1 /* $NetBSD: ip6_output.c,v 1.223 2020/06/12 11:04:45 roy Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.223 2020/06/12 11:04:45 roy Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/malloc.h> 75 #include <sys/mbuf.h> 76 #include <sys/errno.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/syslog.h> 80 #include <sys/systm.h> 81 #include <sys/proc.h> 82 #include <sys/kauth.h> 83 84 #include <net/if.h> 85 #include <net/route.h> 86 #include <net/pfil.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/ip6.h> 91 #include <netinet/ip_var.h> 92 #include <netinet/icmp6.h> 93 #include <netinet/in_offload.h> 94 #include <netinet/portalgo.h> 95 #include <netinet6/in6_offload.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/ip6_private.h> 98 #include <netinet6/in6_pcb.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6protosw.h> 101 #include <netinet6/scope6_var.h> 102 103 #ifdef IPSEC 104 #include <netipsec/ipsec.h> 105 #include <netipsec/ipsec6.h> 106 #include <netipsec/key.h> 107 #endif 108 109 extern pfil_head_t *inet6_pfil_hook; /* XXX */ 110 111 struct ip6_exthdrs { 112 struct mbuf *ip6e_ip6; 113 struct mbuf *ip6e_hbh; 114 struct mbuf *ip6e_dest1; 115 struct mbuf *ip6e_rthdr; 116 struct mbuf *ip6e_dest2; 117 }; 118 119 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 120 kauth_cred_t, int); 121 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 122 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t, 123 int, int, int); 124 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *); 125 static int ip6_getmoptions(struct sockopt *, struct in6pcb *); 126 static int ip6_copyexthdr(struct mbuf **, void *, int); 127 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 128 struct ip6_frag **); 129 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 130 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 131 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *); 132 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 133 static int ip6_ifaddrvalid(const struct in6_addr *, const struct in6_addr *); 134 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *); 135 136 #ifdef RFC2292 137 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *); 138 #endif 139 140 static int 141 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6) 142 { 143 int error = 0; 144 145 switch (rh->ip6r_type) { 146 case IPV6_RTHDR_TYPE_0: 147 /* Dropped, RFC5095. */ 148 default: /* is it possible? */ 149 error = EINVAL; 150 } 151 152 return error; 153 } 154 155 /* 156 * Send an IP packet to a host. 157 */ 158 int 159 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp, 160 struct mbuf * const m, const struct sockaddr_in6 * const dst, 161 const struct rtentry *rt) 162 { 163 int error = 0; 164 165 if (rt != NULL) { 166 error = rt_check_reject_route(rt, ifp); 167 if (error != 0) { 168 m_freem(m); 169 return error; 170 } 171 } 172 173 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 174 error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt); 175 else 176 error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt); 177 return error; 178 } 179 180 /* 181 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 182 * header (with pri, len, nxt, hlim, src, dst). 183 * 184 * This function may modify ver and hlim only. The mbuf chain containing the 185 * packet will be freed. The mbuf opt, if present, will not be freed. 186 * 187 * Type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 188 * nd_ifinfo.linkmtu is u_int32_t. So we use u_long to hold largest one, 189 * which is rt_rmx.rmx_mtu. 190 */ 191 int 192 ip6_output( 193 struct mbuf *m0, 194 struct ip6_pktopts *opt, 195 struct route *ro, 196 int flags, 197 struct ip6_moptions *im6o, 198 struct in6pcb *in6p, 199 struct ifnet **ifpp /* XXX: just for statistics */ 200 ) 201 { 202 struct ip6_hdr *ip6, *mhip6; 203 struct ifnet *ifp = NULL, *origifp = NULL; 204 struct mbuf *m = m0; 205 int tlen, len, off; 206 bool tso; 207 struct route ip6route; 208 struct rtentry *rt = NULL, *rt_pmtu; 209 const struct sockaddr_in6 *dst; 210 struct sockaddr_in6 src_sa, dst_sa; 211 int error = 0; 212 struct in6_ifaddr *ia = NULL; 213 u_long mtu; 214 int alwaysfrag, dontfrag; 215 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 216 struct ip6_exthdrs exthdrs; 217 struct in6_addr finaldst, src0, dst0; 218 u_int32_t zone; 219 struct route *ro_pmtu = NULL; 220 int hdrsplit = 0; 221 int needipsec = 0; 222 #ifdef IPSEC 223 struct secpolicy *sp = NULL; 224 #endif 225 struct psref psref, psref_ia; 226 int bound = curlwp_bind(); 227 bool release_psref_ia = false; 228 229 #ifdef DIAGNOSTIC 230 if ((m->m_flags & M_PKTHDR) == 0) 231 panic("ip6_output: no HDR"); 232 if ((m->m_pkthdr.csum_flags & 233 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) { 234 panic("ip6_output: IPv4 checksum offload flags: %d", 235 m->m_pkthdr.csum_flags); 236 } 237 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 238 (M_CSUM_TCPv6|M_CSUM_UDPv6)) { 239 panic("ip6_output: conflicting checksum offload flags: %d", 240 m->m_pkthdr.csum_flags); 241 } 242 #endif 243 244 M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr)); 245 246 #define MAKE_EXTHDR(hp, mp) \ 247 do { \ 248 if (hp) { \ 249 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 250 error = ip6_copyexthdr((mp), (void *)(hp), \ 251 ((eh)->ip6e_len + 1) << 3); \ 252 if (error) \ 253 goto freehdrs; \ 254 } \ 255 } while (/*CONSTCOND*/ 0) 256 257 memset(&exthdrs, 0, sizeof(exthdrs)); 258 if (opt) { 259 /* Hop-by-Hop options header */ 260 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 261 /* Destination options header (1st part) */ 262 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 263 /* Routing header */ 264 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 265 /* Destination options header (2nd part) */ 266 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 267 } 268 269 /* 270 * Calculate the total length of the extension header chain. 271 * Keep the length of the unfragmentable part for fragmentation. 272 */ 273 optlen = 0; 274 if (exthdrs.ip6e_hbh) 275 optlen += exthdrs.ip6e_hbh->m_len; 276 if (exthdrs.ip6e_dest1) 277 optlen += exthdrs.ip6e_dest1->m_len; 278 if (exthdrs.ip6e_rthdr) 279 optlen += exthdrs.ip6e_rthdr->m_len; 280 unfragpartlen = optlen + sizeof(struct ip6_hdr); 281 /* NOTE: we don't add AH/ESP length here. do that later. */ 282 if (exthdrs.ip6e_dest2) 283 optlen += exthdrs.ip6e_dest2->m_len; 284 285 #ifdef IPSEC 286 if (ipsec_used) { 287 /* Check the security policy (SP) for the packet */ 288 sp = ipsec6_check_policy(m, in6p, flags, &needipsec, &error); 289 if (error != 0) { 290 /* 291 * Hack: -EINVAL is used to signal that a packet 292 * should be silently discarded. This is typically 293 * because we asked key management for an SA and 294 * it was delayed (e.g. kicked up to IKE). 295 */ 296 if (error == -EINVAL) 297 error = 0; 298 goto freehdrs; 299 } 300 } 301 #endif 302 303 if (needipsec && 304 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 305 in6_undefer_cksum_tcpudp(m); 306 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 307 } 308 309 /* 310 * If we need IPsec, or there is at least one extension header, 311 * separate IP6 header from the payload. 312 */ 313 if ((needipsec || optlen) && !hdrsplit) { 314 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 315 m = NULL; 316 goto freehdrs; 317 } 318 m = exthdrs.ip6e_ip6; 319 hdrsplit++; 320 } 321 322 /* adjust pointer */ 323 ip6 = mtod(m, struct ip6_hdr *); 324 325 /* adjust mbuf packet header length */ 326 m->m_pkthdr.len += optlen; 327 plen = m->m_pkthdr.len - sizeof(*ip6); 328 329 /* If this is a jumbo payload, insert a jumbo payload option. */ 330 if (plen > IPV6_MAXPACKET) { 331 if (!hdrsplit) { 332 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 333 m = NULL; 334 goto freehdrs; 335 } 336 m = exthdrs.ip6e_ip6; 337 hdrsplit++; 338 } 339 /* adjust pointer */ 340 ip6 = mtod(m, struct ip6_hdr *); 341 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 342 goto freehdrs; 343 optlen += 8; /* XXX JUMBOOPTLEN */ 344 ip6->ip6_plen = 0; 345 } else 346 ip6->ip6_plen = htons(plen); 347 348 /* 349 * Concatenate headers and fill in next header fields. 350 * Here we have, on "m" 351 * IPv6 payload 352 * and we insert headers accordingly. Finally, we should be getting: 353 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 354 * 355 * during the header composing process, "m" points to IPv6 header. 356 * "mprev" points to an extension header prior to esp. 357 */ 358 { 359 u_char *nexthdrp = &ip6->ip6_nxt; 360 struct mbuf *mprev = m; 361 362 /* 363 * we treat dest2 specially. this makes IPsec processing 364 * much easier. the goal here is to make mprev point the 365 * mbuf prior to dest2. 366 * 367 * result: IPv6 dest2 payload 368 * m and mprev will point to IPv6 header. 369 */ 370 if (exthdrs.ip6e_dest2) { 371 if (!hdrsplit) 372 panic("assumption failed: hdr not split"); 373 exthdrs.ip6e_dest2->m_next = m->m_next; 374 m->m_next = exthdrs.ip6e_dest2; 375 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 376 ip6->ip6_nxt = IPPROTO_DSTOPTS; 377 } 378 379 #define MAKE_CHAIN(m, mp, p, i)\ 380 do {\ 381 if (m) {\ 382 if (!hdrsplit) \ 383 panic("assumption failed: hdr not split"); \ 384 *mtod((m), u_char *) = *(p);\ 385 *(p) = (i);\ 386 p = mtod((m), u_char *);\ 387 (m)->m_next = (mp)->m_next;\ 388 (mp)->m_next = (m);\ 389 (mp) = (m);\ 390 }\ 391 } while (/*CONSTCOND*/ 0) 392 /* 393 * result: IPv6 hbh dest1 rthdr dest2 payload 394 * m will point to IPv6 header. mprev will point to the 395 * extension header prior to dest2 (rthdr in the above case). 396 */ 397 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 398 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 399 IPPROTO_DSTOPTS); 400 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 401 IPPROTO_ROUTING); 402 403 M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data, 404 sizeof(struct ip6_hdr) + optlen); 405 } 406 407 /* Need to save for pmtu */ 408 finaldst = ip6->ip6_dst; 409 410 /* 411 * If there is a routing header, replace destination address field 412 * with the first hop of the routing header. 413 */ 414 if (exthdrs.ip6e_rthdr) { 415 struct ip6_rthdr *rh; 416 417 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 418 419 error = ip6_handle_rthdr(rh, ip6); 420 if (error != 0) 421 goto bad; 422 } 423 424 /* Source address validation */ 425 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 426 (flags & IPV6_UNSPECSRC) == 0) { 427 error = EOPNOTSUPP; 428 IP6_STATINC(IP6_STAT_BADSCOPE); 429 goto bad; 430 } 431 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 432 error = EOPNOTSUPP; 433 IP6_STATINC(IP6_STAT_BADSCOPE); 434 goto bad; 435 } 436 437 IP6_STATINC(IP6_STAT_LOCALOUT); 438 439 /* 440 * Route packet. 441 */ 442 /* initialize cached route */ 443 if (ro == NULL) { 444 memset(&ip6route, 0, sizeof(ip6route)); 445 ro = &ip6route; 446 } 447 ro_pmtu = ro; 448 if (opt && opt->ip6po_rthdr) 449 ro = &opt->ip6po_route; 450 451 /* 452 * if specified, try to fill in the traffic class field. 453 * do not override if a non-zero value is already set. 454 * we check the diffserv field and the ecn field separately. 455 */ 456 if (opt && opt->ip6po_tclass >= 0) { 457 int mask = 0; 458 459 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 460 mask |= 0xfc; 461 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 462 mask |= 0x03; 463 if (mask != 0) 464 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 465 } 466 467 /* fill in or override the hop limit field, if necessary. */ 468 if (opt && opt->ip6po_hlim != -1) 469 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 470 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 471 if (im6o != NULL) 472 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 473 else 474 ip6->ip6_hlim = ip6_defmcasthlim; 475 } 476 477 #ifdef IPSEC 478 if (needipsec) { 479 int s = splsoftnet(); 480 error = ipsec6_process_packet(m, sp->req, flags); 481 splx(s); 482 483 /* 484 * Preserve KAME behaviour: ENOENT can be returned 485 * when an SA acquire is in progress. Don't propagate 486 * this to user-level; it confuses applications. 487 * XXX this will go away when the SADB is redone. 488 */ 489 if (error == ENOENT) 490 error = 0; 491 492 goto done; 493 } 494 #endif 495 496 /* adjust pointer */ 497 ip6 = mtod(m, struct ip6_hdr *); 498 499 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 500 501 /* We do not need a route for multicast */ 502 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 503 struct in6_pktinfo *pi = NULL; 504 505 /* 506 * If the outgoing interface for the address is specified by 507 * the caller, use it. 508 */ 509 if (opt && (pi = opt->ip6po_pktinfo) != NULL) { 510 /* XXX boundary check is assumed to be already done. */ 511 ifp = if_get_byindex(pi->ipi6_ifindex, &psref); 512 } else if (im6o != NULL) { 513 ifp = if_get_byindex(im6o->im6o_multicast_if_index, 514 &psref); 515 } 516 } 517 518 if (ifp == NULL) { 519 error = in6_selectroute(&dst_sa, opt, &ro, &rt, true); 520 if (error != 0) 521 goto bad; 522 ifp = if_get_byindex(rt->rt_ifp->if_index, &psref); 523 } 524 525 if (rt == NULL) { 526 /* 527 * If in6_selectroute() does not return a route entry, 528 * dst may not have been updated. 529 */ 530 error = rtcache_setdst(ro, sin6tosa(&dst_sa)); 531 if (error) { 532 goto bad; 533 } 534 } 535 536 /* 537 * then rt (for unicast) and ifp must be non-NULL valid values. 538 */ 539 if ((flags & IPV6_FORWARDING) == 0) { 540 /* XXX: the FORWARDING flag can be set for mrouting. */ 541 in6_ifstat_inc(ifp, ifs6_out_request); 542 } 543 if (rt != NULL) { 544 ia = (struct in6_ifaddr *)(rt->rt_ifa); 545 rt->rt_use++; 546 } 547 548 /* 549 * The outgoing interface must be in the zone of source and 550 * destination addresses. We should use ia_ifp to support the 551 * case of sending packets to an address of our own. 552 */ 553 if (ia != NULL) { 554 origifp = ia->ia_ifp; 555 if (if_is_deactivated(origifp)) 556 goto bad; 557 if_acquire(origifp, &psref_ia); 558 release_psref_ia = true; 559 } else 560 origifp = ifp; 561 562 src0 = ip6->ip6_src; 563 if (in6_setscope(&src0, origifp, &zone)) 564 goto badscope; 565 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0); 566 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 567 goto badscope; 568 569 dst0 = ip6->ip6_dst; 570 if (in6_setscope(&dst0, origifp, &zone)) 571 goto badscope; 572 /* re-initialize to be sure */ 573 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 574 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) 575 goto badscope; 576 577 /* scope check is done. */ 578 579 /* Ensure we only send from a valid address. */ 580 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 581 (flags & IPV6_FORWARDING) == 0 && 582 (error = ip6_ifaddrvalid(&src0, &dst0)) != 0) 583 { 584 char ip6buf[INET6_ADDRSTRLEN]; 585 nd6log(LOG_ERR, 586 "refusing to send from invalid address %s (pid %d)\n", 587 IN6_PRINT(ip6buf, &src0), curproc->p_pid); 588 IP6_STATINC(IP6_STAT_ODROPPED); 589 in6_ifstat_inc(origifp, ifs6_out_discard); 590 if (error == 1) 591 /* 592 * Address exists, but is tentative or detached. 593 * We can't send from it because it's invalid, 594 * so we drop the packet. 595 */ 596 error = 0; 597 else 598 error = EADDRNOTAVAIL; 599 goto bad; 600 } 601 602 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) && 603 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 604 dst = satocsin6(rt->rt_gateway); 605 else 606 dst = satocsin6(rtcache_getdst(ro)); 607 608 /* 609 * XXXXXX: original code follows: 610 */ 611 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 612 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 613 else { 614 bool ingroup; 615 616 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 617 618 in6_ifstat_inc(ifp, ifs6_out_mcast); 619 620 /* 621 * Confirm that the outgoing interface supports multicast. 622 */ 623 if (!(ifp->if_flags & IFF_MULTICAST)) { 624 IP6_STATINC(IP6_STAT_NOROUTE); 625 in6_ifstat_inc(ifp, ifs6_out_discard); 626 error = ENETUNREACH; 627 goto bad; 628 } 629 630 ingroup = in6_multi_group(&ip6->ip6_dst, ifp); 631 if (ingroup && (im6o == NULL || im6o->im6o_multicast_loop)) { 632 /* 633 * If we belong to the destination multicast group 634 * on the outgoing interface, and the caller did not 635 * forbid loopback, loop back a copy. 636 */ 637 KASSERT(dst != NULL); 638 ip6_mloopback(ifp, m, dst); 639 } else { 640 /* 641 * If we are acting as a multicast router, perform 642 * multicast forwarding as if the packet had just 643 * arrived on the interface to which we are about 644 * to send. The multicast forwarding function 645 * recursively calls this function, using the 646 * IPV6_FORWARDING flag to prevent infinite recursion. 647 * 648 * Multicasts that are looped back by ip6_mloopback(), 649 * above, will be forwarded by the ip6_input() routine, 650 * if necessary. 651 */ 652 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 653 if (ip6_mforward(ip6, ifp, m) != 0) { 654 m_freem(m); 655 goto done; 656 } 657 } 658 } 659 /* 660 * Multicasts with a hoplimit of zero may be looped back, 661 * above, but must not be transmitted on a network. 662 * Also, multicasts addressed to the loopback interface 663 * are not sent -- the above call to ip6_mloopback() will 664 * loop back a copy if this host actually belongs to the 665 * destination group on the loopback interface. 666 */ 667 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 668 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 669 m_freem(m); 670 goto done; 671 } 672 } 673 674 /* 675 * Fill the outgoing inteface to tell the upper layer 676 * to increment per-interface statistics. 677 */ 678 if (ifpp) 679 *ifpp = ifp; 680 681 /* Determine path MTU. */ 682 /* 683 * ro_pmtu represent final destination while 684 * ro might represent immediate destination. 685 * Use ro_pmtu destination since MTU might differ. 686 */ 687 if (ro_pmtu != ro) { 688 union { 689 struct sockaddr dst; 690 struct sockaddr_in6 dst6; 691 } u; 692 693 /* ro_pmtu may not have a cache */ 694 sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0); 695 rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst); 696 } else 697 rt_pmtu = rt; 698 error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag); 699 if (rt_pmtu != NULL && rt_pmtu != rt) 700 rtcache_unref(rt_pmtu, ro_pmtu); 701 if (error != 0) 702 goto bad; 703 704 /* 705 * The caller of this function may specify to use the minimum MTU 706 * in some cases. 707 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 708 * setting. The logic is a bit complicated; by default, unicast 709 * packets will follow path MTU while multicast packets will be sent at 710 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 711 * including unicast ones will be sent at the minimum MTU. Multicast 712 * packets will always be sent at the minimum MTU unless 713 * IP6PO_MINMTU_DISABLE is explicitly specified. 714 * See RFC 3542 for more details. 715 */ 716 if (mtu > IPV6_MMTU) { 717 if ((flags & IPV6_MINMTU)) 718 mtu = IPV6_MMTU; 719 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 720 mtu = IPV6_MMTU; 721 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 722 (opt == NULL || 723 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 724 mtu = IPV6_MMTU; 725 } 726 } 727 728 /* 729 * clear embedded scope identifiers if necessary. 730 * in6_clearscope will touch the addresses only when necessary. 731 */ 732 in6_clearscope(&ip6->ip6_src); 733 in6_clearscope(&ip6->ip6_dst); 734 735 /* 736 * If the outgoing packet contains a hop-by-hop options header, 737 * it must be examined and processed even by the source node. 738 * (RFC 2460, section 4.) 739 * 740 * XXX Is this really necessary? 741 */ 742 if (ip6->ip6_nxt == IPPROTO_HOPOPTS) { 743 u_int32_t dummy1; /* XXX unused */ 744 u_int32_t dummy2; /* XXX unused */ 745 int hoff = sizeof(struct ip6_hdr); 746 747 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) { 748 /* m was already freed at this point */ 749 error = EINVAL; 750 goto done; 751 } 752 753 ip6 = mtod(m, struct ip6_hdr *); 754 } 755 756 /* 757 * Run through list of hooks for output packets. 758 */ 759 error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT); 760 if (error != 0 || m == NULL) { 761 IP6_STATINC(IP6_STAT_PFILDROP_OUT); 762 goto done; 763 } 764 ip6 = mtod(m, struct ip6_hdr *); 765 766 /* 767 * Send the packet to the outgoing interface. 768 * If necessary, do IPv6 fragmentation before sending. 769 * 770 * the logic here is rather complex: 771 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 772 * 1-a: send as is if tlen <= path mtu 773 * 1-b: fragment if tlen > path mtu 774 * 775 * 2: if user asks us not to fragment (dontfrag == 1) 776 * 2-a: send as is if tlen <= interface mtu 777 * 2-b: error if tlen > interface mtu 778 * 779 * 3: if we always need to attach fragment header (alwaysfrag == 1) 780 * always fragment 781 * 782 * 4: if dontfrag == 1 && alwaysfrag == 1 783 * error, as we cannot handle this conflicting request 784 */ 785 tlen = m->m_pkthdr.len; 786 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0; 787 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 788 dontfrag = 1; 789 else 790 dontfrag = 0; 791 792 if (dontfrag && alwaysfrag) { /* case 4 */ 793 /* conflicting request - can't transmit */ 794 error = EMSGSIZE; 795 goto bad; 796 } 797 if (dontfrag && (!tso && tlen > ifp->if_mtu)) { /* case 2-b */ 798 /* 799 * Even if the DONTFRAG option is specified, we cannot send the 800 * packet when the data length is larger than the MTU of the 801 * outgoing interface. 802 * Notify the error by sending IPV6_PATHMTU ancillary data as 803 * well as returning an error code (the latter is not described 804 * in the API spec.) 805 */ 806 u_int32_t mtu32; 807 struct ip6ctlparam ip6cp; 808 809 mtu32 = (u_int32_t)mtu; 810 memset(&ip6cp, 0, sizeof(ip6cp)); 811 ip6cp.ip6c_cmdarg = (void *)&mtu32; 812 pfctlinput2(PRC_MSGSIZE, 813 rtcache_getdst(ro_pmtu), &ip6cp); 814 815 error = EMSGSIZE; 816 goto bad; 817 } 818 819 /* 820 * transmit packet without fragmentation 821 */ 822 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) { 823 /* case 1-a and 2-a */ 824 struct in6_ifaddr *ia6; 825 int sw_csum; 826 int s; 827 828 ip6 = mtod(m, struct ip6_hdr *); 829 s = pserialize_read_enter(); 830 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 831 if (ia6) { 832 /* Record statistics for this interface address. */ 833 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len; 834 } 835 pserialize_read_exit(s); 836 837 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 838 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 839 if (IN6_NEED_CHECKSUM(ifp, 840 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 841 in6_undefer_cksum_tcpudp(m); 842 } 843 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 844 } 845 846 KASSERT(dst != NULL); 847 if (__predict_false(sw_csum & M_CSUM_TSOv6)) { 848 /* 849 * TSO6 is required by a packet, but disabled for 850 * the interface. 851 */ 852 error = ip6_tso_output(ifp, origifp, m, dst, rt); 853 } else 854 error = ip6_if_output(ifp, origifp, m, dst, rt); 855 goto done; 856 } 857 858 if (tso) { 859 error = EINVAL; /* XXX */ 860 goto bad; 861 } 862 863 /* 864 * try to fragment the packet. case 1-b and 3 865 */ 866 if (mtu < IPV6_MMTU) { 867 /* path MTU cannot be less than IPV6_MMTU */ 868 error = EMSGSIZE; 869 in6_ifstat_inc(ifp, ifs6_out_fragfail); 870 goto bad; 871 } else if (ip6->ip6_plen == 0) { 872 /* jumbo payload cannot be fragmented */ 873 error = EMSGSIZE; 874 in6_ifstat_inc(ifp, ifs6_out_fragfail); 875 goto bad; 876 } else { 877 const u_int32_t id = htonl(ip6_randomid()); 878 struct mbuf **mnext, *m_frgpart; 879 const int hlen = unfragpartlen; 880 struct ip6_frag *ip6f; 881 u_char nextproto; 882 883 if (mtu > IPV6_MAXPACKET) 884 mtu = IPV6_MAXPACKET; 885 886 /* 887 * Must be able to put at least 8 bytes per fragment. 888 */ 889 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 890 if (len < 8) { 891 error = EMSGSIZE; 892 in6_ifstat_inc(ifp, ifs6_out_fragfail); 893 goto bad; 894 } 895 896 mnext = &m->m_nextpkt; 897 898 /* 899 * Change the next header field of the last header in the 900 * unfragmentable part. 901 */ 902 if (exthdrs.ip6e_rthdr) { 903 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 904 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 905 } else if (exthdrs.ip6e_dest1) { 906 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 907 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 908 } else if (exthdrs.ip6e_hbh) { 909 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 910 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 911 } else { 912 nextproto = ip6->ip6_nxt; 913 ip6->ip6_nxt = IPPROTO_FRAGMENT; 914 } 915 916 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) 917 != 0) { 918 if (IN6_NEED_CHECKSUM(ifp, 919 m->m_pkthdr.csum_flags & 920 (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 921 in6_undefer_cksum_tcpudp(m); 922 } 923 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 924 } 925 926 /* 927 * Loop through length of segment after first fragment, 928 * make new header and copy data of each part and link onto 929 * chain. 930 */ 931 m0 = m; 932 for (off = hlen; off < tlen; off += len) { 933 struct mbuf *mlast; 934 935 MGETHDR(m, M_DONTWAIT, MT_HEADER); 936 if (!m) { 937 error = ENOBUFS; 938 IP6_STATINC(IP6_STAT_ODROPPED); 939 goto sendorfree; 940 } 941 m_reset_rcvif(m); 942 m->m_flags = m0->m_flags & M_COPYFLAGS; 943 *mnext = m; 944 mnext = &m->m_nextpkt; 945 m->m_data += max_linkhdr; 946 mhip6 = mtod(m, struct ip6_hdr *); 947 *mhip6 = *ip6; 948 m->m_len = sizeof(*mhip6); 949 950 ip6f = NULL; 951 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 952 if (error) { 953 IP6_STATINC(IP6_STAT_ODROPPED); 954 goto sendorfree; 955 } 956 957 /* Fill in the Frag6 Header */ 958 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 959 if (off + len >= tlen) 960 len = tlen - off; 961 else 962 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 963 ip6f->ip6f_reserved = 0; 964 ip6f->ip6f_ident = id; 965 ip6f->ip6f_nxt = nextproto; 966 967 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 968 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 969 if ((m_frgpart = m_copym(m0, off, len, M_DONTWAIT)) == NULL) { 970 error = ENOBUFS; 971 IP6_STATINC(IP6_STAT_ODROPPED); 972 goto sendorfree; 973 } 974 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 975 ; 976 mlast->m_next = m_frgpart; 977 978 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 979 m_reset_rcvif(m); 980 IP6_STATINC(IP6_STAT_OFRAGMENTS); 981 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 982 } 983 984 in6_ifstat_inc(ifp, ifs6_out_fragok); 985 } 986 987 sendorfree: 988 m = m0->m_nextpkt; 989 m0->m_nextpkt = 0; 990 m_freem(m0); 991 for (m0 = m; m; m = m0) { 992 m0 = m->m_nextpkt; 993 m->m_nextpkt = 0; 994 if (error == 0) { 995 struct in6_ifaddr *ia6; 996 int s; 997 ip6 = mtod(m, struct ip6_hdr *); 998 s = pserialize_read_enter(); 999 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1000 if (ia6) { 1001 /* 1002 * Record statistics for this interface 1003 * address. 1004 */ 1005 ia6->ia_ifa.ifa_data.ifad_outbytes += 1006 m->m_pkthdr.len; 1007 } 1008 pserialize_read_exit(s); 1009 KASSERT(dst != NULL); 1010 error = ip6_if_output(ifp, origifp, m, dst, rt); 1011 } else 1012 m_freem(m); 1013 } 1014 1015 if (error == 0) 1016 IP6_STATINC(IP6_STAT_FRAGMENTED); 1017 1018 done: 1019 rtcache_unref(rt, ro); 1020 if (ro == &ip6route) 1021 rtcache_free(&ip6route); 1022 #ifdef IPSEC 1023 if (sp != NULL) 1024 KEY_SP_UNREF(&sp); 1025 #endif 1026 if_put(ifp, &psref); 1027 if (release_psref_ia) 1028 if_put(origifp, &psref_ia); 1029 curlwp_bindx(bound); 1030 1031 return error; 1032 1033 freehdrs: 1034 m_freem(exthdrs.ip6e_hbh); 1035 m_freem(exthdrs.ip6e_dest1); 1036 m_freem(exthdrs.ip6e_rthdr); 1037 m_freem(exthdrs.ip6e_dest2); 1038 /* FALLTHROUGH */ 1039 bad: 1040 m_freem(m); 1041 goto done; 1042 1043 badscope: 1044 IP6_STATINC(IP6_STAT_BADSCOPE); 1045 in6_ifstat_inc(origifp, ifs6_out_discard); 1046 if (error == 0) 1047 error = EHOSTUNREACH; /* XXX */ 1048 goto bad; 1049 } 1050 1051 static int 1052 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen) 1053 { 1054 struct mbuf *m; 1055 1056 if (hlen > MCLBYTES) 1057 return ENOBUFS; /* XXX */ 1058 1059 MGET(m, M_DONTWAIT, MT_DATA); 1060 if (!m) 1061 return ENOBUFS; 1062 1063 if (hlen > MLEN) { 1064 MCLGET(m, M_DONTWAIT); 1065 if ((m->m_flags & M_EXT) == 0) { 1066 m_free(m); 1067 return ENOBUFS; 1068 } 1069 } 1070 m->m_len = hlen; 1071 if (hdr) 1072 memcpy(mtod(m, void *), hdr, hlen); 1073 1074 *mp = m; 1075 return 0; 1076 } 1077 1078 /* 1079 * Insert jumbo payload option. 1080 */ 1081 static int 1082 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1083 { 1084 struct mbuf *mopt; 1085 u_int8_t *optbuf; 1086 u_int32_t v; 1087 1088 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1089 1090 /* 1091 * If there is no hop-by-hop options header, allocate new one. 1092 * If there is one but it doesn't have enough space to store the 1093 * jumbo payload option, allocate a cluster to store the whole options. 1094 * Otherwise, use it to store the options. 1095 */ 1096 if (exthdrs->ip6e_hbh == NULL) { 1097 MGET(mopt, M_DONTWAIT, MT_DATA); 1098 if (mopt == 0) 1099 return (ENOBUFS); 1100 mopt->m_len = JUMBOOPTLEN; 1101 optbuf = mtod(mopt, u_int8_t *); 1102 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1103 exthdrs->ip6e_hbh = mopt; 1104 } else { 1105 struct ip6_hbh *hbh; 1106 1107 mopt = exthdrs->ip6e_hbh; 1108 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1109 const int oldoptlen = mopt->m_len; 1110 struct mbuf *n; 1111 1112 /* 1113 * Assumptions: 1114 * - exthdrs->ip6e_hbh is not referenced from places 1115 * other than exthdrs. 1116 * - exthdrs->ip6e_hbh is not an mbuf chain. 1117 */ 1118 KASSERT(mopt->m_next == NULL); 1119 1120 /* 1121 * Give up if the whole (new) hbh header does not fit 1122 * even in an mbuf cluster. 1123 */ 1124 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1125 return ENOBUFS; 1126 1127 /* 1128 * At this point, we must always prepare a cluster. 1129 */ 1130 MGET(n, M_DONTWAIT, MT_DATA); 1131 if (n) { 1132 MCLGET(n, M_DONTWAIT); 1133 if ((n->m_flags & M_EXT) == 0) { 1134 m_freem(n); 1135 n = NULL; 1136 } 1137 } 1138 if (!n) 1139 return ENOBUFS; 1140 1141 n->m_len = oldoptlen + JUMBOOPTLEN; 1142 bcopy(mtod(mopt, void *), mtod(n, void *), 1143 oldoptlen); 1144 optbuf = mtod(n, u_int8_t *) + oldoptlen; 1145 m_freem(mopt); 1146 mopt = exthdrs->ip6e_hbh = n; 1147 } else { 1148 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 1149 mopt->m_len += JUMBOOPTLEN; 1150 } 1151 optbuf[0] = IP6OPT_PADN; 1152 optbuf[1] = 0; 1153 1154 /* 1155 * Adjust the header length according to the pad and 1156 * the jumbo payload option. 1157 */ 1158 hbh = mtod(mopt, struct ip6_hbh *); 1159 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1160 } 1161 1162 /* fill in the option. */ 1163 optbuf[2] = IP6OPT_JUMBO; 1164 optbuf[3] = 4; 1165 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1166 memcpy(&optbuf[4], &v, sizeof(u_int32_t)); 1167 1168 /* finally, adjust the packet header length */ 1169 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1170 1171 return 0; 1172 #undef JUMBOOPTLEN 1173 } 1174 1175 /* 1176 * Insert fragment header and copy unfragmentable header portions. 1177 * 1178 * *frghdrp will not be read, and it is guaranteed that either an 1179 * error is returned or that *frghdrp will point to space allocated 1180 * for the fragment header. 1181 * 1182 * On entry, m contains: 1183 * IPv6 Header 1184 * On exit, it contains: 1185 * IPv6 Header -> Unfragmentable Part -> Frag6 Header 1186 */ 1187 static int 1188 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1189 struct ip6_frag **frghdrp) 1190 { 1191 struct mbuf *n, *mlast; 1192 1193 if (hlen > sizeof(struct ip6_hdr)) { 1194 n = m_copym(m0, sizeof(struct ip6_hdr), 1195 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1196 if (n == NULL) 1197 return ENOBUFS; 1198 m->m_next = n; 1199 } else 1200 n = m; 1201 1202 /* Search for the last mbuf of unfragmentable part. */ 1203 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1204 ; 1205 1206 if ((mlast->m_flags & M_EXT) == 0 && 1207 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1208 /* use the trailing space of the last mbuf for the fragment hdr */ 1209 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) + 1210 mlast->m_len); 1211 mlast->m_len += sizeof(struct ip6_frag); 1212 } else { 1213 /* allocate a new mbuf for the fragment header */ 1214 struct mbuf *mfrg; 1215 1216 MGET(mfrg, M_DONTWAIT, MT_DATA); 1217 if (mfrg == NULL) 1218 return ENOBUFS; 1219 mfrg->m_len = sizeof(struct ip6_frag); 1220 *frghdrp = mtod(mfrg, struct ip6_frag *); 1221 mlast->m_next = mfrg; 1222 } 1223 1224 return 0; 1225 } 1226 1227 static int 1228 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup, 1229 int *alwaysfragp) 1230 { 1231 u_int32_t mtu = 0; 1232 int alwaysfrag = 0; 1233 int error = 0; 1234 1235 if (rt != NULL) { 1236 if (ifp == NULL) 1237 ifp = rt->rt_ifp; 1238 mtu = rt->rt_rmx.rmx_mtu; 1239 if (mtu == 0) 1240 mtu = ifp->if_mtu; 1241 else if (mtu < IPV6_MMTU) { 1242 /* 1243 * RFC2460 section 5, last paragraph: 1244 * if we record ICMPv6 too big message with 1245 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1246 * or smaller, with fragment header attached. 1247 * (fragment header is needed regardless from the 1248 * packet size, for translators to identify packets) 1249 */ 1250 alwaysfrag = 1; 1251 mtu = IPV6_MMTU; 1252 } else if (mtu > ifp->if_mtu) { 1253 /* 1254 * The MTU on the route is larger than the MTU on 1255 * the interface! This shouldn't happen, unless the 1256 * MTU of the interface has been changed after the 1257 * interface was brought up. Change the MTU in the 1258 * route to match the interface MTU (as long as the 1259 * field isn't locked). 1260 */ 1261 mtu = ifp->if_mtu; 1262 if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) 1263 rt->rt_rmx.rmx_mtu = mtu; 1264 } 1265 } else if (ifp) { 1266 mtu = ifp->if_mtu; 1267 } else 1268 error = EHOSTUNREACH; /* XXX */ 1269 1270 *mtup = mtu; 1271 if (alwaysfragp) 1272 *alwaysfragp = alwaysfrag; 1273 return (error); 1274 } 1275 1276 /* 1277 * IP6 socket option processing. 1278 */ 1279 int 1280 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1281 { 1282 int optdatalen, uproto; 1283 void *optdata; 1284 struct in6pcb *in6p = sotoin6pcb(so); 1285 struct ip_moptions **mopts; 1286 int error, optval; 1287 int level, optname; 1288 1289 KASSERT(solocked(so)); 1290 KASSERT(sopt != NULL); 1291 1292 level = sopt->sopt_level; 1293 optname = sopt->sopt_name; 1294 1295 error = optval = 0; 1296 uproto = (int)so->so_proto->pr_protocol; 1297 1298 switch (level) { 1299 case IPPROTO_IP: 1300 switch (optname) { 1301 case IP_ADD_MEMBERSHIP: 1302 case IP_DROP_MEMBERSHIP: 1303 case IP_MULTICAST_IF: 1304 case IP_MULTICAST_LOOP: 1305 case IP_MULTICAST_TTL: 1306 mopts = &in6p->in6p_v4moptions; 1307 switch (op) { 1308 case PRCO_GETOPT: 1309 return ip_getmoptions(*mopts, sopt); 1310 case PRCO_SETOPT: 1311 return ip_setmoptions(mopts, sopt); 1312 default: 1313 return EINVAL; 1314 } 1315 default: 1316 return ENOPROTOOPT; 1317 } 1318 case IPPROTO_IPV6: 1319 break; 1320 default: 1321 return ENOPROTOOPT; 1322 } 1323 switch (op) { 1324 case PRCO_SETOPT: 1325 switch (optname) { 1326 #ifdef RFC2292 1327 case IPV6_2292PKTOPTIONS: 1328 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt); 1329 break; 1330 #endif 1331 1332 /* 1333 * Use of some Hop-by-Hop options or some 1334 * Destination options, might require special 1335 * privilege. That is, normal applications 1336 * (without special privilege) might be forbidden 1337 * from setting certain options in outgoing packets, 1338 * and might never see certain options in received 1339 * packets. [RFC 2292 Section 6] 1340 * KAME specific note: 1341 * KAME prevents non-privileged users from sending or 1342 * receiving ANY hbh/dst options in order to avoid 1343 * overhead of parsing options in the kernel. 1344 */ 1345 case IPV6_RECVHOPOPTS: 1346 case IPV6_RECVDSTOPTS: 1347 case IPV6_RECVRTHDRDSTOPTS: 1348 error = kauth_authorize_network(kauth_cred_get(), 1349 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, 1350 NULL, NULL, NULL); 1351 if (error) 1352 break; 1353 /* FALLTHROUGH */ 1354 case IPV6_UNICAST_HOPS: 1355 case IPV6_HOPLIMIT: 1356 case IPV6_FAITH: 1357 1358 case IPV6_RECVPKTINFO: 1359 case IPV6_RECVHOPLIMIT: 1360 case IPV6_RECVRTHDR: 1361 case IPV6_RECVPATHMTU: 1362 case IPV6_RECVTCLASS: 1363 case IPV6_V6ONLY: 1364 error = sockopt_getint(sopt, &optval); 1365 if (error) 1366 break; 1367 switch (optname) { 1368 case IPV6_UNICAST_HOPS: 1369 if (optval < -1 || optval >= 256) 1370 error = EINVAL; 1371 else { 1372 /* -1 = kernel default */ 1373 in6p->in6p_hops = optval; 1374 } 1375 break; 1376 #define OPTSET(bit) \ 1377 do { \ 1378 if (optval) \ 1379 in6p->in6p_flags |= (bit); \ 1380 else \ 1381 in6p->in6p_flags &= ~(bit); \ 1382 } while (/*CONSTCOND*/ 0) 1383 1384 #ifdef RFC2292 1385 #define OPTSET2292(bit) \ 1386 do { \ 1387 in6p->in6p_flags |= IN6P_RFC2292; \ 1388 if (optval) \ 1389 in6p->in6p_flags |= (bit); \ 1390 else \ 1391 in6p->in6p_flags &= ~(bit); \ 1392 } while (/*CONSTCOND*/ 0) 1393 #endif 1394 1395 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1396 1397 case IPV6_RECVPKTINFO: 1398 #ifdef RFC2292 1399 /* cannot mix with RFC2292 */ 1400 if (OPTBIT(IN6P_RFC2292)) { 1401 error = EINVAL; 1402 break; 1403 } 1404 #endif 1405 OPTSET(IN6P_PKTINFO); 1406 break; 1407 1408 case IPV6_HOPLIMIT: 1409 { 1410 struct ip6_pktopts **optp; 1411 1412 #ifdef RFC2292 1413 /* cannot mix with RFC2292 */ 1414 if (OPTBIT(IN6P_RFC2292)) { 1415 error = EINVAL; 1416 break; 1417 } 1418 #endif 1419 optp = &in6p->in6p_outputopts; 1420 error = ip6_pcbopt(IPV6_HOPLIMIT, 1421 (u_char *)&optval, 1422 sizeof(optval), 1423 optp, 1424 kauth_cred_get(), uproto); 1425 break; 1426 } 1427 1428 case IPV6_RECVHOPLIMIT: 1429 #ifdef RFC2292 1430 /* cannot mix with RFC2292 */ 1431 if (OPTBIT(IN6P_RFC2292)) { 1432 error = EINVAL; 1433 break; 1434 } 1435 #endif 1436 OPTSET(IN6P_HOPLIMIT); 1437 break; 1438 1439 case IPV6_RECVHOPOPTS: 1440 #ifdef RFC2292 1441 /* cannot mix with RFC2292 */ 1442 if (OPTBIT(IN6P_RFC2292)) { 1443 error = EINVAL; 1444 break; 1445 } 1446 #endif 1447 OPTSET(IN6P_HOPOPTS); 1448 break; 1449 1450 case IPV6_RECVDSTOPTS: 1451 #ifdef RFC2292 1452 /* cannot mix with RFC2292 */ 1453 if (OPTBIT(IN6P_RFC2292)) { 1454 error = EINVAL; 1455 break; 1456 } 1457 #endif 1458 OPTSET(IN6P_DSTOPTS); 1459 break; 1460 1461 case IPV6_RECVRTHDRDSTOPTS: 1462 #ifdef RFC2292 1463 /* cannot mix with RFC2292 */ 1464 if (OPTBIT(IN6P_RFC2292)) { 1465 error = EINVAL; 1466 break; 1467 } 1468 #endif 1469 OPTSET(IN6P_RTHDRDSTOPTS); 1470 break; 1471 1472 case IPV6_RECVRTHDR: 1473 #ifdef RFC2292 1474 /* cannot mix with RFC2292 */ 1475 if (OPTBIT(IN6P_RFC2292)) { 1476 error = EINVAL; 1477 break; 1478 } 1479 #endif 1480 OPTSET(IN6P_RTHDR); 1481 break; 1482 1483 case IPV6_FAITH: 1484 OPTSET(IN6P_FAITH); 1485 break; 1486 1487 case IPV6_RECVPATHMTU: 1488 /* 1489 * We ignore this option for TCP 1490 * sockets. 1491 * (RFC3542 leaves this case 1492 * unspecified.) 1493 */ 1494 if (uproto != IPPROTO_TCP) 1495 OPTSET(IN6P_MTU); 1496 break; 1497 1498 case IPV6_V6ONLY: 1499 /* 1500 * make setsockopt(IPV6_V6ONLY) 1501 * available only prior to bind(2). 1502 * see ipng mailing list, Jun 22 2001. 1503 */ 1504 if (in6p->in6p_lport || 1505 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1506 error = EINVAL; 1507 break; 1508 } 1509 #ifdef INET6_BINDV6ONLY 1510 if (!optval) 1511 error = EINVAL; 1512 #else 1513 OPTSET(IN6P_IPV6_V6ONLY); 1514 #endif 1515 break; 1516 case IPV6_RECVTCLASS: 1517 #ifdef RFC2292 1518 /* cannot mix with RFC2292 XXX */ 1519 if (OPTBIT(IN6P_RFC2292)) { 1520 error = EINVAL; 1521 break; 1522 } 1523 #endif 1524 OPTSET(IN6P_TCLASS); 1525 break; 1526 1527 } 1528 break; 1529 1530 case IPV6_OTCLASS: 1531 { 1532 struct ip6_pktopts **optp; 1533 u_int8_t tclass; 1534 1535 error = sockopt_get(sopt, &tclass, sizeof(tclass)); 1536 if (error) 1537 break; 1538 optp = &in6p->in6p_outputopts; 1539 error = ip6_pcbopt(optname, 1540 (u_char *)&tclass, 1541 sizeof(tclass), 1542 optp, 1543 kauth_cred_get(), uproto); 1544 break; 1545 } 1546 1547 case IPV6_TCLASS: 1548 case IPV6_DONTFRAG: 1549 case IPV6_USE_MIN_MTU: 1550 case IPV6_PREFER_TEMPADDR: 1551 error = sockopt_getint(sopt, &optval); 1552 if (error) 1553 break; 1554 { 1555 struct ip6_pktopts **optp; 1556 optp = &in6p->in6p_outputopts; 1557 error = ip6_pcbopt(optname, 1558 (u_char *)&optval, 1559 sizeof(optval), 1560 optp, 1561 kauth_cred_get(), uproto); 1562 break; 1563 } 1564 1565 #ifdef RFC2292 1566 case IPV6_2292PKTINFO: 1567 case IPV6_2292HOPLIMIT: 1568 case IPV6_2292HOPOPTS: 1569 case IPV6_2292DSTOPTS: 1570 case IPV6_2292RTHDR: 1571 /* RFC 2292 */ 1572 error = sockopt_getint(sopt, &optval); 1573 if (error) 1574 break; 1575 1576 switch (optname) { 1577 case IPV6_2292PKTINFO: 1578 OPTSET2292(IN6P_PKTINFO); 1579 break; 1580 case IPV6_2292HOPLIMIT: 1581 OPTSET2292(IN6P_HOPLIMIT); 1582 break; 1583 case IPV6_2292HOPOPTS: 1584 /* 1585 * Check super-user privilege. 1586 * See comments for IPV6_RECVHOPOPTS. 1587 */ 1588 error = 1589 kauth_authorize_network(kauth_cred_get(), 1590 KAUTH_NETWORK_IPV6, 1591 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1592 NULL, NULL); 1593 if (error) 1594 return (error); 1595 OPTSET2292(IN6P_HOPOPTS); 1596 break; 1597 case IPV6_2292DSTOPTS: 1598 error = 1599 kauth_authorize_network(kauth_cred_get(), 1600 KAUTH_NETWORK_IPV6, 1601 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1602 NULL, NULL); 1603 if (error) 1604 return (error); 1605 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1606 break; 1607 case IPV6_2292RTHDR: 1608 OPTSET2292(IN6P_RTHDR); 1609 break; 1610 } 1611 break; 1612 #endif 1613 case IPV6_PKTINFO: 1614 case IPV6_HOPOPTS: 1615 case IPV6_RTHDR: 1616 case IPV6_DSTOPTS: 1617 case IPV6_RTHDRDSTOPTS: 1618 case IPV6_NEXTHOP: { 1619 /* new advanced API (RFC3542) */ 1620 void *optbuf; 1621 int optbuflen; 1622 struct ip6_pktopts **optp; 1623 1624 #ifdef RFC2292 1625 /* cannot mix with RFC2292 */ 1626 if (OPTBIT(IN6P_RFC2292)) { 1627 error = EINVAL; 1628 break; 1629 } 1630 #endif 1631 1632 optbuflen = sopt->sopt_size; 1633 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT); 1634 if (optbuf == NULL) { 1635 error = ENOBUFS; 1636 break; 1637 } 1638 1639 error = sockopt_get(sopt, optbuf, optbuflen); 1640 if (error) { 1641 free(optbuf, M_IP6OPT); 1642 break; 1643 } 1644 optp = &in6p->in6p_outputopts; 1645 error = ip6_pcbopt(optname, optbuf, optbuflen, 1646 optp, kauth_cred_get(), uproto); 1647 1648 free(optbuf, M_IP6OPT); 1649 break; 1650 } 1651 #undef OPTSET 1652 1653 case IPV6_MULTICAST_IF: 1654 case IPV6_MULTICAST_HOPS: 1655 case IPV6_MULTICAST_LOOP: 1656 case IPV6_JOIN_GROUP: 1657 case IPV6_LEAVE_GROUP: 1658 error = ip6_setmoptions(sopt, in6p); 1659 break; 1660 1661 case IPV6_PORTRANGE: 1662 error = sockopt_getint(sopt, &optval); 1663 if (error) 1664 break; 1665 1666 switch (optval) { 1667 case IPV6_PORTRANGE_DEFAULT: 1668 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1669 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1670 break; 1671 1672 case IPV6_PORTRANGE_HIGH: 1673 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1674 in6p->in6p_flags |= IN6P_HIGHPORT; 1675 break; 1676 1677 case IPV6_PORTRANGE_LOW: 1678 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1679 in6p->in6p_flags |= IN6P_LOWPORT; 1680 break; 1681 1682 default: 1683 error = EINVAL; 1684 break; 1685 } 1686 break; 1687 1688 case IPV6_PORTALGO: 1689 error = sockopt_getint(sopt, &optval); 1690 if (error) 1691 break; 1692 1693 error = portalgo_algo_index_select( 1694 (struct inpcb_hdr *)in6p, optval); 1695 break; 1696 1697 #if defined(IPSEC) 1698 case IPV6_IPSEC_POLICY: 1699 if (ipsec_enabled) { 1700 error = ipsec_set_policy(in6p, 1701 sopt->sopt_data, sopt->sopt_size, 1702 kauth_cred_get()); 1703 } else 1704 error = ENOPROTOOPT; 1705 break; 1706 #endif /* IPSEC */ 1707 1708 default: 1709 error = ENOPROTOOPT; 1710 break; 1711 } 1712 break; 1713 1714 case PRCO_GETOPT: 1715 switch (optname) { 1716 #ifdef RFC2292 1717 case IPV6_2292PKTOPTIONS: 1718 /* 1719 * RFC3542 (effectively) deprecated the 1720 * semantics of the 2292-style pktoptions. 1721 * Since it was not reliable in nature (i.e., 1722 * applications had to expect the lack of some 1723 * information after all), it would make sense 1724 * to simplify this part by always returning 1725 * empty data. 1726 */ 1727 break; 1728 #endif 1729 1730 case IPV6_RECVHOPOPTS: 1731 case IPV6_RECVDSTOPTS: 1732 case IPV6_RECVRTHDRDSTOPTS: 1733 case IPV6_UNICAST_HOPS: 1734 case IPV6_RECVPKTINFO: 1735 case IPV6_RECVHOPLIMIT: 1736 case IPV6_RECVRTHDR: 1737 case IPV6_RECVPATHMTU: 1738 1739 case IPV6_FAITH: 1740 case IPV6_V6ONLY: 1741 case IPV6_PORTRANGE: 1742 case IPV6_RECVTCLASS: 1743 switch (optname) { 1744 1745 case IPV6_RECVHOPOPTS: 1746 optval = OPTBIT(IN6P_HOPOPTS); 1747 break; 1748 1749 case IPV6_RECVDSTOPTS: 1750 optval = OPTBIT(IN6P_DSTOPTS); 1751 break; 1752 1753 case IPV6_RECVRTHDRDSTOPTS: 1754 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1755 break; 1756 1757 case IPV6_UNICAST_HOPS: 1758 optval = in6p->in6p_hops; 1759 break; 1760 1761 case IPV6_RECVPKTINFO: 1762 optval = OPTBIT(IN6P_PKTINFO); 1763 break; 1764 1765 case IPV6_RECVHOPLIMIT: 1766 optval = OPTBIT(IN6P_HOPLIMIT); 1767 break; 1768 1769 case IPV6_RECVRTHDR: 1770 optval = OPTBIT(IN6P_RTHDR); 1771 break; 1772 1773 case IPV6_RECVPATHMTU: 1774 optval = OPTBIT(IN6P_MTU); 1775 break; 1776 1777 case IPV6_FAITH: 1778 optval = OPTBIT(IN6P_FAITH); 1779 break; 1780 1781 case IPV6_V6ONLY: 1782 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1783 break; 1784 1785 case IPV6_PORTRANGE: 1786 { 1787 int flags; 1788 flags = in6p->in6p_flags; 1789 if (flags & IN6P_HIGHPORT) 1790 optval = IPV6_PORTRANGE_HIGH; 1791 else if (flags & IN6P_LOWPORT) 1792 optval = IPV6_PORTRANGE_LOW; 1793 else 1794 optval = 0; 1795 break; 1796 } 1797 case IPV6_RECVTCLASS: 1798 optval = OPTBIT(IN6P_TCLASS); 1799 break; 1800 1801 } 1802 if (error) 1803 break; 1804 error = sockopt_setint(sopt, optval); 1805 break; 1806 1807 case IPV6_PATHMTU: 1808 { 1809 u_long pmtu = 0; 1810 struct ip6_mtuinfo mtuinfo; 1811 struct route *ro = &in6p->in6p_route; 1812 struct rtentry *rt; 1813 union { 1814 struct sockaddr dst; 1815 struct sockaddr_in6 dst6; 1816 } u; 1817 1818 if (!(so->so_state & SS_ISCONNECTED)) 1819 return (ENOTCONN); 1820 /* 1821 * XXX: we dot not consider the case of source 1822 * routing, or optional information to specify 1823 * the outgoing interface. 1824 */ 1825 sockaddr_in6_init(&u.dst6, &in6p->in6p_faddr, 0, 0, 0); 1826 rt = rtcache_lookup(ro, &u.dst); 1827 error = ip6_getpmtu(rt, NULL, &pmtu, NULL); 1828 rtcache_unref(rt, ro); 1829 if (error) 1830 break; 1831 if (pmtu > IPV6_MAXPACKET) 1832 pmtu = IPV6_MAXPACKET; 1833 1834 memset(&mtuinfo, 0, sizeof(mtuinfo)); 1835 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1836 optdata = (void *)&mtuinfo; 1837 optdatalen = sizeof(mtuinfo); 1838 if (optdatalen > MCLBYTES) 1839 return (EMSGSIZE); /* XXX */ 1840 error = sockopt_set(sopt, optdata, optdatalen); 1841 break; 1842 } 1843 1844 #ifdef RFC2292 1845 case IPV6_2292PKTINFO: 1846 case IPV6_2292HOPLIMIT: 1847 case IPV6_2292HOPOPTS: 1848 case IPV6_2292RTHDR: 1849 case IPV6_2292DSTOPTS: 1850 switch (optname) { 1851 case IPV6_2292PKTINFO: 1852 optval = OPTBIT(IN6P_PKTINFO); 1853 break; 1854 case IPV6_2292HOPLIMIT: 1855 optval = OPTBIT(IN6P_HOPLIMIT); 1856 break; 1857 case IPV6_2292HOPOPTS: 1858 optval = OPTBIT(IN6P_HOPOPTS); 1859 break; 1860 case IPV6_2292RTHDR: 1861 optval = OPTBIT(IN6P_RTHDR); 1862 break; 1863 case IPV6_2292DSTOPTS: 1864 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1865 break; 1866 } 1867 error = sockopt_setint(sopt, optval); 1868 break; 1869 #endif 1870 case IPV6_PKTINFO: 1871 case IPV6_HOPOPTS: 1872 case IPV6_RTHDR: 1873 case IPV6_DSTOPTS: 1874 case IPV6_RTHDRDSTOPTS: 1875 case IPV6_NEXTHOP: 1876 case IPV6_OTCLASS: 1877 case IPV6_TCLASS: 1878 case IPV6_DONTFRAG: 1879 case IPV6_USE_MIN_MTU: 1880 case IPV6_PREFER_TEMPADDR: 1881 error = ip6_getpcbopt(in6p->in6p_outputopts, 1882 optname, sopt); 1883 break; 1884 1885 case IPV6_MULTICAST_IF: 1886 case IPV6_MULTICAST_HOPS: 1887 case IPV6_MULTICAST_LOOP: 1888 case IPV6_JOIN_GROUP: 1889 case IPV6_LEAVE_GROUP: 1890 error = ip6_getmoptions(sopt, in6p); 1891 break; 1892 1893 case IPV6_PORTALGO: 1894 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo; 1895 error = sockopt_setint(sopt, optval); 1896 break; 1897 1898 #if defined(IPSEC) 1899 case IPV6_IPSEC_POLICY: 1900 if (ipsec_used) { 1901 struct mbuf *m = NULL; 1902 1903 /* 1904 * XXX: this will return EINVAL as sopt is 1905 * empty 1906 */ 1907 error = ipsec_get_policy(in6p, sopt->sopt_data, 1908 sopt->sopt_size, &m); 1909 if (!error) 1910 error = sockopt_setmbuf(sopt, m); 1911 } else 1912 error = ENOPROTOOPT; 1913 break; 1914 #endif /* IPSEC */ 1915 1916 default: 1917 error = ENOPROTOOPT; 1918 break; 1919 } 1920 break; 1921 } 1922 return (error); 1923 } 1924 1925 int 1926 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1927 { 1928 int error = 0, optval; 1929 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 1930 struct in6pcb *in6p = sotoin6pcb(so); 1931 int level, optname; 1932 1933 KASSERT(sopt != NULL); 1934 1935 level = sopt->sopt_level; 1936 optname = sopt->sopt_name; 1937 1938 if (level != IPPROTO_IPV6) { 1939 return ENOPROTOOPT; 1940 } 1941 1942 switch (optname) { 1943 case IPV6_CHECKSUM: 1944 /* 1945 * For ICMPv6 sockets, no modification allowed for checksum 1946 * offset, permit "no change" values to help existing apps. 1947 * 1948 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM 1949 * for an ICMPv6 socket will fail." The current 1950 * behavior does not meet RFC3542. 1951 */ 1952 switch (op) { 1953 case PRCO_SETOPT: 1954 error = sockopt_getint(sopt, &optval); 1955 if (error) 1956 break; 1957 if ((optval % 2) != 0) { 1958 /* the API assumes even offset values */ 1959 error = EINVAL; 1960 } else if (so->so_proto->pr_protocol == 1961 IPPROTO_ICMPV6) { 1962 if (optval != icmp6off) 1963 error = EINVAL; 1964 } else 1965 in6p->in6p_cksum = optval; 1966 break; 1967 1968 case PRCO_GETOPT: 1969 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 1970 optval = icmp6off; 1971 else 1972 optval = in6p->in6p_cksum; 1973 1974 error = sockopt_setint(sopt, optval); 1975 break; 1976 1977 default: 1978 error = EINVAL; 1979 break; 1980 } 1981 break; 1982 1983 default: 1984 error = ENOPROTOOPT; 1985 break; 1986 } 1987 1988 return (error); 1989 } 1990 1991 #ifdef RFC2292 1992 /* 1993 * Set up IP6 options in pcb for insertion in output packets or 1994 * specifying behavior of outgoing packets. 1995 */ 1996 static int 1997 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so, 1998 struct sockopt *sopt) 1999 { 2000 struct ip6_pktopts *opt = *pktopt; 2001 struct mbuf *m; 2002 int error = 0; 2003 2004 KASSERT(solocked(so)); 2005 2006 /* turn off any old options. */ 2007 if (opt) { 2008 #ifdef DIAGNOSTIC 2009 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2010 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2011 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2012 printf("ip6_pcbopts: all specified options are cleared.\n"); 2013 #endif 2014 ip6_clearpktopts(opt, -1); 2015 } else { 2016 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2017 if (opt == NULL) 2018 return (ENOBUFS); 2019 } 2020 *pktopt = NULL; 2021 2022 if (sopt == NULL || sopt->sopt_size == 0) { 2023 /* 2024 * Only turning off any previous options, regardless of 2025 * whether the opt is just created or given. 2026 */ 2027 free(opt, M_IP6OPT); 2028 return (0); 2029 } 2030 2031 /* set options specified by user. */ 2032 m = sockopt_getmbuf(sopt); 2033 if (m == NULL) { 2034 free(opt, M_IP6OPT); 2035 return (ENOBUFS); 2036 } 2037 2038 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(), 2039 so->so_proto->pr_protocol); 2040 m_freem(m); 2041 if (error != 0) { 2042 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2043 free(opt, M_IP6OPT); 2044 return (error); 2045 } 2046 *pktopt = opt; 2047 return (0); 2048 } 2049 #endif 2050 2051 /* 2052 * initialize ip6_pktopts. beware that there are non-zero default values in 2053 * the struct. 2054 */ 2055 void 2056 ip6_initpktopts(struct ip6_pktopts *opt) 2057 { 2058 2059 memset(opt, 0, sizeof(*opt)); 2060 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2061 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2062 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2063 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2064 } 2065 2066 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */ 2067 static int 2068 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2069 kauth_cred_t cred, int uproto) 2070 { 2071 struct ip6_pktopts *opt; 2072 2073 if (*pktopt == NULL) { 2074 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2075 M_NOWAIT); 2076 if (*pktopt == NULL) 2077 return (ENOBUFS); 2078 2079 ip6_initpktopts(*pktopt); 2080 } 2081 opt = *pktopt; 2082 2083 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2084 } 2085 2086 static int 2087 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2088 { 2089 void *optdata = NULL; 2090 int optdatalen = 0; 2091 struct ip6_ext *ip6e; 2092 int error = 0; 2093 struct in6_pktinfo null_pktinfo; 2094 int deftclass = 0, on; 2095 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2096 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2097 2098 switch (optname) { 2099 case IPV6_PKTINFO: 2100 if (pktopt && pktopt->ip6po_pktinfo) 2101 optdata = (void *)pktopt->ip6po_pktinfo; 2102 else { 2103 /* XXX: we don't have to do this every time... */ 2104 memset(&null_pktinfo, 0, sizeof(null_pktinfo)); 2105 optdata = (void *)&null_pktinfo; 2106 } 2107 optdatalen = sizeof(struct in6_pktinfo); 2108 break; 2109 case IPV6_OTCLASS: 2110 /* XXX */ 2111 return (EINVAL); 2112 case IPV6_TCLASS: 2113 if (pktopt && pktopt->ip6po_tclass >= 0) 2114 optdata = (void *)&pktopt->ip6po_tclass; 2115 else 2116 optdata = (void *)&deftclass; 2117 optdatalen = sizeof(int); 2118 break; 2119 case IPV6_HOPOPTS: 2120 if (pktopt && pktopt->ip6po_hbh) { 2121 optdata = (void *)pktopt->ip6po_hbh; 2122 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2123 optdatalen = (ip6e->ip6e_len + 1) << 3; 2124 } 2125 break; 2126 case IPV6_RTHDR: 2127 if (pktopt && pktopt->ip6po_rthdr) { 2128 optdata = (void *)pktopt->ip6po_rthdr; 2129 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2130 optdatalen = (ip6e->ip6e_len + 1) << 3; 2131 } 2132 break; 2133 case IPV6_RTHDRDSTOPTS: 2134 if (pktopt && pktopt->ip6po_dest1) { 2135 optdata = (void *)pktopt->ip6po_dest1; 2136 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2137 optdatalen = (ip6e->ip6e_len + 1) << 3; 2138 } 2139 break; 2140 case IPV6_DSTOPTS: 2141 if (pktopt && pktopt->ip6po_dest2) { 2142 optdata = (void *)pktopt->ip6po_dest2; 2143 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2144 optdatalen = (ip6e->ip6e_len + 1) << 3; 2145 } 2146 break; 2147 case IPV6_NEXTHOP: 2148 if (pktopt && pktopt->ip6po_nexthop) { 2149 optdata = (void *)pktopt->ip6po_nexthop; 2150 optdatalen = pktopt->ip6po_nexthop->sa_len; 2151 } 2152 break; 2153 case IPV6_USE_MIN_MTU: 2154 if (pktopt) 2155 optdata = (void *)&pktopt->ip6po_minmtu; 2156 else 2157 optdata = (void *)&defminmtu; 2158 optdatalen = sizeof(int); 2159 break; 2160 case IPV6_DONTFRAG: 2161 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2162 on = 1; 2163 else 2164 on = 0; 2165 optdata = (void *)&on; 2166 optdatalen = sizeof(on); 2167 break; 2168 case IPV6_PREFER_TEMPADDR: 2169 if (pktopt) 2170 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2171 else 2172 optdata = (void *)&defpreftemp; 2173 optdatalen = sizeof(int); 2174 break; 2175 default: /* should not happen */ 2176 #ifdef DIAGNOSTIC 2177 panic("ip6_getpcbopt: unexpected option\n"); 2178 #endif 2179 return (ENOPROTOOPT); 2180 } 2181 2182 error = sockopt_set(sopt, optdata, optdatalen); 2183 2184 return (error); 2185 } 2186 2187 void 2188 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2189 { 2190 if (optname == -1 || optname == IPV6_PKTINFO) { 2191 if (pktopt->ip6po_pktinfo) 2192 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2193 pktopt->ip6po_pktinfo = NULL; 2194 } 2195 if (optname == -1 || optname == IPV6_HOPLIMIT) 2196 pktopt->ip6po_hlim = -1; 2197 if (optname == -1 || optname == IPV6_TCLASS) 2198 pktopt->ip6po_tclass = -1; 2199 if (optname == -1 || optname == IPV6_NEXTHOP) { 2200 rtcache_free(&pktopt->ip6po_nextroute); 2201 if (pktopt->ip6po_nexthop) 2202 free(pktopt->ip6po_nexthop, M_IP6OPT); 2203 pktopt->ip6po_nexthop = NULL; 2204 } 2205 if (optname == -1 || optname == IPV6_HOPOPTS) { 2206 if (pktopt->ip6po_hbh) 2207 free(pktopt->ip6po_hbh, M_IP6OPT); 2208 pktopt->ip6po_hbh = NULL; 2209 } 2210 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2211 if (pktopt->ip6po_dest1) 2212 free(pktopt->ip6po_dest1, M_IP6OPT); 2213 pktopt->ip6po_dest1 = NULL; 2214 } 2215 if (optname == -1 || optname == IPV6_RTHDR) { 2216 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2217 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2218 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2219 rtcache_free(&pktopt->ip6po_route); 2220 } 2221 if (optname == -1 || optname == IPV6_DSTOPTS) { 2222 if (pktopt->ip6po_dest2) 2223 free(pktopt->ip6po_dest2, M_IP6OPT); 2224 pktopt->ip6po_dest2 = NULL; 2225 } 2226 } 2227 2228 #define PKTOPT_EXTHDRCPY(type) \ 2229 do { \ 2230 if (src->type) { \ 2231 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2232 dst->type = malloc(hlen, M_IP6OPT, canwait); \ 2233 if (dst->type == NULL) \ 2234 goto bad; \ 2235 memcpy(dst->type, src->type, hlen); \ 2236 } \ 2237 } while (/*CONSTCOND*/ 0) 2238 2239 static int 2240 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2241 { 2242 dst->ip6po_hlim = src->ip6po_hlim; 2243 dst->ip6po_tclass = src->ip6po_tclass; 2244 dst->ip6po_flags = src->ip6po_flags; 2245 dst->ip6po_minmtu = src->ip6po_minmtu; 2246 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2247 if (src->ip6po_pktinfo) { 2248 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2249 M_IP6OPT, canwait); 2250 if (dst->ip6po_pktinfo == NULL) 2251 goto bad; 2252 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2253 } 2254 if (src->ip6po_nexthop) { 2255 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2256 M_IP6OPT, canwait); 2257 if (dst->ip6po_nexthop == NULL) 2258 goto bad; 2259 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop, 2260 src->ip6po_nexthop->sa_len); 2261 } 2262 PKTOPT_EXTHDRCPY(ip6po_hbh); 2263 PKTOPT_EXTHDRCPY(ip6po_dest1); 2264 PKTOPT_EXTHDRCPY(ip6po_dest2); 2265 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2266 return (0); 2267 2268 bad: 2269 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 2270 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 2271 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 2272 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 2273 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 2274 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 2275 2276 return (ENOBUFS); 2277 } 2278 #undef PKTOPT_EXTHDRCPY 2279 2280 struct ip6_pktopts * 2281 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2282 { 2283 int error; 2284 struct ip6_pktopts *dst; 2285 2286 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2287 if (dst == NULL) 2288 return (NULL); 2289 ip6_initpktopts(dst); 2290 2291 if ((error = copypktopts(dst, src, canwait)) != 0) { 2292 free(dst, M_IP6OPT); 2293 return (NULL); 2294 } 2295 2296 return (dst); 2297 } 2298 2299 void 2300 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2301 { 2302 if (pktopt == NULL) 2303 return; 2304 2305 ip6_clearpktopts(pktopt, -1); 2306 2307 free(pktopt, M_IP6OPT); 2308 } 2309 2310 int 2311 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp, 2312 struct psref *psref, void *v, size_t l) 2313 { 2314 struct ipv6_mreq mreq; 2315 int error; 2316 struct in6_addr *ia = &mreq.ipv6mr_multiaddr; 2317 struct in_addr *ia4 = (void *)&ia->s6_addr32[3]; 2318 2319 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2320 if (error != 0) 2321 return error; 2322 2323 if (IN6_IS_ADDR_UNSPECIFIED(ia)) { 2324 /* 2325 * We use the unspecified address to specify to accept 2326 * all multicast addresses. Only super user is allowed 2327 * to do this. 2328 */ 2329 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6, 2330 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL)) 2331 return EACCES; 2332 } else if (IN6_IS_ADDR_V4MAPPED(ia)) { 2333 // Don't bother if we are not going to use ifp. 2334 if (l == sizeof(*ia)) { 2335 memcpy(v, ia, l); 2336 return 0; 2337 } 2338 } else if (!IN6_IS_ADDR_MULTICAST(ia)) { 2339 return EINVAL; 2340 } 2341 2342 /* 2343 * If no interface was explicitly specified, choose an 2344 * appropriate one according to the given multicast address. 2345 */ 2346 if (mreq.ipv6mr_interface == 0) { 2347 struct rtentry *rt; 2348 union { 2349 struct sockaddr dst; 2350 struct sockaddr_in dst4; 2351 struct sockaddr_in6 dst6; 2352 } u; 2353 struct route ro; 2354 2355 /* 2356 * Look up the routing table for the 2357 * address, and choose the outgoing interface. 2358 * XXX: is it a good approach? 2359 */ 2360 memset(&ro, 0, sizeof(ro)); 2361 if (IN6_IS_ADDR_V4MAPPED(ia)) 2362 sockaddr_in_init(&u.dst4, ia4, 0); 2363 else 2364 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0); 2365 error = rtcache_setdst(&ro, &u.dst); 2366 if (error != 0) 2367 return error; 2368 rt = rtcache_init(&ro); 2369 *ifp = rt != NULL ? 2370 if_get_byindex(rt->rt_ifp->if_index, psref) : NULL; 2371 rtcache_unref(rt, &ro); 2372 rtcache_free(&ro); 2373 } else { 2374 /* 2375 * If the interface is specified, validate it. 2376 */ 2377 *ifp = if_get_byindex(mreq.ipv6mr_interface, psref); 2378 if (*ifp == NULL) 2379 return ENXIO; /* XXX EINVAL? */ 2380 } 2381 if (sizeof(*ia) == l) 2382 memcpy(v, ia, l); 2383 else 2384 memcpy(v, ia4, l); 2385 return 0; 2386 } 2387 2388 /* 2389 * Set the IP6 multicast options in response to user setsockopt(). 2390 */ 2391 static int 2392 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p) 2393 { 2394 int error = 0; 2395 u_int loop, ifindex; 2396 struct ipv6_mreq mreq; 2397 struct in6_addr ia; 2398 struct ifnet *ifp; 2399 struct ip6_moptions *im6o = in6p->in6p_moptions; 2400 struct in6_multi_mship *imm; 2401 2402 KASSERT(in6p_locked(in6p)); 2403 2404 if (im6o == NULL) { 2405 /* 2406 * No multicast option buffer attached to the pcb; 2407 * allocate one and initialize to default values. 2408 */ 2409 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT); 2410 if (im6o == NULL) 2411 return (ENOBUFS); 2412 in6p->in6p_moptions = im6o; 2413 im6o->im6o_multicast_if_index = 0; 2414 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2415 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2416 LIST_INIT(&im6o->im6o_memberships); 2417 } 2418 2419 switch (sopt->sopt_name) { 2420 2421 case IPV6_MULTICAST_IF: { 2422 int s; 2423 /* 2424 * Select the interface for outgoing multicast packets. 2425 */ 2426 error = sockopt_get(sopt, &ifindex, sizeof(ifindex)); 2427 if (error != 0) 2428 break; 2429 2430 s = pserialize_read_enter(); 2431 if (ifindex != 0) { 2432 if ((ifp = if_byindex(ifindex)) == NULL) { 2433 pserialize_read_exit(s); 2434 error = ENXIO; /* XXX EINVAL? */ 2435 break; 2436 } 2437 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 2438 pserialize_read_exit(s); 2439 error = EADDRNOTAVAIL; 2440 break; 2441 } 2442 } else 2443 ifp = NULL; 2444 im6o->im6o_multicast_if_index = if_get_index(ifp); 2445 pserialize_read_exit(s); 2446 break; 2447 } 2448 2449 case IPV6_MULTICAST_HOPS: 2450 { 2451 /* 2452 * Set the IP6 hoplimit for outgoing multicast packets. 2453 */ 2454 int optval; 2455 2456 error = sockopt_getint(sopt, &optval); 2457 if (error != 0) 2458 break; 2459 2460 if (optval < -1 || optval >= 256) 2461 error = EINVAL; 2462 else if (optval == -1) 2463 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2464 else 2465 im6o->im6o_multicast_hlim = optval; 2466 break; 2467 } 2468 2469 case IPV6_MULTICAST_LOOP: 2470 /* 2471 * Set the loopback flag for outgoing multicast packets. 2472 * Must be zero or one. 2473 */ 2474 error = sockopt_get(sopt, &loop, sizeof(loop)); 2475 if (error != 0) 2476 break; 2477 if (loop > 1) { 2478 error = EINVAL; 2479 break; 2480 } 2481 im6o->im6o_multicast_loop = loop; 2482 break; 2483 2484 case IPV6_JOIN_GROUP: { 2485 int bound; 2486 struct psref psref; 2487 /* 2488 * Add a multicast group membership. 2489 * Group must be a valid IP6 multicast address. 2490 */ 2491 bound = curlwp_bind(); 2492 ifp = NULL; 2493 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia)); 2494 if (error != 0) { 2495 KASSERT(ifp == NULL); 2496 curlwp_bindx(bound); 2497 return error; 2498 } 2499 2500 if (IN6_IS_ADDR_V4MAPPED(&ia)) { 2501 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt); 2502 goto put_break; 2503 } 2504 /* 2505 * See if we found an interface, and confirm that it 2506 * supports multicast 2507 */ 2508 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2509 error = EADDRNOTAVAIL; 2510 goto put_break; 2511 } 2512 2513 if (in6_setscope(&ia, ifp, NULL)) { 2514 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2515 goto put_break; 2516 } 2517 2518 /* 2519 * See if the membership already exists. 2520 */ 2521 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2522 if (imm->i6mm_maddr->in6m_ifp == ifp && 2523 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2524 &ia)) 2525 goto put_break; 2526 } 2527 if (imm != NULL) { 2528 error = EADDRINUSE; 2529 goto put_break; 2530 } 2531 /* 2532 * Everything looks good; add a new record to the multicast 2533 * address list for the given interface. 2534 */ 2535 imm = in6_joingroup(ifp, &ia, &error, 0); 2536 if (imm == NULL) 2537 goto put_break; 2538 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2539 put_break: 2540 if_put(ifp, &psref); 2541 curlwp_bindx(bound); 2542 break; 2543 } 2544 2545 case IPV6_LEAVE_GROUP: { 2546 /* 2547 * Drop a multicast group membership. 2548 * Group must be a valid IP6 multicast address. 2549 */ 2550 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2551 if (error != 0) 2552 break; 2553 2554 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) { 2555 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt); 2556 break; 2557 } 2558 /* 2559 * If an interface address was specified, get a pointer 2560 * to its ifnet structure. 2561 */ 2562 if (mreq.ipv6mr_interface != 0) { 2563 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) { 2564 error = ENXIO; /* XXX EINVAL? */ 2565 break; 2566 } 2567 } else 2568 ifp = NULL; 2569 2570 /* Fill in the scope zone ID */ 2571 if (ifp) { 2572 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) { 2573 /* XXX: should not happen */ 2574 error = EADDRNOTAVAIL; 2575 break; 2576 } 2577 } else if (mreq.ipv6mr_interface != 0) { 2578 /* 2579 * XXX: This case would happens when the (positive) 2580 * index is in the valid range, but the corresponding 2581 * interface has been detached dynamically. The above 2582 * check probably avoids such case to happen here, but 2583 * we check it explicitly for safety. 2584 */ 2585 error = EADDRNOTAVAIL; 2586 break; 2587 } else { /* ipv6mr_interface == 0 */ 2588 struct sockaddr_in6 sa6_mc; 2589 2590 /* 2591 * The API spec says as follows: 2592 * If the interface index is specified as 0, the 2593 * system may choose a multicast group membership to 2594 * drop by matching the multicast address only. 2595 * On the other hand, we cannot disambiguate the scope 2596 * zone unless an interface is provided. Thus, we 2597 * check if there's ambiguity with the default scope 2598 * zone as the last resort. 2599 */ 2600 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr, 2601 0, 0, 0); 2602 error = sa6_embedscope(&sa6_mc, ip6_use_defzone); 2603 if (error != 0) 2604 break; 2605 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr; 2606 } 2607 2608 /* 2609 * Find the membership in the membership list. 2610 */ 2611 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2612 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2613 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2614 &mreq.ipv6mr_multiaddr)) 2615 break; 2616 } 2617 if (imm == NULL) { 2618 /* Unable to resolve interface */ 2619 error = EADDRNOTAVAIL; 2620 break; 2621 } 2622 /* 2623 * Give up the multicast address record to which the 2624 * membership points. 2625 */ 2626 LIST_REMOVE(imm, i6mm_chain); 2627 in6_leavegroup(imm); 2628 /* in6m_ifp should not leave thanks to in6p_lock */ 2629 break; 2630 } 2631 2632 default: 2633 error = EOPNOTSUPP; 2634 break; 2635 } 2636 2637 /* 2638 * If all options have default values, no need to keep the mbuf. 2639 */ 2640 if (im6o->im6o_multicast_if_index == 0 && 2641 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2642 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2643 LIST_EMPTY(&im6o->im6o_memberships)) { 2644 free(in6p->in6p_moptions, M_IPMOPTS); 2645 in6p->in6p_moptions = NULL; 2646 } 2647 2648 return (error); 2649 } 2650 2651 /* 2652 * Return the IP6 multicast options in response to user getsockopt(). 2653 */ 2654 static int 2655 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p) 2656 { 2657 u_int optval; 2658 int error; 2659 struct ip6_moptions *im6o = in6p->in6p_moptions; 2660 2661 switch (sopt->sopt_name) { 2662 case IPV6_MULTICAST_IF: 2663 if (im6o == NULL || im6o->im6o_multicast_if_index == 0) 2664 optval = 0; 2665 else 2666 optval = im6o->im6o_multicast_if_index; 2667 2668 error = sockopt_set(sopt, &optval, sizeof(optval)); 2669 break; 2670 2671 case IPV6_MULTICAST_HOPS: 2672 if (im6o == NULL) 2673 optval = ip6_defmcasthlim; 2674 else 2675 optval = im6o->im6o_multicast_hlim; 2676 2677 error = sockopt_set(sopt, &optval, sizeof(optval)); 2678 break; 2679 2680 case IPV6_MULTICAST_LOOP: 2681 if (im6o == NULL) 2682 optval = IPV6_DEFAULT_MULTICAST_LOOP; 2683 else 2684 optval = im6o->im6o_multicast_loop; 2685 2686 error = sockopt_set(sopt, &optval, sizeof(optval)); 2687 break; 2688 2689 default: 2690 error = EOPNOTSUPP; 2691 } 2692 2693 return (error); 2694 } 2695 2696 /* 2697 * Discard the IP6 multicast options. 2698 */ 2699 void 2700 ip6_freemoptions(struct ip6_moptions *im6o) 2701 { 2702 struct in6_multi_mship *imm, *nimm; 2703 2704 if (im6o == NULL) 2705 return; 2706 2707 /* The owner of im6o (in6p) should be protected by solock */ 2708 LIST_FOREACH_SAFE(imm, &im6o->im6o_memberships, i6mm_chain, nimm) { 2709 LIST_REMOVE(imm, i6mm_chain); 2710 in6_leavegroup(imm); 2711 } 2712 free(im6o, M_IPMOPTS); 2713 } 2714 2715 /* 2716 * Set IPv6 outgoing packet options based on advanced API. 2717 */ 2718 int 2719 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2720 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto) 2721 { 2722 struct cmsghdr *cm = 0; 2723 2724 if (control == NULL || opt == NULL) 2725 return (EINVAL); 2726 2727 ip6_initpktopts(opt); 2728 if (stickyopt) { 2729 int error; 2730 2731 /* 2732 * If stickyopt is provided, make a local copy of the options 2733 * for this particular packet, then override them by ancillary 2734 * objects. 2735 * XXX: copypktopts() does not copy the cached route to a next 2736 * hop (if any). This is not very good in terms of efficiency, 2737 * but we can allow this since this option should be rarely 2738 * used. 2739 */ 2740 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2741 return (error); 2742 } 2743 2744 /* 2745 * XXX: Currently, we assume all the optional information is stored 2746 * in a single mbuf. 2747 */ 2748 if (control->m_next) 2749 return (EINVAL); 2750 2751 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */ 2752 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2753 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2754 int error; 2755 2756 if (control->m_len < CMSG_LEN(0)) 2757 return (EINVAL); 2758 2759 cm = mtod(control, struct cmsghdr *); 2760 if (cm->cmsg_len < CMSG_LEN(0) || cm->cmsg_len > control->m_len) 2761 return (EINVAL); 2762 if (cm->cmsg_level != IPPROTO_IPV6) 2763 continue; 2764 2765 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2766 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2767 if (error) 2768 return (error); 2769 } 2770 2771 return (0); 2772 } 2773 2774 /* 2775 * Set a particular packet option, as a sticky option or an ancillary data 2776 * item. "len" can be 0 only when it's a sticky option. 2777 * We have 4 cases of combination of "sticky" and "cmsg": 2778 * "sticky=0, cmsg=0": impossible 2779 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2780 * "sticky=1, cmsg=0": RFC3542 socket option 2781 * "sticky=1, cmsg=1": RFC2292 socket option 2782 */ 2783 static int 2784 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2785 kauth_cred_t cred, int sticky, int cmsg, int uproto) 2786 { 2787 int minmtupolicy; 2788 int error; 2789 2790 if (!sticky && !cmsg) { 2791 #ifdef DIAGNOSTIC 2792 printf("ip6_setpktopt: impossible case\n"); 2793 #endif 2794 return (EINVAL); 2795 } 2796 2797 /* 2798 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2799 * not be specified in the context of RFC3542. Conversely, 2800 * RFC3542 types should not be specified in the context of RFC2292. 2801 */ 2802 if (!cmsg) { 2803 switch (optname) { 2804 case IPV6_2292PKTINFO: 2805 case IPV6_2292HOPLIMIT: 2806 case IPV6_2292NEXTHOP: 2807 case IPV6_2292HOPOPTS: 2808 case IPV6_2292DSTOPTS: 2809 case IPV6_2292RTHDR: 2810 case IPV6_2292PKTOPTIONS: 2811 return (ENOPROTOOPT); 2812 } 2813 } 2814 if (sticky && cmsg) { 2815 switch (optname) { 2816 case IPV6_PKTINFO: 2817 case IPV6_HOPLIMIT: 2818 case IPV6_NEXTHOP: 2819 case IPV6_HOPOPTS: 2820 case IPV6_DSTOPTS: 2821 case IPV6_RTHDRDSTOPTS: 2822 case IPV6_RTHDR: 2823 case IPV6_USE_MIN_MTU: 2824 case IPV6_DONTFRAG: 2825 case IPV6_OTCLASS: 2826 case IPV6_TCLASS: 2827 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */ 2828 return (ENOPROTOOPT); 2829 } 2830 } 2831 2832 switch (optname) { 2833 #ifdef RFC2292 2834 case IPV6_2292PKTINFO: 2835 #endif 2836 case IPV6_PKTINFO: 2837 { 2838 struct in6_pktinfo *pktinfo; 2839 2840 if (len != sizeof(struct in6_pktinfo)) 2841 return (EINVAL); 2842 2843 pktinfo = (struct in6_pktinfo *)buf; 2844 2845 /* 2846 * An application can clear any sticky IPV6_PKTINFO option by 2847 * doing a "regular" setsockopt with ipi6_addr being 2848 * in6addr_any and ipi6_ifindex being zero. 2849 * [RFC 3542, Section 6] 2850 */ 2851 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2852 pktinfo->ipi6_ifindex == 0 && 2853 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2854 ip6_clearpktopts(opt, optname); 2855 break; 2856 } 2857 2858 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2859 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2860 return (EINVAL); 2861 } 2862 2863 /* Validate the interface index if specified. */ 2864 if (pktinfo->ipi6_ifindex) { 2865 struct ifnet *ifp; 2866 int s = pserialize_read_enter(); 2867 ifp = if_byindex(pktinfo->ipi6_ifindex); 2868 if (ifp == NULL) { 2869 pserialize_read_exit(s); 2870 return ENXIO; 2871 } 2872 pserialize_read_exit(s); 2873 } 2874 2875 /* 2876 * We store the address anyway, and let in6_selectsrc() 2877 * validate the specified address. This is because ipi6_addr 2878 * may not have enough information about its scope zone, and 2879 * we may need additional information (such as outgoing 2880 * interface or the scope zone of a destination address) to 2881 * disambiguate the scope. 2882 * XXX: the delay of the validation may confuse the 2883 * application when it is used as a sticky option. 2884 */ 2885 if (opt->ip6po_pktinfo == NULL) { 2886 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2887 M_IP6OPT, M_NOWAIT); 2888 if (opt->ip6po_pktinfo == NULL) 2889 return (ENOBUFS); 2890 } 2891 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo)); 2892 break; 2893 } 2894 2895 #ifdef RFC2292 2896 case IPV6_2292HOPLIMIT: 2897 #endif 2898 case IPV6_HOPLIMIT: 2899 { 2900 int *hlimp; 2901 2902 /* 2903 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2904 * to simplify the ordering among hoplimit options. 2905 */ 2906 if (optname == IPV6_HOPLIMIT && sticky) 2907 return (ENOPROTOOPT); 2908 2909 if (len != sizeof(int)) 2910 return (EINVAL); 2911 hlimp = (int *)buf; 2912 if (*hlimp < -1 || *hlimp > 255) 2913 return (EINVAL); 2914 2915 opt->ip6po_hlim = *hlimp; 2916 break; 2917 } 2918 2919 case IPV6_OTCLASS: 2920 if (len != sizeof(u_int8_t)) 2921 return (EINVAL); 2922 2923 opt->ip6po_tclass = *(u_int8_t *)buf; 2924 break; 2925 2926 case IPV6_TCLASS: 2927 { 2928 int tclass; 2929 2930 if (len != sizeof(int)) 2931 return (EINVAL); 2932 tclass = *(int *)buf; 2933 if (tclass < -1 || tclass > 255) 2934 return (EINVAL); 2935 2936 opt->ip6po_tclass = tclass; 2937 break; 2938 } 2939 2940 #ifdef RFC2292 2941 case IPV6_2292NEXTHOP: 2942 #endif 2943 case IPV6_NEXTHOP: 2944 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 2945 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 2946 if (error) 2947 return (error); 2948 2949 if (len == 0) { /* just remove the option */ 2950 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2951 break; 2952 } 2953 2954 /* check if cmsg_len is large enough for sa_len */ 2955 if (len < sizeof(struct sockaddr) || len < *buf) 2956 return (EINVAL); 2957 2958 switch (((struct sockaddr *)buf)->sa_family) { 2959 case AF_INET6: 2960 { 2961 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2962 2963 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2964 return (EINVAL); 2965 2966 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2967 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2968 return (EINVAL); 2969 } 2970 if ((error = sa6_embedscope(sa6, ip6_use_defzone)) 2971 != 0) { 2972 return (error); 2973 } 2974 break; 2975 } 2976 case AF_LINK: /* eventually be supported? */ 2977 default: 2978 return (EAFNOSUPPORT); 2979 } 2980 2981 /* turn off the previous option, then set the new option. */ 2982 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2983 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2984 if (opt->ip6po_nexthop == NULL) 2985 return (ENOBUFS); 2986 memcpy(opt->ip6po_nexthop, buf, *buf); 2987 break; 2988 2989 #ifdef RFC2292 2990 case IPV6_2292HOPOPTS: 2991 #endif 2992 case IPV6_HOPOPTS: 2993 { 2994 struct ip6_hbh *hbh; 2995 int hbhlen; 2996 2997 /* 2998 * XXX: We don't allow a non-privileged user to set ANY HbH 2999 * options, since per-option restriction has too much 3000 * overhead. 3001 */ 3002 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 3003 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 3004 if (error) 3005 return (error); 3006 3007 if (len == 0) { 3008 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3009 break; /* just remove the option */ 3010 } 3011 3012 /* message length validation */ 3013 if (len < sizeof(struct ip6_hbh)) 3014 return (EINVAL); 3015 hbh = (struct ip6_hbh *)buf; 3016 hbhlen = (hbh->ip6h_len + 1) << 3; 3017 if (len != hbhlen) 3018 return (EINVAL); 3019 3020 /* turn off the previous option, then set the new option. */ 3021 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3022 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3023 if (opt->ip6po_hbh == NULL) 3024 return (ENOBUFS); 3025 memcpy(opt->ip6po_hbh, hbh, hbhlen); 3026 3027 break; 3028 } 3029 3030 #ifdef RFC2292 3031 case IPV6_2292DSTOPTS: 3032 #endif 3033 case IPV6_DSTOPTS: 3034 case IPV6_RTHDRDSTOPTS: 3035 { 3036 struct ip6_dest *dest, **newdest = NULL; 3037 int destlen; 3038 3039 /* XXX: see the comment for IPV6_HOPOPTS */ 3040 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 3041 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 3042 if (error) 3043 return (error); 3044 3045 if (len == 0) { 3046 ip6_clearpktopts(opt, optname); 3047 break; /* just remove the option */ 3048 } 3049 3050 /* message length validation */ 3051 if (len < sizeof(struct ip6_dest)) 3052 return (EINVAL); 3053 dest = (struct ip6_dest *)buf; 3054 destlen = (dest->ip6d_len + 1) << 3; 3055 if (len != destlen) 3056 return (EINVAL); 3057 /* 3058 * Determine the position that the destination options header 3059 * should be inserted; before or after the routing header. 3060 */ 3061 switch (optname) { 3062 case IPV6_2292DSTOPTS: 3063 /* 3064 * The old advanced API is ambiguous on this point. 3065 * Our approach is to determine the position based 3066 * according to the existence of a routing header. 3067 * Note, however, that this depends on the order of the 3068 * extension headers in the ancillary data; the 1st 3069 * part of the destination options header must appear 3070 * before the routing header in the ancillary data, 3071 * too. 3072 * RFC3542 solved the ambiguity by introducing 3073 * separate ancillary data or option types. 3074 */ 3075 if (opt->ip6po_rthdr == NULL) 3076 newdest = &opt->ip6po_dest1; 3077 else 3078 newdest = &opt->ip6po_dest2; 3079 break; 3080 case IPV6_RTHDRDSTOPTS: 3081 newdest = &opt->ip6po_dest1; 3082 break; 3083 case IPV6_DSTOPTS: 3084 newdest = &opt->ip6po_dest2; 3085 break; 3086 } 3087 3088 /* turn off the previous option, then set the new option. */ 3089 ip6_clearpktopts(opt, optname); 3090 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3091 if (*newdest == NULL) 3092 return (ENOBUFS); 3093 memcpy(*newdest, dest, destlen); 3094 3095 break; 3096 } 3097 3098 #ifdef RFC2292 3099 case IPV6_2292RTHDR: 3100 #endif 3101 case IPV6_RTHDR: 3102 { 3103 struct ip6_rthdr *rth; 3104 int rthlen; 3105 3106 if (len == 0) { 3107 ip6_clearpktopts(opt, IPV6_RTHDR); 3108 break; /* just remove the option */ 3109 } 3110 3111 /* message length validation */ 3112 if (len < sizeof(struct ip6_rthdr)) 3113 return (EINVAL); 3114 rth = (struct ip6_rthdr *)buf; 3115 rthlen = (rth->ip6r_len + 1) << 3; 3116 if (len != rthlen) 3117 return (EINVAL); 3118 switch (rth->ip6r_type) { 3119 case IPV6_RTHDR_TYPE_0: 3120 /* Dropped, RFC5095. */ 3121 default: 3122 return (EINVAL); /* not supported */ 3123 } 3124 /* turn off the previous option */ 3125 ip6_clearpktopts(opt, IPV6_RTHDR); 3126 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3127 if (opt->ip6po_rthdr == NULL) 3128 return (ENOBUFS); 3129 memcpy(opt->ip6po_rthdr, rth, rthlen); 3130 break; 3131 } 3132 3133 case IPV6_USE_MIN_MTU: 3134 if (len != sizeof(int)) 3135 return (EINVAL); 3136 minmtupolicy = *(int *)buf; 3137 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3138 minmtupolicy != IP6PO_MINMTU_DISABLE && 3139 minmtupolicy != IP6PO_MINMTU_ALL) { 3140 return (EINVAL); 3141 } 3142 opt->ip6po_minmtu = minmtupolicy; 3143 break; 3144 3145 case IPV6_DONTFRAG: 3146 if (len != sizeof(int)) 3147 return (EINVAL); 3148 3149 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3150 /* 3151 * we ignore this option for TCP sockets. 3152 * (RFC3542 leaves this case unspecified.) 3153 */ 3154 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3155 } else 3156 opt->ip6po_flags |= IP6PO_DONTFRAG; 3157 break; 3158 3159 case IPV6_PREFER_TEMPADDR: 3160 { 3161 int preftemp; 3162 3163 if (len != sizeof(int)) 3164 return (EINVAL); 3165 preftemp = *(int *)buf; 3166 switch (preftemp) { 3167 case IP6PO_TEMPADDR_SYSTEM: 3168 case IP6PO_TEMPADDR_NOTPREFER: 3169 case IP6PO_TEMPADDR_PREFER: 3170 break; 3171 default: 3172 return (EINVAL); 3173 } 3174 opt->ip6po_prefer_tempaddr = preftemp; 3175 break; 3176 } 3177 3178 default: 3179 return (ENOPROTOOPT); 3180 } /* end of switch */ 3181 3182 return (0); 3183 } 3184 3185 /* 3186 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3187 * packet to the input queue of a specified interface. Note that this 3188 * calls the output routine of the loopback "driver", but with an interface 3189 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 3190 */ 3191 void 3192 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, 3193 const struct sockaddr_in6 *dst) 3194 { 3195 struct mbuf *copym; 3196 struct ip6_hdr *ip6; 3197 3198 copym = m_copypacket(m, M_DONTWAIT); 3199 if (copym == NULL) 3200 return; 3201 3202 /* 3203 * Make sure to deep-copy IPv6 header portion in case the data 3204 * is in an mbuf cluster, so that we can safely override the IPv6 3205 * header portion later. 3206 */ 3207 if ((copym->m_flags & M_EXT) != 0 || 3208 copym->m_len < sizeof(struct ip6_hdr)) { 3209 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3210 if (copym == NULL) 3211 return; 3212 } 3213 3214 #ifdef DIAGNOSTIC 3215 if (copym->m_len < sizeof(*ip6)) { 3216 m_freem(copym); 3217 return; 3218 } 3219 #endif 3220 3221 ip6 = mtod(copym, struct ip6_hdr *); 3222 /* 3223 * clear embedded scope identifiers if necessary. 3224 * in6_clearscope will touch the addresses only when necessary. 3225 */ 3226 in6_clearscope(&ip6->ip6_src); 3227 in6_clearscope(&ip6->ip6_dst); 3228 3229 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL); 3230 } 3231 3232 /* 3233 * Chop IPv6 header off from the payload. 3234 */ 3235 static int 3236 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3237 { 3238 struct mbuf *mh; 3239 struct ip6_hdr *ip6; 3240 3241 ip6 = mtod(m, struct ip6_hdr *); 3242 if (m->m_len > sizeof(*ip6)) { 3243 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3244 if (mh == NULL) { 3245 m_freem(m); 3246 return ENOBUFS; 3247 } 3248 m_move_pkthdr(mh, m); 3249 m_align(mh, sizeof(*ip6)); 3250 m->m_len -= sizeof(*ip6); 3251 m->m_data += sizeof(*ip6); 3252 mh->m_next = m; 3253 mh->m_len = sizeof(*ip6); 3254 memcpy(mtod(mh, void *), (void *)ip6, sizeof(*ip6)); 3255 m = mh; 3256 } 3257 exthdrs->ip6e_ip6 = m; 3258 return 0; 3259 } 3260 3261 /* 3262 * Compute IPv6 extension header length. 3263 */ 3264 int 3265 ip6_optlen(struct in6pcb *in6p) 3266 { 3267 int len; 3268 3269 if (!in6p->in6p_outputopts) 3270 return 0; 3271 3272 len = 0; 3273 #define elen(x) \ 3274 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3275 3276 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3277 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3278 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3279 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3280 return len; 3281 #undef elen 3282 } 3283 3284 /* 3285 * Ensure sending address is valid. 3286 * Returns 0 on success, -1 if an error should be sent back or 1 3287 * if the packet could be dropped without error (protocol dependent). 3288 */ 3289 static int 3290 ip6_ifaddrvalid(const struct in6_addr *src, const struct in6_addr *dst) 3291 { 3292 struct sockaddr_in6 sin6; 3293 int s, error; 3294 struct ifaddr *ifa; 3295 struct in6_ifaddr *ia6; 3296 3297 if (IN6_IS_ADDR_UNSPECIFIED(src)) 3298 return 0; 3299 3300 memset(&sin6, 0, sizeof(sin6)); 3301 sin6.sin6_family = AF_INET6; 3302 sin6.sin6_len = sizeof(sin6); 3303 sin6.sin6_addr = *src; 3304 3305 s = pserialize_read_enter(); 3306 ifa = ifa_ifwithaddr(sin6tosa(&sin6)); 3307 if ((ia6 = ifatoia6(ifa)) == NULL || 3308 ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED)) 3309 error = -1; 3310 else if (ia6->ia6_flags & IN6_IFF_TENTATIVE) 3311 error = 1; 3312 else if (ia6->ia6_flags & IN6_IFF_DETACHED && 3313 (sin6.sin6_addr = *dst, ifa_ifwithaddr(sin6tosa(&sin6)) == NULL)) 3314 /* Allow internal traffic to DETACHED addresses */ 3315 error = 1; 3316 else 3317 error = 0; 3318 pserialize_read_exit(s); 3319 3320 return error; 3321 } 3322