1 /* $NetBSD: ip6_output.c,v 1.105 2006/11/23 19:41:58 yamt Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.105 2006/11/23 19:41:58 yamt Exp $"); 66 67 #include "opt_inet.h" 68 #include "opt_inet6.h" 69 #include "opt_ipsec.h" 70 #include "opt_pfil_hooks.h" 71 72 #include <sys/param.h> 73 #include <sys/malloc.h> 74 #include <sys/mbuf.h> 75 #include <sys/errno.h> 76 #include <sys/protosw.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/systm.h> 80 #include <sys/proc.h> 81 #include <sys/kauth.h> 82 83 #include <net/if.h> 84 #include <net/route.h> 85 #ifdef PFIL_HOOKS 86 #include <net/pfil.h> 87 #endif 88 89 #include <netinet/in.h> 90 #include <netinet/in_var.h> 91 #include <netinet/ip6.h> 92 #include <netinet/icmp6.h> 93 #include <netinet/in_offload.h> 94 #include <netinet6/in6_offload.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/in6_pcb.h> 97 #include <netinet6/nd6.h> 98 #include <netinet6/ip6protosw.h> 99 #include <netinet6/scope6_var.h> 100 101 #ifdef IPSEC 102 #include <netinet6/ipsec.h> 103 #include <netkey/key.h> 104 #endif /* IPSEC */ 105 106 #include <net/net_osdep.h> 107 108 #ifdef PFIL_HOOKS 109 extern struct pfil_head inet6_pfil_hook; /* XXX */ 110 #endif 111 112 struct ip6_exthdrs { 113 struct mbuf *ip6e_ip6; 114 struct mbuf *ip6e_hbh; 115 struct mbuf *ip6e_dest1; 116 struct mbuf *ip6e_rthdr; 117 struct mbuf *ip6e_dest2; 118 }; 119 120 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **, 121 int, int)); 122 static int ip6_getpcbopt __P((struct ip6_pktopts *, int, struct mbuf **)); 123 static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *, int, 124 int, int, int)); 125 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 126 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 127 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 128 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 129 struct ip6_frag **)); 130 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 131 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 132 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *, 133 struct ifnet *, struct in6_addr *, u_long *, int *)); 134 static int copypktopts __P((struct ip6_pktopts *, struct ip6_pktopts *, int)); 135 136 #ifdef RFC2292 137 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 138 struct socket *)); 139 #endif 140 141 #define IN6_NEED_CHECKSUM(ifp, csum_flags) \ 142 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \ 143 (((csum_flags) & M_CSUM_UDPv6) != 0 && udp_do_loopback_cksum) || \ 144 (((csum_flags) & M_CSUM_TCPv6) != 0 && tcp_do_loopback_cksum))) 145 146 struct ip6_tso_output_args { 147 struct ifnet *ifp; 148 struct ifnet *origifp; 149 struct sockaddr_in6 *dst; 150 struct rtentry *rt; 151 }; 152 153 static int ip6_tso_output_callback(void *, struct mbuf *); 154 static int ip6_tso_output(struct ifnet *, struct ifnet *, struct mbuf *, 155 struct sockaddr_in6 *, struct rtentry *); 156 157 static int 158 ip6_tso_output_callback(void *vp, struct mbuf *m) 159 { 160 struct ip6_tso_output_args *args = vp; 161 162 return nd6_output(args->ifp, args->origifp, m, args->dst, args->rt); 163 } 164 165 static int 166 ip6_tso_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 167 struct sockaddr_in6 *dst, struct rtentry *rt) 168 { 169 struct ip6_tso_output_args args; 170 171 args.ifp = ifp; 172 args.origifp = origifp; 173 args.dst = dst; 174 args.rt = rt; 175 176 return tcp6_segment(m, ip6_tso_output_callback, &args); 177 } 178 179 /* 180 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 181 * header (with pri, len, nxt, hlim, src, dst). 182 * This function may modify ver and hlim only. 183 * The mbuf chain containing the packet will be freed. 184 * The mbuf opt, if present, will not be freed. 185 * 186 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 187 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 188 * which is rt_rmx.rmx_mtu. 189 */ 190 int 191 ip6_output( 192 struct mbuf *m0, 193 struct ip6_pktopts *opt, 194 struct route_in6 *ro, 195 int flags, 196 struct ip6_moptions *im6o, 197 struct socket *so, 198 struct ifnet **ifpp /* XXX: just for statistics */ 199 ) 200 { 201 struct ip6_hdr *ip6, *mhip6; 202 struct ifnet *ifp, *origifp; 203 struct mbuf *m = m0; 204 int hlen, tlen, len, off; 205 boolean_t tso; 206 struct route_in6 ip6route; 207 struct rtentry *rt = NULL; 208 struct sockaddr_in6 *dst, src_sa, dst_sa; 209 int error = 0; 210 struct in6_ifaddr *ia = NULL; 211 u_long mtu; 212 int alwaysfrag, dontfrag; 213 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 214 struct ip6_exthdrs exthdrs; 215 struct in6_addr finaldst, src0, dst0; 216 u_int32_t zone; 217 struct route_in6 *ro_pmtu = NULL; 218 int hdrsplit = 0; 219 int needipsec = 0; 220 #ifdef IPSEC 221 int needipsectun = 0; 222 struct secpolicy *sp = NULL; 223 224 ip6 = mtod(m, struct ip6_hdr *); 225 #endif /* IPSEC */ 226 227 #ifdef DIAGNOSTIC 228 if ((m->m_flags & M_PKTHDR) == 0) 229 panic("ip6_output: no HDR"); 230 231 if ((m->m_pkthdr.csum_flags & 232 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) { 233 panic("ip6_output: IPv4 checksum offload flags: %d", 234 m->m_pkthdr.csum_flags); 235 } 236 237 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 238 (M_CSUM_TCPv6|M_CSUM_UDPv6)) { 239 panic("ip6_output: conflicting checksum offload flags: %d", 240 m->m_pkthdr.csum_flags); 241 } 242 #endif 243 244 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr)); 245 246 #define MAKE_EXTHDR(hp, mp) \ 247 do { \ 248 if (hp) { \ 249 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 250 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 251 ((eh)->ip6e_len + 1) << 3); \ 252 if (error) \ 253 goto freehdrs; \ 254 } \ 255 } while (/*CONSTCOND*/ 0) 256 257 bzero(&exthdrs, sizeof(exthdrs)); 258 if (opt) { 259 /* Hop-by-Hop options header */ 260 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 261 /* Destination options header(1st part) */ 262 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 263 /* Routing header */ 264 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 265 /* Destination options header(2nd part) */ 266 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 267 } 268 269 #ifdef IPSEC 270 if ((flags & IPV6_FORWARDING) != 0) { 271 needipsec = 0; 272 goto skippolicycheck; 273 } 274 275 /* get a security policy for this packet */ 276 if (so == NULL) 277 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 278 else { 279 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp, 280 IPSEC_DIR_OUTBOUND)) { 281 needipsec = 0; 282 goto skippolicycheck; 283 } 284 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 285 } 286 287 if (sp == NULL) { 288 ipsec6stat.out_inval++; 289 goto freehdrs; 290 } 291 292 error = 0; 293 294 /* check policy */ 295 switch (sp->policy) { 296 case IPSEC_POLICY_DISCARD: 297 /* 298 * This packet is just discarded. 299 */ 300 ipsec6stat.out_polvio++; 301 goto freehdrs; 302 303 case IPSEC_POLICY_BYPASS: 304 case IPSEC_POLICY_NONE: 305 /* no need to do IPsec. */ 306 needipsec = 0; 307 break; 308 309 case IPSEC_POLICY_IPSEC: 310 if (sp->req == NULL) { 311 /* XXX should be panic ? */ 312 printf("ip6_output: No IPsec request specified.\n"); 313 error = EINVAL; 314 goto freehdrs; 315 } 316 needipsec = 1; 317 break; 318 319 case IPSEC_POLICY_ENTRUST: 320 default: 321 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 322 } 323 324 skippolicycheck:; 325 #endif /* IPSEC */ 326 327 if (needipsec && 328 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 329 in6_delayed_cksum(m); 330 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 331 } 332 333 /* 334 * Calculate the total length of the extension header chain. 335 * Keep the length of the unfragmentable part for fragmentation. 336 */ 337 optlen = 0; 338 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 339 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 340 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 341 unfragpartlen = optlen + sizeof(struct ip6_hdr); 342 /* NOTE: we don't add AH/ESP length here. do that later. */ 343 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 344 345 /* 346 * If we need IPsec, or there is at least one extension header, 347 * separate IP6 header from the payload. 348 */ 349 if ((needipsec || optlen) && !hdrsplit) { 350 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 351 m = NULL; 352 goto freehdrs; 353 } 354 m = exthdrs.ip6e_ip6; 355 hdrsplit++; 356 } 357 358 /* adjust pointer */ 359 ip6 = mtod(m, struct ip6_hdr *); 360 361 /* adjust mbuf packet header length */ 362 m->m_pkthdr.len += optlen; 363 plen = m->m_pkthdr.len - sizeof(*ip6); 364 365 /* If this is a jumbo payload, insert a jumbo payload option. */ 366 if (plen > IPV6_MAXPACKET) { 367 if (!hdrsplit) { 368 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 369 m = NULL; 370 goto freehdrs; 371 } 372 m = exthdrs.ip6e_ip6; 373 hdrsplit++; 374 } 375 /* adjust pointer */ 376 ip6 = mtod(m, struct ip6_hdr *); 377 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 378 goto freehdrs; 379 optlen += 8; /* XXX JUMBOOPTLEN */ 380 ip6->ip6_plen = 0; 381 } else 382 ip6->ip6_plen = htons(plen); 383 384 /* 385 * Concatenate headers and fill in next header fields. 386 * Here we have, on "m" 387 * IPv6 payload 388 * and we insert headers accordingly. Finally, we should be getting: 389 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 390 * 391 * during the header composing process, "m" points to IPv6 header. 392 * "mprev" points to an extension header prior to esp. 393 */ 394 { 395 u_char *nexthdrp = &ip6->ip6_nxt; 396 struct mbuf *mprev = m; 397 398 /* 399 * we treat dest2 specially. this makes IPsec processing 400 * much easier. the goal here is to make mprev point the 401 * mbuf prior to dest2. 402 * 403 * result: IPv6 dest2 payload 404 * m and mprev will point to IPv6 header. 405 */ 406 if (exthdrs.ip6e_dest2) { 407 if (!hdrsplit) 408 panic("assumption failed: hdr not split"); 409 exthdrs.ip6e_dest2->m_next = m->m_next; 410 m->m_next = exthdrs.ip6e_dest2; 411 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 412 ip6->ip6_nxt = IPPROTO_DSTOPTS; 413 } 414 415 #define MAKE_CHAIN(m, mp, p, i)\ 416 do {\ 417 if (m) {\ 418 if (!hdrsplit) \ 419 panic("assumption failed: hdr not split"); \ 420 *mtod((m), u_char *) = *(p);\ 421 *(p) = (i);\ 422 p = mtod((m), u_char *);\ 423 (m)->m_next = (mp)->m_next;\ 424 (mp)->m_next = (m);\ 425 (mp) = (m);\ 426 }\ 427 } while (/*CONSTCOND*/ 0) 428 /* 429 * result: IPv6 hbh dest1 rthdr dest2 payload 430 * m will point to IPv6 header. mprev will point to the 431 * extension header prior to dest2 (rthdr in the above case). 432 */ 433 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 434 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 435 IPPROTO_DSTOPTS); 436 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 437 IPPROTO_ROUTING); 438 439 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, 440 sizeof(struct ip6_hdr) + optlen); 441 442 #ifdef IPSEC 443 if (!needipsec) 444 goto skip_ipsec2; 445 446 /* 447 * pointers after IPsec headers are not valid any more. 448 * other pointers need a great care too. 449 * (IPsec routines should not mangle mbufs prior to AH/ESP) 450 */ 451 exthdrs.ip6e_dest2 = NULL; 452 453 { 454 struct ip6_rthdr *rh = NULL; 455 int segleft_org = 0; 456 struct ipsec_output_state state; 457 458 if (exthdrs.ip6e_rthdr) { 459 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 460 segleft_org = rh->ip6r_segleft; 461 rh->ip6r_segleft = 0; 462 } 463 464 bzero(&state, sizeof(state)); 465 state.m = m; 466 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 467 &needipsectun); 468 m = state.m; 469 if (error) { 470 /* mbuf is already reclaimed in ipsec6_output_trans. */ 471 m = NULL; 472 switch (error) { 473 case EHOSTUNREACH: 474 case ENETUNREACH: 475 case EMSGSIZE: 476 case ENOBUFS: 477 case ENOMEM: 478 break; 479 default: 480 printf("ip6_output (ipsec): error code %d\n", error); 481 /* FALLTHROUGH */ 482 case ENOENT: 483 /* don't show these error codes to the user */ 484 error = 0; 485 break; 486 } 487 goto bad; 488 } 489 if (exthdrs.ip6e_rthdr) { 490 /* ah6_output doesn't modify mbuf chain */ 491 rh->ip6r_segleft = segleft_org; 492 } 493 } 494 skip_ipsec2:; 495 #endif 496 } 497 498 /* 499 * If there is a routing header, replace destination address field 500 * with the first hop of the routing header. 501 */ 502 if (exthdrs.ip6e_rthdr) { 503 struct ip6_rthdr *rh; 504 struct ip6_rthdr0 *rh0; 505 struct in6_addr *addr; 506 struct sockaddr_in6 sa; 507 508 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 509 struct ip6_rthdr *)); 510 finaldst = ip6->ip6_dst; 511 switch (rh->ip6r_type) { 512 case IPV6_RTHDR_TYPE_0: 513 rh0 = (struct ip6_rthdr0 *)rh; 514 addr = (struct in6_addr *)(rh0 + 1); 515 516 /* 517 * construct a sockaddr_in6 form of 518 * the first hop. 519 * 520 * XXX: we may not have enough 521 * information about its scope zone; 522 * there is no standard API to pass 523 * the information from the 524 * application. 525 */ 526 bzero(&sa, sizeof(sa)); 527 sa.sin6_family = AF_INET6; 528 sa.sin6_len = sizeof(sa); 529 sa.sin6_addr = addr[0]; 530 if ((error = sa6_embedscope(&sa, 531 ip6_use_defzone)) != 0) { 532 goto bad; 533 } 534 ip6->ip6_dst = sa.sin6_addr; 535 (void)memmove(&addr[0], &addr[1], 536 sizeof(struct in6_addr) * 537 (rh0->ip6r0_segleft - 1)); 538 addr[rh0->ip6r0_segleft - 1] = finaldst; 539 /* XXX */ 540 in6_clearscope(addr + rh0->ip6r0_segleft - 1); 541 break; 542 default: /* is it possible? */ 543 error = EINVAL; 544 goto bad; 545 } 546 } 547 548 /* Source address validation */ 549 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 550 (flags & IPV6_UNSPECSRC) == 0) { 551 error = EOPNOTSUPP; 552 ip6stat.ip6s_badscope++; 553 goto bad; 554 } 555 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 556 error = EOPNOTSUPP; 557 ip6stat.ip6s_badscope++; 558 goto bad; 559 } 560 561 ip6stat.ip6s_localout++; 562 563 /* 564 * Route packet. 565 */ 566 /* initialize cached route */ 567 if (ro == 0) { 568 ro = &ip6route; 569 bzero((caddr_t)ro, sizeof(*ro)); 570 } 571 ro_pmtu = ro; 572 if (opt && opt->ip6po_rthdr) 573 ro = &opt->ip6po_route; 574 dst = (struct sockaddr_in6 *)&ro->ro_dst; 575 576 /* 577 * if specified, try to fill in the traffic class field. 578 * do not override if a non-zero value is already set. 579 * we check the diffserv field and the ecn field separately. 580 */ 581 if (opt && opt->ip6po_tclass >= 0) { 582 int mask = 0; 583 584 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 585 mask |= 0xfc; 586 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 587 mask |= 0x03; 588 if (mask != 0) 589 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 590 } 591 592 /* fill in or override the hop limit field, if necessary. */ 593 if (opt && opt->ip6po_hlim != -1) 594 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 595 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 596 if (im6o != NULL) 597 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 598 else 599 ip6->ip6_hlim = ip6_defmcasthlim; 600 } 601 602 #ifdef IPSEC 603 if (needipsec && needipsectun) { 604 struct ipsec_output_state state; 605 606 /* 607 * All the extension headers will become inaccessible 608 * (since they can be encrypted). 609 * Don't panic, we need no more updates to extension headers 610 * on inner IPv6 packet (since they are now encapsulated). 611 * 612 * IPv6 [ESP|AH] IPv6 [extension headers] payload 613 */ 614 bzero(&exthdrs, sizeof(exthdrs)); 615 exthdrs.ip6e_ip6 = m; 616 617 bzero(&state, sizeof(state)); 618 state.m = m; 619 state.ro = (struct route *)ro; 620 state.dst = (struct sockaddr *)dst; 621 622 error = ipsec6_output_tunnel(&state, sp, flags); 623 624 m = state.m; 625 ro_pmtu = ro = (struct route_in6 *)state.ro; 626 dst = (struct sockaddr_in6 *)state.dst; 627 if (error) { 628 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 629 m0 = m = NULL; 630 m = NULL; 631 switch (error) { 632 case EHOSTUNREACH: 633 case ENETUNREACH: 634 case EMSGSIZE: 635 case ENOBUFS: 636 case ENOMEM: 637 break; 638 default: 639 printf("ip6_output (ipsec): error code %d\n", error); 640 /* FALLTHROUGH */ 641 case ENOENT: 642 /* don't show these error codes to the user */ 643 error = 0; 644 break; 645 } 646 goto bad; 647 } 648 649 exthdrs.ip6e_ip6 = m; 650 } 651 #endif /* IPSEC */ 652 653 /* adjust pointer */ 654 ip6 = mtod(m, struct ip6_hdr *); 655 656 bzero(&dst_sa, sizeof(dst_sa)); 657 dst_sa.sin6_family = AF_INET6; 658 dst_sa.sin6_len = sizeof(dst_sa); 659 dst_sa.sin6_addr = ip6->ip6_dst; 660 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, &rt, 0)) 661 != 0) { 662 switch (error) { 663 case EHOSTUNREACH: 664 ip6stat.ip6s_noroute++; 665 break; 666 case EADDRNOTAVAIL: 667 default: 668 break; /* XXX statistics? */ 669 } 670 if (ifp != NULL) 671 in6_ifstat_inc(ifp, ifs6_out_discard); 672 goto bad; 673 } 674 if (rt == NULL) { 675 /* 676 * If in6_selectroute() does not return a route entry, 677 * dst may not have been updated. 678 */ 679 *dst = dst_sa; /* XXX */ 680 } 681 682 /* 683 * then rt (for unicast) and ifp must be non-NULL valid values. 684 */ 685 if ((flags & IPV6_FORWARDING) == 0) { 686 /* XXX: the FORWARDING flag can be set for mrouting. */ 687 in6_ifstat_inc(ifp, ifs6_out_request); 688 } 689 if (rt != NULL) { 690 ia = (struct in6_ifaddr *)(rt->rt_ifa); 691 rt->rt_use++; 692 } 693 694 /* 695 * The outgoing interface must be in the zone of source and 696 * destination addresses. We should use ia_ifp to support the 697 * case of sending packets to an address of our own. 698 */ 699 if (ia != NULL && ia->ia_ifp) 700 origifp = ia->ia_ifp; 701 else 702 origifp = ifp; 703 704 src0 = ip6->ip6_src; 705 if (in6_setscope(&src0, origifp, &zone)) 706 goto badscope; 707 bzero(&src_sa, sizeof(src_sa)); 708 src_sa.sin6_family = AF_INET6; 709 src_sa.sin6_len = sizeof(src_sa); 710 src_sa.sin6_addr = ip6->ip6_src; 711 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 712 goto badscope; 713 714 dst0 = ip6->ip6_dst; 715 if (in6_setscope(&dst0, origifp, &zone)) 716 goto badscope; 717 /* re-initialize to be sure */ 718 bzero(&dst_sa, sizeof(dst_sa)); 719 dst_sa.sin6_family = AF_INET6; 720 dst_sa.sin6_len = sizeof(dst_sa); 721 dst_sa.sin6_addr = ip6->ip6_dst; 722 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) 723 goto badscope; 724 725 /* scope check is done. */ 726 goto routefound; 727 728 badscope: 729 ip6stat.ip6s_badscope++; 730 in6_ifstat_inc(origifp, ifs6_out_discard); 731 if (error == 0) 732 error = EHOSTUNREACH; /* XXX */ 733 goto bad; 734 735 routefound: 736 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 737 if (opt && opt->ip6po_nextroute.ro_rt) { 738 /* 739 * The nexthop is explicitly specified by the 740 * application. We assume the next hop is an IPv6 741 * address. 742 */ 743 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 744 } else if ((rt->rt_flags & RTF_GATEWAY)) 745 dst = (struct sockaddr_in6 *)rt->rt_gateway; 746 } 747 748 /* 749 * XXXXXX: original code follows: 750 */ 751 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 752 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 753 else { 754 struct in6_multi *in6m; 755 756 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 757 758 in6_ifstat_inc(ifp, ifs6_out_mcast); 759 760 /* 761 * Confirm that the outgoing interface supports multicast. 762 */ 763 if (!(ifp->if_flags & IFF_MULTICAST)) { 764 ip6stat.ip6s_noroute++; 765 in6_ifstat_inc(ifp, ifs6_out_discard); 766 error = ENETUNREACH; 767 goto bad; 768 } 769 770 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 771 if (in6m != NULL && 772 (im6o == NULL || im6o->im6o_multicast_loop)) { 773 /* 774 * If we belong to the destination multicast group 775 * on the outgoing interface, and the caller did not 776 * forbid loopback, loop back a copy. 777 */ 778 ip6_mloopback(ifp, m, dst); 779 } else { 780 /* 781 * If we are acting as a multicast router, perform 782 * multicast forwarding as if the packet had just 783 * arrived on the interface to which we are about 784 * to send. The multicast forwarding function 785 * recursively calls this function, using the 786 * IPV6_FORWARDING flag to prevent infinite recursion. 787 * 788 * Multicasts that are looped back by ip6_mloopback(), 789 * above, will be forwarded by the ip6_input() routine, 790 * if necessary. 791 */ 792 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 793 if (ip6_mforward(ip6, ifp, m) != 0) { 794 m_freem(m); 795 goto done; 796 } 797 } 798 } 799 /* 800 * Multicasts with a hoplimit of zero may be looped back, 801 * above, but must not be transmitted on a network. 802 * Also, multicasts addressed to the loopback interface 803 * are not sent -- the above call to ip6_mloopback() will 804 * loop back a copy if this host actually belongs to the 805 * destination group on the loopback interface. 806 */ 807 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 808 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 809 m_freem(m); 810 goto done; 811 } 812 } 813 814 /* 815 * Fill the outgoing inteface to tell the upper layer 816 * to increment per-interface statistics. 817 */ 818 if (ifpp) 819 *ifpp = ifp; 820 821 /* Determine path MTU. */ 822 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 823 &alwaysfrag)) != 0) 824 goto bad; 825 #ifdef IPSEC 826 if (needipsectun) 827 mtu = IPV6_MMTU; 828 #endif 829 830 /* 831 * The caller of this function may specify to use the minimum MTU 832 * in some cases. 833 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 834 * setting. The logic is a bit complicated; by default, unicast 835 * packets will follow path MTU while multicast packets will be sent at 836 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 837 * including unicast ones will be sent at the minimum MTU. Multicast 838 * packets will always be sent at the minimum MTU unless 839 * IP6PO_MINMTU_DISABLE is explicitly specified. 840 * See RFC 3542 for more details. 841 */ 842 if (mtu > IPV6_MMTU) { 843 if ((flags & IPV6_MINMTU)) 844 mtu = IPV6_MMTU; 845 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 846 mtu = IPV6_MMTU; 847 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 848 (opt == NULL || 849 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 850 mtu = IPV6_MMTU; 851 } 852 } 853 854 /* 855 * clear embedded scope identifiers if necessary. 856 * in6_clearscope will touch the addresses only when necessary. 857 */ 858 in6_clearscope(&ip6->ip6_src); 859 in6_clearscope(&ip6->ip6_dst); 860 861 /* 862 * If the outgoing packet contains a hop-by-hop options header, 863 * it must be examined and processed even by the source node. 864 * (RFC 2460, section 4.) 865 */ 866 if (exthdrs.ip6e_hbh) { 867 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 868 u_int32_t dummy1; /* XXX unused */ 869 u_int32_t dummy2; /* XXX unused */ 870 871 /* 872 * XXX: if we have to send an ICMPv6 error to the sender, 873 * we need the M_LOOP flag since icmp6_error() expects 874 * the IPv6 and the hop-by-hop options header are 875 * continuous unless the flag is set. 876 */ 877 m->m_flags |= M_LOOP; 878 m->m_pkthdr.rcvif = ifp; 879 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 880 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 881 &dummy1, &dummy2) < 0) { 882 /* m was already freed at this point */ 883 error = EINVAL;/* better error? */ 884 goto done; 885 } 886 m->m_flags &= ~M_LOOP; /* XXX */ 887 m->m_pkthdr.rcvif = NULL; 888 } 889 890 #ifdef PFIL_HOOKS 891 /* 892 * Run through list of hooks for output packets. 893 */ 894 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0) 895 goto done; 896 if (m == NULL) 897 goto done; 898 ip6 = mtod(m, struct ip6_hdr *); 899 #endif /* PFIL_HOOKS */ 900 /* 901 * Send the packet to the outgoing interface. 902 * If necessary, do IPv6 fragmentation before sending. 903 * 904 * the logic here is rather complex: 905 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 906 * 1-a: send as is if tlen <= path mtu 907 * 1-b: fragment if tlen > path mtu 908 * 909 * 2: if user asks us not to fragment (dontfrag == 1) 910 * 2-a: send as is if tlen <= interface mtu 911 * 2-b: error if tlen > interface mtu 912 * 913 * 3: if we always need to attach fragment header (alwaysfrag == 1) 914 * always fragment 915 * 916 * 4: if dontfrag == 1 && alwaysfrag == 1 917 * error, as we cannot handle this conflicting request 918 */ 919 tlen = m->m_pkthdr.len; 920 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0; 921 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 922 dontfrag = 1; 923 else 924 dontfrag = 0; 925 926 if (dontfrag && alwaysfrag) { /* case 4 */ 927 /* conflicting request - can't transmit */ 928 error = EMSGSIZE; 929 goto bad; 930 } 931 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */ 932 /* 933 * Even if the DONTFRAG option is specified, we cannot send the 934 * packet when the data length is larger than the MTU of the 935 * outgoing interface. 936 * Notify the error by sending IPV6_PATHMTU ancillary data as 937 * well as returning an error code (the latter is not described 938 * in the API spec.) 939 */ 940 u_int32_t mtu32; 941 struct ip6ctlparam ip6cp; 942 943 mtu32 = (u_int32_t)mtu; 944 bzero(&ip6cp, sizeof(ip6cp)); 945 ip6cp.ip6c_cmdarg = (void *)&mtu32; 946 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 947 (void *)&ip6cp); 948 949 error = EMSGSIZE; 950 goto bad; 951 } 952 953 /* 954 * transmit packet without fragmentation 955 */ 956 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) { 957 /* case 1-a and 2-a */ 958 struct in6_ifaddr *ia6; 959 int sw_csum; 960 961 ip6 = mtod(m, struct ip6_hdr *); 962 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 963 if (ia6) { 964 /* Record statistics for this interface address. */ 965 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len; 966 } 967 #ifdef IPSEC 968 /* clean ipsec history once it goes out of the node */ 969 ipsec_delaux(m); 970 #endif 971 972 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 973 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 974 if (IN6_NEED_CHECKSUM(ifp, 975 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 976 in6_delayed_cksum(m); 977 } 978 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 979 } 980 981 if (__predict_true(!tso || 982 (ifp->if_capenable & IFCAP_TSOv6) != 0)) { 983 error = nd6_output(ifp, origifp, m, dst, rt); 984 } else { 985 error = ip6_tso_output(ifp, origifp, m, dst, rt); 986 } 987 goto done; 988 } 989 990 if (tso) { 991 error = EINVAL; /* XXX */ 992 goto bad; 993 } 994 995 /* 996 * try to fragment the packet. case 1-b and 3 997 */ 998 if (mtu < IPV6_MMTU) { 999 /* path MTU cannot be less than IPV6_MMTU */ 1000 error = EMSGSIZE; 1001 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1002 goto bad; 1003 } else if (ip6->ip6_plen == 0) { 1004 /* jumbo payload cannot be fragmented */ 1005 error = EMSGSIZE; 1006 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1007 goto bad; 1008 } else { 1009 struct mbuf **mnext, *m_frgpart; 1010 struct ip6_frag *ip6f; 1011 u_int32_t id = htonl(ip6_randomid()); 1012 u_char nextproto; 1013 #if 0 /* see below */ 1014 struct ip6ctlparam ip6cp; 1015 u_int32_t mtu32; 1016 #endif 1017 1018 /* 1019 * Too large for the destination or interface; 1020 * fragment if possible. 1021 * Must be able to put at least 8 bytes per fragment. 1022 */ 1023 hlen = unfragpartlen; 1024 if (mtu > IPV6_MAXPACKET) 1025 mtu = IPV6_MAXPACKET; 1026 1027 #if 0 1028 /* 1029 * It is believed this code is a leftover from the 1030 * development of the IPV6_RECVPATHMTU sockopt and 1031 * associated work to implement RFC3542. 1032 * It's not entirely clear what the intent of the API 1033 * is at this point, so disable this code for now. 1034 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG 1035 * will send notifications if the application requests. 1036 */ 1037 1038 /* Notify a proper path MTU to applications. */ 1039 mtu32 = (u_int32_t)mtu; 1040 bzero(&ip6cp, sizeof(ip6cp)); 1041 ip6cp.ip6c_cmdarg = (void *)&mtu32; 1042 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 1043 (void *)&ip6cp); 1044 #endif 1045 1046 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 1047 if (len < 8) { 1048 error = EMSGSIZE; 1049 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1050 goto bad; 1051 } 1052 1053 mnext = &m->m_nextpkt; 1054 1055 /* 1056 * Change the next header field of the last header in the 1057 * unfragmentable part. 1058 */ 1059 if (exthdrs.ip6e_rthdr) { 1060 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1061 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1062 } else if (exthdrs.ip6e_dest1) { 1063 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1064 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1065 } else if (exthdrs.ip6e_hbh) { 1066 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1067 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1068 } else { 1069 nextproto = ip6->ip6_nxt; 1070 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1071 } 1072 1073 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) 1074 != 0) { 1075 if (IN6_NEED_CHECKSUM(ifp, 1076 m->m_pkthdr.csum_flags & 1077 (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 1078 in6_delayed_cksum(m); 1079 } 1080 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 1081 } 1082 1083 /* 1084 * Loop through length of segment after first fragment, 1085 * make new header and copy data of each part and link onto 1086 * chain. 1087 */ 1088 m0 = m; 1089 for (off = hlen; off < tlen; off += len) { 1090 struct mbuf *mlast; 1091 1092 MGETHDR(m, M_DONTWAIT, MT_HEADER); 1093 if (!m) { 1094 error = ENOBUFS; 1095 ip6stat.ip6s_odropped++; 1096 goto sendorfree; 1097 } 1098 m->m_pkthdr.rcvif = NULL; 1099 m->m_flags = m0->m_flags & M_COPYFLAGS; 1100 *mnext = m; 1101 mnext = &m->m_nextpkt; 1102 m->m_data += max_linkhdr; 1103 mhip6 = mtod(m, struct ip6_hdr *); 1104 *mhip6 = *ip6; 1105 m->m_len = sizeof(*mhip6); 1106 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1107 if (error) { 1108 ip6stat.ip6s_odropped++; 1109 goto sendorfree; 1110 } 1111 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 1112 if (off + len >= tlen) 1113 len = tlen - off; 1114 else 1115 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1116 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 1117 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1118 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1119 error = ENOBUFS; 1120 ip6stat.ip6s_odropped++; 1121 goto sendorfree; 1122 } 1123 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 1124 ; 1125 mlast->m_next = m_frgpart; 1126 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1127 m->m_pkthdr.rcvif = (struct ifnet *)0; 1128 ip6f->ip6f_reserved = 0; 1129 ip6f->ip6f_ident = id; 1130 ip6f->ip6f_nxt = nextproto; 1131 ip6stat.ip6s_ofragments++; 1132 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1133 } 1134 1135 in6_ifstat_inc(ifp, ifs6_out_fragok); 1136 } 1137 1138 /* 1139 * Remove leading garbages. 1140 */ 1141 sendorfree: 1142 m = m0->m_nextpkt; 1143 m0->m_nextpkt = 0; 1144 m_freem(m0); 1145 for (m0 = m; m; m = m0) { 1146 m0 = m->m_nextpkt; 1147 m->m_nextpkt = 0; 1148 if (error == 0) { 1149 struct in6_ifaddr *ia6; 1150 ip6 = mtod(m, struct ip6_hdr *); 1151 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1152 if (ia6) { 1153 /* 1154 * Record statistics for this interface 1155 * address. 1156 */ 1157 ia6->ia_ifa.ifa_data.ifad_outbytes += 1158 m->m_pkthdr.len; 1159 } 1160 #ifdef IPSEC 1161 /* clean ipsec history once it goes out of the node */ 1162 ipsec_delaux(m); 1163 #endif 1164 error = nd6_output(ifp, origifp, m, dst, rt); 1165 } else 1166 m_freem(m); 1167 } 1168 1169 if (error == 0) 1170 ip6stat.ip6s_fragmented++; 1171 1172 done: 1173 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1174 RTFREE(ro->ro_rt); 1175 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1176 RTFREE(ro_pmtu->ro_rt); 1177 } 1178 1179 #ifdef IPSEC 1180 if (sp != NULL) 1181 key_freesp(sp); 1182 #endif /* IPSEC */ 1183 1184 return (error); 1185 1186 freehdrs: 1187 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1188 m_freem(exthdrs.ip6e_dest1); 1189 m_freem(exthdrs.ip6e_rthdr); 1190 m_freem(exthdrs.ip6e_dest2); 1191 /* FALLTHROUGH */ 1192 bad: 1193 m_freem(m); 1194 goto done; 1195 } 1196 1197 static int 1198 ip6_copyexthdr(mp, hdr, hlen) 1199 struct mbuf **mp; 1200 caddr_t hdr; 1201 int hlen; 1202 { 1203 struct mbuf *m; 1204 1205 if (hlen > MCLBYTES) 1206 return (ENOBUFS); /* XXX */ 1207 1208 MGET(m, M_DONTWAIT, MT_DATA); 1209 if (!m) 1210 return (ENOBUFS); 1211 1212 if (hlen > MLEN) { 1213 MCLGET(m, M_DONTWAIT); 1214 if ((m->m_flags & M_EXT) == 0) { 1215 m_free(m); 1216 return (ENOBUFS); 1217 } 1218 } 1219 m->m_len = hlen; 1220 if (hdr) 1221 bcopy(hdr, mtod(m, caddr_t), hlen); 1222 1223 *mp = m; 1224 return (0); 1225 } 1226 1227 /* 1228 * Process a delayed payload checksum calculation. 1229 */ 1230 void 1231 in6_delayed_cksum(struct mbuf *m) 1232 { 1233 uint16_t csum, offset; 1234 1235 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1236 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1237 KASSERT((m->m_pkthdr.csum_flags 1238 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0); 1239 1240 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data); 1241 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset); 1242 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) { 1243 csum = 0xffff; 1244 } 1245 1246 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data); 1247 if ((offset + sizeof(csum)) > m->m_len) { 1248 m_copyback(m, offset, sizeof(csum), &csum); 1249 } else { 1250 *(uint16_t *)(mtod(m, caddr_t) + offset) = csum; 1251 } 1252 } 1253 1254 /* 1255 * Insert jumbo payload option. 1256 */ 1257 static int 1258 ip6_insert_jumboopt(exthdrs, plen) 1259 struct ip6_exthdrs *exthdrs; 1260 u_int32_t plen; 1261 { 1262 struct mbuf *mopt; 1263 u_int8_t *optbuf; 1264 u_int32_t v; 1265 1266 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1267 1268 /* 1269 * If there is no hop-by-hop options header, allocate new one. 1270 * If there is one but it doesn't have enough space to store the 1271 * jumbo payload option, allocate a cluster to store the whole options. 1272 * Otherwise, use it to store the options. 1273 */ 1274 if (exthdrs->ip6e_hbh == 0) { 1275 MGET(mopt, M_DONTWAIT, MT_DATA); 1276 if (mopt == 0) 1277 return (ENOBUFS); 1278 mopt->m_len = JUMBOOPTLEN; 1279 optbuf = mtod(mopt, u_int8_t *); 1280 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1281 exthdrs->ip6e_hbh = mopt; 1282 } else { 1283 struct ip6_hbh *hbh; 1284 1285 mopt = exthdrs->ip6e_hbh; 1286 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1287 /* 1288 * XXX assumption: 1289 * - exthdrs->ip6e_hbh is not referenced from places 1290 * other than exthdrs. 1291 * - exthdrs->ip6e_hbh is not an mbuf chain. 1292 */ 1293 int oldoptlen = mopt->m_len; 1294 struct mbuf *n; 1295 1296 /* 1297 * XXX: give up if the whole (new) hbh header does 1298 * not fit even in an mbuf cluster. 1299 */ 1300 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1301 return (ENOBUFS); 1302 1303 /* 1304 * As a consequence, we must always prepare a cluster 1305 * at this point. 1306 */ 1307 MGET(n, M_DONTWAIT, MT_DATA); 1308 if (n) { 1309 MCLGET(n, M_DONTWAIT); 1310 if ((n->m_flags & M_EXT) == 0) { 1311 m_freem(n); 1312 n = NULL; 1313 } 1314 } 1315 if (!n) 1316 return (ENOBUFS); 1317 n->m_len = oldoptlen + JUMBOOPTLEN; 1318 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1319 oldoptlen); 1320 optbuf = mtod(n, u_int8_t *) + oldoptlen; 1321 m_freem(mopt); 1322 mopt = exthdrs->ip6e_hbh = n; 1323 } else { 1324 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 1325 mopt->m_len += JUMBOOPTLEN; 1326 } 1327 optbuf[0] = IP6OPT_PADN; 1328 optbuf[1] = 0; 1329 1330 /* 1331 * Adjust the header length according to the pad and 1332 * the jumbo payload option. 1333 */ 1334 hbh = mtod(mopt, struct ip6_hbh *); 1335 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1336 } 1337 1338 /* fill in the option. */ 1339 optbuf[2] = IP6OPT_JUMBO; 1340 optbuf[3] = 4; 1341 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1342 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1343 1344 /* finally, adjust the packet header length */ 1345 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1346 1347 return (0); 1348 #undef JUMBOOPTLEN 1349 } 1350 1351 /* 1352 * Insert fragment header and copy unfragmentable header portions. 1353 */ 1354 static int 1355 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1356 struct mbuf *m0, *m; 1357 int hlen; 1358 struct ip6_frag **frghdrp; 1359 { 1360 struct mbuf *n, *mlast; 1361 1362 if (hlen > sizeof(struct ip6_hdr)) { 1363 n = m_copym(m0, sizeof(struct ip6_hdr), 1364 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1365 if (n == 0) 1366 return (ENOBUFS); 1367 m->m_next = n; 1368 } else 1369 n = m; 1370 1371 /* Search for the last mbuf of unfragmentable part. */ 1372 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1373 ; 1374 1375 if ((mlast->m_flags & M_EXT) == 0 && 1376 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1377 /* use the trailing space of the last mbuf for the fragment hdr */ 1378 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1379 mlast->m_len); 1380 mlast->m_len += sizeof(struct ip6_frag); 1381 m->m_pkthdr.len += sizeof(struct ip6_frag); 1382 } else { 1383 /* allocate a new mbuf for the fragment header */ 1384 struct mbuf *mfrg; 1385 1386 MGET(mfrg, M_DONTWAIT, MT_DATA); 1387 if (mfrg == 0) 1388 return (ENOBUFS); 1389 mfrg->m_len = sizeof(struct ip6_frag); 1390 *frghdrp = mtod(mfrg, struct ip6_frag *); 1391 mlast->m_next = mfrg; 1392 } 1393 1394 return (0); 1395 } 1396 1397 static int 1398 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp) 1399 struct route_in6 *ro_pmtu, *ro; 1400 struct ifnet *ifp; 1401 struct in6_addr *dst; 1402 u_long *mtup; 1403 int *alwaysfragp; 1404 { 1405 u_int32_t mtu = 0; 1406 int alwaysfrag = 0; 1407 int error = 0; 1408 1409 if (ro_pmtu != ro) { 1410 /* The first hop and the final destination may differ. */ 1411 struct sockaddr_in6 *sa6_dst = 1412 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1413 if (ro_pmtu->ro_rt && 1414 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1415 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1416 RTFREE(ro_pmtu->ro_rt); 1417 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1418 } 1419 if (ro_pmtu->ro_rt == NULL) { 1420 bzero(sa6_dst, sizeof(*sa6_dst)); /* for safety */ 1421 sa6_dst->sin6_family = AF_INET6; 1422 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1423 sa6_dst->sin6_addr = *dst; 1424 1425 rtalloc((struct route *)ro_pmtu); 1426 } 1427 } 1428 if (ro_pmtu->ro_rt) { 1429 u_int32_t ifmtu; 1430 1431 if (ifp == NULL) 1432 ifp = ro_pmtu->ro_rt->rt_ifp; 1433 ifmtu = IN6_LINKMTU(ifp); 1434 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1435 if (mtu == 0) 1436 mtu = ifmtu; 1437 else if (mtu < IPV6_MMTU) { 1438 /* 1439 * RFC2460 section 5, last paragraph: 1440 * if we record ICMPv6 too big message with 1441 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1442 * or smaller, with fragment header attached. 1443 * (fragment header is needed regardless from the 1444 * packet size, for translators to identify packets) 1445 */ 1446 alwaysfrag = 1; 1447 mtu = IPV6_MMTU; 1448 } else if (mtu > ifmtu) { 1449 /* 1450 * The MTU on the route is larger than the MTU on 1451 * the interface! This shouldn't happen, unless the 1452 * MTU of the interface has been changed after the 1453 * interface was brought up. Change the MTU in the 1454 * route to match the interface MTU (as long as the 1455 * field isn't locked). 1456 */ 1457 mtu = ifmtu; 1458 if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU)) 1459 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1460 } 1461 } else if (ifp) { 1462 mtu = IN6_LINKMTU(ifp); 1463 } else 1464 error = EHOSTUNREACH; /* XXX */ 1465 1466 *mtup = mtu; 1467 if (alwaysfragp) 1468 *alwaysfragp = alwaysfrag; 1469 return (error); 1470 } 1471 1472 /* 1473 * IP6 socket option processing. 1474 */ 1475 int 1476 ip6_ctloutput(op, so, level, optname, mp) 1477 int op; 1478 struct socket *so; 1479 int level, optname; 1480 struct mbuf **mp; 1481 { 1482 int privileged, optdatalen, uproto; 1483 void *optdata; 1484 struct in6pcb *in6p = sotoin6pcb(so); 1485 struct mbuf *m = *mp; 1486 int error, optval; 1487 int optlen; 1488 struct lwp *l = curlwp; /* XXX */ 1489 1490 optlen = m ? m->m_len : 0; 1491 error = optval = 0; 1492 privileged = (l == 0 || kauth_authorize_generic(l->l_cred, 1493 KAUTH_GENERIC_ISSUSER, &l->l_acflag)) ? 0 : 1; 1494 uproto = (int)so->so_proto->pr_protocol; 1495 1496 if (level == IPPROTO_IPV6) { 1497 switch (op) { 1498 case PRCO_SETOPT: 1499 switch (optname) { 1500 #ifdef RFC2292 1501 case IPV6_2292PKTOPTIONS: 1502 /* m is freed in ip6_pcbopts */ 1503 error = ip6_pcbopts(&in6p->in6p_outputopts, 1504 m, so); 1505 break; 1506 #endif 1507 1508 /* 1509 * Use of some Hop-by-Hop options or some 1510 * Destination options, might require special 1511 * privilege. That is, normal applications 1512 * (without special privilege) might be forbidden 1513 * from setting certain options in outgoing packets, 1514 * and might never see certain options in received 1515 * packets. [RFC 2292 Section 6] 1516 * KAME specific note: 1517 * KAME prevents non-privileged users from sending or 1518 * receiving ANY hbh/dst options in order to avoid 1519 * overhead of parsing options in the kernel. 1520 */ 1521 case IPV6_RECVHOPOPTS: 1522 case IPV6_RECVDSTOPTS: 1523 case IPV6_RECVRTHDRDSTOPTS: 1524 if (!privileged) { 1525 error = EPERM; 1526 break; 1527 } 1528 /* FALLTHROUGH */ 1529 case IPV6_UNICAST_HOPS: 1530 case IPV6_HOPLIMIT: 1531 case IPV6_FAITH: 1532 1533 case IPV6_RECVPKTINFO: 1534 case IPV6_RECVHOPLIMIT: 1535 case IPV6_RECVRTHDR: 1536 case IPV6_RECVPATHMTU: 1537 case IPV6_RECVTCLASS: 1538 case IPV6_V6ONLY: 1539 if (optlen != sizeof(int)) { 1540 error = EINVAL; 1541 break; 1542 } 1543 optval = *mtod(m, int *); 1544 switch (optname) { 1545 1546 case IPV6_UNICAST_HOPS: 1547 if (optval < -1 || optval >= 256) 1548 error = EINVAL; 1549 else { 1550 /* -1 = kernel default */ 1551 in6p->in6p_hops = optval; 1552 } 1553 break; 1554 #define OPTSET(bit) \ 1555 do { \ 1556 if (optval) \ 1557 in6p->in6p_flags |= (bit); \ 1558 else \ 1559 in6p->in6p_flags &= ~(bit); \ 1560 } while (/*CONSTCOND*/ 0) 1561 1562 #ifdef RFC2292 1563 #define OPTSET2292(bit) \ 1564 do { \ 1565 in6p->in6p_flags |= IN6P_RFC2292; \ 1566 if (optval) \ 1567 in6p->in6p_flags |= (bit); \ 1568 else \ 1569 in6p->in6p_flags &= ~(bit); \ 1570 } while (/*CONSTCOND*/ 0) 1571 #endif 1572 1573 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1574 1575 case IPV6_RECVPKTINFO: 1576 #ifdef RFC2292 1577 /* cannot mix with RFC2292 */ 1578 if (OPTBIT(IN6P_RFC2292)) { 1579 error = EINVAL; 1580 break; 1581 } 1582 #endif 1583 OPTSET(IN6P_PKTINFO); 1584 break; 1585 1586 case IPV6_HOPLIMIT: 1587 { 1588 struct ip6_pktopts **optp; 1589 1590 #ifdef RFC2292 1591 /* cannot mix with RFC2292 */ 1592 if (OPTBIT(IN6P_RFC2292)) { 1593 error = EINVAL; 1594 break; 1595 } 1596 #endif 1597 optp = &in6p->in6p_outputopts; 1598 error = ip6_pcbopt(IPV6_HOPLIMIT, 1599 (u_char *)&optval, 1600 sizeof(optval), 1601 optp, 1602 privileged, uproto); 1603 break; 1604 } 1605 1606 case IPV6_RECVHOPLIMIT: 1607 #ifdef RFC2292 1608 /* cannot mix with RFC2292 */ 1609 if (OPTBIT(IN6P_RFC2292)) { 1610 error = EINVAL; 1611 break; 1612 } 1613 #endif 1614 OPTSET(IN6P_HOPLIMIT); 1615 break; 1616 1617 case IPV6_RECVHOPOPTS: 1618 #ifdef RFC2292 1619 /* cannot mix with RFC2292 */ 1620 if (OPTBIT(IN6P_RFC2292)) { 1621 error = EINVAL; 1622 break; 1623 } 1624 #endif 1625 OPTSET(IN6P_HOPOPTS); 1626 break; 1627 1628 case IPV6_RECVDSTOPTS: 1629 #ifdef RFC2292 1630 /* cannot mix with RFC2292 */ 1631 if (OPTBIT(IN6P_RFC2292)) { 1632 error = EINVAL; 1633 break; 1634 } 1635 #endif 1636 OPTSET(IN6P_DSTOPTS); 1637 break; 1638 1639 case IPV6_RECVRTHDRDSTOPTS: 1640 #ifdef RFC2292 1641 /* cannot mix with RFC2292 */ 1642 if (OPTBIT(IN6P_RFC2292)) { 1643 error = EINVAL; 1644 break; 1645 } 1646 #endif 1647 OPTSET(IN6P_RTHDRDSTOPTS); 1648 break; 1649 1650 case IPV6_RECVRTHDR: 1651 #ifdef RFC2292 1652 /* cannot mix with RFC2292 */ 1653 if (OPTBIT(IN6P_RFC2292)) { 1654 error = EINVAL; 1655 break; 1656 } 1657 #endif 1658 OPTSET(IN6P_RTHDR); 1659 break; 1660 1661 case IPV6_FAITH: 1662 OPTSET(IN6P_FAITH); 1663 break; 1664 1665 case IPV6_RECVPATHMTU: 1666 /* 1667 * We ignore this option for TCP 1668 * sockets. 1669 * (RFC3542 leaves this case 1670 * unspecified.) 1671 */ 1672 if (uproto != IPPROTO_TCP) 1673 OPTSET(IN6P_MTU); 1674 break; 1675 1676 case IPV6_V6ONLY: 1677 /* 1678 * make setsockopt(IPV6_V6ONLY) 1679 * available only prior to bind(2). 1680 * see ipng mailing list, Jun 22 2001. 1681 */ 1682 if (in6p->in6p_lport || 1683 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1684 error = EINVAL; 1685 break; 1686 } 1687 #ifdef INET6_BINDV6ONLY 1688 if (!optval) 1689 error = EINVAL; 1690 #else 1691 OPTSET(IN6P_IPV6_V6ONLY); 1692 #endif 1693 break; 1694 case IPV6_RECVTCLASS: 1695 #ifdef RFC2292 1696 /* cannot mix with RFC2292 XXX */ 1697 if (OPTBIT(IN6P_RFC2292)) { 1698 error = EINVAL; 1699 break; 1700 } 1701 #endif 1702 OPTSET(IN6P_TCLASS); 1703 break; 1704 1705 } 1706 break; 1707 1708 case IPV6_OTCLASS: 1709 { 1710 struct ip6_pktopts **optp; 1711 u_int8_t tclass; 1712 1713 if (optlen != sizeof(tclass)) { 1714 error = EINVAL; 1715 break; 1716 } 1717 tclass = *mtod(m, u_int8_t *); 1718 optp = &in6p->in6p_outputopts; 1719 error = ip6_pcbopt(optname, 1720 (u_char *)&tclass, 1721 sizeof(tclass), 1722 optp, 1723 privileged, uproto); 1724 break; 1725 } 1726 1727 case IPV6_TCLASS: 1728 case IPV6_DONTFRAG: 1729 case IPV6_USE_MIN_MTU: 1730 if (optlen != sizeof(optval)) { 1731 error = EINVAL; 1732 break; 1733 } 1734 optval = *mtod(m, int *); 1735 { 1736 struct ip6_pktopts **optp; 1737 optp = &in6p->in6p_outputopts; 1738 error = ip6_pcbopt(optname, 1739 (u_char *)&optval, 1740 sizeof(optval), 1741 optp, 1742 privileged, uproto); 1743 break; 1744 } 1745 1746 #ifdef RFC2292 1747 case IPV6_2292PKTINFO: 1748 case IPV6_2292HOPLIMIT: 1749 case IPV6_2292HOPOPTS: 1750 case IPV6_2292DSTOPTS: 1751 case IPV6_2292RTHDR: 1752 /* RFC 2292 */ 1753 if (optlen != sizeof(int)) { 1754 error = EINVAL; 1755 break; 1756 } 1757 optval = *mtod(m, int *); 1758 switch (optname) { 1759 case IPV6_2292PKTINFO: 1760 OPTSET2292(IN6P_PKTINFO); 1761 break; 1762 case IPV6_2292HOPLIMIT: 1763 OPTSET2292(IN6P_HOPLIMIT); 1764 break; 1765 case IPV6_2292HOPOPTS: 1766 /* 1767 * Check super-user privilege. 1768 * See comments for IPV6_RECVHOPOPTS. 1769 */ 1770 if (!privileged) 1771 return (EPERM); 1772 OPTSET2292(IN6P_HOPOPTS); 1773 break; 1774 case IPV6_2292DSTOPTS: 1775 if (!privileged) 1776 return (EPERM); 1777 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1778 break; 1779 case IPV6_2292RTHDR: 1780 OPTSET2292(IN6P_RTHDR); 1781 break; 1782 } 1783 break; 1784 #endif 1785 case IPV6_PKTINFO: 1786 case IPV6_HOPOPTS: 1787 case IPV6_RTHDR: 1788 case IPV6_DSTOPTS: 1789 case IPV6_RTHDRDSTOPTS: 1790 case IPV6_NEXTHOP: 1791 { 1792 /* new advanced API (RFC3542) */ 1793 u_char *optbuf; 1794 int optbuflen; 1795 struct ip6_pktopts **optp; 1796 1797 #ifdef RFC2292 1798 /* cannot mix with RFC2292 */ 1799 if (OPTBIT(IN6P_RFC2292)) { 1800 error = EINVAL; 1801 break; 1802 } 1803 #endif 1804 1805 if (m && m->m_next) { 1806 error = EINVAL; /* XXX */ 1807 break; 1808 } 1809 if (m) { 1810 optbuf = mtod(m, u_char *); 1811 optbuflen = m->m_len; 1812 } else { 1813 optbuf = NULL; 1814 optbuflen = 0; 1815 } 1816 optp = &in6p->in6p_outputopts; 1817 error = ip6_pcbopt(optname, 1818 optbuf, optbuflen, 1819 optp, privileged, uproto); 1820 break; 1821 } 1822 #undef OPTSET 1823 1824 case IPV6_MULTICAST_IF: 1825 case IPV6_MULTICAST_HOPS: 1826 case IPV6_MULTICAST_LOOP: 1827 case IPV6_JOIN_GROUP: 1828 case IPV6_LEAVE_GROUP: 1829 error = ip6_setmoptions(optname, 1830 &in6p->in6p_moptions, m); 1831 break; 1832 1833 case IPV6_PORTRANGE: 1834 optval = *mtod(m, int *); 1835 1836 switch (optval) { 1837 case IPV6_PORTRANGE_DEFAULT: 1838 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1839 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1840 break; 1841 1842 case IPV6_PORTRANGE_HIGH: 1843 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1844 in6p->in6p_flags |= IN6P_HIGHPORT; 1845 break; 1846 1847 case IPV6_PORTRANGE_LOW: 1848 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1849 in6p->in6p_flags |= IN6P_LOWPORT; 1850 break; 1851 1852 default: 1853 error = EINVAL; 1854 break; 1855 } 1856 break; 1857 1858 #ifdef IPSEC 1859 case IPV6_IPSEC_POLICY: 1860 { 1861 caddr_t req = NULL; 1862 size_t len = 0; 1863 if (m) { 1864 req = mtod(m, caddr_t); 1865 len = m->m_len; 1866 } 1867 error = ipsec6_set_policy(in6p, optname, req, 1868 len, privileged); 1869 } 1870 break; 1871 #endif /* IPSEC */ 1872 1873 default: 1874 error = ENOPROTOOPT; 1875 break; 1876 } 1877 if (m) 1878 (void)m_free(m); 1879 break; 1880 1881 case PRCO_GETOPT: 1882 switch (optname) { 1883 #ifdef RFC2292 1884 case IPV6_2292PKTOPTIONS: 1885 /* 1886 * RFC3542 (effectively) deprecated the 1887 * semantics of the 2292-style pktoptions. 1888 * Since it was not reliable in nature (i.e., 1889 * applications had to expect the lack of some 1890 * information after all), it would make sense 1891 * to simplify this part by always returning 1892 * empty data. 1893 */ 1894 *mp = m_get(M_WAIT, MT_SOOPTS); 1895 (*mp)->m_len = 0; 1896 break; 1897 #endif 1898 1899 case IPV6_RECVHOPOPTS: 1900 case IPV6_RECVDSTOPTS: 1901 case IPV6_RECVRTHDRDSTOPTS: 1902 case IPV6_UNICAST_HOPS: 1903 case IPV6_RECVPKTINFO: 1904 case IPV6_RECVHOPLIMIT: 1905 case IPV6_RECVRTHDR: 1906 case IPV6_RECVPATHMTU: 1907 1908 case IPV6_FAITH: 1909 case IPV6_V6ONLY: 1910 case IPV6_PORTRANGE: 1911 case IPV6_RECVTCLASS: 1912 switch (optname) { 1913 1914 case IPV6_RECVHOPOPTS: 1915 optval = OPTBIT(IN6P_HOPOPTS); 1916 break; 1917 1918 case IPV6_RECVDSTOPTS: 1919 optval = OPTBIT(IN6P_DSTOPTS); 1920 break; 1921 1922 case IPV6_RECVRTHDRDSTOPTS: 1923 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1924 break; 1925 1926 case IPV6_UNICAST_HOPS: 1927 optval = in6p->in6p_hops; 1928 break; 1929 1930 case IPV6_RECVPKTINFO: 1931 optval = OPTBIT(IN6P_PKTINFO); 1932 break; 1933 1934 case IPV6_RECVHOPLIMIT: 1935 optval = OPTBIT(IN6P_HOPLIMIT); 1936 break; 1937 1938 case IPV6_RECVRTHDR: 1939 optval = OPTBIT(IN6P_RTHDR); 1940 break; 1941 1942 case IPV6_RECVPATHMTU: 1943 optval = OPTBIT(IN6P_MTU); 1944 break; 1945 1946 case IPV6_FAITH: 1947 optval = OPTBIT(IN6P_FAITH); 1948 break; 1949 1950 case IPV6_V6ONLY: 1951 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1952 break; 1953 1954 case IPV6_PORTRANGE: 1955 { 1956 int flags; 1957 flags = in6p->in6p_flags; 1958 if (flags & IN6P_HIGHPORT) 1959 optval = IPV6_PORTRANGE_HIGH; 1960 else if (flags & IN6P_LOWPORT) 1961 optval = IPV6_PORTRANGE_LOW; 1962 else 1963 optval = 0; 1964 break; 1965 } 1966 case IPV6_RECVTCLASS: 1967 optval = OPTBIT(IN6P_TCLASS); 1968 break; 1969 1970 } 1971 if (error) 1972 break; 1973 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1974 m->m_len = sizeof(int); 1975 *mtod(m, int *) = optval; 1976 break; 1977 1978 case IPV6_PATHMTU: 1979 { 1980 u_long pmtu = 0; 1981 struct ip6_mtuinfo mtuinfo; 1982 struct route_in6 *ro = (struct route_in6 *)&in6p 1983 ->in6p_route; 1984 1985 if (!(so->so_state & SS_ISCONNECTED)) 1986 return (ENOTCONN); 1987 /* 1988 * XXX: we dot not consider the case of source 1989 * routing, or optional information to specify 1990 * the outgoing interface. 1991 */ 1992 error = ip6_getpmtu(ro, NULL, NULL, 1993 &in6p->in6p_faddr, &pmtu, NULL); 1994 if (error) 1995 break; 1996 if (pmtu > IPV6_MAXPACKET) 1997 pmtu = IPV6_MAXPACKET; 1998 1999 memset(&mtuinfo, 0, sizeof(mtuinfo)); 2000 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2001 optdata = (void *)&mtuinfo; 2002 optdatalen = sizeof(mtuinfo); 2003 if (optdatalen > MCLBYTES) 2004 return (EMSGSIZE); /* XXX */ 2005 *mp = m = m_get(M_WAIT, MT_SOOPTS); 2006 if (optdatalen > MLEN) 2007 MCLGET(m, M_WAIT); 2008 m->m_len = optdatalen; 2009 memcpy(mtod(m, void *), optdata, optdatalen); 2010 break; 2011 } 2012 2013 #ifdef RFC2292 2014 case IPV6_2292PKTINFO: 2015 case IPV6_2292HOPLIMIT: 2016 case IPV6_2292HOPOPTS: 2017 case IPV6_2292RTHDR: 2018 case IPV6_2292DSTOPTS: 2019 switch (optname) { 2020 case IPV6_2292PKTINFO: 2021 optval = OPTBIT(IN6P_PKTINFO); 2022 break; 2023 case IPV6_2292HOPLIMIT: 2024 optval = OPTBIT(IN6P_HOPLIMIT); 2025 break; 2026 case IPV6_2292HOPOPTS: 2027 optval = OPTBIT(IN6P_HOPOPTS); 2028 break; 2029 case IPV6_2292RTHDR: 2030 optval = OPTBIT(IN6P_RTHDR); 2031 break; 2032 case IPV6_2292DSTOPTS: 2033 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2034 break; 2035 } 2036 *mp = m = m_get(M_WAIT, MT_SOOPTS); 2037 m->m_len = sizeof(int); 2038 *mtod(m, int *) = optval; 2039 break; 2040 #endif 2041 case IPV6_PKTINFO: 2042 case IPV6_HOPOPTS: 2043 case IPV6_RTHDR: 2044 case IPV6_DSTOPTS: 2045 case IPV6_RTHDRDSTOPTS: 2046 case IPV6_NEXTHOP: 2047 case IPV6_OTCLASS: 2048 case IPV6_TCLASS: 2049 case IPV6_DONTFRAG: 2050 case IPV6_USE_MIN_MTU: 2051 error = ip6_getpcbopt(in6p->in6p_outputopts, 2052 optname, mp); 2053 break; 2054 2055 case IPV6_MULTICAST_IF: 2056 case IPV6_MULTICAST_HOPS: 2057 case IPV6_MULTICAST_LOOP: 2058 case IPV6_JOIN_GROUP: 2059 case IPV6_LEAVE_GROUP: 2060 error = ip6_getmoptions(optname, 2061 in6p->in6p_moptions, mp); 2062 break; 2063 2064 #ifdef IPSEC 2065 case IPV6_IPSEC_POLICY: 2066 { 2067 caddr_t req = NULL; 2068 size_t len = 0; 2069 if (m) { 2070 req = mtod(m, caddr_t); 2071 len = m->m_len; 2072 } 2073 error = ipsec6_get_policy(in6p, req, len, mp); 2074 break; 2075 } 2076 #endif /* IPSEC */ 2077 2078 2079 2080 2081 default: 2082 error = ENOPROTOOPT; 2083 break; 2084 } 2085 break; 2086 } 2087 } else { 2088 error = EINVAL; 2089 if (op == PRCO_SETOPT && *mp) 2090 (void)m_free(*mp); 2091 } 2092 return (error); 2093 } 2094 2095 int 2096 ip6_raw_ctloutput(op, so, level, optname, mp) 2097 int op; 2098 struct socket *so; 2099 int level, optname; 2100 struct mbuf **mp; 2101 { 2102 int error = 0, optval, optlen; 2103 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2104 struct in6pcb *in6p = sotoin6pcb(so); 2105 struct mbuf *m = *mp; 2106 2107 optlen = m ? m->m_len : 0; 2108 2109 if (level != IPPROTO_IPV6) { 2110 if (op == PRCO_SETOPT && *mp) 2111 (void)m_free(*mp); 2112 return (EINVAL); 2113 } 2114 2115 switch (optname) { 2116 case IPV6_CHECKSUM: 2117 /* 2118 * For ICMPv6 sockets, no modification allowed for checksum 2119 * offset, permit "no change" values to help existing apps. 2120 * 2121 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM 2122 * for an ICMPv6 socket will fail." The current 2123 * behavior does not meet RFC3542. 2124 */ 2125 switch (op) { 2126 case PRCO_SETOPT: 2127 if (optlen != sizeof(int)) { 2128 error = EINVAL; 2129 break; 2130 } 2131 optval = *mtod(m, int *); 2132 if ((optval % 2) != 0) { 2133 /* the API assumes even offset values */ 2134 error = EINVAL; 2135 } else if (so->so_proto->pr_protocol == 2136 IPPROTO_ICMPV6) { 2137 if (optval != icmp6off) 2138 error = EINVAL; 2139 } else 2140 in6p->in6p_cksum = optval; 2141 break; 2142 2143 case PRCO_GETOPT: 2144 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2145 optval = icmp6off; 2146 else 2147 optval = in6p->in6p_cksum; 2148 2149 *mp = m = m_get(M_WAIT, MT_SOOPTS); 2150 m->m_len = sizeof(int); 2151 *mtod(m, int *) = optval; 2152 break; 2153 2154 default: 2155 error = EINVAL; 2156 break; 2157 } 2158 break; 2159 2160 default: 2161 error = ENOPROTOOPT; 2162 break; 2163 } 2164 2165 if (op == PRCO_SETOPT && m) 2166 (void)m_free(m); 2167 2168 return (error); 2169 } 2170 2171 #ifdef RFC2292 2172 /* 2173 * Set up IP6 options in pcb for insertion in output packets or 2174 * specifying behavior of outgoing packets. 2175 */ 2176 static int 2177 ip6_pcbopts(pktopt, m, so) 2178 struct ip6_pktopts **pktopt; 2179 struct mbuf *m; 2180 struct socket *so; 2181 { 2182 struct ip6_pktopts *opt = *pktopt; 2183 int error = 0; 2184 struct lwp *l = curlwp; /* XXX */ 2185 int priv = 0; 2186 2187 /* turn off any old options. */ 2188 if (opt) { 2189 #ifdef DIAGNOSTIC 2190 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2191 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2192 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2193 printf("ip6_pcbopts: all specified options are cleared.\n"); 2194 #endif 2195 ip6_clearpktopts(opt, -1); 2196 } else 2197 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2198 *pktopt = NULL; 2199 2200 if (!m || m->m_len == 0) { 2201 /* 2202 * Only turning off any previous options, regardless of 2203 * whether the opt is just created or given. 2204 */ 2205 free(opt, M_IP6OPT); 2206 return (0); 2207 } 2208 2209 /* set options specified by user. */ 2210 if (l && !kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER, 2211 &l->l_acflag)) 2212 priv = 1; 2213 if ((error = ip6_setpktopts(m, opt, NULL, priv, 2214 so->so_proto->pr_protocol)) != 0) { 2215 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2216 free(opt, M_IP6OPT); 2217 return (error); 2218 } 2219 *pktopt = opt; 2220 return (0); 2221 } 2222 #endif 2223 2224 /* 2225 * initialize ip6_pktopts. beware that there are non-zero default values in 2226 * the struct. 2227 */ 2228 void 2229 ip6_initpktopts(struct ip6_pktopts *opt) 2230 { 2231 2232 memset(opt, 0, sizeof(*opt)); 2233 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2234 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2235 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2236 } 2237 2238 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */ 2239 static int 2240 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2241 int priv, int uproto) 2242 { 2243 struct ip6_pktopts *opt; 2244 2245 if (*pktopt == NULL) { 2246 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2247 M_WAITOK); 2248 ip6_initpktopts(*pktopt); 2249 } 2250 opt = *pktopt; 2251 2252 return (ip6_setpktopt(optname, buf, len, opt, priv, 1, 0, uproto)); 2253 } 2254 2255 static int 2256 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf **mp) 2257 { 2258 void *optdata = NULL; 2259 int optdatalen = 0; 2260 struct ip6_ext *ip6e; 2261 int error = 0; 2262 struct in6_pktinfo null_pktinfo; 2263 int deftclass = 0, on; 2264 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2265 struct mbuf *m; 2266 2267 switch (optname) { 2268 case IPV6_PKTINFO: 2269 if (pktopt && pktopt->ip6po_pktinfo) 2270 optdata = (void *)pktopt->ip6po_pktinfo; 2271 else { 2272 /* XXX: we don't have to do this every time... */ 2273 memset(&null_pktinfo, 0, sizeof(null_pktinfo)); 2274 optdata = (void *)&null_pktinfo; 2275 } 2276 optdatalen = sizeof(struct in6_pktinfo); 2277 break; 2278 case IPV6_OTCLASS: 2279 /* XXX */ 2280 return (EINVAL); 2281 case IPV6_TCLASS: 2282 if (pktopt && pktopt->ip6po_tclass >= 0) 2283 optdata = (void *)&pktopt->ip6po_tclass; 2284 else 2285 optdata = (void *)&deftclass; 2286 optdatalen = sizeof(int); 2287 break; 2288 case IPV6_HOPOPTS: 2289 if (pktopt && pktopt->ip6po_hbh) { 2290 optdata = (void *)pktopt->ip6po_hbh; 2291 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2292 optdatalen = (ip6e->ip6e_len + 1) << 3; 2293 } 2294 break; 2295 case IPV6_RTHDR: 2296 if (pktopt && pktopt->ip6po_rthdr) { 2297 optdata = (void *)pktopt->ip6po_rthdr; 2298 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2299 optdatalen = (ip6e->ip6e_len + 1) << 3; 2300 } 2301 break; 2302 case IPV6_RTHDRDSTOPTS: 2303 if (pktopt && pktopt->ip6po_dest1) { 2304 optdata = (void *)pktopt->ip6po_dest1; 2305 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2306 optdatalen = (ip6e->ip6e_len + 1) << 3; 2307 } 2308 break; 2309 case IPV6_DSTOPTS: 2310 if (pktopt && pktopt->ip6po_dest2) { 2311 optdata = (void *)pktopt->ip6po_dest2; 2312 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2313 optdatalen = (ip6e->ip6e_len + 1) << 3; 2314 } 2315 break; 2316 case IPV6_NEXTHOP: 2317 if (pktopt && pktopt->ip6po_nexthop) { 2318 optdata = (void *)pktopt->ip6po_nexthop; 2319 optdatalen = pktopt->ip6po_nexthop->sa_len; 2320 } 2321 break; 2322 case IPV6_USE_MIN_MTU: 2323 if (pktopt) 2324 optdata = (void *)&pktopt->ip6po_minmtu; 2325 else 2326 optdata = (void *)&defminmtu; 2327 optdatalen = sizeof(int); 2328 break; 2329 case IPV6_DONTFRAG: 2330 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2331 on = 1; 2332 else 2333 on = 0; 2334 optdata = (void *)&on; 2335 optdatalen = sizeof(on); 2336 break; 2337 default: /* should not happen */ 2338 #ifdef DIAGNOSTIC 2339 panic("ip6_getpcbopt: unexpected option\n"); 2340 #endif 2341 return (ENOPROTOOPT); 2342 } 2343 2344 if (optdatalen > MCLBYTES) 2345 return (EMSGSIZE); /* XXX */ 2346 *mp = m = m_get(M_WAIT, MT_SOOPTS); 2347 if (optdatalen > MLEN) 2348 MCLGET(m, M_WAIT); 2349 m->m_len = optdatalen; 2350 if (optdatalen) 2351 memcpy(mtod(m, void *), optdata, optdatalen); 2352 2353 return (error); 2354 } 2355 2356 void 2357 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2358 { 2359 if (optname == -1 || optname == IPV6_PKTINFO) { 2360 if (pktopt->ip6po_pktinfo) 2361 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2362 pktopt->ip6po_pktinfo = NULL; 2363 } 2364 if (optname == -1 || optname == IPV6_HOPLIMIT) 2365 pktopt->ip6po_hlim = -1; 2366 if (optname == -1 || optname == IPV6_TCLASS) 2367 pktopt->ip6po_tclass = -1; 2368 if (optname == -1 || optname == IPV6_NEXTHOP) { 2369 if (pktopt->ip6po_nextroute.ro_rt) { 2370 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2371 pktopt->ip6po_nextroute.ro_rt = NULL; 2372 } 2373 if (pktopt->ip6po_nexthop) 2374 free(pktopt->ip6po_nexthop, M_IP6OPT); 2375 pktopt->ip6po_nexthop = NULL; 2376 } 2377 if (optname == -1 || optname == IPV6_HOPOPTS) { 2378 if (pktopt->ip6po_hbh) 2379 free(pktopt->ip6po_hbh, M_IP6OPT); 2380 pktopt->ip6po_hbh = NULL; 2381 } 2382 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2383 if (pktopt->ip6po_dest1) 2384 free(pktopt->ip6po_dest1, M_IP6OPT); 2385 pktopt->ip6po_dest1 = NULL; 2386 } 2387 if (optname == -1 || optname == IPV6_RTHDR) { 2388 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2389 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2390 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2391 if (pktopt->ip6po_route.ro_rt) { 2392 RTFREE(pktopt->ip6po_route.ro_rt); 2393 pktopt->ip6po_route.ro_rt = NULL; 2394 } 2395 } 2396 if (optname == -1 || optname == IPV6_DSTOPTS) { 2397 if (pktopt->ip6po_dest2) 2398 free(pktopt->ip6po_dest2, M_IP6OPT); 2399 pktopt->ip6po_dest2 = NULL; 2400 } 2401 } 2402 2403 #define PKTOPT_EXTHDRCPY(type) \ 2404 do { \ 2405 if (src->type) { \ 2406 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2407 dst->type = malloc(hlen, M_IP6OPT, canwait); \ 2408 if (dst->type == NULL && canwait == M_NOWAIT) \ 2409 goto bad; \ 2410 memcpy(dst->type, src->type, hlen); \ 2411 } \ 2412 } while (/*CONSTCOND*/ 0) 2413 2414 static int 2415 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2416 { 2417 dst->ip6po_hlim = src->ip6po_hlim; 2418 dst->ip6po_tclass = src->ip6po_tclass; 2419 dst->ip6po_flags = src->ip6po_flags; 2420 if (src->ip6po_pktinfo) { 2421 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2422 M_IP6OPT, canwait); 2423 if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT) 2424 goto bad; 2425 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2426 } 2427 if (src->ip6po_nexthop) { 2428 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2429 M_IP6OPT, canwait); 2430 if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT) 2431 goto bad; 2432 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop, 2433 src->ip6po_nexthop->sa_len); 2434 } 2435 PKTOPT_EXTHDRCPY(ip6po_hbh); 2436 PKTOPT_EXTHDRCPY(ip6po_dest1); 2437 PKTOPT_EXTHDRCPY(ip6po_dest2); 2438 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2439 return (0); 2440 2441 bad: 2442 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 2443 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 2444 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 2445 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 2446 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 2447 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 2448 2449 return (ENOBUFS); 2450 } 2451 #undef PKTOPT_EXTHDRCPY 2452 2453 struct ip6_pktopts * 2454 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2455 { 2456 int error; 2457 struct ip6_pktopts *dst; 2458 2459 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2460 if (dst == NULL && canwait == M_NOWAIT) 2461 return (NULL); 2462 ip6_initpktopts(dst); 2463 2464 if ((error = copypktopts(dst, src, canwait)) != 0) { 2465 free(dst, M_IP6OPT); 2466 return (NULL); 2467 } 2468 2469 return (dst); 2470 } 2471 2472 void 2473 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2474 { 2475 if (pktopt == NULL) 2476 return; 2477 2478 ip6_clearpktopts(pktopt, -1); 2479 2480 free(pktopt, M_IP6OPT); 2481 } 2482 2483 /* 2484 * Set the IP6 multicast options in response to user setsockopt(). 2485 */ 2486 static int 2487 ip6_setmoptions(optname, im6op, m) 2488 int optname; 2489 struct ip6_moptions **im6op; 2490 struct mbuf *m; 2491 { 2492 int error = 0; 2493 u_int loop, ifindex; 2494 struct ipv6_mreq *mreq; 2495 struct ifnet *ifp; 2496 struct ip6_moptions *im6o = *im6op; 2497 struct route_in6 ro; 2498 struct in6_multi_mship *imm; 2499 struct lwp *l = curlwp; /* XXX */ 2500 2501 if (im6o == NULL) { 2502 /* 2503 * No multicast option buffer attached to the pcb; 2504 * allocate one and initialize to default values. 2505 */ 2506 im6o = (struct ip6_moptions *) 2507 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 2508 2509 if (im6o == NULL) 2510 return (ENOBUFS); 2511 *im6op = im6o; 2512 im6o->im6o_multicast_ifp = NULL; 2513 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2514 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2515 LIST_INIT(&im6o->im6o_memberships); 2516 } 2517 2518 switch (optname) { 2519 2520 case IPV6_MULTICAST_IF: 2521 /* 2522 * Select the interface for outgoing multicast packets. 2523 */ 2524 if (m == NULL || m->m_len != sizeof(u_int)) { 2525 error = EINVAL; 2526 break; 2527 } 2528 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 2529 if (ifindex != 0) { 2530 if (if_indexlim <= ifindex || !ifindex2ifnet[ifindex]) { 2531 error = ENXIO; /* XXX EINVAL? */ 2532 break; 2533 } 2534 ifp = ifindex2ifnet[ifindex]; 2535 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 2536 error = EADDRNOTAVAIL; 2537 break; 2538 } 2539 } else 2540 ifp = NULL; 2541 im6o->im6o_multicast_ifp = ifp; 2542 break; 2543 2544 case IPV6_MULTICAST_HOPS: 2545 { 2546 /* 2547 * Set the IP6 hoplimit for outgoing multicast packets. 2548 */ 2549 int optval; 2550 if (m == NULL || m->m_len != sizeof(int)) { 2551 error = EINVAL; 2552 break; 2553 } 2554 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 2555 if (optval < -1 || optval >= 256) 2556 error = EINVAL; 2557 else if (optval == -1) 2558 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2559 else 2560 im6o->im6o_multicast_hlim = optval; 2561 break; 2562 } 2563 2564 case IPV6_MULTICAST_LOOP: 2565 /* 2566 * Set the loopback flag for outgoing multicast packets. 2567 * Must be zero or one. 2568 */ 2569 if (m == NULL || m->m_len != sizeof(u_int)) { 2570 error = EINVAL; 2571 break; 2572 } 2573 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 2574 if (loop > 1) { 2575 error = EINVAL; 2576 break; 2577 } 2578 im6o->im6o_multicast_loop = loop; 2579 break; 2580 2581 case IPV6_JOIN_GROUP: 2582 /* 2583 * Add a multicast group membership. 2584 * Group must be a valid IP6 multicast address. 2585 */ 2586 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2587 error = EINVAL; 2588 break; 2589 } 2590 mreq = mtod(m, struct ipv6_mreq *); 2591 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2592 /* 2593 * We use the unspecified address to specify to accept 2594 * all multicast addresses. Only super user is allowed 2595 * to do this. 2596 */ 2597 if (kauth_authorize_generic(l->l_cred, 2598 KAUTH_GENERIC_ISSUSER, &l->l_acflag)) 2599 { 2600 error = EACCES; 2601 break; 2602 } 2603 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2604 error = EINVAL; 2605 break; 2606 } 2607 2608 /* 2609 * If no interface was explicitly specified, choose an 2610 * appropriate one according to the given multicast address. 2611 */ 2612 if (mreq->ipv6mr_interface == 0) { 2613 struct sockaddr_in6 *dst; 2614 2615 /* 2616 * Look up the routing table for the 2617 * address, and choose the outgoing interface. 2618 * XXX: is it a good approach? 2619 */ 2620 ro.ro_rt = NULL; 2621 dst = (struct sockaddr_in6 *)&ro.ro_dst; 2622 bzero(dst, sizeof(*dst)); 2623 dst->sin6_family = AF_INET6; 2624 dst->sin6_len = sizeof(*dst); 2625 dst->sin6_addr = mreq->ipv6mr_multiaddr; 2626 rtalloc((struct route *)&ro); 2627 if (ro.ro_rt == NULL) { 2628 error = EADDRNOTAVAIL; 2629 break; 2630 } 2631 ifp = ro.ro_rt->rt_ifp; 2632 rtfree(ro.ro_rt); 2633 } else { 2634 /* 2635 * If the interface is specified, validate it. 2636 */ 2637 if (if_indexlim <= mreq->ipv6mr_interface || 2638 !ifindex2ifnet[mreq->ipv6mr_interface]) { 2639 error = ENXIO; /* XXX EINVAL? */ 2640 break; 2641 } 2642 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 2643 } 2644 2645 /* 2646 * See if we found an interface, and confirm that it 2647 * supports multicast 2648 */ 2649 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2650 error = EADDRNOTAVAIL; 2651 break; 2652 } 2653 2654 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) { 2655 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2656 break; 2657 } 2658 2659 /* 2660 * See if the membership already exists. 2661 */ 2662 for (imm = im6o->im6o_memberships.lh_first; 2663 imm != NULL; imm = imm->i6mm_chain.le_next) 2664 if (imm->i6mm_maddr->in6m_ifp == ifp && 2665 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2666 &mreq->ipv6mr_multiaddr)) 2667 break; 2668 if (imm != NULL) { 2669 error = EADDRINUSE; 2670 break; 2671 } 2672 /* 2673 * Everything looks good; add a new record to the multicast 2674 * address list for the given interface. 2675 */ 2676 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0); 2677 if (imm == NULL) 2678 break; 2679 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2680 break; 2681 2682 case IPV6_LEAVE_GROUP: 2683 /* 2684 * Drop a multicast group membership. 2685 * Group must be a valid IP6 multicast address. 2686 */ 2687 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2688 error = EINVAL; 2689 break; 2690 } 2691 mreq = mtod(m, struct ipv6_mreq *); 2692 2693 /* 2694 * If an interface address was specified, get a pointer 2695 * to its ifnet structure. 2696 */ 2697 if (mreq->ipv6mr_interface != 0) { 2698 if (if_indexlim <= mreq->ipv6mr_interface || 2699 !ifindex2ifnet[mreq->ipv6mr_interface]) { 2700 error = ENXIO; /* XXX EINVAL? */ 2701 break; 2702 } 2703 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 2704 } else 2705 ifp = NULL; 2706 2707 /* Fill in the scope zone ID */ 2708 if (ifp) { 2709 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) { 2710 /* XXX: should not happen */ 2711 error = EADDRNOTAVAIL; 2712 break; 2713 } 2714 } else if (mreq->ipv6mr_interface != 0) { 2715 /* 2716 * XXX: This case would happens when the (positive) 2717 * index is in the valid range, but the corresponding 2718 * interface has been detached dynamically. The above 2719 * check probably avoids such case to happen here, but 2720 * we check it explicitly for safety. 2721 */ 2722 error = EADDRNOTAVAIL; 2723 break; 2724 } else { /* ipv6mr_interface == 0 */ 2725 struct sockaddr_in6 sa6_mc; 2726 2727 /* 2728 * The API spec says as follows: 2729 * If the interface index is specified as 0, the 2730 * system may choose a multicast group membership to 2731 * drop by matching the multicast address only. 2732 * On the other hand, we cannot disambiguate the scope 2733 * zone unless an interface is provided. Thus, we 2734 * check if there's ambiguity with the default scope 2735 * zone as the last resort. 2736 */ 2737 bzero(&sa6_mc, sizeof(sa6_mc)); 2738 sa6_mc.sin6_family = AF_INET6; 2739 sa6_mc.sin6_len = sizeof(sa6_mc); 2740 sa6_mc.sin6_addr = mreq->ipv6mr_multiaddr; 2741 error = sa6_embedscope(&sa6_mc, ip6_use_defzone); 2742 if (error != 0) 2743 break; 2744 mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr; 2745 } 2746 2747 /* 2748 * Find the membership in the membership list. 2749 */ 2750 for (imm = im6o->im6o_memberships.lh_first; 2751 imm != NULL; imm = imm->i6mm_chain.le_next) { 2752 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2753 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2754 &mreq->ipv6mr_multiaddr)) 2755 break; 2756 } 2757 if (imm == NULL) { 2758 /* Unable to resolve interface */ 2759 error = EADDRNOTAVAIL; 2760 break; 2761 } 2762 /* 2763 * Give up the multicast address record to which the 2764 * membership points. 2765 */ 2766 LIST_REMOVE(imm, i6mm_chain); 2767 in6_leavegroup(imm); 2768 break; 2769 2770 default: 2771 error = EOPNOTSUPP; 2772 break; 2773 } 2774 2775 /* 2776 * If all options have default values, no need to keep the mbuf. 2777 */ 2778 if (im6o->im6o_multicast_ifp == NULL && 2779 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2780 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2781 im6o->im6o_memberships.lh_first == NULL) { 2782 free(*im6op, M_IPMOPTS); 2783 *im6op = NULL; 2784 } 2785 2786 return (error); 2787 } 2788 2789 /* 2790 * Return the IP6 multicast options in response to user getsockopt(). 2791 */ 2792 static int 2793 ip6_getmoptions(optname, im6o, mp) 2794 int optname; 2795 struct ip6_moptions *im6o; 2796 struct mbuf **mp; 2797 { 2798 u_int *hlim, *loop, *ifindex; 2799 2800 *mp = m_get(M_WAIT, MT_SOOPTS); 2801 2802 switch (optname) { 2803 2804 case IPV6_MULTICAST_IF: 2805 ifindex = mtod(*mp, u_int *); 2806 (*mp)->m_len = sizeof(u_int); 2807 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2808 *ifindex = 0; 2809 else 2810 *ifindex = im6o->im6o_multicast_ifp->if_index; 2811 return (0); 2812 2813 case IPV6_MULTICAST_HOPS: 2814 hlim = mtod(*mp, u_int *); 2815 (*mp)->m_len = sizeof(u_int); 2816 if (im6o == NULL) 2817 *hlim = ip6_defmcasthlim; 2818 else 2819 *hlim = im6o->im6o_multicast_hlim; 2820 return (0); 2821 2822 case IPV6_MULTICAST_LOOP: 2823 loop = mtod(*mp, u_int *); 2824 (*mp)->m_len = sizeof(u_int); 2825 if (im6o == NULL) 2826 *loop = ip6_defmcasthlim; 2827 else 2828 *loop = im6o->im6o_multicast_loop; 2829 return (0); 2830 2831 default: 2832 return (EOPNOTSUPP); 2833 } 2834 } 2835 2836 /* 2837 * Discard the IP6 multicast options. 2838 */ 2839 void 2840 ip6_freemoptions(im6o) 2841 struct ip6_moptions *im6o; 2842 { 2843 struct in6_multi_mship *imm; 2844 2845 if (im6o == NULL) 2846 return; 2847 2848 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2849 LIST_REMOVE(imm, i6mm_chain); 2850 in6_leavegroup(imm); 2851 } 2852 free(im6o, M_IPMOPTS); 2853 } 2854 2855 /* 2856 * Set IPv6 outgoing packet options based on advanced API. 2857 */ 2858 int 2859 ip6_setpktopts(control, opt, stickyopt, priv, uproto) 2860 struct mbuf *control; 2861 struct ip6_pktopts *opt, *stickyopt; 2862 int priv, uproto; 2863 { 2864 struct cmsghdr *cm = 0; 2865 2866 if (control == NULL || opt == NULL) 2867 return (EINVAL); 2868 2869 ip6_initpktopts(opt); 2870 if (stickyopt) { 2871 int error; 2872 2873 /* 2874 * If stickyopt is provided, make a local copy of the options 2875 * for this particular packet, then override them by ancillary 2876 * objects. 2877 * XXX: copypktopts() does not copy the cached route to a next 2878 * hop (if any). This is not very good in terms of efficiency, 2879 * but we can allow this since this option should be rarely 2880 * used. 2881 */ 2882 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2883 return (error); 2884 } 2885 2886 /* 2887 * XXX: Currently, we assume all the optional information is stored 2888 * in a single mbuf. 2889 */ 2890 if (control->m_next) 2891 return (EINVAL); 2892 2893 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2894 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2895 int error; 2896 2897 if (control->m_len < CMSG_LEN(0)) 2898 return (EINVAL); 2899 2900 cm = mtod(control, struct cmsghdr *); 2901 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2902 return (EINVAL); 2903 if (cm->cmsg_level != IPPROTO_IPV6) 2904 continue; 2905 2906 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2907 cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, 1, uproto); 2908 if (error) 2909 return (error); 2910 } 2911 2912 return (0); 2913 } 2914 2915 /* 2916 * Set a particular packet option, as a sticky option or an ancillary data 2917 * item. "len" can be 0 only when it's a sticky option. 2918 * We have 4 cases of combination of "sticky" and "cmsg": 2919 * "sticky=0, cmsg=0": impossible 2920 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2921 * "sticky=1, cmsg=0": RFC3542 socket option 2922 * "sticky=1, cmsg=1": RFC2292 socket option 2923 */ 2924 static int 2925 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2926 int priv, int sticky, int cmsg, int uproto) 2927 { 2928 int minmtupolicy; 2929 2930 if (!sticky && !cmsg) { 2931 #ifdef DIAGNOSTIC 2932 printf("ip6_setpktopt: impossible case\n"); 2933 #endif 2934 return (EINVAL); 2935 } 2936 2937 /* 2938 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2939 * not be specified in the context of RFC3542. Conversely, 2940 * RFC3542 types should not be specified in the context of RFC2292. 2941 */ 2942 if (!cmsg) { 2943 switch (optname) { 2944 case IPV6_2292PKTINFO: 2945 case IPV6_2292HOPLIMIT: 2946 case IPV6_2292NEXTHOP: 2947 case IPV6_2292HOPOPTS: 2948 case IPV6_2292DSTOPTS: 2949 case IPV6_2292RTHDR: 2950 case IPV6_2292PKTOPTIONS: 2951 return (ENOPROTOOPT); 2952 } 2953 } 2954 if (sticky && cmsg) { 2955 switch (optname) { 2956 case IPV6_PKTINFO: 2957 case IPV6_HOPLIMIT: 2958 case IPV6_NEXTHOP: 2959 case IPV6_HOPOPTS: 2960 case IPV6_DSTOPTS: 2961 case IPV6_RTHDRDSTOPTS: 2962 case IPV6_RTHDR: 2963 case IPV6_USE_MIN_MTU: 2964 case IPV6_DONTFRAG: 2965 case IPV6_OTCLASS: 2966 case IPV6_TCLASS: 2967 return (ENOPROTOOPT); 2968 } 2969 } 2970 2971 switch (optname) { 2972 #ifdef RFC2292 2973 case IPV6_2292PKTINFO: 2974 #endif 2975 case IPV6_PKTINFO: 2976 { 2977 struct ifnet *ifp = NULL; 2978 struct in6_pktinfo *pktinfo; 2979 2980 if (len != sizeof(struct in6_pktinfo)) 2981 return (EINVAL); 2982 2983 pktinfo = (struct in6_pktinfo *)buf; 2984 2985 /* 2986 * An application can clear any sticky IPV6_PKTINFO option by 2987 * doing a "regular" setsockopt with ipi6_addr being 2988 * in6addr_any and ipi6_ifindex being zero. 2989 * [RFC 3542, Section 6] 2990 */ 2991 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2992 pktinfo->ipi6_ifindex == 0 && 2993 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2994 ip6_clearpktopts(opt, optname); 2995 break; 2996 } 2997 2998 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2999 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 3000 return (EINVAL); 3001 } 3002 3003 /* validate the interface index if specified. */ 3004 if (pktinfo->ipi6_ifindex >= if_indexlim) { 3005 return (ENXIO); 3006 } 3007 if (pktinfo->ipi6_ifindex) { 3008 ifp = ifindex2ifnet[pktinfo->ipi6_ifindex]; 3009 if (ifp == NULL) 3010 return (ENXIO); 3011 } 3012 3013 /* 3014 * We store the address anyway, and let in6_selectsrc() 3015 * validate the specified address. This is because ipi6_addr 3016 * may not have enough information about its scope zone, and 3017 * we may need additional information (such as outgoing 3018 * interface or the scope zone of a destination address) to 3019 * disambiguate the scope. 3020 * XXX: the delay of the validation may confuse the 3021 * application when it is used as a sticky option. 3022 */ 3023 if (opt->ip6po_pktinfo == NULL) { 3024 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 3025 M_IP6OPT, M_NOWAIT); 3026 if (opt->ip6po_pktinfo == NULL) 3027 return (ENOBUFS); 3028 } 3029 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo)); 3030 break; 3031 } 3032 3033 #ifdef RFC2292 3034 case IPV6_2292HOPLIMIT: 3035 #endif 3036 case IPV6_HOPLIMIT: 3037 { 3038 int *hlimp; 3039 3040 /* 3041 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 3042 * to simplify the ordering among hoplimit options. 3043 */ 3044 if (optname == IPV6_HOPLIMIT && sticky) 3045 return (ENOPROTOOPT); 3046 3047 if (len != sizeof(int)) 3048 return (EINVAL); 3049 hlimp = (int *)buf; 3050 if (*hlimp < -1 || *hlimp > 255) 3051 return (EINVAL); 3052 3053 opt->ip6po_hlim = *hlimp; 3054 break; 3055 } 3056 3057 case IPV6_OTCLASS: 3058 if (len != sizeof(u_int8_t)) 3059 return (EINVAL); 3060 3061 opt->ip6po_tclass = *(u_int8_t *)buf; 3062 break; 3063 3064 case IPV6_TCLASS: 3065 { 3066 int tclass; 3067 3068 if (len != sizeof(int)) 3069 return (EINVAL); 3070 tclass = *(int *)buf; 3071 if (tclass < -1 || tclass > 255) 3072 return (EINVAL); 3073 3074 opt->ip6po_tclass = tclass; 3075 break; 3076 } 3077 3078 #ifdef RFC2292 3079 case IPV6_2292NEXTHOP: 3080 #endif 3081 case IPV6_NEXTHOP: 3082 if (!priv) 3083 return (EPERM); 3084 3085 if (len == 0) { /* just remove the option */ 3086 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3087 break; 3088 } 3089 3090 /* check if cmsg_len is large enough for sa_len */ 3091 if (len < sizeof(struct sockaddr) || len < *buf) 3092 return (EINVAL); 3093 3094 switch (((struct sockaddr *)buf)->sa_family) { 3095 case AF_INET6: 3096 { 3097 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3098 int error; 3099 3100 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3101 return (EINVAL); 3102 3103 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3104 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3105 return (EINVAL); 3106 } 3107 if ((error = sa6_embedscope(sa6, ip6_use_defzone)) 3108 != 0) { 3109 return (error); 3110 } 3111 break; 3112 } 3113 case AF_LINK: /* eventually be supported? */ 3114 default: 3115 return (EAFNOSUPPORT); 3116 } 3117 3118 /* turn off the previous option, then set the new option. */ 3119 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3120 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3121 if (opt->ip6po_nexthop == NULL) 3122 return (ENOBUFS); 3123 memcpy(opt->ip6po_nexthop, buf, *buf); 3124 break; 3125 3126 #ifdef RFC2292 3127 case IPV6_2292HOPOPTS: 3128 #endif 3129 case IPV6_HOPOPTS: 3130 { 3131 struct ip6_hbh *hbh; 3132 int hbhlen; 3133 3134 /* 3135 * XXX: We don't allow a non-privileged user to set ANY HbH 3136 * options, since per-option restriction has too much 3137 * overhead. 3138 */ 3139 if (!priv) 3140 return (EPERM); 3141 3142 if (len == 0) { 3143 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3144 break; /* just remove the option */ 3145 } 3146 3147 /* message length validation */ 3148 if (len < sizeof(struct ip6_hbh)) 3149 return (EINVAL); 3150 hbh = (struct ip6_hbh *)buf; 3151 hbhlen = (hbh->ip6h_len + 1) << 3; 3152 if (len != hbhlen) 3153 return (EINVAL); 3154 3155 /* turn off the previous option, then set the new option. */ 3156 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3157 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3158 if (opt->ip6po_hbh == NULL) 3159 return (ENOBUFS); 3160 memcpy(opt->ip6po_hbh, hbh, hbhlen); 3161 3162 break; 3163 } 3164 3165 #ifdef RFC2292 3166 case IPV6_2292DSTOPTS: 3167 #endif 3168 case IPV6_DSTOPTS: 3169 case IPV6_RTHDRDSTOPTS: 3170 { 3171 struct ip6_dest *dest, **newdest = NULL; 3172 int destlen; 3173 3174 if (!priv) /* XXX: see the comment for IPV6_HOPOPTS */ 3175 return (EPERM); 3176 3177 if (len == 0) { 3178 ip6_clearpktopts(opt, optname); 3179 break; /* just remove the option */ 3180 } 3181 3182 /* message length validation */ 3183 if (len < sizeof(struct ip6_dest)) 3184 return (EINVAL); 3185 dest = (struct ip6_dest *)buf; 3186 destlen = (dest->ip6d_len + 1) << 3; 3187 if (len != destlen) 3188 return (EINVAL); 3189 /* 3190 * Determine the position that the destination options header 3191 * should be inserted; before or after the routing header. 3192 */ 3193 switch (optname) { 3194 case IPV6_2292DSTOPTS: 3195 /* 3196 * The old advanced API is ambiguous on this point. 3197 * Our approach is to determine the position based 3198 * according to the existence of a routing header. 3199 * Note, however, that this depends on the order of the 3200 * extension headers in the ancillary data; the 1st 3201 * part of the destination options header must appear 3202 * before the routing header in the ancillary data, 3203 * too. 3204 * RFC3542 solved the ambiguity by introducing 3205 * separate ancillary data or option types. 3206 */ 3207 if (opt->ip6po_rthdr == NULL) 3208 newdest = &opt->ip6po_dest1; 3209 else 3210 newdest = &opt->ip6po_dest2; 3211 break; 3212 case IPV6_RTHDRDSTOPTS: 3213 newdest = &opt->ip6po_dest1; 3214 break; 3215 case IPV6_DSTOPTS: 3216 newdest = &opt->ip6po_dest2; 3217 break; 3218 } 3219 3220 /* turn off the previous option, then set the new option. */ 3221 ip6_clearpktopts(opt, optname); 3222 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3223 if (*newdest == NULL) 3224 return (ENOBUFS); 3225 memcpy(*newdest, dest, destlen); 3226 3227 break; 3228 } 3229 3230 #ifdef RFC2292 3231 case IPV6_2292RTHDR: 3232 #endif 3233 case IPV6_RTHDR: 3234 { 3235 struct ip6_rthdr *rth; 3236 int rthlen; 3237 3238 if (len == 0) { 3239 ip6_clearpktopts(opt, IPV6_RTHDR); 3240 break; /* just remove the option */ 3241 } 3242 3243 /* message length validation */ 3244 if (len < sizeof(struct ip6_rthdr)) 3245 return (EINVAL); 3246 rth = (struct ip6_rthdr *)buf; 3247 rthlen = (rth->ip6r_len + 1) << 3; 3248 if (len != rthlen) 3249 return (EINVAL); 3250 switch (rth->ip6r_type) { 3251 case IPV6_RTHDR_TYPE_0: 3252 if (rth->ip6r_len == 0) /* must contain one addr */ 3253 return (EINVAL); 3254 if (rth->ip6r_len % 2) /* length must be even */ 3255 return (EINVAL); 3256 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3257 return (EINVAL); 3258 break; 3259 default: 3260 return (EINVAL); /* not supported */ 3261 } 3262 /* turn off the previous option */ 3263 ip6_clearpktopts(opt, IPV6_RTHDR); 3264 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3265 if (opt->ip6po_rthdr == NULL) 3266 return (ENOBUFS); 3267 memcpy(opt->ip6po_rthdr, rth, rthlen); 3268 break; 3269 } 3270 3271 case IPV6_USE_MIN_MTU: 3272 if (len != sizeof(int)) 3273 return (EINVAL); 3274 minmtupolicy = *(int *)buf; 3275 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3276 minmtupolicy != IP6PO_MINMTU_DISABLE && 3277 minmtupolicy != IP6PO_MINMTU_ALL) { 3278 return (EINVAL); 3279 } 3280 opt->ip6po_minmtu = minmtupolicy; 3281 break; 3282 3283 case IPV6_DONTFRAG: 3284 if (len != sizeof(int)) 3285 return (EINVAL); 3286 3287 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3288 /* 3289 * we ignore this option for TCP sockets. 3290 * (RFC3542 leaves this case unspecified.) 3291 */ 3292 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3293 } else 3294 opt->ip6po_flags |= IP6PO_DONTFRAG; 3295 break; 3296 3297 default: 3298 return (ENOPROTOOPT); 3299 } /* end of switch */ 3300 3301 return (0); 3302 } 3303 3304 /* 3305 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3306 * packet to the input queue of a specified interface. Note that this 3307 * calls the output routine of the loopback "driver", but with an interface 3308 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 3309 */ 3310 void 3311 ip6_mloopback(ifp, m, dst) 3312 struct ifnet *ifp; 3313 struct mbuf *m; 3314 struct sockaddr_in6 *dst; 3315 { 3316 struct mbuf *copym; 3317 struct ip6_hdr *ip6; 3318 3319 copym = m_copy(m, 0, M_COPYALL); 3320 if (copym == NULL) 3321 return; 3322 3323 /* 3324 * Make sure to deep-copy IPv6 header portion in case the data 3325 * is in an mbuf cluster, so that we can safely override the IPv6 3326 * header portion later. 3327 */ 3328 if ((copym->m_flags & M_EXT) != 0 || 3329 copym->m_len < sizeof(struct ip6_hdr)) { 3330 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3331 if (copym == NULL) 3332 return; 3333 } 3334 3335 #ifdef DIAGNOSTIC 3336 if (copym->m_len < sizeof(*ip6)) { 3337 m_freem(copym); 3338 return; 3339 } 3340 #endif 3341 3342 ip6 = mtod(copym, struct ip6_hdr *); 3343 /* 3344 * clear embedded scope identifiers if necessary. 3345 * in6_clearscope will touch the addresses only when necessary. 3346 */ 3347 in6_clearscope(&ip6->ip6_src); 3348 in6_clearscope(&ip6->ip6_dst); 3349 3350 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL); 3351 } 3352 3353 /* 3354 * Chop IPv6 header off from the payload. 3355 */ 3356 static int 3357 ip6_splithdr(m, exthdrs) 3358 struct mbuf *m; 3359 struct ip6_exthdrs *exthdrs; 3360 { 3361 struct mbuf *mh; 3362 struct ip6_hdr *ip6; 3363 3364 ip6 = mtod(m, struct ip6_hdr *); 3365 if (m->m_len > sizeof(*ip6)) { 3366 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3367 if (mh == 0) { 3368 m_freem(m); 3369 return ENOBUFS; 3370 } 3371 M_MOVE_PKTHDR(mh, m); 3372 MH_ALIGN(mh, sizeof(*ip6)); 3373 m->m_len -= sizeof(*ip6); 3374 m->m_data += sizeof(*ip6); 3375 mh->m_next = m; 3376 m = mh; 3377 m->m_len = sizeof(*ip6); 3378 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3379 } 3380 exthdrs->ip6e_ip6 = m; 3381 return 0; 3382 } 3383 3384 /* 3385 * Compute IPv6 extension header length. 3386 */ 3387 int 3388 ip6_optlen(in6p) 3389 struct in6pcb *in6p; 3390 { 3391 int len; 3392 3393 if (!in6p->in6p_outputopts) 3394 return 0; 3395 3396 len = 0; 3397 #define elen(x) \ 3398 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3399 3400 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3401 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3402 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3403 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3404 return len; 3405 #undef elen 3406 } 3407