1 /* $NetBSD: ip6_output.c,v 1.157 2014/05/30 01:39:03 christos Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.157 2014/05/30 01:39:03 christos Exp $"); 66 67 #include "opt_inet.h" 68 #include "opt_inet6.h" 69 #include "opt_ipsec.h" 70 71 #include <sys/param.h> 72 #include <sys/malloc.h> 73 #include <sys/mbuf.h> 74 #include <sys/errno.h> 75 #include <sys/protosw.h> 76 #include <sys/socket.h> 77 #include <sys/socketvar.h> 78 #include <sys/systm.h> 79 #include <sys/proc.h> 80 #include <sys/kauth.h> 81 82 #include <net/if.h> 83 #include <net/route.h> 84 #include <net/pfil.h> 85 86 #include <netinet/in.h> 87 #include <netinet/in_var.h> 88 #include <netinet/ip6.h> 89 #include <netinet/icmp6.h> 90 #include <netinet/in_offload.h> 91 #include <netinet/portalgo.h> 92 #include <netinet6/in6_offload.h> 93 #include <netinet6/ip6_var.h> 94 #include <netinet6/ip6_private.h> 95 #include <netinet6/in6_pcb.h> 96 #include <netinet6/nd6.h> 97 #include <netinet6/ip6protosw.h> 98 #include <netinet6/scope6_var.h> 99 100 #ifdef IPSEC 101 #include <netipsec/ipsec.h> 102 #include <netipsec/ipsec6.h> 103 #include <netipsec/key.h> 104 #include <netipsec/xform.h> 105 #endif 106 107 108 #include <net/net_osdep.h> 109 110 extern pfil_head_t *inet6_pfil_hook; /* XXX */ 111 112 struct ip6_exthdrs { 113 struct mbuf *ip6e_ip6; 114 struct mbuf *ip6e_hbh; 115 struct mbuf *ip6e_dest1; 116 struct mbuf *ip6e_rthdr; 117 struct mbuf *ip6e_dest2; 118 }; 119 120 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 121 kauth_cred_t, int); 122 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 123 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t, 124 int, int, int); 125 static int ip6_setmoptions(const struct sockopt *, struct ip6_moptions **); 126 static int ip6_getmoptions(struct sockopt *, struct ip6_moptions *); 127 static int ip6_copyexthdr(struct mbuf **, void *, int); 128 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 129 struct ip6_frag **); 130 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 131 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 132 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *, 133 const struct in6_addr *, u_long *, int *); 134 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 135 136 #ifdef RFC2292 137 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *); 138 #endif 139 140 /* 141 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 142 * header (with pri, len, nxt, hlim, src, dst). 143 * This function may modify ver and hlim only. 144 * The mbuf chain containing the packet will be freed. 145 * The mbuf opt, if present, will not be freed. 146 * 147 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 148 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 149 * which is rt_rmx.rmx_mtu. 150 */ 151 int 152 ip6_output( 153 struct mbuf *m0, 154 struct ip6_pktopts *opt, 155 struct route *ro, 156 int flags, 157 struct ip6_moptions *im6o, 158 struct socket *so, 159 struct ifnet **ifpp /* XXX: just for statistics */ 160 ) 161 { 162 struct ip6_hdr *ip6, *mhip6; 163 struct ifnet *ifp, *origifp; 164 struct mbuf *m = m0; 165 int hlen, tlen, len, off; 166 bool tso; 167 struct route ip6route; 168 struct rtentry *rt = NULL; 169 const struct sockaddr_in6 *dst = NULL; 170 struct sockaddr_in6 src_sa, dst_sa; 171 int error = 0; 172 struct in6_ifaddr *ia = NULL; 173 u_long mtu; 174 int alwaysfrag, dontfrag; 175 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 176 struct ip6_exthdrs exthdrs; 177 struct in6_addr finaldst, src0, dst0; 178 u_int32_t zone; 179 struct route *ro_pmtu = NULL; 180 int hdrsplit = 0; 181 int needipsec = 0; 182 #ifdef IPSEC 183 struct secpolicy *sp = NULL; 184 #endif 185 186 memset(&ip6route, 0, sizeof(ip6route)); 187 188 #ifdef DIAGNOSTIC 189 if ((m->m_flags & M_PKTHDR) == 0) 190 panic("ip6_output: no HDR"); 191 192 if ((m->m_pkthdr.csum_flags & 193 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) { 194 panic("ip6_output: IPv4 checksum offload flags: %d", 195 m->m_pkthdr.csum_flags); 196 } 197 198 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 199 (M_CSUM_TCPv6|M_CSUM_UDPv6)) { 200 panic("ip6_output: conflicting checksum offload flags: %d", 201 m->m_pkthdr.csum_flags); 202 } 203 #endif 204 205 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr)); 206 207 #define MAKE_EXTHDR(hp, mp) \ 208 do { \ 209 if (hp) { \ 210 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 211 error = ip6_copyexthdr((mp), (void *)(hp), \ 212 ((eh)->ip6e_len + 1) << 3); \ 213 if (error) \ 214 goto freehdrs; \ 215 } \ 216 } while (/*CONSTCOND*/ 0) 217 218 memset(&exthdrs, 0, sizeof(exthdrs)); 219 if (opt) { 220 /* Hop-by-Hop options header */ 221 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 222 /* Destination options header(1st part) */ 223 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 224 /* Routing header */ 225 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 226 /* Destination options header(2nd part) */ 227 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 228 } 229 230 /* 231 * Calculate the total length of the extension header chain. 232 * Keep the length of the unfragmentable part for fragmentation. 233 */ 234 optlen = 0; 235 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 236 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 237 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 238 unfragpartlen = optlen + sizeof(struct ip6_hdr); 239 /* NOTE: we don't add AH/ESP length here. do that later. */ 240 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 241 242 #ifdef IPSEC 243 if (ipsec_used) { 244 /* Check the security policy (SP) for the packet */ 245 246 sp = ipsec6_check_policy(m, so, flags, &needipsec, &error); 247 if (error != 0) { 248 /* 249 * Hack: -EINVAL is used to signal that a packet 250 * should be silently discarded. This is typically 251 * because we asked key management for an SA and 252 * it was delayed (e.g. kicked up to IKE). 253 */ 254 if (error == -EINVAL) 255 error = 0; 256 goto freehdrs; 257 } 258 } 259 #endif /* IPSEC */ 260 261 262 if (needipsec && 263 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 264 in6_delayed_cksum(m); 265 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 266 } 267 268 269 /* 270 * If we need IPsec, or there is at least one extension header, 271 * separate IP6 header from the payload. 272 */ 273 if ((needipsec || optlen) && !hdrsplit) { 274 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 275 m = NULL; 276 goto freehdrs; 277 } 278 m = exthdrs.ip6e_ip6; 279 hdrsplit++; 280 } 281 282 /* adjust pointer */ 283 ip6 = mtod(m, struct ip6_hdr *); 284 285 /* adjust mbuf packet header length */ 286 m->m_pkthdr.len += optlen; 287 plen = m->m_pkthdr.len - sizeof(*ip6); 288 289 /* If this is a jumbo payload, insert a jumbo payload option. */ 290 if (plen > IPV6_MAXPACKET) { 291 if (!hdrsplit) { 292 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 293 m = NULL; 294 goto freehdrs; 295 } 296 m = exthdrs.ip6e_ip6; 297 hdrsplit++; 298 } 299 /* adjust pointer */ 300 ip6 = mtod(m, struct ip6_hdr *); 301 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 302 goto freehdrs; 303 optlen += 8; /* XXX JUMBOOPTLEN */ 304 ip6->ip6_plen = 0; 305 } else 306 ip6->ip6_plen = htons(plen); 307 308 /* 309 * Concatenate headers and fill in next header fields. 310 * Here we have, on "m" 311 * IPv6 payload 312 * and we insert headers accordingly. Finally, we should be getting: 313 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 314 * 315 * during the header composing process, "m" points to IPv6 header. 316 * "mprev" points to an extension header prior to esp. 317 */ 318 { 319 u_char *nexthdrp = &ip6->ip6_nxt; 320 struct mbuf *mprev = m; 321 322 /* 323 * we treat dest2 specially. this makes IPsec processing 324 * much easier. the goal here is to make mprev point the 325 * mbuf prior to dest2. 326 * 327 * result: IPv6 dest2 payload 328 * m and mprev will point to IPv6 header. 329 */ 330 if (exthdrs.ip6e_dest2) { 331 if (!hdrsplit) 332 panic("assumption failed: hdr not split"); 333 exthdrs.ip6e_dest2->m_next = m->m_next; 334 m->m_next = exthdrs.ip6e_dest2; 335 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 336 ip6->ip6_nxt = IPPROTO_DSTOPTS; 337 } 338 339 #define MAKE_CHAIN(m, mp, p, i)\ 340 do {\ 341 if (m) {\ 342 if (!hdrsplit) \ 343 panic("assumption failed: hdr not split"); \ 344 *mtod((m), u_char *) = *(p);\ 345 *(p) = (i);\ 346 p = mtod((m), u_char *);\ 347 (m)->m_next = (mp)->m_next;\ 348 (mp)->m_next = (m);\ 349 (mp) = (m);\ 350 }\ 351 } while (/*CONSTCOND*/ 0) 352 /* 353 * result: IPv6 hbh dest1 rthdr dest2 payload 354 * m will point to IPv6 header. mprev will point to the 355 * extension header prior to dest2 (rthdr in the above case). 356 */ 357 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 358 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 359 IPPROTO_DSTOPTS); 360 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 361 IPPROTO_ROUTING); 362 363 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, 364 sizeof(struct ip6_hdr) + optlen); 365 } 366 367 /* 368 * If there is a routing header, replace destination address field 369 * with the first hop of the routing header. 370 */ 371 if (exthdrs.ip6e_rthdr) { 372 struct ip6_rthdr *rh; 373 struct ip6_rthdr0 *rh0; 374 struct in6_addr *addr; 375 struct sockaddr_in6 sa; 376 377 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 378 struct ip6_rthdr *)); 379 finaldst = ip6->ip6_dst; 380 switch (rh->ip6r_type) { 381 case IPV6_RTHDR_TYPE_0: 382 rh0 = (struct ip6_rthdr0 *)rh; 383 addr = (struct in6_addr *)(rh0 + 1); 384 385 /* 386 * construct a sockaddr_in6 form of 387 * the first hop. 388 * 389 * XXX: we may not have enough 390 * information about its scope zone; 391 * there is no standard API to pass 392 * the information from the 393 * application. 394 */ 395 sockaddr_in6_init(&sa, addr, 0, 0, 0); 396 if ((error = sa6_embedscope(&sa, 397 ip6_use_defzone)) != 0) { 398 goto bad; 399 } 400 ip6->ip6_dst = sa.sin6_addr; 401 (void)memmove(&addr[0], &addr[1], 402 sizeof(struct in6_addr) * 403 (rh0->ip6r0_segleft - 1)); 404 addr[rh0->ip6r0_segleft - 1] = finaldst; 405 /* XXX */ 406 in6_clearscope(addr + rh0->ip6r0_segleft - 1); 407 break; 408 default: /* is it possible? */ 409 error = EINVAL; 410 goto bad; 411 } 412 } 413 414 /* Source address validation */ 415 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 416 (flags & IPV6_UNSPECSRC) == 0) { 417 error = EOPNOTSUPP; 418 IP6_STATINC(IP6_STAT_BADSCOPE); 419 goto bad; 420 } 421 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 422 error = EOPNOTSUPP; 423 IP6_STATINC(IP6_STAT_BADSCOPE); 424 goto bad; 425 } 426 427 IP6_STATINC(IP6_STAT_LOCALOUT); 428 429 /* 430 * Route packet. 431 */ 432 /* initialize cached route */ 433 if (ro == NULL) { 434 ro = &ip6route; 435 } 436 ro_pmtu = ro; 437 if (opt && opt->ip6po_rthdr) 438 ro = &opt->ip6po_route; 439 440 /* 441 * if specified, try to fill in the traffic class field. 442 * do not override if a non-zero value is already set. 443 * we check the diffserv field and the ecn field separately. 444 */ 445 if (opt && opt->ip6po_tclass >= 0) { 446 int mask = 0; 447 448 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 449 mask |= 0xfc; 450 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 451 mask |= 0x03; 452 if (mask != 0) 453 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 454 } 455 456 /* fill in or override the hop limit field, if necessary. */ 457 if (opt && opt->ip6po_hlim != -1) 458 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 459 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 460 if (im6o != NULL) 461 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 462 else 463 ip6->ip6_hlim = ip6_defmcasthlim; 464 } 465 466 #ifdef IPSEC 467 if (needipsec) { 468 int s = splsoftnet(); 469 error = ipsec6_process_packet(m, sp->req); 470 471 /* 472 * Preserve KAME behaviour: ENOENT can be returned 473 * when an SA acquire is in progress. Don't propagate 474 * this to user-level; it confuses applications. 475 * XXX this will go away when the SADB is redone. 476 */ 477 if (error == ENOENT) 478 error = 0; 479 splx(s); 480 goto done; 481 } 482 #endif /* IPSEC */ 483 484 /* adjust pointer */ 485 ip6 = mtod(m, struct ip6_hdr *); 486 487 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 488 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, 489 &ifp, &rt, 0)) != 0) { 490 if (ifp != NULL) 491 in6_ifstat_inc(ifp, ifs6_out_discard); 492 goto bad; 493 } 494 if (rt == NULL) { 495 /* 496 * If in6_selectroute() does not return a route entry, 497 * dst may not have been updated. 498 */ 499 error = rtcache_setdst(ro, sin6tosa(&dst_sa)); 500 if (error) { 501 goto bad; 502 } 503 } 504 505 /* 506 * then rt (for unicast) and ifp must be non-NULL valid values. 507 */ 508 if ((flags & IPV6_FORWARDING) == 0) { 509 /* XXX: the FORWARDING flag can be set for mrouting. */ 510 in6_ifstat_inc(ifp, ifs6_out_request); 511 } 512 if (rt != NULL) { 513 ia = (struct in6_ifaddr *)(rt->rt_ifa); 514 rt->rt_use++; 515 } 516 517 /* 518 * The outgoing interface must be in the zone of source and 519 * destination addresses. We should use ia_ifp to support the 520 * case of sending packets to an address of our own. 521 */ 522 if (ia != NULL && ia->ia_ifp) 523 origifp = ia->ia_ifp; 524 else 525 origifp = ifp; 526 527 src0 = ip6->ip6_src; 528 if (in6_setscope(&src0, origifp, &zone)) 529 goto badscope; 530 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0); 531 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 532 goto badscope; 533 534 dst0 = ip6->ip6_dst; 535 if (in6_setscope(&dst0, origifp, &zone)) 536 goto badscope; 537 /* re-initialize to be sure */ 538 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 539 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) 540 goto badscope; 541 542 /* scope check is done. */ 543 544 if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 545 if (dst == NULL) 546 dst = satocsin6(rtcache_getdst(ro)); 547 KASSERT(dst != NULL); 548 } else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) { 549 /* 550 * The nexthop is explicitly specified by the 551 * application. We assume the next hop is an IPv6 552 * address. 553 */ 554 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 555 } else if ((rt->rt_flags & RTF_GATEWAY)) 556 dst = (struct sockaddr_in6 *)rt->rt_gateway; 557 else if (dst == NULL) 558 dst = satocsin6(rtcache_getdst(ro)); 559 560 /* 561 * XXXXXX: original code follows: 562 */ 563 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 564 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 565 else { 566 struct in6_multi *in6m; 567 568 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 569 570 in6_ifstat_inc(ifp, ifs6_out_mcast); 571 572 /* 573 * Confirm that the outgoing interface supports multicast. 574 */ 575 if (!(ifp->if_flags & IFF_MULTICAST)) { 576 IP6_STATINC(IP6_STAT_NOROUTE); 577 in6_ifstat_inc(ifp, ifs6_out_discard); 578 error = ENETUNREACH; 579 goto bad; 580 } 581 582 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 583 if (in6m != NULL && 584 (im6o == NULL || im6o->im6o_multicast_loop)) { 585 /* 586 * If we belong to the destination multicast group 587 * on the outgoing interface, and the caller did not 588 * forbid loopback, loop back a copy. 589 */ 590 KASSERT(dst != NULL); 591 ip6_mloopback(ifp, m, dst); 592 } else { 593 /* 594 * If we are acting as a multicast router, perform 595 * multicast forwarding as if the packet had just 596 * arrived on the interface to which we are about 597 * to send. The multicast forwarding function 598 * recursively calls this function, using the 599 * IPV6_FORWARDING flag to prevent infinite recursion. 600 * 601 * Multicasts that are looped back by ip6_mloopback(), 602 * above, will be forwarded by the ip6_input() routine, 603 * if necessary. 604 */ 605 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 606 if (ip6_mforward(ip6, ifp, m) != 0) { 607 m_freem(m); 608 goto done; 609 } 610 } 611 } 612 /* 613 * Multicasts with a hoplimit of zero may be looped back, 614 * above, but must not be transmitted on a network. 615 * Also, multicasts addressed to the loopback interface 616 * are not sent -- the above call to ip6_mloopback() will 617 * loop back a copy if this host actually belongs to the 618 * destination group on the loopback interface. 619 */ 620 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 621 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 622 m_freem(m); 623 goto done; 624 } 625 } 626 627 /* 628 * Fill the outgoing inteface to tell the upper layer 629 * to increment per-interface statistics. 630 */ 631 if (ifpp) 632 *ifpp = ifp; 633 634 /* Determine path MTU. */ 635 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 636 &alwaysfrag)) != 0) 637 goto bad; 638 639 /* 640 * The caller of this function may specify to use the minimum MTU 641 * in some cases. 642 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 643 * setting. The logic is a bit complicated; by default, unicast 644 * packets will follow path MTU while multicast packets will be sent at 645 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 646 * including unicast ones will be sent at the minimum MTU. Multicast 647 * packets will always be sent at the minimum MTU unless 648 * IP6PO_MINMTU_DISABLE is explicitly specified. 649 * See RFC 3542 for more details. 650 */ 651 if (mtu > IPV6_MMTU) { 652 if ((flags & IPV6_MINMTU)) 653 mtu = IPV6_MMTU; 654 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 655 mtu = IPV6_MMTU; 656 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 657 (opt == NULL || 658 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 659 mtu = IPV6_MMTU; 660 } 661 } 662 663 /* 664 * clear embedded scope identifiers if necessary. 665 * in6_clearscope will touch the addresses only when necessary. 666 */ 667 in6_clearscope(&ip6->ip6_src); 668 in6_clearscope(&ip6->ip6_dst); 669 670 /* 671 * If the outgoing packet contains a hop-by-hop options header, 672 * it must be examined and processed even by the source node. 673 * (RFC 2460, section 4.) 674 */ 675 if (ip6->ip6_nxt == IPV6_HOPOPTS) { 676 u_int32_t dummy1; /* XXX unused */ 677 u_int32_t dummy2; /* XXX unused */ 678 int hoff = sizeof(struct ip6_hdr); 679 680 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) { 681 /* m was already freed at this point */ 682 error = EINVAL;/* better error? */ 683 goto done; 684 } 685 686 ip6 = mtod(m, struct ip6_hdr *); 687 } 688 689 /* 690 * Run through list of hooks for output packets. 691 */ 692 if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0) 693 goto done; 694 if (m == NULL) 695 goto done; 696 ip6 = mtod(m, struct ip6_hdr *); 697 698 /* 699 * Send the packet to the outgoing interface. 700 * If necessary, do IPv6 fragmentation before sending. 701 * 702 * the logic here is rather complex: 703 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 704 * 1-a: send as is if tlen <= path mtu 705 * 1-b: fragment if tlen > path mtu 706 * 707 * 2: if user asks us not to fragment (dontfrag == 1) 708 * 2-a: send as is if tlen <= interface mtu 709 * 2-b: error if tlen > interface mtu 710 * 711 * 3: if we always need to attach fragment header (alwaysfrag == 1) 712 * always fragment 713 * 714 * 4: if dontfrag == 1 && alwaysfrag == 1 715 * error, as we cannot handle this conflicting request 716 */ 717 tlen = m->m_pkthdr.len; 718 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0; 719 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 720 dontfrag = 1; 721 else 722 dontfrag = 0; 723 724 if (dontfrag && alwaysfrag) { /* case 4 */ 725 /* conflicting request - can't transmit */ 726 error = EMSGSIZE; 727 goto bad; 728 } 729 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */ 730 /* 731 * Even if the DONTFRAG option is specified, we cannot send the 732 * packet when the data length is larger than the MTU of the 733 * outgoing interface. 734 * Notify the error by sending IPV6_PATHMTU ancillary data as 735 * well as returning an error code (the latter is not described 736 * in the API spec.) 737 */ 738 u_int32_t mtu32; 739 struct ip6ctlparam ip6cp; 740 741 mtu32 = (u_int32_t)mtu; 742 memset(&ip6cp, 0, sizeof(ip6cp)); 743 ip6cp.ip6c_cmdarg = (void *)&mtu32; 744 pfctlinput2(PRC_MSGSIZE, 745 rtcache_getdst(ro_pmtu), &ip6cp); 746 747 error = EMSGSIZE; 748 goto bad; 749 } 750 751 /* 752 * transmit packet without fragmentation 753 */ 754 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) { 755 /* case 1-a and 2-a */ 756 struct in6_ifaddr *ia6; 757 int sw_csum; 758 759 ip6 = mtod(m, struct ip6_hdr *); 760 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 761 if (ia6) { 762 /* Record statistics for this interface address. */ 763 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len; 764 } 765 766 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 767 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 768 if (IN6_NEED_CHECKSUM(ifp, 769 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 770 in6_delayed_cksum(m); 771 } 772 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 773 } 774 775 KASSERT(dst != NULL); 776 if (__predict_true(!tso || 777 (ifp->if_capenable & IFCAP_TSOv6) != 0)) { 778 error = nd6_output(ifp, origifp, m, dst, rt); 779 } else { 780 error = ip6_tso_output(ifp, origifp, m, dst, rt); 781 } 782 goto done; 783 } 784 785 if (tso) { 786 error = EINVAL; /* XXX */ 787 goto bad; 788 } 789 790 /* 791 * try to fragment the packet. case 1-b and 3 792 */ 793 if (mtu < IPV6_MMTU) { 794 /* path MTU cannot be less than IPV6_MMTU */ 795 error = EMSGSIZE; 796 in6_ifstat_inc(ifp, ifs6_out_fragfail); 797 goto bad; 798 } else if (ip6->ip6_plen == 0) { 799 /* jumbo payload cannot be fragmented */ 800 error = EMSGSIZE; 801 in6_ifstat_inc(ifp, ifs6_out_fragfail); 802 goto bad; 803 } else { 804 struct mbuf **mnext, *m_frgpart; 805 struct ip6_frag *ip6f; 806 u_int32_t id = htonl(ip6_randomid()); 807 u_char nextproto; 808 #if 0 /* see below */ 809 struct ip6ctlparam ip6cp; 810 u_int32_t mtu32; 811 #endif 812 813 /* 814 * Too large for the destination or interface; 815 * fragment if possible. 816 * Must be able to put at least 8 bytes per fragment. 817 */ 818 hlen = unfragpartlen; 819 if (mtu > IPV6_MAXPACKET) 820 mtu = IPV6_MAXPACKET; 821 822 #if 0 823 /* 824 * It is believed this code is a leftover from the 825 * development of the IPV6_RECVPATHMTU sockopt and 826 * associated work to implement RFC3542. 827 * It's not entirely clear what the intent of the API 828 * is at this point, so disable this code for now. 829 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG 830 * will send notifications if the application requests. 831 */ 832 833 /* Notify a proper path MTU to applications. */ 834 mtu32 = (u_int32_t)mtu; 835 memset(&ip6cp, 0, sizeof(ip6cp)); 836 ip6cp.ip6c_cmdarg = (void *)&mtu32; 837 pfctlinput2(PRC_MSGSIZE, 838 rtcache_getdst(ro_pmtu), &ip6cp); 839 #endif 840 841 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 842 if (len < 8) { 843 error = EMSGSIZE; 844 in6_ifstat_inc(ifp, ifs6_out_fragfail); 845 goto bad; 846 } 847 848 mnext = &m->m_nextpkt; 849 850 /* 851 * Change the next header field of the last header in the 852 * unfragmentable part. 853 */ 854 if (exthdrs.ip6e_rthdr) { 855 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 856 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 857 } else if (exthdrs.ip6e_dest1) { 858 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 859 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 860 } else if (exthdrs.ip6e_hbh) { 861 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 862 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 863 } else { 864 nextproto = ip6->ip6_nxt; 865 ip6->ip6_nxt = IPPROTO_FRAGMENT; 866 } 867 868 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) 869 != 0) { 870 if (IN6_NEED_CHECKSUM(ifp, 871 m->m_pkthdr.csum_flags & 872 (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 873 in6_delayed_cksum(m); 874 } 875 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 876 } 877 878 /* 879 * Loop through length of segment after first fragment, 880 * make new header and copy data of each part and link onto 881 * chain. 882 */ 883 m0 = m; 884 for (off = hlen; off < tlen; off += len) { 885 struct mbuf *mlast; 886 887 MGETHDR(m, M_DONTWAIT, MT_HEADER); 888 if (!m) { 889 error = ENOBUFS; 890 IP6_STATINC(IP6_STAT_ODROPPED); 891 goto sendorfree; 892 } 893 m->m_pkthdr.rcvif = NULL; 894 m->m_flags = m0->m_flags & M_COPYFLAGS; 895 *mnext = m; 896 mnext = &m->m_nextpkt; 897 m->m_data += max_linkhdr; 898 mhip6 = mtod(m, struct ip6_hdr *); 899 *mhip6 = *ip6; 900 m->m_len = sizeof(*mhip6); 901 /* 902 * ip6f must be valid if error is 0. But how 903 * can a compiler be expected to infer this? 904 */ 905 ip6f = NULL; 906 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 907 if (error) { 908 IP6_STATINC(IP6_STAT_ODROPPED); 909 goto sendorfree; 910 } 911 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 912 if (off + len >= tlen) 913 len = tlen - off; 914 else 915 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 916 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 917 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 918 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 919 error = ENOBUFS; 920 IP6_STATINC(IP6_STAT_ODROPPED); 921 goto sendorfree; 922 } 923 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 924 ; 925 mlast->m_next = m_frgpart; 926 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 927 m->m_pkthdr.rcvif = NULL; 928 ip6f->ip6f_reserved = 0; 929 ip6f->ip6f_ident = id; 930 ip6f->ip6f_nxt = nextproto; 931 IP6_STATINC(IP6_STAT_OFRAGMENTS); 932 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 933 } 934 935 in6_ifstat_inc(ifp, ifs6_out_fragok); 936 } 937 938 /* 939 * Remove leading garbages. 940 */ 941 sendorfree: 942 m = m0->m_nextpkt; 943 m0->m_nextpkt = 0; 944 m_freem(m0); 945 for (m0 = m; m; m = m0) { 946 m0 = m->m_nextpkt; 947 m->m_nextpkt = 0; 948 if (error == 0) { 949 struct in6_ifaddr *ia6; 950 ip6 = mtod(m, struct ip6_hdr *); 951 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 952 if (ia6) { 953 /* 954 * Record statistics for this interface 955 * address. 956 */ 957 ia6->ia_ifa.ifa_data.ifad_outbytes += 958 m->m_pkthdr.len; 959 } 960 KASSERT(dst != NULL); 961 error = nd6_output(ifp, origifp, m, dst, rt); 962 } else 963 m_freem(m); 964 } 965 966 if (error == 0) 967 IP6_STATINC(IP6_STAT_FRAGMENTED); 968 969 done: 970 rtcache_free(&ip6route); 971 972 #ifdef IPSEC 973 if (sp != NULL) 974 KEY_FREESP(&sp); 975 #endif /* IPSEC */ 976 977 978 return (error); 979 980 freehdrs: 981 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 982 m_freem(exthdrs.ip6e_dest1); 983 m_freem(exthdrs.ip6e_rthdr); 984 m_freem(exthdrs.ip6e_dest2); 985 /* FALLTHROUGH */ 986 bad: 987 m_freem(m); 988 goto done; 989 badscope: 990 IP6_STATINC(IP6_STAT_BADSCOPE); 991 in6_ifstat_inc(origifp, ifs6_out_discard); 992 if (error == 0) 993 error = EHOSTUNREACH; /* XXX */ 994 goto bad; 995 } 996 997 static int 998 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen) 999 { 1000 struct mbuf *m; 1001 1002 if (hlen > MCLBYTES) 1003 return (ENOBUFS); /* XXX */ 1004 1005 MGET(m, M_DONTWAIT, MT_DATA); 1006 if (!m) 1007 return (ENOBUFS); 1008 1009 if (hlen > MLEN) { 1010 MCLGET(m, M_DONTWAIT); 1011 if ((m->m_flags & M_EXT) == 0) { 1012 m_free(m); 1013 return (ENOBUFS); 1014 } 1015 } 1016 m->m_len = hlen; 1017 if (hdr) 1018 bcopy(hdr, mtod(m, void *), hlen); 1019 1020 *mp = m; 1021 return (0); 1022 } 1023 1024 /* 1025 * Process a delayed payload checksum calculation. 1026 */ 1027 void 1028 in6_delayed_cksum(struct mbuf *m) 1029 { 1030 uint16_t csum, offset; 1031 1032 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1033 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1034 KASSERT((m->m_pkthdr.csum_flags 1035 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0); 1036 1037 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data); 1038 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset); 1039 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) { 1040 csum = 0xffff; 1041 } 1042 1043 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data); 1044 if ((offset + sizeof(csum)) > m->m_len) { 1045 m_copyback(m, offset, sizeof(csum), &csum); 1046 } else { 1047 *(uint16_t *)(mtod(m, char *) + offset) = csum; 1048 } 1049 } 1050 1051 /* 1052 * Insert jumbo payload option. 1053 */ 1054 static int 1055 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1056 { 1057 struct mbuf *mopt; 1058 u_int8_t *optbuf; 1059 u_int32_t v; 1060 1061 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1062 1063 /* 1064 * If there is no hop-by-hop options header, allocate new one. 1065 * If there is one but it doesn't have enough space to store the 1066 * jumbo payload option, allocate a cluster to store the whole options. 1067 * Otherwise, use it to store the options. 1068 */ 1069 if (exthdrs->ip6e_hbh == 0) { 1070 MGET(mopt, M_DONTWAIT, MT_DATA); 1071 if (mopt == 0) 1072 return (ENOBUFS); 1073 mopt->m_len = JUMBOOPTLEN; 1074 optbuf = mtod(mopt, u_int8_t *); 1075 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1076 exthdrs->ip6e_hbh = mopt; 1077 } else { 1078 struct ip6_hbh *hbh; 1079 1080 mopt = exthdrs->ip6e_hbh; 1081 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1082 /* 1083 * XXX assumption: 1084 * - exthdrs->ip6e_hbh is not referenced from places 1085 * other than exthdrs. 1086 * - exthdrs->ip6e_hbh is not an mbuf chain. 1087 */ 1088 int oldoptlen = mopt->m_len; 1089 struct mbuf *n; 1090 1091 /* 1092 * XXX: give up if the whole (new) hbh header does 1093 * not fit even in an mbuf cluster. 1094 */ 1095 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1096 return (ENOBUFS); 1097 1098 /* 1099 * As a consequence, we must always prepare a cluster 1100 * at this point. 1101 */ 1102 MGET(n, M_DONTWAIT, MT_DATA); 1103 if (n) { 1104 MCLGET(n, M_DONTWAIT); 1105 if ((n->m_flags & M_EXT) == 0) { 1106 m_freem(n); 1107 n = NULL; 1108 } 1109 } 1110 if (!n) 1111 return (ENOBUFS); 1112 n->m_len = oldoptlen + JUMBOOPTLEN; 1113 bcopy(mtod(mopt, void *), mtod(n, void *), 1114 oldoptlen); 1115 optbuf = mtod(n, u_int8_t *) + oldoptlen; 1116 m_freem(mopt); 1117 mopt = exthdrs->ip6e_hbh = n; 1118 } else { 1119 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 1120 mopt->m_len += JUMBOOPTLEN; 1121 } 1122 optbuf[0] = IP6OPT_PADN; 1123 optbuf[1] = 0; 1124 1125 /* 1126 * Adjust the header length according to the pad and 1127 * the jumbo payload option. 1128 */ 1129 hbh = mtod(mopt, struct ip6_hbh *); 1130 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1131 } 1132 1133 /* fill in the option. */ 1134 optbuf[2] = IP6OPT_JUMBO; 1135 optbuf[3] = 4; 1136 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1137 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1138 1139 /* finally, adjust the packet header length */ 1140 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1141 1142 return (0); 1143 #undef JUMBOOPTLEN 1144 } 1145 1146 /* 1147 * Insert fragment header and copy unfragmentable header portions. 1148 * 1149 * *frghdrp will not be read, and it is guaranteed that either an 1150 * error is returned or that *frghdrp will point to space allocated 1151 * for the fragment header. 1152 */ 1153 static int 1154 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1155 struct ip6_frag **frghdrp) 1156 { 1157 struct mbuf *n, *mlast; 1158 1159 if (hlen > sizeof(struct ip6_hdr)) { 1160 n = m_copym(m0, sizeof(struct ip6_hdr), 1161 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1162 if (n == 0) 1163 return (ENOBUFS); 1164 m->m_next = n; 1165 } else 1166 n = m; 1167 1168 /* Search for the last mbuf of unfragmentable part. */ 1169 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1170 ; 1171 1172 if ((mlast->m_flags & M_EXT) == 0 && 1173 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1174 /* use the trailing space of the last mbuf for the fragment hdr */ 1175 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) + 1176 mlast->m_len); 1177 mlast->m_len += sizeof(struct ip6_frag); 1178 m->m_pkthdr.len += sizeof(struct ip6_frag); 1179 } else { 1180 /* allocate a new mbuf for the fragment header */ 1181 struct mbuf *mfrg; 1182 1183 MGET(mfrg, M_DONTWAIT, MT_DATA); 1184 if (mfrg == 0) 1185 return (ENOBUFS); 1186 mfrg->m_len = sizeof(struct ip6_frag); 1187 *frghdrp = mtod(mfrg, struct ip6_frag *); 1188 mlast->m_next = mfrg; 1189 } 1190 1191 return (0); 1192 } 1193 1194 static int 1195 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp, 1196 const struct in6_addr *dst, u_long *mtup, int *alwaysfragp) 1197 { 1198 struct rtentry *rt; 1199 u_int32_t mtu = 0; 1200 int alwaysfrag = 0; 1201 int error = 0; 1202 1203 if (ro_pmtu != ro) { 1204 union { 1205 struct sockaddr dst; 1206 struct sockaddr_in6 dst6; 1207 } u; 1208 1209 /* The first hop and the final destination may differ. */ 1210 sockaddr_in6_init(&u.dst6, dst, 0, 0, 0); 1211 rt = rtcache_lookup(ro_pmtu, &u.dst); 1212 } else 1213 rt = rtcache_validate(ro_pmtu); 1214 if (rt != NULL) { 1215 u_int32_t ifmtu; 1216 1217 if (ifp == NULL) 1218 ifp = rt->rt_ifp; 1219 ifmtu = IN6_LINKMTU(ifp); 1220 mtu = rt->rt_rmx.rmx_mtu; 1221 if (mtu == 0) 1222 mtu = ifmtu; 1223 else if (mtu < IPV6_MMTU) { 1224 /* 1225 * RFC2460 section 5, last paragraph: 1226 * if we record ICMPv6 too big message with 1227 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1228 * or smaller, with fragment header attached. 1229 * (fragment header is needed regardless from the 1230 * packet size, for translators to identify packets) 1231 */ 1232 alwaysfrag = 1; 1233 mtu = IPV6_MMTU; 1234 } else if (mtu > ifmtu) { 1235 /* 1236 * The MTU on the route is larger than the MTU on 1237 * the interface! This shouldn't happen, unless the 1238 * MTU of the interface has been changed after the 1239 * interface was brought up. Change the MTU in the 1240 * route to match the interface MTU (as long as the 1241 * field isn't locked). 1242 */ 1243 mtu = ifmtu; 1244 if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) 1245 rt->rt_rmx.rmx_mtu = mtu; 1246 } 1247 } else if (ifp) { 1248 mtu = IN6_LINKMTU(ifp); 1249 } else 1250 error = EHOSTUNREACH; /* XXX */ 1251 1252 *mtup = mtu; 1253 if (alwaysfragp) 1254 *alwaysfragp = alwaysfrag; 1255 return (error); 1256 } 1257 1258 /* 1259 * IP6 socket option processing. 1260 */ 1261 int 1262 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1263 { 1264 int optdatalen, uproto; 1265 void *optdata; 1266 struct in6pcb *in6p = sotoin6pcb(so); 1267 int error, optval; 1268 int level, optname; 1269 1270 KASSERT(sopt != NULL); 1271 1272 level = sopt->sopt_level; 1273 optname = sopt->sopt_name; 1274 1275 error = optval = 0; 1276 uproto = (int)so->so_proto->pr_protocol; 1277 1278 if (level != IPPROTO_IPV6) { 1279 return ENOPROTOOPT; 1280 } 1281 switch (op) { 1282 case PRCO_SETOPT: 1283 switch (optname) { 1284 #ifdef RFC2292 1285 case IPV6_2292PKTOPTIONS: 1286 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt); 1287 break; 1288 #endif 1289 1290 /* 1291 * Use of some Hop-by-Hop options or some 1292 * Destination options, might require special 1293 * privilege. That is, normal applications 1294 * (without special privilege) might be forbidden 1295 * from setting certain options in outgoing packets, 1296 * and might never see certain options in received 1297 * packets. [RFC 2292 Section 6] 1298 * KAME specific note: 1299 * KAME prevents non-privileged users from sending or 1300 * receiving ANY hbh/dst options in order to avoid 1301 * overhead of parsing options in the kernel. 1302 */ 1303 case IPV6_RECVHOPOPTS: 1304 case IPV6_RECVDSTOPTS: 1305 case IPV6_RECVRTHDRDSTOPTS: 1306 error = kauth_authorize_network(kauth_cred_get(), 1307 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, 1308 NULL, NULL, NULL); 1309 if (error) 1310 break; 1311 /* FALLTHROUGH */ 1312 case IPV6_UNICAST_HOPS: 1313 case IPV6_HOPLIMIT: 1314 case IPV6_FAITH: 1315 1316 case IPV6_RECVPKTINFO: 1317 case IPV6_RECVHOPLIMIT: 1318 case IPV6_RECVRTHDR: 1319 case IPV6_RECVPATHMTU: 1320 case IPV6_RECVTCLASS: 1321 case IPV6_V6ONLY: 1322 error = sockopt_getint(sopt, &optval); 1323 if (error) 1324 break; 1325 switch (optname) { 1326 case IPV6_UNICAST_HOPS: 1327 if (optval < -1 || optval >= 256) 1328 error = EINVAL; 1329 else { 1330 /* -1 = kernel default */ 1331 in6p->in6p_hops = optval; 1332 } 1333 break; 1334 #define OPTSET(bit) \ 1335 do { \ 1336 if (optval) \ 1337 in6p->in6p_flags |= (bit); \ 1338 else \ 1339 in6p->in6p_flags &= ~(bit); \ 1340 } while (/*CONSTCOND*/ 0) 1341 1342 #ifdef RFC2292 1343 #define OPTSET2292(bit) \ 1344 do { \ 1345 in6p->in6p_flags |= IN6P_RFC2292; \ 1346 if (optval) \ 1347 in6p->in6p_flags |= (bit); \ 1348 else \ 1349 in6p->in6p_flags &= ~(bit); \ 1350 } while (/*CONSTCOND*/ 0) 1351 #endif 1352 1353 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1354 1355 case IPV6_RECVPKTINFO: 1356 #ifdef RFC2292 1357 /* cannot mix with RFC2292 */ 1358 if (OPTBIT(IN6P_RFC2292)) { 1359 error = EINVAL; 1360 break; 1361 } 1362 #endif 1363 OPTSET(IN6P_PKTINFO); 1364 break; 1365 1366 case IPV6_HOPLIMIT: 1367 { 1368 struct ip6_pktopts **optp; 1369 1370 #ifdef RFC2292 1371 /* cannot mix with RFC2292 */ 1372 if (OPTBIT(IN6P_RFC2292)) { 1373 error = EINVAL; 1374 break; 1375 } 1376 #endif 1377 optp = &in6p->in6p_outputopts; 1378 error = ip6_pcbopt(IPV6_HOPLIMIT, 1379 (u_char *)&optval, 1380 sizeof(optval), 1381 optp, 1382 kauth_cred_get(), uproto); 1383 break; 1384 } 1385 1386 case IPV6_RECVHOPLIMIT: 1387 #ifdef RFC2292 1388 /* cannot mix with RFC2292 */ 1389 if (OPTBIT(IN6P_RFC2292)) { 1390 error = EINVAL; 1391 break; 1392 } 1393 #endif 1394 OPTSET(IN6P_HOPLIMIT); 1395 break; 1396 1397 case IPV6_RECVHOPOPTS: 1398 #ifdef RFC2292 1399 /* cannot mix with RFC2292 */ 1400 if (OPTBIT(IN6P_RFC2292)) { 1401 error = EINVAL; 1402 break; 1403 } 1404 #endif 1405 OPTSET(IN6P_HOPOPTS); 1406 break; 1407 1408 case IPV6_RECVDSTOPTS: 1409 #ifdef RFC2292 1410 /* cannot mix with RFC2292 */ 1411 if (OPTBIT(IN6P_RFC2292)) { 1412 error = EINVAL; 1413 break; 1414 } 1415 #endif 1416 OPTSET(IN6P_DSTOPTS); 1417 break; 1418 1419 case IPV6_RECVRTHDRDSTOPTS: 1420 #ifdef RFC2292 1421 /* cannot mix with RFC2292 */ 1422 if (OPTBIT(IN6P_RFC2292)) { 1423 error = EINVAL; 1424 break; 1425 } 1426 #endif 1427 OPTSET(IN6P_RTHDRDSTOPTS); 1428 break; 1429 1430 case IPV6_RECVRTHDR: 1431 #ifdef RFC2292 1432 /* cannot mix with RFC2292 */ 1433 if (OPTBIT(IN6P_RFC2292)) { 1434 error = EINVAL; 1435 break; 1436 } 1437 #endif 1438 OPTSET(IN6P_RTHDR); 1439 break; 1440 1441 case IPV6_FAITH: 1442 OPTSET(IN6P_FAITH); 1443 break; 1444 1445 case IPV6_RECVPATHMTU: 1446 /* 1447 * We ignore this option for TCP 1448 * sockets. 1449 * (RFC3542 leaves this case 1450 * unspecified.) 1451 */ 1452 if (uproto != IPPROTO_TCP) 1453 OPTSET(IN6P_MTU); 1454 break; 1455 1456 case IPV6_V6ONLY: 1457 /* 1458 * make setsockopt(IPV6_V6ONLY) 1459 * available only prior to bind(2). 1460 * see ipng mailing list, Jun 22 2001. 1461 */ 1462 if (in6p->in6p_lport || 1463 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1464 error = EINVAL; 1465 break; 1466 } 1467 #ifdef INET6_BINDV6ONLY 1468 if (!optval) 1469 error = EINVAL; 1470 #else 1471 OPTSET(IN6P_IPV6_V6ONLY); 1472 #endif 1473 break; 1474 case IPV6_RECVTCLASS: 1475 #ifdef RFC2292 1476 /* cannot mix with RFC2292 XXX */ 1477 if (OPTBIT(IN6P_RFC2292)) { 1478 error = EINVAL; 1479 break; 1480 } 1481 #endif 1482 OPTSET(IN6P_TCLASS); 1483 break; 1484 1485 } 1486 break; 1487 1488 case IPV6_OTCLASS: 1489 { 1490 struct ip6_pktopts **optp; 1491 u_int8_t tclass; 1492 1493 error = sockopt_get(sopt, &tclass, sizeof(tclass)); 1494 if (error) 1495 break; 1496 optp = &in6p->in6p_outputopts; 1497 error = ip6_pcbopt(optname, 1498 (u_char *)&tclass, 1499 sizeof(tclass), 1500 optp, 1501 kauth_cred_get(), uproto); 1502 break; 1503 } 1504 1505 case IPV6_TCLASS: 1506 case IPV6_DONTFRAG: 1507 case IPV6_USE_MIN_MTU: 1508 error = sockopt_getint(sopt, &optval); 1509 if (error) 1510 break; 1511 { 1512 struct ip6_pktopts **optp; 1513 optp = &in6p->in6p_outputopts; 1514 error = ip6_pcbopt(optname, 1515 (u_char *)&optval, 1516 sizeof(optval), 1517 optp, 1518 kauth_cred_get(), uproto); 1519 break; 1520 } 1521 1522 #ifdef RFC2292 1523 case IPV6_2292PKTINFO: 1524 case IPV6_2292HOPLIMIT: 1525 case IPV6_2292HOPOPTS: 1526 case IPV6_2292DSTOPTS: 1527 case IPV6_2292RTHDR: 1528 /* RFC 2292 */ 1529 error = sockopt_getint(sopt, &optval); 1530 if (error) 1531 break; 1532 1533 switch (optname) { 1534 case IPV6_2292PKTINFO: 1535 OPTSET2292(IN6P_PKTINFO); 1536 break; 1537 case IPV6_2292HOPLIMIT: 1538 OPTSET2292(IN6P_HOPLIMIT); 1539 break; 1540 case IPV6_2292HOPOPTS: 1541 /* 1542 * Check super-user privilege. 1543 * See comments for IPV6_RECVHOPOPTS. 1544 */ 1545 error = 1546 kauth_authorize_network(kauth_cred_get(), 1547 KAUTH_NETWORK_IPV6, 1548 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1549 NULL, NULL); 1550 if (error) 1551 return (error); 1552 OPTSET2292(IN6P_HOPOPTS); 1553 break; 1554 case IPV6_2292DSTOPTS: 1555 error = 1556 kauth_authorize_network(kauth_cred_get(), 1557 KAUTH_NETWORK_IPV6, 1558 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1559 NULL, NULL); 1560 if (error) 1561 return (error); 1562 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1563 break; 1564 case IPV6_2292RTHDR: 1565 OPTSET2292(IN6P_RTHDR); 1566 break; 1567 } 1568 break; 1569 #endif 1570 case IPV6_PKTINFO: 1571 case IPV6_HOPOPTS: 1572 case IPV6_RTHDR: 1573 case IPV6_DSTOPTS: 1574 case IPV6_RTHDRDSTOPTS: 1575 case IPV6_NEXTHOP: { 1576 /* new advanced API (RFC3542) */ 1577 void *optbuf; 1578 int optbuflen; 1579 struct ip6_pktopts **optp; 1580 1581 #ifdef RFC2292 1582 /* cannot mix with RFC2292 */ 1583 if (OPTBIT(IN6P_RFC2292)) { 1584 error = EINVAL; 1585 break; 1586 } 1587 #endif 1588 1589 optbuflen = sopt->sopt_size; 1590 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT); 1591 if (optbuf == NULL) { 1592 error = ENOBUFS; 1593 break; 1594 } 1595 1596 error = sockopt_get(sopt, optbuf, optbuflen); 1597 if (error) { 1598 free(optbuf, M_IP6OPT); 1599 break; 1600 } 1601 optp = &in6p->in6p_outputopts; 1602 error = ip6_pcbopt(optname, optbuf, optbuflen, 1603 optp, kauth_cred_get(), uproto); 1604 break; 1605 } 1606 #undef OPTSET 1607 1608 case IPV6_MULTICAST_IF: 1609 case IPV6_MULTICAST_HOPS: 1610 case IPV6_MULTICAST_LOOP: 1611 case IPV6_JOIN_GROUP: 1612 case IPV6_LEAVE_GROUP: 1613 error = ip6_setmoptions(sopt, &in6p->in6p_moptions); 1614 break; 1615 1616 case IPV6_PORTRANGE: 1617 error = sockopt_getint(sopt, &optval); 1618 if (error) 1619 break; 1620 1621 switch (optval) { 1622 case IPV6_PORTRANGE_DEFAULT: 1623 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1624 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1625 break; 1626 1627 case IPV6_PORTRANGE_HIGH: 1628 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1629 in6p->in6p_flags |= IN6P_HIGHPORT; 1630 break; 1631 1632 case IPV6_PORTRANGE_LOW: 1633 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1634 in6p->in6p_flags |= IN6P_LOWPORT; 1635 break; 1636 1637 default: 1638 error = EINVAL; 1639 break; 1640 } 1641 break; 1642 1643 case IPV6_PORTALGO: 1644 error = sockopt_getint(sopt, &optval); 1645 if (error) 1646 break; 1647 1648 error = portalgo_algo_index_select( 1649 (struct inpcb_hdr *)in6p, optval); 1650 break; 1651 1652 #if defined(IPSEC) 1653 case IPV6_IPSEC_POLICY: 1654 if (ipsec_enabled) { 1655 error = ipsec6_set_policy(in6p, optname, 1656 sopt->sopt_data, sopt->sopt_size, 1657 kauth_cred_get()); 1658 break; 1659 } 1660 /*FALLTHROUGH*/ 1661 #endif /* IPSEC */ 1662 1663 default: 1664 error = ENOPROTOOPT; 1665 break; 1666 } 1667 break; 1668 1669 case PRCO_GETOPT: 1670 switch (optname) { 1671 #ifdef RFC2292 1672 case IPV6_2292PKTOPTIONS: 1673 /* 1674 * RFC3542 (effectively) deprecated the 1675 * semantics of the 2292-style pktoptions. 1676 * Since it was not reliable in nature (i.e., 1677 * applications had to expect the lack of some 1678 * information after all), it would make sense 1679 * to simplify this part by always returning 1680 * empty data. 1681 */ 1682 break; 1683 #endif 1684 1685 case IPV6_RECVHOPOPTS: 1686 case IPV6_RECVDSTOPTS: 1687 case IPV6_RECVRTHDRDSTOPTS: 1688 case IPV6_UNICAST_HOPS: 1689 case IPV6_RECVPKTINFO: 1690 case IPV6_RECVHOPLIMIT: 1691 case IPV6_RECVRTHDR: 1692 case IPV6_RECVPATHMTU: 1693 1694 case IPV6_FAITH: 1695 case IPV6_V6ONLY: 1696 case IPV6_PORTRANGE: 1697 case IPV6_RECVTCLASS: 1698 switch (optname) { 1699 1700 case IPV6_RECVHOPOPTS: 1701 optval = OPTBIT(IN6P_HOPOPTS); 1702 break; 1703 1704 case IPV6_RECVDSTOPTS: 1705 optval = OPTBIT(IN6P_DSTOPTS); 1706 break; 1707 1708 case IPV6_RECVRTHDRDSTOPTS: 1709 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1710 break; 1711 1712 case IPV6_UNICAST_HOPS: 1713 optval = in6p->in6p_hops; 1714 break; 1715 1716 case IPV6_RECVPKTINFO: 1717 optval = OPTBIT(IN6P_PKTINFO); 1718 break; 1719 1720 case IPV6_RECVHOPLIMIT: 1721 optval = OPTBIT(IN6P_HOPLIMIT); 1722 break; 1723 1724 case IPV6_RECVRTHDR: 1725 optval = OPTBIT(IN6P_RTHDR); 1726 break; 1727 1728 case IPV6_RECVPATHMTU: 1729 optval = OPTBIT(IN6P_MTU); 1730 break; 1731 1732 case IPV6_FAITH: 1733 optval = OPTBIT(IN6P_FAITH); 1734 break; 1735 1736 case IPV6_V6ONLY: 1737 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1738 break; 1739 1740 case IPV6_PORTRANGE: 1741 { 1742 int flags; 1743 flags = in6p->in6p_flags; 1744 if (flags & IN6P_HIGHPORT) 1745 optval = IPV6_PORTRANGE_HIGH; 1746 else if (flags & IN6P_LOWPORT) 1747 optval = IPV6_PORTRANGE_LOW; 1748 else 1749 optval = 0; 1750 break; 1751 } 1752 case IPV6_RECVTCLASS: 1753 optval = OPTBIT(IN6P_TCLASS); 1754 break; 1755 1756 } 1757 if (error) 1758 break; 1759 error = sockopt_setint(sopt, optval); 1760 break; 1761 1762 case IPV6_PATHMTU: 1763 { 1764 u_long pmtu = 0; 1765 struct ip6_mtuinfo mtuinfo; 1766 struct route *ro = &in6p->in6p_route; 1767 1768 if (!(so->so_state & SS_ISCONNECTED)) 1769 return (ENOTCONN); 1770 /* 1771 * XXX: we dot not consider the case of source 1772 * routing, or optional information to specify 1773 * the outgoing interface. 1774 */ 1775 error = ip6_getpmtu(ro, NULL, NULL, 1776 &in6p->in6p_faddr, &pmtu, NULL); 1777 if (error) 1778 break; 1779 if (pmtu > IPV6_MAXPACKET) 1780 pmtu = IPV6_MAXPACKET; 1781 1782 memset(&mtuinfo, 0, sizeof(mtuinfo)); 1783 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1784 optdata = (void *)&mtuinfo; 1785 optdatalen = sizeof(mtuinfo); 1786 if (optdatalen > MCLBYTES) 1787 return (EMSGSIZE); /* XXX */ 1788 error = sockopt_set(sopt, optdata, optdatalen); 1789 break; 1790 } 1791 1792 #ifdef RFC2292 1793 case IPV6_2292PKTINFO: 1794 case IPV6_2292HOPLIMIT: 1795 case IPV6_2292HOPOPTS: 1796 case IPV6_2292RTHDR: 1797 case IPV6_2292DSTOPTS: 1798 switch (optname) { 1799 case IPV6_2292PKTINFO: 1800 optval = OPTBIT(IN6P_PKTINFO); 1801 break; 1802 case IPV6_2292HOPLIMIT: 1803 optval = OPTBIT(IN6P_HOPLIMIT); 1804 break; 1805 case IPV6_2292HOPOPTS: 1806 optval = OPTBIT(IN6P_HOPOPTS); 1807 break; 1808 case IPV6_2292RTHDR: 1809 optval = OPTBIT(IN6P_RTHDR); 1810 break; 1811 case IPV6_2292DSTOPTS: 1812 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1813 break; 1814 } 1815 error = sockopt_setint(sopt, optval); 1816 break; 1817 #endif 1818 case IPV6_PKTINFO: 1819 case IPV6_HOPOPTS: 1820 case IPV6_RTHDR: 1821 case IPV6_DSTOPTS: 1822 case IPV6_RTHDRDSTOPTS: 1823 case IPV6_NEXTHOP: 1824 case IPV6_OTCLASS: 1825 case IPV6_TCLASS: 1826 case IPV6_DONTFRAG: 1827 case IPV6_USE_MIN_MTU: 1828 error = ip6_getpcbopt(in6p->in6p_outputopts, 1829 optname, sopt); 1830 break; 1831 1832 case IPV6_MULTICAST_IF: 1833 case IPV6_MULTICAST_HOPS: 1834 case IPV6_MULTICAST_LOOP: 1835 case IPV6_JOIN_GROUP: 1836 case IPV6_LEAVE_GROUP: 1837 error = ip6_getmoptions(sopt, in6p->in6p_moptions); 1838 break; 1839 1840 case IPV6_PORTALGO: 1841 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo; 1842 error = sockopt_setint(sopt, optval); 1843 break; 1844 1845 #if defined(IPSEC) 1846 case IPV6_IPSEC_POLICY: 1847 if (ipsec_used) { 1848 struct mbuf *m = NULL; 1849 1850 /* 1851 * XXX: this will return EINVAL as sopt is 1852 * empty 1853 */ 1854 error = ipsec6_get_policy(in6p, sopt->sopt_data, 1855 sopt->sopt_size, &m); 1856 if (!error) 1857 error = sockopt_setmbuf(sopt, m); 1858 break; 1859 } 1860 /*FALLTHROUGH*/ 1861 #endif /* IPSEC */ 1862 1863 default: 1864 error = ENOPROTOOPT; 1865 break; 1866 } 1867 break; 1868 } 1869 return (error); 1870 } 1871 1872 int 1873 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1874 { 1875 int error = 0, optval; 1876 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 1877 struct in6pcb *in6p = sotoin6pcb(so); 1878 int level, optname; 1879 1880 KASSERT(sopt != NULL); 1881 1882 level = sopt->sopt_level; 1883 optname = sopt->sopt_name; 1884 1885 if (level != IPPROTO_IPV6) { 1886 return ENOPROTOOPT; 1887 } 1888 1889 switch (optname) { 1890 case IPV6_CHECKSUM: 1891 /* 1892 * For ICMPv6 sockets, no modification allowed for checksum 1893 * offset, permit "no change" values to help existing apps. 1894 * 1895 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM 1896 * for an ICMPv6 socket will fail." The current 1897 * behavior does not meet RFC3542. 1898 */ 1899 switch (op) { 1900 case PRCO_SETOPT: 1901 error = sockopt_getint(sopt, &optval); 1902 if (error) 1903 break; 1904 if ((optval % 2) != 0) { 1905 /* the API assumes even offset values */ 1906 error = EINVAL; 1907 } else if (so->so_proto->pr_protocol == 1908 IPPROTO_ICMPV6) { 1909 if (optval != icmp6off) 1910 error = EINVAL; 1911 } else 1912 in6p->in6p_cksum = optval; 1913 break; 1914 1915 case PRCO_GETOPT: 1916 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 1917 optval = icmp6off; 1918 else 1919 optval = in6p->in6p_cksum; 1920 1921 error = sockopt_setint(sopt, optval); 1922 break; 1923 1924 default: 1925 error = EINVAL; 1926 break; 1927 } 1928 break; 1929 1930 default: 1931 error = ENOPROTOOPT; 1932 break; 1933 } 1934 1935 return (error); 1936 } 1937 1938 #ifdef RFC2292 1939 /* 1940 * Set up IP6 options in pcb for insertion in output packets or 1941 * specifying behavior of outgoing packets. 1942 */ 1943 static int 1944 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so, 1945 struct sockopt *sopt) 1946 { 1947 struct ip6_pktopts *opt = *pktopt; 1948 struct mbuf *m; 1949 int error = 0; 1950 1951 /* turn off any old options. */ 1952 if (opt) { 1953 #ifdef DIAGNOSTIC 1954 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 1955 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 1956 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 1957 printf("ip6_pcbopts: all specified options are cleared.\n"); 1958 #endif 1959 ip6_clearpktopts(opt, -1); 1960 } else { 1961 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 1962 if (opt == NULL) 1963 return (ENOBUFS); 1964 } 1965 *pktopt = NULL; 1966 1967 if (sopt == NULL || sopt->sopt_size == 0) { 1968 /* 1969 * Only turning off any previous options, regardless of 1970 * whether the opt is just created or given. 1971 */ 1972 free(opt, M_IP6OPT); 1973 return (0); 1974 } 1975 1976 /* set options specified by user. */ 1977 m = sockopt_getmbuf(sopt); 1978 if (m == NULL) { 1979 free(opt, M_IP6OPT); 1980 return (ENOBUFS); 1981 } 1982 1983 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(), 1984 so->so_proto->pr_protocol); 1985 m_freem(m); 1986 if (error != 0) { 1987 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 1988 free(opt, M_IP6OPT); 1989 return (error); 1990 } 1991 *pktopt = opt; 1992 return (0); 1993 } 1994 #endif 1995 1996 /* 1997 * initialize ip6_pktopts. beware that there are non-zero default values in 1998 * the struct. 1999 */ 2000 void 2001 ip6_initpktopts(struct ip6_pktopts *opt) 2002 { 2003 2004 memset(opt, 0, sizeof(*opt)); 2005 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2006 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2007 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2008 } 2009 2010 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */ 2011 static int 2012 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2013 kauth_cred_t cred, int uproto) 2014 { 2015 struct ip6_pktopts *opt; 2016 2017 if (*pktopt == NULL) { 2018 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2019 M_NOWAIT); 2020 if (*pktopt == NULL) 2021 return (ENOBUFS); 2022 2023 ip6_initpktopts(*pktopt); 2024 } 2025 opt = *pktopt; 2026 2027 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2028 } 2029 2030 static int 2031 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2032 { 2033 void *optdata = NULL; 2034 int optdatalen = 0; 2035 struct ip6_ext *ip6e; 2036 int error = 0; 2037 struct in6_pktinfo null_pktinfo; 2038 int deftclass = 0, on; 2039 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2040 2041 switch (optname) { 2042 case IPV6_PKTINFO: 2043 if (pktopt && pktopt->ip6po_pktinfo) 2044 optdata = (void *)pktopt->ip6po_pktinfo; 2045 else { 2046 /* XXX: we don't have to do this every time... */ 2047 memset(&null_pktinfo, 0, sizeof(null_pktinfo)); 2048 optdata = (void *)&null_pktinfo; 2049 } 2050 optdatalen = sizeof(struct in6_pktinfo); 2051 break; 2052 case IPV6_OTCLASS: 2053 /* XXX */ 2054 return (EINVAL); 2055 case IPV6_TCLASS: 2056 if (pktopt && pktopt->ip6po_tclass >= 0) 2057 optdata = (void *)&pktopt->ip6po_tclass; 2058 else 2059 optdata = (void *)&deftclass; 2060 optdatalen = sizeof(int); 2061 break; 2062 case IPV6_HOPOPTS: 2063 if (pktopt && pktopt->ip6po_hbh) { 2064 optdata = (void *)pktopt->ip6po_hbh; 2065 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2066 optdatalen = (ip6e->ip6e_len + 1) << 3; 2067 } 2068 break; 2069 case IPV6_RTHDR: 2070 if (pktopt && pktopt->ip6po_rthdr) { 2071 optdata = (void *)pktopt->ip6po_rthdr; 2072 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2073 optdatalen = (ip6e->ip6e_len + 1) << 3; 2074 } 2075 break; 2076 case IPV6_RTHDRDSTOPTS: 2077 if (pktopt && pktopt->ip6po_dest1) { 2078 optdata = (void *)pktopt->ip6po_dest1; 2079 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2080 optdatalen = (ip6e->ip6e_len + 1) << 3; 2081 } 2082 break; 2083 case IPV6_DSTOPTS: 2084 if (pktopt && pktopt->ip6po_dest2) { 2085 optdata = (void *)pktopt->ip6po_dest2; 2086 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2087 optdatalen = (ip6e->ip6e_len + 1) << 3; 2088 } 2089 break; 2090 case IPV6_NEXTHOP: 2091 if (pktopt && pktopt->ip6po_nexthop) { 2092 optdata = (void *)pktopt->ip6po_nexthop; 2093 optdatalen = pktopt->ip6po_nexthop->sa_len; 2094 } 2095 break; 2096 case IPV6_USE_MIN_MTU: 2097 if (pktopt) 2098 optdata = (void *)&pktopt->ip6po_minmtu; 2099 else 2100 optdata = (void *)&defminmtu; 2101 optdatalen = sizeof(int); 2102 break; 2103 case IPV6_DONTFRAG: 2104 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2105 on = 1; 2106 else 2107 on = 0; 2108 optdata = (void *)&on; 2109 optdatalen = sizeof(on); 2110 break; 2111 default: /* should not happen */ 2112 #ifdef DIAGNOSTIC 2113 panic("ip6_getpcbopt: unexpected option\n"); 2114 #endif 2115 return (ENOPROTOOPT); 2116 } 2117 2118 error = sockopt_set(sopt, optdata, optdatalen); 2119 2120 return (error); 2121 } 2122 2123 void 2124 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2125 { 2126 if (optname == -1 || optname == IPV6_PKTINFO) { 2127 if (pktopt->ip6po_pktinfo) 2128 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2129 pktopt->ip6po_pktinfo = NULL; 2130 } 2131 if (optname == -1 || optname == IPV6_HOPLIMIT) 2132 pktopt->ip6po_hlim = -1; 2133 if (optname == -1 || optname == IPV6_TCLASS) 2134 pktopt->ip6po_tclass = -1; 2135 if (optname == -1 || optname == IPV6_NEXTHOP) { 2136 rtcache_free(&pktopt->ip6po_nextroute); 2137 if (pktopt->ip6po_nexthop) 2138 free(pktopt->ip6po_nexthop, M_IP6OPT); 2139 pktopt->ip6po_nexthop = NULL; 2140 } 2141 if (optname == -1 || optname == IPV6_HOPOPTS) { 2142 if (pktopt->ip6po_hbh) 2143 free(pktopt->ip6po_hbh, M_IP6OPT); 2144 pktopt->ip6po_hbh = NULL; 2145 } 2146 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2147 if (pktopt->ip6po_dest1) 2148 free(pktopt->ip6po_dest1, M_IP6OPT); 2149 pktopt->ip6po_dest1 = NULL; 2150 } 2151 if (optname == -1 || optname == IPV6_RTHDR) { 2152 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2153 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2154 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2155 rtcache_free(&pktopt->ip6po_route); 2156 } 2157 if (optname == -1 || optname == IPV6_DSTOPTS) { 2158 if (pktopt->ip6po_dest2) 2159 free(pktopt->ip6po_dest2, M_IP6OPT); 2160 pktopt->ip6po_dest2 = NULL; 2161 } 2162 } 2163 2164 #define PKTOPT_EXTHDRCPY(type) \ 2165 do { \ 2166 if (src->type) { \ 2167 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2168 dst->type = malloc(hlen, M_IP6OPT, canwait); \ 2169 if (dst->type == NULL) \ 2170 goto bad; \ 2171 memcpy(dst->type, src->type, hlen); \ 2172 } \ 2173 } while (/*CONSTCOND*/ 0) 2174 2175 static int 2176 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2177 { 2178 dst->ip6po_hlim = src->ip6po_hlim; 2179 dst->ip6po_tclass = src->ip6po_tclass; 2180 dst->ip6po_flags = src->ip6po_flags; 2181 if (src->ip6po_pktinfo) { 2182 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2183 M_IP6OPT, canwait); 2184 if (dst->ip6po_pktinfo == NULL) 2185 goto bad; 2186 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2187 } 2188 if (src->ip6po_nexthop) { 2189 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2190 M_IP6OPT, canwait); 2191 if (dst->ip6po_nexthop == NULL) 2192 goto bad; 2193 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop, 2194 src->ip6po_nexthop->sa_len); 2195 } 2196 PKTOPT_EXTHDRCPY(ip6po_hbh); 2197 PKTOPT_EXTHDRCPY(ip6po_dest1); 2198 PKTOPT_EXTHDRCPY(ip6po_dest2); 2199 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2200 return (0); 2201 2202 bad: 2203 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 2204 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 2205 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 2206 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 2207 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 2208 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 2209 2210 return (ENOBUFS); 2211 } 2212 #undef PKTOPT_EXTHDRCPY 2213 2214 struct ip6_pktopts * 2215 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2216 { 2217 int error; 2218 struct ip6_pktopts *dst; 2219 2220 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2221 if (dst == NULL) 2222 return (NULL); 2223 ip6_initpktopts(dst); 2224 2225 if ((error = copypktopts(dst, src, canwait)) != 0) { 2226 free(dst, M_IP6OPT); 2227 return (NULL); 2228 } 2229 2230 return (dst); 2231 } 2232 2233 void 2234 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2235 { 2236 if (pktopt == NULL) 2237 return; 2238 2239 ip6_clearpktopts(pktopt, -1); 2240 2241 free(pktopt, M_IP6OPT); 2242 } 2243 2244 /* 2245 * Set the IP6 multicast options in response to user setsockopt(). 2246 */ 2247 static int 2248 ip6_setmoptions(const struct sockopt *sopt, struct ip6_moptions **im6op) 2249 { 2250 int error = 0; 2251 u_int loop, ifindex; 2252 struct ipv6_mreq mreq; 2253 struct ifnet *ifp; 2254 struct ip6_moptions *im6o = *im6op; 2255 struct route ro; 2256 struct in6_multi_mship *imm; 2257 struct lwp *l = curlwp; /* XXX */ 2258 2259 if (im6o == NULL) { 2260 /* 2261 * No multicast option buffer attached to the pcb; 2262 * allocate one and initialize to default values. 2263 */ 2264 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT); 2265 if (im6o == NULL) 2266 return (ENOBUFS); 2267 2268 *im6op = im6o; 2269 im6o->im6o_multicast_ifp = NULL; 2270 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2271 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2272 LIST_INIT(&im6o->im6o_memberships); 2273 } 2274 2275 switch (sopt->sopt_name) { 2276 2277 case IPV6_MULTICAST_IF: 2278 /* 2279 * Select the interface for outgoing multicast packets. 2280 */ 2281 error = sockopt_get(sopt, &ifindex, sizeof(ifindex)); 2282 if (error != 0) 2283 break; 2284 2285 if (ifindex != 0) { 2286 if ((ifp = if_byindex(ifindex)) == NULL) { 2287 error = ENXIO; /* XXX EINVAL? */ 2288 break; 2289 } 2290 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 2291 error = EADDRNOTAVAIL; 2292 break; 2293 } 2294 } else 2295 ifp = NULL; 2296 im6o->im6o_multicast_ifp = ifp; 2297 break; 2298 2299 case IPV6_MULTICAST_HOPS: 2300 { 2301 /* 2302 * Set the IP6 hoplimit for outgoing multicast packets. 2303 */ 2304 int optval; 2305 2306 error = sockopt_getint(sopt, &optval); 2307 if (error != 0) 2308 break; 2309 2310 if (optval < -1 || optval >= 256) 2311 error = EINVAL; 2312 else if (optval == -1) 2313 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2314 else 2315 im6o->im6o_multicast_hlim = optval; 2316 break; 2317 } 2318 2319 case IPV6_MULTICAST_LOOP: 2320 /* 2321 * Set the loopback flag for outgoing multicast packets. 2322 * Must be zero or one. 2323 */ 2324 error = sockopt_get(sopt, &loop, sizeof(loop)); 2325 if (error != 0) 2326 break; 2327 if (loop > 1) { 2328 error = EINVAL; 2329 break; 2330 } 2331 im6o->im6o_multicast_loop = loop; 2332 break; 2333 2334 case IPV6_JOIN_GROUP: 2335 /* 2336 * Add a multicast group membership. 2337 * Group must be a valid IP6 multicast address. 2338 */ 2339 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2340 if (error != 0) 2341 break; 2342 2343 if (IN6_IS_ADDR_UNSPECIFIED(&mreq.ipv6mr_multiaddr)) { 2344 /* 2345 * We use the unspecified address to specify to accept 2346 * all multicast addresses. Only super user is allowed 2347 * to do this. 2348 */ 2349 if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_IPV6, 2350 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL)) 2351 { 2352 error = EACCES; 2353 break; 2354 } 2355 } else if (!IN6_IS_ADDR_MULTICAST(&mreq.ipv6mr_multiaddr)) { 2356 error = EINVAL; 2357 break; 2358 } 2359 2360 /* 2361 * If no interface was explicitly specified, choose an 2362 * appropriate one according to the given multicast address. 2363 */ 2364 if (mreq.ipv6mr_interface == 0) { 2365 struct rtentry *rt; 2366 union { 2367 struct sockaddr dst; 2368 struct sockaddr_in6 dst6; 2369 } u; 2370 2371 /* 2372 * Look up the routing table for the 2373 * address, and choose the outgoing interface. 2374 * XXX: is it a good approach? 2375 */ 2376 memset(&ro, 0, sizeof(ro)); 2377 sockaddr_in6_init(&u.dst6, &mreq.ipv6mr_multiaddr, 0, 2378 0, 0); 2379 rtcache_setdst(&ro, &u.dst); 2380 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp 2381 : NULL; 2382 rtcache_free(&ro); 2383 } else { 2384 /* 2385 * If the interface is specified, validate it. 2386 */ 2387 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) { 2388 error = ENXIO; /* XXX EINVAL? */ 2389 break; 2390 } 2391 } 2392 2393 /* 2394 * See if we found an interface, and confirm that it 2395 * supports multicast 2396 */ 2397 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2398 error = EADDRNOTAVAIL; 2399 break; 2400 } 2401 2402 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) { 2403 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2404 break; 2405 } 2406 2407 /* 2408 * See if the membership already exists. 2409 */ 2410 for (imm = im6o->im6o_memberships.lh_first; 2411 imm != NULL; imm = imm->i6mm_chain.le_next) 2412 if (imm->i6mm_maddr->in6m_ifp == ifp && 2413 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2414 &mreq.ipv6mr_multiaddr)) 2415 break; 2416 if (imm != NULL) { 2417 error = EADDRINUSE; 2418 break; 2419 } 2420 /* 2421 * Everything looks good; add a new record to the multicast 2422 * address list for the given interface. 2423 */ 2424 imm = in6_joingroup(ifp, &mreq.ipv6mr_multiaddr, &error, 0); 2425 if (imm == NULL) 2426 break; 2427 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2428 break; 2429 2430 case IPV6_LEAVE_GROUP: 2431 /* 2432 * Drop a multicast group membership. 2433 * Group must be a valid IP6 multicast address. 2434 */ 2435 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2436 if (error != 0) 2437 break; 2438 2439 /* 2440 * If an interface address was specified, get a pointer 2441 * to its ifnet structure. 2442 */ 2443 if (mreq.ipv6mr_interface != 0) { 2444 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) { 2445 error = ENXIO; /* XXX EINVAL? */ 2446 break; 2447 } 2448 } else 2449 ifp = NULL; 2450 2451 /* Fill in the scope zone ID */ 2452 if (ifp) { 2453 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) { 2454 /* XXX: should not happen */ 2455 error = EADDRNOTAVAIL; 2456 break; 2457 } 2458 } else if (mreq.ipv6mr_interface != 0) { 2459 /* 2460 * XXX: This case would happens when the (positive) 2461 * index is in the valid range, but the corresponding 2462 * interface has been detached dynamically. The above 2463 * check probably avoids such case to happen here, but 2464 * we check it explicitly for safety. 2465 */ 2466 error = EADDRNOTAVAIL; 2467 break; 2468 } else { /* ipv6mr_interface == 0 */ 2469 struct sockaddr_in6 sa6_mc; 2470 2471 /* 2472 * The API spec says as follows: 2473 * If the interface index is specified as 0, the 2474 * system may choose a multicast group membership to 2475 * drop by matching the multicast address only. 2476 * On the other hand, we cannot disambiguate the scope 2477 * zone unless an interface is provided. Thus, we 2478 * check if there's ambiguity with the default scope 2479 * zone as the last resort. 2480 */ 2481 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr, 2482 0, 0, 0); 2483 error = sa6_embedscope(&sa6_mc, ip6_use_defzone); 2484 if (error != 0) 2485 break; 2486 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr; 2487 } 2488 2489 /* 2490 * Find the membership in the membership list. 2491 */ 2492 for (imm = im6o->im6o_memberships.lh_first; 2493 imm != NULL; imm = imm->i6mm_chain.le_next) { 2494 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2495 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2496 &mreq.ipv6mr_multiaddr)) 2497 break; 2498 } 2499 if (imm == NULL) { 2500 /* Unable to resolve interface */ 2501 error = EADDRNOTAVAIL; 2502 break; 2503 } 2504 /* 2505 * Give up the multicast address record to which the 2506 * membership points. 2507 */ 2508 LIST_REMOVE(imm, i6mm_chain); 2509 in6_leavegroup(imm); 2510 break; 2511 2512 default: 2513 error = EOPNOTSUPP; 2514 break; 2515 } 2516 2517 /* 2518 * If all options have default values, no need to keep the mbuf. 2519 */ 2520 if (im6o->im6o_multicast_ifp == NULL && 2521 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2522 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2523 im6o->im6o_memberships.lh_first == NULL) { 2524 free(*im6op, M_IPMOPTS); 2525 *im6op = NULL; 2526 } 2527 2528 return (error); 2529 } 2530 2531 /* 2532 * Return the IP6 multicast options in response to user getsockopt(). 2533 */ 2534 static int 2535 ip6_getmoptions(struct sockopt *sopt, struct ip6_moptions *im6o) 2536 { 2537 u_int optval; 2538 int error; 2539 2540 switch (sopt->sopt_name) { 2541 case IPV6_MULTICAST_IF: 2542 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2543 optval = 0; 2544 else 2545 optval = im6o->im6o_multicast_ifp->if_index; 2546 2547 error = sockopt_set(sopt, &optval, sizeof(optval)); 2548 break; 2549 2550 case IPV6_MULTICAST_HOPS: 2551 if (im6o == NULL) 2552 optval = ip6_defmcasthlim; 2553 else 2554 optval = im6o->im6o_multicast_hlim; 2555 2556 error = sockopt_set(sopt, &optval, sizeof(optval)); 2557 break; 2558 2559 case IPV6_MULTICAST_LOOP: 2560 if (im6o == NULL) 2561 optval = IPV6_DEFAULT_MULTICAST_LOOP; 2562 else 2563 optval = im6o->im6o_multicast_loop; 2564 2565 error = sockopt_set(sopt, &optval, sizeof(optval)); 2566 break; 2567 2568 default: 2569 error = EOPNOTSUPP; 2570 } 2571 2572 return (error); 2573 } 2574 2575 /* 2576 * Discard the IP6 multicast options. 2577 */ 2578 void 2579 ip6_freemoptions(struct ip6_moptions *im6o) 2580 { 2581 struct in6_multi_mship *imm; 2582 2583 if (im6o == NULL) 2584 return; 2585 2586 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2587 LIST_REMOVE(imm, i6mm_chain); 2588 in6_leavegroup(imm); 2589 } 2590 free(im6o, M_IPMOPTS); 2591 } 2592 2593 /* 2594 * Set IPv6 outgoing packet options based on advanced API. 2595 */ 2596 int 2597 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2598 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto) 2599 { 2600 struct cmsghdr *cm = 0; 2601 2602 if (control == NULL || opt == NULL) 2603 return (EINVAL); 2604 2605 ip6_initpktopts(opt); 2606 if (stickyopt) { 2607 int error; 2608 2609 /* 2610 * If stickyopt is provided, make a local copy of the options 2611 * for this particular packet, then override them by ancillary 2612 * objects. 2613 * XXX: copypktopts() does not copy the cached route to a next 2614 * hop (if any). This is not very good in terms of efficiency, 2615 * but we can allow this since this option should be rarely 2616 * used. 2617 */ 2618 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2619 return (error); 2620 } 2621 2622 /* 2623 * XXX: Currently, we assume all the optional information is stored 2624 * in a single mbuf. 2625 */ 2626 if (control->m_next) 2627 return (EINVAL); 2628 2629 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */ 2630 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2631 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2632 int error; 2633 2634 if (control->m_len < CMSG_LEN(0)) 2635 return (EINVAL); 2636 2637 cm = mtod(control, struct cmsghdr *); 2638 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2639 return (EINVAL); 2640 if (cm->cmsg_level != IPPROTO_IPV6) 2641 continue; 2642 2643 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2644 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2645 if (error) 2646 return (error); 2647 } 2648 2649 return (0); 2650 } 2651 2652 /* 2653 * Set a particular packet option, as a sticky option or an ancillary data 2654 * item. "len" can be 0 only when it's a sticky option. 2655 * We have 4 cases of combination of "sticky" and "cmsg": 2656 * "sticky=0, cmsg=0": impossible 2657 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2658 * "sticky=1, cmsg=0": RFC3542 socket option 2659 * "sticky=1, cmsg=1": RFC2292 socket option 2660 */ 2661 static int 2662 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2663 kauth_cred_t cred, int sticky, int cmsg, int uproto) 2664 { 2665 int minmtupolicy; 2666 int error; 2667 2668 if (!sticky && !cmsg) { 2669 #ifdef DIAGNOSTIC 2670 printf("ip6_setpktopt: impossible case\n"); 2671 #endif 2672 return (EINVAL); 2673 } 2674 2675 /* 2676 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2677 * not be specified in the context of RFC3542. Conversely, 2678 * RFC3542 types should not be specified in the context of RFC2292. 2679 */ 2680 if (!cmsg) { 2681 switch (optname) { 2682 case IPV6_2292PKTINFO: 2683 case IPV6_2292HOPLIMIT: 2684 case IPV6_2292NEXTHOP: 2685 case IPV6_2292HOPOPTS: 2686 case IPV6_2292DSTOPTS: 2687 case IPV6_2292RTHDR: 2688 case IPV6_2292PKTOPTIONS: 2689 return (ENOPROTOOPT); 2690 } 2691 } 2692 if (sticky && cmsg) { 2693 switch (optname) { 2694 case IPV6_PKTINFO: 2695 case IPV6_HOPLIMIT: 2696 case IPV6_NEXTHOP: 2697 case IPV6_HOPOPTS: 2698 case IPV6_DSTOPTS: 2699 case IPV6_RTHDRDSTOPTS: 2700 case IPV6_RTHDR: 2701 case IPV6_USE_MIN_MTU: 2702 case IPV6_DONTFRAG: 2703 case IPV6_OTCLASS: 2704 case IPV6_TCLASS: 2705 return (ENOPROTOOPT); 2706 } 2707 } 2708 2709 switch (optname) { 2710 #ifdef RFC2292 2711 case IPV6_2292PKTINFO: 2712 #endif 2713 case IPV6_PKTINFO: 2714 { 2715 struct ifnet *ifp = NULL; 2716 struct in6_pktinfo *pktinfo; 2717 2718 if (len != sizeof(struct in6_pktinfo)) 2719 return (EINVAL); 2720 2721 pktinfo = (struct in6_pktinfo *)buf; 2722 2723 /* 2724 * An application can clear any sticky IPV6_PKTINFO option by 2725 * doing a "regular" setsockopt with ipi6_addr being 2726 * in6addr_any and ipi6_ifindex being zero. 2727 * [RFC 3542, Section 6] 2728 */ 2729 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2730 pktinfo->ipi6_ifindex == 0 && 2731 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2732 ip6_clearpktopts(opt, optname); 2733 break; 2734 } 2735 2736 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2737 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2738 return (EINVAL); 2739 } 2740 2741 /* Validate the interface index if specified. */ 2742 if (pktinfo->ipi6_ifindex) { 2743 ifp = if_byindex(pktinfo->ipi6_ifindex); 2744 if (ifp == NULL) 2745 return (ENXIO); 2746 } 2747 2748 /* 2749 * We store the address anyway, and let in6_selectsrc() 2750 * validate the specified address. This is because ipi6_addr 2751 * may not have enough information about its scope zone, and 2752 * we may need additional information (such as outgoing 2753 * interface or the scope zone of a destination address) to 2754 * disambiguate the scope. 2755 * XXX: the delay of the validation may confuse the 2756 * application when it is used as a sticky option. 2757 */ 2758 if (opt->ip6po_pktinfo == NULL) { 2759 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2760 M_IP6OPT, M_NOWAIT); 2761 if (opt->ip6po_pktinfo == NULL) 2762 return (ENOBUFS); 2763 } 2764 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo)); 2765 break; 2766 } 2767 2768 #ifdef RFC2292 2769 case IPV6_2292HOPLIMIT: 2770 #endif 2771 case IPV6_HOPLIMIT: 2772 { 2773 int *hlimp; 2774 2775 /* 2776 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2777 * to simplify the ordering among hoplimit options. 2778 */ 2779 if (optname == IPV6_HOPLIMIT && sticky) 2780 return (ENOPROTOOPT); 2781 2782 if (len != sizeof(int)) 2783 return (EINVAL); 2784 hlimp = (int *)buf; 2785 if (*hlimp < -1 || *hlimp > 255) 2786 return (EINVAL); 2787 2788 opt->ip6po_hlim = *hlimp; 2789 break; 2790 } 2791 2792 case IPV6_OTCLASS: 2793 if (len != sizeof(u_int8_t)) 2794 return (EINVAL); 2795 2796 opt->ip6po_tclass = *(u_int8_t *)buf; 2797 break; 2798 2799 case IPV6_TCLASS: 2800 { 2801 int tclass; 2802 2803 if (len != sizeof(int)) 2804 return (EINVAL); 2805 tclass = *(int *)buf; 2806 if (tclass < -1 || tclass > 255) 2807 return (EINVAL); 2808 2809 opt->ip6po_tclass = tclass; 2810 break; 2811 } 2812 2813 #ifdef RFC2292 2814 case IPV6_2292NEXTHOP: 2815 #endif 2816 case IPV6_NEXTHOP: 2817 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 2818 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 2819 if (error) 2820 return (error); 2821 2822 if (len == 0) { /* just remove the option */ 2823 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2824 break; 2825 } 2826 2827 /* check if cmsg_len is large enough for sa_len */ 2828 if (len < sizeof(struct sockaddr) || len < *buf) 2829 return (EINVAL); 2830 2831 switch (((struct sockaddr *)buf)->sa_family) { 2832 case AF_INET6: 2833 { 2834 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2835 2836 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2837 return (EINVAL); 2838 2839 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2840 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2841 return (EINVAL); 2842 } 2843 if ((error = sa6_embedscope(sa6, ip6_use_defzone)) 2844 != 0) { 2845 return (error); 2846 } 2847 break; 2848 } 2849 case AF_LINK: /* eventually be supported? */ 2850 default: 2851 return (EAFNOSUPPORT); 2852 } 2853 2854 /* turn off the previous option, then set the new option. */ 2855 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2856 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2857 if (opt->ip6po_nexthop == NULL) 2858 return (ENOBUFS); 2859 memcpy(opt->ip6po_nexthop, buf, *buf); 2860 break; 2861 2862 #ifdef RFC2292 2863 case IPV6_2292HOPOPTS: 2864 #endif 2865 case IPV6_HOPOPTS: 2866 { 2867 struct ip6_hbh *hbh; 2868 int hbhlen; 2869 2870 /* 2871 * XXX: We don't allow a non-privileged user to set ANY HbH 2872 * options, since per-option restriction has too much 2873 * overhead. 2874 */ 2875 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 2876 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 2877 if (error) 2878 return (error); 2879 2880 if (len == 0) { 2881 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2882 break; /* just remove the option */ 2883 } 2884 2885 /* message length validation */ 2886 if (len < sizeof(struct ip6_hbh)) 2887 return (EINVAL); 2888 hbh = (struct ip6_hbh *)buf; 2889 hbhlen = (hbh->ip6h_len + 1) << 3; 2890 if (len != hbhlen) 2891 return (EINVAL); 2892 2893 /* turn off the previous option, then set the new option. */ 2894 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2895 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2896 if (opt->ip6po_hbh == NULL) 2897 return (ENOBUFS); 2898 memcpy(opt->ip6po_hbh, hbh, hbhlen); 2899 2900 break; 2901 } 2902 2903 #ifdef RFC2292 2904 case IPV6_2292DSTOPTS: 2905 #endif 2906 case IPV6_DSTOPTS: 2907 case IPV6_RTHDRDSTOPTS: 2908 { 2909 struct ip6_dest *dest, **newdest = NULL; 2910 int destlen; 2911 2912 /* XXX: see the comment for IPV6_HOPOPTS */ 2913 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 2914 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 2915 if (error) 2916 return (error); 2917 2918 if (len == 0) { 2919 ip6_clearpktopts(opt, optname); 2920 break; /* just remove the option */ 2921 } 2922 2923 /* message length validation */ 2924 if (len < sizeof(struct ip6_dest)) 2925 return (EINVAL); 2926 dest = (struct ip6_dest *)buf; 2927 destlen = (dest->ip6d_len + 1) << 3; 2928 if (len != destlen) 2929 return (EINVAL); 2930 /* 2931 * Determine the position that the destination options header 2932 * should be inserted; before or after the routing header. 2933 */ 2934 switch (optname) { 2935 case IPV6_2292DSTOPTS: 2936 /* 2937 * The old advanced API is ambiguous on this point. 2938 * Our approach is to determine the position based 2939 * according to the existence of a routing header. 2940 * Note, however, that this depends on the order of the 2941 * extension headers in the ancillary data; the 1st 2942 * part of the destination options header must appear 2943 * before the routing header in the ancillary data, 2944 * too. 2945 * RFC3542 solved the ambiguity by introducing 2946 * separate ancillary data or option types. 2947 */ 2948 if (opt->ip6po_rthdr == NULL) 2949 newdest = &opt->ip6po_dest1; 2950 else 2951 newdest = &opt->ip6po_dest2; 2952 break; 2953 case IPV6_RTHDRDSTOPTS: 2954 newdest = &opt->ip6po_dest1; 2955 break; 2956 case IPV6_DSTOPTS: 2957 newdest = &opt->ip6po_dest2; 2958 break; 2959 } 2960 2961 /* turn off the previous option, then set the new option. */ 2962 ip6_clearpktopts(opt, optname); 2963 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2964 if (*newdest == NULL) 2965 return (ENOBUFS); 2966 memcpy(*newdest, dest, destlen); 2967 2968 break; 2969 } 2970 2971 #ifdef RFC2292 2972 case IPV6_2292RTHDR: 2973 #endif 2974 case IPV6_RTHDR: 2975 { 2976 struct ip6_rthdr *rth; 2977 int rthlen; 2978 2979 if (len == 0) { 2980 ip6_clearpktopts(opt, IPV6_RTHDR); 2981 break; /* just remove the option */ 2982 } 2983 2984 /* message length validation */ 2985 if (len < sizeof(struct ip6_rthdr)) 2986 return (EINVAL); 2987 rth = (struct ip6_rthdr *)buf; 2988 rthlen = (rth->ip6r_len + 1) << 3; 2989 if (len != rthlen) 2990 return (EINVAL); 2991 switch (rth->ip6r_type) { 2992 case IPV6_RTHDR_TYPE_0: 2993 if (rth->ip6r_len == 0) /* must contain one addr */ 2994 return (EINVAL); 2995 if (rth->ip6r_len % 2) /* length must be even */ 2996 return (EINVAL); 2997 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2998 return (EINVAL); 2999 break; 3000 default: 3001 return (EINVAL); /* not supported */ 3002 } 3003 /* turn off the previous option */ 3004 ip6_clearpktopts(opt, IPV6_RTHDR); 3005 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3006 if (opt->ip6po_rthdr == NULL) 3007 return (ENOBUFS); 3008 memcpy(opt->ip6po_rthdr, rth, rthlen); 3009 break; 3010 } 3011 3012 case IPV6_USE_MIN_MTU: 3013 if (len != sizeof(int)) 3014 return (EINVAL); 3015 minmtupolicy = *(int *)buf; 3016 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3017 minmtupolicy != IP6PO_MINMTU_DISABLE && 3018 minmtupolicy != IP6PO_MINMTU_ALL) { 3019 return (EINVAL); 3020 } 3021 opt->ip6po_minmtu = minmtupolicy; 3022 break; 3023 3024 case IPV6_DONTFRAG: 3025 if (len != sizeof(int)) 3026 return (EINVAL); 3027 3028 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3029 /* 3030 * we ignore this option for TCP sockets. 3031 * (RFC3542 leaves this case unspecified.) 3032 */ 3033 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3034 } else 3035 opt->ip6po_flags |= IP6PO_DONTFRAG; 3036 break; 3037 3038 default: 3039 return (ENOPROTOOPT); 3040 } /* end of switch */ 3041 3042 return (0); 3043 } 3044 3045 /* 3046 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3047 * packet to the input queue of a specified interface. Note that this 3048 * calls the output routine of the loopback "driver", but with an interface 3049 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 3050 */ 3051 void 3052 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, 3053 const struct sockaddr_in6 *dst) 3054 { 3055 struct mbuf *copym; 3056 struct ip6_hdr *ip6; 3057 3058 copym = m_copy(m, 0, M_COPYALL); 3059 if (copym == NULL) 3060 return; 3061 3062 /* 3063 * Make sure to deep-copy IPv6 header portion in case the data 3064 * is in an mbuf cluster, so that we can safely override the IPv6 3065 * header portion later. 3066 */ 3067 if ((copym->m_flags & M_EXT) != 0 || 3068 copym->m_len < sizeof(struct ip6_hdr)) { 3069 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3070 if (copym == NULL) 3071 return; 3072 } 3073 3074 #ifdef DIAGNOSTIC 3075 if (copym->m_len < sizeof(*ip6)) { 3076 m_freem(copym); 3077 return; 3078 } 3079 #endif 3080 3081 ip6 = mtod(copym, struct ip6_hdr *); 3082 /* 3083 * clear embedded scope identifiers if necessary. 3084 * in6_clearscope will touch the addresses only when necessary. 3085 */ 3086 in6_clearscope(&ip6->ip6_src); 3087 in6_clearscope(&ip6->ip6_dst); 3088 3089 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL); 3090 } 3091 3092 /* 3093 * Chop IPv6 header off from the payload. 3094 */ 3095 static int 3096 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3097 { 3098 struct mbuf *mh; 3099 struct ip6_hdr *ip6; 3100 3101 ip6 = mtod(m, struct ip6_hdr *); 3102 if (m->m_len > sizeof(*ip6)) { 3103 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3104 if (mh == 0) { 3105 m_freem(m); 3106 return ENOBUFS; 3107 } 3108 M_MOVE_PKTHDR(mh, m); 3109 MH_ALIGN(mh, sizeof(*ip6)); 3110 m->m_len -= sizeof(*ip6); 3111 m->m_data += sizeof(*ip6); 3112 mh->m_next = m; 3113 m = mh; 3114 m->m_len = sizeof(*ip6); 3115 bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6)); 3116 } 3117 exthdrs->ip6e_ip6 = m; 3118 return 0; 3119 } 3120 3121 /* 3122 * Compute IPv6 extension header length. 3123 */ 3124 int 3125 ip6_optlen(struct in6pcb *in6p) 3126 { 3127 int len; 3128 3129 if (!in6p->in6p_outputopts) 3130 return 0; 3131 3132 len = 0; 3133 #define elen(x) \ 3134 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3135 3136 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3137 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3138 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3139 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3140 return len; 3141 #undef elen 3142 } 3143