1 /* $NetBSD: ip6_output.c,v 1.235 2024/04/19 00:55:35 riastradh Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.235 2024/04/19 00:55:35 riastradh Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/malloc.h> 75 #include <sys/mbuf.h> 76 #include <sys/errno.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/syslog.h> 80 #include <sys/systm.h> 81 #include <sys/proc.h> 82 #include <sys/kauth.h> 83 84 #include <net/if.h> 85 #include <net/route.h> 86 #include <net/pfil.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/ip6.h> 91 #include <netinet/ip_var.h> 92 #include <netinet/icmp6.h> 93 #include <netinet/in_offload.h> 94 #include <netinet/portalgo.h> 95 #include <netinet6/in6_offload.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/ip6_private.h> 98 #include <netinet6/in6_pcb.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6protosw.h> 101 #include <netinet6/scope6_var.h> 102 103 #ifdef IPSEC 104 #include <netipsec/ipsec.h> 105 #include <netipsec/ipsec6.h> 106 #include <netipsec/key.h> 107 #endif 108 109 extern pfil_head_t *inet6_pfil_hook; /* XXX */ 110 111 struct ip6_exthdrs { 112 struct mbuf *ip6e_ip6; 113 struct mbuf *ip6e_hbh; 114 struct mbuf *ip6e_dest1; 115 struct mbuf *ip6e_rthdr; 116 struct mbuf *ip6e_dest2; 117 }; 118 119 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 120 kauth_cred_t, int); 121 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 122 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t, 123 int, int, int); 124 static int ip6_setmoptions(const struct sockopt *, struct inpcb *); 125 static int ip6_getmoptions(struct sockopt *, struct inpcb *); 126 static int ip6_copyexthdr(struct mbuf **, void *, int); 127 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 128 struct ip6_frag **); 129 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 130 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 131 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *); 132 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 133 static int ip6_ifaddrvalid(const struct in6_addr *, const struct in6_addr *); 134 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *); 135 136 #ifdef RFC2292 137 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *); 138 #endif 139 140 static int 141 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6) 142 { 143 int error = 0; 144 145 switch (rh->ip6r_type) { 146 case IPV6_RTHDR_TYPE_0: 147 /* Dropped, RFC5095. */ 148 default: /* is it possible? */ 149 error = EINVAL; 150 } 151 152 return error; 153 } 154 155 /* 156 * Send an IP packet to a host. 157 */ 158 int 159 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp, 160 struct mbuf * const m, const struct sockaddr_in6 * const dst, 161 const struct rtentry *rt) 162 { 163 int error = 0; 164 165 if (rt != NULL) { 166 error = rt_check_reject_route(rt, ifp); 167 if (error != 0) { 168 IP6_STATINC(IP6_STAT_RTREJECT); 169 m_freem(m); 170 return error; 171 } 172 } 173 174 /* discard the packet if IPv6 operation is disabled on the interface */ 175 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 176 m_freem(m); 177 return ENETDOWN; /* better error? */ 178 } 179 180 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 181 error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt); 182 else 183 error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt); 184 return error; 185 } 186 187 /* 188 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 189 * header (with pri, len, nxt, hlim, src, dst). 190 * 191 * This function may modify ver and hlim only. The mbuf chain containing the 192 * packet will be freed. The mbuf opt, if present, will not be freed. 193 * 194 * Type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 195 * nd_ifinfo.linkmtu is u_int32_t. So we use u_long to hold largest one, 196 * which is rt_rmx.rmx_mtu. 197 */ 198 int 199 ip6_output( 200 struct mbuf *m0, 201 struct ip6_pktopts *opt, 202 struct route *ro, 203 int flags, 204 struct ip6_moptions *im6o, 205 struct inpcb *inp, 206 struct ifnet **ifpp /* XXX: just for statistics */ 207 ) 208 { 209 struct ip6_hdr *ip6, *mhip6; 210 struct ifnet *ifp = NULL, *origifp = NULL; 211 struct mbuf *m = m0; 212 int tlen, len, off; 213 bool tso; 214 struct route ip6route; 215 struct rtentry *rt = NULL, *rt_pmtu; 216 const struct sockaddr_in6 *dst; 217 struct sockaddr_in6 src_sa, dst_sa; 218 int error = 0; 219 struct in6_ifaddr *ia = NULL; 220 u_long mtu; 221 int alwaysfrag, dontfrag; 222 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 223 struct ip6_exthdrs exthdrs; 224 struct in6_addr finaldst, src0, dst0; 225 u_int32_t zone; 226 struct route *ro_pmtu = NULL; 227 int hdrsplit = 0; 228 int needipsec = 0; 229 #ifdef IPSEC 230 struct secpolicy *sp = NULL; 231 #endif 232 struct psref psref, psref_ia; 233 int bound = curlwp_bind(); 234 bool release_psref_ia = false; 235 236 #ifdef DIAGNOSTIC 237 if ((m->m_flags & M_PKTHDR) == 0) 238 panic("ip6_output: no HDR"); 239 if ((m->m_pkthdr.csum_flags & 240 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) { 241 panic("ip6_output: IPv4 checksum offload flags: %d", 242 m->m_pkthdr.csum_flags); 243 } 244 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 245 (M_CSUM_TCPv6|M_CSUM_UDPv6)) { 246 panic("ip6_output: conflicting checksum offload flags: %d", 247 m->m_pkthdr.csum_flags); 248 } 249 #endif 250 251 M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr)); 252 253 #define MAKE_EXTHDR(hp, mp) \ 254 do { \ 255 if (hp) { \ 256 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 257 error = ip6_copyexthdr((mp), (void *)(hp), \ 258 ((eh)->ip6e_len + 1) << 3); \ 259 if (error) \ 260 goto freehdrs; \ 261 } \ 262 } while (/*CONSTCOND*/ 0) 263 264 memset(&exthdrs, 0, sizeof(exthdrs)); 265 if (opt) { 266 /* Hop-by-Hop options header */ 267 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 268 /* Destination options header (1st part) */ 269 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 270 /* Routing header */ 271 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 272 /* Destination options header (2nd part) */ 273 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 274 } 275 276 /* 277 * Calculate the total length of the extension header chain. 278 * Keep the length of the unfragmentable part for fragmentation. 279 */ 280 optlen = 0; 281 if (exthdrs.ip6e_hbh) 282 optlen += exthdrs.ip6e_hbh->m_len; 283 if (exthdrs.ip6e_dest1) 284 optlen += exthdrs.ip6e_dest1->m_len; 285 if (exthdrs.ip6e_rthdr) 286 optlen += exthdrs.ip6e_rthdr->m_len; 287 unfragpartlen = optlen + sizeof(struct ip6_hdr); 288 /* NOTE: we don't add AH/ESP length here. do that later. */ 289 if (exthdrs.ip6e_dest2) 290 optlen += exthdrs.ip6e_dest2->m_len; 291 292 #ifdef IPSEC 293 if (ipsec_used) { 294 /* Check the security policy (SP) for the packet */ 295 sp = ipsec6_check_policy(m, inp, flags, &needipsec, &error); 296 if (error != 0) { 297 /* 298 * Hack: -EINVAL is used to signal that a packet 299 * should be silently discarded. This is typically 300 * because we asked key management for an SA and 301 * it was delayed (e.g. kicked up to IKE). 302 */ 303 if (error == -EINVAL) 304 error = 0; 305 IP6_STATINC(IP6_STAT_IPSECDROP_OUT); 306 goto freehdrs; 307 } 308 } 309 #endif 310 311 if (needipsec && 312 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 313 in6_undefer_cksum_tcpudp(m); 314 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 315 } 316 317 /* 318 * If we need IPsec, or there is at least one extension header, 319 * separate IP6 header from the payload. 320 */ 321 if ((needipsec || optlen) && !hdrsplit) { 322 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 323 IP6_STATINC(IP6_STAT_ODROPPED); 324 m = NULL; 325 goto freehdrs; 326 } 327 m = exthdrs.ip6e_ip6; 328 hdrsplit++; 329 } 330 331 /* adjust pointer */ 332 ip6 = mtod(m, struct ip6_hdr *); 333 334 /* adjust mbuf packet header length */ 335 m->m_pkthdr.len += optlen; 336 plen = m->m_pkthdr.len - sizeof(*ip6); 337 338 /* If this is a jumbo payload, insert a jumbo payload option. */ 339 if (plen > IPV6_MAXPACKET) { 340 if (!hdrsplit) { 341 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 342 IP6_STATINC(IP6_STAT_ODROPPED); 343 m = NULL; 344 goto freehdrs; 345 } 346 m = exthdrs.ip6e_ip6; 347 hdrsplit++; 348 } 349 /* adjust pointer */ 350 ip6 = mtod(m, struct ip6_hdr *); 351 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) { 352 IP6_STATINC(IP6_STAT_ODROPPED); 353 goto freehdrs; 354 } 355 optlen += 8; /* XXX JUMBOOPTLEN */ 356 ip6->ip6_plen = 0; 357 } else 358 ip6->ip6_plen = htons(plen); 359 360 /* 361 * Concatenate headers and fill in next header fields. 362 * Here we have, on "m" 363 * IPv6 payload 364 * and we insert headers accordingly. Finally, we should be getting: 365 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 366 * 367 * during the header composing process, "m" points to IPv6 header. 368 * "mprev" points to an extension header prior to esp. 369 */ 370 { 371 u_char *nexthdrp = &ip6->ip6_nxt; 372 struct mbuf *mprev = m; 373 374 /* 375 * we treat dest2 specially. this makes IPsec processing 376 * much easier. the goal here is to make mprev point the 377 * mbuf prior to dest2. 378 * 379 * result: IPv6 dest2 payload 380 * m and mprev will point to IPv6 header. 381 */ 382 if (exthdrs.ip6e_dest2) { 383 if (!hdrsplit) 384 panic("assumption failed: hdr not split"); 385 exthdrs.ip6e_dest2->m_next = m->m_next; 386 m->m_next = exthdrs.ip6e_dest2; 387 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 388 ip6->ip6_nxt = IPPROTO_DSTOPTS; 389 } 390 391 #define MAKE_CHAIN(m, mp, p, i)\ 392 do {\ 393 if (m) {\ 394 if (!hdrsplit) \ 395 panic("assumption failed: hdr not split"); \ 396 *mtod((m), u_char *) = *(p);\ 397 *(p) = (i);\ 398 p = mtod((m), u_char *);\ 399 (m)->m_next = (mp)->m_next;\ 400 (mp)->m_next = (m);\ 401 (mp) = (m);\ 402 }\ 403 } while (/*CONSTCOND*/ 0) 404 /* 405 * result: IPv6 hbh dest1 rthdr dest2 payload 406 * m will point to IPv6 header. mprev will point to the 407 * extension header prior to dest2 (rthdr in the above case). 408 */ 409 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 410 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 411 IPPROTO_DSTOPTS); 412 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 413 IPPROTO_ROUTING); 414 415 M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data, 416 sizeof(struct ip6_hdr) + optlen); 417 } 418 419 /* Need to save for pmtu */ 420 finaldst = ip6->ip6_dst; 421 422 /* 423 * If there is a routing header, replace destination address field 424 * with the first hop of the routing header. 425 */ 426 if (exthdrs.ip6e_rthdr) { 427 struct ip6_rthdr *rh; 428 429 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 430 431 error = ip6_handle_rthdr(rh, ip6); 432 if (error != 0) { 433 IP6_STATINC(IP6_STAT_ODROPPED); 434 goto bad; 435 } 436 } 437 438 /* Source address validation */ 439 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 440 (flags & IPV6_UNSPECSRC) == 0) { 441 error = EOPNOTSUPP; 442 IP6_STATINC(IP6_STAT_BADSCOPE); 443 goto bad; 444 } 445 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 446 error = EOPNOTSUPP; 447 IP6_STATINC(IP6_STAT_BADSCOPE); 448 goto bad; 449 } 450 451 IP6_STATINC(IP6_STAT_LOCALOUT); 452 453 /* 454 * Route packet. 455 */ 456 /* initialize cached route */ 457 if (ro == NULL) { 458 memset(&ip6route, 0, sizeof(ip6route)); 459 ro = &ip6route; 460 } 461 ro_pmtu = ro; 462 if (opt && opt->ip6po_rthdr) 463 ro = &opt->ip6po_route; 464 465 /* 466 * if specified, try to fill in the traffic class field. 467 * do not override if a non-zero value is already set. 468 * we check the diffserv field and the ecn field separately. 469 */ 470 if (opt && opt->ip6po_tclass >= 0) { 471 int mask = 0; 472 473 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 474 mask |= 0xfc; 475 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 476 mask |= 0x03; 477 if (mask != 0) 478 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 479 } 480 481 /* fill in or override the hop limit field, if necessary. */ 482 if (opt && opt->ip6po_hlim != -1) 483 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 484 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 485 if (im6o != NULL) 486 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 487 else 488 ip6->ip6_hlim = ip6_defmcasthlim; 489 } 490 491 #ifdef IPSEC 492 if (needipsec) { 493 error = ipsec6_process_packet(m, sp->req, flags); 494 495 /* 496 * Preserve KAME behaviour: ENOENT can be returned 497 * when an SA acquire is in progress. Don't propagate 498 * this to user-level; it confuses applications. 499 * XXX this will go away when the SADB is redone. 500 */ 501 if (error == ENOENT) 502 error = 0; 503 504 goto done; 505 } 506 #endif 507 508 /* adjust pointer */ 509 ip6 = mtod(m, struct ip6_hdr *); 510 511 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 512 513 /* We do not need a route for multicast */ 514 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 515 struct in6_pktinfo *pi = NULL; 516 517 /* 518 * If the outgoing interface for the address is specified by 519 * the caller, use it. 520 */ 521 if (opt && (pi = opt->ip6po_pktinfo) != NULL) { 522 /* XXX boundary check is assumed to be already done. */ 523 ifp = if_get_byindex(pi->ipi6_ifindex, &psref); 524 } else if (im6o != NULL) { 525 ifp = if_get_byindex(im6o->im6o_multicast_if_index, 526 &psref); 527 } 528 } 529 530 if (ifp == NULL) { 531 error = in6_selectroute(&dst_sa, opt, &ro, &rt, true); 532 if (error != 0) 533 goto bad; 534 ifp = if_get_byindex(rt->rt_ifp->if_index, &psref); 535 } 536 537 if (rt == NULL) { 538 /* 539 * If in6_selectroute() does not return a route entry, 540 * dst may not have been updated. 541 */ 542 error = rtcache_setdst(ro, sin6tosa(&dst_sa)); 543 if (error) { 544 IP6_STATINC(IP6_STAT_ODROPPED); 545 goto bad; 546 } 547 } 548 549 /* 550 * then rt (for unicast) and ifp must be non-NULL valid values. 551 */ 552 if ((flags & IPV6_FORWARDING) == 0) { 553 /* XXX: the FORWARDING flag can be set for mrouting. */ 554 in6_ifstat_inc(ifp, ifs6_out_request); 555 } 556 if (rt != NULL) { 557 ia = (struct in6_ifaddr *)(rt->rt_ifa); 558 rt->rt_use++; 559 } 560 561 /* 562 * The outgoing interface must be in the zone of source and 563 * destination addresses. We should use ia_ifp to support the 564 * case of sending packets to an address of our own. 565 */ 566 if (ia != NULL) { 567 origifp = ia->ia_ifp; 568 if (if_is_deactivated(origifp)) { 569 IP6_STATINC(IP6_STAT_ODROPPED); 570 goto bad; 571 } 572 if_acquire(origifp, &psref_ia); 573 release_psref_ia = true; 574 } else 575 origifp = ifp; 576 577 src0 = ip6->ip6_src; 578 if (in6_setscope(&src0, origifp, &zone)) 579 goto badscope; 580 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0); 581 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 582 goto badscope; 583 584 dst0 = ip6->ip6_dst; 585 if (in6_setscope(&dst0, origifp, &zone)) 586 goto badscope; 587 /* re-initialize to be sure */ 588 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 589 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) 590 goto badscope; 591 592 /* scope check is done. */ 593 594 /* Ensure we only send from a valid address. */ 595 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 596 (flags & IPV6_FORWARDING) == 0 && 597 (error = ip6_ifaddrvalid(&src0, &dst0)) != 0) 598 { 599 char ip6buf[INET6_ADDRSTRLEN]; 600 nd6log(LOG_ERR, 601 "refusing to send from invalid address %s (pid %d)\n", 602 IN6_PRINT(ip6buf, &src0), curproc->p_pid); 603 IP6_STATINC(IP6_STAT_ODROPPED); 604 in6_ifstat_inc(origifp, ifs6_out_discard); 605 if (error == 1) 606 /* 607 * Address exists, but is tentative or detached. 608 * We can't send from it because it's invalid, 609 * so we drop the packet. 610 */ 611 error = 0; 612 else 613 error = EADDRNOTAVAIL; 614 goto bad; 615 } 616 617 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) && 618 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 619 dst = satocsin6(rt->rt_gateway); 620 else 621 dst = satocsin6(rtcache_getdst(ro)); 622 623 /* 624 * XXXXXX: original code follows: 625 */ 626 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 627 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 628 else { 629 bool ingroup; 630 631 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 632 633 in6_ifstat_inc(ifp, ifs6_out_mcast); 634 635 /* 636 * Confirm that the outgoing interface supports multicast. 637 */ 638 if (!(ifp->if_flags & IFF_MULTICAST)) { 639 IP6_STATINC(IP6_STAT_NOROUTE); 640 in6_ifstat_inc(ifp, ifs6_out_discard); 641 error = ENETUNREACH; 642 goto bad; 643 } 644 645 ingroup = in6_multi_group(&ip6->ip6_dst, ifp); 646 if (ingroup && (im6o == NULL || im6o->im6o_multicast_loop)) { 647 /* 648 * If we belong to the destination multicast group 649 * on the outgoing interface, and the caller did not 650 * forbid loopback, loop back a copy. 651 */ 652 KASSERT(dst != NULL); 653 ip6_mloopback(ifp, m, dst); 654 } else { 655 /* 656 * If we are acting as a multicast router, perform 657 * multicast forwarding as if the packet had just 658 * arrived on the interface to which we are about 659 * to send. The multicast forwarding function 660 * recursively calls this function, using the 661 * IPV6_FORWARDING flag to prevent infinite recursion. 662 * 663 * Multicasts that are looped back by ip6_mloopback(), 664 * above, will be forwarded by the ip6_input() routine, 665 * if necessary. 666 */ 667 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 668 if (ip6_mforward(ip6, ifp, m) != 0) { 669 m_freem(m); 670 goto done; 671 } 672 } 673 } 674 /* 675 * Multicasts with a hoplimit of zero may be looped back, 676 * above, but must not be transmitted on a network. 677 * Also, multicasts addressed to the loopback interface 678 * are not sent -- the above call to ip6_mloopback() will 679 * loop back a copy if this host actually belongs to the 680 * destination group on the loopback interface. 681 */ 682 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 683 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 684 m_freem(m); 685 goto done; 686 } 687 } 688 689 /* 690 * Fill the outgoing interface to tell the upper layer 691 * to increment per-interface statistics. 692 */ 693 if (ifpp) 694 *ifpp = ifp; 695 696 /* Determine path MTU. */ 697 /* 698 * ro_pmtu represent final destination while 699 * ro might represent immediate destination. 700 * Use ro_pmtu destination since MTU might differ. 701 */ 702 if (ro_pmtu != ro) { 703 union { 704 struct sockaddr dst; 705 struct sockaddr_in6 dst6; 706 } u; 707 708 /* ro_pmtu may not have a cache */ 709 sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0); 710 rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst); 711 } else 712 rt_pmtu = rt; 713 error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag); 714 if (rt_pmtu != NULL && rt_pmtu != rt) 715 rtcache_unref(rt_pmtu, ro_pmtu); 716 KASSERT(error == 0); /* ip6_getpmtu never fail if ifp is passed */ 717 718 /* 719 * The caller of this function may specify to use the minimum MTU 720 * in some cases. 721 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 722 * setting. The logic is a bit complicated; by default, unicast 723 * packets will follow path MTU while multicast packets will be sent at 724 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 725 * including unicast ones will be sent at the minimum MTU. Multicast 726 * packets will always be sent at the minimum MTU unless 727 * IP6PO_MINMTU_DISABLE is explicitly specified. 728 * See RFC 3542 for more details. 729 */ 730 if (mtu > IPV6_MMTU) { 731 if ((flags & IPV6_MINMTU)) 732 mtu = IPV6_MMTU; 733 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 734 mtu = IPV6_MMTU; 735 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 736 (opt == NULL || 737 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 738 mtu = IPV6_MMTU; 739 } 740 } 741 742 /* 743 * clear embedded scope identifiers if necessary. 744 * in6_clearscope will touch the addresses only when necessary. 745 */ 746 in6_clearscope(&ip6->ip6_src); 747 in6_clearscope(&ip6->ip6_dst); 748 749 /* 750 * If the outgoing packet contains a hop-by-hop options header, 751 * it must be examined and processed even by the source node. 752 * (RFC 2460, section 4.) 753 * 754 * XXX Is this really necessary? 755 */ 756 if (ip6->ip6_nxt == IPPROTO_HOPOPTS) { 757 u_int32_t dummy1 = 0; /* XXX unused */ 758 u_int32_t dummy2; /* XXX unused */ 759 int hoff = sizeof(struct ip6_hdr); 760 761 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) { 762 /* m was already freed at this point */ 763 error = EINVAL; 764 goto done; 765 } 766 767 ip6 = mtod(m, struct ip6_hdr *); 768 } 769 770 /* 771 * Run through list of hooks for output packets. 772 */ 773 error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT); 774 if (error != 0 || m == NULL) { 775 IP6_STATINC(IP6_STAT_PFILDROP_OUT); 776 goto done; 777 } 778 ip6 = mtod(m, struct ip6_hdr *); 779 780 /* 781 * Send the packet to the outgoing interface. 782 * If necessary, do IPv6 fragmentation before sending. 783 * 784 * the logic here is rather complex: 785 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 786 * 1-a: send as is if tlen <= path mtu 787 * 1-b: fragment if tlen > path mtu 788 * 789 * 2: if user asks us not to fragment (dontfrag == 1) 790 * 2-a: send as is if tlen <= interface mtu 791 * 2-b: error if tlen > interface mtu 792 * 793 * 3: if we always need to attach fragment header (alwaysfrag == 1) 794 * always fragment 795 * 796 * 4: if dontfrag == 1 && alwaysfrag == 1 797 * error, as we cannot handle this conflicting request 798 */ 799 tlen = m->m_pkthdr.len; 800 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0; 801 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 802 dontfrag = 1; 803 else 804 dontfrag = 0; 805 806 if (dontfrag && alwaysfrag) { /* case 4 */ 807 /* conflicting request - can't transmit */ 808 IP6_STATINC(IP6_STAT_CANTFRAG); 809 error = EMSGSIZE; 810 goto bad; 811 } 812 if (dontfrag && (!tso && tlen > ifp->if_mtu)) { /* case 2-b */ 813 /* 814 * Even if the DONTFRAG option is specified, we cannot send the 815 * packet when the data length is larger than the MTU of the 816 * outgoing interface. 817 * Notify the error by sending IPV6_PATHMTU ancillary data as 818 * well as returning an error code (the latter is not described 819 * in the API spec.) 820 */ 821 u_int32_t mtu32; 822 struct ip6ctlparam ip6cp; 823 824 mtu32 = (u_int32_t)mtu; 825 memset(&ip6cp, 0, sizeof(ip6cp)); 826 ip6cp.ip6c_cmdarg = (void *)&mtu32; 827 pfctlinput2(PRC_MSGSIZE, 828 rtcache_getdst(ro_pmtu), &ip6cp); 829 830 IP6_STATINC(IP6_STAT_CANTFRAG); 831 error = EMSGSIZE; 832 goto bad; 833 } 834 835 /* 836 * transmit packet without fragmentation 837 */ 838 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) { 839 /* case 1-a and 2-a */ 840 struct in6_ifaddr *ia6; 841 int sw_csum; 842 int s; 843 844 ip6 = mtod(m, struct ip6_hdr *); 845 s = pserialize_read_enter(); 846 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 847 if (ia6) { 848 /* Record statistics for this interface address. */ 849 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len; 850 } 851 pserialize_read_exit(s); 852 853 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 854 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 855 if (IN6_NEED_CHECKSUM(ifp, 856 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 857 in6_undefer_cksum_tcpudp(m); 858 } 859 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 860 } 861 862 KASSERT(dst != NULL); 863 if (__predict_false(sw_csum & M_CSUM_TSOv6)) { 864 /* 865 * TSO6 is required by a packet, but disabled for 866 * the interface. 867 */ 868 error = ip6_tso_output(ifp, origifp, m, dst, rt); 869 } else 870 error = ip6_if_output(ifp, origifp, m, dst, rt); 871 goto done; 872 } 873 874 if (tso) { 875 IP6_STATINC(IP6_STAT_CANTFRAG); /* XXX */ 876 error = EINVAL; /* XXX */ 877 goto bad; 878 } 879 880 /* 881 * try to fragment the packet. case 1-b and 3 882 */ 883 if (mtu < IPV6_MMTU) { 884 /* path MTU cannot be less than IPV6_MMTU */ 885 IP6_STATINC(IP6_STAT_CANTFRAG); 886 error = EMSGSIZE; 887 in6_ifstat_inc(ifp, ifs6_out_fragfail); 888 goto bad; 889 } else if (ip6->ip6_plen == 0) { 890 /* jumbo payload cannot be fragmented */ 891 IP6_STATINC(IP6_STAT_CANTFRAG); 892 error = EMSGSIZE; 893 in6_ifstat_inc(ifp, ifs6_out_fragfail); 894 goto bad; 895 } else { 896 const uint32_t id = ip6_randomid(); 897 struct mbuf **mnext, *m_frgpart; 898 const int hlen = unfragpartlen; 899 struct ip6_frag *ip6f; 900 u_char nextproto; 901 902 if (mtu > IPV6_MAXPACKET) 903 mtu = IPV6_MAXPACKET; 904 905 /* 906 * Must be able to put at least 8 bytes per fragment. 907 */ 908 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 909 if (len < 8) { 910 IP6_STATINC(IP6_STAT_CANTFRAG); 911 error = EMSGSIZE; 912 in6_ifstat_inc(ifp, ifs6_out_fragfail); 913 goto bad; 914 } 915 916 mnext = &m->m_nextpkt; 917 918 /* 919 * Change the next header field of the last header in the 920 * unfragmentable part. 921 */ 922 if (exthdrs.ip6e_rthdr) { 923 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 924 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 925 } else if (exthdrs.ip6e_dest1) { 926 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 927 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 928 } else if (exthdrs.ip6e_hbh) { 929 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 930 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 931 } else { 932 nextproto = ip6->ip6_nxt; 933 ip6->ip6_nxt = IPPROTO_FRAGMENT; 934 } 935 936 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) 937 != 0) { 938 if (IN6_NEED_CHECKSUM(ifp, 939 m->m_pkthdr.csum_flags & 940 (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 941 in6_undefer_cksum_tcpudp(m); 942 } 943 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 944 } 945 946 /* 947 * Loop through length of segment after first fragment, 948 * make new header and copy data of each part and link onto 949 * chain. 950 */ 951 m0 = m; 952 for (off = hlen; off < tlen; off += len) { 953 struct mbuf *mlast; 954 955 MGETHDR(m, M_DONTWAIT, MT_HEADER); 956 if (!m) { 957 error = ENOBUFS; 958 IP6_STATINC(IP6_STAT_ODROPPED); 959 goto sendorfree; 960 } 961 m_reset_rcvif(m); 962 m->m_flags = m0->m_flags & M_COPYFLAGS; 963 *mnext = m; 964 mnext = &m->m_nextpkt; 965 m->m_data += max_linkhdr; 966 mhip6 = mtod(m, struct ip6_hdr *); 967 *mhip6 = *ip6; 968 m->m_len = sizeof(*mhip6); 969 970 ip6f = NULL; 971 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 972 if (error) { 973 IP6_STATINC(IP6_STAT_ODROPPED); 974 goto sendorfree; 975 } 976 977 /* Fill in the Frag6 Header */ 978 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 979 if (off + len >= tlen) 980 len = tlen - off; 981 else 982 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 983 ip6f->ip6f_reserved = 0; 984 ip6f->ip6f_ident = id; 985 ip6f->ip6f_nxt = nextproto; 986 987 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 988 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 989 if ((m_frgpart = m_copym(m0, off, len, M_DONTWAIT)) == NULL) { 990 error = ENOBUFS; 991 IP6_STATINC(IP6_STAT_ODROPPED); 992 goto sendorfree; 993 } 994 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 995 ; 996 mlast->m_next = m_frgpart; 997 998 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 999 m_reset_rcvif(m); 1000 IP6_STATINC(IP6_STAT_OFRAGMENTS); 1001 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1002 } 1003 1004 in6_ifstat_inc(ifp, ifs6_out_fragok); 1005 } 1006 1007 sendorfree: 1008 m = m0->m_nextpkt; 1009 m0->m_nextpkt = 0; 1010 m_freem(m0); 1011 for (m0 = m; m; m = m0) { 1012 m0 = m->m_nextpkt; 1013 m->m_nextpkt = 0; 1014 if (error == 0) { 1015 struct in6_ifaddr *ia6; 1016 int s; 1017 ip6 = mtod(m, struct ip6_hdr *); 1018 s = pserialize_read_enter(); 1019 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1020 if (ia6) { 1021 /* 1022 * Record statistics for this interface 1023 * address. 1024 */ 1025 ia6->ia_ifa.ifa_data.ifad_outbytes += 1026 m->m_pkthdr.len; 1027 } 1028 pserialize_read_exit(s); 1029 KASSERT(dst != NULL); 1030 error = ip6_if_output(ifp, origifp, m, dst, rt); 1031 } else 1032 m_freem(m); 1033 } 1034 1035 if (error == 0) 1036 IP6_STATINC(IP6_STAT_FRAGMENTED); 1037 1038 done: 1039 rtcache_unref(rt, ro); 1040 if (ro == &ip6route) 1041 rtcache_free(&ip6route); 1042 #ifdef IPSEC 1043 if (sp != NULL) 1044 KEY_SP_UNREF(&sp); 1045 #endif 1046 if_put(ifp, &psref); 1047 if (release_psref_ia) 1048 if_put(origifp, &psref_ia); 1049 curlwp_bindx(bound); 1050 1051 return error; 1052 1053 freehdrs: 1054 m_freem(exthdrs.ip6e_hbh); 1055 m_freem(exthdrs.ip6e_dest1); 1056 m_freem(exthdrs.ip6e_rthdr); 1057 m_freem(exthdrs.ip6e_dest2); 1058 /* FALLTHROUGH */ 1059 bad: 1060 m_freem(m); 1061 goto done; 1062 1063 badscope: 1064 IP6_STATINC(IP6_STAT_BADSCOPE); 1065 in6_ifstat_inc(origifp, ifs6_out_discard); 1066 if (error == 0) 1067 error = EHOSTUNREACH; /* XXX */ 1068 goto bad; 1069 } 1070 1071 static int 1072 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen) 1073 { 1074 struct mbuf *m; 1075 1076 if (hlen > MCLBYTES) 1077 return ENOBUFS; /* XXX */ 1078 1079 MGET(m, M_DONTWAIT, MT_DATA); 1080 if (!m) 1081 return ENOBUFS; 1082 1083 if (hlen > MLEN) { 1084 MCLGET(m, M_DONTWAIT); 1085 if ((m->m_flags & M_EXT) == 0) { 1086 m_free(m); 1087 return ENOBUFS; 1088 } 1089 } 1090 m->m_len = hlen; 1091 if (hdr) 1092 memcpy(mtod(m, void *), hdr, hlen); 1093 1094 *mp = m; 1095 return 0; 1096 } 1097 1098 /* 1099 * Insert jumbo payload option. 1100 */ 1101 static int 1102 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1103 { 1104 struct mbuf *mopt; 1105 u_int8_t *optbuf; 1106 u_int32_t v; 1107 1108 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1109 1110 /* 1111 * If there is no hop-by-hop options header, allocate new one. 1112 * If there is one but it doesn't have enough space to store the 1113 * jumbo payload option, allocate a cluster to store the whole options. 1114 * Otherwise, use it to store the options. 1115 */ 1116 if (exthdrs->ip6e_hbh == NULL) { 1117 MGET(mopt, M_DONTWAIT, MT_DATA); 1118 if (mopt == 0) 1119 return (ENOBUFS); 1120 mopt->m_len = JUMBOOPTLEN; 1121 optbuf = mtod(mopt, u_int8_t *); 1122 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1123 exthdrs->ip6e_hbh = mopt; 1124 } else { 1125 struct ip6_hbh *hbh; 1126 1127 mopt = exthdrs->ip6e_hbh; 1128 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1129 const int oldoptlen = mopt->m_len; 1130 struct mbuf *n; 1131 1132 /* 1133 * Assumptions: 1134 * - exthdrs->ip6e_hbh is not referenced from places 1135 * other than exthdrs. 1136 * - exthdrs->ip6e_hbh is not an mbuf chain. 1137 */ 1138 KASSERT(mopt->m_next == NULL); 1139 1140 /* 1141 * Give up if the whole (new) hbh header does not fit 1142 * even in an mbuf cluster. 1143 */ 1144 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1145 return ENOBUFS; 1146 1147 /* 1148 * At this point, we must always prepare a cluster. 1149 */ 1150 MGET(n, M_DONTWAIT, MT_DATA); 1151 if (n) { 1152 MCLGET(n, M_DONTWAIT); 1153 if ((n->m_flags & M_EXT) == 0) { 1154 m_freem(n); 1155 n = NULL; 1156 } 1157 } 1158 if (!n) 1159 return ENOBUFS; 1160 1161 n->m_len = oldoptlen + JUMBOOPTLEN; 1162 bcopy(mtod(mopt, void *), mtod(n, void *), 1163 oldoptlen); 1164 optbuf = mtod(n, u_int8_t *) + oldoptlen; 1165 m_freem(mopt); 1166 mopt = exthdrs->ip6e_hbh = n; 1167 } else { 1168 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 1169 mopt->m_len += JUMBOOPTLEN; 1170 } 1171 optbuf[0] = IP6OPT_PADN; 1172 optbuf[1] = 0; 1173 1174 /* 1175 * Adjust the header length according to the pad and 1176 * the jumbo payload option. 1177 */ 1178 hbh = mtod(mopt, struct ip6_hbh *); 1179 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1180 } 1181 1182 /* fill in the option. */ 1183 optbuf[2] = IP6OPT_JUMBO; 1184 optbuf[3] = 4; 1185 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1186 memcpy(&optbuf[4], &v, sizeof(u_int32_t)); 1187 1188 /* finally, adjust the packet header length */ 1189 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1190 1191 return 0; 1192 #undef JUMBOOPTLEN 1193 } 1194 1195 /* 1196 * Insert fragment header and copy unfragmentable header portions. 1197 * 1198 * *frghdrp will not be read, and it is guaranteed that either an 1199 * error is returned or that *frghdrp will point to space allocated 1200 * for the fragment header. 1201 * 1202 * On entry, m contains: 1203 * IPv6 Header 1204 * On exit, it contains: 1205 * IPv6 Header -> Unfragmentable Part -> Frag6 Header 1206 */ 1207 static int 1208 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1209 struct ip6_frag **frghdrp) 1210 { 1211 struct mbuf *n, *mlast; 1212 1213 if (hlen > sizeof(struct ip6_hdr)) { 1214 n = m_copym(m0, sizeof(struct ip6_hdr), 1215 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1216 if (n == NULL) 1217 return ENOBUFS; 1218 m->m_next = n; 1219 } else 1220 n = m; 1221 1222 /* Search for the last mbuf of unfragmentable part. */ 1223 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1224 ; 1225 1226 if ((mlast->m_flags & M_EXT) == 0 && 1227 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1228 /* use the trailing space of the last mbuf for the fragment hdr */ 1229 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) + 1230 mlast->m_len); 1231 mlast->m_len += sizeof(struct ip6_frag); 1232 } else { 1233 /* allocate a new mbuf for the fragment header */ 1234 struct mbuf *mfrg; 1235 1236 MGET(mfrg, M_DONTWAIT, MT_DATA); 1237 if (mfrg == NULL) 1238 return ENOBUFS; 1239 mfrg->m_len = sizeof(struct ip6_frag); 1240 *frghdrp = mtod(mfrg, struct ip6_frag *); 1241 mlast->m_next = mfrg; 1242 } 1243 1244 return 0; 1245 } 1246 1247 static int 1248 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup, 1249 int *alwaysfragp) 1250 { 1251 u_int32_t mtu = 0; 1252 int alwaysfrag = 0; 1253 int error = 0; 1254 1255 if (rt != NULL) { 1256 if (ifp == NULL) 1257 ifp = rt->rt_ifp; 1258 mtu = rt->rt_rmx.rmx_mtu; 1259 if (mtu == 0) 1260 mtu = ifp->if_mtu; 1261 else if (mtu < IPV6_MMTU) { 1262 /* 1263 * RFC2460 section 5, last paragraph: 1264 * if we record ICMPv6 too big message with 1265 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1266 * or smaller, with fragment header attached. 1267 * (fragment header is needed regardless from the 1268 * packet size, for translators to identify packets) 1269 */ 1270 alwaysfrag = 1; 1271 mtu = IPV6_MMTU; 1272 } else if (mtu > ifp->if_mtu) { 1273 /* 1274 * The MTU on the route is larger than the MTU on 1275 * the interface! This shouldn't happen, unless the 1276 * MTU of the interface has been changed after the 1277 * interface was brought up. Change the MTU in the 1278 * route to match the interface MTU (as long as the 1279 * field isn't locked). 1280 */ 1281 mtu = ifp->if_mtu; 1282 if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) 1283 rt->rt_rmx.rmx_mtu = mtu; 1284 } 1285 } else if (ifp) { 1286 mtu = ifp->if_mtu; 1287 } else 1288 error = EHOSTUNREACH; /* XXX */ 1289 1290 *mtup = mtu; 1291 if (alwaysfragp) 1292 *alwaysfragp = alwaysfrag; 1293 return (error); 1294 } 1295 1296 /* 1297 * IP6 socket option processing. 1298 */ 1299 int 1300 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1301 { 1302 int optdatalen, uproto; 1303 void *optdata; 1304 struct inpcb *inp = sotoinpcb(so); 1305 struct ip_moptions **mopts; 1306 int error, optval; 1307 int level, optname; 1308 1309 KASSERT(solocked(so)); 1310 KASSERT(sopt != NULL); 1311 1312 level = sopt->sopt_level; 1313 optname = sopt->sopt_name; 1314 1315 error = optval = 0; 1316 uproto = (int)so->so_proto->pr_protocol; 1317 1318 switch (level) { 1319 case IPPROTO_IP: 1320 switch (optname) { 1321 case IP_ADD_MEMBERSHIP: 1322 case IP_DROP_MEMBERSHIP: 1323 case IP_MULTICAST_IF: 1324 case IP_MULTICAST_LOOP: 1325 case IP_MULTICAST_TTL: 1326 mopts = &inp->inp_moptions; 1327 switch (op) { 1328 case PRCO_GETOPT: 1329 return ip_getmoptions(*mopts, sopt); 1330 case PRCO_SETOPT: 1331 return ip_setmoptions(mopts, sopt); 1332 default: 1333 return EINVAL; 1334 } 1335 default: 1336 return ENOPROTOOPT; 1337 } 1338 case IPPROTO_IPV6: 1339 break; 1340 default: 1341 return ENOPROTOOPT; 1342 } 1343 switch (op) { 1344 case PRCO_SETOPT: 1345 switch (optname) { 1346 #ifdef RFC2292 1347 case IPV6_2292PKTOPTIONS: 1348 error = ip6_pcbopts(&in6p_outputopts(inp), so, sopt); 1349 break; 1350 #endif 1351 1352 /* 1353 * Use of some Hop-by-Hop options or some 1354 * Destination options, might require special 1355 * privilege. That is, normal applications 1356 * (without special privilege) might be forbidden 1357 * from setting certain options in outgoing packets, 1358 * and might never see certain options in received 1359 * packets. [RFC 2292 Section 6] 1360 * KAME specific note: 1361 * KAME prevents non-privileged users from sending or 1362 * receiving ANY hbh/dst options in order to avoid 1363 * overhead of parsing options in the kernel. 1364 */ 1365 case IPV6_RECVHOPOPTS: 1366 case IPV6_RECVDSTOPTS: 1367 case IPV6_RECVRTHDRDSTOPTS: 1368 error = kauth_authorize_network( 1369 kauth_cred_get(), 1370 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, 1371 NULL, NULL, NULL); 1372 if (error) 1373 break; 1374 /* FALLTHROUGH */ 1375 case IPV6_UNICAST_HOPS: 1376 case IPV6_HOPLIMIT: 1377 case IPV6_FAITH: 1378 1379 case IPV6_RECVPKTINFO: 1380 case IPV6_RECVHOPLIMIT: 1381 case IPV6_RECVRTHDR: 1382 case IPV6_RECVPATHMTU: 1383 case IPV6_RECVTCLASS: 1384 case IPV6_V6ONLY: 1385 case IPV6_BINDANY: 1386 error = sockopt_getint(sopt, &optval); 1387 if (error) 1388 break; 1389 switch (optname) { 1390 case IPV6_UNICAST_HOPS: 1391 if (optval < -1 || optval >= 256) 1392 error = EINVAL; 1393 else { 1394 /* -1 = kernel default */ 1395 in6p_hops6(inp) = optval; 1396 } 1397 break; 1398 #define OPTSET(bit) \ 1399 do { \ 1400 if (optval) \ 1401 inp->inp_flags |= (bit); \ 1402 else \ 1403 inp->inp_flags &= ~(bit); \ 1404 } while (/*CONSTCOND*/ 0) 1405 1406 #ifdef RFC2292 1407 #define OPTSET2292(bit) \ 1408 do { \ 1409 inp->inp_flags |= IN6P_RFC2292; \ 1410 if (optval) \ 1411 inp->inp_flags |= (bit); \ 1412 else \ 1413 inp->inp_flags &= ~(bit); \ 1414 } while (/*CONSTCOND*/ 0) 1415 #endif 1416 1417 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1418 1419 case IPV6_RECVPKTINFO: 1420 #ifdef RFC2292 1421 /* cannot mix with RFC2292 */ 1422 if (OPTBIT(IN6P_RFC2292)) { 1423 error = EINVAL; 1424 break; 1425 } 1426 #endif 1427 OPTSET(IN6P_PKTINFO); 1428 break; 1429 1430 case IPV6_HOPLIMIT: 1431 { 1432 struct ip6_pktopts **optp; 1433 1434 #ifdef RFC2292 1435 /* cannot mix with RFC2292 */ 1436 if (OPTBIT(IN6P_RFC2292)) { 1437 error = EINVAL; 1438 break; 1439 } 1440 #endif 1441 optp = &in6p_outputopts(inp); 1442 error = ip6_pcbopt(IPV6_HOPLIMIT, 1443 (u_char *)&optval, 1444 sizeof(optval), 1445 optp, 1446 kauth_cred_get(), uproto); 1447 break; 1448 } 1449 1450 case IPV6_RECVHOPLIMIT: 1451 #ifdef RFC2292 1452 /* cannot mix with RFC2292 */ 1453 if (OPTBIT(IN6P_RFC2292)) { 1454 error = EINVAL; 1455 break; 1456 } 1457 #endif 1458 OPTSET(IN6P_HOPLIMIT); 1459 break; 1460 1461 case IPV6_RECVHOPOPTS: 1462 #ifdef RFC2292 1463 /* cannot mix with RFC2292 */ 1464 if (OPTBIT(IN6P_RFC2292)) { 1465 error = EINVAL; 1466 break; 1467 } 1468 #endif 1469 OPTSET(IN6P_HOPOPTS); 1470 break; 1471 1472 case IPV6_RECVDSTOPTS: 1473 #ifdef RFC2292 1474 /* cannot mix with RFC2292 */ 1475 if (OPTBIT(IN6P_RFC2292)) { 1476 error = EINVAL; 1477 break; 1478 } 1479 #endif 1480 OPTSET(IN6P_DSTOPTS); 1481 break; 1482 1483 case IPV6_RECVRTHDRDSTOPTS: 1484 #ifdef RFC2292 1485 /* cannot mix with RFC2292 */ 1486 if (OPTBIT(IN6P_RFC2292)) { 1487 error = EINVAL; 1488 break; 1489 } 1490 #endif 1491 OPTSET(IN6P_RTHDRDSTOPTS); 1492 break; 1493 1494 case IPV6_RECVRTHDR: 1495 #ifdef RFC2292 1496 /* cannot mix with RFC2292 */ 1497 if (OPTBIT(IN6P_RFC2292)) { 1498 error = EINVAL; 1499 break; 1500 } 1501 #endif 1502 OPTSET(IN6P_RTHDR); 1503 break; 1504 1505 case IPV6_FAITH: 1506 OPTSET(IN6P_FAITH); 1507 break; 1508 1509 case IPV6_RECVPATHMTU: 1510 /* 1511 * We ignore this option for TCP 1512 * sockets. 1513 * (RFC3542 leaves this case 1514 * unspecified.) 1515 */ 1516 if (uproto != IPPROTO_TCP) 1517 OPTSET(IN6P_MTU); 1518 break; 1519 1520 case IPV6_V6ONLY: 1521 /* 1522 * make setsockopt(IPV6_V6ONLY) 1523 * available only prior to bind(2). 1524 * see ipng mailing list, Jun 22 2001. 1525 */ 1526 if (inp->inp_lport || 1527 !IN6_IS_ADDR_UNSPECIFIED(&in6p_laddr(inp))) { 1528 error = EINVAL; 1529 break; 1530 } 1531 #ifdef INET6_BINDV6ONLY 1532 if (!optval) 1533 error = EINVAL; 1534 #else 1535 OPTSET(IN6P_IPV6_V6ONLY); 1536 #endif 1537 break; 1538 1539 case IPV6_RECVTCLASS: 1540 #ifdef RFC2292 1541 /* cannot mix with RFC2292 XXX */ 1542 if (OPTBIT(IN6P_RFC2292)) { 1543 error = EINVAL; 1544 break; 1545 } 1546 #endif 1547 OPTSET(IN6P_TCLASS); 1548 break; 1549 1550 case IPV6_BINDANY: 1551 error = kauth_authorize_network( 1552 kauth_cred_get(), KAUTH_NETWORK_BIND, 1553 KAUTH_REQ_NETWORK_BIND_ANYADDR, so, NULL, 1554 NULL); 1555 if (error) 1556 break; 1557 OPTSET(IN6P_BINDANY); 1558 break; 1559 } 1560 break; 1561 1562 case IPV6_OTCLASS: 1563 { 1564 struct ip6_pktopts **optp; 1565 u_int8_t tclass; 1566 1567 error = sockopt_get(sopt, &tclass, sizeof(tclass)); 1568 if (error) 1569 break; 1570 optp = &in6p_outputopts(inp); 1571 error = ip6_pcbopt(optname, 1572 (u_char *)&tclass, 1573 sizeof(tclass), 1574 optp, 1575 kauth_cred_get(), uproto); 1576 break; 1577 } 1578 1579 case IPV6_TCLASS: 1580 case IPV6_DONTFRAG: 1581 case IPV6_USE_MIN_MTU: 1582 case IPV6_PREFER_TEMPADDR: 1583 error = sockopt_getint(sopt, &optval); 1584 if (error) 1585 break; 1586 { 1587 struct ip6_pktopts **optp; 1588 optp = &in6p_outputopts(inp); 1589 error = ip6_pcbopt(optname, 1590 (u_char *)&optval, 1591 sizeof(optval), 1592 optp, 1593 kauth_cred_get(), uproto); 1594 break; 1595 } 1596 1597 #ifdef RFC2292 1598 case IPV6_2292PKTINFO: 1599 case IPV6_2292HOPLIMIT: 1600 case IPV6_2292HOPOPTS: 1601 case IPV6_2292DSTOPTS: 1602 case IPV6_2292RTHDR: 1603 /* RFC 2292 */ 1604 error = sockopt_getint(sopt, &optval); 1605 if (error) 1606 break; 1607 1608 switch (optname) { 1609 case IPV6_2292PKTINFO: 1610 OPTSET2292(IN6P_PKTINFO); 1611 break; 1612 case IPV6_2292HOPLIMIT: 1613 OPTSET2292(IN6P_HOPLIMIT); 1614 break; 1615 case IPV6_2292HOPOPTS: 1616 /* 1617 * Check super-user privilege. 1618 * See comments for IPV6_RECVHOPOPTS. 1619 */ 1620 error = kauth_authorize_network( 1621 kauth_cred_get(), 1622 KAUTH_NETWORK_IPV6, 1623 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1624 NULL, NULL); 1625 if (error) 1626 return (error); 1627 OPTSET2292(IN6P_HOPOPTS); 1628 break; 1629 case IPV6_2292DSTOPTS: 1630 error = kauth_authorize_network( 1631 kauth_cred_get(), 1632 KAUTH_NETWORK_IPV6, 1633 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1634 NULL, NULL); 1635 if (error) 1636 return (error); 1637 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1638 break; 1639 case IPV6_2292RTHDR: 1640 OPTSET2292(IN6P_RTHDR); 1641 break; 1642 } 1643 break; 1644 #endif 1645 case IPV6_PKTINFO: 1646 case IPV6_HOPOPTS: 1647 case IPV6_RTHDR: 1648 case IPV6_DSTOPTS: 1649 case IPV6_RTHDRDSTOPTS: 1650 case IPV6_NEXTHOP: { 1651 /* new advanced API (RFC3542) */ 1652 void *optbuf; 1653 int optbuflen; 1654 struct ip6_pktopts **optp; 1655 1656 #ifdef RFC2292 1657 /* cannot mix with RFC2292 */ 1658 if (OPTBIT(IN6P_RFC2292)) { 1659 error = EINVAL; 1660 break; 1661 } 1662 #endif 1663 1664 optbuflen = sopt->sopt_size; 1665 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT); 1666 if (optbuf == NULL) { 1667 error = ENOBUFS; 1668 break; 1669 } 1670 1671 error = sockopt_get(sopt, optbuf, optbuflen); 1672 if (error) { 1673 free(optbuf, M_IP6OPT); 1674 break; 1675 } 1676 optp = &in6p_outputopts(inp); 1677 error = ip6_pcbopt(optname, optbuf, optbuflen, 1678 optp, kauth_cred_get(), uproto); 1679 1680 free(optbuf, M_IP6OPT); 1681 break; 1682 } 1683 #undef OPTSET 1684 1685 case IPV6_MULTICAST_IF: 1686 case IPV6_MULTICAST_HOPS: 1687 case IPV6_MULTICAST_LOOP: 1688 case IPV6_JOIN_GROUP: 1689 case IPV6_LEAVE_GROUP: 1690 error = ip6_setmoptions(sopt, inp); 1691 break; 1692 1693 case IPV6_PORTRANGE: 1694 error = sockopt_getint(sopt, &optval); 1695 if (error) 1696 break; 1697 1698 switch (optval) { 1699 case IPV6_PORTRANGE_DEFAULT: 1700 inp->inp_flags &= ~(IN6P_LOWPORT); 1701 inp->inp_flags &= ~(IN6P_HIGHPORT); 1702 break; 1703 1704 case IPV6_PORTRANGE_HIGH: 1705 inp->inp_flags &= ~(IN6P_LOWPORT); 1706 inp->inp_flags |= IN6P_HIGHPORT; 1707 break; 1708 1709 case IPV6_PORTRANGE_LOW: 1710 inp->inp_flags &= ~(IN6P_HIGHPORT); 1711 inp->inp_flags |= IN6P_LOWPORT; 1712 break; 1713 1714 default: 1715 error = EINVAL; 1716 break; 1717 } 1718 break; 1719 1720 case IPV6_PORTALGO: 1721 error = sockopt_getint(sopt, &optval); 1722 if (error) 1723 break; 1724 1725 error = portalgo_algo_index_select(inp, optval); 1726 break; 1727 1728 #if defined(IPSEC) 1729 case IPV6_IPSEC_POLICY: 1730 if (ipsec_enabled) { 1731 error = ipsec_set_policy(inp, 1732 sopt->sopt_data, sopt->sopt_size, 1733 kauth_cred_get()); 1734 } else 1735 error = ENOPROTOOPT; 1736 break; 1737 #endif /* IPSEC */ 1738 1739 default: 1740 error = ENOPROTOOPT; 1741 break; 1742 } 1743 break; 1744 1745 case PRCO_GETOPT: 1746 switch (optname) { 1747 #ifdef RFC2292 1748 case IPV6_2292PKTOPTIONS: 1749 /* 1750 * RFC3542 (effectively) deprecated the 1751 * semantics of the 2292-style pktoptions. 1752 * Since it was not reliable in nature (i.e., 1753 * applications had to expect the lack of some 1754 * information after all), it would make sense 1755 * to simplify this part by always returning 1756 * empty data. 1757 */ 1758 break; 1759 #endif 1760 1761 case IPV6_RECVHOPOPTS: 1762 case IPV6_RECVDSTOPTS: 1763 case IPV6_RECVRTHDRDSTOPTS: 1764 case IPV6_UNICAST_HOPS: 1765 case IPV6_RECVPKTINFO: 1766 case IPV6_RECVHOPLIMIT: 1767 case IPV6_RECVRTHDR: 1768 case IPV6_RECVPATHMTU: 1769 1770 case IPV6_FAITH: 1771 case IPV6_V6ONLY: 1772 case IPV6_PORTRANGE: 1773 case IPV6_RECVTCLASS: 1774 case IPV6_BINDANY: 1775 switch (optname) { 1776 1777 case IPV6_RECVHOPOPTS: 1778 optval = OPTBIT(IN6P_HOPOPTS); 1779 break; 1780 1781 case IPV6_RECVDSTOPTS: 1782 optval = OPTBIT(IN6P_DSTOPTS); 1783 break; 1784 1785 case IPV6_RECVRTHDRDSTOPTS: 1786 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1787 break; 1788 1789 case IPV6_UNICAST_HOPS: 1790 optval = in6p_hops6(inp); 1791 break; 1792 1793 case IPV6_RECVPKTINFO: 1794 optval = OPTBIT(IN6P_PKTINFO); 1795 break; 1796 1797 case IPV6_RECVHOPLIMIT: 1798 optval = OPTBIT(IN6P_HOPLIMIT); 1799 break; 1800 1801 case IPV6_RECVRTHDR: 1802 optval = OPTBIT(IN6P_RTHDR); 1803 break; 1804 1805 case IPV6_RECVPATHMTU: 1806 optval = OPTBIT(IN6P_MTU); 1807 break; 1808 1809 case IPV6_FAITH: 1810 optval = OPTBIT(IN6P_FAITH); 1811 break; 1812 1813 case IPV6_V6ONLY: 1814 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1815 break; 1816 1817 case IPV6_PORTRANGE: 1818 { 1819 int flags; 1820 flags = inp->inp_flags; 1821 if (flags & IN6P_HIGHPORT) 1822 optval = IPV6_PORTRANGE_HIGH; 1823 else if (flags & IN6P_LOWPORT) 1824 optval = IPV6_PORTRANGE_LOW; 1825 else 1826 optval = 0; 1827 break; 1828 } 1829 case IPV6_RECVTCLASS: 1830 optval = OPTBIT(IN6P_TCLASS); 1831 break; 1832 1833 case IPV6_BINDANY: 1834 optval = OPTBIT(IN6P_BINDANY); 1835 break; 1836 } 1837 1838 if (error) 1839 break; 1840 error = sockopt_setint(sopt, optval); 1841 break; 1842 1843 case IPV6_PATHMTU: 1844 { 1845 u_long pmtu = 0; 1846 struct ip6_mtuinfo mtuinfo; 1847 struct route *ro = &inp->inp_route; 1848 struct rtentry *rt; 1849 union { 1850 struct sockaddr dst; 1851 struct sockaddr_in6 dst6; 1852 } u; 1853 1854 if (!(so->so_state & SS_ISCONNECTED)) 1855 return (ENOTCONN); 1856 /* 1857 * XXX: we dot not consider the case of source 1858 * routing, or optional information to specify 1859 * the outgoing interface. 1860 */ 1861 sockaddr_in6_init(&u.dst6, &in6p_faddr(inp), 0, 0, 0); 1862 rt = rtcache_lookup(ro, &u.dst); 1863 error = ip6_getpmtu(rt, NULL, &pmtu, NULL); 1864 rtcache_unref(rt, ro); 1865 if (error) 1866 break; 1867 if (pmtu > IPV6_MAXPACKET) 1868 pmtu = IPV6_MAXPACKET; 1869 1870 memset(&mtuinfo, 0, sizeof(mtuinfo)); 1871 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1872 optdata = (void *)&mtuinfo; 1873 optdatalen = sizeof(mtuinfo); 1874 if (optdatalen > MCLBYTES) 1875 return (EMSGSIZE); /* XXX */ 1876 error = sockopt_set(sopt, optdata, optdatalen); 1877 break; 1878 } 1879 1880 #ifdef RFC2292 1881 case IPV6_2292PKTINFO: 1882 case IPV6_2292HOPLIMIT: 1883 case IPV6_2292HOPOPTS: 1884 case IPV6_2292RTHDR: 1885 case IPV6_2292DSTOPTS: 1886 switch (optname) { 1887 case IPV6_2292PKTINFO: 1888 optval = OPTBIT(IN6P_PKTINFO); 1889 break; 1890 case IPV6_2292HOPLIMIT: 1891 optval = OPTBIT(IN6P_HOPLIMIT); 1892 break; 1893 case IPV6_2292HOPOPTS: 1894 optval = OPTBIT(IN6P_HOPOPTS); 1895 break; 1896 case IPV6_2292RTHDR: 1897 optval = OPTBIT(IN6P_RTHDR); 1898 break; 1899 case IPV6_2292DSTOPTS: 1900 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1901 break; 1902 } 1903 error = sockopt_setint(sopt, optval); 1904 break; 1905 #endif 1906 case IPV6_PKTINFO: 1907 case IPV6_HOPOPTS: 1908 case IPV6_RTHDR: 1909 case IPV6_DSTOPTS: 1910 case IPV6_RTHDRDSTOPTS: 1911 case IPV6_NEXTHOP: 1912 case IPV6_OTCLASS: 1913 case IPV6_TCLASS: 1914 case IPV6_DONTFRAG: 1915 case IPV6_USE_MIN_MTU: 1916 case IPV6_PREFER_TEMPADDR: 1917 error = ip6_getpcbopt(in6p_outputopts(inp), 1918 optname, sopt); 1919 break; 1920 1921 case IPV6_MULTICAST_IF: 1922 case IPV6_MULTICAST_HOPS: 1923 case IPV6_MULTICAST_LOOP: 1924 case IPV6_JOIN_GROUP: 1925 case IPV6_LEAVE_GROUP: 1926 error = ip6_getmoptions(sopt, inp); 1927 break; 1928 1929 case IPV6_PORTALGO: 1930 optval = inp->inp_portalgo; 1931 error = sockopt_setint(sopt, optval); 1932 break; 1933 1934 #if defined(IPSEC) 1935 case IPV6_IPSEC_POLICY: 1936 if (ipsec_used) { 1937 struct mbuf *m = NULL; 1938 1939 /* 1940 * XXX: this will return EINVAL as sopt is 1941 * empty 1942 */ 1943 error = ipsec_get_policy(inp, sopt->sopt_data, 1944 sopt->sopt_size, &m); 1945 if (!error) 1946 error = sockopt_setmbuf(sopt, m); 1947 } else 1948 error = ENOPROTOOPT; 1949 break; 1950 #endif /* IPSEC */ 1951 1952 default: 1953 error = ENOPROTOOPT; 1954 break; 1955 } 1956 break; 1957 } 1958 return (error); 1959 } 1960 1961 int 1962 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1963 { 1964 int error = 0, optval; 1965 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 1966 struct inpcb *inp = sotoinpcb(so); 1967 int level, optname; 1968 1969 KASSERT(sopt != NULL); 1970 1971 level = sopt->sopt_level; 1972 optname = sopt->sopt_name; 1973 1974 if (level != IPPROTO_IPV6) { 1975 return ENOPROTOOPT; 1976 } 1977 1978 switch (optname) { 1979 case IPV6_CHECKSUM: 1980 /* 1981 * For ICMPv6 sockets, no modification allowed for checksum 1982 * offset, permit "no change" values to help existing apps. 1983 * 1984 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM 1985 * for an ICMPv6 socket will fail." The current 1986 * behavior does not meet RFC3542. 1987 */ 1988 switch (op) { 1989 case PRCO_SETOPT: 1990 error = sockopt_getint(sopt, &optval); 1991 if (error) 1992 break; 1993 if (optval < -1 || 1994 (optval > 0 && (optval % 2) != 0)) { 1995 /* 1996 * The API assumes non-negative even offset 1997 * values or -1 as a special value. 1998 */ 1999 error = EINVAL; 2000 } else if (so->so_proto->pr_protocol == 2001 IPPROTO_ICMPV6) { 2002 if (optval != icmp6off) 2003 error = EINVAL; 2004 } else 2005 in6p_cksum(inp) = optval; 2006 break; 2007 2008 case PRCO_GETOPT: 2009 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2010 optval = icmp6off; 2011 else 2012 optval = in6p_cksum(inp); 2013 2014 error = sockopt_setint(sopt, optval); 2015 break; 2016 2017 default: 2018 error = EINVAL; 2019 break; 2020 } 2021 break; 2022 2023 default: 2024 error = ENOPROTOOPT; 2025 break; 2026 } 2027 2028 return (error); 2029 } 2030 2031 #ifdef RFC2292 2032 /* 2033 * Set up IP6 options in pcb for insertion in output packets or 2034 * specifying behavior of outgoing packets. 2035 */ 2036 static int 2037 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so, 2038 struct sockopt *sopt) 2039 { 2040 struct ip6_pktopts *opt = *pktopt; 2041 struct mbuf *m; 2042 int error = 0; 2043 2044 KASSERT(solocked(so)); 2045 2046 /* turn off any old options. */ 2047 if (opt) { 2048 #ifdef DIAGNOSTIC 2049 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2050 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2051 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2052 printf("ip6_pcbopts: all specified options are cleared.\n"); 2053 #endif 2054 ip6_clearpktopts(opt, -1); 2055 } else { 2056 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2057 if (opt == NULL) 2058 return (ENOBUFS); 2059 } 2060 *pktopt = NULL; 2061 2062 if (sopt == NULL || sopt->sopt_size == 0) { 2063 /* 2064 * Only turning off any previous options, regardless of 2065 * whether the opt is just created or given. 2066 */ 2067 free(opt, M_IP6OPT); 2068 return (0); 2069 } 2070 2071 /* set options specified by user. */ 2072 m = sockopt_getmbuf(sopt); 2073 if (m == NULL) { 2074 free(opt, M_IP6OPT); 2075 return (ENOBUFS); 2076 } 2077 2078 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(), 2079 so->so_proto->pr_protocol); 2080 m_freem(m); 2081 if (error != 0) { 2082 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2083 free(opt, M_IP6OPT); 2084 return (error); 2085 } 2086 *pktopt = opt; 2087 return (0); 2088 } 2089 #endif 2090 2091 /* 2092 * initialize ip6_pktopts. beware that there are non-zero default values in 2093 * the struct. 2094 */ 2095 void 2096 ip6_initpktopts(struct ip6_pktopts *opt) 2097 { 2098 2099 memset(opt, 0, sizeof(*opt)); 2100 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2101 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2102 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2103 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2104 } 2105 2106 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */ 2107 static int 2108 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2109 kauth_cred_t cred, int uproto) 2110 { 2111 struct ip6_pktopts *opt; 2112 2113 if (*pktopt == NULL) { 2114 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2115 M_NOWAIT); 2116 if (*pktopt == NULL) 2117 return (ENOBUFS); 2118 2119 ip6_initpktopts(*pktopt); 2120 } 2121 opt = *pktopt; 2122 2123 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2124 } 2125 2126 static int 2127 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2128 { 2129 void *optdata = NULL; 2130 int optdatalen = 0; 2131 struct ip6_ext *ip6e; 2132 int error = 0; 2133 struct in6_pktinfo null_pktinfo; 2134 int deftclass = 0, on; 2135 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2136 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2137 2138 switch (optname) { 2139 case IPV6_PKTINFO: 2140 if (pktopt && pktopt->ip6po_pktinfo) 2141 optdata = (void *)pktopt->ip6po_pktinfo; 2142 else { 2143 /* XXX: we don't have to do this every time... */ 2144 memset(&null_pktinfo, 0, sizeof(null_pktinfo)); 2145 optdata = (void *)&null_pktinfo; 2146 } 2147 optdatalen = sizeof(struct in6_pktinfo); 2148 break; 2149 case IPV6_OTCLASS: 2150 /* XXX */ 2151 return (EINVAL); 2152 case IPV6_TCLASS: 2153 if (pktopt && pktopt->ip6po_tclass >= 0) 2154 optdata = (void *)&pktopt->ip6po_tclass; 2155 else 2156 optdata = (void *)&deftclass; 2157 optdatalen = sizeof(int); 2158 break; 2159 case IPV6_HOPOPTS: 2160 if (pktopt && pktopt->ip6po_hbh) { 2161 optdata = (void *)pktopt->ip6po_hbh; 2162 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2163 optdatalen = (ip6e->ip6e_len + 1) << 3; 2164 } 2165 break; 2166 case IPV6_RTHDR: 2167 if (pktopt && pktopt->ip6po_rthdr) { 2168 optdata = (void *)pktopt->ip6po_rthdr; 2169 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2170 optdatalen = (ip6e->ip6e_len + 1) << 3; 2171 } 2172 break; 2173 case IPV6_RTHDRDSTOPTS: 2174 if (pktopt && pktopt->ip6po_dest1) { 2175 optdata = (void *)pktopt->ip6po_dest1; 2176 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2177 optdatalen = (ip6e->ip6e_len + 1) << 3; 2178 } 2179 break; 2180 case IPV6_DSTOPTS: 2181 if (pktopt && pktopt->ip6po_dest2) { 2182 optdata = (void *)pktopt->ip6po_dest2; 2183 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2184 optdatalen = (ip6e->ip6e_len + 1) << 3; 2185 } 2186 break; 2187 case IPV6_NEXTHOP: 2188 if (pktopt && pktopt->ip6po_nexthop) { 2189 optdata = (void *)pktopt->ip6po_nexthop; 2190 optdatalen = pktopt->ip6po_nexthop->sa_len; 2191 } 2192 break; 2193 case IPV6_USE_MIN_MTU: 2194 if (pktopt) 2195 optdata = (void *)&pktopt->ip6po_minmtu; 2196 else 2197 optdata = (void *)&defminmtu; 2198 optdatalen = sizeof(int); 2199 break; 2200 case IPV6_DONTFRAG: 2201 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2202 on = 1; 2203 else 2204 on = 0; 2205 optdata = (void *)&on; 2206 optdatalen = sizeof(on); 2207 break; 2208 case IPV6_PREFER_TEMPADDR: 2209 if (pktopt) 2210 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2211 else 2212 optdata = (void *)&defpreftemp; 2213 optdatalen = sizeof(int); 2214 break; 2215 default: /* should not happen */ 2216 #ifdef DIAGNOSTIC 2217 panic("ip6_getpcbopt: unexpected option\n"); 2218 #endif 2219 return (ENOPROTOOPT); 2220 } 2221 2222 error = sockopt_set(sopt, optdata, optdatalen); 2223 2224 return (error); 2225 } 2226 2227 void 2228 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2229 { 2230 if (optname == -1 || optname == IPV6_PKTINFO) { 2231 if (pktopt->ip6po_pktinfo) 2232 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2233 pktopt->ip6po_pktinfo = NULL; 2234 } 2235 if (optname == -1 || optname == IPV6_HOPLIMIT) 2236 pktopt->ip6po_hlim = -1; 2237 if (optname == -1 || optname == IPV6_TCLASS) 2238 pktopt->ip6po_tclass = -1; 2239 if (optname == -1 || optname == IPV6_NEXTHOP) { 2240 rtcache_free(&pktopt->ip6po_nextroute); 2241 if (pktopt->ip6po_nexthop) 2242 free(pktopt->ip6po_nexthop, M_IP6OPT); 2243 pktopt->ip6po_nexthop = NULL; 2244 } 2245 if (optname == -1 || optname == IPV6_HOPOPTS) { 2246 if (pktopt->ip6po_hbh) 2247 free(pktopt->ip6po_hbh, M_IP6OPT); 2248 pktopt->ip6po_hbh = NULL; 2249 } 2250 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2251 if (pktopt->ip6po_dest1) 2252 free(pktopt->ip6po_dest1, M_IP6OPT); 2253 pktopt->ip6po_dest1 = NULL; 2254 } 2255 if (optname == -1 || optname == IPV6_RTHDR) { 2256 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2257 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2258 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2259 rtcache_free(&pktopt->ip6po_route); 2260 } 2261 if (optname == -1 || optname == IPV6_DSTOPTS) { 2262 if (pktopt->ip6po_dest2) 2263 free(pktopt->ip6po_dest2, M_IP6OPT); 2264 pktopt->ip6po_dest2 = NULL; 2265 } 2266 } 2267 2268 #define PKTOPT_EXTHDRCPY(type) \ 2269 do { \ 2270 if (src->type) { \ 2271 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2272 dst->type = malloc(hlen, M_IP6OPT, canwait); \ 2273 if (dst->type == NULL) \ 2274 goto bad; \ 2275 memcpy(dst->type, src->type, hlen); \ 2276 } \ 2277 } while (/*CONSTCOND*/ 0) 2278 2279 static int 2280 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2281 { 2282 dst->ip6po_hlim = src->ip6po_hlim; 2283 dst->ip6po_tclass = src->ip6po_tclass; 2284 dst->ip6po_flags = src->ip6po_flags; 2285 dst->ip6po_minmtu = src->ip6po_minmtu; 2286 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2287 if (src->ip6po_pktinfo) { 2288 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2289 M_IP6OPT, canwait); 2290 if (dst->ip6po_pktinfo == NULL) 2291 goto bad; 2292 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2293 } 2294 if (src->ip6po_nexthop) { 2295 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2296 M_IP6OPT, canwait); 2297 if (dst->ip6po_nexthop == NULL) 2298 goto bad; 2299 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop, 2300 src->ip6po_nexthop->sa_len); 2301 } 2302 PKTOPT_EXTHDRCPY(ip6po_hbh); 2303 PKTOPT_EXTHDRCPY(ip6po_dest1); 2304 PKTOPT_EXTHDRCPY(ip6po_dest2); 2305 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2306 return (0); 2307 2308 bad: 2309 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 2310 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 2311 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 2312 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 2313 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 2314 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 2315 2316 return (ENOBUFS); 2317 } 2318 #undef PKTOPT_EXTHDRCPY 2319 2320 struct ip6_pktopts * 2321 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2322 { 2323 int error; 2324 struct ip6_pktopts *dst; 2325 2326 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2327 if (dst == NULL) 2328 return (NULL); 2329 ip6_initpktopts(dst); 2330 2331 if ((error = copypktopts(dst, src, canwait)) != 0) { 2332 free(dst, M_IP6OPT); 2333 return (NULL); 2334 } 2335 2336 return (dst); 2337 } 2338 2339 void 2340 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2341 { 2342 if (pktopt == NULL) 2343 return; 2344 2345 ip6_clearpktopts(pktopt, -1); 2346 2347 free(pktopt, M_IP6OPT); 2348 } 2349 2350 int 2351 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp, 2352 struct psref *psref, void *v, size_t l) 2353 { 2354 struct ipv6_mreq mreq; 2355 int error; 2356 struct in6_addr *ia = &mreq.ipv6mr_multiaddr; 2357 struct in_addr *ia4 = (void *)&ia->s6_addr32[3]; 2358 2359 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2360 if (error != 0) 2361 return error; 2362 2363 if (IN6_IS_ADDR_UNSPECIFIED(ia)) { 2364 /* 2365 * We use the unspecified address to specify to accept 2366 * all multicast addresses. Only super user is allowed 2367 * to do this. 2368 */ 2369 if (kauth_authorize_network(kauth_cred_get(), 2370 KAUTH_NETWORK_IPV6, 2371 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL)) 2372 return EACCES; 2373 } else if (IN6_IS_ADDR_V4MAPPED(ia)) { 2374 // Don't bother if we are not going to use ifp. 2375 if (l == sizeof(*ia)) { 2376 memcpy(v, ia, l); 2377 return 0; 2378 } 2379 } else if (!IN6_IS_ADDR_MULTICAST(ia)) { 2380 return EINVAL; 2381 } 2382 2383 /* 2384 * If no interface was explicitly specified, choose an 2385 * appropriate one according to the given multicast address. 2386 */ 2387 if (mreq.ipv6mr_interface == 0) { 2388 struct rtentry *rt; 2389 union { 2390 struct sockaddr dst; 2391 struct sockaddr_in dst4; 2392 struct sockaddr_in6 dst6; 2393 } u; 2394 struct route ro; 2395 2396 /* 2397 * Look up the routing table for the 2398 * address, and choose the outgoing interface. 2399 * XXX: is it a good approach? 2400 */ 2401 memset(&ro, 0, sizeof(ro)); 2402 if (IN6_IS_ADDR_V4MAPPED(ia)) 2403 sockaddr_in_init(&u.dst4, ia4, 0); 2404 else 2405 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0); 2406 error = rtcache_setdst(&ro, &u.dst); 2407 if (error != 0) 2408 return error; 2409 rt = rtcache_init(&ro); 2410 *ifp = rt != NULL ? 2411 if_get_byindex(rt->rt_ifp->if_index, psref) : NULL; 2412 rtcache_unref(rt, &ro); 2413 rtcache_free(&ro); 2414 } else { 2415 /* 2416 * If the interface is specified, validate it. 2417 */ 2418 *ifp = if_get_byindex(mreq.ipv6mr_interface, psref); 2419 if (*ifp == NULL) 2420 return ENXIO; /* XXX EINVAL? */ 2421 } 2422 if (sizeof(*ia) == l) 2423 memcpy(v, ia, l); 2424 else 2425 memcpy(v, ia4, l); 2426 return 0; 2427 } 2428 2429 /* 2430 * Set the IP6 multicast options in response to user setsockopt(). 2431 */ 2432 static int 2433 ip6_setmoptions(const struct sockopt *sopt, struct inpcb *inp) 2434 { 2435 int error = 0; 2436 u_int loop, ifindex; 2437 struct ipv6_mreq mreq; 2438 struct in6_addr ia; 2439 struct ifnet *ifp; 2440 struct ip6_moptions *im6o = in6p_moptions(inp); 2441 struct in6_multi_mship *imm; 2442 2443 KASSERT(inp_locked(inp)); 2444 2445 if (im6o == NULL) { 2446 /* 2447 * No multicast option buffer attached to the pcb; 2448 * allocate one and initialize to default values. 2449 */ 2450 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT); 2451 if (im6o == NULL) 2452 return (ENOBUFS); 2453 in6p_moptions(inp) = im6o; 2454 im6o->im6o_multicast_if_index = 0; 2455 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2456 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2457 LIST_INIT(&im6o->im6o_memberships); 2458 } 2459 2460 switch (sopt->sopt_name) { 2461 2462 case IPV6_MULTICAST_IF: { 2463 int s; 2464 /* 2465 * Select the interface for outgoing multicast packets. 2466 */ 2467 error = sockopt_get(sopt, &ifindex, sizeof(ifindex)); 2468 if (error != 0) 2469 break; 2470 2471 s = pserialize_read_enter(); 2472 if (ifindex != 0) { 2473 if ((ifp = if_byindex(ifindex)) == NULL) { 2474 pserialize_read_exit(s); 2475 error = ENXIO; /* XXX EINVAL? */ 2476 break; 2477 } 2478 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 2479 pserialize_read_exit(s); 2480 error = EADDRNOTAVAIL; 2481 break; 2482 } 2483 } else 2484 ifp = NULL; 2485 im6o->im6o_multicast_if_index = if_get_index(ifp); 2486 pserialize_read_exit(s); 2487 break; 2488 } 2489 2490 case IPV6_MULTICAST_HOPS: 2491 { 2492 /* 2493 * Set the IP6 hoplimit for outgoing multicast packets. 2494 */ 2495 int optval; 2496 2497 error = sockopt_getint(sopt, &optval); 2498 if (error != 0) 2499 break; 2500 2501 if (optval < -1 || optval >= 256) 2502 error = EINVAL; 2503 else if (optval == -1) 2504 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2505 else 2506 im6o->im6o_multicast_hlim = optval; 2507 break; 2508 } 2509 2510 case IPV6_MULTICAST_LOOP: 2511 /* 2512 * Set the loopback flag for outgoing multicast packets. 2513 * Must be zero or one. 2514 */ 2515 error = sockopt_get(sopt, &loop, sizeof(loop)); 2516 if (error != 0) 2517 break; 2518 if (loop > 1) { 2519 error = EINVAL; 2520 break; 2521 } 2522 im6o->im6o_multicast_loop = loop; 2523 break; 2524 2525 case IPV6_JOIN_GROUP: { 2526 int bound; 2527 struct psref psref; 2528 /* 2529 * Add a multicast group membership. 2530 * Group must be a valid IP6 multicast address. 2531 */ 2532 bound = curlwp_bind(); 2533 ifp = NULL; 2534 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia)); 2535 if (error != 0) { 2536 KASSERT(ifp == NULL); 2537 curlwp_bindx(bound); 2538 return error; 2539 } 2540 2541 if (IN6_IS_ADDR_V4MAPPED(&ia)) { 2542 error = ip_setmoptions(&inp->inp_moptions, sopt); 2543 goto put_break; 2544 } 2545 /* 2546 * See if we found an interface, and confirm that it 2547 * supports multicast 2548 */ 2549 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2550 error = EADDRNOTAVAIL; 2551 goto put_break; 2552 } 2553 2554 if (in6_setscope(&ia, ifp, NULL)) { 2555 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2556 goto put_break; 2557 } 2558 2559 /* 2560 * See if the membership already exists. 2561 */ 2562 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2563 if (imm->i6mm_maddr->in6m_ifp == ifp && 2564 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2565 &ia)) 2566 goto put_break; 2567 } 2568 if (imm != NULL) { 2569 error = EADDRINUSE; 2570 goto put_break; 2571 } 2572 /* 2573 * Everything looks good; add a new record to the multicast 2574 * address list for the given interface. 2575 */ 2576 imm = in6_joingroup(ifp, &ia, &error, 0); 2577 if (imm == NULL) 2578 goto put_break; 2579 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2580 put_break: 2581 if_put(ifp, &psref); 2582 curlwp_bindx(bound); 2583 break; 2584 } 2585 2586 case IPV6_LEAVE_GROUP: { 2587 /* 2588 * Drop a multicast group membership. 2589 * Group must be a valid IP6 multicast address. 2590 */ 2591 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2592 if (error != 0) 2593 break; 2594 2595 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) { 2596 error = ip_setmoptions(&inp->inp_moptions, sopt); 2597 break; 2598 } 2599 /* 2600 * If an interface address was specified, get a pointer 2601 * to its ifnet structure. 2602 */ 2603 if (mreq.ipv6mr_interface != 0) { 2604 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) { 2605 error = ENXIO; /* XXX EINVAL? */ 2606 break; 2607 } 2608 } else 2609 ifp = NULL; 2610 2611 /* Fill in the scope zone ID */ 2612 if (ifp) { 2613 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) { 2614 /* XXX: should not happen */ 2615 error = EADDRNOTAVAIL; 2616 break; 2617 } 2618 } else if (mreq.ipv6mr_interface != 0) { 2619 /* 2620 * XXX: This case would happens when the (positive) 2621 * index is in the valid range, but the corresponding 2622 * interface has been detached dynamically. The above 2623 * check probably avoids such case to happen here, but 2624 * we check it explicitly for safety. 2625 */ 2626 error = EADDRNOTAVAIL; 2627 break; 2628 } else { /* ipv6mr_interface == 0 */ 2629 struct sockaddr_in6 sa6_mc; 2630 2631 /* 2632 * The API spec says as follows: 2633 * If the interface index is specified as 0, the 2634 * system may choose a multicast group membership to 2635 * drop by matching the multicast address only. 2636 * On the other hand, we cannot disambiguate the scope 2637 * zone unless an interface is provided. Thus, we 2638 * check if there's ambiguity with the default scope 2639 * zone as the last resort. 2640 */ 2641 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr, 2642 0, 0, 0); 2643 error = sa6_embedscope(&sa6_mc, ip6_use_defzone); 2644 if (error != 0) 2645 break; 2646 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr; 2647 } 2648 2649 /* 2650 * Find the membership in the membership list. 2651 */ 2652 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2653 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2654 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2655 &mreq.ipv6mr_multiaddr)) 2656 break; 2657 } 2658 if (imm == NULL) { 2659 /* Unable to resolve interface */ 2660 error = EADDRNOTAVAIL; 2661 break; 2662 } 2663 /* 2664 * Give up the multicast address record to which the 2665 * membership points. 2666 */ 2667 LIST_REMOVE(imm, i6mm_chain); 2668 in6_leavegroup(imm); 2669 /* in6m_ifp should not leave thanks to inp_lock */ 2670 break; 2671 } 2672 2673 default: 2674 error = EOPNOTSUPP; 2675 break; 2676 } 2677 2678 /* 2679 * If all options have default values, no need to keep the mbuf. 2680 */ 2681 if (im6o->im6o_multicast_if_index == 0 && 2682 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2683 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2684 LIST_EMPTY(&im6o->im6o_memberships)) { 2685 free(in6p_moptions(inp), M_IPMOPTS); 2686 in6p_moptions(inp) = NULL; 2687 } 2688 2689 return (error); 2690 } 2691 2692 /* 2693 * Return the IP6 multicast options in response to user getsockopt(). 2694 */ 2695 static int 2696 ip6_getmoptions(struct sockopt *sopt, struct inpcb *inp) 2697 { 2698 u_int optval; 2699 int error; 2700 struct ip6_moptions *im6o = in6p_moptions(inp); 2701 2702 switch (sopt->sopt_name) { 2703 case IPV6_MULTICAST_IF: 2704 if (im6o == NULL || im6o->im6o_multicast_if_index == 0) 2705 optval = 0; 2706 else 2707 optval = im6o->im6o_multicast_if_index; 2708 2709 error = sockopt_set(sopt, &optval, sizeof(optval)); 2710 break; 2711 2712 case IPV6_MULTICAST_HOPS: 2713 if (im6o == NULL) 2714 optval = ip6_defmcasthlim; 2715 else 2716 optval = im6o->im6o_multicast_hlim; 2717 2718 error = sockopt_set(sopt, &optval, sizeof(optval)); 2719 break; 2720 2721 case IPV6_MULTICAST_LOOP: 2722 if (im6o == NULL) 2723 optval = IPV6_DEFAULT_MULTICAST_LOOP; 2724 else 2725 optval = im6o->im6o_multicast_loop; 2726 2727 error = sockopt_set(sopt, &optval, sizeof(optval)); 2728 break; 2729 2730 default: 2731 error = EOPNOTSUPP; 2732 } 2733 2734 return (error); 2735 } 2736 2737 /* 2738 * Discard the IP6 multicast options. 2739 */ 2740 void 2741 ip6_freemoptions(struct ip6_moptions *im6o) 2742 { 2743 struct in6_multi_mship *imm, *nimm; 2744 2745 if (im6o == NULL) 2746 return; 2747 2748 /* The owner of im6o (inp) should be protected by solock */ 2749 LIST_FOREACH_SAFE(imm, &im6o->im6o_memberships, i6mm_chain, nimm) { 2750 LIST_REMOVE(imm, i6mm_chain); 2751 in6_leavegroup(imm); 2752 } 2753 free(im6o, M_IPMOPTS); 2754 } 2755 2756 /* 2757 * Set IPv6 outgoing packet options based on advanced API. 2758 */ 2759 int 2760 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2761 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto) 2762 { 2763 struct cmsghdr *cm = 0; 2764 2765 if (control == NULL || opt == NULL) 2766 return (EINVAL); 2767 2768 ip6_initpktopts(opt); 2769 if (stickyopt) { 2770 int error; 2771 2772 /* 2773 * If stickyopt is provided, make a local copy of the options 2774 * for this particular packet, then override them by ancillary 2775 * objects. 2776 * XXX: copypktopts() does not copy the cached route to a next 2777 * hop (if any). This is not very good in terms of efficiency, 2778 * but we can allow this since this option should be rarely 2779 * used. 2780 */ 2781 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2782 return (error); 2783 } 2784 2785 /* 2786 * XXX: Currently, we assume all the optional information is stored 2787 * in a single mbuf. 2788 */ 2789 if (control->m_next) 2790 return (EINVAL); 2791 2792 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */ 2793 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2794 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2795 int error; 2796 2797 if (control->m_len < CMSG_LEN(0)) 2798 return (EINVAL); 2799 2800 cm = mtod(control, struct cmsghdr *); 2801 if (cm->cmsg_len < CMSG_LEN(0) || cm->cmsg_len > control->m_len) 2802 return (EINVAL); 2803 if (cm->cmsg_level != IPPROTO_IPV6) 2804 continue; 2805 2806 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2807 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2808 if (error) 2809 return (error); 2810 } 2811 2812 return (0); 2813 } 2814 2815 /* 2816 * Set a particular packet option, as a sticky option or an ancillary data 2817 * item. "len" can be 0 only when it's a sticky option. 2818 * We have 4 cases of combination of "sticky" and "cmsg": 2819 * "sticky=0, cmsg=0": impossible 2820 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2821 * "sticky=1, cmsg=0": RFC3542 socket option 2822 * "sticky=1, cmsg=1": RFC2292 socket option 2823 */ 2824 static int 2825 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2826 kauth_cred_t cred, int sticky, int cmsg, int uproto) 2827 { 2828 int minmtupolicy; 2829 int error; 2830 2831 if (!sticky && !cmsg) { 2832 #ifdef DIAGNOSTIC 2833 printf("ip6_setpktopt: impossible case\n"); 2834 #endif 2835 return (EINVAL); 2836 } 2837 2838 /* 2839 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2840 * not be specified in the context of RFC3542. Conversely, 2841 * RFC3542 types should not be specified in the context of RFC2292. 2842 */ 2843 if (!cmsg) { 2844 switch (optname) { 2845 case IPV6_2292PKTINFO: 2846 case IPV6_2292HOPLIMIT: 2847 case IPV6_2292NEXTHOP: 2848 case IPV6_2292HOPOPTS: 2849 case IPV6_2292DSTOPTS: 2850 case IPV6_2292RTHDR: 2851 case IPV6_2292PKTOPTIONS: 2852 return (ENOPROTOOPT); 2853 } 2854 } 2855 if (sticky && cmsg) { 2856 switch (optname) { 2857 case IPV6_PKTINFO: 2858 case IPV6_HOPLIMIT: 2859 case IPV6_NEXTHOP: 2860 case IPV6_HOPOPTS: 2861 case IPV6_DSTOPTS: 2862 case IPV6_RTHDRDSTOPTS: 2863 case IPV6_RTHDR: 2864 case IPV6_USE_MIN_MTU: 2865 case IPV6_DONTFRAG: 2866 case IPV6_OTCLASS: 2867 case IPV6_TCLASS: 2868 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */ 2869 return (ENOPROTOOPT); 2870 } 2871 } 2872 2873 switch (optname) { 2874 #ifdef RFC2292 2875 case IPV6_2292PKTINFO: 2876 #endif 2877 case IPV6_PKTINFO: 2878 { 2879 struct in6_pktinfo *pktinfo; 2880 2881 if (len != sizeof(struct in6_pktinfo)) 2882 return (EINVAL); 2883 2884 pktinfo = (struct in6_pktinfo *)buf; 2885 2886 /* 2887 * An application can clear any sticky IPV6_PKTINFO option by 2888 * doing a "regular" setsockopt with ipi6_addr being 2889 * in6addr_any and ipi6_ifindex being zero. 2890 * [RFC 3542, Section 6] 2891 */ 2892 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2893 pktinfo->ipi6_ifindex == 0 && 2894 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2895 ip6_clearpktopts(opt, optname); 2896 break; 2897 } 2898 2899 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2900 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2901 return (EINVAL); 2902 } 2903 2904 /* Validate the interface index if specified. */ 2905 if (pktinfo->ipi6_ifindex) { 2906 struct ifnet *ifp; 2907 int s = pserialize_read_enter(); 2908 ifp = if_byindex(pktinfo->ipi6_ifindex); 2909 if (ifp == NULL) { 2910 pserialize_read_exit(s); 2911 return ENXIO; 2912 } 2913 pserialize_read_exit(s); 2914 } 2915 2916 /* 2917 * We store the address anyway, and let in6_selectsrc() 2918 * validate the specified address. This is because ipi6_addr 2919 * may not have enough information about its scope zone, and 2920 * we may need additional information (such as outgoing 2921 * interface or the scope zone of a destination address) to 2922 * disambiguate the scope. 2923 * XXX: the delay of the validation may confuse the 2924 * application when it is used as a sticky option. 2925 */ 2926 if (opt->ip6po_pktinfo == NULL) { 2927 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2928 M_IP6OPT, M_NOWAIT); 2929 if (opt->ip6po_pktinfo == NULL) 2930 return (ENOBUFS); 2931 } 2932 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo)); 2933 break; 2934 } 2935 2936 #ifdef RFC2292 2937 case IPV6_2292HOPLIMIT: 2938 #endif 2939 case IPV6_HOPLIMIT: 2940 { 2941 int *hlimp; 2942 2943 /* 2944 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2945 * to simplify the ordering among hoplimit options. 2946 */ 2947 if (optname == IPV6_HOPLIMIT && sticky) 2948 return (ENOPROTOOPT); 2949 2950 if (len != sizeof(int)) 2951 return (EINVAL); 2952 hlimp = (int *)buf; 2953 if (*hlimp < -1 || *hlimp > 255) 2954 return (EINVAL); 2955 2956 opt->ip6po_hlim = *hlimp; 2957 break; 2958 } 2959 2960 case IPV6_OTCLASS: 2961 if (len != sizeof(u_int8_t)) 2962 return (EINVAL); 2963 2964 opt->ip6po_tclass = *(u_int8_t *)buf; 2965 break; 2966 2967 case IPV6_TCLASS: 2968 { 2969 int tclass; 2970 2971 if (len != sizeof(int)) 2972 return (EINVAL); 2973 tclass = *(int *)buf; 2974 if (tclass < -1 || tclass > 255) 2975 return (EINVAL); 2976 2977 opt->ip6po_tclass = tclass; 2978 break; 2979 } 2980 2981 #ifdef RFC2292 2982 case IPV6_2292NEXTHOP: 2983 #endif 2984 case IPV6_NEXTHOP: 2985 error = kauth_authorize_network(cred, 2986 KAUTH_NETWORK_IPV6, 2987 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 2988 if (error) 2989 return (error); 2990 2991 if (len == 0) { /* just remove the option */ 2992 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2993 break; 2994 } 2995 2996 /* check if cmsg_len is large enough for sa_len */ 2997 if (len < sizeof(struct sockaddr) || len < *buf) 2998 return (EINVAL); 2999 3000 switch (((struct sockaddr *)buf)->sa_family) { 3001 case AF_INET6: 3002 { 3003 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3004 3005 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3006 return (EINVAL); 3007 3008 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3009 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3010 return (EINVAL); 3011 } 3012 if ((error = sa6_embedscope(sa6, ip6_use_defzone)) 3013 != 0) { 3014 return (error); 3015 } 3016 break; 3017 } 3018 case AF_LINK: /* eventually be supported? */ 3019 default: 3020 return (EAFNOSUPPORT); 3021 } 3022 3023 /* turn off the previous option, then set the new option. */ 3024 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3025 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3026 if (opt->ip6po_nexthop == NULL) 3027 return (ENOBUFS); 3028 memcpy(opt->ip6po_nexthop, buf, *buf); 3029 break; 3030 3031 #ifdef RFC2292 3032 case IPV6_2292HOPOPTS: 3033 #endif 3034 case IPV6_HOPOPTS: 3035 { 3036 struct ip6_hbh *hbh; 3037 int hbhlen; 3038 3039 /* 3040 * XXX: We don't allow a non-privileged user to set ANY HbH 3041 * options, since per-option restriction has too much 3042 * overhead. 3043 */ 3044 error = kauth_authorize_network(cred, 3045 KAUTH_NETWORK_IPV6, 3046 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 3047 if (error) 3048 return (error); 3049 3050 if (len == 0) { 3051 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3052 break; /* just remove the option */ 3053 } 3054 3055 /* message length validation */ 3056 if (len < sizeof(struct ip6_hbh)) 3057 return (EINVAL); 3058 hbh = (struct ip6_hbh *)buf; 3059 hbhlen = (hbh->ip6h_len + 1) << 3; 3060 if (len != hbhlen) 3061 return (EINVAL); 3062 3063 /* turn off the previous option, then set the new option. */ 3064 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3065 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3066 if (opt->ip6po_hbh == NULL) 3067 return (ENOBUFS); 3068 memcpy(opt->ip6po_hbh, hbh, hbhlen); 3069 3070 break; 3071 } 3072 3073 #ifdef RFC2292 3074 case IPV6_2292DSTOPTS: 3075 #endif 3076 case IPV6_DSTOPTS: 3077 case IPV6_RTHDRDSTOPTS: 3078 { 3079 struct ip6_dest *dest, **newdest = NULL; 3080 int destlen; 3081 3082 /* XXX: see the comment for IPV6_HOPOPTS */ 3083 error = kauth_authorize_network(cred, 3084 KAUTH_NETWORK_IPV6, 3085 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 3086 if (error) 3087 return (error); 3088 3089 if (len == 0) { 3090 ip6_clearpktopts(opt, optname); 3091 break; /* just remove the option */ 3092 } 3093 3094 /* message length validation */ 3095 if (len < sizeof(struct ip6_dest)) 3096 return (EINVAL); 3097 dest = (struct ip6_dest *)buf; 3098 destlen = (dest->ip6d_len + 1) << 3; 3099 if (len != destlen) 3100 return (EINVAL); 3101 /* 3102 * Determine the position that the destination options header 3103 * should be inserted; before or after the routing header. 3104 */ 3105 switch (optname) { 3106 case IPV6_2292DSTOPTS: 3107 /* 3108 * The old advanced API is ambiguous on this point. 3109 * Our approach is to determine the position based 3110 * according to the existence of a routing header. 3111 * Note, however, that this depends on the order of the 3112 * extension headers in the ancillary data; the 1st 3113 * part of the destination options header must appear 3114 * before the routing header in the ancillary data, 3115 * too. 3116 * RFC3542 solved the ambiguity by introducing 3117 * separate ancillary data or option types. 3118 */ 3119 if (opt->ip6po_rthdr == NULL) 3120 newdest = &opt->ip6po_dest1; 3121 else 3122 newdest = &opt->ip6po_dest2; 3123 break; 3124 case IPV6_RTHDRDSTOPTS: 3125 newdest = &opt->ip6po_dest1; 3126 break; 3127 case IPV6_DSTOPTS: 3128 newdest = &opt->ip6po_dest2; 3129 break; 3130 } 3131 3132 /* turn off the previous option, then set the new option. */ 3133 ip6_clearpktopts(opt, optname); 3134 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3135 if (*newdest == NULL) 3136 return (ENOBUFS); 3137 memcpy(*newdest, dest, destlen); 3138 3139 break; 3140 } 3141 3142 #ifdef RFC2292 3143 case IPV6_2292RTHDR: 3144 #endif 3145 case IPV6_RTHDR: 3146 { 3147 struct ip6_rthdr *rth; 3148 int rthlen; 3149 3150 if (len == 0) { 3151 ip6_clearpktopts(opt, IPV6_RTHDR); 3152 break; /* just remove the option */ 3153 } 3154 3155 /* message length validation */ 3156 if (len < sizeof(struct ip6_rthdr)) 3157 return (EINVAL); 3158 rth = (struct ip6_rthdr *)buf; 3159 rthlen = (rth->ip6r_len + 1) << 3; 3160 if (len != rthlen) 3161 return (EINVAL); 3162 switch (rth->ip6r_type) { 3163 case IPV6_RTHDR_TYPE_0: 3164 /* Dropped, RFC5095. */ 3165 default: 3166 return (EINVAL); /* not supported */ 3167 } 3168 /* turn off the previous option */ 3169 ip6_clearpktopts(opt, IPV6_RTHDR); 3170 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3171 if (opt->ip6po_rthdr == NULL) 3172 return (ENOBUFS); 3173 memcpy(opt->ip6po_rthdr, rth, rthlen); 3174 break; 3175 } 3176 3177 case IPV6_USE_MIN_MTU: 3178 if (len != sizeof(int)) 3179 return (EINVAL); 3180 minmtupolicy = *(int *)buf; 3181 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3182 minmtupolicy != IP6PO_MINMTU_DISABLE && 3183 minmtupolicy != IP6PO_MINMTU_ALL) { 3184 return (EINVAL); 3185 } 3186 opt->ip6po_minmtu = minmtupolicy; 3187 break; 3188 3189 case IPV6_DONTFRAG: 3190 if (len != sizeof(int)) 3191 return (EINVAL); 3192 3193 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3194 /* 3195 * we ignore this option for TCP sockets. 3196 * (RFC3542 leaves this case unspecified.) 3197 */ 3198 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3199 } else 3200 opt->ip6po_flags |= IP6PO_DONTFRAG; 3201 break; 3202 3203 case IPV6_PREFER_TEMPADDR: 3204 { 3205 int preftemp; 3206 3207 if (len != sizeof(int)) 3208 return (EINVAL); 3209 preftemp = *(int *)buf; 3210 switch (preftemp) { 3211 case IP6PO_TEMPADDR_SYSTEM: 3212 case IP6PO_TEMPADDR_NOTPREFER: 3213 case IP6PO_TEMPADDR_PREFER: 3214 break; 3215 default: 3216 return (EINVAL); 3217 } 3218 opt->ip6po_prefer_tempaddr = preftemp; 3219 break; 3220 } 3221 3222 default: 3223 return (ENOPROTOOPT); 3224 } /* end of switch */ 3225 3226 return (0); 3227 } 3228 3229 /* 3230 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3231 * packet to the input queue of a specified interface. Note that this 3232 * calls the output routine of the loopback "driver", but with an interface 3233 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 3234 */ 3235 void 3236 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, 3237 const struct sockaddr_in6 *dst) 3238 { 3239 struct mbuf *copym; 3240 struct ip6_hdr *ip6; 3241 3242 copym = m_copypacket(m, M_DONTWAIT); 3243 if (copym == NULL) 3244 return; 3245 3246 /* 3247 * Make sure to deep-copy IPv6 header portion in case the data 3248 * is in an mbuf cluster, so that we can safely override the IPv6 3249 * header portion later. 3250 */ 3251 if ((copym->m_flags & M_EXT) != 0 || 3252 copym->m_len < sizeof(struct ip6_hdr)) { 3253 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3254 if (copym == NULL) 3255 return; 3256 } 3257 3258 #ifdef DIAGNOSTIC 3259 if (copym->m_len < sizeof(*ip6)) { 3260 m_freem(copym); 3261 return; 3262 } 3263 #endif 3264 3265 ip6 = mtod(copym, struct ip6_hdr *); 3266 /* 3267 * clear embedded scope identifiers if necessary. 3268 * in6_clearscope will touch the addresses only when necessary. 3269 */ 3270 in6_clearscope(&ip6->ip6_src); 3271 in6_clearscope(&ip6->ip6_dst); 3272 3273 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL); 3274 } 3275 3276 /* 3277 * Chop IPv6 header off from the payload. 3278 */ 3279 static int 3280 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3281 { 3282 struct mbuf *mh; 3283 struct ip6_hdr *ip6; 3284 3285 ip6 = mtod(m, struct ip6_hdr *); 3286 if (m->m_len > sizeof(*ip6)) { 3287 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3288 if (mh == NULL) { 3289 m_freem(m); 3290 return ENOBUFS; 3291 } 3292 m_move_pkthdr(mh, m); 3293 m_align(mh, sizeof(*ip6)); 3294 m->m_len -= sizeof(*ip6); 3295 m->m_data += sizeof(*ip6); 3296 mh->m_next = m; 3297 mh->m_len = sizeof(*ip6); 3298 memcpy(mtod(mh, void *), (void *)ip6, sizeof(*ip6)); 3299 m = mh; 3300 } 3301 exthdrs->ip6e_ip6 = m; 3302 return 0; 3303 } 3304 3305 /* 3306 * Compute IPv6 extension header length. 3307 */ 3308 int 3309 ip6_optlen(struct inpcb *inp) 3310 { 3311 int len; 3312 3313 if (!in6p_outputopts(inp)) 3314 return 0; 3315 3316 len = 0; 3317 #define elen(x) \ 3318 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3319 3320 len += elen(in6p_outputopts(inp)->ip6po_hbh); 3321 len += elen(in6p_outputopts(inp)->ip6po_dest1); 3322 len += elen(in6p_outputopts(inp)->ip6po_rthdr); 3323 len += elen(in6p_outputopts(inp)->ip6po_dest2); 3324 return len; 3325 #undef elen 3326 } 3327 3328 /* 3329 * Ensure sending address is valid. 3330 * Returns 0 on success, -1 if an error should be sent back or 1 3331 * if the packet could be dropped without error (protocol dependent). 3332 */ 3333 static int 3334 ip6_ifaddrvalid(const struct in6_addr *src, const struct in6_addr *dst) 3335 { 3336 struct sockaddr_in6 sin6; 3337 int s, error; 3338 struct ifaddr *ifa; 3339 struct in6_ifaddr *ia6; 3340 3341 if (IN6_IS_ADDR_UNSPECIFIED(src)) 3342 return 0; 3343 3344 memset(&sin6, 0, sizeof(sin6)); 3345 sin6.sin6_family = AF_INET6; 3346 sin6.sin6_len = sizeof(sin6); 3347 sin6.sin6_addr = *src; 3348 3349 s = pserialize_read_enter(); 3350 ifa = ifa_ifwithaddr(sin6tosa(&sin6)); 3351 if ((ia6 = ifatoia6(ifa)) == NULL || 3352 ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED)) 3353 error = -1; 3354 else if (ia6->ia6_flags & IN6_IFF_TENTATIVE) 3355 error = 1; 3356 else if (ia6->ia6_flags & IN6_IFF_DETACHED && 3357 (sin6.sin6_addr = *dst, ifa_ifwithaddr(sin6tosa(&sin6)) == NULL)) 3358 /* Allow internal traffic to DETACHED addresses */ 3359 error = 1; 3360 else 3361 error = 0; 3362 pserialize_read_exit(s); 3363 3364 return error; 3365 } 3366