1 /* $NetBSD: ip6_output.c,v 1.139 2009/05/07 21:51:47 elad Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.139 2009/05/07 21:51:47 elad Exp $"); 66 67 #include "opt_inet.h" 68 #include "opt_inet6.h" 69 #include "opt_ipsec.h" 70 #include "opt_pfil_hooks.h" 71 72 #include <sys/param.h> 73 #include <sys/malloc.h> 74 #include <sys/mbuf.h> 75 #include <sys/errno.h> 76 #include <sys/protosw.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/systm.h> 80 #include <sys/proc.h> 81 #include <sys/kauth.h> 82 83 #include <net/if.h> 84 #include <net/route.h> 85 #ifdef PFIL_HOOKS 86 #include <net/pfil.h> 87 #endif 88 89 #include <netinet/in.h> 90 #include <netinet/in_var.h> 91 #include <netinet/ip6.h> 92 #include <netinet/icmp6.h> 93 #include <netinet/in_offload.h> 94 #include <netinet6/in6_offload.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/ip6_private.h> 97 #include <netinet6/in6_pcb.h> 98 #include <netinet6/nd6.h> 99 #include <netinet6/ip6protosw.h> 100 #include <netinet6/scope6_var.h> 101 102 #ifdef IPSEC 103 #include <netinet6/ipsec.h> 104 #include <netinet6/ipsec_private.h> 105 #include <netkey/key.h> 106 #endif /* IPSEC */ 107 108 #ifdef FAST_IPSEC 109 #include <netipsec/ipsec.h> 110 #include <netipsec/ipsec6.h> 111 #include <netipsec/key.h> 112 #include <netipsec/xform.h> 113 #endif 114 115 116 #include <net/net_osdep.h> 117 118 #ifdef PFIL_HOOKS 119 extern struct pfil_head inet6_pfil_hook; /* XXX */ 120 #endif 121 122 struct ip6_exthdrs { 123 struct mbuf *ip6e_ip6; 124 struct mbuf *ip6e_hbh; 125 struct mbuf *ip6e_dest1; 126 struct mbuf *ip6e_rthdr; 127 struct mbuf *ip6e_dest2; 128 }; 129 130 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 131 kauth_cred_t, int); 132 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 133 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t, 134 int, int, int); 135 static int ip6_setmoptions(const struct sockopt *, struct ip6_moptions **); 136 static int ip6_getmoptions(struct sockopt *, struct ip6_moptions *); 137 static int ip6_copyexthdr(struct mbuf **, void *, int); 138 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 139 struct ip6_frag **); 140 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 141 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 142 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *, 143 const struct in6_addr *, u_long *, int *); 144 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 145 146 #ifdef RFC2292 147 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *); 148 #endif 149 150 #define IN6_NEED_CHECKSUM(ifp, csum_flags) \ 151 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \ 152 (((csum_flags) & M_CSUM_UDPv6) != 0 && udp_do_loopback_cksum) || \ 153 (((csum_flags) & M_CSUM_TCPv6) != 0 && tcp_do_loopback_cksum))) 154 155 /* 156 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 157 * header (with pri, len, nxt, hlim, src, dst). 158 * This function may modify ver and hlim only. 159 * The mbuf chain containing the packet will be freed. 160 * The mbuf opt, if present, will not be freed. 161 * 162 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 163 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 164 * which is rt_rmx.rmx_mtu. 165 */ 166 int 167 ip6_output( 168 struct mbuf *m0, 169 struct ip6_pktopts *opt, 170 struct route *ro, 171 int flags, 172 struct ip6_moptions *im6o, 173 struct socket *so, 174 struct ifnet **ifpp /* XXX: just for statistics */ 175 ) 176 { 177 struct ip6_hdr *ip6, *mhip6; 178 struct ifnet *ifp, *origifp; 179 struct mbuf *m = m0; 180 int hlen, tlen, len, off; 181 bool tso; 182 struct route ip6route; 183 struct rtentry *rt = NULL; 184 const struct sockaddr_in6 *dst = NULL; 185 struct sockaddr_in6 src_sa, dst_sa; 186 int error = 0; 187 struct in6_ifaddr *ia = NULL; 188 u_long mtu; 189 int alwaysfrag, dontfrag; 190 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 191 struct ip6_exthdrs exthdrs; 192 struct in6_addr finaldst, src0, dst0; 193 u_int32_t zone; 194 struct route *ro_pmtu = NULL; 195 int hdrsplit = 0; 196 int needipsec = 0; 197 #ifdef IPSEC 198 int needipsectun = 0; 199 struct secpolicy *sp = NULL; 200 201 ip6 = mtod(m, struct ip6_hdr *); 202 #endif /* IPSEC */ 203 #ifdef FAST_IPSEC 204 struct secpolicy *sp = NULL; 205 int s; 206 #endif 207 208 memset(&ip6route, 0, sizeof(ip6route)); 209 210 #ifdef DIAGNOSTIC 211 if ((m->m_flags & M_PKTHDR) == 0) 212 panic("ip6_output: no HDR"); 213 214 if ((m->m_pkthdr.csum_flags & 215 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) { 216 panic("ip6_output: IPv4 checksum offload flags: %d", 217 m->m_pkthdr.csum_flags); 218 } 219 220 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 221 (M_CSUM_TCPv6|M_CSUM_UDPv6)) { 222 panic("ip6_output: conflicting checksum offload flags: %d", 223 m->m_pkthdr.csum_flags); 224 } 225 #endif 226 227 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr)); 228 229 #define MAKE_EXTHDR(hp, mp) \ 230 do { \ 231 if (hp) { \ 232 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 233 error = ip6_copyexthdr((mp), (void *)(hp), \ 234 ((eh)->ip6e_len + 1) << 3); \ 235 if (error) \ 236 goto freehdrs; \ 237 } \ 238 } while (/*CONSTCOND*/ 0) 239 240 memset(&exthdrs, 0, sizeof(exthdrs)); 241 if (opt) { 242 /* Hop-by-Hop options header */ 243 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 244 /* Destination options header(1st part) */ 245 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 246 /* Routing header */ 247 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 248 /* Destination options header(2nd part) */ 249 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 250 } 251 252 #ifdef IPSEC 253 if ((flags & IPV6_FORWARDING) != 0) { 254 needipsec = 0; 255 goto skippolicycheck; 256 } 257 258 /* get a security policy for this packet */ 259 if (so == NULL) 260 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 261 else { 262 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp, 263 IPSEC_DIR_OUTBOUND)) { 264 needipsec = 0; 265 goto skippolicycheck; 266 } 267 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 268 } 269 270 if (sp == NULL) { 271 IPSEC6_STATINC(IPSEC_STAT_OUT_INVAL); 272 goto freehdrs; 273 } 274 275 error = 0; 276 277 /* check policy */ 278 switch (sp->policy) { 279 case IPSEC_POLICY_DISCARD: 280 /* 281 * This packet is just discarded. 282 */ 283 IPSEC6_STATINC(IPSEC_STAT_OUT_POLVIO); 284 goto freehdrs; 285 286 case IPSEC_POLICY_BYPASS: 287 case IPSEC_POLICY_NONE: 288 /* no need to do IPsec. */ 289 needipsec = 0; 290 break; 291 292 case IPSEC_POLICY_IPSEC: 293 if (sp->req == NULL) { 294 /* XXX should be panic ? */ 295 printf("ip6_output: No IPsec request specified.\n"); 296 error = EINVAL; 297 goto freehdrs; 298 } 299 needipsec = 1; 300 break; 301 302 case IPSEC_POLICY_ENTRUST: 303 default: 304 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 305 } 306 307 skippolicycheck:; 308 #endif /* IPSEC */ 309 310 /* 311 * Calculate the total length of the extension header chain. 312 * Keep the length of the unfragmentable part for fragmentation. 313 */ 314 optlen = 0; 315 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 316 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 317 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 318 unfragpartlen = optlen + sizeof(struct ip6_hdr); 319 /* NOTE: we don't add AH/ESP length here. do that later. */ 320 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 321 322 #ifdef FAST_IPSEC 323 /* Check the security policy (SP) for the packet */ 324 325 /* XXX For moment, we doesn't support packet with extented action */ 326 if (optlen !=0) 327 goto freehdrs; 328 329 sp = ipsec6_check_policy(m,so,flags,&needipsec,&error); 330 if (error != 0) { 331 /* 332 * Hack: -EINVAL is used to signal that a packet 333 * should be silently discarded. This is typically 334 * because we asked key management for an SA and 335 * it was delayed (e.g. kicked up to IKE). 336 */ 337 if (error == -EINVAL) 338 error = 0; 339 goto freehdrs; 340 } 341 #endif /* FAST_IPSEC */ 342 343 344 if (needipsec && 345 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 346 in6_delayed_cksum(m); 347 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 348 } 349 350 351 /* 352 * If we need IPsec, or there is at least one extension header, 353 * separate IP6 header from the payload. 354 */ 355 if ((needipsec || optlen) && !hdrsplit) { 356 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 357 m = NULL; 358 goto freehdrs; 359 } 360 m = exthdrs.ip6e_ip6; 361 hdrsplit++; 362 } 363 364 /* adjust pointer */ 365 ip6 = mtod(m, struct ip6_hdr *); 366 367 /* adjust mbuf packet header length */ 368 m->m_pkthdr.len += optlen; 369 plen = m->m_pkthdr.len - sizeof(*ip6); 370 371 /* If this is a jumbo payload, insert a jumbo payload option. */ 372 if (plen > IPV6_MAXPACKET) { 373 if (!hdrsplit) { 374 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 375 m = NULL; 376 goto freehdrs; 377 } 378 m = exthdrs.ip6e_ip6; 379 hdrsplit++; 380 } 381 /* adjust pointer */ 382 ip6 = mtod(m, struct ip6_hdr *); 383 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 384 goto freehdrs; 385 optlen += 8; /* XXX JUMBOOPTLEN */ 386 ip6->ip6_plen = 0; 387 } else 388 ip6->ip6_plen = htons(plen); 389 390 /* 391 * Concatenate headers and fill in next header fields. 392 * Here we have, on "m" 393 * IPv6 payload 394 * and we insert headers accordingly. Finally, we should be getting: 395 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 396 * 397 * during the header composing process, "m" points to IPv6 header. 398 * "mprev" points to an extension header prior to esp. 399 */ 400 { 401 u_char *nexthdrp = &ip6->ip6_nxt; 402 struct mbuf *mprev = m; 403 404 /* 405 * we treat dest2 specially. this makes IPsec processing 406 * much easier. the goal here is to make mprev point the 407 * mbuf prior to dest2. 408 * 409 * result: IPv6 dest2 payload 410 * m and mprev will point to IPv6 header. 411 */ 412 if (exthdrs.ip6e_dest2) { 413 if (!hdrsplit) 414 panic("assumption failed: hdr not split"); 415 exthdrs.ip6e_dest2->m_next = m->m_next; 416 m->m_next = exthdrs.ip6e_dest2; 417 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 418 ip6->ip6_nxt = IPPROTO_DSTOPTS; 419 } 420 421 #define MAKE_CHAIN(m, mp, p, i)\ 422 do {\ 423 if (m) {\ 424 if (!hdrsplit) \ 425 panic("assumption failed: hdr not split"); \ 426 *mtod((m), u_char *) = *(p);\ 427 *(p) = (i);\ 428 p = mtod((m), u_char *);\ 429 (m)->m_next = (mp)->m_next;\ 430 (mp)->m_next = (m);\ 431 (mp) = (m);\ 432 }\ 433 } while (/*CONSTCOND*/ 0) 434 /* 435 * result: IPv6 hbh dest1 rthdr dest2 payload 436 * m will point to IPv6 header. mprev will point to the 437 * extension header prior to dest2 (rthdr in the above case). 438 */ 439 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 440 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 441 IPPROTO_DSTOPTS); 442 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 443 IPPROTO_ROUTING); 444 445 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, 446 sizeof(struct ip6_hdr) + optlen); 447 448 #ifdef IPSEC 449 if (!needipsec) 450 goto skip_ipsec2; 451 452 /* 453 * pointers after IPsec headers are not valid any more. 454 * other pointers need a great care too. 455 * (IPsec routines should not mangle mbufs prior to AH/ESP) 456 */ 457 exthdrs.ip6e_dest2 = NULL; 458 459 { 460 struct ip6_rthdr *rh = NULL; 461 int segleft_org = 0; 462 struct ipsec_output_state state; 463 464 if (exthdrs.ip6e_rthdr) { 465 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 466 segleft_org = rh->ip6r_segleft; 467 rh->ip6r_segleft = 0; 468 } 469 470 memset(&state, 0, sizeof(state)); 471 state.m = m; 472 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 473 &needipsectun); 474 m = state.m; 475 if (error) { 476 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 477 /* mbuf is already reclaimed in ipsec6_output_trans. */ 478 m = NULL; 479 switch (error) { 480 case EHOSTUNREACH: 481 case ENETUNREACH: 482 case EMSGSIZE: 483 case ENOBUFS: 484 case ENOMEM: 485 break; 486 default: 487 printf("ip6_output (ipsec): error code %d\n", error); 488 /* FALLTHROUGH */ 489 case ENOENT: 490 /* don't show these error codes to the user */ 491 error = 0; 492 break; 493 } 494 goto bad; 495 } 496 if (exthdrs.ip6e_rthdr) { 497 /* ah6_output doesn't modify mbuf chain */ 498 rh->ip6r_segleft = segleft_org; 499 } 500 } 501 skip_ipsec2:; 502 #endif 503 } 504 505 /* 506 * If there is a routing header, replace destination address field 507 * with the first hop of the routing header. 508 */ 509 if (exthdrs.ip6e_rthdr) { 510 struct ip6_rthdr *rh; 511 struct ip6_rthdr0 *rh0; 512 struct in6_addr *addr; 513 struct sockaddr_in6 sa; 514 515 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 516 struct ip6_rthdr *)); 517 finaldst = ip6->ip6_dst; 518 switch (rh->ip6r_type) { 519 case IPV6_RTHDR_TYPE_0: 520 rh0 = (struct ip6_rthdr0 *)rh; 521 addr = (struct in6_addr *)(rh0 + 1); 522 523 /* 524 * construct a sockaddr_in6 form of 525 * the first hop. 526 * 527 * XXX: we may not have enough 528 * information about its scope zone; 529 * there is no standard API to pass 530 * the information from the 531 * application. 532 */ 533 sockaddr_in6_init(&sa, addr, 0, 0, 0); 534 if ((error = sa6_embedscope(&sa, 535 ip6_use_defzone)) != 0) { 536 goto bad; 537 } 538 ip6->ip6_dst = sa.sin6_addr; 539 (void)memmove(&addr[0], &addr[1], 540 sizeof(struct in6_addr) * 541 (rh0->ip6r0_segleft - 1)); 542 addr[rh0->ip6r0_segleft - 1] = finaldst; 543 /* XXX */ 544 in6_clearscope(addr + rh0->ip6r0_segleft - 1); 545 break; 546 default: /* is it possible? */ 547 error = EINVAL; 548 goto bad; 549 } 550 } 551 552 /* Source address validation */ 553 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 554 (flags & IPV6_UNSPECSRC) == 0) { 555 error = EOPNOTSUPP; 556 IP6_STATINC(IP6_STAT_BADSCOPE); 557 goto bad; 558 } 559 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 560 error = EOPNOTSUPP; 561 IP6_STATINC(IP6_STAT_BADSCOPE); 562 goto bad; 563 } 564 565 IP6_STATINC(IP6_STAT_LOCALOUT); 566 567 /* 568 * Route packet. 569 */ 570 /* initialize cached route */ 571 if (ro == NULL) { 572 ro = &ip6route; 573 } 574 ro_pmtu = ro; 575 if (opt && opt->ip6po_rthdr) 576 ro = &opt->ip6po_route; 577 578 /* 579 * if specified, try to fill in the traffic class field. 580 * do not override if a non-zero value is already set. 581 * we check the diffserv field and the ecn field separately. 582 */ 583 if (opt && opt->ip6po_tclass >= 0) { 584 int mask = 0; 585 586 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 587 mask |= 0xfc; 588 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 589 mask |= 0x03; 590 if (mask != 0) 591 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 592 } 593 594 /* fill in or override the hop limit field, if necessary. */ 595 if (opt && opt->ip6po_hlim != -1) 596 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 597 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 598 if (im6o != NULL) 599 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 600 else 601 ip6->ip6_hlim = ip6_defmcasthlim; 602 } 603 604 #ifdef IPSEC 605 if (needipsec && needipsectun) { 606 struct ipsec_output_state state; 607 608 /* 609 * All the extension headers will become inaccessible 610 * (since they can be encrypted). 611 * Don't panic, we need no more updates to extension headers 612 * on inner IPv6 packet (since they are now encapsulated). 613 * 614 * IPv6 [ESP|AH] IPv6 [extension headers] payload 615 */ 616 memset(&exthdrs, 0, sizeof(exthdrs)); 617 exthdrs.ip6e_ip6 = m; 618 619 memset(&state, 0, sizeof(state)); 620 state.m = m; 621 state.ro = ro; 622 state.dst = rtcache_getdst(ro); 623 624 error = ipsec6_output_tunnel(&state, sp, flags); 625 626 m = state.m; 627 ro_pmtu = ro = state.ro; 628 dst = satocsin6(state.dst); 629 if (error) { 630 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 631 m0 = m = NULL; 632 m = NULL; 633 switch (error) { 634 case EHOSTUNREACH: 635 case ENETUNREACH: 636 case EMSGSIZE: 637 case ENOBUFS: 638 case ENOMEM: 639 break; 640 default: 641 printf("ip6_output (ipsec): error code %d\n", error); 642 /* FALLTHROUGH */ 643 case ENOENT: 644 /* don't show these error codes to the user */ 645 error = 0; 646 break; 647 } 648 goto bad; 649 } 650 651 exthdrs.ip6e_ip6 = m; 652 } 653 #endif /* IPSEC */ 654 #ifdef FAST_IPSEC 655 if (needipsec) { 656 s = splsoftnet(); 657 error = ipsec6_process_packet(m,sp->req); 658 659 /* 660 * Preserve KAME behaviour: ENOENT can be returned 661 * when an SA acquire is in progress. Don't propagate 662 * this to user-level; it confuses applications. 663 * XXX this will go away when the SADB is redone. 664 */ 665 if (error == ENOENT) 666 error = 0; 667 splx(s); 668 goto done; 669 } 670 #endif /* FAST_IPSEC */ 671 672 673 674 /* adjust pointer */ 675 ip6 = mtod(m, struct ip6_hdr *); 676 677 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 678 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, 679 &ifp, &rt, 0)) != 0) { 680 if (ifp != NULL) 681 in6_ifstat_inc(ifp, ifs6_out_discard); 682 goto bad; 683 } 684 if (rt == NULL) { 685 /* 686 * If in6_selectroute() does not return a route entry, 687 * dst may not have been updated. 688 */ 689 rtcache_setdst(ro, sin6tosa(&dst_sa)); 690 } 691 692 /* 693 * then rt (for unicast) and ifp must be non-NULL valid values. 694 */ 695 if ((flags & IPV6_FORWARDING) == 0) { 696 /* XXX: the FORWARDING flag can be set for mrouting. */ 697 in6_ifstat_inc(ifp, ifs6_out_request); 698 } 699 if (rt != NULL) { 700 ia = (struct in6_ifaddr *)(rt->rt_ifa); 701 rt->rt_use++; 702 } 703 704 /* 705 * The outgoing interface must be in the zone of source and 706 * destination addresses. We should use ia_ifp to support the 707 * case of sending packets to an address of our own. 708 */ 709 if (ia != NULL && ia->ia_ifp) 710 origifp = ia->ia_ifp; 711 else 712 origifp = ifp; 713 714 src0 = ip6->ip6_src; 715 if (in6_setscope(&src0, origifp, &zone)) 716 goto badscope; 717 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0); 718 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 719 goto badscope; 720 721 dst0 = ip6->ip6_dst; 722 if (in6_setscope(&dst0, origifp, &zone)) 723 goto badscope; 724 /* re-initialize to be sure */ 725 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 726 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) 727 goto badscope; 728 729 /* scope check is done. */ 730 731 if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 732 if (dst == NULL) 733 dst = satocsin6(rtcache_getdst(ro)); 734 KASSERT(dst != NULL); 735 } else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) { 736 /* 737 * The nexthop is explicitly specified by the 738 * application. We assume the next hop is an IPv6 739 * address. 740 */ 741 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 742 } else if ((rt->rt_flags & RTF_GATEWAY)) 743 dst = (struct sockaddr_in6 *)rt->rt_gateway; 744 else if (dst == NULL) 745 dst = satocsin6(rtcache_getdst(ro)); 746 747 /* 748 * XXXXXX: original code follows: 749 */ 750 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 751 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 752 else { 753 struct in6_multi *in6m; 754 755 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 756 757 in6_ifstat_inc(ifp, ifs6_out_mcast); 758 759 /* 760 * Confirm that the outgoing interface supports multicast. 761 */ 762 if (!(ifp->if_flags & IFF_MULTICAST)) { 763 IP6_STATINC(IP6_STAT_NOROUTE); 764 in6_ifstat_inc(ifp, ifs6_out_discard); 765 error = ENETUNREACH; 766 goto bad; 767 } 768 769 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 770 if (in6m != NULL && 771 (im6o == NULL || im6o->im6o_multicast_loop)) { 772 /* 773 * If we belong to the destination multicast group 774 * on the outgoing interface, and the caller did not 775 * forbid loopback, loop back a copy. 776 */ 777 KASSERT(dst != NULL); 778 ip6_mloopback(ifp, m, dst); 779 } else { 780 /* 781 * If we are acting as a multicast router, perform 782 * multicast forwarding as if the packet had just 783 * arrived on the interface to which we are about 784 * to send. The multicast forwarding function 785 * recursively calls this function, using the 786 * IPV6_FORWARDING flag to prevent infinite recursion. 787 * 788 * Multicasts that are looped back by ip6_mloopback(), 789 * above, will be forwarded by the ip6_input() routine, 790 * if necessary. 791 */ 792 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 793 if (ip6_mforward(ip6, ifp, m) != 0) { 794 m_freem(m); 795 goto done; 796 } 797 } 798 } 799 /* 800 * Multicasts with a hoplimit of zero may be looped back, 801 * above, but must not be transmitted on a network. 802 * Also, multicasts addressed to the loopback interface 803 * are not sent -- the above call to ip6_mloopback() will 804 * loop back a copy if this host actually belongs to the 805 * destination group on the loopback interface. 806 */ 807 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 808 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 809 m_freem(m); 810 goto done; 811 } 812 } 813 814 /* 815 * Fill the outgoing inteface to tell the upper layer 816 * to increment per-interface statistics. 817 */ 818 if (ifpp) 819 *ifpp = ifp; 820 821 /* Determine path MTU. */ 822 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 823 &alwaysfrag)) != 0) 824 goto bad; 825 #ifdef IPSEC 826 if (needipsectun) 827 mtu = IPV6_MMTU; 828 #endif 829 830 /* 831 * The caller of this function may specify to use the minimum MTU 832 * in some cases. 833 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 834 * setting. The logic is a bit complicated; by default, unicast 835 * packets will follow path MTU while multicast packets will be sent at 836 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 837 * including unicast ones will be sent at the minimum MTU. Multicast 838 * packets will always be sent at the minimum MTU unless 839 * IP6PO_MINMTU_DISABLE is explicitly specified. 840 * See RFC 3542 for more details. 841 */ 842 if (mtu > IPV6_MMTU) { 843 if ((flags & IPV6_MINMTU)) 844 mtu = IPV6_MMTU; 845 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 846 mtu = IPV6_MMTU; 847 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 848 (opt == NULL || 849 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 850 mtu = IPV6_MMTU; 851 } 852 } 853 854 /* 855 * clear embedded scope identifiers if necessary. 856 * in6_clearscope will touch the addresses only when necessary. 857 */ 858 in6_clearscope(&ip6->ip6_src); 859 in6_clearscope(&ip6->ip6_dst); 860 861 /* 862 * If the outgoing packet contains a hop-by-hop options header, 863 * it must be examined and processed even by the source node. 864 * (RFC 2460, section 4.) 865 */ 866 if (exthdrs.ip6e_hbh) { 867 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 868 u_int32_t dummy1; /* XXX unused */ 869 u_int32_t dummy2; /* XXX unused */ 870 871 /* 872 * XXX: if we have to send an ICMPv6 error to the sender, 873 * we need the M_LOOP flag since icmp6_error() expects 874 * the IPv6 and the hop-by-hop options header are 875 * continuous unless the flag is set. 876 */ 877 m->m_flags |= M_LOOP; 878 m->m_pkthdr.rcvif = ifp; 879 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 880 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 881 &dummy1, &dummy2) < 0) { 882 /* m was already freed at this point */ 883 error = EINVAL;/* better error? */ 884 goto done; 885 } 886 m->m_flags &= ~M_LOOP; /* XXX */ 887 m->m_pkthdr.rcvif = NULL; 888 } 889 890 #ifdef PFIL_HOOKS 891 /* 892 * Run through list of hooks for output packets. 893 */ 894 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0) 895 goto done; 896 if (m == NULL) 897 goto done; 898 ip6 = mtod(m, struct ip6_hdr *); 899 #endif /* PFIL_HOOKS */ 900 /* 901 * Send the packet to the outgoing interface. 902 * If necessary, do IPv6 fragmentation before sending. 903 * 904 * the logic here is rather complex: 905 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 906 * 1-a: send as is if tlen <= path mtu 907 * 1-b: fragment if tlen > path mtu 908 * 909 * 2: if user asks us not to fragment (dontfrag == 1) 910 * 2-a: send as is if tlen <= interface mtu 911 * 2-b: error if tlen > interface mtu 912 * 913 * 3: if we always need to attach fragment header (alwaysfrag == 1) 914 * always fragment 915 * 916 * 4: if dontfrag == 1 && alwaysfrag == 1 917 * error, as we cannot handle this conflicting request 918 */ 919 tlen = m->m_pkthdr.len; 920 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0; 921 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 922 dontfrag = 1; 923 else 924 dontfrag = 0; 925 926 if (dontfrag && alwaysfrag) { /* case 4 */ 927 /* conflicting request - can't transmit */ 928 error = EMSGSIZE; 929 goto bad; 930 } 931 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */ 932 /* 933 * Even if the DONTFRAG option is specified, we cannot send the 934 * packet when the data length is larger than the MTU of the 935 * outgoing interface. 936 * Notify the error by sending IPV6_PATHMTU ancillary data as 937 * well as returning an error code (the latter is not described 938 * in the API spec.) 939 */ 940 u_int32_t mtu32; 941 struct ip6ctlparam ip6cp; 942 943 mtu32 = (u_int32_t)mtu; 944 memset(&ip6cp, 0, sizeof(ip6cp)); 945 ip6cp.ip6c_cmdarg = (void *)&mtu32; 946 pfctlinput2(PRC_MSGSIZE, 947 rtcache_getdst(ro_pmtu), &ip6cp); 948 949 error = EMSGSIZE; 950 goto bad; 951 } 952 953 /* 954 * transmit packet without fragmentation 955 */ 956 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) { 957 /* case 1-a and 2-a */ 958 struct in6_ifaddr *ia6; 959 int sw_csum; 960 961 ip6 = mtod(m, struct ip6_hdr *); 962 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 963 if (ia6) { 964 /* Record statistics for this interface address. */ 965 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len; 966 } 967 #ifdef IPSEC 968 /* clean ipsec history once it goes out of the node */ 969 ipsec_delaux(m); 970 #endif 971 972 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 973 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 974 if (IN6_NEED_CHECKSUM(ifp, 975 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 976 in6_delayed_cksum(m); 977 } 978 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 979 } 980 981 KASSERT(dst != NULL); 982 if (__predict_true(!tso || 983 (ifp->if_capenable & IFCAP_TSOv6) != 0)) { 984 error = nd6_output(ifp, origifp, m, dst, rt); 985 } else { 986 error = ip6_tso_output(ifp, origifp, m, dst, rt); 987 } 988 goto done; 989 } 990 991 if (tso) { 992 error = EINVAL; /* XXX */ 993 goto bad; 994 } 995 996 /* 997 * try to fragment the packet. case 1-b and 3 998 */ 999 if (mtu < IPV6_MMTU) { 1000 /* path MTU cannot be less than IPV6_MMTU */ 1001 error = EMSGSIZE; 1002 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1003 goto bad; 1004 } else if (ip6->ip6_plen == 0) { 1005 /* jumbo payload cannot be fragmented */ 1006 error = EMSGSIZE; 1007 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1008 goto bad; 1009 } else { 1010 struct mbuf **mnext, *m_frgpart; 1011 struct ip6_frag *ip6f; 1012 u_int32_t id = htonl(ip6_randomid()); 1013 u_char nextproto; 1014 #if 0 /* see below */ 1015 struct ip6ctlparam ip6cp; 1016 u_int32_t mtu32; 1017 #endif 1018 1019 /* 1020 * Too large for the destination or interface; 1021 * fragment if possible. 1022 * Must be able to put at least 8 bytes per fragment. 1023 */ 1024 hlen = unfragpartlen; 1025 if (mtu > IPV6_MAXPACKET) 1026 mtu = IPV6_MAXPACKET; 1027 1028 #if 0 1029 /* 1030 * It is believed this code is a leftover from the 1031 * development of the IPV6_RECVPATHMTU sockopt and 1032 * associated work to implement RFC3542. 1033 * It's not entirely clear what the intent of the API 1034 * is at this point, so disable this code for now. 1035 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG 1036 * will send notifications if the application requests. 1037 */ 1038 1039 /* Notify a proper path MTU to applications. */ 1040 mtu32 = (u_int32_t)mtu; 1041 memset(&ip6cp, 0, sizeof(ip6cp)); 1042 ip6cp.ip6c_cmdarg = (void *)&mtu32; 1043 pfctlinput2(PRC_MSGSIZE, 1044 rtcache_getdst(ro_pmtu), &ip6cp); 1045 #endif 1046 1047 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 1048 if (len < 8) { 1049 error = EMSGSIZE; 1050 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1051 goto bad; 1052 } 1053 1054 mnext = &m->m_nextpkt; 1055 1056 /* 1057 * Change the next header field of the last header in the 1058 * unfragmentable part. 1059 */ 1060 if (exthdrs.ip6e_rthdr) { 1061 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1062 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1063 } else if (exthdrs.ip6e_dest1) { 1064 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1065 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1066 } else if (exthdrs.ip6e_hbh) { 1067 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1068 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1069 } else { 1070 nextproto = ip6->ip6_nxt; 1071 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1072 } 1073 1074 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) 1075 != 0) { 1076 if (IN6_NEED_CHECKSUM(ifp, 1077 m->m_pkthdr.csum_flags & 1078 (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 1079 in6_delayed_cksum(m); 1080 } 1081 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 1082 } 1083 1084 /* 1085 * Loop through length of segment after first fragment, 1086 * make new header and copy data of each part and link onto 1087 * chain. 1088 */ 1089 m0 = m; 1090 for (off = hlen; off < tlen; off += len) { 1091 struct mbuf *mlast; 1092 1093 MGETHDR(m, M_DONTWAIT, MT_HEADER); 1094 if (!m) { 1095 error = ENOBUFS; 1096 IP6_STATINC(IP6_STAT_ODROPPED); 1097 goto sendorfree; 1098 } 1099 m->m_pkthdr.rcvif = NULL; 1100 m->m_flags = m0->m_flags & M_COPYFLAGS; 1101 *mnext = m; 1102 mnext = &m->m_nextpkt; 1103 m->m_data += max_linkhdr; 1104 mhip6 = mtod(m, struct ip6_hdr *); 1105 *mhip6 = *ip6; 1106 m->m_len = sizeof(*mhip6); 1107 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1108 if (error) { 1109 IP6_STATINC(IP6_STAT_ODROPPED); 1110 goto sendorfree; 1111 } 1112 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 1113 if (off + len >= tlen) 1114 len = tlen - off; 1115 else 1116 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1117 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 1118 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1119 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1120 error = ENOBUFS; 1121 IP6_STATINC(IP6_STAT_ODROPPED); 1122 goto sendorfree; 1123 } 1124 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 1125 ; 1126 mlast->m_next = m_frgpart; 1127 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1128 m->m_pkthdr.rcvif = (struct ifnet *)0; 1129 ip6f->ip6f_reserved = 0; 1130 ip6f->ip6f_ident = id; 1131 ip6f->ip6f_nxt = nextproto; 1132 IP6_STATINC(IP6_STAT_OFRAGMENTS); 1133 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1134 } 1135 1136 in6_ifstat_inc(ifp, ifs6_out_fragok); 1137 } 1138 1139 /* 1140 * Remove leading garbages. 1141 */ 1142 sendorfree: 1143 m = m0->m_nextpkt; 1144 m0->m_nextpkt = 0; 1145 m_freem(m0); 1146 for (m0 = m; m; m = m0) { 1147 m0 = m->m_nextpkt; 1148 m->m_nextpkt = 0; 1149 if (error == 0) { 1150 struct in6_ifaddr *ia6; 1151 ip6 = mtod(m, struct ip6_hdr *); 1152 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1153 if (ia6) { 1154 /* 1155 * Record statistics for this interface 1156 * address. 1157 */ 1158 ia6->ia_ifa.ifa_data.ifad_outbytes += 1159 m->m_pkthdr.len; 1160 } 1161 #ifdef IPSEC 1162 /* clean ipsec history once it goes out of the node */ 1163 ipsec_delaux(m); 1164 #endif 1165 KASSERT(dst != NULL); 1166 error = nd6_output(ifp, origifp, m, dst, rt); 1167 } else 1168 m_freem(m); 1169 } 1170 1171 if (error == 0) 1172 IP6_STATINC(IP6_STAT_FRAGMENTED); 1173 1174 done: 1175 rtcache_free(&ip6route); 1176 1177 #ifdef IPSEC 1178 if (sp != NULL) 1179 key_freesp(sp); 1180 #endif /* IPSEC */ 1181 #ifdef FAST_IPSEC 1182 if (sp != NULL) 1183 KEY_FREESP(&sp); 1184 #endif /* FAST_IPSEC */ 1185 1186 1187 return (error); 1188 1189 freehdrs: 1190 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1191 m_freem(exthdrs.ip6e_dest1); 1192 m_freem(exthdrs.ip6e_rthdr); 1193 m_freem(exthdrs.ip6e_dest2); 1194 /* FALLTHROUGH */ 1195 bad: 1196 m_freem(m); 1197 goto done; 1198 badscope: 1199 IP6_STATINC(IP6_STAT_BADSCOPE); 1200 in6_ifstat_inc(origifp, ifs6_out_discard); 1201 if (error == 0) 1202 error = EHOSTUNREACH; /* XXX */ 1203 goto bad; 1204 } 1205 1206 static int 1207 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen) 1208 { 1209 struct mbuf *m; 1210 1211 if (hlen > MCLBYTES) 1212 return (ENOBUFS); /* XXX */ 1213 1214 MGET(m, M_DONTWAIT, MT_DATA); 1215 if (!m) 1216 return (ENOBUFS); 1217 1218 if (hlen > MLEN) { 1219 MCLGET(m, M_DONTWAIT); 1220 if ((m->m_flags & M_EXT) == 0) { 1221 m_free(m); 1222 return (ENOBUFS); 1223 } 1224 } 1225 m->m_len = hlen; 1226 if (hdr) 1227 bcopy(hdr, mtod(m, void *), hlen); 1228 1229 *mp = m; 1230 return (0); 1231 } 1232 1233 /* 1234 * Process a delayed payload checksum calculation. 1235 */ 1236 void 1237 in6_delayed_cksum(struct mbuf *m) 1238 { 1239 uint16_t csum, offset; 1240 1241 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1242 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1243 KASSERT((m->m_pkthdr.csum_flags 1244 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0); 1245 1246 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data); 1247 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset); 1248 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) { 1249 csum = 0xffff; 1250 } 1251 1252 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data); 1253 if ((offset + sizeof(csum)) > m->m_len) { 1254 m_copyback(m, offset, sizeof(csum), &csum); 1255 } else { 1256 *(uint16_t *)(mtod(m, char *) + offset) = csum; 1257 } 1258 } 1259 1260 /* 1261 * Insert jumbo payload option. 1262 */ 1263 static int 1264 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1265 { 1266 struct mbuf *mopt; 1267 u_int8_t *optbuf; 1268 u_int32_t v; 1269 1270 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1271 1272 /* 1273 * If there is no hop-by-hop options header, allocate new one. 1274 * If there is one but it doesn't have enough space to store the 1275 * jumbo payload option, allocate a cluster to store the whole options. 1276 * Otherwise, use it to store the options. 1277 */ 1278 if (exthdrs->ip6e_hbh == 0) { 1279 MGET(mopt, M_DONTWAIT, MT_DATA); 1280 if (mopt == 0) 1281 return (ENOBUFS); 1282 mopt->m_len = JUMBOOPTLEN; 1283 optbuf = mtod(mopt, u_int8_t *); 1284 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1285 exthdrs->ip6e_hbh = mopt; 1286 } else { 1287 struct ip6_hbh *hbh; 1288 1289 mopt = exthdrs->ip6e_hbh; 1290 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1291 /* 1292 * XXX assumption: 1293 * - exthdrs->ip6e_hbh is not referenced from places 1294 * other than exthdrs. 1295 * - exthdrs->ip6e_hbh is not an mbuf chain. 1296 */ 1297 int oldoptlen = mopt->m_len; 1298 struct mbuf *n; 1299 1300 /* 1301 * XXX: give up if the whole (new) hbh header does 1302 * not fit even in an mbuf cluster. 1303 */ 1304 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1305 return (ENOBUFS); 1306 1307 /* 1308 * As a consequence, we must always prepare a cluster 1309 * at this point. 1310 */ 1311 MGET(n, M_DONTWAIT, MT_DATA); 1312 if (n) { 1313 MCLGET(n, M_DONTWAIT); 1314 if ((n->m_flags & M_EXT) == 0) { 1315 m_freem(n); 1316 n = NULL; 1317 } 1318 } 1319 if (!n) 1320 return (ENOBUFS); 1321 n->m_len = oldoptlen + JUMBOOPTLEN; 1322 bcopy(mtod(mopt, void *), mtod(n, void *), 1323 oldoptlen); 1324 optbuf = mtod(n, u_int8_t *) + oldoptlen; 1325 m_freem(mopt); 1326 mopt = exthdrs->ip6e_hbh = n; 1327 } else { 1328 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 1329 mopt->m_len += JUMBOOPTLEN; 1330 } 1331 optbuf[0] = IP6OPT_PADN; 1332 optbuf[1] = 0; 1333 1334 /* 1335 * Adjust the header length according to the pad and 1336 * the jumbo payload option. 1337 */ 1338 hbh = mtod(mopt, struct ip6_hbh *); 1339 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1340 } 1341 1342 /* fill in the option. */ 1343 optbuf[2] = IP6OPT_JUMBO; 1344 optbuf[3] = 4; 1345 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1346 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1347 1348 /* finally, adjust the packet header length */ 1349 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1350 1351 return (0); 1352 #undef JUMBOOPTLEN 1353 } 1354 1355 /* 1356 * Insert fragment header and copy unfragmentable header portions. 1357 */ 1358 static int 1359 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1360 struct ip6_frag **frghdrp) 1361 { 1362 struct mbuf *n, *mlast; 1363 1364 if (hlen > sizeof(struct ip6_hdr)) { 1365 n = m_copym(m0, sizeof(struct ip6_hdr), 1366 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1367 if (n == 0) 1368 return (ENOBUFS); 1369 m->m_next = n; 1370 } else 1371 n = m; 1372 1373 /* Search for the last mbuf of unfragmentable part. */ 1374 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1375 ; 1376 1377 if ((mlast->m_flags & M_EXT) == 0 && 1378 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1379 /* use the trailing space of the last mbuf for the fragment hdr */ 1380 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) + 1381 mlast->m_len); 1382 mlast->m_len += sizeof(struct ip6_frag); 1383 m->m_pkthdr.len += sizeof(struct ip6_frag); 1384 } else { 1385 /* allocate a new mbuf for the fragment header */ 1386 struct mbuf *mfrg; 1387 1388 MGET(mfrg, M_DONTWAIT, MT_DATA); 1389 if (mfrg == 0) 1390 return (ENOBUFS); 1391 mfrg->m_len = sizeof(struct ip6_frag); 1392 *frghdrp = mtod(mfrg, struct ip6_frag *); 1393 mlast->m_next = mfrg; 1394 } 1395 1396 return (0); 1397 } 1398 1399 static int 1400 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp, 1401 const struct in6_addr *dst, u_long *mtup, int *alwaysfragp) 1402 { 1403 struct rtentry *rt; 1404 u_int32_t mtu = 0; 1405 int alwaysfrag = 0; 1406 int error = 0; 1407 1408 if (ro_pmtu != ro) { 1409 union { 1410 struct sockaddr dst; 1411 struct sockaddr_in6 dst6; 1412 } u; 1413 1414 /* The first hop and the final destination may differ. */ 1415 sockaddr_in6_init(&u.dst6, dst, 0, 0, 0); 1416 rt = rtcache_lookup(ro_pmtu, &u.dst); 1417 } else 1418 rt = rtcache_validate(ro_pmtu); 1419 if (rt != NULL) { 1420 u_int32_t ifmtu; 1421 1422 if (ifp == NULL) 1423 ifp = rt->rt_ifp; 1424 ifmtu = IN6_LINKMTU(ifp); 1425 mtu = rt->rt_rmx.rmx_mtu; 1426 if (mtu == 0) 1427 mtu = ifmtu; 1428 else if (mtu < IPV6_MMTU) { 1429 /* 1430 * RFC2460 section 5, last paragraph: 1431 * if we record ICMPv6 too big message with 1432 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1433 * or smaller, with fragment header attached. 1434 * (fragment header is needed regardless from the 1435 * packet size, for translators to identify packets) 1436 */ 1437 alwaysfrag = 1; 1438 mtu = IPV6_MMTU; 1439 } else if (mtu > ifmtu) { 1440 /* 1441 * The MTU on the route is larger than the MTU on 1442 * the interface! This shouldn't happen, unless the 1443 * MTU of the interface has been changed after the 1444 * interface was brought up. Change the MTU in the 1445 * route to match the interface MTU (as long as the 1446 * field isn't locked). 1447 */ 1448 mtu = ifmtu; 1449 if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) 1450 rt->rt_rmx.rmx_mtu = mtu; 1451 } 1452 } else if (ifp) { 1453 mtu = IN6_LINKMTU(ifp); 1454 } else 1455 error = EHOSTUNREACH; /* XXX */ 1456 1457 *mtup = mtu; 1458 if (alwaysfragp) 1459 *alwaysfragp = alwaysfrag; 1460 return (error); 1461 } 1462 1463 /* 1464 * IP6 socket option processing. 1465 */ 1466 int 1467 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1468 { 1469 int optdatalen, uproto; 1470 void *optdata; 1471 struct in6pcb *in6p = sotoin6pcb(so); 1472 int error, optval; 1473 int level, optname; 1474 1475 KASSERT(sopt != NULL); 1476 1477 level = sopt->sopt_level; 1478 optname = sopt->sopt_name; 1479 1480 error = optval = 0; 1481 uproto = (int)so->so_proto->pr_protocol; 1482 1483 if (level != IPPROTO_IPV6) { 1484 return ENOPROTOOPT; 1485 } 1486 switch (op) { 1487 case PRCO_SETOPT: 1488 switch (optname) { 1489 #ifdef RFC2292 1490 case IPV6_2292PKTOPTIONS: 1491 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt); 1492 break; 1493 #endif 1494 1495 /* 1496 * Use of some Hop-by-Hop options or some 1497 * Destination options, might require special 1498 * privilege. That is, normal applications 1499 * (without special privilege) might be forbidden 1500 * from setting certain options in outgoing packets, 1501 * and might never see certain options in received 1502 * packets. [RFC 2292 Section 6] 1503 * KAME specific note: 1504 * KAME prevents non-privileged users from sending or 1505 * receiving ANY hbh/dst options in order to avoid 1506 * overhead of parsing options in the kernel. 1507 */ 1508 case IPV6_RECVHOPOPTS: 1509 case IPV6_RECVDSTOPTS: 1510 case IPV6_RECVRTHDRDSTOPTS: 1511 error = kauth_authorize_generic(kauth_cred_get(), 1512 KAUTH_GENERIC_ISSUSER, NULL); 1513 if (error) 1514 break; 1515 /* FALLTHROUGH */ 1516 case IPV6_UNICAST_HOPS: 1517 case IPV6_HOPLIMIT: 1518 case IPV6_FAITH: 1519 1520 case IPV6_RECVPKTINFO: 1521 case IPV6_RECVHOPLIMIT: 1522 case IPV6_RECVRTHDR: 1523 case IPV6_RECVPATHMTU: 1524 case IPV6_RECVTCLASS: 1525 case IPV6_V6ONLY: 1526 error = sockopt_getint(sopt, &optval); 1527 if (error) 1528 break; 1529 switch (optname) { 1530 case IPV6_UNICAST_HOPS: 1531 if (optval < -1 || optval >= 256) 1532 error = EINVAL; 1533 else { 1534 /* -1 = kernel default */ 1535 in6p->in6p_hops = optval; 1536 } 1537 break; 1538 #define OPTSET(bit) \ 1539 do { \ 1540 if (optval) \ 1541 in6p->in6p_flags |= (bit); \ 1542 else \ 1543 in6p->in6p_flags &= ~(bit); \ 1544 } while (/*CONSTCOND*/ 0) 1545 1546 #ifdef RFC2292 1547 #define OPTSET2292(bit) \ 1548 do { \ 1549 in6p->in6p_flags |= IN6P_RFC2292; \ 1550 if (optval) \ 1551 in6p->in6p_flags |= (bit); \ 1552 else \ 1553 in6p->in6p_flags &= ~(bit); \ 1554 } while (/*CONSTCOND*/ 0) 1555 #endif 1556 1557 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1558 1559 case IPV6_RECVPKTINFO: 1560 #ifdef RFC2292 1561 /* cannot mix with RFC2292 */ 1562 if (OPTBIT(IN6P_RFC2292)) { 1563 error = EINVAL; 1564 break; 1565 } 1566 #endif 1567 OPTSET(IN6P_PKTINFO); 1568 break; 1569 1570 case IPV6_HOPLIMIT: 1571 { 1572 struct ip6_pktopts **optp; 1573 1574 #ifdef RFC2292 1575 /* cannot mix with RFC2292 */ 1576 if (OPTBIT(IN6P_RFC2292)) { 1577 error = EINVAL; 1578 break; 1579 } 1580 #endif 1581 optp = &in6p->in6p_outputopts; 1582 error = ip6_pcbopt(IPV6_HOPLIMIT, 1583 (u_char *)&optval, 1584 sizeof(optval), 1585 optp, 1586 kauth_cred_get(), uproto); 1587 break; 1588 } 1589 1590 case IPV6_RECVHOPLIMIT: 1591 #ifdef RFC2292 1592 /* cannot mix with RFC2292 */ 1593 if (OPTBIT(IN6P_RFC2292)) { 1594 error = EINVAL; 1595 break; 1596 } 1597 #endif 1598 OPTSET(IN6P_HOPLIMIT); 1599 break; 1600 1601 case IPV6_RECVHOPOPTS: 1602 #ifdef RFC2292 1603 /* cannot mix with RFC2292 */ 1604 if (OPTBIT(IN6P_RFC2292)) { 1605 error = EINVAL; 1606 break; 1607 } 1608 #endif 1609 OPTSET(IN6P_HOPOPTS); 1610 break; 1611 1612 case IPV6_RECVDSTOPTS: 1613 #ifdef RFC2292 1614 /* cannot mix with RFC2292 */ 1615 if (OPTBIT(IN6P_RFC2292)) { 1616 error = EINVAL; 1617 break; 1618 } 1619 #endif 1620 OPTSET(IN6P_DSTOPTS); 1621 break; 1622 1623 case IPV6_RECVRTHDRDSTOPTS: 1624 #ifdef RFC2292 1625 /* cannot mix with RFC2292 */ 1626 if (OPTBIT(IN6P_RFC2292)) { 1627 error = EINVAL; 1628 break; 1629 } 1630 #endif 1631 OPTSET(IN6P_RTHDRDSTOPTS); 1632 break; 1633 1634 case IPV6_RECVRTHDR: 1635 #ifdef RFC2292 1636 /* cannot mix with RFC2292 */ 1637 if (OPTBIT(IN6P_RFC2292)) { 1638 error = EINVAL; 1639 break; 1640 } 1641 #endif 1642 OPTSET(IN6P_RTHDR); 1643 break; 1644 1645 case IPV6_FAITH: 1646 OPTSET(IN6P_FAITH); 1647 break; 1648 1649 case IPV6_RECVPATHMTU: 1650 /* 1651 * We ignore this option for TCP 1652 * sockets. 1653 * (RFC3542 leaves this case 1654 * unspecified.) 1655 */ 1656 if (uproto != IPPROTO_TCP) 1657 OPTSET(IN6P_MTU); 1658 break; 1659 1660 case IPV6_V6ONLY: 1661 /* 1662 * make setsockopt(IPV6_V6ONLY) 1663 * available only prior to bind(2). 1664 * see ipng mailing list, Jun 22 2001. 1665 */ 1666 if (in6p->in6p_lport || 1667 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1668 error = EINVAL; 1669 break; 1670 } 1671 #ifdef INET6_BINDV6ONLY 1672 if (!optval) 1673 error = EINVAL; 1674 #else 1675 OPTSET(IN6P_IPV6_V6ONLY); 1676 #endif 1677 break; 1678 case IPV6_RECVTCLASS: 1679 #ifdef RFC2292 1680 /* cannot mix with RFC2292 XXX */ 1681 if (OPTBIT(IN6P_RFC2292)) { 1682 error = EINVAL; 1683 break; 1684 } 1685 #endif 1686 OPTSET(IN6P_TCLASS); 1687 break; 1688 1689 } 1690 break; 1691 1692 case IPV6_OTCLASS: 1693 { 1694 struct ip6_pktopts **optp; 1695 u_int8_t tclass; 1696 1697 error = sockopt_get(sopt, &tclass, sizeof(tclass)); 1698 if (error) 1699 break; 1700 optp = &in6p->in6p_outputopts; 1701 error = ip6_pcbopt(optname, 1702 (u_char *)&tclass, 1703 sizeof(tclass), 1704 optp, 1705 kauth_cred_get(), uproto); 1706 break; 1707 } 1708 1709 case IPV6_TCLASS: 1710 case IPV6_DONTFRAG: 1711 case IPV6_USE_MIN_MTU: 1712 error = sockopt_getint(sopt, &optval); 1713 if (error) 1714 break; 1715 { 1716 struct ip6_pktopts **optp; 1717 optp = &in6p->in6p_outputopts; 1718 error = ip6_pcbopt(optname, 1719 (u_char *)&optval, 1720 sizeof(optval), 1721 optp, 1722 kauth_cred_get(), uproto); 1723 break; 1724 } 1725 1726 #ifdef RFC2292 1727 case IPV6_2292PKTINFO: 1728 case IPV6_2292HOPLIMIT: 1729 case IPV6_2292HOPOPTS: 1730 case IPV6_2292DSTOPTS: 1731 case IPV6_2292RTHDR: 1732 /* RFC 2292 */ 1733 error = sockopt_getint(sopt, &optval); 1734 if (error) 1735 break; 1736 1737 switch (optname) { 1738 case IPV6_2292PKTINFO: 1739 OPTSET2292(IN6P_PKTINFO); 1740 break; 1741 case IPV6_2292HOPLIMIT: 1742 OPTSET2292(IN6P_HOPLIMIT); 1743 break; 1744 case IPV6_2292HOPOPTS: 1745 /* 1746 * Check super-user privilege. 1747 * See comments for IPV6_RECVHOPOPTS. 1748 */ 1749 error = 1750 kauth_authorize_generic(kauth_cred_get(), 1751 KAUTH_GENERIC_ISSUSER, NULL); 1752 if (error) 1753 return (error); 1754 OPTSET2292(IN6P_HOPOPTS); 1755 break; 1756 case IPV6_2292DSTOPTS: 1757 error = 1758 kauth_authorize_generic(kauth_cred_get(), 1759 KAUTH_GENERIC_ISSUSER, NULL); 1760 if (error) 1761 return (error); 1762 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1763 break; 1764 case IPV6_2292RTHDR: 1765 OPTSET2292(IN6P_RTHDR); 1766 break; 1767 } 1768 break; 1769 #endif 1770 case IPV6_PKTINFO: 1771 case IPV6_HOPOPTS: 1772 case IPV6_RTHDR: 1773 case IPV6_DSTOPTS: 1774 case IPV6_RTHDRDSTOPTS: 1775 case IPV6_NEXTHOP: { 1776 /* new advanced API (RFC3542) */ 1777 void *optbuf; 1778 int optbuflen; 1779 struct ip6_pktopts **optp; 1780 1781 #ifdef RFC2292 1782 /* cannot mix with RFC2292 */ 1783 if (OPTBIT(IN6P_RFC2292)) { 1784 error = EINVAL; 1785 break; 1786 } 1787 #endif 1788 1789 optbuflen = sopt->sopt_size; 1790 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT); 1791 if (optbuf == NULL) { 1792 error = ENOBUFS; 1793 break; 1794 } 1795 1796 sockopt_get(sopt, optbuf, optbuflen); 1797 optp = &in6p->in6p_outputopts; 1798 error = ip6_pcbopt(optname, optbuf, optbuflen, 1799 optp, kauth_cred_get(), uproto); 1800 break; 1801 } 1802 #undef OPTSET 1803 1804 case IPV6_MULTICAST_IF: 1805 case IPV6_MULTICAST_HOPS: 1806 case IPV6_MULTICAST_LOOP: 1807 case IPV6_JOIN_GROUP: 1808 case IPV6_LEAVE_GROUP: 1809 error = ip6_setmoptions(sopt, &in6p->in6p_moptions); 1810 break; 1811 1812 case IPV6_PORTRANGE: 1813 error = sockopt_getint(sopt, &optval); 1814 if (error) 1815 break; 1816 1817 switch (optval) { 1818 case IPV6_PORTRANGE_DEFAULT: 1819 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1820 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1821 break; 1822 1823 case IPV6_PORTRANGE_HIGH: 1824 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1825 in6p->in6p_flags |= IN6P_HIGHPORT; 1826 break; 1827 1828 case IPV6_PORTRANGE_LOW: 1829 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1830 in6p->in6p_flags |= IN6P_LOWPORT; 1831 break; 1832 1833 default: 1834 error = EINVAL; 1835 break; 1836 } 1837 break; 1838 1839 1840 #if defined(IPSEC) || defined(FAST_IPSEC) 1841 case IPV6_IPSEC_POLICY: 1842 error = ipsec6_set_policy(in6p, optname, 1843 sopt->sopt_data, sopt->sopt_size, kauth_cred_get()); 1844 break; 1845 #endif /* IPSEC */ 1846 1847 default: 1848 error = ENOPROTOOPT; 1849 break; 1850 } 1851 break; 1852 1853 case PRCO_GETOPT: 1854 switch (optname) { 1855 #ifdef RFC2292 1856 case IPV6_2292PKTOPTIONS: 1857 /* 1858 * RFC3542 (effectively) deprecated the 1859 * semantics of the 2292-style pktoptions. 1860 * Since it was not reliable in nature (i.e., 1861 * applications had to expect the lack of some 1862 * information after all), it would make sense 1863 * to simplify this part by always returning 1864 * empty data. 1865 */ 1866 break; 1867 #endif 1868 1869 case IPV6_RECVHOPOPTS: 1870 case IPV6_RECVDSTOPTS: 1871 case IPV6_RECVRTHDRDSTOPTS: 1872 case IPV6_UNICAST_HOPS: 1873 case IPV6_RECVPKTINFO: 1874 case IPV6_RECVHOPLIMIT: 1875 case IPV6_RECVRTHDR: 1876 case IPV6_RECVPATHMTU: 1877 1878 case IPV6_FAITH: 1879 case IPV6_V6ONLY: 1880 case IPV6_PORTRANGE: 1881 case IPV6_RECVTCLASS: 1882 switch (optname) { 1883 1884 case IPV6_RECVHOPOPTS: 1885 optval = OPTBIT(IN6P_HOPOPTS); 1886 break; 1887 1888 case IPV6_RECVDSTOPTS: 1889 optval = OPTBIT(IN6P_DSTOPTS); 1890 break; 1891 1892 case IPV6_RECVRTHDRDSTOPTS: 1893 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1894 break; 1895 1896 case IPV6_UNICAST_HOPS: 1897 optval = in6p->in6p_hops; 1898 break; 1899 1900 case IPV6_RECVPKTINFO: 1901 optval = OPTBIT(IN6P_PKTINFO); 1902 break; 1903 1904 case IPV6_RECVHOPLIMIT: 1905 optval = OPTBIT(IN6P_HOPLIMIT); 1906 break; 1907 1908 case IPV6_RECVRTHDR: 1909 optval = OPTBIT(IN6P_RTHDR); 1910 break; 1911 1912 case IPV6_RECVPATHMTU: 1913 optval = OPTBIT(IN6P_MTU); 1914 break; 1915 1916 case IPV6_FAITH: 1917 optval = OPTBIT(IN6P_FAITH); 1918 break; 1919 1920 case IPV6_V6ONLY: 1921 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1922 break; 1923 1924 case IPV6_PORTRANGE: 1925 { 1926 int flags; 1927 flags = in6p->in6p_flags; 1928 if (flags & IN6P_HIGHPORT) 1929 optval = IPV6_PORTRANGE_HIGH; 1930 else if (flags & IN6P_LOWPORT) 1931 optval = IPV6_PORTRANGE_LOW; 1932 else 1933 optval = 0; 1934 break; 1935 } 1936 case IPV6_RECVTCLASS: 1937 optval = OPTBIT(IN6P_TCLASS); 1938 break; 1939 1940 } 1941 if (error) 1942 break; 1943 error = sockopt_setint(sopt, optval); 1944 break; 1945 1946 case IPV6_PATHMTU: 1947 { 1948 u_long pmtu = 0; 1949 struct ip6_mtuinfo mtuinfo; 1950 struct route *ro = &in6p->in6p_route; 1951 1952 if (!(so->so_state & SS_ISCONNECTED)) 1953 return (ENOTCONN); 1954 /* 1955 * XXX: we dot not consider the case of source 1956 * routing, or optional information to specify 1957 * the outgoing interface. 1958 */ 1959 error = ip6_getpmtu(ro, NULL, NULL, 1960 &in6p->in6p_faddr, &pmtu, NULL); 1961 if (error) 1962 break; 1963 if (pmtu > IPV6_MAXPACKET) 1964 pmtu = IPV6_MAXPACKET; 1965 1966 memset(&mtuinfo, 0, sizeof(mtuinfo)); 1967 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1968 optdata = (void *)&mtuinfo; 1969 optdatalen = sizeof(mtuinfo); 1970 if (optdatalen > MCLBYTES) 1971 return (EMSGSIZE); /* XXX */ 1972 error = sockopt_set(sopt, optdata, optdatalen); 1973 break; 1974 } 1975 1976 #ifdef RFC2292 1977 case IPV6_2292PKTINFO: 1978 case IPV6_2292HOPLIMIT: 1979 case IPV6_2292HOPOPTS: 1980 case IPV6_2292RTHDR: 1981 case IPV6_2292DSTOPTS: 1982 switch (optname) { 1983 case IPV6_2292PKTINFO: 1984 optval = OPTBIT(IN6P_PKTINFO); 1985 break; 1986 case IPV6_2292HOPLIMIT: 1987 optval = OPTBIT(IN6P_HOPLIMIT); 1988 break; 1989 case IPV6_2292HOPOPTS: 1990 optval = OPTBIT(IN6P_HOPOPTS); 1991 break; 1992 case IPV6_2292RTHDR: 1993 optval = OPTBIT(IN6P_RTHDR); 1994 break; 1995 case IPV6_2292DSTOPTS: 1996 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1997 break; 1998 } 1999 error = sockopt_setint(sopt, optval); 2000 break; 2001 #endif 2002 case IPV6_PKTINFO: 2003 case IPV6_HOPOPTS: 2004 case IPV6_RTHDR: 2005 case IPV6_DSTOPTS: 2006 case IPV6_RTHDRDSTOPTS: 2007 case IPV6_NEXTHOP: 2008 case IPV6_OTCLASS: 2009 case IPV6_TCLASS: 2010 case IPV6_DONTFRAG: 2011 case IPV6_USE_MIN_MTU: 2012 error = ip6_getpcbopt(in6p->in6p_outputopts, 2013 optname, sopt); 2014 break; 2015 2016 case IPV6_MULTICAST_IF: 2017 case IPV6_MULTICAST_HOPS: 2018 case IPV6_MULTICAST_LOOP: 2019 case IPV6_JOIN_GROUP: 2020 case IPV6_LEAVE_GROUP: 2021 error = ip6_getmoptions(sopt, in6p->in6p_moptions); 2022 break; 2023 2024 #if defined(IPSEC) || defined(FAST_IPSEC) 2025 case IPV6_IPSEC_POLICY: 2026 { 2027 struct mbuf *m = NULL; 2028 2029 /* XXX this will return EINVAL as sopt is empty */ 2030 error = ipsec6_get_policy(in6p, sopt->sopt_data, 2031 sopt->sopt_size, &m); 2032 if (!error) 2033 error = sockopt_setmbuf(sopt, m); 2034 2035 break; 2036 } 2037 #endif /* IPSEC */ 2038 2039 default: 2040 error = ENOPROTOOPT; 2041 break; 2042 } 2043 break; 2044 } 2045 return (error); 2046 } 2047 2048 int 2049 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt) 2050 { 2051 int error = 0, optval; 2052 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2053 struct in6pcb *in6p = sotoin6pcb(so); 2054 int level, optname; 2055 2056 KASSERT(sopt != NULL); 2057 2058 level = sopt->sopt_level; 2059 optname = sopt->sopt_name; 2060 2061 if (level != IPPROTO_IPV6) { 2062 return ENOPROTOOPT; 2063 } 2064 2065 switch (optname) { 2066 case IPV6_CHECKSUM: 2067 /* 2068 * For ICMPv6 sockets, no modification allowed for checksum 2069 * offset, permit "no change" values to help existing apps. 2070 * 2071 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM 2072 * for an ICMPv6 socket will fail." The current 2073 * behavior does not meet RFC3542. 2074 */ 2075 switch (op) { 2076 case PRCO_SETOPT: 2077 error = sockopt_getint(sopt, &optval); 2078 if (error) 2079 break; 2080 if ((optval % 2) != 0) { 2081 /* the API assumes even offset values */ 2082 error = EINVAL; 2083 } else if (so->so_proto->pr_protocol == 2084 IPPROTO_ICMPV6) { 2085 if (optval != icmp6off) 2086 error = EINVAL; 2087 } else 2088 in6p->in6p_cksum = optval; 2089 break; 2090 2091 case PRCO_GETOPT: 2092 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2093 optval = icmp6off; 2094 else 2095 optval = in6p->in6p_cksum; 2096 2097 error = sockopt_setint(sopt, optval); 2098 break; 2099 2100 default: 2101 error = EINVAL; 2102 break; 2103 } 2104 break; 2105 2106 default: 2107 error = ENOPROTOOPT; 2108 break; 2109 } 2110 2111 return (error); 2112 } 2113 2114 #ifdef RFC2292 2115 /* 2116 * Set up IP6 options in pcb for insertion in output packets or 2117 * specifying behavior of outgoing packets. 2118 */ 2119 static int 2120 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so, 2121 struct sockopt *sopt) 2122 { 2123 struct ip6_pktopts *opt = *pktopt; 2124 struct mbuf *m; 2125 int error = 0; 2126 2127 /* turn off any old options. */ 2128 if (opt) { 2129 #ifdef DIAGNOSTIC 2130 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2131 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2132 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2133 printf("ip6_pcbopts: all specified options are cleared.\n"); 2134 #endif 2135 ip6_clearpktopts(opt, -1); 2136 } else { 2137 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2138 if (opt == NULL) 2139 return (ENOBUFS); 2140 } 2141 *pktopt = NULL; 2142 2143 if (sopt == NULL || sopt->sopt_size == 0) { 2144 /* 2145 * Only turning off any previous options, regardless of 2146 * whether the opt is just created or given. 2147 */ 2148 free(opt, M_IP6OPT); 2149 return (0); 2150 } 2151 2152 /* set options specified by user. */ 2153 m = sockopt_getmbuf(sopt); 2154 if (m == NULL) { 2155 free(opt, M_IP6OPT); 2156 return (ENOBUFS); 2157 } 2158 2159 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(), 2160 so->so_proto->pr_protocol); 2161 m_freem(m); 2162 if (error != 0) { 2163 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2164 free(opt, M_IP6OPT); 2165 return (error); 2166 } 2167 *pktopt = opt; 2168 return (0); 2169 } 2170 #endif 2171 2172 /* 2173 * initialize ip6_pktopts. beware that there are non-zero default values in 2174 * the struct. 2175 */ 2176 void 2177 ip6_initpktopts(struct ip6_pktopts *opt) 2178 { 2179 2180 memset(opt, 0, sizeof(*opt)); 2181 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2182 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2183 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2184 } 2185 2186 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */ 2187 static int 2188 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2189 kauth_cred_t cred, int uproto) 2190 { 2191 struct ip6_pktopts *opt; 2192 2193 if (*pktopt == NULL) { 2194 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2195 M_NOWAIT); 2196 if (*pktopt == NULL) 2197 return (ENOBUFS); 2198 2199 ip6_initpktopts(*pktopt); 2200 } 2201 opt = *pktopt; 2202 2203 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2204 } 2205 2206 static int 2207 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2208 { 2209 void *optdata = NULL; 2210 int optdatalen = 0; 2211 struct ip6_ext *ip6e; 2212 int error = 0; 2213 struct in6_pktinfo null_pktinfo; 2214 int deftclass = 0, on; 2215 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2216 2217 switch (optname) { 2218 case IPV6_PKTINFO: 2219 if (pktopt && pktopt->ip6po_pktinfo) 2220 optdata = (void *)pktopt->ip6po_pktinfo; 2221 else { 2222 /* XXX: we don't have to do this every time... */ 2223 memset(&null_pktinfo, 0, sizeof(null_pktinfo)); 2224 optdata = (void *)&null_pktinfo; 2225 } 2226 optdatalen = sizeof(struct in6_pktinfo); 2227 break; 2228 case IPV6_OTCLASS: 2229 /* XXX */ 2230 return (EINVAL); 2231 case IPV6_TCLASS: 2232 if (pktopt && pktopt->ip6po_tclass >= 0) 2233 optdata = (void *)&pktopt->ip6po_tclass; 2234 else 2235 optdata = (void *)&deftclass; 2236 optdatalen = sizeof(int); 2237 break; 2238 case IPV6_HOPOPTS: 2239 if (pktopt && pktopt->ip6po_hbh) { 2240 optdata = (void *)pktopt->ip6po_hbh; 2241 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2242 optdatalen = (ip6e->ip6e_len + 1) << 3; 2243 } 2244 break; 2245 case IPV6_RTHDR: 2246 if (pktopt && pktopt->ip6po_rthdr) { 2247 optdata = (void *)pktopt->ip6po_rthdr; 2248 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2249 optdatalen = (ip6e->ip6e_len + 1) << 3; 2250 } 2251 break; 2252 case IPV6_RTHDRDSTOPTS: 2253 if (pktopt && pktopt->ip6po_dest1) { 2254 optdata = (void *)pktopt->ip6po_dest1; 2255 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2256 optdatalen = (ip6e->ip6e_len + 1) << 3; 2257 } 2258 break; 2259 case IPV6_DSTOPTS: 2260 if (pktopt && pktopt->ip6po_dest2) { 2261 optdata = (void *)pktopt->ip6po_dest2; 2262 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2263 optdatalen = (ip6e->ip6e_len + 1) << 3; 2264 } 2265 break; 2266 case IPV6_NEXTHOP: 2267 if (pktopt && pktopt->ip6po_nexthop) { 2268 optdata = (void *)pktopt->ip6po_nexthop; 2269 optdatalen = pktopt->ip6po_nexthop->sa_len; 2270 } 2271 break; 2272 case IPV6_USE_MIN_MTU: 2273 if (pktopt) 2274 optdata = (void *)&pktopt->ip6po_minmtu; 2275 else 2276 optdata = (void *)&defminmtu; 2277 optdatalen = sizeof(int); 2278 break; 2279 case IPV6_DONTFRAG: 2280 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2281 on = 1; 2282 else 2283 on = 0; 2284 optdata = (void *)&on; 2285 optdatalen = sizeof(on); 2286 break; 2287 default: /* should not happen */ 2288 #ifdef DIAGNOSTIC 2289 panic("ip6_getpcbopt: unexpected option\n"); 2290 #endif 2291 return (ENOPROTOOPT); 2292 } 2293 2294 error = sockopt_set(sopt, optdata, optdatalen); 2295 2296 return (error); 2297 } 2298 2299 void 2300 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2301 { 2302 if (optname == -1 || optname == IPV6_PKTINFO) { 2303 if (pktopt->ip6po_pktinfo) 2304 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2305 pktopt->ip6po_pktinfo = NULL; 2306 } 2307 if (optname == -1 || optname == IPV6_HOPLIMIT) 2308 pktopt->ip6po_hlim = -1; 2309 if (optname == -1 || optname == IPV6_TCLASS) 2310 pktopt->ip6po_tclass = -1; 2311 if (optname == -1 || optname == IPV6_NEXTHOP) { 2312 rtcache_free(&pktopt->ip6po_nextroute); 2313 if (pktopt->ip6po_nexthop) 2314 free(pktopt->ip6po_nexthop, M_IP6OPT); 2315 pktopt->ip6po_nexthop = NULL; 2316 } 2317 if (optname == -1 || optname == IPV6_HOPOPTS) { 2318 if (pktopt->ip6po_hbh) 2319 free(pktopt->ip6po_hbh, M_IP6OPT); 2320 pktopt->ip6po_hbh = NULL; 2321 } 2322 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2323 if (pktopt->ip6po_dest1) 2324 free(pktopt->ip6po_dest1, M_IP6OPT); 2325 pktopt->ip6po_dest1 = NULL; 2326 } 2327 if (optname == -1 || optname == IPV6_RTHDR) { 2328 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2329 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2330 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2331 rtcache_free(&pktopt->ip6po_route); 2332 } 2333 if (optname == -1 || optname == IPV6_DSTOPTS) { 2334 if (pktopt->ip6po_dest2) 2335 free(pktopt->ip6po_dest2, M_IP6OPT); 2336 pktopt->ip6po_dest2 = NULL; 2337 } 2338 } 2339 2340 #define PKTOPT_EXTHDRCPY(type) \ 2341 do { \ 2342 if (src->type) { \ 2343 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2344 dst->type = malloc(hlen, M_IP6OPT, canwait); \ 2345 if (dst->type == NULL && canwait == M_NOWAIT) \ 2346 goto bad; \ 2347 memcpy(dst->type, src->type, hlen); \ 2348 } \ 2349 } while (/*CONSTCOND*/ 0) 2350 2351 static int 2352 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2353 { 2354 dst->ip6po_hlim = src->ip6po_hlim; 2355 dst->ip6po_tclass = src->ip6po_tclass; 2356 dst->ip6po_flags = src->ip6po_flags; 2357 if (src->ip6po_pktinfo) { 2358 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2359 M_IP6OPT, canwait); 2360 if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT) 2361 goto bad; 2362 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2363 } 2364 if (src->ip6po_nexthop) { 2365 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2366 M_IP6OPT, canwait); 2367 if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT) 2368 goto bad; 2369 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop, 2370 src->ip6po_nexthop->sa_len); 2371 } 2372 PKTOPT_EXTHDRCPY(ip6po_hbh); 2373 PKTOPT_EXTHDRCPY(ip6po_dest1); 2374 PKTOPT_EXTHDRCPY(ip6po_dest2); 2375 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2376 return (0); 2377 2378 bad: 2379 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 2380 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 2381 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 2382 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 2383 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 2384 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 2385 2386 return (ENOBUFS); 2387 } 2388 #undef PKTOPT_EXTHDRCPY 2389 2390 struct ip6_pktopts * 2391 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2392 { 2393 int error; 2394 struct ip6_pktopts *dst; 2395 2396 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2397 if (dst == NULL && canwait == M_NOWAIT) 2398 return (NULL); 2399 ip6_initpktopts(dst); 2400 2401 if ((error = copypktopts(dst, src, canwait)) != 0) { 2402 free(dst, M_IP6OPT); 2403 return (NULL); 2404 } 2405 2406 return (dst); 2407 } 2408 2409 void 2410 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2411 { 2412 if (pktopt == NULL) 2413 return; 2414 2415 ip6_clearpktopts(pktopt, -1); 2416 2417 free(pktopt, M_IP6OPT); 2418 } 2419 2420 /* 2421 * Set the IP6 multicast options in response to user setsockopt(). 2422 */ 2423 static int 2424 ip6_setmoptions(const struct sockopt *sopt, struct ip6_moptions **im6op) 2425 { 2426 int error = 0; 2427 u_int loop, ifindex; 2428 struct ipv6_mreq mreq; 2429 struct ifnet *ifp; 2430 struct ip6_moptions *im6o = *im6op; 2431 struct route ro; 2432 struct in6_multi_mship *imm; 2433 struct lwp *l = curlwp; /* XXX */ 2434 2435 if (im6o == NULL) { 2436 /* 2437 * No multicast option buffer attached to the pcb; 2438 * allocate one and initialize to default values. 2439 */ 2440 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT); 2441 if (im6o == NULL) 2442 return (ENOBUFS); 2443 2444 *im6op = im6o; 2445 im6o->im6o_multicast_ifp = NULL; 2446 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2447 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2448 LIST_INIT(&im6o->im6o_memberships); 2449 } 2450 2451 switch (sopt->sopt_name) { 2452 2453 case IPV6_MULTICAST_IF: 2454 /* 2455 * Select the interface for outgoing multicast packets. 2456 */ 2457 error = sockopt_get(sopt, &ifindex, sizeof(ifindex)); 2458 if (error != 0) 2459 break; 2460 2461 if (ifindex != 0) { 2462 if (if_indexlim <= ifindex || !ifindex2ifnet[ifindex]) { 2463 error = ENXIO; /* XXX EINVAL? */ 2464 break; 2465 } 2466 ifp = ifindex2ifnet[ifindex]; 2467 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 2468 error = EADDRNOTAVAIL; 2469 break; 2470 } 2471 } else 2472 ifp = NULL; 2473 im6o->im6o_multicast_ifp = ifp; 2474 break; 2475 2476 case IPV6_MULTICAST_HOPS: 2477 { 2478 /* 2479 * Set the IP6 hoplimit for outgoing multicast packets. 2480 */ 2481 int optval; 2482 2483 error = sockopt_getint(sopt, &optval); 2484 if (error != 0) 2485 break; 2486 2487 if (optval < -1 || optval >= 256) 2488 error = EINVAL; 2489 else if (optval == -1) 2490 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2491 else 2492 im6o->im6o_multicast_hlim = optval; 2493 break; 2494 } 2495 2496 case IPV6_MULTICAST_LOOP: 2497 /* 2498 * Set the loopback flag for outgoing multicast packets. 2499 * Must be zero or one. 2500 */ 2501 error = sockopt_get(sopt, &loop, sizeof(loop)); 2502 if (error != 0) 2503 break; 2504 if (loop > 1) { 2505 error = EINVAL; 2506 break; 2507 } 2508 im6o->im6o_multicast_loop = loop; 2509 break; 2510 2511 case IPV6_JOIN_GROUP: 2512 /* 2513 * Add a multicast group membership. 2514 * Group must be a valid IP6 multicast address. 2515 */ 2516 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2517 if (error != 0) 2518 break; 2519 2520 if (IN6_IS_ADDR_UNSPECIFIED(&mreq.ipv6mr_multiaddr)) { 2521 /* 2522 * We use the unspecified address to specify to accept 2523 * all multicast addresses. Only super user is allowed 2524 * to do this. 2525 */ 2526 if (kauth_authorize_generic(l->l_cred, 2527 KAUTH_GENERIC_ISSUSER, NULL)) 2528 { 2529 error = EACCES; 2530 break; 2531 } 2532 } else if (!IN6_IS_ADDR_MULTICAST(&mreq.ipv6mr_multiaddr)) { 2533 error = EINVAL; 2534 break; 2535 } 2536 2537 /* 2538 * If no interface was explicitly specified, choose an 2539 * appropriate one according to the given multicast address. 2540 */ 2541 if (mreq.ipv6mr_interface == 0) { 2542 struct rtentry *rt; 2543 union { 2544 struct sockaddr dst; 2545 struct sockaddr_in6 dst6; 2546 } u; 2547 2548 /* 2549 * Look up the routing table for the 2550 * address, and choose the outgoing interface. 2551 * XXX: is it a good approach? 2552 */ 2553 memset(&ro, 0, sizeof(ro)); 2554 sockaddr_in6_init(&u.dst6, &mreq.ipv6mr_multiaddr, 0, 2555 0, 0); 2556 rtcache_setdst(&ro, &u.dst); 2557 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp 2558 : NULL; 2559 rtcache_free(&ro); 2560 } else { 2561 /* 2562 * If the interface is specified, validate it. 2563 */ 2564 if (if_indexlim <= mreq.ipv6mr_interface || 2565 !ifindex2ifnet[mreq.ipv6mr_interface]) { 2566 error = ENXIO; /* XXX EINVAL? */ 2567 break; 2568 } 2569 ifp = ifindex2ifnet[mreq.ipv6mr_interface]; 2570 } 2571 2572 /* 2573 * See if we found an interface, and confirm that it 2574 * supports multicast 2575 */ 2576 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2577 error = EADDRNOTAVAIL; 2578 break; 2579 } 2580 2581 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) { 2582 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2583 break; 2584 } 2585 2586 /* 2587 * See if the membership already exists. 2588 */ 2589 for (imm = im6o->im6o_memberships.lh_first; 2590 imm != NULL; imm = imm->i6mm_chain.le_next) 2591 if (imm->i6mm_maddr->in6m_ifp == ifp && 2592 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2593 &mreq.ipv6mr_multiaddr)) 2594 break; 2595 if (imm != NULL) { 2596 error = EADDRINUSE; 2597 break; 2598 } 2599 /* 2600 * Everything looks good; add a new record to the multicast 2601 * address list for the given interface. 2602 */ 2603 imm = in6_joingroup(ifp, &mreq.ipv6mr_multiaddr, &error, 0); 2604 if (imm == NULL) 2605 break; 2606 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2607 break; 2608 2609 case IPV6_LEAVE_GROUP: 2610 /* 2611 * Drop a multicast group membership. 2612 * Group must be a valid IP6 multicast address. 2613 */ 2614 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2615 if (error != 0) 2616 break; 2617 2618 /* 2619 * If an interface address was specified, get a pointer 2620 * to its ifnet structure. 2621 */ 2622 if (mreq.ipv6mr_interface != 0) { 2623 if (if_indexlim <= mreq.ipv6mr_interface || 2624 !ifindex2ifnet[mreq.ipv6mr_interface]) { 2625 error = ENXIO; /* XXX EINVAL? */ 2626 break; 2627 } 2628 ifp = ifindex2ifnet[mreq.ipv6mr_interface]; 2629 } else 2630 ifp = NULL; 2631 2632 /* Fill in the scope zone ID */ 2633 if (ifp) { 2634 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) { 2635 /* XXX: should not happen */ 2636 error = EADDRNOTAVAIL; 2637 break; 2638 } 2639 } else if (mreq.ipv6mr_interface != 0) { 2640 /* 2641 * XXX: This case would happens when the (positive) 2642 * index is in the valid range, but the corresponding 2643 * interface has been detached dynamically. The above 2644 * check probably avoids such case to happen here, but 2645 * we check it explicitly for safety. 2646 */ 2647 error = EADDRNOTAVAIL; 2648 break; 2649 } else { /* ipv6mr_interface == 0 */ 2650 struct sockaddr_in6 sa6_mc; 2651 2652 /* 2653 * The API spec says as follows: 2654 * If the interface index is specified as 0, the 2655 * system may choose a multicast group membership to 2656 * drop by matching the multicast address only. 2657 * On the other hand, we cannot disambiguate the scope 2658 * zone unless an interface is provided. Thus, we 2659 * check if there's ambiguity with the default scope 2660 * zone as the last resort. 2661 */ 2662 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr, 2663 0, 0, 0); 2664 error = sa6_embedscope(&sa6_mc, ip6_use_defzone); 2665 if (error != 0) 2666 break; 2667 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr; 2668 } 2669 2670 /* 2671 * Find the membership in the membership list. 2672 */ 2673 for (imm = im6o->im6o_memberships.lh_first; 2674 imm != NULL; imm = imm->i6mm_chain.le_next) { 2675 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2676 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2677 &mreq.ipv6mr_multiaddr)) 2678 break; 2679 } 2680 if (imm == NULL) { 2681 /* Unable to resolve interface */ 2682 error = EADDRNOTAVAIL; 2683 break; 2684 } 2685 /* 2686 * Give up the multicast address record to which the 2687 * membership points. 2688 */ 2689 LIST_REMOVE(imm, i6mm_chain); 2690 in6_leavegroup(imm); 2691 break; 2692 2693 default: 2694 error = EOPNOTSUPP; 2695 break; 2696 } 2697 2698 /* 2699 * If all options have default values, no need to keep the mbuf. 2700 */ 2701 if (im6o->im6o_multicast_ifp == NULL && 2702 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2703 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2704 im6o->im6o_memberships.lh_first == NULL) { 2705 free(*im6op, M_IPMOPTS); 2706 *im6op = NULL; 2707 } 2708 2709 return (error); 2710 } 2711 2712 /* 2713 * Return the IP6 multicast options in response to user getsockopt(). 2714 */ 2715 static int 2716 ip6_getmoptions(struct sockopt *sopt, struct ip6_moptions *im6o) 2717 { 2718 u_int optval; 2719 int error; 2720 2721 switch (sopt->sopt_name) { 2722 case IPV6_MULTICAST_IF: 2723 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2724 optval = 0; 2725 else 2726 optval = im6o->im6o_multicast_ifp->if_index; 2727 2728 error = sockopt_set(sopt, &optval, sizeof(optval)); 2729 break; 2730 2731 case IPV6_MULTICAST_HOPS: 2732 if (im6o == NULL) 2733 optval = ip6_defmcasthlim; 2734 else 2735 optval = im6o->im6o_multicast_hlim; 2736 2737 error = sockopt_set(sopt, &optval, sizeof(optval)); 2738 break; 2739 2740 case IPV6_MULTICAST_LOOP: 2741 if (im6o == NULL) 2742 optval = ip6_defmcasthlim; 2743 else 2744 optval = im6o->im6o_multicast_loop; 2745 2746 error = sockopt_set(sopt, &optval, sizeof(optval)); 2747 break; 2748 2749 default: 2750 error = EOPNOTSUPP; 2751 } 2752 2753 return (error); 2754 } 2755 2756 /* 2757 * Discard the IP6 multicast options. 2758 */ 2759 void 2760 ip6_freemoptions(struct ip6_moptions *im6o) 2761 { 2762 struct in6_multi_mship *imm; 2763 2764 if (im6o == NULL) 2765 return; 2766 2767 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2768 LIST_REMOVE(imm, i6mm_chain); 2769 in6_leavegroup(imm); 2770 } 2771 free(im6o, M_IPMOPTS); 2772 } 2773 2774 /* 2775 * Set IPv6 outgoing packet options based on advanced API. 2776 */ 2777 int 2778 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2779 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto) 2780 { 2781 struct cmsghdr *cm = 0; 2782 2783 if (control == NULL || opt == NULL) 2784 return (EINVAL); 2785 2786 ip6_initpktopts(opt); 2787 if (stickyopt) { 2788 int error; 2789 2790 /* 2791 * If stickyopt is provided, make a local copy of the options 2792 * for this particular packet, then override them by ancillary 2793 * objects. 2794 * XXX: copypktopts() does not copy the cached route to a next 2795 * hop (if any). This is not very good in terms of efficiency, 2796 * but we can allow this since this option should be rarely 2797 * used. 2798 */ 2799 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2800 return (error); 2801 } 2802 2803 /* 2804 * XXX: Currently, we assume all the optional information is stored 2805 * in a single mbuf. 2806 */ 2807 if (control->m_next) 2808 return (EINVAL); 2809 2810 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */ 2811 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2812 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2813 int error; 2814 2815 if (control->m_len < CMSG_LEN(0)) 2816 return (EINVAL); 2817 2818 cm = mtod(control, struct cmsghdr *); 2819 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2820 return (EINVAL); 2821 if (cm->cmsg_level != IPPROTO_IPV6) 2822 continue; 2823 2824 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2825 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2826 if (error) 2827 return (error); 2828 } 2829 2830 return (0); 2831 } 2832 2833 /* 2834 * Set a particular packet option, as a sticky option or an ancillary data 2835 * item. "len" can be 0 only when it's a sticky option. 2836 * We have 4 cases of combination of "sticky" and "cmsg": 2837 * "sticky=0, cmsg=0": impossible 2838 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2839 * "sticky=1, cmsg=0": RFC3542 socket option 2840 * "sticky=1, cmsg=1": RFC2292 socket option 2841 */ 2842 static int 2843 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2844 kauth_cred_t cred, int sticky, int cmsg, int uproto) 2845 { 2846 int minmtupolicy; 2847 int error; 2848 2849 if (!sticky && !cmsg) { 2850 #ifdef DIAGNOSTIC 2851 printf("ip6_setpktopt: impossible case\n"); 2852 #endif 2853 return (EINVAL); 2854 } 2855 2856 /* 2857 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2858 * not be specified in the context of RFC3542. Conversely, 2859 * RFC3542 types should not be specified in the context of RFC2292. 2860 */ 2861 if (!cmsg) { 2862 switch (optname) { 2863 case IPV6_2292PKTINFO: 2864 case IPV6_2292HOPLIMIT: 2865 case IPV6_2292NEXTHOP: 2866 case IPV6_2292HOPOPTS: 2867 case IPV6_2292DSTOPTS: 2868 case IPV6_2292RTHDR: 2869 case IPV6_2292PKTOPTIONS: 2870 return (ENOPROTOOPT); 2871 } 2872 } 2873 if (sticky && cmsg) { 2874 switch (optname) { 2875 case IPV6_PKTINFO: 2876 case IPV6_HOPLIMIT: 2877 case IPV6_NEXTHOP: 2878 case IPV6_HOPOPTS: 2879 case IPV6_DSTOPTS: 2880 case IPV6_RTHDRDSTOPTS: 2881 case IPV6_RTHDR: 2882 case IPV6_USE_MIN_MTU: 2883 case IPV6_DONTFRAG: 2884 case IPV6_OTCLASS: 2885 case IPV6_TCLASS: 2886 return (ENOPROTOOPT); 2887 } 2888 } 2889 2890 switch (optname) { 2891 #ifdef RFC2292 2892 case IPV6_2292PKTINFO: 2893 #endif 2894 case IPV6_PKTINFO: 2895 { 2896 struct ifnet *ifp = NULL; 2897 struct in6_pktinfo *pktinfo; 2898 2899 if (len != sizeof(struct in6_pktinfo)) 2900 return (EINVAL); 2901 2902 pktinfo = (struct in6_pktinfo *)buf; 2903 2904 /* 2905 * An application can clear any sticky IPV6_PKTINFO option by 2906 * doing a "regular" setsockopt with ipi6_addr being 2907 * in6addr_any and ipi6_ifindex being zero. 2908 * [RFC 3542, Section 6] 2909 */ 2910 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2911 pktinfo->ipi6_ifindex == 0 && 2912 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2913 ip6_clearpktopts(opt, optname); 2914 break; 2915 } 2916 2917 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2918 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2919 return (EINVAL); 2920 } 2921 2922 /* validate the interface index if specified. */ 2923 if (pktinfo->ipi6_ifindex >= if_indexlim) { 2924 return (ENXIO); 2925 } 2926 if (pktinfo->ipi6_ifindex) { 2927 ifp = ifindex2ifnet[pktinfo->ipi6_ifindex]; 2928 if (ifp == NULL) 2929 return (ENXIO); 2930 } 2931 2932 /* 2933 * We store the address anyway, and let in6_selectsrc() 2934 * validate the specified address. This is because ipi6_addr 2935 * may not have enough information about its scope zone, and 2936 * we may need additional information (such as outgoing 2937 * interface or the scope zone of a destination address) to 2938 * disambiguate the scope. 2939 * XXX: the delay of the validation may confuse the 2940 * application when it is used as a sticky option. 2941 */ 2942 if (opt->ip6po_pktinfo == NULL) { 2943 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2944 M_IP6OPT, M_NOWAIT); 2945 if (opt->ip6po_pktinfo == NULL) 2946 return (ENOBUFS); 2947 } 2948 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo)); 2949 break; 2950 } 2951 2952 #ifdef RFC2292 2953 case IPV6_2292HOPLIMIT: 2954 #endif 2955 case IPV6_HOPLIMIT: 2956 { 2957 int *hlimp; 2958 2959 /* 2960 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2961 * to simplify the ordering among hoplimit options. 2962 */ 2963 if (optname == IPV6_HOPLIMIT && sticky) 2964 return (ENOPROTOOPT); 2965 2966 if (len != sizeof(int)) 2967 return (EINVAL); 2968 hlimp = (int *)buf; 2969 if (*hlimp < -1 || *hlimp > 255) 2970 return (EINVAL); 2971 2972 opt->ip6po_hlim = *hlimp; 2973 break; 2974 } 2975 2976 case IPV6_OTCLASS: 2977 if (len != sizeof(u_int8_t)) 2978 return (EINVAL); 2979 2980 opt->ip6po_tclass = *(u_int8_t *)buf; 2981 break; 2982 2983 case IPV6_TCLASS: 2984 { 2985 int tclass; 2986 2987 if (len != sizeof(int)) 2988 return (EINVAL); 2989 tclass = *(int *)buf; 2990 if (tclass < -1 || tclass > 255) 2991 return (EINVAL); 2992 2993 opt->ip6po_tclass = tclass; 2994 break; 2995 } 2996 2997 #ifdef RFC2292 2998 case IPV6_2292NEXTHOP: 2999 #endif 3000 case IPV6_NEXTHOP: 3001 error = kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, 3002 NULL); 3003 if (error) 3004 return (error); 3005 3006 if (len == 0) { /* just remove the option */ 3007 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3008 break; 3009 } 3010 3011 /* check if cmsg_len is large enough for sa_len */ 3012 if (len < sizeof(struct sockaddr) || len < *buf) 3013 return (EINVAL); 3014 3015 switch (((struct sockaddr *)buf)->sa_family) { 3016 case AF_INET6: 3017 { 3018 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3019 3020 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3021 return (EINVAL); 3022 3023 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3024 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3025 return (EINVAL); 3026 } 3027 if ((error = sa6_embedscope(sa6, ip6_use_defzone)) 3028 != 0) { 3029 return (error); 3030 } 3031 break; 3032 } 3033 case AF_LINK: /* eventually be supported? */ 3034 default: 3035 return (EAFNOSUPPORT); 3036 } 3037 3038 /* turn off the previous option, then set the new option. */ 3039 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3040 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3041 if (opt->ip6po_nexthop == NULL) 3042 return (ENOBUFS); 3043 memcpy(opt->ip6po_nexthop, buf, *buf); 3044 break; 3045 3046 #ifdef RFC2292 3047 case IPV6_2292HOPOPTS: 3048 #endif 3049 case IPV6_HOPOPTS: 3050 { 3051 struct ip6_hbh *hbh; 3052 int hbhlen; 3053 3054 /* 3055 * XXX: We don't allow a non-privileged user to set ANY HbH 3056 * options, since per-option restriction has too much 3057 * overhead. 3058 */ 3059 error = kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, 3060 NULL); 3061 if (error) 3062 return (error); 3063 3064 if (len == 0) { 3065 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3066 break; /* just remove the option */ 3067 } 3068 3069 /* message length validation */ 3070 if (len < sizeof(struct ip6_hbh)) 3071 return (EINVAL); 3072 hbh = (struct ip6_hbh *)buf; 3073 hbhlen = (hbh->ip6h_len + 1) << 3; 3074 if (len != hbhlen) 3075 return (EINVAL); 3076 3077 /* turn off the previous option, then set the new option. */ 3078 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3079 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3080 if (opt->ip6po_hbh == NULL) 3081 return (ENOBUFS); 3082 memcpy(opt->ip6po_hbh, hbh, hbhlen); 3083 3084 break; 3085 } 3086 3087 #ifdef RFC2292 3088 case IPV6_2292DSTOPTS: 3089 #endif 3090 case IPV6_DSTOPTS: 3091 case IPV6_RTHDRDSTOPTS: 3092 { 3093 struct ip6_dest *dest, **newdest = NULL; 3094 int destlen; 3095 3096 /* XXX: see the comment for IPV6_HOPOPTS */ 3097 error = kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, 3098 NULL); 3099 if (error) 3100 return (error); 3101 3102 if (len == 0) { 3103 ip6_clearpktopts(opt, optname); 3104 break; /* just remove the option */ 3105 } 3106 3107 /* message length validation */ 3108 if (len < sizeof(struct ip6_dest)) 3109 return (EINVAL); 3110 dest = (struct ip6_dest *)buf; 3111 destlen = (dest->ip6d_len + 1) << 3; 3112 if (len != destlen) 3113 return (EINVAL); 3114 /* 3115 * Determine the position that the destination options header 3116 * should be inserted; before or after the routing header. 3117 */ 3118 switch (optname) { 3119 case IPV6_2292DSTOPTS: 3120 /* 3121 * The old advanced API is ambiguous on this point. 3122 * Our approach is to determine the position based 3123 * according to the existence of a routing header. 3124 * Note, however, that this depends on the order of the 3125 * extension headers in the ancillary data; the 1st 3126 * part of the destination options header must appear 3127 * before the routing header in the ancillary data, 3128 * too. 3129 * RFC3542 solved the ambiguity by introducing 3130 * separate ancillary data or option types. 3131 */ 3132 if (opt->ip6po_rthdr == NULL) 3133 newdest = &opt->ip6po_dest1; 3134 else 3135 newdest = &opt->ip6po_dest2; 3136 break; 3137 case IPV6_RTHDRDSTOPTS: 3138 newdest = &opt->ip6po_dest1; 3139 break; 3140 case IPV6_DSTOPTS: 3141 newdest = &opt->ip6po_dest2; 3142 break; 3143 } 3144 3145 /* turn off the previous option, then set the new option. */ 3146 ip6_clearpktopts(opt, optname); 3147 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3148 if (*newdest == NULL) 3149 return (ENOBUFS); 3150 memcpy(*newdest, dest, destlen); 3151 3152 break; 3153 } 3154 3155 #ifdef RFC2292 3156 case IPV6_2292RTHDR: 3157 #endif 3158 case IPV6_RTHDR: 3159 { 3160 struct ip6_rthdr *rth; 3161 int rthlen; 3162 3163 if (len == 0) { 3164 ip6_clearpktopts(opt, IPV6_RTHDR); 3165 break; /* just remove the option */ 3166 } 3167 3168 /* message length validation */ 3169 if (len < sizeof(struct ip6_rthdr)) 3170 return (EINVAL); 3171 rth = (struct ip6_rthdr *)buf; 3172 rthlen = (rth->ip6r_len + 1) << 3; 3173 if (len != rthlen) 3174 return (EINVAL); 3175 switch (rth->ip6r_type) { 3176 case IPV6_RTHDR_TYPE_0: 3177 if (rth->ip6r_len == 0) /* must contain one addr */ 3178 return (EINVAL); 3179 if (rth->ip6r_len % 2) /* length must be even */ 3180 return (EINVAL); 3181 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3182 return (EINVAL); 3183 break; 3184 default: 3185 return (EINVAL); /* not supported */ 3186 } 3187 /* turn off the previous option */ 3188 ip6_clearpktopts(opt, IPV6_RTHDR); 3189 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3190 if (opt->ip6po_rthdr == NULL) 3191 return (ENOBUFS); 3192 memcpy(opt->ip6po_rthdr, rth, rthlen); 3193 break; 3194 } 3195 3196 case IPV6_USE_MIN_MTU: 3197 if (len != sizeof(int)) 3198 return (EINVAL); 3199 minmtupolicy = *(int *)buf; 3200 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3201 minmtupolicy != IP6PO_MINMTU_DISABLE && 3202 minmtupolicy != IP6PO_MINMTU_ALL) { 3203 return (EINVAL); 3204 } 3205 opt->ip6po_minmtu = minmtupolicy; 3206 break; 3207 3208 case IPV6_DONTFRAG: 3209 if (len != sizeof(int)) 3210 return (EINVAL); 3211 3212 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3213 /* 3214 * we ignore this option for TCP sockets. 3215 * (RFC3542 leaves this case unspecified.) 3216 */ 3217 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3218 } else 3219 opt->ip6po_flags |= IP6PO_DONTFRAG; 3220 break; 3221 3222 default: 3223 return (ENOPROTOOPT); 3224 } /* end of switch */ 3225 3226 return (0); 3227 } 3228 3229 /* 3230 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3231 * packet to the input queue of a specified interface. Note that this 3232 * calls the output routine of the loopback "driver", but with an interface 3233 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 3234 */ 3235 void 3236 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, 3237 const struct sockaddr_in6 *dst) 3238 { 3239 struct mbuf *copym; 3240 struct ip6_hdr *ip6; 3241 3242 copym = m_copy(m, 0, M_COPYALL); 3243 if (copym == NULL) 3244 return; 3245 3246 /* 3247 * Make sure to deep-copy IPv6 header portion in case the data 3248 * is in an mbuf cluster, so that we can safely override the IPv6 3249 * header portion later. 3250 */ 3251 if ((copym->m_flags & M_EXT) != 0 || 3252 copym->m_len < sizeof(struct ip6_hdr)) { 3253 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3254 if (copym == NULL) 3255 return; 3256 } 3257 3258 #ifdef DIAGNOSTIC 3259 if (copym->m_len < sizeof(*ip6)) { 3260 m_freem(copym); 3261 return; 3262 } 3263 #endif 3264 3265 ip6 = mtod(copym, struct ip6_hdr *); 3266 /* 3267 * clear embedded scope identifiers if necessary. 3268 * in6_clearscope will touch the addresses only when necessary. 3269 */ 3270 in6_clearscope(&ip6->ip6_src); 3271 in6_clearscope(&ip6->ip6_dst); 3272 3273 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL); 3274 } 3275 3276 /* 3277 * Chop IPv6 header off from the payload. 3278 */ 3279 static int 3280 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3281 { 3282 struct mbuf *mh; 3283 struct ip6_hdr *ip6; 3284 3285 ip6 = mtod(m, struct ip6_hdr *); 3286 if (m->m_len > sizeof(*ip6)) { 3287 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3288 if (mh == 0) { 3289 m_freem(m); 3290 return ENOBUFS; 3291 } 3292 M_MOVE_PKTHDR(mh, m); 3293 MH_ALIGN(mh, sizeof(*ip6)); 3294 m->m_len -= sizeof(*ip6); 3295 m->m_data += sizeof(*ip6); 3296 mh->m_next = m; 3297 m = mh; 3298 m->m_len = sizeof(*ip6); 3299 bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6)); 3300 } 3301 exthdrs->ip6e_ip6 = m; 3302 return 0; 3303 } 3304 3305 /* 3306 * Compute IPv6 extension header length. 3307 */ 3308 int 3309 ip6_optlen(struct in6pcb *in6p) 3310 { 3311 int len; 3312 3313 if (!in6p->in6p_outputopts) 3314 return 0; 3315 3316 len = 0; 3317 #define elen(x) \ 3318 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3319 3320 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3321 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3322 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3323 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3324 return len; 3325 #undef elen 3326 } 3327