly.  Finally, we should be getting:
321 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
322 	 *
323 	 * during the header composing process, "m" points to IPv6 header.
324 	 * "mprev" points to an extension header prior to esp.
325 	 */
326 	{
327 		u_char *nexthdrp = &ip6->ip6_nxt;
328 		struct mbuf *mprev = m;
329 
330 		/*
331 		 * we treat dest2 specially.  this makes IPsec processing
332 		 * much easier.  the goal here is to make mprev point the
333 		 * mbuf prior to dest2.
334 		 *
335 		 * result: IPv6 dest2 payload
336 		 * m and mprev will point to IPv6 header.
337 		 */
338 		if (exthdrs.ip6e_dest2) {
339 			if (!hdrsplit)
340 				panic("assumption failed: hdr not split");
341 			exthdrs.ip6e_dest2->m_next = m->m_next;
342 			m->m_next = exthdrs.ip6e_dest2;
343 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
344 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
345 		}
346 
347 #define MAKE_CHAIN(m, mp, p, i)\
348     do {\
349 	if (m) {\
350 		if (!hdrsplit) \
351 			panic("assumption failed: hdr not split"); \
352 		*mtod((m), u_char *) = *(p);\
353 		*(p) = (i);\
354 		p = mtod((m), u_char *);\
355 		(m)->m_next = (mp)->m_next;\
356 		(mp)->m_next = (m);\
357 		(mp) = (m);\
358 	}\
359     } while (/*CONSTCOND*/ 0)
360 		/*
361 		 * result: IPv6 hbh dest1 rthdr dest2 payload
362 		 * m will point to IPv6 header.  mprev will point to the
363 		 * extension header prior to dest2 (rthdr in the above case).
364 		 */
365 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
366 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
367 		    IPPROTO_DSTOPTS);
368 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
369 		    IPPROTO_ROUTING);
370 
371 		M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
372 		    sizeof(struct ip6_hdr) + optlen);
373 
374 #ifdef IPSEC
375 		if (!needipsec)
376 			goto skip_ipsec2;
377 
378 		/*
379 		 * pointers after IPsec headers are not valid any more.
380 		 * other pointers need a great care too.
381 		 * (IPsec routines should not mangle mbufs prior to AH/ESP)
382 		 */
383 		exthdrs.ip6e_dest2 = NULL;
384 
385 	    {
386 		struct ip6_rthdr *rh = NULL;
387 		int segleft_org = 0;
388 		struct ipsec_output_state state;
389 
390 		if (exthdrs.ip6e_rthdr) {
391 			rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
392 			segleft_org = rh->ip6r_segleft;
393 			rh->ip6r_segleft = 0;
394 		}
395 
396 		bzero(&state, sizeof(state));
397 		state.m = m;
398 		error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
399 		    &needipsectun);
400 		m = state.m;
401 		if (error) {
402 			/* mbuf is already reclaimed in ipsec6_output_trans. */
403 			m = NULL;
404 			switch (error) {
405 			case EHOSTUNREACH:
406 			case ENETUNREACH:
407 			case EMSGSIZE:
408 			case ENOBUFS:
409 			case ENOMEM:
410 				break;
411 			default:
412 				printf("ip6_output (ipsec): error code %d\n", error);
413 				/* FALLTHROUGH */
414 			case ENOENT:
415 				/* don't show these error codes to the user */
416 				error = 0;
417 				break;
418 			}
419 			goto bad;
420 		}
421 		if (exthdrs.ip6e_rthdr) {
422 			/* ah6_output doesn't modify mbuf chain */
423 			rh->ip6r_segleft = segleft_org;
424 		}
425 	    }
426 skip_ipsec2:;
427 #endif
428 	}
429 
430 	/*
431 	 * If there is a routing header, replace destination address field
432 	 * with the first hop of the routing header.
433 	 */
434 	if (exthdrs.ip6e_rthdr) {
435 		struct ip6_rthdr *rh;
436 		struct ip6_rthdr0 *rh0;
437 		struct in6_addr *addr;
438 
439 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
440 		    struct ip6_rthdr *));
441 		finaldst = ip6->ip6_dst;
442 		switch (rh->ip6r_type) {
443 		case IPV6_RTHDR_TYPE_0:
444 			 rh0 = (struct ip6_rthdr0 *)rh;
445 			 addr = (struct in6_addr *)(rh0 + 1);
446 			 ip6->ip6_dst = addr[0];
447 			 (void)memmove(&addr[0], &addr[1],
448 			     sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1));
449 			 addr[rh0->ip6r0_segleft - 1] = finaldst;
450 			 break;
451 		default:	/* is it possible? */
452 			 error = EINVAL;
453 			 goto bad;
454 		}
455 	}
456 
457 	/* Source address validation */
458 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
459 	    (flags & IPV6_UNSPECSRC) == 0) {
460 		error = EOPNOTSUPP;
461 		ip6stat.ip6s_badscope++;
462 		goto bad;
463 	}
464 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
465 		error = EOPNOTSUPP;
466 		ip6stat.ip6s_badscope++;
467 		goto bad;
468 	}
469 
470 	ip6stat.ip6s_localout++;
471 
472 	/*
473 	 * Route packet.
474 	 */
475 	/* initialize cached route */
476 	if (ro == 0) {
477 		ro = &ip6route;
478 		bzero((caddr_t)ro, sizeof(*ro));
479 	}
480 	ro_pmtu = ro;
481 	if (opt && opt->ip6po_rthdr)
482 		ro = &opt->ip6po_route;
483 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
484 	/*
485 	 * If there is a cached route,
486 	 * check that it is to the same destination
487 	 * and is still up. If not, free it and try again.
488 	 */
489 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
490 	    dst->sin6_family != AF_INET6 ||
491 	    !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
492 		RTFREE(ro->ro_rt);
493 		ro->ro_rt = (struct rtentry *)0;
494 	}
495 	if (ro->ro_rt == 0) {
496 		bzero(dst, sizeof(*dst));
497 		dst->sin6_family = AF_INET6;
498 		dst->sin6_len = sizeof(struct sockaddr_in6);
499 		dst->sin6_addr = ip6->ip6_dst;
500 	}
501 #ifdef IPSEC
502 	if (needipsec && needipsectun) {
503 		struct ipsec_output_state state;
504 
505 		/*
506 		 * All the extension headers will become inaccessible
507 		 * (since they can be encrypted).
508 		 * Don't panic, we need no more updates to extension headers
509 		 * on inner IPv6 packet (since they are now encapsulated).
510 		 *
511 		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
512 		 */
513 		bzero(&exthdrs, sizeof(exthdrs));
514 		exthdrs.ip6e_ip6 = m;
515 
516 		bzero(&state, sizeof(state));
517 		state.m = m;
518 		state.ro = (struct route *)ro;
519 		state.dst = (struct sockaddr *)dst;
520 
521 		error = ipsec6_output_tunnel(&state, sp, flags);
522 
523 		m = state.m;
524 		ro_pmtu = ro = (struct route_in6 *)state.ro;
525 		dst = (struct sockaddr_in6 *)state.dst;
526 		if (error) {
527 			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
528 			m0 = m = NULL;
529 			m = NULL;
530 			switch (error) {
531 			case EHOSTUNREACH:
532 			case ENETUNREACH:
533 			case EMSGSIZE:
534 			case ENOBUFS:
535 			case ENOMEM:
536 				break;
537 			default:
538 				printf("ip6_output (ipsec): error code %d\n", error);
539 				/* FALLTHROUGH */
540 			case ENOENT:
541 				/* don't show these error codes to the user */
542 				error = 0;
543 				break;
544 			}
545 			goto bad;
546 		}
547 
548 		exthdrs.ip6e_ip6 = m;
549 	}
550 #endif /* IPSEC */
551 
552 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
553 		/* Unicast */
554 
555 #define ifatoia6(ifa)	((struct in6_ifaddr *)(ifa))
556 #define sin6tosa(sin6)	((struct sockaddr *)(sin6))
557 		/* xxx
558 		 * interface selection comes here
559 		 * if an interface is specified from an upper layer,
560 		 * ifp must point it.
561 		 */
562 		if (ro->ro_rt == 0) {
563 			/*
564 			 * non-bsdi always clone routes, if parent is
565 			 * PRF_CLONING.
566 			 */
567 			rtalloc((struct route *)ro);
568 		}
569 		if (ro->ro_rt == 0) {
570 			ip6stat.ip6s_noroute++;
571 			error = EHOSTUNREACH;
572 			/* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
573 			goto bad;
574 		}
575 		ifp = ro->ro_rt->rt_ifp;
576 		ro->ro_rt->rt_use++;
577 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
578 			dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
579 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
580 
581 		in6_ifstat_inc(ifp, ifs6_out_request);
582 
583 		/*
584 		 * Check if the outgoing interface conflicts with
585 		 * the interface specified by ifi6_ifindex (if specified).
586 		 * Note that loopback interface is always okay.
587 		 * (this may happen when we are sending a packet to one of
588 		 *  our own addresses.)
589 		 */
590 		if (opt && opt->ip6po_pktinfo &&
591 		    opt->ip6po_pktinfo->ipi6_ifindex) {
592 			if (!(ifp->if_flags & IFF_LOOPBACK) &&
593 			    ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
594 				ip6stat.ip6s_noroute++;
595 				in6_ifstat_inc(ifp, ifs6_out_discard);
596 				error = EHOSTUNREACH;
597 				goto bad;
598 			}
599 		}
600 
601 		if (opt && opt->ip6po_hlim != -1)
602 			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
603 	} else {
604 		/* Multicast */
605 		struct	in6_multi *in6m;
606 
607 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
608 
609 		/*
610 		 * See if the caller provided any multicast options
611 		 */
612 		ifp = NULL;
613 		if (im6o != NULL) {
614 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
615 			if (im6o->im6o_multicast_ifp != NULL)
616 				ifp = im6o->im6o_multicast_ifp;
617 		} else
618 			ip6->ip6_hlim = ip6_defmcasthlim;
619 
620 		/*
621 		 * See if the caller provided the outgoing interface
622 		 * as an ancillary data.
623 		 * Boundary check for ifindex is assumed to be already done.
624 		 */
625 		if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
626 			ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
627 
628 		/*
629 		 * If the destination is a node-local scope multicast,
630 		 * the packet should be loop-backed only.
631 		 */
632 		if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
633 			/*
634 			 * If the outgoing interface is already specified,
635 			 * it should be a loopback interface.
636 			 */
637 			if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
638 				ip6stat.ip6s_badscope++;
639 				error = ENETUNREACH; /* XXX: better error? */
640 				/* XXX correct ifp? */
641 				in6_ifstat_inc(ifp, ifs6_out_discard);
642 				goto bad;
643 			} else
644 				ifp = lo0ifp;
645 		}
646 
647 		if (opt && opt->ip6po_hlim != -1)
648 			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
649 
650 		/*
651 		 * If caller did not provide an interface lookup a
652 		 * default in the routing table.  This is either a
653 		 * default for the speicfied group (i.e. a host
654 		 * route), or a multicast default (a route for the
655 		 * ``net'' ff00::/8).
656 		 */
657 		if (ifp == NULL) {
658 			if (ro->ro_rt == 0) {
659 				ro->ro_rt = rtalloc1((struct sockaddr *)
660 				    &ro->ro_dst, 0);
661 			}
662 			if (ro->ro_rt == 0) {
663 				ip6stat.ip6s_noroute++;
664 				error = EHOSTUNREACH;
665 				/* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
666 				goto bad;
667 			}
668 			ifp = ro->ro_rt->rt_ifp;
669 			ro->ro_rt->rt_use++;
670 		}
671 
672 		if ((flags & IPV6_FORWARDING) == 0)
673 			in6_ifstat_inc(ifp, ifs6_out_request);
674 		in6_ifstat_inc(ifp, ifs6_out_mcast);
675 
676 		/*
677 		 * Confirm that the outgoing interface supports multicast.
678 		 */
679 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
680 			ip6stat.ip6s_noroute++;
681 			in6_ifstat_inc(ifp, ifs6_out_discard);
682 			error = ENETUNREACH;
683 			goto bad;
684 		}
685 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
686 		if (in6m != NULL &&
687 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
688 			/*
689 			 * If we belong to the destination multicast group
690 			 * on the outgoing interface, and the caller did not
691 			 * forbid loopback, loop back a copy.
692 			 */
693 			ip6_mloopback(ifp, m, dst);
694 		} else {
695 			/*
696 			 * If we are acting as a multicast router, perform
697 			 * multicast forwarding as if the packet had just
698 			 * arrived on the interface to which we are about
699 			 * to send.  The multicast forwarding function
700 			 * recursively calls this function, using the
701 			 * IPV6_FORWARDING flag to prevent infinite recursion.
702 			 *
703 			 * Multicasts that are looped back by ip6_mloopback(),
704 			 * above, will be forwarded by the ip6_input() routine,
705 			 * if necessary.
706 			 */
707 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
708 				if (ip6_mforward(ip6, ifp, m) != 0) {
709 					m_freem(m);
710 					goto done;
711 				}
712 			}
713 		}
714 		/*
715 		 * Multicasts with a hoplimit of zero may be looped back,
716 		 * above, but must not be transmitted on a network.
717 		 * Also, multicasts addressed to the loopback interface
718 		 * are not sent -- the above call to ip6_mloopback() will
719 		 * loop back a copy if this host actually belongs to the
720 		 * destination group on the loopback interface.
721 		 */
722 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
723 			m_freem(m);
724 			goto done;
725 		}
726 	}
727 
728 	/*
729 	 * Fill the outgoing inteface to tell the upper layer
730 	 * to increment per-interface statistics.
731 	 */
732 	if (ifpp)
733 		*ifpp = ifp;
734 
735 	/* Determine path MTU. */
736 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
737 	    &alwaysfrag)) != 0)
738 		goto bad;
739 #ifdef IPSEC
740 	if (needipsectun)
741 		mtu = IPV6_MMTU;
742 #endif
743 
744 	/*
745 	 * The caller of this function may specify to use the minimum MTU
746 	 * in some cases.
747 	 */
748 	if (mtu > IPV6_MMTU) {
749 		if ((flags & IPV6_MINMTU))
750 			mtu = IPV6_MMTU;
751 	}
752 
753 	/* Fake scoped addresses */
754 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
755 		/*
756 		 * If source or destination address is a scoped address, and
757 		 * the packet is going to be sent to a loopback interface,
758 		 * we should keep the original interface.
759 		 */
760 
761 		/*
762 		 * XXX: this is a very experimental and temporary solution.
763 		 * We eventually have sockaddr_in6 and use the sin6_scope_id
764 		 * field of the structure here.
765 		 * We rely on the consistency between two scope zone ids
766 		 * of source add destination, which should already be assured
767 		 * Larger scopes than link will be supported in the near
768 		 * future.
769 		 */
770 		origifp = NULL;
771 		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
772 			origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
773 		else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
774 			origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
775 		/*
776 		 * XXX: origifp can be NULL even in those two cases above.
777 		 * For example, if we remove the (only) link-local address
778 		 * from the loopback interface, and try to send a link-local
779 		 * address without link-id information.  Then the source
780 		 * address is ::1, and the destination address is the
781 		 * link-local address with its s6_addr16[1] being zero.
782 		 * What is worse, if the packet goes to the loopback interface
783 		 * by a default rejected route, the null pointer would be
784 		 * passed to looutput, and the kernel would hang.
785 		 * The following last resort would prevent such disaster.
786 		 */
787 		if (origifp == NULL)
788 			origifp = ifp;
789 	} else
790 		origifp = ifp;
791 	if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
792 		ip6->ip6_src.s6_addr16[1] = 0;
793 	if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
794 		ip6->ip6_dst.s6_addr16[1] = 0;
795 
796 	/*
797 	 * If the outgoing packet contains a hop-by-hop options header,
798 	 * it must be examined and processed even by the source node.
799 	 * (RFC 2460, section 4.)
800 	 */
801 	if (exthdrs.ip6e_hbh) {
802 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
803 		u_int32_t dummy1; /* XXX unused */
804 		u_int32_t dummy2; /* XXX unused */
805 
806 		/*
807 		 *  XXX: if we have to send an ICMPv6 error to the sender,
808 		 *       we need the M_LOOP flag since icmp6_error() expects
809 		 *       the IPv6 and the hop-by-hop options header are
810 		 *       continuous unless the flag is set.
811 		 */
812 		m->m_flags |= M_LOOP;
813 		m->m_pkthdr.rcvif = ifp;
814 		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
815 		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
816 		    &dummy1, &dummy2) < 0) {
817 			/* m was already freed at this point */
818 			error = EINVAL;/* better error? */
819 			goto done;
820 		}
821 		m->m_flags &= ~M_LOOP; /* XXX */
822 		m->m_pkthdr.rcvif = NULL;
823 	}
824 
825 #ifdef PFIL_HOOKS
826 	/*
827 	 * Run through list of hooks for output packets.
828 	 */
829 	if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
830 		goto done;
831 	if (m == NULL)
832 		goto done;
833 	ip6 = mtod(m, struct ip6_hdr *);
834 #endif /* PFIL_HOOKS */
835 	/*
836 	 * Send the packet to the outgoing interface.
837 	 * If necessary, do IPv6 fragmentation before sending.
838 	 *
839 	 * the logic here is rather complex:
840 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
841 	 * 1-a:	send as is if tlen <= path mtu
842 	 * 1-b:	fragment if tlen > path mtu
843 	 *
844 	 * 2: if user asks us not to fragment (dontfrag == 1)
845 	 * 2-a:	send as is if tlen <= interface mtu
846 	 * 2-b:	error if tlen > interface mtu
847 	 *
848 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
849 	 *	always fragment
850 	 *
851 	 * 4: if dontfrag == 1 && alwaysfrag == 1
852 	 *	error, as we cannot handle this conflicting request
853 	 */
854 	tlen = m->m_pkthdr.len;
855 
856 	dontfrag = 0;
857 	if (dontfrag && alwaysfrag) {	/* case 4 */
858 		/* conflicting request - can't transmit */
859 		error = EMSGSIZE;
860 		goto bad;
861 	}
862 	if (dontfrag && tlen > IN6_LINKMTU(ifp)) {	/* case 2-b */
863 		/*
864 		 * Even if the DONTFRAG option is specified, we cannot send the
865 		 * packet when the data length is larger than the MTU of the
866 		 * outgoing interface.
867 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
868 		 * well as returning an error code (the latter is not described
869 		 * in the API spec.)
870 		 */
871 		u_int32_t mtu32;
872 		struct ip6ctlparam ip6cp;
873 
874 		mtu32 = (u_int32_t)mtu;
875 		bzero(&ip6cp, sizeof(ip6cp));
876 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
877 		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
878 		    (void *)&ip6cp);
879 
880 		error = EMSGSIZE;
881 		goto bad;
882 	}
883 
884 	/*
885 	 * transmit packet without fragmentation
886 	 */
887 	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
888 		struct in6_ifaddr *ia6;
889 		int sw_csum;
890 
891 		ip6 = mtod(m, struct ip6_hdr *);
892 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
893 		if (ia6) {
894 			/* Record statistics for this interface address. */
895 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
896 		}
897 #ifdef IPSEC
898 		/* clean ipsec history once it goes out of the node */
899 		ipsec_delaux(m);
900 #endif
901 
902 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
903 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
904 			if (IN6_NEED_CHECKSUM(ifp,
905 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
906 				in6_delayed_cksum(m);
907 			}
908 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
909 		}
910 
911 		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
912 		goto done;
913 	}
914 
915 	/*
916 	 * try to fragment the packet.  case 1-b and 3
917 	 */
918 	if (mtu < IPV6_MMTU) {
919 		/* path MTU cannot be less than IPV6_MMTU */
920 		error = EMSGSIZE;
921 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
922 		goto bad;
923 	} else if (ip6->ip6_plen == 0) {
924 		/* jumbo payload cannot be fragmented */
925 		error = EMSGSIZE;
926 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
927 		goto bad;
928 	} else {
929 		struct mbuf **mnext, *m_frgpart;
930 		struct ip6_frag *ip6f;
931 		u_int32_t id = htonl(ip6_randomid());
932 		u_char nextproto;
933 		struct ip6ctlparam ip6cp;
934 		u_int32_t mtu32;
935 
936 		/*
937 		 * Too large for the destination or interface;
938 		 * fragment if possible.
939 		 * Must be able to put at least 8 bytes per fragment.
940 		 */
941 		hlen = unfragpartlen;
942 		if (mtu > IPV6_MAXPACKET)
943 			mtu = IPV6_MAXPACKET;
944 
945 		/* Notify a proper path MTU to applications. */
946 		mtu32 = (u_int32_t)mtu;
947 		bzero(&ip6cp, sizeof(ip6cp));
948 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
949 		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
950 		    (void *)&ip6cp);
951 
952 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
953 		if (len < 8) {
954 			error = EMSGSIZE;
955 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
956 			goto bad;
957 		}
958 
959 		mnext = &m->m_nextpkt;
960 
961 		/*
962 		 * Change the next header field of the last header in the
963 		 * unfragmentable part.
964 		 */
965 		if (exthdrs.ip6e_rthdr) {
966 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
967 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
968 		} else if (exthdrs.ip6e_dest1) {
969 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
970 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
971 		} else if (exthdrs.ip6e_hbh) {
972 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
973 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
974 		} else {
975 			nextproto = ip6->ip6_nxt;
976 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
977 		}
978 
979 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
980 		    != 0) {
981 			if (IN6_NEED_CHECKSUM(ifp,
982 			    m->m_pkthdr.csum_flags &
983 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
984 				in6_delayed_cksum(m);
985 			}
986 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
987 		}
988 
989 		/*
990 		 * Loop through length of segment after first fragment,
991 		 * make new header and copy data of each part and link onto
992 		 * chain.
993 		 */
994 		m0 = m;
995 		for (off = hlen; off < tlen; off += len) {
996 			struct mbuf *mlast;
997 
998 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
999 			if (!m) {
1000 				error = ENOBUFS;
1001 				ip6stat.ip6s_odropped++;
1002 				goto sendorfree;
1003 			}
1004 			m->m_pkthdr.rcvif = NULL;
1005 			m->m_flags = m0->m_flags & M_COPYFLAGS;
1006 			*mnext = m;
1007 			mnext = &m->m_nextpkt;
1008 			m->m_data += max_linkhdr;
1009 			mhip6 = mtod(m, struct ip6_hdr *);
1010 			*mhip6 = *ip6;
1011 			m->m_len = sizeof(*mhip6);
1012 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1013 			if (error) {
1014 				ip6stat.ip6s_odropped++;
1015 				goto sendorfree;
1016 			}
1017 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
1018 			if (off + len >= tlen)
1019 				len = tlen - off;
1020 			else
1021 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1022 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
1023 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1024 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1025 				error = ENOBUFS;
1026 				ip6stat.ip6s_odropped++;
1027 				goto sendorfree;
1028 			}
1029 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
1030 				;
1031 			mlast->m_next = m_frgpart;
1032 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1033 			m->m_pkthdr.rcvif = (struct ifnet *)0;
1034 			ip6f->ip6f_reserved = 0;
1035 			ip6f->ip6f_ident = id;
1036 			ip6f->ip6f_nxt = nextproto;
1037 			ip6stat.ip6s_ofragments++;
1038 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1039 		}
1040 
1041 		in6_ifstat_inc(ifp, ifs6_out_fragok);
1042 	}
1043 
1044 	/*
1045 	 * Remove leading garbages.
1046 	 */
1047 sendorfree:
1048 	m = m0->m_nextpkt;
1049 	m0->m_nextpkt = 0;
1050 	m_freem(m0);
1051 	for (m0 = m; m; m = m0) {
1052 		m0 = m->m_nextpkt;
1053 		m->m_nextpkt = 0;
1054 		if (error == 0) {
1055 			struct in6_ifaddr *ia6;
1056 			ip6 = mtod(m, struct ip6_hdr *);
1057 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1058 			if (ia6) {
1059 				/*
1060 				 * Record statistics for this interface
1061 				 * address.
1062 				 */
1063 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
1064 				    m->m_pkthdr.len;
1065 			}
1066 #ifdef IPSEC
1067 			/* clean ipsec history once it goes out of the node */
1068 			ipsec_delaux(m);
1069 #endif
1070 			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1071 		} else
1072 			m_freem(m);
1073 	}
1074 
1075 	if (error == 0)
1076 		ip6stat.ip6s_fragmented++;
1077 
1078 done:
1079 	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1080 		RTFREE(ro->ro_rt);
1081 	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1082 		RTFREE(ro_pmtu->ro_rt);
1083 	}
1084 
1085 #ifdef IPSEC
1086 	if (sp != NULL)
1087 		key_freesp(sp);
1088 #endif /* IPSEC */
1089 
1090 	return (error);
1091 
1092 freehdrs:
1093 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
1094 	m_freem(exthdrs.ip6e_dest1);
1095 	m_freem(exthdrs.ip6e_rthdr);
1096 	m_freem(exthdrs.ip6e_dest2);
1097 	/* FALLTHROUGH */
1098 bad:
1099 	m_freem(m);
1100 	goto done;
1101 }
1102 
1103 static int
1104 ip6_copyexthdr(mp, hdr, hlen)
1105 	struct mbuf **mp;
1106 	caddr_t hdr;
1107 	int hlen;
1108 {
1109 	struct mbuf *m;
1110 
1111 	if (hlen > MCLBYTES)
1112 		return (ENOBUFS); /* XXX */
1113 
1114 	MGET(m, M_DONTWAIT, MT_DATA);
1115 	if (!m)
1116 		return (ENOBUFS);
1117 
1118 	if (hlen > MLEN) {
1119 		MCLGET(m, M_DONTWAIT);
1120 		if ((m->m_flags & M_EXT) == 0) {
1121 			m_free(m);
1122 			return (ENOBUFS);
1123 		}
1124 	}
1125 	m->m_len = hlen;
1126 	if (hdr)
1127 		bcopy(hdr, mtod(m, caddr_t), hlen);
1128 
1129 	*mp = m;
1130 	return (0);
1131 }
1132 
1133 /*
1134  * Process a delayed payload checksum calculation.
1135  */
1136 void
1137 in6_delayed_cksum(struct mbuf *m)
1138 {
1139 	uint16_t csum, offset;
1140 
1141 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1142 	KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1143 	KASSERT((m->m_pkthdr.csum_flags
1144 	    & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1145 
1146 	offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1147 	csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1148 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1149 		csum = 0xffff;
1150 	}
1151 
1152 	offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1153 	if ((offset + sizeof(csum)) > m->m_len) {
1154 		m_copyback(m, offset, sizeof(csum), &csum);
1155 	} else {
1156 		*(uint16_t *)(mtod(m, caddr_t) + offset) = csum;
1157 	}
1158 }
1159 
1160 /*
1161  * Insert jumbo payload option.
1162  */
1163 static int
1164 ip6_insert_jumboopt(exthdrs, plen)
1165 	struct ip6_exthdrs *exthdrs;
1166 	u_int32_t plen;
1167 {
1168 	struct mbuf *mopt;
1169 	u_int8_t *optbuf;
1170 	u_int32_t v;
1171 
1172 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1173 
1174 	/*
1175 	 * If there is no hop-by-hop options header, allocate new one.
1176 	 * If there is one but it doesn't have enough space to store the
1177 	 * jumbo payload option, allocate a cluster to store the whole options.
1178 	 * Otherwise, use it to store the options.
1179 	 */
1180 	if (exthdrs->ip6e_hbh == 0) {
1181 		MGET(mopt, M_DONTWAIT, MT_DATA);
1182 		if (mopt == 0)
1183 			return (ENOBUFS);
1184 		mopt->m_len = JUMBOOPTLEN;
1185 		optbuf = mtod(mopt, u_int8_t *);
1186 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1187 		exthdrs->ip6e_hbh = mopt;
1188 	} else {
1189 		struct ip6_hbh *hbh;
1190 
1191 		mopt = exthdrs->ip6e_hbh;
1192 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1193 			/*
1194 			 * XXX assumption:
1195 			 * - exthdrs->ip6e_hbh is not referenced from places
1196 			 *   other than exthdrs.
1197 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1198 			 */
1199 			int oldoptlen = mopt->m_len;
1200 			struct mbuf *n;
1201 
1202 			/*
1203 			 * XXX: give up if the whole (new) hbh header does
1204 			 * not fit even in an mbuf cluster.
1205 			 */
1206 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1207 				return (ENOBUFS);
1208 
1209 			/*
1210 			 * As a consequence, we must always prepare a cluster
1211 			 * at this point.
1212 			 */
1213 			MGET(n, M_DONTWAIT, MT_DATA);
1214 			if (n) {
1215 				MCLGET(n, M_DONTWAIT);
1216 				if ((n->m_flags & M_EXT) == 0) {
1217 					m_freem(n);
1218 					n = NULL;
1219 				}
1220 			}
1221 			if (!n)
1222 				return (ENOBUFS);
1223 			n->m_len = oldoptlen + JUMBOOPTLEN;
1224 			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1225 			    oldoptlen);
1226 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
1227 			m_freem(mopt);
1228 			mopt = exthdrs->ip6e_hbh = n;
1229 		} else {
1230 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1231 			mopt->m_len += JUMBOOPTLEN;
1232 		}
1233 		optbuf[0] = IP6OPT_PADN;
1234 		optbuf[1] = 0;
1235 
1236 		/*
1237 		 * Adjust the header length according to the pad and
1238 		 * the jumbo payload option.
1239 		 */
1240 		hbh = mtod(mopt, struct ip6_hbh *);
1241 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1242 	}
1243 
1244 	/* fill in the option. */
1245 	optbuf[2] = IP6OPT_JUMBO;
1246 	optbuf[3] = 4;
1247 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1248 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1249 
1250 	/* finally, adjust the packet header length */
1251 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1252 
1253 	return (0);
1254 #undef JUMBOOPTLEN
1255 }
1256 
1257 /*
1258  * Insert fragment header and copy unfragmentable header portions.
1259  */
1260 static int
1261 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1262 	struct mbuf *m0, *m;
1263 	int hlen;
1264 	struct ip6_frag **frghdrp;
1265 {
1266 	struct mbuf *n, *mlast;
1267 
1268 	if (hlen > sizeof(struct ip6_hdr)) {
1269 		n = m_copym(m0, sizeof(struct ip6_hdr),
1270 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1271 		if (n == 0)
1272 			return (ENOBUFS);
1273 		m->m_next = n;
1274 	} else
1275 		n = m;
1276 
1277 	/* Search for the last mbuf of unfragmentable part. */
1278 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1279 		;
1280 
1281 	if ((mlast->m_flags & M_EXT) == 0 &&
1282 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1283 		/* use the trailing space of the last mbuf for the fragment hdr */
1284 		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1285 		    mlast->m_len);
1286 		mlast->m_len += sizeof(struct ip6_frag);
1287 		m->m_pkthdr.len += sizeof(struct ip6_frag);
1288 	} else {
1289 		/* allocate a new mbuf for the fragment header */
1290 		struct mbuf *mfrg;
1291 
1292 		MGET(mfrg, M_DONTWAIT, MT_DATA);
1293 		if (mfrg == 0)
1294 			return (ENOBUFS);
1295 		mfrg->m_len = sizeof(struct ip6_frag);
1296 		*frghdrp = mtod(mfrg, struct ip6_frag *);
1297 		mlast->m_next = mfrg;
1298 	}
1299 
1300 	return (0);
1301 }
1302 
1303 static int
1304 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp)
1305 	struct route_in6 *ro_pmtu, *ro;
1306 	struct ifnet *ifp;
1307 	struct in6_addr *dst;
1308 	u_long *mtup;
1309 	int *alwaysfragp;
1310 {
1311 	u_int32_t mtu = 0;
1312 	int alwaysfrag = 0;
1313 	int error = 0;
1314 
1315 	if (ro_pmtu != ro) {
1316 		/* The first hop and the final destination may differ. */
1317 		struct sockaddr_in6 *sa6_dst =
1318 		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1319 		if (ro_pmtu->ro_rt &&
1320 		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1321 		      !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1322 			RTFREE(ro_pmtu->ro_rt);
1323 			ro_pmtu->ro_rt = (struct rtentry *)NULL;
1324 		}
1325 		if (ro_pmtu->ro_rt == NULL) {
1326 			bzero(sa6_dst, sizeof(*sa6_dst)); /* for safety */
1327 			sa6_dst->sin6_family = AF_INET6;
1328 			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1329 			sa6_dst->sin6_addr = *dst;
1330 
1331 			rtalloc((struct route *)ro_pmtu);
1332 		}
1333 	}
1334 	if (ro_pmtu->ro_rt) {
1335 		u_int32_t ifmtu;
1336 
1337 		if (ifp == NULL)
1338 			ifp = ro_pmtu->ro_rt->rt_ifp;
1339 		ifmtu = IN6_LINKMTU(ifp);
1340 		mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1341 		if (mtu == 0)
1342 			mtu = ifmtu;
1343 		else if (mtu < IPV6_MMTU) {
1344 			/*
1345 			 * RFC2460 section 5, last paragraph:
1346 			 * if we record ICMPv6 too big message with
1347 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1348 			 * or smaller, with fragment header attached.
1349 			 * (fragment header is needed regardless from the
1350 			 * packet size, for translators to identify packets)
1351 			 */
1352 			alwaysfrag = 1;
1353 			mtu = IPV6_MMTU;
1354 		} else if (mtu > ifmtu) {
1355 			/*
1356 			 * The MTU on the route is larger than the MTU on
1357 			 * the interface!  This shouldn't happen, unless the
1358 			 * MTU of the interface has been changed after the
1359 			 * interface was brought up.  Change the MTU in the
1360 			 * route to match the interface MTU (as long as the
1361 			 * field isn't locked).
1362 			 */
1363 			mtu = ifmtu;
1364 			if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
1365 				ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1366 		}
1367 	} else if (ifp) {
1368 		mtu = IN6_LINKMTU(ifp);
1369 	} else
1370 		error = EHOSTUNREACH; /* XXX */
1371 
1372 	*mtup = mtu;
1373 	if (alwaysfragp)
1374 		*alwaysfragp = alwaysfrag;
1375 	return (error);
1376 }
1377 
1378 /*
1379  * IP6 socket option processing.
1380  */
1381 int
1382 ip6_ctloutput(op, so, level, optname, mp)
1383 	int op;
1384 	struct socket *so;
1385 	int level, optname;
1386 	struct mbuf **mp;
1387 {
1388 	struct in6pcb *in6p = sotoin6pcb(so);
1389 	struct mbuf *m = *mp;
1390 	int optval = 0;
1391 	int error = 0;
1392 	struct proc *p = curproc;	/* XXX */
1393 
1394 	if (level == IPPROTO_IPV6) {
1395 		switch (op) {
1396 		case PRCO_SETOPT:
1397 			switch (optname) {
1398 			case IPV6_PKTOPTIONS:
1399 				/* m is freed in ip6_pcbopts */
1400 				return (ip6_pcbopts(&in6p->in6p_outputopts,
1401 				    m, so));
1402 			case IPV6_HOPOPTS:
1403 			case IPV6_DSTOPTS:
1404 				if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1405 					error = EPERM;
1406 					break;
1407 				}
1408 				/* FALLTHROUGH */
1409 			case IPV6_UNICAST_HOPS:
1410 			case IPV6_RECVOPTS:
1411 			case IPV6_RECVRETOPTS:
1412 			case IPV6_RECVDSTADDR:
1413 			case IPV6_PKTINFO:
1414 			case IPV6_HOPLIMIT:
1415 			case IPV6_RTHDR:
1416 			case IPV6_FAITH:
1417 			case IPV6_V6ONLY:
1418 			case IPV6_USE_MIN_MTU:
1419 				if (!m || m->m_len != sizeof(int)) {
1420 					error = EINVAL;
1421 					break;
1422 				}
1423 				optval = *mtod(m, int *);
1424 				switch (optname) {
1425 
1426 				case IPV6_UNICAST_HOPS:
1427 					if (optval < -1 || optval >= 256)
1428 						error = EINVAL;
1429 					else {
1430 						/* -1 = kernel default */
1431 						in6p->in6p_hops = optval;
1432 					}
1433 					break;
1434 #define OPTSET(bit) \
1435 do { \
1436 	if (optval) \
1437 		in6p->in6p_flags |= (bit); \
1438 	else \
1439 		in6p->in6p_flags &= ~(bit); \
1440 } while (/*CONSTCOND*/ 0)
1441 
1442 				case IPV6_RECVOPTS:
1443 					OPTSET(IN6P_RECVOPTS);
1444 					break;
1445 
1446 				case IPV6_RECVRETOPTS:
1447 					OPTSET(IN6P_RECVRETOPTS);
1448 					break;
1449 
1450 				case IPV6_RECVDSTADDR:
1451 					OPTSET(IN6P_RECVDSTADDR);
1452 					break;
1453 
1454 				case IPV6_PKTINFO:
1455 					OPTSET(IN6P_PKTINFO);
1456 					break;
1457 
1458 				case IPV6_HOPLIMIT:
1459 					OPTSET(IN6P_HOPLIMIT);
1460 					break;
1461 
1462 				case IPV6_HOPOPTS:
1463 					OPTSET(IN6P_HOPOPTS);
1464 					break;
1465 
1466 				case IPV6_DSTOPTS:
1467 					OPTSET(IN6P_DSTOPTS);
1468 					break;
1469 
1470 				case IPV6_RTHDR:
1471 					OPTSET(IN6P_RTHDR);
1472 					break;
1473 
1474 				case IPV6_FAITH:
1475 					OPTSET(IN6P_FAITH);
1476 					break;
1477 
1478 				case IPV6_USE_MIN_MTU:
1479 					OPTSET(IN6P_MINMTU);
1480 					break;
1481 
1482 				case IPV6_V6ONLY:
1483 					/*
1484 					 * make setsockopt(IPV6_V6ONLY)
1485 					 * available only prior to bind(2).
1486 					 * see ipng mailing list, Jun 22 2001.
1487 					 */
1488 					if (in6p->in6p_lport ||
1489 					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1490 						error = EINVAL;
1491 						break;
1492 					}
1493 #ifdef INET6_BINDV6ONLY
1494 					if (!optval)
1495 						error = EINVAL;
1496 #else
1497 					OPTSET(IN6P_IPV6_V6ONLY);
1498 #endif
1499 					break;
1500 				}
1501 				break;
1502 #undef OPTSET
1503 
1504 			case IPV6_MULTICAST_IF:
1505 			case IPV6_MULTICAST_HOPS:
1506 			case IPV6_MULTICAST_LOOP:
1507 			case IPV6_JOIN_GROUP:
1508 			case IPV6_LEAVE_GROUP:
1509 				error =	ip6_setmoptions(optname,
1510 				    &in6p->in6p_moptions, m);
1511 				break;
1512 
1513 			case IPV6_PORTRANGE:
1514 				optval = *mtod(m, int *);
1515 
1516 				switch (optval) {
1517 				case IPV6_PORTRANGE_DEFAULT:
1518 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
1519 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1520 					break;
1521 
1522 				case IPV6_PORTRANGE_HIGH:
1523 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
1524 					in6p->in6p_flags |= IN6P_HIGHPORT;
1525 					break;
1526 
1527 				case IPV6_PORTRANGE_LOW:
1528 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1529 					in6p->in6p_flags |= IN6P_LOWPORT;
1530 					break;
1531 
1532 				default:
1533 					error = EINVAL;
1534 					break;
1535 				}
1536 				break;
1537 
1538 #ifdef IPSEC
1539 			case IPV6_IPSEC_POLICY:
1540 			    {
1541 				caddr_t req = NULL;
1542 				size_t len = 0;
1543 
1544 				int priv = 0;
1545 				if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1546 					priv = 0;
1547 				else
1548 					priv = 1;
1549 				if (m) {
1550 					req = mtod(m, caddr_t);
1551 					len = m->m_len;
1552 				}
1553 				error = ipsec6_set_policy(in6p,
1554 				                   optname, req, len, priv);
1555 			    }
1556 				break;
1557 #endif /* IPSEC */
1558 
1559 			default:
1560 				error = ENOPROTOOPT;
1561 				break;
1562 			}
1563 			if (m)
1564 				(void)m_free(m);
1565 			break;
1566 
1567 		case PRCO_GETOPT:
1568 			switch (optname) {
1569 
1570 			case IPV6_OPTIONS:
1571 			case IPV6_RETOPTS:
1572 				error = ENOPROTOOPT;
1573 				break;
1574 
1575 			case IPV6_PKTOPTIONS:
1576 				if (in6p->in6p_options) {
1577 					*mp = m_copym(in6p->in6p_options, 0,
1578 					    M_COPYALL, M_WAIT);
1579 				} else {
1580 					*mp = m_get(M_WAIT, MT_SOOPTS);
1581 					(*mp)->m_len = 0;
1582 				}
1583 				break;
1584 
1585 			case IPV6_HOPOPTS:
1586 			case IPV6_DSTOPTS:
1587 				if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1588 					error = EPERM;
1589 					break;
1590 				}
1591 				/* FALLTHROUGH */
1592 			case IPV6_UNICAST_HOPS:
1593 			case IPV6_RECVOPTS:
1594 			case IPV6_RECVRETOPTS:
1595 			case IPV6_RECVDSTADDR:
1596 			case IPV6_PORTRANGE:
1597 			case IPV6_PKTINFO:
1598 			case IPV6_HOPLIMIT:
1599 			case IPV6_RTHDR:
1600 			case IPV6_FAITH:
1601 			case IPV6_V6ONLY:
1602 			case IPV6_USE_MIN_MTU:
1603 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
1604 				m->m_len = sizeof(int);
1605 				switch (optname) {
1606 
1607 				case IPV6_UNICAST_HOPS:
1608 					optval = in6p->in6p_hops;
1609 					break;
1610 
1611 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1612 
1613 				case IPV6_RECVOPTS:
1614 					optval = OPTBIT(IN6P_RECVOPTS);
1615 					break;
1616 
1617 				case IPV6_RECVRETOPTS:
1618 					optval = OPTBIT(IN6P_RECVRETOPTS);
1619 					break;
1620 
1621 				case IPV6_RECVDSTADDR:
1622 					optval = OPTBIT(IN6P_RECVDSTADDR);
1623 					break;
1624 
1625 				case IPV6_PORTRANGE:
1626 				    {
1627 					int flags;
1628 					flags = in6p->in6p_flags;
1629 					if (flags & IN6P_HIGHPORT)
1630 						optval = IPV6_PORTRANGE_HIGH;
1631 					else if (flags & IN6P_LOWPORT)
1632 						optval = IPV6_PORTRANGE_LOW;
1633 					else
1634 						optval = 0;
1635 					break;
1636 				    }
1637 
1638 				case IPV6_PKTINFO:
1639 					optval = OPTBIT(IN6P_PKTINFO);
1640 					break;
1641 
1642 				case IPV6_HOPLIMIT:
1643 					optval = OPTBIT(IN6P_HOPLIMIT);
1644 					break;
1645 
1646 				case IPV6_HOPOPTS:
1647 					optval = OPTBIT(IN6P_HOPOPTS);
1648 					break;
1649 
1650 				case IPV6_DSTOPTS:
1651 					optval = OPTBIT(IN6P_DSTOPTS);
1652 					break;
1653 
1654 				case IPV6_RTHDR:
1655 					optval = OPTBIT(IN6P_RTHDR);
1656 					break;
1657 
1658 				case IPV6_FAITH:
1659 					optval = OPTBIT(IN6P_FAITH);
1660 					break;
1661 
1662 				case IPV6_V6ONLY:
1663 					optval = OPTBIT(IN6P_IPV6_V6ONLY);
1664 					break;
1665 
1666 				case IPV6_USE_MIN_MTU:
1667 					optval = OPTBIT(IN6P_MINMTU);
1668 					break;
1669 				}
1670 				*mtod(m, int *) = optval;
1671 				break;
1672 
1673 			case IPV6_MULTICAST_IF:
1674 			case IPV6_MULTICAST_HOPS:
1675 			case IPV6_MULTICAST_LOOP:
1676 			case IPV6_JOIN_GROUP:
1677 			case IPV6_LEAVE_GROUP:
1678 				error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1679 				break;
1680 
1681 #if 0	/* defined(IPSEC) */
1682 			/* XXX: code broken */
1683 			case IPV6_IPSEC_POLICY:
1684 			{
1685 				caddr_t req = NULL;
1686 				size_t len = 0;
1687 
1688 				if (m) {
1689 					req = mtod(m, caddr_t);
1690 					len = m->m_len;
1691 				}
1692 				error = ipsec6_get_policy(in6p, req, len, mp);
1693 				break;
1694 			}
1695 #endif /* IPSEC */
1696 
1697 			default:
1698 				error = ENOPROTOOPT;
1699 				break;
1700 			}
1701 			break;
1702 		}
1703 	} else {
1704 		error = EINVAL;
1705 		if (op == PRCO_SETOPT && *mp)
1706 			(void)m_free(*mp);
1707 	}
1708 	return (error);
1709 }
1710 
1711 int
1712 ip6_raw_ctloutput(op, so, level, optname, mp)
1713 	int op;
1714 	struct socket *so;
1715 	int level, optname;
1716 	struct mbuf **mp;
1717 {
1718 	int error = 0, optval, optlen;
1719 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1720 	struct in6pcb *in6p = sotoin6pcb(so);
1721 	struct mbuf *m = *mp;
1722 
1723 	optlen = m ? m->m_len : 0;
1724 
1725 	if (level != IPPROTO_IPV6) {
1726 		if (op == PRCO_SETOPT && *mp)
1727 			(void)m_free(*mp);
1728 		return (EINVAL);
1729 	}
1730 
1731 	switch (optname) {
1732 	case IPV6_CHECKSUM:
1733 		/*
1734 		 * For ICMPv6 sockets, no modification allowed for checksum
1735 		 * offset, permit "no change" values to help existing apps.
1736 		 *
1737 		 * XXX 2292bis says: "An attempt to set IPV6_CHECKSUM
1738 		 * for an ICMPv6 socket will fail."
1739 		 * The current behavior does not meet 2292bis.
1740 		 */
1741 		switch (op) {
1742 		case PRCO_SETOPT:
1743 			if (optlen != sizeof(int)) {
1744 				error = EINVAL;
1745 				break;
1746 			}
1747 			optval = *mtod(m, int *);
1748 			if ((optval % 2) != 0) {
1749 				/* the API assumes even offset values */
1750 				error = EINVAL;
1751 			} else if (so->so_proto->pr_protocol ==
1752 			    IPPROTO_ICMPV6) {
1753 				if (optval != icmp6off)
1754 					error = EINVAL;
1755 			} else
1756 				in6p->in6p_cksum = optval;
1757 			break;
1758 
1759 		case PRCO_GETOPT:
1760 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1761 				optval = icmp6off;
1762 			else
1763 				optval = in6p->in6p_cksum;
1764 
1765 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1766 			m->m_len = sizeof(int);
1767 			*mtod(m, int *) = optval;
1768 			break;
1769 
1770 		default:
1771 			error = EINVAL;
1772 			break;
1773 		}
1774 		break;
1775 
1776 	default:
1777 		error = ENOPROTOOPT;
1778 		break;
1779 	}
1780 
1781 	if (op == PRCO_SETOPT && m)
1782 		(void)m_free(m);
1783 
1784 	return (error);
1785 }
1786 
1787 /*
1788  * Set up IP6 options in pcb for insertion in output packets.
1789  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1790  * with destination address if source routed.
1791  */
1792 static int
1793 ip6_pcbopts(pktopt, m, so)
1794 	struct ip6_pktopts **pktopt;
1795 	struct mbuf *m;
1796 	struct socket *so;
1797 {
1798 	struct ip6_pktopts *opt = *pktopt;
1799 	int error = 0;
1800 	struct proc *p = curproc;	/* XXX */
1801 	int priv = 0;
1802 
1803 	/* turn off any old options. */
1804 	if (opt) {
1805 		if (opt->ip6po_m)
1806 			(void)m_free(opt->ip6po_m);
1807 	} else
1808 		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1809 	*pktopt = 0;
1810 
1811 	if (!m || m->m_len == 0) {
1812 		/*
1813 		 * Only turning off any previous options.
1814 		 */
1815 		free(opt, M_IP6OPT);
1816 		if (m)
1817 			(void)m_free(m);
1818 		return (0);
1819 	}
1820 
1821 	/*  set options specified by user. */
1822 	if (p && !suser(p->p_ucred, &p->p_acflag))
1823 		priv = 1;
1824 	if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1825 		(void)m_free(m);
1826 		free(opt, M_IP6OPT);
1827 		return (error);
1828 	}
1829 	*pktopt = opt;
1830 	return (0);
1831 }
1832 
1833 /*
1834  * Set the IP6 multicast options in response to user setsockopt().
1835  */
1836 static int
1837 ip6_setmoptions(optname, im6op, m)
1838 	int optname;
1839 	struct ip6_moptions **im6op;
1840 	struct mbuf *m;
1841 {
1842 	int error = 0;
1843 	u_int loop, ifindex;
1844 	struct ipv6_mreq *mreq;
1845 	struct ifnet *ifp;
1846 	struct ip6_moptions *im6o = *im6op;
1847 	struct route_in6 ro;
1848 	struct sockaddr_in6 *dst;
1849 	struct in6_multi_mship *imm;
1850 	struct proc *p = curproc;	/* XXX */
1851 
1852 	if (im6o == NULL) {
1853 		/*
1854 		 * No multicast option buffer attached to the pcb;
1855 		 * allocate one and initialize to default values.
1856 		 */
1857 		im6o = (struct ip6_moptions *)
1858 			malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1859 
1860 		if (im6o == NULL)
1861 			return (ENOBUFS);
1862 		*im6op = im6o;
1863 		im6o->im6o_multicast_ifp = NULL;
1864 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1865 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1866 		LIST_INIT(&im6o->im6o_memberships);
1867 	}
1868 
1869 	switch (optname) {
1870 
1871 	case IPV6_MULTICAST_IF:
1872 		/*
1873 		 * Select the interface for outgoing multicast packets.
1874 		 */
1875 		if (m == NULL || m->m_len != sizeof(u_int)) {
1876 			error = EINVAL;
1877 			break;
1878 		}
1879 		bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1880 		if (ifindex != 0) {
1881 			if (ifindex < 0 || if_indexlim <= ifindex ||
1882 			    !ifindex2ifnet[ifindex]) {
1883 				error = ENXIO;	/* XXX EINVAL? */
1884 				break;
1885 			}
1886 			ifp = ifindex2ifnet[ifindex];
1887 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
1888 				error = EADDRNOTAVAIL;
1889 				break;
1890 			}
1891 		} else
1892 			ifp = NULL;
1893 		im6o->im6o_multicast_ifp = ifp;
1894 		break;
1895 
1896 	case IPV6_MULTICAST_HOPS:
1897 	    {
1898 		/*
1899 		 * Set the IP6 hoplimit for outgoing multicast packets.
1900 		 */
1901 		int optval;
1902 		if (m == NULL || m->m_len != sizeof(int)) {
1903 			error = EINVAL;
1904 			break;
1905 		}
1906 		bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1907 		if (optval < -1 || optval >= 256)
1908 			error = EINVAL;
1909 		else if (optval == -1)
1910 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1911 		else
1912 			im6o->im6o_multicast_hlim = optval;
1913 		break;
1914 	    }
1915 
1916 	case IPV6_MULTICAST_LOOP:
1917 		/*
1918 		 * Set the loopback flag for outgoing multicast packets.
1919 		 * Must be zero or one.
1920 		 */
1921 		if (m == NULL || m->m_len != sizeof(u_int)) {
1922 			error = EINVAL;
1923 			break;
1924 		}
1925 		bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1926 		if (loop > 1) {
1927 			error = EINVAL;
1928 			break;
1929 		}
1930 		im6o->im6o_multicast_loop = loop;
1931 		break;
1932 
1933 	case IPV6_JOIN_GROUP:
1934 		/*
1935 		 * Add a multicast group membership.
1936 		 * Group must be a valid IP6 multicast address.
1937 		 */
1938 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1939 			error = EINVAL;
1940 			break;
1941 		}
1942 		mreq = mtod(m, struct ipv6_mreq *);
1943 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1944 			/*
1945 			 * We use the unspecified address to specify to accept
1946 			 * all multicast addresses. Only super user is allowed
1947 			 * to do this.
1948 			 */
1949 			if (suser(p->p_ucred, &p->p_acflag))
1950 			{
1951 				error = EACCES;
1952 				break;
1953 			}
1954 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1955 			error = EINVAL;
1956 			break;
1957 		}
1958 
1959 		/*
1960 		 * If the interface is specified, validate it.
1961 		 * If no interface was explicitly specified, choose an
1962 		 * appropriate one according to the given multicast address.
1963 		 */
1964 		if (mreq->ipv6mr_interface != 0) {
1965 			if (mreq->ipv6mr_interface < 0 ||
1966 			    if_indexlim <= mreq->ipv6mr_interface ||
1967 			    !ifindex2ifnet[mreq->ipv6mr_interface]) {
1968 				error = ENXIO;	/* XXX EINVAL? */
1969 				break;
1970 			}
1971 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1972 		} else {
1973 			/*
1974 			 * If the multicast address is in node-local scope,
1975 			 * the interface should be a loopback interface.
1976 			 * Otherwise, look up the routing table for the
1977 			 * address, and choose the outgoing interface.
1978 			 *   XXX: is it a good approach?
1979 			 */
1980 			if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1981 				ifp = lo0ifp;
1982 			} else {
1983 				ro.ro_rt = NULL;
1984 				dst = (struct sockaddr_in6 *)&ro.ro_dst;
1985 				bzero(dst, sizeof(*dst));
1986 				dst->sin6_len = sizeof(struct sockaddr_in6);
1987 				dst->sin6_family = AF_INET6;
1988 				dst->sin6_addr = mreq->ipv6mr_multiaddr;
1989 				rtalloc((struct route *)&ro);
1990 				if (ro.ro_rt == NULL) {
1991 					error = EADDRNOTAVAIL;
1992 					break;
1993 				}
1994 				ifp = ro.ro_rt->rt_ifp;
1995 				rtfree(ro.ro_rt);
1996 			}
1997 		}
1998 
1999 		/*
2000 		 * See if we found an interface, and confirm that it
2001 		 * supports multicast
2002 		 */
2003 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2004 			error = EADDRNOTAVAIL;
2005 			break;
2006 		}
2007 		/*
2008 		 * Put interface index into the multicast address,
2009 		 * if the address has link-local scope.
2010 		 */
2011 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2012 			mreq->ipv6mr_multiaddr.s6_addr16[1] =
2013 			    htons(ifp->if_index);
2014 		}
2015 		/*
2016 		 * See if the membership already exists.
2017 		 */
2018 		for (imm = im6o->im6o_memberships.lh_first;
2019 		     imm != NULL; imm = imm->i6mm_chain.le_next)
2020 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
2021 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2022 			    &mreq->ipv6mr_multiaddr))
2023 				break;
2024 		if (imm != NULL) {
2025 			error = EADDRINUSE;
2026 			break;
2027 		}
2028 		/*
2029 		 * Everything looks good; add a new record to the multicast
2030 		 * address list for the given interface.
2031 		 */
2032 		imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error);
2033 		if (!imm)
2034 			break;
2035 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2036 		break;
2037 
2038 	case IPV6_LEAVE_GROUP:
2039 		/*
2040 		 * Drop a multicast group membership.
2041 		 * Group must be a valid IP6 multicast address.
2042 		 */
2043 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2044 			error = EINVAL;
2045 			break;
2046 		}
2047 		mreq = mtod(m, struct ipv6_mreq *);
2048 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2049 			if (suser(p->p_ucred, &p->p_acflag))
2050 			{
2051 				error = EACCES;
2052 				break;
2053 			}
2054 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2055 			error = EINVAL;
2056 			break;
2057 		}
2058 		/*
2059 		 * If an interface address was specified, get a pointer
2060 		 * to its ifnet structure.
2061 		 */
2062 		if (mreq->ipv6mr_interface != 0) {
2063 			if (mreq->ipv6mr_interface < 0 ||
2064 			    if_indexlim <= mreq->ipv6mr_interface ||
2065 			    !ifindex2ifnet[mreq->ipv6mr_interface]) {
2066 				error = ENXIO;	/* XXX EINVAL? */
2067 				break;
2068 			}
2069 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2070 		} else
2071 			ifp = NULL;
2072 		/*
2073 		 * Put interface index into the multicast address,
2074 		 * if the address has link-local scope.
2075 		 */
2076 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2077 			mreq->ipv6mr_multiaddr.s6_addr16[1] =
2078 			    htons(mreq->ipv6mr_interface);
2079 		}
2080 		/*
2081 		 * Find the membership in the membership list.
2082 		 */
2083 		for (imm = im6o->im6o_memberships.lh_first;
2084 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
2085 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2086 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2087 			    &mreq->ipv6mr_multiaddr))
2088 				break;
2089 		}
2090 		if (imm == NULL) {
2091 			/* Unable to resolve interface */
2092 			error = EADDRNOTAVAIL;
2093 			break;
2094 		}
2095 		/*
2096 		 * Give up the multicast address record to which the
2097 		 * membership points.
2098 		 */
2099 		LIST_REMOVE(imm, i6mm_chain);
2100 		in6_leavegroup(imm);
2101 		break;
2102 
2103 	default:
2104 		error = EOPNOTSUPP;
2105 		break;
2106 	}
2107 
2108 	/*
2109 	 * If all options have default values, no need to keep the mbuf.
2110 	 */
2111 	if (im6o->im6o_multicast_ifp == NULL &&
2112 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2113 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2114 	    im6o->im6o_memberships.lh_first == NULL) {
2115 		free(*im6op, M_IPMOPTS);
2116 		*im6op = NULL;
2117 	}
2118 
2119 	return (error);
2120 }
2121 
2122 /*
2123  * Return the IP6 multicast options in response to user getsockopt().
2124  */
2125 static int
2126 ip6_getmoptions(optname, im6o, mp)
2127 	int optname;
2128 	struct ip6_moptions *im6o;
2129 	struct mbuf **mp;
2130 {
2131 	u_int *hlim, *loop, *ifindex;
2132 
2133 	*mp = m_get(M_WAIT, MT_SOOPTS);
2134 
2135 	switch (optname) {
2136 
2137 	case IPV6_MULTICAST_IF:
2138 		ifindex = mtod(*mp, u_int *);
2139 		(*mp)->m_len = sizeof(u_int);
2140 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2141 			*ifindex = 0;
2142 		else
2143 			*ifindex = im6o->im6o_multicast_ifp->if_index;
2144 		return (0);
2145 
2146 	case IPV6_MULTICAST_HOPS:
2147 		hlim = mtod(*mp, u_int *);
2148 		(*mp)->m_len = sizeof(u_int);
2149 		if (im6o == NULL)
2150 			*hlim = ip6_defmcasthlim;
2151 		else
2152 			*hlim = im6o->im6o_multicast_hlim;
2153 		return (0);
2154 
2155 	case IPV6_MULTICAST_LOOP:
2156 		loop = mtod(*mp, u_int *);
2157 		(*mp)->m_len = sizeof(u_int);
2158 		if (im6o == NULL)
2159 			*loop = ip6_defmcasthlim;
2160 		else
2161 			*loop = im6o->im6o_multicast_loop;
2162 		return (0);
2163 
2164 	default:
2165 		return (EOPNOTSUPP);
2166 	}
2167 }
2168 
2169 /*
2170  * Discard the IP6 multicast options.
2171  */
2172 void
2173 ip6_freemoptions(im6o)
2174 	struct ip6_moptions *im6o;
2175 {
2176 	struct in6_multi_mship *imm;
2177 
2178 	if (im6o == NULL)
2179 		return;
2180 
2181 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2182 		LIST_REMOVE(imm, i6mm_chain);
2183 		in6_leavegroup(imm);
2184 	}
2185 	free(im6o, M_IPMOPTS);
2186 }
2187 
2188 /*
2189  * Set IPv6 outgoing packet options based on advanced API.
2190  */
2191 int
2192 ip6_setpktoptions(control, opt, priv)
2193 	struct mbuf *control;
2194 	struct ip6_pktopts *opt;
2195 	int priv;
2196 {
2197 	struct cmsghdr *cm = 0;
2198 
2199 	if (control == 0 || opt == 0)
2200 		return (EINVAL);
2201 
2202 	bzero(opt, sizeof(*opt));
2203 	opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
2204 
2205 	/*
2206 	 * XXX: Currently, we assume all the optional information is stored
2207 	 * in a single mbuf.
2208 	 */
2209 	if (control->m_next)
2210 		return (EINVAL);
2211 
2212 	opt->ip6po_m = control;
2213 
2214 	for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2215 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2216 		cm = mtod(control, struct cmsghdr *);
2217 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2218 			return (EINVAL);
2219 		if (cm->cmsg_level != IPPROTO_IPV6)
2220 			continue;
2221 
2222 		switch (cm->cmsg_type) {
2223 		case IPV6_PKTINFO:
2224 			if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
2225 				return (EINVAL);
2226 			opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
2227 			if (opt->ip6po_pktinfo->ipi6_ifindex &&
2228 			    IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
2229 				opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
2230 					htons(opt->ip6po_pktinfo->ipi6_ifindex);
2231 
2232 			if (opt->ip6po_pktinfo->ipi6_ifindex >= if_indexlim ||
2233 			    opt->ip6po_pktinfo->ipi6_ifindex < 0)
2234 				return (ENXIO);
2235 			if (opt->ip6po_pktinfo->ipi6_ifindex > 0 &&
2236 			    !ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex])
2237 				return (ENXIO);
2238 
2239 			/*
2240 			 * Check if the requested source address is indeed a
2241 			 * unicast address assigned to the node, and can be
2242 			 * used as the packet's source address.
2243 			 */
2244 			if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2245 				struct ifaddr *ia;
2246 				struct in6_ifaddr *ia6;
2247 				struct sockaddr_in6 sin6;
2248 
2249 				bzero(&sin6, sizeof(sin6));
2250 				sin6.sin6_len = sizeof(sin6);
2251 				sin6.sin6_family = AF_INET6;
2252 				sin6.sin6_addr =
2253 					opt->ip6po_pktinfo->ipi6_addr;
2254 				ia = ifa_ifwithaddr(sin6tosa(&sin6));
2255 				if (ia == NULL ||
2256 				    (opt->ip6po_pktinfo->ipi6_ifindex &&
2257 				     (ia->ifa_ifp->if_index !=
2258 				      opt->ip6po_pktinfo->ipi6_ifindex))) {
2259 					return (EADDRNOTAVAIL);
2260 				}
2261 				ia6 = (struct in6_ifaddr *)ia;
2262 				if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) {
2263 					return (EADDRNOTAVAIL);
2264 				}
2265 
2266 				/*
2267 				 * Check if the requested source address is
2268 				 * indeed a unicast address assigned to the
2269 				 * node.
2270 				 */
2271 				if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2272 					return (EADDRNOTAVAIL);
2273 			}
2274 			break;
2275 
2276 		case IPV6_HOPLIMIT:
2277 			if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2278 				return (EINVAL);
2279 			else {
2280 				int t;
2281 
2282 				bcopy(CMSG_DATA(cm), &t, sizeof(t));
2283 				if (t < -1 || t > 255)
2284 					return (EINVAL);
2285 				opt->ip6po_hlim = t;
2286 			}
2287 			break;
2288 
2289 		case IPV6_NEXTHOP:
2290 			if (!priv)
2291 				return (EPERM);
2292 
2293 			/* check if cmsg_len is large enough for sa_len */
2294 			if (cm->cmsg_len < sizeof(u_char) ||
2295 			    cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2296 				return (EINVAL);
2297 
2298 			opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2299 
2300 			break;
2301 
2302 		case IPV6_HOPOPTS:
2303 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2304 				return (EINVAL);
2305 			else {
2306 				struct  ip6_hbh *t;
2307 
2308 				t = (struct ip6_hbh *)CMSG_DATA(cm);
2309 				if (cm->cmsg_len !=
2310 				    CMSG_LEN((t->ip6h_len + 1) << 3))
2311 					return (EINVAL);
2312 				opt->ip6po_hbh = t;
2313 			}
2314 			break;
2315 
2316 		case IPV6_DSTOPTS:
2317 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2318 				return (EINVAL);
2319 
2320 			/*
2321 			 * If there is no routing header yet, the destination
2322 			 * options header should be put on the 1st part.
2323 			 * Otherwise, the header should be on the 2nd part.
2324 			 * (See RFC 2460, section 4.1)
2325 			 */
2326 			if (opt->ip6po_rthdr == NULL) {
2327 				struct ip6_dest *t;
2328 
2329 				t = (struct ip6_dest *)CMSG_DATA(cm);
2330 				if (cm->cmsg_len !=
2331 				    CMSG_LEN((t->ip6d_len + 1) << 3));
2332 					return (EINVAL);
2333 				opt->ip6po_dest1 = t;
2334 			}
2335 			else {
2336 				struct ip6_dest *t;
2337 
2338 				t = (struct ip6_dest *)CMSG_DATA(cm);
2339 				if (cm->cmsg_len !=
2340 				    CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) << 3))
2341 					return (EINVAL);
2342 				opt->ip6po_dest2 = t;
2343 			}
2344 			break;
2345 
2346 		case IPV6_RTHDR:
2347 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2348 				return (EINVAL);
2349 			else {
2350 				struct ip6_rthdr *t;
2351 
2352 				t = (struct ip6_rthdr *)CMSG_DATA(cm);
2353 				if (cm->cmsg_len !=
2354 				    CMSG_LEN((t->ip6r_len + 1) << 3))
2355 					return (EINVAL);
2356 				switch (t->ip6r_type) {
2357 				case IPV6_RTHDR_TYPE_0:
2358 					if (t->ip6r_segleft == 0)
2359 						return (EINVAL);
2360 					break;
2361 				default:
2362 					return (EINVAL);
2363 				}
2364 				opt->ip6po_rthdr = t;
2365 			}
2366 			break;
2367 
2368 		default:
2369 			return (ENOPROTOOPT);
2370 		}
2371 	}
2372 
2373 	return (0);
2374 }
2375 
2376 /*
2377  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2378  * packet to the input queue of a specified interface.  Note that this
2379  * calls the output routine of the loopback "driver", but with an interface
2380  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
2381  */
2382 void
2383 ip6_mloopback(ifp, m, dst)
2384 	struct ifnet *ifp;
2385 	struct mbuf *m;
2386 	struct sockaddr_in6 *dst;
2387 {
2388 	struct mbuf *copym;
2389 	struct ip6_hdr *ip6;
2390 
2391 	copym = m_copy(m, 0, M_COPYALL);
2392 	if (copym == NULL)
2393 		return;
2394 
2395 	/*
2396 	 * Make sure to deep-copy IPv6 header portion in case the data
2397 	 * is in an mbuf cluster, so that we can safely override the IPv6
2398 	 * header portion later.
2399 	 */
2400 	if ((copym->m_flags & M_EXT) != 0 ||
2401 	    copym->m_len < sizeof(struct ip6_hdr)) {
2402 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
2403 		if (copym == NULL)
2404 			return;
2405 	}
2406 
2407 #ifdef DIAGNOSTIC
2408 	if (copym->m_len < sizeof(*ip6)) {
2409 		m_freem(copym);
2410 		return;
2411 	}
2412 #endif
2413 
2414 	ip6 = mtod(copym, struct ip6_hdr *);
2415 	if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2416 		ip6->ip6_src.s6_addr16[1] = 0;
2417 	if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2418 		ip6->ip6_dst.s6_addr16[1] = 0;
2419 
2420 	(void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2421 }
2422 
2423 /*
2424  * Chop IPv6 header off from the payload.
2425  */
2426 static int
2427 ip6_splithdr(m, exthdrs)
2428 	struct mbuf *m;
2429 	struct ip6_exthdrs *exthdrs;
2430 {
2431 	struct mbuf *mh;
2432 	struct ip6_hdr *ip6;
2433 
2434 	ip6 = mtod(m, struct ip6_hdr *);
2435 	if (m->m_len > sizeof(*ip6)) {
2436 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2437 		if (mh == 0) {
2438 			m_freem(m);
2439 			return ENOBUFS;
2440 		}
2441 		M_MOVE_PKTHDR(mh, m);
2442 		MH_ALIGN(mh, sizeof(*ip6));
2443 		m->m_len -= sizeof(*ip6);
2444 		m->m_data += sizeof(*ip6);
2445 		mh->m_next = m;
2446 		m = mh;
2447 		m->m_len = sizeof(*ip6);
2448 		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2449 	}
2450 	exthdrs->ip6e_ip6 = m;
2451 	return 0;
2452 }
2453 
2454 /*
2455  * Compute IPv6 extension header length.
2456  */
2457 int
2458 ip6_optlen(in6p)
2459 	struct in6pcb *in6p;
2460 {
2461 	int len;
2462 
2463 	if (!in6p->in6p_outputopts)
2464 		return 0;
2465 
2466 	len = 0;
2467 #define elen(x) \
2468     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2469 
2470 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
2471 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
2472 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2473 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
2474 	return len;
2475 #undef elen
2476 }
2477