1 /* $NetBSD: ip6_output.c,v 1.173 2016/08/01 03:15:31 ozaki-r Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.173 2016/08/01 03:15:31 ozaki-r Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/malloc.h> 75 #include <sys/mbuf.h> 76 #include <sys/errno.h> 77 #include <sys/protosw.h> 78 #include <sys/socket.h> 79 #include <sys/socketvar.h> 80 #include <sys/systm.h> 81 #include <sys/proc.h> 82 #include <sys/kauth.h> 83 84 #include <net/if.h> 85 #include <net/route.h> 86 #include <net/pfil.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/ip6.h> 91 #include <netinet/ip_var.h> 92 #include <netinet/icmp6.h> 93 #include <netinet/in_offload.h> 94 #include <netinet/portalgo.h> 95 #include <netinet6/in6_offload.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/ip6_private.h> 98 #include <netinet6/in6_pcb.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6protosw.h> 101 #include <netinet6/scope6_var.h> 102 103 #ifdef IPSEC 104 #include <netipsec/ipsec.h> 105 #include <netipsec/ipsec6.h> 106 #include <netipsec/key.h> 107 #include <netipsec/xform.h> 108 #endif 109 110 111 #include <net/net_osdep.h> 112 113 extern pfil_head_t *inet6_pfil_hook; /* XXX */ 114 115 struct ip6_exthdrs { 116 struct mbuf *ip6e_ip6; 117 struct mbuf *ip6e_hbh; 118 struct mbuf *ip6e_dest1; 119 struct mbuf *ip6e_rthdr; 120 struct mbuf *ip6e_dest2; 121 }; 122 123 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 124 kauth_cred_t, int); 125 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 126 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t, 127 int, int, int); 128 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *); 129 static int ip6_getmoptions(struct sockopt *, struct in6pcb *); 130 static int ip6_copyexthdr(struct mbuf **, void *, int); 131 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 132 struct ip6_frag **); 133 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 134 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 135 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *, 136 const struct in6_addr *, u_long *, int *); 137 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 138 139 #ifdef RFC2292 140 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *); 141 #endif 142 143 /* 144 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 145 * header (with pri, len, nxt, hlim, src, dst). 146 * This function may modify ver and hlim only. 147 * The mbuf chain containing the packet will be freed. 148 * The mbuf opt, if present, will not be freed. 149 * 150 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 151 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 152 * which is rt_rmx.rmx_mtu. 153 */ 154 int 155 ip6_output( 156 struct mbuf *m0, 157 struct ip6_pktopts *opt, 158 struct route *ro, 159 int flags, 160 struct ip6_moptions *im6o, 161 struct socket *so, 162 struct ifnet **ifpp /* XXX: just for statistics */ 163 ) 164 { 165 struct ip6_hdr *ip6, *mhip6; 166 struct ifnet *ifp = NULL, *origifp = NULL; 167 struct mbuf *m = m0; 168 int hlen, tlen, len, off; 169 bool tso; 170 struct route ip6route; 171 struct rtentry *rt = NULL; 172 const struct sockaddr_in6 *dst; 173 struct sockaddr_in6 src_sa, dst_sa; 174 int error = 0; 175 struct in6_ifaddr *ia = NULL; 176 u_long mtu; 177 int alwaysfrag, dontfrag; 178 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 179 struct ip6_exthdrs exthdrs; 180 struct in6_addr finaldst, src0, dst0; 181 u_int32_t zone; 182 struct route *ro_pmtu = NULL; 183 int hdrsplit = 0; 184 int needipsec = 0; 185 #ifdef IPSEC 186 struct secpolicy *sp = NULL; 187 #endif 188 struct psref psref, psref_ia; 189 int bound = curlwp_bind(); 190 bool release_psref_ia = false; 191 192 #ifdef DIAGNOSTIC 193 if ((m->m_flags & M_PKTHDR) == 0) 194 panic("ip6_output: no HDR"); 195 196 if ((m->m_pkthdr.csum_flags & 197 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) { 198 panic("ip6_output: IPv4 checksum offload flags: %d", 199 m->m_pkthdr.csum_flags); 200 } 201 202 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 203 (M_CSUM_TCPv6|M_CSUM_UDPv6)) { 204 panic("ip6_output: conflicting checksum offload flags: %d", 205 m->m_pkthdr.csum_flags); 206 } 207 #endif 208 209 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr)); 210 211 #define MAKE_EXTHDR(hp, mp) \ 212 do { \ 213 if (hp) { \ 214 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 215 error = ip6_copyexthdr((mp), (void *)(hp), \ 216 ((eh)->ip6e_len + 1) << 3); \ 217 if (error) \ 218 goto freehdrs; \ 219 } \ 220 } while (/*CONSTCOND*/ 0) 221 222 memset(&exthdrs, 0, sizeof(exthdrs)); 223 if (opt) { 224 /* Hop-by-Hop options header */ 225 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 226 /* Destination options header(1st part) */ 227 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 228 /* Routing header */ 229 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 230 /* Destination options header(2nd part) */ 231 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 232 } 233 234 /* 235 * Calculate the total length of the extension header chain. 236 * Keep the length of the unfragmentable part for fragmentation. 237 */ 238 optlen = 0; 239 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 240 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 241 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 242 unfragpartlen = optlen + sizeof(struct ip6_hdr); 243 /* NOTE: we don't add AH/ESP length here. do that later. */ 244 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 245 246 #ifdef IPSEC 247 if (ipsec_used) { 248 /* Check the security policy (SP) for the packet */ 249 250 sp = ipsec6_check_policy(m, so, flags, &needipsec, &error); 251 if (error != 0) { 252 /* 253 * Hack: -EINVAL is used to signal that a packet 254 * should be silently discarded. This is typically 255 * because we asked key management for an SA and 256 * it was delayed (e.g. kicked up to IKE). 257 */ 258 if (error == -EINVAL) 259 error = 0; 260 goto freehdrs; 261 } 262 } 263 #endif /* IPSEC */ 264 265 266 if (needipsec && 267 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 268 in6_delayed_cksum(m); 269 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 270 } 271 272 273 /* 274 * If we need IPsec, or there is at least one extension header, 275 * separate IP6 header from the payload. 276 */ 277 if ((needipsec || optlen) && !hdrsplit) { 278 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 279 m = NULL; 280 goto freehdrs; 281 } 282 m = exthdrs.ip6e_ip6; 283 hdrsplit++; 284 } 285 286 /* adjust pointer */ 287 ip6 = mtod(m, struct ip6_hdr *); 288 289 /* adjust mbuf packet header length */ 290 m->m_pkthdr.len += optlen; 291 plen = m->m_pkthdr.len - sizeof(*ip6); 292 293 /* If this is a jumbo payload, insert a jumbo payload option. */ 294 if (plen > IPV6_MAXPACKET) { 295 if (!hdrsplit) { 296 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 297 m = NULL; 298 goto freehdrs; 299 } 300 m = exthdrs.ip6e_ip6; 301 hdrsplit++; 302 } 303 /* adjust pointer */ 304 ip6 = mtod(m, struct ip6_hdr *); 305 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 306 goto freehdrs; 307 optlen += 8; /* XXX JUMBOOPTLEN */ 308 ip6->ip6_plen = 0; 309 } else 310 ip6->ip6_plen = htons(plen); 311 312 /* 313 * Concatenate headers and fill in next header fields. 314 * Here we have, on "m" 315 * IPv6 payload 316 * and we insert headers accordingly. Finally, we should be getting: 317 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 318 * 319 * during the header composing process, "m" points to IPv6 header. 320 * "mprev" points to an extension header prior to esp. 321 */ 322 { 323 u_char *nexthdrp = &ip6->ip6_nxt; 324 struct mbuf *mprev = m; 325 326 /* 327 * we treat dest2 specially. this makes IPsec processing 328 * much easier. the goal here is to make mprev point the 329 * mbuf prior to dest2. 330 * 331 * result: IPv6 dest2 payload 332 * m and mprev will point to IPv6 header. 333 */ 334 if (exthdrs.ip6e_dest2) { 335 if (!hdrsplit) 336 panic("assumption failed: hdr not split"); 337 exthdrs.ip6e_dest2->m_next = m->m_next; 338 m->m_next = exthdrs.ip6e_dest2; 339 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 340 ip6->ip6_nxt = IPPROTO_DSTOPTS; 341 } 342 343 #define MAKE_CHAIN(m, mp, p, i)\ 344 do {\ 345 if (m) {\ 346 if (!hdrsplit) \ 347 panic("assumption failed: hdr not split"); \ 348 *mtod((m), u_char *) = *(p);\ 349 *(p) = (i);\ 350 p = mtod((m), u_char *);\ 351 (m)->m_next = (mp)->m_next;\ 352 (mp)->m_next = (m);\ 353 (mp) = (m);\ 354 }\ 355 } while (/*CONSTCOND*/ 0) 356 /* 357 * result: IPv6 hbh dest1 rthdr dest2 payload 358 * m will point to IPv6 header. mprev will point to the 359 * extension header prior to dest2 (rthdr in the above case). 360 */ 361 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 362 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 363 IPPROTO_DSTOPTS); 364 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 365 IPPROTO_ROUTING); 366 367 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, 368 sizeof(struct ip6_hdr) + optlen); 369 } 370 371 /* 372 * If there is a routing header, replace destination address field 373 * with the first hop of the routing header. 374 */ 375 if (exthdrs.ip6e_rthdr) { 376 struct ip6_rthdr *rh; 377 struct ip6_rthdr0 *rh0; 378 struct in6_addr *addr; 379 struct sockaddr_in6 sa; 380 381 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 382 struct ip6_rthdr *)); 383 finaldst = ip6->ip6_dst; 384 switch (rh->ip6r_type) { 385 case IPV6_RTHDR_TYPE_0: 386 rh0 = (struct ip6_rthdr0 *)rh; 387 addr = (struct in6_addr *)(rh0 + 1); 388 389 /* 390 * construct a sockaddr_in6 form of 391 * the first hop. 392 * 393 * XXX: we may not have enough 394 * information about its scope zone; 395 * there is no standard API to pass 396 * the information from the 397 * application. 398 */ 399 sockaddr_in6_init(&sa, addr, 0, 0, 0); 400 if ((error = sa6_embedscope(&sa, 401 ip6_use_defzone)) != 0) { 402 goto bad; 403 } 404 ip6->ip6_dst = sa.sin6_addr; 405 (void)memmove(&addr[0], &addr[1], 406 sizeof(struct in6_addr) * 407 (rh0->ip6r0_segleft - 1)); 408 addr[rh0->ip6r0_segleft - 1] = finaldst; 409 /* XXX */ 410 in6_clearscope(addr + rh0->ip6r0_segleft - 1); 411 break; 412 default: /* is it possible? */ 413 error = EINVAL; 414 goto bad; 415 } 416 } 417 418 /* Source address validation */ 419 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 420 (flags & IPV6_UNSPECSRC) == 0) { 421 error = EOPNOTSUPP; 422 IP6_STATINC(IP6_STAT_BADSCOPE); 423 goto bad; 424 } 425 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 426 error = EOPNOTSUPP; 427 IP6_STATINC(IP6_STAT_BADSCOPE); 428 goto bad; 429 } 430 431 IP6_STATINC(IP6_STAT_LOCALOUT); 432 433 /* 434 * Route packet. 435 */ 436 /* initialize cached route */ 437 if (ro == NULL) { 438 memset(&ip6route, 0, sizeof(ip6route)); 439 ro = &ip6route; 440 } 441 ro_pmtu = ro; 442 if (opt && opt->ip6po_rthdr) 443 ro = &opt->ip6po_route; 444 445 /* 446 * if specified, try to fill in the traffic class field. 447 * do not override if a non-zero value is already set. 448 * we check the diffserv field and the ecn field separately. 449 */ 450 if (opt && opt->ip6po_tclass >= 0) { 451 int mask = 0; 452 453 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 454 mask |= 0xfc; 455 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 456 mask |= 0x03; 457 if (mask != 0) 458 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 459 } 460 461 /* fill in or override the hop limit field, if necessary. */ 462 if (opt && opt->ip6po_hlim != -1) 463 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 464 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 465 if (im6o != NULL) 466 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 467 else 468 ip6->ip6_hlim = ip6_defmcasthlim; 469 } 470 471 #ifdef IPSEC 472 if (needipsec) { 473 int s = splsoftnet(); 474 error = ipsec6_process_packet(m, sp->req); 475 476 /* 477 * Preserve KAME behaviour: ENOENT can be returned 478 * when an SA acquire is in progress. Don't propagate 479 * this to user-level; it confuses applications. 480 * XXX this will go away when the SADB is redone. 481 */ 482 if (error == ENOENT) 483 error = 0; 484 splx(s); 485 goto done; 486 } 487 #endif /* IPSEC */ 488 489 /* adjust pointer */ 490 ip6 = mtod(m, struct ip6_hdr *); 491 492 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 493 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, 494 &ifp, &psref, &rt, 0)) != 0) { 495 if (ifp != NULL) 496 in6_ifstat_inc(ifp, ifs6_out_discard); 497 goto bad; 498 } 499 if (rt == NULL) { 500 /* 501 * If in6_selectroute() does not return a route entry, 502 * dst may not have been updated. 503 */ 504 error = rtcache_setdst(ro, sin6tosa(&dst_sa)); 505 if (error) { 506 goto bad; 507 } 508 } 509 510 /* 511 * then rt (for unicast) and ifp must be non-NULL valid values. 512 */ 513 if ((flags & IPV6_FORWARDING) == 0) { 514 /* XXX: the FORWARDING flag can be set for mrouting. */ 515 in6_ifstat_inc(ifp, ifs6_out_request); 516 } 517 if (rt != NULL) { 518 ia = (struct in6_ifaddr *)(rt->rt_ifa); 519 rt->rt_use++; 520 } 521 522 /* 523 * The outgoing interface must be in the zone of source and 524 * destination addresses. We should use ia_ifp to support the 525 * case of sending packets to an address of our own. 526 */ 527 if (ia != NULL && ia->ia_ifp) { 528 origifp = ia->ia_ifp; 529 if (if_is_deactivated(origifp)) 530 goto bad; 531 if_acquire_NOMPSAFE(origifp, &psref_ia); 532 release_psref_ia = true; 533 } else 534 origifp = ifp; 535 536 src0 = ip6->ip6_src; 537 if (in6_setscope(&src0, origifp, &zone)) 538 goto badscope; 539 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0); 540 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 541 goto badscope; 542 543 dst0 = ip6->ip6_dst; 544 if (in6_setscope(&dst0, origifp, &zone)) 545 goto badscope; 546 /* re-initialize to be sure */ 547 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 548 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) 549 goto badscope; 550 551 /* scope check is done. */ 552 553 if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 554 dst = satocsin6(rtcache_getdst(ro)); 555 KASSERT(dst != NULL); 556 } else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) { 557 /* 558 * The nexthop is explicitly specified by the 559 * application. We assume the next hop is an IPv6 560 * address. 561 */ 562 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 563 } else if ((rt->rt_flags & RTF_GATEWAY)) 564 dst = (struct sockaddr_in6 *)rt->rt_gateway; 565 else 566 dst = satocsin6(rtcache_getdst(ro)); 567 568 /* 569 * XXXXXX: original code follows: 570 */ 571 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 572 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 573 else { 574 struct in6_multi *in6m; 575 576 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 577 578 in6_ifstat_inc(ifp, ifs6_out_mcast); 579 580 /* 581 * Confirm that the outgoing interface supports multicast. 582 */ 583 if (!(ifp->if_flags & IFF_MULTICAST)) { 584 IP6_STATINC(IP6_STAT_NOROUTE); 585 in6_ifstat_inc(ifp, ifs6_out_discard); 586 error = ENETUNREACH; 587 goto bad; 588 } 589 590 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 591 if (in6m != NULL && 592 (im6o == NULL || im6o->im6o_multicast_loop)) { 593 /* 594 * If we belong to the destination multicast group 595 * on the outgoing interface, and the caller did not 596 * forbid loopback, loop back a copy. 597 */ 598 KASSERT(dst != NULL); 599 ip6_mloopback(ifp, m, dst); 600 } else { 601 /* 602 * If we are acting as a multicast router, perform 603 * multicast forwarding as if the packet had just 604 * arrived on the interface to which we are about 605 * to send. The multicast forwarding function 606 * recursively calls this function, using the 607 * IPV6_FORWARDING flag to prevent infinite recursion. 608 * 609 * Multicasts that are looped back by ip6_mloopback(), 610 * above, will be forwarded by the ip6_input() routine, 611 * if necessary. 612 */ 613 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 614 if (ip6_mforward(ip6, ifp, m) != 0) { 615 m_freem(m); 616 goto done; 617 } 618 } 619 } 620 /* 621 * Multicasts with a hoplimit of zero may be looped back, 622 * above, but must not be transmitted on a network. 623 * Also, multicasts addressed to the loopback interface 624 * are not sent -- the above call to ip6_mloopback() will 625 * loop back a copy if this host actually belongs to the 626 * destination group on the loopback interface. 627 */ 628 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 629 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 630 m_freem(m); 631 goto done; 632 } 633 } 634 635 /* 636 * Fill the outgoing inteface to tell the upper layer 637 * to increment per-interface statistics. 638 */ 639 if (ifpp) 640 *ifpp = ifp; 641 642 /* Determine path MTU. */ 643 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 644 &alwaysfrag)) != 0) 645 goto bad; 646 647 /* 648 * The caller of this function may specify to use the minimum MTU 649 * in some cases. 650 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 651 * setting. The logic is a bit complicated; by default, unicast 652 * packets will follow path MTU while multicast packets will be sent at 653 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 654 * including unicast ones will be sent at the minimum MTU. Multicast 655 * packets will always be sent at the minimum MTU unless 656 * IP6PO_MINMTU_DISABLE is explicitly specified. 657 * See RFC 3542 for more details. 658 */ 659 if (mtu > IPV6_MMTU) { 660 if ((flags & IPV6_MINMTU)) 661 mtu = IPV6_MMTU; 662 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 663 mtu = IPV6_MMTU; 664 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 665 (opt == NULL || 666 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 667 mtu = IPV6_MMTU; 668 } 669 } 670 671 /* 672 * clear embedded scope identifiers if necessary. 673 * in6_clearscope will touch the addresses only when necessary. 674 */ 675 in6_clearscope(&ip6->ip6_src); 676 in6_clearscope(&ip6->ip6_dst); 677 678 /* 679 * If the outgoing packet contains a hop-by-hop options header, 680 * it must be examined and processed even by the source node. 681 * (RFC 2460, section 4.) 682 */ 683 if (ip6->ip6_nxt == IPV6_HOPOPTS) { 684 u_int32_t dummy1; /* XXX unused */ 685 u_int32_t dummy2; /* XXX unused */ 686 int hoff = sizeof(struct ip6_hdr); 687 688 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) { 689 /* m was already freed at this point */ 690 error = EINVAL;/* better error? */ 691 goto done; 692 } 693 694 ip6 = mtod(m, struct ip6_hdr *); 695 } 696 697 /* 698 * Run through list of hooks for output packets. 699 */ 700 if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0) 701 goto done; 702 if (m == NULL) 703 goto done; 704 ip6 = mtod(m, struct ip6_hdr *); 705 706 /* 707 * Send the packet to the outgoing interface. 708 * If necessary, do IPv6 fragmentation before sending. 709 * 710 * the logic here is rather complex: 711 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 712 * 1-a: send as is if tlen <= path mtu 713 * 1-b: fragment if tlen > path mtu 714 * 715 * 2: if user asks us not to fragment (dontfrag == 1) 716 * 2-a: send as is if tlen <= interface mtu 717 * 2-b: error if tlen > interface mtu 718 * 719 * 3: if we always need to attach fragment header (alwaysfrag == 1) 720 * always fragment 721 * 722 * 4: if dontfrag == 1 && alwaysfrag == 1 723 * error, as we cannot handle this conflicting request 724 */ 725 tlen = m->m_pkthdr.len; 726 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0; 727 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 728 dontfrag = 1; 729 else 730 dontfrag = 0; 731 732 if (dontfrag && alwaysfrag) { /* case 4 */ 733 /* conflicting request - can't transmit */ 734 error = EMSGSIZE; 735 goto bad; 736 } 737 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */ 738 /* 739 * Even if the DONTFRAG option is specified, we cannot send the 740 * packet when the data length is larger than the MTU of the 741 * outgoing interface. 742 * Notify the error by sending IPV6_PATHMTU ancillary data as 743 * well as returning an error code (the latter is not described 744 * in the API spec.) 745 */ 746 u_int32_t mtu32; 747 struct ip6ctlparam ip6cp; 748 749 mtu32 = (u_int32_t)mtu; 750 memset(&ip6cp, 0, sizeof(ip6cp)); 751 ip6cp.ip6c_cmdarg = (void *)&mtu32; 752 pfctlinput2(PRC_MSGSIZE, 753 rtcache_getdst(ro_pmtu), &ip6cp); 754 755 error = EMSGSIZE; 756 goto bad; 757 } 758 759 /* 760 * transmit packet without fragmentation 761 */ 762 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) { 763 /* case 1-a and 2-a */ 764 struct in6_ifaddr *ia6; 765 int sw_csum; 766 int s; 767 768 ip6 = mtod(m, struct ip6_hdr *); 769 s = pserialize_read_enter(); 770 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 771 if (ia6) { 772 /* Record statistics for this interface address. */ 773 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len; 774 } 775 pserialize_read_exit(s); 776 777 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 778 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 779 if (IN6_NEED_CHECKSUM(ifp, 780 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 781 in6_delayed_cksum(m); 782 } 783 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 784 } 785 786 KASSERT(dst != NULL); 787 if (__predict_true(!tso || 788 (ifp->if_capenable & IFCAP_TSOv6) != 0)) { 789 error = nd6_output(ifp, origifp, m, dst, rt); 790 } else { 791 error = ip6_tso_output(ifp, origifp, m, dst, rt); 792 } 793 goto done; 794 } 795 796 if (tso) { 797 error = EINVAL; /* XXX */ 798 goto bad; 799 } 800 801 /* 802 * try to fragment the packet. case 1-b and 3 803 */ 804 if (mtu < IPV6_MMTU) { 805 /* path MTU cannot be less than IPV6_MMTU */ 806 error = EMSGSIZE; 807 in6_ifstat_inc(ifp, ifs6_out_fragfail); 808 goto bad; 809 } else if (ip6->ip6_plen == 0) { 810 /* jumbo payload cannot be fragmented */ 811 error = EMSGSIZE; 812 in6_ifstat_inc(ifp, ifs6_out_fragfail); 813 goto bad; 814 } else { 815 struct mbuf **mnext, *m_frgpart; 816 struct ip6_frag *ip6f; 817 u_int32_t id = htonl(ip6_randomid()); 818 u_char nextproto; 819 #if 0 /* see below */ 820 struct ip6ctlparam ip6cp; 821 u_int32_t mtu32; 822 #endif 823 824 /* 825 * Too large for the destination or interface; 826 * fragment if possible. 827 * Must be able to put at least 8 bytes per fragment. 828 */ 829 hlen = unfragpartlen; 830 if (mtu > IPV6_MAXPACKET) 831 mtu = IPV6_MAXPACKET; 832 833 #if 0 834 /* 835 * It is believed this code is a leftover from the 836 * development of the IPV6_RECVPATHMTU sockopt and 837 * associated work to implement RFC3542. 838 * It's not entirely clear what the intent of the API 839 * is at this point, so disable this code for now. 840 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG 841 * will send notifications if the application requests. 842 */ 843 844 /* Notify a proper path MTU to applications. */ 845 mtu32 = (u_int32_t)mtu; 846 memset(&ip6cp, 0, sizeof(ip6cp)); 847 ip6cp.ip6c_cmdarg = (void *)&mtu32; 848 pfctlinput2(PRC_MSGSIZE, 849 rtcache_getdst(ro_pmtu), &ip6cp); 850 #endif 851 852 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 853 if (len < 8) { 854 error = EMSGSIZE; 855 in6_ifstat_inc(ifp, ifs6_out_fragfail); 856 goto bad; 857 } 858 859 mnext = &m->m_nextpkt; 860 861 /* 862 * Change the next header field of the last header in the 863 * unfragmentable part. 864 */ 865 if (exthdrs.ip6e_rthdr) { 866 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 867 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 868 } else if (exthdrs.ip6e_dest1) { 869 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 870 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 871 } else if (exthdrs.ip6e_hbh) { 872 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 873 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 874 } else { 875 nextproto = ip6->ip6_nxt; 876 ip6->ip6_nxt = IPPROTO_FRAGMENT; 877 } 878 879 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) 880 != 0) { 881 if (IN6_NEED_CHECKSUM(ifp, 882 m->m_pkthdr.csum_flags & 883 (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 884 in6_delayed_cksum(m); 885 } 886 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 887 } 888 889 /* 890 * Loop through length of segment after first fragment, 891 * make new header and copy data of each part and link onto 892 * chain. 893 */ 894 m0 = m; 895 for (off = hlen; off < tlen; off += len) { 896 struct mbuf *mlast; 897 898 MGETHDR(m, M_DONTWAIT, MT_HEADER); 899 if (!m) { 900 error = ENOBUFS; 901 IP6_STATINC(IP6_STAT_ODROPPED); 902 goto sendorfree; 903 } 904 m_reset_rcvif(m); 905 m->m_flags = m0->m_flags & M_COPYFLAGS; 906 *mnext = m; 907 mnext = &m->m_nextpkt; 908 m->m_data += max_linkhdr; 909 mhip6 = mtod(m, struct ip6_hdr *); 910 *mhip6 = *ip6; 911 m->m_len = sizeof(*mhip6); 912 /* 913 * ip6f must be valid if error is 0. But how 914 * can a compiler be expected to infer this? 915 */ 916 ip6f = NULL; 917 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 918 if (error) { 919 IP6_STATINC(IP6_STAT_ODROPPED); 920 goto sendorfree; 921 } 922 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 923 if (off + len >= tlen) 924 len = tlen - off; 925 else 926 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 927 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 928 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 929 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 930 error = ENOBUFS; 931 IP6_STATINC(IP6_STAT_ODROPPED); 932 goto sendorfree; 933 } 934 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 935 ; 936 mlast->m_next = m_frgpart; 937 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 938 m_reset_rcvif(m); 939 ip6f->ip6f_reserved = 0; 940 ip6f->ip6f_ident = id; 941 ip6f->ip6f_nxt = nextproto; 942 IP6_STATINC(IP6_STAT_OFRAGMENTS); 943 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 944 } 945 946 in6_ifstat_inc(ifp, ifs6_out_fragok); 947 } 948 949 /* 950 * Remove leading garbages. 951 */ 952 sendorfree: 953 m = m0->m_nextpkt; 954 m0->m_nextpkt = 0; 955 m_freem(m0); 956 for (m0 = m; m; m = m0) { 957 m0 = m->m_nextpkt; 958 m->m_nextpkt = 0; 959 if (error == 0) { 960 struct in6_ifaddr *ia6; 961 int s; 962 ip6 = mtod(m, struct ip6_hdr *); 963 s = pserialize_read_enter(); 964 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 965 if (ia6) { 966 /* 967 * Record statistics for this interface 968 * address. 969 */ 970 ia6->ia_ifa.ifa_data.ifad_outbytes += 971 m->m_pkthdr.len; 972 } 973 pserialize_read_exit(s); 974 KASSERT(dst != NULL); 975 error = nd6_output(ifp, origifp, m, dst, rt); 976 } else 977 m_freem(m); 978 } 979 980 if (error == 0) 981 IP6_STATINC(IP6_STAT_FRAGMENTED); 982 983 done: 984 if (ro == &ip6route) 985 rtcache_free(&ip6route); 986 987 #ifdef IPSEC 988 if (sp != NULL) 989 KEY_FREESP(&sp); 990 #endif /* IPSEC */ 991 992 if_put(ifp, &psref); 993 if (release_psref_ia) 994 if_put(origifp, &psref_ia); 995 curlwp_bindx(bound); 996 997 return (error); 998 999 freehdrs: 1000 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1001 m_freem(exthdrs.ip6e_dest1); 1002 m_freem(exthdrs.ip6e_rthdr); 1003 m_freem(exthdrs.ip6e_dest2); 1004 /* FALLTHROUGH */ 1005 bad: 1006 m_freem(m); 1007 goto done; 1008 badscope: 1009 IP6_STATINC(IP6_STAT_BADSCOPE); 1010 in6_ifstat_inc(origifp, ifs6_out_discard); 1011 if (error == 0) 1012 error = EHOSTUNREACH; /* XXX */ 1013 goto bad; 1014 } 1015 1016 static int 1017 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen) 1018 { 1019 struct mbuf *m; 1020 1021 if (hlen > MCLBYTES) 1022 return (ENOBUFS); /* XXX */ 1023 1024 MGET(m, M_DONTWAIT, MT_DATA); 1025 if (!m) 1026 return (ENOBUFS); 1027 1028 if (hlen > MLEN) { 1029 MCLGET(m, M_DONTWAIT); 1030 if ((m->m_flags & M_EXT) == 0) { 1031 m_free(m); 1032 return (ENOBUFS); 1033 } 1034 } 1035 m->m_len = hlen; 1036 if (hdr) 1037 bcopy(hdr, mtod(m, void *), hlen); 1038 1039 *mp = m; 1040 return (0); 1041 } 1042 1043 /* 1044 * Process a delayed payload checksum calculation. 1045 */ 1046 void 1047 in6_delayed_cksum(struct mbuf *m) 1048 { 1049 uint16_t csum, offset; 1050 1051 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1052 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1053 KASSERT((m->m_pkthdr.csum_flags 1054 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0); 1055 1056 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data); 1057 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset); 1058 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) { 1059 csum = 0xffff; 1060 } 1061 1062 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data); 1063 if ((offset + sizeof(csum)) > m->m_len) { 1064 m_copyback(m, offset, sizeof(csum), &csum); 1065 } else { 1066 *(uint16_t *)(mtod(m, char *) + offset) = csum; 1067 } 1068 } 1069 1070 /* 1071 * Insert jumbo payload option. 1072 */ 1073 static int 1074 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1075 { 1076 struct mbuf *mopt; 1077 u_int8_t *optbuf; 1078 u_int32_t v; 1079 1080 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1081 1082 /* 1083 * If there is no hop-by-hop options header, allocate new one. 1084 * If there is one but it doesn't have enough space to store the 1085 * jumbo payload option, allocate a cluster to store the whole options. 1086 * Otherwise, use it to store the options. 1087 */ 1088 if (exthdrs->ip6e_hbh == 0) { 1089 MGET(mopt, M_DONTWAIT, MT_DATA); 1090 if (mopt == 0) 1091 return (ENOBUFS); 1092 mopt->m_len = JUMBOOPTLEN; 1093 optbuf = mtod(mopt, u_int8_t *); 1094 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1095 exthdrs->ip6e_hbh = mopt; 1096 } else { 1097 struct ip6_hbh *hbh; 1098 1099 mopt = exthdrs->ip6e_hbh; 1100 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1101 /* 1102 * XXX assumption: 1103 * - exthdrs->ip6e_hbh is not referenced from places 1104 * other than exthdrs. 1105 * - exthdrs->ip6e_hbh is not an mbuf chain. 1106 */ 1107 int oldoptlen = mopt->m_len; 1108 struct mbuf *n; 1109 1110 /* 1111 * XXX: give up if the whole (new) hbh header does 1112 * not fit even in an mbuf cluster. 1113 */ 1114 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1115 return (ENOBUFS); 1116 1117 /* 1118 * As a consequence, we must always prepare a cluster 1119 * at this point. 1120 */ 1121 MGET(n, M_DONTWAIT, MT_DATA); 1122 if (n) { 1123 MCLGET(n, M_DONTWAIT); 1124 if ((n->m_flags & M_EXT) == 0) { 1125 m_freem(n); 1126 n = NULL; 1127 } 1128 } 1129 if (!n) 1130 return (ENOBUFS); 1131 n->m_len = oldoptlen + JUMBOOPTLEN; 1132 bcopy(mtod(mopt, void *), mtod(n, void *), 1133 oldoptlen); 1134 optbuf = mtod(n, u_int8_t *) + oldoptlen; 1135 m_freem(mopt); 1136 mopt = exthdrs->ip6e_hbh = n; 1137 } else { 1138 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 1139 mopt->m_len += JUMBOOPTLEN; 1140 } 1141 optbuf[0] = IP6OPT_PADN; 1142 optbuf[1] = 0; 1143 1144 /* 1145 * Adjust the header length according to the pad and 1146 * the jumbo payload option. 1147 */ 1148 hbh = mtod(mopt, struct ip6_hbh *); 1149 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1150 } 1151 1152 /* fill in the option. */ 1153 optbuf[2] = IP6OPT_JUMBO; 1154 optbuf[3] = 4; 1155 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1156 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1157 1158 /* finally, adjust the packet header length */ 1159 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1160 1161 return (0); 1162 #undef JUMBOOPTLEN 1163 } 1164 1165 /* 1166 * Insert fragment header and copy unfragmentable header portions. 1167 * 1168 * *frghdrp will not be read, and it is guaranteed that either an 1169 * error is returned or that *frghdrp will point to space allocated 1170 * for the fragment header. 1171 */ 1172 static int 1173 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1174 struct ip6_frag **frghdrp) 1175 { 1176 struct mbuf *n, *mlast; 1177 1178 if (hlen > sizeof(struct ip6_hdr)) { 1179 n = m_copym(m0, sizeof(struct ip6_hdr), 1180 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1181 if (n == 0) 1182 return (ENOBUFS); 1183 m->m_next = n; 1184 } else 1185 n = m; 1186 1187 /* Search for the last mbuf of unfragmentable part. */ 1188 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1189 ; 1190 1191 if ((mlast->m_flags & M_EXT) == 0 && 1192 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1193 /* use the trailing space of the last mbuf for the fragment hdr */ 1194 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) + 1195 mlast->m_len); 1196 mlast->m_len += sizeof(struct ip6_frag); 1197 m->m_pkthdr.len += sizeof(struct ip6_frag); 1198 } else { 1199 /* allocate a new mbuf for the fragment header */ 1200 struct mbuf *mfrg; 1201 1202 MGET(mfrg, M_DONTWAIT, MT_DATA); 1203 if (mfrg == 0) 1204 return (ENOBUFS); 1205 mfrg->m_len = sizeof(struct ip6_frag); 1206 *frghdrp = mtod(mfrg, struct ip6_frag *); 1207 mlast->m_next = mfrg; 1208 } 1209 1210 return (0); 1211 } 1212 1213 static int 1214 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp, 1215 const struct in6_addr *dst, u_long *mtup, int *alwaysfragp) 1216 { 1217 struct rtentry *rt; 1218 u_int32_t mtu = 0; 1219 int alwaysfrag = 0; 1220 int error = 0; 1221 1222 if (ro_pmtu != ro) { 1223 union { 1224 struct sockaddr dst; 1225 struct sockaddr_in6 dst6; 1226 } u; 1227 1228 /* The first hop and the final destination may differ. */ 1229 sockaddr_in6_init(&u.dst6, dst, 0, 0, 0); 1230 rt = rtcache_lookup(ro_pmtu, &u.dst); 1231 } else 1232 rt = rtcache_validate(ro_pmtu); 1233 if (rt != NULL) { 1234 u_int32_t ifmtu; 1235 1236 if (ifp == NULL) 1237 ifp = rt->rt_ifp; 1238 ifmtu = IN6_LINKMTU(ifp); 1239 mtu = rt->rt_rmx.rmx_mtu; 1240 if (mtu == 0) 1241 mtu = ifmtu; 1242 else if (mtu < IPV6_MMTU) { 1243 /* 1244 * RFC2460 section 5, last paragraph: 1245 * if we record ICMPv6 too big message with 1246 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1247 * or smaller, with fragment header attached. 1248 * (fragment header is needed regardless from the 1249 * packet size, for translators to identify packets) 1250 */ 1251 alwaysfrag = 1; 1252 mtu = IPV6_MMTU; 1253 } else if (mtu > ifmtu) { 1254 /* 1255 * The MTU on the route is larger than the MTU on 1256 * the interface! This shouldn't happen, unless the 1257 * MTU of the interface has been changed after the 1258 * interface was brought up. Change the MTU in the 1259 * route to match the interface MTU (as long as the 1260 * field isn't locked). 1261 */ 1262 mtu = ifmtu; 1263 if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) 1264 rt->rt_rmx.rmx_mtu = mtu; 1265 } 1266 } else if (ifp) { 1267 mtu = IN6_LINKMTU(ifp); 1268 } else 1269 error = EHOSTUNREACH; /* XXX */ 1270 1271 *mtup = mtu; 1272 if (alwaysfragp) 1273 *alwaysfragp = alwaysfrag; 1274 return (error); 1275 } 1276 1277 /* 1278 * IP6 socket option processing. 1279 */ 1280 int 1281 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1282 { 1283 int optdatalen, uproto; 1284 void *optdata; 1285 struct in6pcb *in6p = sotoin6pcb(so); 1286 struct ip_moptions **mopts; 1287 int error, optval; 1288 int level, optname; 1289 1290 KASSERT(sopt != NULL); 1291 1292 level = sopt->sopt_level; 1293 optname = sopt->sopt_name; 1294 1295 error = optval = 0; 1296 uproto = (int)so->so_proto->pr_protocol; 1297 1298 switch (level) { 1299 case IPPROTO_IP: 1300 switch (optname) { 1301 case IP_ADD_MEMBERSHIP: 1302 case IP_DROP_MEMBERSHIP: 1303 case IP_MULTICAST_IF: 1304 case IP_MULTICAST_LOOP: 1305 case IP_MULTICAST_TTL: 1306 mopts = &in6p->in6p_v4moptions; 1307 switch (op) { 1308 case PRCO_GETOPT: 1309 return ip_getmoptions(*mopts, sopt); 1310 case PRCO_SETOPT: 1311 return ip_setmoptions(mopts, sopt); 1312 default: 1313 return EINVAL; 1314 } 1315 default: 1316 return ENOPROTOOPT; 1317 } 1318 case IPPROTO_IPV6: 1319 break; 1320 default: 1321 return ENOPROTOOPT; 1322 } 1323 switch (op) { 1324 case PRCO_SETOPT: 1325 switch (optname) { 1326 #ifdef RFC2292 1327 case IPV6_2292PKTOPTIONS: 1328 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt); 1329 break; 1330 #endif 1331 1332 /* 1333 * Use of some Hop-by-Hop options or some 1334 * Destination options, might require special 1335 * privilege. That is, normal applications 1336 * (without special privilege) might be forbidden 1337 * from setting certain options in outgoing packets, 1338 * and might never see certain options in received 1339 * packets. [RFC 2292 Section 6] 1340 * KAME specific note: 1341 * KAME prevents non-privileged users from sending or 1342 * receiving ANY hbh/dst options in order to avoid 1343 * overhead of parsing options in the kernel. 1344 */ 1345 case IPV6_RECVHOPOPTS: 1346 case IPV6_RECVDSTOPTS: 1347 case IPV6_RECVRTHDRDSTOPTS: 1348 error = kauth_authorize_network(kauth_cred_get(), 1349 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, 1350 NULL, NULL, NULL); 1351 if (error) 1352 break; 1353 /* FALLTHROUGH */ 1354 case IPV6_UNICAST_HOPS: 1355 case IPV6_HOPLIMIT: 1356 case IPV6_FAITH: 1357 1358 case IPV6_RECVPKTINFO: 1359 case IPV6_RECVHOPLIMIT: 1360 case IPV6_RECVRTHDR: 1361 case IPV6_RECVPATHMTU: 1362 case IPV6_RECVTCLASS: 1363 case IPV6_V6ONLY: 1364 error = sockopt_getint(sopt, &optval); 1365 if (error) 1366 break; 1367 switch (optname) { 1368 case IPV6_UNICAST_HOPS: 1369 if (optval < -1 || optval >= 256) 1370 error = EINVAL; 1371 else { 1372 /* -1 = kernel default */ 1373 in6p->in6p_hops = optval; 1374 } 1375 break; 1376 #define OPTSET(bit) \ 1377 do { \ 1378 if (optval) \ 1379 in6p->in6p_flags |= (bit); \ 1380 else \ 1381 in6p->in6p_flags &= ~(bit); \ 1382 } while (/*CONSTCOND*/ 0) 1383 1384 #ifdef RFC2292 1385 #define OPTSET2292(bit) \ 1386 do { \ 1387 in6p->in6p_flags |= IN6P_RFC2292; \ 1388 if (optval) \ 1389 in6p->in6p_flags |= (bit); \ 1390 else \ 1391 in6p->in6p_flags &= ~(bit); \ 1392 } while (/*CONSTCOND*/ 0) 1393 #endif 1394 1395 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1396 1397 case IPV6_RECVPKTINFO: 1398 #ifdef RFC2292 1399 /* cannot mix with RFC2292 */ 1400 if (OPTBIT(IN6P_RFC2292)) { 1401 error = EINVAL; 1402 break; 1403 } 1404 #endif 1405 OPTSET(IN6P_PKTINFO); 1406 break; 1407 1408 case IPV6_HOPLIMIT: 1409 { 1410 struct ip6_pktopts **optp; 1411 1412 #ifdef RFC2292 1413 /* cannot mix with RFC2292 */ 1414 if (OPTBIT(IN6P_RFC2292)) { 1415 error = EINVAL; 1416 break; 1417 } 1418 #endif 1419 optp = &in6p->in6p_outputopts; 1420 error = ip6_pcbopt(IPV6_HOPLIMIT, 1421 (u_char *)&optval, 1422 sizeof(optval), 1423 optp, 1424 kauth_cred_get(), uproto); 1425 break; 1426 } 1427 1428 case IPV6_RECVHOPLIMIT: 1429 #ifdef RFC2292 1430 /* cannot mix with RFC2292 */ 1431 if (OPTBIT(IN6P_RFC2292)) { 1432 error = EINVAL; 1433 break; 1434 } 1435 #endif 1436 OPTSET(IN6P_HOPLIMIT); 1437 break; 1438 1439 case IPV6_RECVHOPOPTS: 1440 #ifdef RFC2292 1441 /* cannot mix with RFC2292 */ 1442 if (OPTBIT(IN6P_RFC2292)) { 1443 error = EINVAL; 1444 break; 1445 } 1446 #endif 1447 OPTSET(IN6P_HOPOPTS); 1448 break; 1449 1450 case IPV6_RECVDSTOPTS: 1451 #ifdef RFC2292 1452 /* cannot mix with RFC2292 */ 1453 if (OPTBIT(IN6P_RFC2292)) { 1454 error = EINVAL; 1455 break; 1456 } 1457 #endif 1458 OPTSET(IN6P_DSTOPTS); 1459 break; 1460 1461 case IPV6_RECVRTHDRDSTOPTS: 1462 #ifdef RFC2292 1463 /* cannot mix with RFC2292 */ 1464 if (OPTBIT(IN6P_RFC2292)) { 1465 error = EINVAL; 1466 break; 1467 } 1468 #endif 1469 OPTSET(IN6P_RTHDRDSTOPTS); 1470 break; 1471 1472 case IPV6_RECVRTHDR: 1473 #ifdef RFC2292 1474 /* cannot mix with RFC2292 */ 1475 if (OPTBIT(IN6P_RFC2292)) { 1476 error = EINVAL; 1477 break; 1478 } 1479 #endif 1480 OPTSET(IN6P_RTHDR); 1481 break; 1482 1483 case IPV6_FAITH: 1484 OPTSET(IN6P_FAITH); 1485 break; 1486 1487 case IPV6_RECVPATHMTU: 1488 /* 1489 * We ignore this option for TCP 1490 * sockets. 1491 * (RFC3542 leaves this case 1492 * unspecified.) 1493 */ 1494 if (uproto != IPPROTO_TCP) 1495 OPTSET(IN6P_MTU); 1496 break; 1497 1498 case IPV6_V6ONLY: 1499 /* 1500 * make setsockopt(IPV6_V6ONLY) 1501 * available only prior to bind(2). 1502 * see ipng mailing list, Jun 22 2001. 1503 */ 1504 if (in6p->in6p_lport || 1505 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1506 error = EINVAL; 1507 break; 1508 } 1509 #ifdef INET6_BINDV6ONLY 1510 if (!optval) 1511 error = EINVAL; 1512 #else 1513 OPTSET(IN6P_IPV6_V6ONLY); 1514 #endif 1515 break; 1516 case IPV6_RECVTCLASS: 1517 #ifdef RFC2292 1518 /* cannot mix with RFC2292 XXX */ 1519 if (OPTBIT(IN6P_RFC2292)) { 1520 error = EINVAL; 1521 break; 1522 } 1523 #endif 1524 OPTSET(IN6P_TCLASS); 1525 break; 1526 1527 } 1528 break; 1529 1530 case IPV6_OTCLASS: 1531 { 1532 struct ip6_pktopts **optp; 1533 u_int8_t tclass; 1534 1535 error = sockopt_get(sopt, &tclass, sizeof(tclass)); 1536 if (error) 1537 break; 1538 optp = &in6p->in6p_outputopts; 1539 error = ip6_pcbopt(optname, 1540 (u_char *)&tclass, 1541 sizeof(tclass), 1542 optp, 1543 kauth_cred_get(), uproto); 1544 break; 1545 } 1546 1547 case IPV6_TCLASS: 1548 case IPV6_DONTFRAG: 1549 case IPV6_USE_MIN_MTU: 1550 case IPV6_PREFER_TEMPADDR: 1551 error = sockopt_getint(sopt, &optval); 1552 if (error) 1553 break; 1554 { 1555 struct ip6_pktopts **optp; 1556 optp = &in6p->in6p_outputopts; 1557 error = ip6_pcbopt(optname, 1558 (u_char *)&optval, 1559 sizeof(optval), 1560 optp, 1561 kauth_cred_get(), uproto); 1562 break; 1563 } 1564 1565 #ifdef RFC2292 1566 case IPV6_2292PKTINFO: 1567 case IPV6_2292HOPLIMIT: 1568 case IPV6_2292HOPOPTS: 1569 case IPV6_2292DSTOPTS: 1570 case IPV6_2292RTHDR: 1571 /* RFC 2292 */ 1572 error = sockopt_getint(sopt, &optval); 1573 if (error) 1574 break; 1575 1576 switch (optname) { 1577 case IPV6_2292PKTINFO: 1578 OPTSET2292(IN6P_PKTINFO); 1579 break; 1580 case IPV6_2292HOPLIMIT: 1581 OPTSET2292(IN6P_HOPLIMIT); 1582 break; 1583 case IPV6_2292HOPOPTS: 1584 /* 1585 * Check super-user privilege. 1586 * See comments for IPV6_RECVHOPOPTS. 1587 */ 1588 error = 1589 kauth_authorize_network(kauth_cred_get(), 1590 KAUTH_NETWORK_IPV6, 1591 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1592 NULL, NULL); 1593 if (error) 1594 return (error); 1595 OPTSET2292(IN6P_HOPOPTS); 1596 break; 1597 case IPV6_2292DSTOPTS: 1598 error = 1599 kauth_authorize_network(kauth_cred_get(), 1600 KAUTH_NETWORK_IPV6, 1601 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1602 NULL, NULL); 1603 if (error) 1604 return (error); 1605 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1606 break; 1607 case IPV6_2292RTHDR: 1608 OPTSET2292(IN6P_RTHDR); 1609 break; 1610 } 1611 break; 1612 #endif 1613 case IPV6_PKTINFO: 1614 case IPV6_HOPOPTS: 1615 case IPV6_RTHDR: 1616 case IPV6_DSTOPTS: 1617 case IPV6_RTHDRDSTOPTS: 1618 case IPV6_NEXTHOP: { 1619 /* new advanced API (RFC3542) */ 1620 void *optbuf; 1621 int optbuflen; 1622 struct ip6_pktopts **optp; 1623 1624 #ifdef RFC2292 1625 /* cannot mix with RFC2292 */ 1626 if (OPTBIT(IN6P_RFC2292)) { 1627 error = EINVAL; 1628 break; 1629 } 1630 #endif 1631 1632 optbuflen = sopt->sopt_size; 1633 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT); 1634 if (optbuf == NULL) { 1635 error = ENOBUFS; 1636 break; 1637 } 1638 1639 error = sockopt_get(sopt, optbuf, optbuflen); 1640 if (error) { 1641 free(optbuf, M_IP6OPT); 1642 break; 1643 } 1644 optp = &in6p->in6p_outputopts; 1645 error = ip6_pcbopt(optname, optbuf, optbuflen, 1646 optp, kauth_cred_get(), uproto); 1647 1648 free(optbuf, M_IP6OPT); 1649 break; 1650 } 1651 #undef OPTSET 1652 1653 case IPV6_MULTICAST_IF: 1654 case IPV6_MULTICAST_HOPS: 1655 case IPV6_MULTICAST_LOOP: 1656 case IPV6_JOIN_GROUP: 1657 case IPV6_LEAVE_GROUP: 1658 error = ip6_setmoptions(sopt, in6p); 1659 break; 1660 1661 case IPV6_PORTRANGE: 1662 error = sockopt_getint(sopt, &optval); 1663 if (error) 1664 break; 1665 1666 switch (optval) { 1667 case IPV6_PORTRANGE_DEFAULT: 1668 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1669 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1670 break; 1671 1672 case IPV6_PORTRANGE_HIGH: 1673 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1674 in6p->in6p_flags |= IN6P_HIGHPORT; 1675 break; 1676 1677 case IPV6_PORTRANGE_LOW: 1678 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1679 in6p->in6p_flags |= IN6P_LOWPORT; 1680 break; 1681 1682 default: 1683 error = EINVAL; 1684 break; 1685 } 1686 break; 1687 1688 case IPV6_PORTALGO: 1689 error = sockopt_getint(sopt, &optval); 1690 if (error) 1691 break; 1692 1693 error = portalgo_algo_index_select( 1694 (struct inpcb_hdr *)in6p, optval); 1695 break; 1696 1697 #if defined(IPSEC) 1698 case IPV6_IPSEC_POLICY: 1699 if (ipsec_enabled) { 1700 error = ipsec6_set_policy(in6p, optname, 1701 sopt->sopt_data, sopt->sopt_size, 1702 kauth_cred_get()); 1703 break; 1704 } 1705 /*FALLTHROUGH*/ 1706 #endif /* IPSEC */ 1707 1708 default: 1709 error = ENOPROTOOPT; 1710 break; 1711 } 1712 break; 1713 1714 case PRCO_GETOPT: 1715 switch (optname) { 1716 #ifdef RFC2292 1717 case IPV6_2292PKTOPTIONS: 1718 /* 1719 * RFC3542 (effectively) deprecated the 1720 * semantics of the 2292-style pktoptions. 1721 * Since it was not reliable in nature (i.e., 1722 * applications had to expect the lack of some 1723 * information after all), it would make sense 1724 * to simplify this part by always returning 1725 * empty data. 1726 */ 1727 break; 1728 #endif 1729 1730 case IPV6_RECVHOPOPTS: 1731 case IPV6_RECVDSTOPTS: 1732 case IPV6_RECVRTHDRDSTOPTS: 1733 case IPV6_UNICAST_HOPS: 1734 case IPV6_RECVPKTINFO: 1735 case IPV6_RECVHOPLIMIT: 1736 case IPV6_RECVRTHDR: 1737 case IPV6_RECVPATHMTU: 1738 1739 case IPV6_FAITH: 1740 case IPV6_V6ONLY: 1741 case IPV6_PORTRANGE: 1742 case IPV6_RECVTCLASS: 1743 switch (optname) { 1744 1745 case IPV6_RECVHOPOPTS: 1746 optval = OPTBIT(IN6P_HOPOPTS); 1747 break; 1748 1749 case IPV6_RECVDSTOPTS: 1750 optval = OPTBIT(IN6P_DSTOPTS); 1751 break; 1752 1753 case IPV6_RECVRTHDRDSTOPTS: 1754 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1755 break; 1756 1757 case IPV6_UNICAST_HOPS: 1758 optval = in6p->in6p_hops; 1759 break; 1760 1761 case IPV6_RECVPKTINFO: 1762 optval = OPTBIT(IN6P_PKTINFO); 1763 break; 1764 1765 case IPV6_RECVHOPLIMIT: 1766 optval = OPTBIT(IN6P_HOPLIMIT); 1767 break; 1768 1769 case IPV6_RECVRTHDR: 1770 optval = OPTBIT(IN6P_RTHDR); 1771 break; 1772 1773 case IPV6_RECVPATHMTU: 1774 optval = OPTBIT(IN6P_MTU); 1775 break; 1776 1777 case IPV6_FAITH: 1778 optval = OPTBIT(IN6P_FAITH); 1779 break; 1780 1781 case IPV6_V6ONLY: 1782 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1783 break; 1784 1785 case IPV6_PORTRANGE: 1786 { 1787 int flags; 1788 flags = in6p->in6p_flags; 1789 if (flags & IN6P_HIGHPORT) 1790 optval = IPV6_PORTRANGE_HIGH; 1791 else if (flags & IN6P_LOWPORT) 1792 optval = IPV6_PORTRANGE_LOW; 1793 else 1794 optval = 0; 1795 break; 1796 } 1797 case IPV6_RECVTCLASS: 1798 optval = OPTBIT(IN6P_TCLASS); 1799 break; 1800 1801 } 1802 if (error) 1803 break; 1804 error = sockopt_setint(sopt, optval); 1805 break; 1806 1807 case IPV6_PATHMTU: 1808 { 1809 u_long pmtu = 0; 1810 struct ip6_mtuinfo mtuinfo; 1811 struct route *ro = &in6p->in6p_route; 1812 1813 if (!(so->so_state & SS_ISCONNECTED)) 1814 return (ENOTCONN); 1815 /* 1816 * XXX: we dot not consider the case of source 1817 * routing, or optional information to specify 1818 * the outgoing interface. 1819 */ 1820 error = ip6_getpmtu(ro, NULL, NULL, 1821 &in6p->in6p_faddr, &pmtu, NULL); 1822 if (error) 1823 break; 1824 if (pmtu > IPV6_MAXPACKET) 1825 pmtu = IPV6_MAXPACKET; 1826 1827 memset(&mtuinfo, 0, sizeof(mtuinfo)); 1828 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1829 optdata = (void *)&mtuinfo; 1830 optdatalen = sizeof(mtuinfo); 1831 if (optdatalen > MCLBYTES) 1832 return (EMSGSIZE); /* XXX */ 1833 error = sockopt_set(sopt, optdata, optdatalen); 1834 break; 1835 } 1836 1837 #ifdef RFC2292 1838 case IPV6_2292PKTINFO: 1839 case IPV6_2292HOPLIMIT: 1840 case IPV6_2292HOPOPTS: 1841 case IPV6_2292RTHDR: 1842 case IPV6_2292DSTOPTS: 1843 switch (optname) { 1844 case IPV6_2292PKTINFO: 1845 optval = OPTBIT(IN6P_PKTINFO); 1846 break; 1847 case IPV6_2292HOPLIMIT: 1848 optval = OPTBIT(IN6P_HOPLIMIT); 1849 break; 1850 case IPV6_2292HOPOPTS: 1851 optval = OPTBIT(IN6P_HOPOPTS); 1852 break; 1853 case IPV6_2292RTHDR: 1854 optval = OPTBIT(IN6P_RTHDR); 1855 break; 1856 case IPV6_2292DSTOPTS: 1857 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1858 break; 1859 } 1860 error = sockopt_setint(sopt, optval); 1861 break; 1862 #endif 1863 case IPV6_PKTINFO: 1864 case IPV6_HOPOPTS: 1865 case IPV6_RTHDR: 1866 case IPV6_DSTOPTS: 1867 case IPV6_RTHDRDSTOPTS: 1868 case IPV6_NEXTHOP: 1869 case IPV6_OTCLASS: 1870 case IPV6_TCLASS: 1871 case IPV6_DONTFRAG: 1872 case IPV6_USE_MIN_MTU: 1873 case IPV6_PREFER_TEMPADDR: 1874 error = ip6_getpcbopt(in6p->in6p_outputopts, 1875 optname, sopt); 1876 break; 1877 1878 case IPV6_MULTICAST_IF: 1879 case IPV6_MULTICAST_HOPS: 1880 case IPV6_MULTICAST_LOOP: 1881 case IPV6_JOIN_GROUP: 1882 case IPV6_LEAVE_GROUP: 1883 error = ip6_getmoptions(sopt, in6p); 1884 break; 1885 1886 case IPV6_PORTALGO: 1887 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo; 1888 error = sockopt_setint(sopt, optval); 1889 break; 1890 1891 #if defined(IPSEC) 1892 case IPV6_IPSEC_POLICY: 1893 if (ipsec_used) { 1894 struct mbuf *m = NULL; 1895 1896 /* 1897 * XXX: this will return EINVAL as sopt is 1898 * empty 1899 */ 1900 error = ipsec6_get_policy(in6p, sopt->sopt_data, 1901 sopt->sopt_size, &m); 1902 if (!error) 1903 error = sockopt_setmbuf(sopt, m); 1904 break; 1905 } 1906 /*FALLTHROUGH*/ 1907 #endif /* IPSEC */ 1908 1909 default: 1910 error = ENOPROTOOPT; 1911 break; 1912 } 1913 break; 1914 } 1915 return (error); 1916 } 1917 1918 int 1919 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1920 { 1921 int error = 0, optval; 1922 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 1923 struct in6pcb *in6p = sotoin6pcb(so); 1924 int level, optname; 1925 1926 KASSERT(sopt != NULL); 1927 1928 level = sopt->sopt_level; 1929 optname = sopt->sopt_name; 1930 1931 if (level != IPPROTO_IPV6) { 1932 return ENOPROTOOPT; 1933 } 1934 1935 switch (optname) { 1936 case IPV6_CHECKSUM: 1937 /* 1938 * For ICMPv6 sockets, no modification allowed for checksum 1939 * offset, permit "no change" values to help existing apps. 1940 * 1941 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM 1942 * for an ICMPv6 socket will fail." The current 1943 * behavior does not meet RFC3542. 1944 */ 1945 switch (op) { 1946 case PRCO_SETOPT: 1947 error = sockopt_getint(sopt, &optval); 1948 if (error) 1949 break; 1950 if ((optval % 2) != 0) { 1951 /* the API assumes even offset values */ 1952 error = EINVAL; 1953 } else if (so->so_proto->pr_protocol == 1954 IPPROTO_ICMPV6) { 1955 if (optval != icmp6off) 1956 error = EINVAL; 1957 } else 1958 in6p->in6p_cksum = optval; 1959 break; 1960 1961 case PRCO_GETOPT: 1962 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 1963 optval = icmp6off; 1964 else 1965 optval = in6p->in6p_cksum; 1966 1967 error = sockopt_setint(sopt, optval); 1968 break; 1969 1970 default: 1971 error = EINVAL; 1972 break; 1973 } 1974 break; 1975 1976 default: 1977 error = ENOPROTOOPT; 1978 break; 1979 } 1980 1981 return (error); 1982 } 1983 1984 #ifdef RFC2292 1985 /* 1986 * Set up IP6 options in pcb for insertion in output packets or 1987 * specifying behavior of outgoing packets. 1988 */ 1989 static int 1990 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so, 1991 struct sockopt *sopt) 1992 { 1993 struct ip6_pktopts *opt = *pktopt; 1994 struct mbuf *m; 1995 int error = 0; 1996 1997 /* turn off any old options. */ 1998 if (opt) { 1999 #ifdef DIAGNOSTIC 2000 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2001 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2002 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2003 printf("ip6_pcbopts: all specified options are cleared.\n"); 2004 #endif 2005 ip6_clearpktopts(opt, -1); 2006 } else { 2007 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2008 if (opt == NULL) 2009 return (ENOBUFS); 2010 } 2011 *pktopt = NULL; 2012 2013 if (sopt == NULL || sopt->sopt_size == 0) { 2014 /* 2015 * Only turning off any previous options, regardless of 2016 * whether the opt is just created or given. 2017 */ 2018 free(opt, M_IP6OPT); 2019 return (0); 2020 } 2021 2022 /* set options specified by user. */ 2023 m = sockopt_getmbuf(sopt); 2024 if (m == NULL) { 2025 free(opt, M_IP6OPT); 2026 return (ENOBUFS); 2027 } 2028 2029 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(), 2030 so->so_proto->pr_protocol); 2031 m_freem(m); 2032 if (error != 0) { 2033 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2034 free(opt, M_IP6OPT); 2035 return (error); 2036 } 2037 *pktopt = opt; 2038 return (0); 2039 } 2040 #endif 2041 2042 /* 2043 * initialize ip6_pktopts. beware that there are non-zero default values in 2044 * the struct. 2045 */ 2046 void 2047 ip6_initpktopts(struct ip6_pktopts *opt) 2048 { 2049 2050 memset(opt, 0, sizeof(*opt)); 2051 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2052 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2053 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2054 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2055 } 2056 2057 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */ 2058 static int 2059 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2060 kauth_cred_t cred, int uproto) 2061 { 2062 struct ip6_pktopts *opt; 2063 2064 if (*pktopt == NULL) { 2065 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2066 M_NOWAIT); 2067 if (*pktopt == NULL) 2068 return (ENOBUFS); 2069 2070 ip6_initpktopts(*pktopt); 2071 } 2072 opt = *pktopt; 2073 2074 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2075 } 2076 2077 static int 2078 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2079 { 2080 void *optdata = NULL; 2081 int optdatalen = 0; 2082 struct ip6_ext *ip6e; 2083 int error = 0; 2084 struct in6_pktinfo null_pktinfo; 2085 int deftclass = 0, on; 2086 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2087 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2088 2089 switch (optname) { 2090 case IPV6_PKTINFO: 2091 if (pktopt && pktopt->ip6po_pktinfo) 2092 optdata = (void *)pktopt->ip6po_pktinfo; 2093 else { 2094 /* XXX: we don't have to do this every time... */ 2095 memset(&null_pktinfo, 0, sizeof(null_pktinfo)); 2096 optdata = (void *)&null_pktinfo; 2097 } 2098 optdatalen = sizeof(struct in6_pktinfo); 2099 break; 2100 case IPV6_OTCLASS: 2101 /* XXX */ 2102 return (EINVAL); 2103 case IPV6_TCLASS: 2104 if (pktopt && pktopt->ip6po_tclass >= 0) 2105 optdata = (void *)&pktopt->ip6po_tclass; 2106 else 2107 optdata = (void *)&deftclass; 2108 optdatalen = sizeof(int); 2109 break; 2110 case IPV6_HOPOPTS: 2111 if (pktopt && pktopt->ip6po_hbh) { 2112 optdata = (void *)pktopt->ip6po_hbh; 2113 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2114 optdatalen = (ip6e->ip6e_len + 1) << 3; 2115 } 2116 break; 2117 case IPV6_RTHDR: 2118 if (pktopt && pktopt->ip6po_rthdr) { 2119 optdata = (void *)pktopt->ip6po_rthdr; 2120 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2121 optdatalen = (ip6e->ip6e_len + 1) << 3; 2122 } 2123 break; 2124 case IPV6_RTHDRDSTOPTS: 2125 if (pktopt && pktopt->ip6po_dest1) { 2126 optdata = (void *)pktopt->ip6po_dest1; 2127 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2128 optdatalen = (ip6e->ip6e_len + 1) << 3; 2129 } 2130 break; 2131 case IPV6_DSTOPTS: 2132 if (pktopt && pktopt->ip6po_dest2) { 2133 optdata = (void *)pktopt->ip6po_dest2; 2134 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2135 optdatalen = (ip6e->ip6e_len + 1) << 3; 2136 } 2137 break; 2138 case IPV6_NEXTHOP: 2139 if (pktopt && pktopt->ip6po_nexthop) { 2140 optdata = (void *)pktopt->ip6po_nexthop; 2141 optdatalen = pktopt->ip6po_nexthop->sa_len; 2142 } 2143 break; 2144 case IPV6_USE_MIN_MTU: 2145 if (pktopt) 2146 optdata = (void *)&pktopt->ip6po_minmtu; 2147 else 2148 optdata = (void *)&defminmtu; 2149 optdatalen = sizeof(int); 2150 break; 2151 case IPV6_DONTFRAG: 2152 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2153 on = 1; 2154 else 2155 on = 0; 2156 optdata = (void *)&on; 2157 optdatalen = sizeof(on); 2158 break; 2159 case IPV6_PREFER_TEMPADDR: 2160 if (pktopt) 2161 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2162 else 2163 optdata = (void *)&defpreftemp; 2164 optdatalen = sizeof(int); 2165 break; 2166 default: /* should not happen */ 2167 #ifdef DIAGNOSTIC 2168 panic("ip6_getpcbopt: unexpected option\n"); 2169 #endif 2170 return (ENOPROTOOPT); 2171 } 2172 2173 error = sockopt_set(sopt, optdata, optdatalen); 2174 2175 return (error); 2176 } 2177 2178 void 2179 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2180 { 2181 if (optname == -1 || optname == IPV6_PKTINFO) { 2182 if (pktopt->ip6po_pktinfo) 2183 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2184 pktopt->ip6po_pktinfo = NULL; 2185 } 2186 if (optname == -1 || optname == IPV6_HOPLIMIT) 2187 pktopt->ip6po_hlim = -1; 2188 if (optname == -1 || optname == IPV6_TCLASS) 2189 pktopt->ip6po_tclass = -1; 2190 if (optname == -1 || optname == IPV6_NEXTHOP) { 2191 rtcache_free(&pktopt->ip6po_nextroute); 2192 if (pktopt->ip6po_nexthop) 2193 free(pktopt->ip6po_nexthop, M_IP6OPT); 2194 pktopt->ip6po_nexthop = NULL; 2195 } 2196 if (optname == -1 || optname == IPV6_HOPOPTS) { 2197 if (pktopt->ip6po_hbh) 2198 free(pktopt->ip6po_hbh, M_IP6OPT); 2199 pktopt->ip6po_hbh = NULL; 2200 } 2201 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2202 if (pktopt->ip6po_dest1) 2203 free(pktopt->ip6po_dest1, M_IP6OPT); 2204 pktopt->ip6po_dest1 = NULL; 2205 } 2206 if (optname == -1 || optname == IPV6_RTHDR) { 2207 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2208 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2209 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2210 rtcache_free(&pktopt->ip6po_route); 2211 } 2212 if (optname == -1 || optname == IPV6_DSTOPTS) { 2213 if (pktopt->ip6po_dest2) 2214 free(pktopt->ip6po_dest2, M_IP6OPT); 2215 pktopt->ip6po_dest2 = NULL; 2216 } 2217 } 2218 2219 #define PKTOPT_EXTHDRCPY(type) \ 2220 do { \ 2221 if (src->type) { \ 2222 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2223 dst->type = malloc(hlen, M_IP6OPT, canwait); \ 2224 if (dst->type == NULL) \ 2225 goto bad; \ 2226 memcpy(dst->type, src->type, hlen); \ 2227 } \ 2228 } while (/*CONSTCOND*/ 0) 2229 2230 static int 2231 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2232 { 2233 dst->ip6po_hlim = src->ip6po_hlim; 2234 dst->ip6po_tclass = src->ip6po_tclass; 2235 dst->ip6po_flags = src->ip6po_flags; 2236 dst->ip6po_minmtu = src->ip6po_minmtu; 2237 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2238 if (src->ip6po_pktinfo) { 2239 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2240 M_IP6OPT, canwait); 2241 if (dst->ip6po_pktinfo == NULL) 2242 goto bad; 2243 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2244 } 2245 if (src->ip6po_nexthop) { 2246 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2247 M_IP6OPT, canwait); 2248 if (dst->ip6po_nexthop == NULL) 2249 goto bad; 2250 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop, 2251 src->ip6po_nexthop->sa_len); 2252 } 2253 PKTOPT_EXTHDRCPY(ip6po_hbh); 2254 PKTOPT_EXTHDRCPY(ip6po_dest1); 2255 PKTOPT_EXTHDRCPY(ip6po_dest2); 2256 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2257 return (0); 2258 2259 bad: 2260 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 2261 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 2262 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 2263 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 2264 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 2265 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 2266 2267 return (ENOBUFS); 2268 } 2269 #undef PKTOPT_EXTHDRCPY 2270 2271 struct ip6_pktopts * 2272 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2273 { 2274 int error; 2275 struct ip6_pktopts *dst; 2276 2277 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2278 if (dst == NULL) 2279 return (NULL); 2280 ip6_initpktopts(dst); 2281 2282 if ((error = copypktopts(dst, src, canwait)) != 0) { 2283 free(dst, M_IP6OPT); 2284 return (NULL); 2285 } 2286 2287 return (dst); 2288 } 2289 2290 void 2291 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2292 { 2293 if (pktopt == NULL) 2294 return; 2295 2296 ip6_clearpktopts(pktopt, -1); 2297 2298 free(pktopt, M_IP6OPT); 2299 } 2300 2301 int 2302 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp, void *v, 2303 size_t l) 2304 { 2305 struct ipv6_mreq mreq; 2306 int error; 2307 struct in6_addr *ia = &mreq.ipv6mr_multiaddr; 2308 struct in_addr *ia4 = (void *)&ia->s6_addr32[3]; 2309 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2310 if (error != 0) 2311 return error; 2312 2313 if (IN6_IS_ADDR_UNSPECIFIED(ia)) { 2314 /* 2315 * We use the unspecified address to specify to accept 2316 * all multicast addresses. Only super user is allowed 2317 * to do this. 2318 */ 2319 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6, 2320 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL)) 2321 return EACCES; 2322 } else if (IN6_IS_ADDR_V4MAPPED(ia)) { 2323 // Don't bother if we are not going to use ifp. 2324 if (l == sizeof(*ia)) { 2325 memcpy(v, ia, l); 2326 return 0; 2327 } 2328 } else if (!IN6_IS_ADDR_MULTICAST(ia)) { 2329 return EINVAL; 2330 } 2331 2332 /* 2333 * If no interface was explicitly specified, choose an 2334 * appropriate one according to the given multicast address. 2335 */ 2336 if (mreq.ipv6mr_interface == 0) { 2337 struct rtentry *rt; 2338 union { 2339 struct sockaddr dst; 2340 struct sockaddr_in dst4; 2341 struct sockaddr_in6 dst6; 2342 } u; 2343 struct route ro; 2344 2345 /* 2346 * Look up the routing table for the 2347 * address, and choose the outgoing interface. 2348 * XXX: is it a good approach? 2349 */ 2350 memset(&ro, 0, sizeof(ro)); 2351 if (IN6_IS_ADDR_V4MAPPED(ia)) 2352 sockaddr_in_init(&u.dst4, ia4, 0); 2353 else 2354 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0); 2355 error = rtcache_setdst(&ro, &u.dst); 2356 if (error != 0) 2357 return error; 2358 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL; 2359 rtcache_free(&ro); 2360 } else { 2361 /* 2362 * If the interface is specified, validate it. 2363 */ 2364 if ((*ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) 2365 return ENXIO; /* XXX EINVAL? */ 2366 } 2367 if (sizeof(*ia) == l) 2368 memcpy(v, ia, l); 2369 else 2370 memcpy(v, ia4, l); 2371 return 0; 2372 } 2373 2374 /* 2375 * Set the IP6 multicast options in response to user setsockopt(). 2376 */ 2377 static int 2378 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p) 2379 { 2380 int error = 0; 2381 u_int loop, ifindex; 2382 struct ipv6_mreq mreq; 2383 struct in6_addr ia; 2384 struct ifnet *ifp; 2385 struct ip6_moptions *im6o = in6p->in6p_moptions; 2386 struct in6_multi_mship *imm; 2387 2388 if (im6o == NULL) { 2389 /* 2390 * No multicast option buffer attached to the pcb; 2391 * allocate one and initialize to default values. 2392 */ 2393 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT); 2394 if (im6o == NULL) 2395 return (ENOBUFS); 2396 in6p->in6p_moptions = im6o; 2397 im6o->im6o_multicast_if_index = 0; 2398 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2399 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2400 LIST_INIT(&im6o->im6o_memberships); 2401 } 2402 2403 switch (sopt->sopt_name) { 2404 2405 case IPV6_MULTICAST_IF: 2406 /* 2407 * Select the interface for outgoing multicast packets. 2408 */ 2409 error = sockopt_get(sopt, &ifindex, sizeof(ifindex)); 2410 if (error != 0) 2411 break; 2412 2413 if (ifindex != 0) { 2414 if ((ifp = if_byindex(ifindex)) == NULL) { 2415 error = ENXIO; /* XXX EINVAL? */ 2416 break; 2417 } 2418 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 2419 error = EADDRNOTAVAIL; 2420 break; 2421 } 2422 } else 2423 ifp = NULL; 2424 im6o->im6o_multicast_if_index = if_get_index(ifp); 2425 break; 2426 2427 case IPV6_MULTICAST_HOPS: 2428 { 2429 /* 2430 * Set the IP6 hoplimit for outgoing multicast packets. 2431 */ 2432 int optval; 2433 2434 error = sockopt_getint(sopt, &optval); 2435 if (error != 0) 2436 break; 2437 2438 if (optval < -1 || optval >= 256) 2439 error = EINVAL; 2440 else if (optval == -1) 2441 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2442 else 2443 im6o->im6o_multicast_hlim = optval; 2444 break; 2445 } 2446 2447 case IPV6_MULTICAST_LOOP: 2448 /* 2449 * Set the loopback flag for outgoing multicast packets. 2450 * Must be zero or one. 2451 */ 2452 error = sockopt_get(sopt, &loop, sizeof(loop)); 2453 if (error != 0) 2454 break; 2455 if (loop > 1) { 2456 error = EINVAL; 2457 break; 2458 } 2459 im6o->im6o_multicast_loop = loop; 2460 break; 2461 2462 case IPV6_JOIN_GROUP: 2463 /* 2464 * Add a multicast group membership. 2465 * Group must be a valid IP6 multicast address. 2466 */ 2467 if ((error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia)))) 2468 return error; 2469 2470 if (IN6_IS_ADDR_V4MAPPED(&ia)) { 2471 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt); 2472 break; 2473 } 2474 /* 2475 * See if we found an interface, and confirm that it 2476 * supports multicast 2477 */ 2478 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2479 error = EADDRNOTAVAIL; 2480 break; 2481 } 2482 2483 if (in6_setscope(&ia, ifp, NULL)) { 2484 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2485 break; 2486 } 2487 2488 /* 2489 * See if the membership already exists. 2490 */ 2491 for (imm = im6o->im6o_memberships.lh_first; 2492 imm != NULL; imm = imm->i6mm_chain.le_next) 2493 if (imm->i6mm_maddr->in6m_ifp == ifp && 2494 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2495 &ia)) 2496 break; 2497 if (imm != NULL) { 2498 error = EADDRINUSE; 2499 break; 2500 } 2501 /* 2502 * Everything looks good; add a new record to the multicast 2503 * address list for the given interface. 2504 */ 2505 imm = in6_joingroup(ifp, &ia, &error, 0); 2506 if (imm == NULL) 2507 break; 2508 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2509 break; 2510 2511 case IPV6_LEAVE_GROUP: 2512 /* 2513 * Drop a multicast group membership. 2514 * Group must be a valid IP6 multicast address. 2515 */ 2516 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2517 if (error != 0) 2518 break; 2519 2520 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) { 2521 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt); 2522 break; 2523 } 2524 /* 2525 * If an interface address was specified, get a pointer 2526 * to its ifnet structure. 2527 */ 2528 if (mreq.ipv6mr_interface != 0) { 2529 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) { 2530 error = ENXIO; /* XXX EINVAL? */ 2531 break; 2532 } 2533 } else 2534 ifp = NULL; 2535 2536 /* Fill in the scope zone ID */ 2537 if (ifp) { 2538 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) { 2539 /* XXX: should not happen */ 2540 error = EADDRNOTAVAIL; 2541 break; 2542 } 2543 } else if (mreq.ipv6mr_interface != 0) { 2544 /* 2545 * XXX: This case would happens when the (positive) 2546 * index is in the valid range, but the corresponding 2547 * interface has been detached dynamically. The above 2548 * check probably avoids such case to happen here, but 2549 * we check it explicitly for safety. 2550 */ 2551 error = EADDRNOTAVAIL; 2552 break; 2553 } else { /* ipv6mr_interface == 0 */ 2554 struct sockaddr_in6 sa6_mc; 2555 2556 /* 2557 * The API spec says as follows: 2558 * If the interface index is specified as 0, the 2559 * system may choose a multicast group membership to 2560 * drop by matching the multicast address only. 2561 * On the other hand, we cannot disambiguate the scope 2562 * zone unless an interface is provided. Thus, we 2563 * check if there's ambiguity with the default scope 2564 * zone as the last resort. 2565 */ 2566 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr, 2567 0, 0, 0); 2568 error = sa6_embedscope(&sa6_mc, ip6_use_defzone); 2569 if (error != 0) 2570 break; 2571 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr; 2572 } 2573 2574 /* 2575 * Find the membership in the membership list. 2576 */ 2577 for (imm = im6o->im6o_memberships.lh_first; 2578 imm != NULL; imm = imm->i6mm_chain.le_next) { 2579 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2580 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2581 &mreq.ipv6mr_multiaddr)) 2582 break; 2583 } 2584 if (imm == NULL) { 2585 /* Unable to resolve interface */ 2586 error = EADDRNOTAVAIL; 2587 break; 2588 } 2589 /* 2590 * Give up the multicast address record to which the 2591 * membership points. 2592 */ 2593 LIST_REMOVE(imm, i6mm_chain); 2594 in6_leavegroup(imm); 2595 break; 2596 2597 default: 2598 error = EOPNOTSUPP; 2599 break; 2600 } 2601 2602 /* 2603 * If all options have default values, no need to keep the mbuf. 2604 */ 2605 if (im6o->im6o_multicast_if_index == 0 && 2606 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2607 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2608 im6o->im6o_memberships.lh_first == NULL) { 2609 free(in6p->in6p_moptions, M_IPMOPTS); 2610 in6p->in6p_moptions = NULL; 2611 } 2612 2613 return (error); 2614 } 2615 2616 /* 2617 * Return the IP6 multicast options in response to user getsockopt(). 2618 */ 2619 static int 2620 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p) 2621 { 2622 u_int optval; 2623 int error; 2624 struct ip6_moptions *im6o = in6p->in6p_moptions; 2625 2626 switch (sopt->sopt_name) { 2627 case IPV6_MULTICAST_IF: 2628 if (im6o == NULL || im6o->im6o_multicast_if_index == 0) 2629 optval = 0; 2630 else 2631 optval = im6o->im6o_multicast_if_index; 2632 2633 error = sockopt_set(sopt, &optval, sizeof(optval)); 2634 break; 2635 2636 case IPV6_MULTICAST_HOPS: 2637 if (im6o == NULL) 2638 optval = ip6_defmcasthlim; 2639 else 2640 optval = im6o->im6o_multicast_hlim; 2641 2642 error = sockopt_set(sopt, &optval, sizeof(optval)); 2643 break; 2644 2645 case IPV6_MULTICAST_LOOP: 2646 if (im6o == NULL) 2647 optval = IPV6_DEFAULT_MULTICAST_LOOP; 2648 else 2649 optval = im6o->im6o_multicast_loop; 2650 2651 error = sockopt_set(sopt, &optval, sizeof(optval)); 2652 break; 2653 2654 default: 2655 error = EOPNOTSUPP; 2656 } 2657 2658 return (error); 2659 } 2660 2661 /* 2662 * Discard the IP6 multicast options. 2663 */ 2664 void 2665 ip6_freemoptions(struct ip6_moptions *im6o) 2666 { 2667 struct in6_multi_mship *imm; 2668 2669 if (im6o == NULL) 2670 return; 2671 2672 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2673 LIST_REMOVE(imm, i6mm_chain); 2674 in6_leavegroup(imm); 2675 } 2676 free(im6o, M_IPMOPTS); 2677 } 2678 2679 /* 2680 * Set IPv6 outgoing packet options based on advanced API. 2681 */ 2682 int 2683 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2684 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto) 2685 { 2686 struct cmsghdr *cm = 0; 2687 2688 if (control == NULL || opt == NULL) 2689 return (EINVAL); 2690 2691 ip6_initpktopts(opt); 2692 if (stickyopt) { 2693 int error; 2694 2695 /* 2696 * If stickyopt is provided, make a local copy of the options 2697 * for this particular packet, then override them by ancillary 2698 * objects. 2699 * XXX: copypktopts() does not copy the cached route to a next 2700 * hop (if any). This is not very good in terms of efficiency, 2701 * but we can allow this since this option should be rarely 2702 * used. 2703 */ 2704 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2705 return (error); 2706 } 2707 2708 /* 2709 * XXX: Currently, we assume all the optional information is stored 2710 * in a single mbuf. 2711 */ 2712 if (control->m_next) 2713 return (EINVAL); 2714 2715 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */ 2716 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2717 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2718 int error; 2719 2720 if (control->m_len < CMSG_LEN(0)) 2721 return (EINVAL); 2722 2723 cm = mtod(control, struct cmsghdr *); 2724 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2725 return (EINVAL); 2726 if (cm->cmsg_level != IPPROTO_IPV6) 2727 continue; 2728 2729 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2730 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2731 if (error) 2732 return (error); 2733 } 2734 2735 return (0); 2736 } 2737 2738 /* 2739 * Set a particular packet option, as a sticky option or an ancillary data 2740 * item. "len" can be 0 only when it's a sticky option. 2741 * We have 4 cases of combination of "sticky" and "cmsg": 2742 * "sticky=0, cmsg=0": impossible 2743 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2744 * "sticky=1, cmsg=0": RFC3542 socket option 2745 * "sticky=1, cmsg=1": RFC2292 socket option 2746 */ 2747 static int 2748 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2749 kauth_cred_t cred, int sticky, int cmsg, int uproto) 2750 { 2751 int minmtupolicy; 2752 int error; 2753 2754 if (!sticky && !cmsg) { 2755 #ifdef DIAGNOSTIC 2756 printf("ip6_setpktopt: impossible case\n"); 2757 #endif 2758 return (EINVAL); 2759 } 2760 2761 /* 2762 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2763 * not be specified in the context of RFC3542. Conversely, 2764 * RFC3542 types should not be specified in the context of RFC2292. 2765 */ 2766 if (!cmsg) { 2767 switch (optname) { 2768 case IPV6_2292PKTINFO: 2769 case IPV6_2292HOPLIMIT: 2770 case IPV6_2292NEXTHOP: 2771 case IPV6_2292HOPOPTS: 2772 case IPV6_2292DSTOPTS: 2773 case IPV6_2292RTHDR: 2774 case IPV6_2292PKTOPTIONS: 2775 return (ENOPROTOOPT); 2776 } 2777 } 2778 if (sticky && cmsg) { 2779 switch (optname) { 2780 case IPV6_PKTINFO: 2781 case IPV6_HOPLIMIT: 2782 case IPV6_NEXTHOP: 2783 case IPV6_HOPOPTS: 2784 case IPV6_DSTOPTS: 2785 case IPV6_RTHDRDSTOPTS: 2786 case IPV6_RTHDR: 2787 case IPV6_USE_MIN_MTU: 2788 case IPV6_DONTFRAG: 2789 case IPV6_OTCLASS: 2790 case IPV6_TCLASS: 2791 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */ 2792 return (ENOPROTOOPT); 2793 } 2794 } 2795 2796 switch (optname) { 2797 #ifdef RFC2292 2798 case IPV6_2292PKTINFO: 2799 #endif 2800 case IPV6_PKTINFO: 2801 { 2802 struct in6_pktinfo *pktinfo; 2803 2804 if (len != sizeof(struct in6_pktinfo)) 2805 return (EINVAL); 2806 2807 pktinfo = (struct in6_pktinfo *)buf; 2808 2809 /* 2810 * An application can clear any sticky IPV6_PKTINFO option by 2811 * doing a "regular" setsockopt with ipi6_addr being 2812 * in6addr_any and ipi6_ifindex being zero. 2813 * [RFC 3542, Section 6] 2814 */ 2815 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2816 pktinfo->ipi6_ifindex == 0 && 2817 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2818 ip6_clearpktopts(opt, optname); 2819 break; 2820 } 2821 2822 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2823 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2824 return (EINVAL); 2825 } 2826 2827 /* Validate the interface index if specified. */ 2828 if (pktinfo->ipi6_ifindex) { 2829 struct ifnet *ifp; 2830 int s = pserialize_read_enter(); 2831 ifp = if_byindex(pktinfo->ipi6_ifindex); 2832 if (ifp == NULL) { 2833 pserialize_read_exit(s); 2834 return ENXIO; 2835 } 2836 pserialize_read_exit(s); 2837 } 2838 2839 /* 2840 * We store the address anyway, and let in6_selectsrc() 2841 * validate the specified address. This is because ipi6_addr 2842 * may not have enough information about its scope zone, and 2843 * we may need additional information (such as outgoing 2844 * interface or the scope zone of a destination address) to 2845 * disambiguate the scope. 2846 * XXX: the delay of the validation may confuse the 2847 * application when it is used as a sticky option. 2848 */ 2849 if (opt->ip6po_pktinfo == NULL) { 2850 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2851 M_IP6OPT, M_NOWAIT); 2852 if (opt->ip6po_pktinfo == NULL) 2853 return (ENOBUFS); 2854 } 2855 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo)); 2856 break; 2857 } 2858 2859 #ifdef RFC2292 2860 case IPV6_2292HOPLIMIT: 2861 #endif 2862 case IPV6_HOPLIMIT: 2863 { 2864 int *hlimp; 2865 2866 /* 2867 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2868 * to simplify the ordering among hoplimit options. 2869 */ 2870 if (optname == IPV6_HOPLIMIT && sticky) 2871 return (ENOPROTOOPT); 2872 2873 if (len != sizeof(int)) 2874 return (EINVAL); 2875 hlimp = (int *)buf; 2876 if (*hlimp < -1 || *hlimp > 255) 2877 return (EINVAL); 2878 2879 opt->ip6po_hlim = *hlimp; 2880 break; 2881 } 2882 2883 case IPV6_OTCLASS: 2884 if (len != sizeof(u_int8_t)) 2885 return (EINVAL); 2886 2887 opt->ip6po_tclass = *(u_int8_t *)buf; 2888 break; 2889 2890 case IPV6_TCLASS: 2891 { 2892 int tclass; 2893 2894 if (len != sizeof(int)) 2895 return (EINVAL); 2896 tclass = *(int *)buf; 2897 if (tclass < -1 || tclass > 255) 2898 return (EINVAL); 2899 2900 opt->ip6po_tclass = tclass; 2901 break; 2902 } 2903 2904 #ifdef RFC2292 2905 case IPV6_2292NEXTHOP: 2906 #endif 2907 case IPV6_NEXTHOP: 2908 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 2909 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 2910 if (error) 2911 return (error); 2912 2913 if (len == 0) { /* just remove the option */ 2914 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2915 break; 2916 } 2917 2918 /* check if cmsg_len is large enough for sa_len */ 2919 if (len < sizeof(struct sockaddr) || len < *buf) 2920 return (EINVAL); 2921 2922 switch (((struct sockaddr *)buf)->sa_family) { 2923 case AF_INET6: 2924 { 2925 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2926 2927 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2928 return (EINVAL); 2929 2930 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2931 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2932 return (EINVAL); 2933 } 2934 if ((error = sa6_embedscope(sa6, ip6_use_defzone)) 2935 != 0) { 2936 return (error); 2937 } 2938 break; 2939 } 2940 case AF_LINK: /* eventually be supported? */ 2941 default: 2942 return (EAFNOSUPPORT); 2943 } 2944 2945 /* turn off the previous option, then set the new option. */ 2946 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2947 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2948 if (opt->ip6po_nexthop == NULL) 2949 return (ENOBUFS); 2950 memcpy(opt->ip6po_nexthop, buf, *buf); 2951 break; 2952 2953 #ifdef RFC2292 2954 case IPV6_2292HOPOPTS: 2955 #endif 2956 case IPV6_HOPOPTS: 2957 { 2958 struct ip6_hbh *hbh; 2959 int hbhlen; 2960 2961 /* 2962 * XXX: We don't allow a non-privileged user to set ANY HbH 2963 * options, since per-option restriction has too much 2964 * overhead. 2965 */ 2966 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 2967 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 2968 if (error) 2969 return (error); 2970 2971 if (len == 0) { 2972 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2973 break; /* just remove the option */ 2974 } 2975 2976 /* message length validation */ 2977 if (len < sizeof(struct ip6_hbh)) 2978 return (EINVAL); 2979 hbh = (struct ip6_hbh *)buf; 2980 hbhlen = (hbh->ip6h_len + 1) << 3; 2981 if (len != hbhlen) 2982 return (EINVAL); 2983 2984 /* turn off the previous option, then set the new option. */ 2985 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2986 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2987 if (opt->ip6po_hbh == NULL) 2988 return (ENOBUFS); 2989 memcpy(opt->ip6po_hbh, hbh, hbhlen); 2990 2991 break; 2992 } 2993 2994 #ifdef RFC2292 2995 case IPV6_2292DSTOPTS: 2996 #endif 2997 case IPV6_DSTOPTS: 2998 case IPV6_RTHDRDSTOPTS: 2999 { 3000 struct ip6_dest *dest, **newdest = NULL; 3001 int destlen; 3002 3003 /* XXX: see the comment for IPV6_HOPOPTS */ 3004 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 3005 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 3006 if (error) 3007 return (error); 3008 3009 if (len == 0) { 3010 ip6_clearpktopts(opt, optname); 3011 break; /* just remove the option */ 3012 } 3013 3014 /* message length validation */ 3015 if (len < sizeof(struct ip6_dest)) 3016 return (EINVAL); 3017 dest = (struct ip6_dest *)buf; 3018 destlen = (dest->ip6d_len + 1) << 3; 3019 if (len != destlen) 3020 return (EINVAL); 3021 /* 3022 * Determine the position that the destination options header 3023 * should be inserted; before or after the routing header. 3024 */ 3025 switch (optname) { 3026 case IPV6_2292DSTOPTS: 3027 /* 3028 * The old advanced API is ambiguous on this point. 3029 * Our approach is to determine the position based 3030 * according to the existence of a routing header. 3031 * Note, however, that this depends on the order of the 3032 * extension headers in the ancillary data; the 1st 3033 * part of the destination options header must appear 3034 * before the routing header in the ancillary data, 3035 * too. 3036 * RFC3542 solved the ambiguity by introducing 3037 * separate ancillary data or option types. 3038 */ 3039 if (opt->ip6po_rthdr == NULL) 3040 newdest = &opt->ip6po_dest1; 3041 else 3042 newdest = &opt->ip6po_dest2; 3043 break; 3044 case IPV6_RTHDRDSTOPTS: 3045 newdest = &opt->ip6po_dest1; 3046 break; 3047 case IPV6_DSTOPTS: 3048 newdest = &opt->ip6po_dest2; 3049 break; 3050 } 3051 3052 /* turn off the previous option, then set the new option. */ 3053 ip6_clearpktopts(opt, optname); 3054 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3055 if (*newdest == NULL) 3056 return (ENOBUFS); 3057 memcpy(*newdest, dest, destlen); 3058 3059 break; 3060 } 3061 3062 #ifdef RFC2292 3063 case IPV6_2292RTHDR: 3064 #endif 3065 case IPV6_RTHDR: 3066 { 3067 struct ip6_rthdr *rth; 3068 int rthlen; 3069 3070 if (len == 0) { 3071 ip6_clearpktopts(opt, IPV6_RTHDR); 3072 break; /* just remove the option */ 3073 } 3074 3075 /* message length validation */ 3076 if (len < sizeof(struct ip6_rthdr)) 3077 return (EINVAL); 3078 rth = (struct ip6_rthdr *)buf; 3079 rthlen = (rth->ip6r_len + 1) << 3; 3080 if (len != rthlen) 3081 return (EINVAL); 3082 switch (rth->ip6r_type) { 3083 case IPV6_RTHDR_TYPE_0: 3084 if (rth->ip6r_len == 0) /* must contain one addr */ 3085 return (EINVAL); 3086 if (rth->ip6r_len % 2) /* length must be even */ 3087 return (EINVAL); 3088 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3089 return (EINVAL); 3090 break; 3091 default: 3092 return (EINVAL); /* not supported */ 3093 } 3094 /* turn off the previous option */ 3095 ip6_clearpktopts(opt, IPV6_RTHDR); 3096 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3097 if (opt->ip6po_rthdr == NULL) 3098 return (ENOBUFS); 3099 memcpy(opt->ip6po_rthdr, rth, rthlen); 3100 break; 3101 } 3102 3103 case IPV6_USE_MIN_MTU: 3104 if (len != sizeof(int)) 3105 return (EINVAL); 3106 minmtupolicy = *(int *)buf; 3107 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3108 minmtupolicy != IP6PO_MINMTU_DISABLE && 3109 minmtupolicy != IP6PO_MINMTU_ALL) { 3110 return (EINVAL); 3111 } 3112 opt->ip6po_minmtu = minmtupolicy; 3113 break; 3114 3115 case IPV6_DONTFRAG: 3116 if (len != sizeof(int)) 3117 return (EINVAL); 3118 3119 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3120 /* 3121 * we ignore this option for TCP sockets. 3122 * (RFC3542 leaves this case unspecified.) 3123 */ 3124 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3125 } else 3126 opt->ip6po_flags |= IP6PO_DONTFRAG; 3127 break; 3128 3129 case IPV6_PREFER_TEMPADDR: 3130 { 3131 int preftemp; 3132 3133 if (len != sizeof(int)) 3134 return (EINVAL); 3135 preftemp = *(int *)buf; 3136 switch (preftemp) { 3137 case IP6PO_TEMPADDR_SYSTEM: 3138 case IP6PO_TEMPADDR_NOTPREFER: 3139 case IP6PO_TEMPADDR_PREFER: 3140 break; 3141 default: 3142 return (EINVAL); 3143 } 3144 opt->ip6po_prefer_tempaddr = preftemp; 3145 break; 3146 } 3147 3148 default: 3149 return (ENOPROTOOPT); 3150 } /* end of switch */ 3151 3152 return (0); 3153 } 3154 3155 /* 3156 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3157 * packet to the input queue of a specified interface. Note that this 3158 * calls the output routine of the loopback "driver", but with an interface 3159 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 3160 */ 3161 void 3162 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, 3163 const struct sockaddr_in6 *dst) 3164 { 3165 struct mbuf *copym; 3166 struct ip6_hdr *ip6; 3167 3168 copym = m_copy(m, 0, M_COPYALL); 3169 if (copym == NULL) 3170 return; 3171 3172 /* 3173 * Make sure to deep-copy IPv6 header portion in case the data 3174 * is in an mbuf cluster, so that we can safely override the IPv6 3175 * header portion later. 3176 */ 3177 if ((copym->m_flags & M_EXT) != 0 || 3178 copym->m_len < sizeof(struct ip6_hdr)) { 3179 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3180 if (copym == NULL) 3181 return; 3182 } 3183 3184 #ifdef DIAGNOSTIC 3185 if (copym->m_len < sizeof(*ip6)) { 3186 m_freem(copym); 3187 return; 3188 } 3189 #endif 3190 3191 ip6 = mtod(copym, struct ip6_hdr *); 3192 /* 3193 * clear embedded scope identifiers if necessary. 3194 * in6_clearscope will touch the addresses only when necessary. 3195 */ 3196 in6_clearscope(&ip6->ip6_src); 3197 in6_clearscope(&ip6->ip6_dst); 3198 3199 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL); 3200 } 3201 3202 /* 3203 * Chop IPv6 header off from the payload. 3204 */ 3205 static int 3206 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3207 { 3208 struct mbuf *mh; 3209 struct ip6_hdr *ip6; 3210 3211 ip6 = mtod(m, struct ip6_hdr *); 3212 if (m->m_len > sizeof(*ip6)) { 3213 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3214 if (mh == 0) { 3215 m_freem(m); 3216 return ENOBUFS; 3217 } 3218 M_MOVE_PKTHDR(mh, m); 3219 MH_ALIGN(mh, sizeof(*ip6)); 3220 m->m_len -= sizeof(*ip6); 3221 m->m_data += sizeof(*ip6); 3222 mh->m_next = m; 3223 m = mh; 3224 m->m_len = sizeof(*ip6); 3225 bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6)); 3226 } 3227 exthdrs->ip6e_ip6 = m; 3228 return 0; 3229 } 3230 3231 /* 3232 * Compute IPv6 extension header length. 3233 */ 3234 int 3235 ip6_optlen(struct in6pcb *in6p) 3236 { 3237 int len; 3238 3239 if (!in6p->in6p_outputopts) 3240 return 0; 3241 3242 len = 0; 3243 #define elen(x) \ 3244 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3245 3246 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3247 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3248 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3249 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3250 return len; 3251 #undef elen 3252 } 3253