1 /* $NetBSD: ip6_output.c,v 1.152 2013/03/18 19:31:39 gdt Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.152 2013/03/18 19:31:39 gdt Exp $"); 66 67 #include "opt_inet.h" 68 #include "opt_inet6.h" 69 #include "opt_ipsec.h" 70 #include "opt_pfil_hooks.h" 71 72 #include <sys/param.h> 73 #include <sys/malloc.h> 74 #include <sys/mbuf.h> 75 #include <sys/errno.h> 76 #include <sys/protosw.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/systm.h> 80 #include <sys/proc.h> 81 #include <sys/kauth.h> 82 83 #include <net/if.h> 84 #include <net/route.h> 85 #ifdef PFIL_HOOKS 86 #include <net/pfil.h> 87 #endif 88 89 #include <netinet/in.h> 90 #include <netinet/in_var.h> 91 #include <netinet/ip6.h> 92 #include <netinet/icmp6.h> 93 #include <netinet/in_offload.h> 94 #include <netinet/portalgo.h> 95 #include <netinet6/in6_offload.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/ip6_private.h> 98 #include <netinet6/in6_pcb.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6protosw.h> 101 #include <netinet6/scope6_var.h> 102 103 #ifdef FAST_IPSEC 104 #include <netipsec/ipsec.h> 105 #include <netipsec/ipsec6.h> 106 #include <netipsec/key.h> 107 #include <netipsec/xform.h> 108 #endif 109 110 111 #include <net/net_osdep.h> 112 113 #ifdef PFIL_HOOKS 114 extern struct pfil_head inet6_pfil_hook; /* XXX */ 115 #endif 116 117 struct ip6_exthdrs { 118 struct mbuf *ip6e_ip6; 119 struct mbuf *ip6e_hbh; 120 struct mbuf *ip6e_dest1; 121 struct mbuf *ip6e_rthdr; 122 struct mbuf *ip6e_dest2; 123 }; 124 125 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 126 kauth_cred_t, int); 127 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 128 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t, 129 int, int, int); 130 static int ip6_setmoptions(const struct sockopt *, struct ip6_moptions **); 131 static int ip6_getmoptions(struct sockopt *, struct ip6_moptions *); 132 static int ip6_copyexthdr(struct mbuf **, void *, int); 133 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 134 struct ip6_frag **); 135 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 136 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 137 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *, 138 const struct in6_addr *, u_long *, int *); 139 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 140 141 #ifdef RFC2292 142 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *); 143 #endif 144 145 /* 146 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 147 * header (with pri, len, nxt, hlim, src, dst). 148 * This function may modify ver and hlim only. 149 * The mbuf chain containing the packet will be freed. 150 * The mbuf opt, if present, will not be freed. 151 * 152 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 153 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 154 * which is rt_rmx.rmx_mtu. 155 */ 156 int 157 ip6_output( 158 struct mbuf *m0, 159 struct ip6_pktopts *opt, 160 struct route *ro, 161 int flags, 162 struct ip6_moptions *im6o, 163 struct socket *so, 164 struct ifnet **ifpp /* XXX: just for statistics */ 165 ) 166 { 167 struct ip6_hdr *ip6, *mhip6; 168 struct ifnet *ifp, *origifp; 169 struct mbuf *m = m0; 170 int hlen, tlen, len, off; 171 bool tso; 172 struct route ip6route; 173 struct rtentry *rt = NULL; 174 const struct sockaddr_in6 *dst = NULL; 175 struct sockaddr_in6 src_sa, dst_sa; 176 int error = 0; 177 struct in6_ifaddr *ia = NULL; 178 u_long mtu; 179 int alwaysfrag, dontfrag; 180 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 181 struct ip6_exthdrs exthdrs; 182 struct in6_addr finaldst, src0, dst0; 183 u_int32_t zone; 184 struct route *ro_pmtu = NULL; 185 int hdrsplit = 0; 186 int needipsec = 0; 187 #ifdef FAST_IPSEC 188 struct secpolicy *sp = NULL; 189 int s; 190 #endif 191 192 memset(&ip6route, 0, sizeof(ip6route)); 193 194 #ifdef DIAGNOSTIC 195 if ((m->m_flags & M_PKTHDR) == 0) 196 panic("ip6_output: no HDR"); 197 198 if ((m->m_pkthdr.csum_flags & 199 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) { 200 panic("ip6_output: IPv4 checksum offload flags: %d", 201 m->m_pkthdr.csum_flags); 202 } 203 204 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 205 (M_CSUM_TCPv6|M_CSUM_UDPv6)) { 206 panic("ip6_output: conflicting checksum offload flags: %d", 207 m->m_pkthdr.csum_flags); 208 } 209 #endif 210 211 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr)); 212 213 #define MAKE_EXTHDR(hp, mp) \ 214 do { \ 215 if (hp) { \ 216 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 217 error = ip6_copyexthdr((mp), (void *)(hp), \ 218 ((eh)->ip6e_len + 1) << 3); \ 219 if (error) \ 220 goto freehdrs; \ 221 } \ 222 } while (/*CONSTCOND*/ 0) 223 224 memset(&exthdrs, 0, sizeof(exthdrs)); 225 if (opt) { 226 /* Hop-by-Hop options header */ 227 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 228 /* Destination options header(1st part) */ 229 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 230 /* Routing header */ 231 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 232 /* Destination options header(2nd part) */ 233 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 234 } 235 236 /* 237 * Calculate the total length of the extension header chain. 238 * Keep the length of the unfragmentable part for fragmentation. 239 */ 240 optlen = 0; 241 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 242 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 243 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 244 unfragpartlen = optlen + sizeof(struct ip6_hdr); 245 /* NOTE: we don't add AH/ESP length here. do that later. */ 246 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 247 248 #ifdef FAST_IPSEC 249 /* Check the security policy (SP) for the packet */ 250 251 sp = ipsec6_check_policy(m,so,flags,&needipsec,&error); 252 if (error != 0) { 253 /* 254 * Hack: -EINVAL is used to signal that a packet 255 * should be silently discarded. This is typically 256 * because we asked key management for an SA and 257 * it was delayed (e.g. kicked up to IKE). 258 */ 259 if (error == -EINVAL) 260 error = 0; 261 goto freehdrs; 262 } 263 #endif /* FAST_IPSEC */ 264 265 266 if (needipsec && 267 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 268 in6_delayed_cksum(m); 269 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 270 } 271 272 273 /* 274 * If we need IPsec, or there is at least one extension header, 275 * separate IP6 header from the payload. 276 */ 277 if ((needipsec || optlen) && !hdrsplit) { 278 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 279 m = NULL; 280 goto freehdrs; 281 } 282 m = exthdrs.ip6e_ip6; 283 hdrsplit++; 284 } 285 286 /* adjust pointer */ 287 ip6 = mtod(m, struct ip6_hdr *); 288 289 /* adjust mbuf packet header length */ 290 m->m_pkthdr.len += optlen; 291 plen = m->m_pkthdr.len - sizeof(*ip6); 292 293 /* If this is a jumbo payload, insert a jumbo payload option. */ 294 if (plen > IPV6_MAXPACKET) { 295 if (!hdrsplit) { 296 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 297 m = NULL; 298 goto freehdrs; 299 } 300 m = exthdrs.ip6e_ip6; 301 hdrsplit++; 302 } 303 /* adjust pointer */ 304 ip6 = mtod(m, struct ip6_hdr *); 305 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 306 goto freehdrs; 307 optlen += 8; /* XXX JUMBOOPTLEN */ 308 ip6->ip6_plen = 0; 309 } else 310 ip6->ip6_plen = htons(plen); 311 312 /* 313 * Concatenate headers and fill in next header fields. 314 * Here we have, on "m" 315 * IPv6 payload 316 * and we insert headers accordingly. Finally, we should be getting: 317 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 318 * 319 * during the header composing process, "m" points to IPv6 header. 320 * "mprev" points to an extension header prior to esp. 321 */ 322 { 323 u_char *nexthdrp = &ip6->ip6_nxt; 324 struct mbuf *mprev = m; 325 326 /* 327 * we treat dest2 specially. this makes IPsec processing 328 * much easier. the goal here is to make mprev point the 329 * mbuf prior to dest2. 330 * 331 * result: IPv6 dest2 payload 332 * m and mprev will point to IPv6 header. 333 */ 334 if (exthdrs.ip6e_dest2) { 335 if (!hdrsplit) 336 panic("assumption failed: hdr not split"); 337 exthdrs.ip6e_dest2->m_next = m->m_next; 338 m->m_next = exthdrs.ip6e_dest2; 339 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 340 ip6->ip6_nxt = IPPROTO_DSTOPTS; 341 } 342 343 #define MAKE_CHAIN(m, mp, p, i)\ 344 do {\ 345 if (m) {\ 346 if (!hdrsplit) \ 347 panic("assumption failed: hdr not split"); \ 348 *mtod((m), u_char *) = *(p);\ 349 *(p) = (i);\ 350 p = mtod((m), u_char *);\ 351 (m)->m_next = (mp)->m_next;\ 352 (mp)->m_next = (m);\ 353 (mp) = (m);\ 354 }\ 355 } while (/*CONSTCOND*/ 0) 356 /* 357 * result: IPv6 hbh dest1 rthdr dest2 payload 358 * m will point to IPv6 header. mprev will point to the 359 * extension header prior to dest2 (rthdr in the above case). 360 */ 361 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 362 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 363 IPPROTO_DSTOPTS); 364 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 365 IPPROTO_ROUTING); 366 367 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, 368 sizeof(struct ip6_hdr) + optlen); 369 } 370 371 /* 372 * If there is a routing header, replace destination address field 373 * with the first hop of the routing header. 374 */ 375 if (exthdrs.ip6e_rthdr) { 376 struct ip6_rthdr *rh; 377 struct ip6_rthdr0 *rh0; 378 struct in6_addr *addr; 379 struct sockaddr_in6 sa; 380 381 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 382 struct ip6_rthdr *)); 383 finaldst = ip6->ip6_dst; 384 switch (rh->ip6r_type) { 385 case IPV6_RTHDR_TYPE_0: 386 rh0 = (struct ip6_rthdr0 *)rh; 387 addr = (struct in6_addr *)(rh0 + 1); 388 389 /* 390 * construct a sockaddr_in6 form of 391 * the first hop. 392 * 393 * XXX: we may not have enough 394 * information about its scope zone; 395 * there is no standard API to pass 396 * the information from the 397 * application. 398 */ 399 sockaddr_in6_init(&sa, addr, 0, 0, 0); 400 if ((error = sa6_embedscope(&sa, 401 ip6_use_defzone)) != 0) { 402 goto bad; 403 } 404 ip6->ip6_dst = sa.sin6_addr; 405 (void)memmove(&addr[0], &addr[1], 406 sizeof(struct in6_addr) * 407 (rh0->ip6r0_segleft - 1)); 408 addr[rh0->ip6r0_segleft - 1] = finaldst; 409 /* XXX */ 410 in6_clearscope(addr + rh0->ip6r0_segleft - 1); 411 break; 412 default: /* is it possible? */ 413 error = EINVAL; 414 goto bad; 415 } 416 } 417 418 /* Source address validation */ 419 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 420 (flags & IPV6_UNSPECSRC) == 0) { 421 error = EOPNOTSUPP; 422 IP6_STATINC(IP6_STAT_BADSCOPE); 423 goto bad; 424 } 425 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 426 error = EOPNOTSUPP; 427 IP6_STATINC(IP6_STAT_BADSCOPE); 428 goto bad; 429 } 430 431 IP6_STATINC(IP6_STAT_LOCALOUT); 432 433 /* 434 * Route packet. 435 */ 436 /* initialize cached route */ 437 if (ro == NULL) { 438 ro = &ip6route; 439 } 440 ro_pmtu = ro; 441 if (opt && opt->ip6po_rthdr) 442 ro = &opt->ip6po_route; 443 444 /* 445 * if specified, try to fill in the traffic class field. 446 * do not override if a non-zero value is already set. 447 * we check the diffserv field and the ecn field separately. 448 */ 449 if (opt && opt->ip6po_tclass >= 0) { 450 int mask = 0; 451 452 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 453 mask |= 0xfc; 454 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 455 mask |= 0x03; 456 if (mask != 0) 457 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 458 } 459 460 /* fill in or override the hop limit field, if necessary. */ 461 if (opt && opt->ip6po_hlim != -1) 462 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 463 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 464 if (im6o != NULL) 465 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 466 else 467 ip6->ip6_hlim = ip6_defmcasthlim; 468 } 469 470 #ifdef FAST_IPSEC 471 if (needipsec) { 472 s = splsoftnet(); 473 error = ipsec6_process_packet(m,sp->req); 474 475 /* 476 * Preserve KAME behaviour: ENOENT can be returned 477 * when an SA acquire is in progress. Don't propagate 478 * this to user-level; it confuses applications. 479 * XXX this will go away when the SADB is redone. 480 */ 481 if (error == ENOENT) 482 error = 0; 483 splx(s); 484 goto done; 485 } 486 #endif /* FAST_IPSEC */ 487 488 489 490 /* adjust pointer */ 491 ip6 = mtod(m, struct ip6_hdr *); 492 493 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 494 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, 495 &ifp, &rt, 0)) != 0) { 496 if (ifp != NULL) 497 in6_ifstat_inc(ifp, ifs6_out_discard); 498 goto bad; 499 } 500 if (rt == NULL) { 501 /* 502 * If in6_selectroute() does not return a route entry, 503 * dst may not have been updated. 504 */ 505 error = rtcache_setdst(ro, sin6tosa(&dst_sa)); 506 if (error) { 507 goto bad; 508 } 509 } 510 511 /* 512 * then rt (for unicast) and ifp must be non-NULL valid values. 513 */ 514 if ((flags & IPV6_FORWARDING) == 0) { 515 /* XXX: the FORWARDING flag can be set for mrouting. */ 516 in6_ifstat_inc(ifp, ifs6_out_request); 517 } 518 if (rt != NULL) { 519 ia = (struct in6_ifaddr *)(rt->rt_ifa); 520 rt->rt_use++; 521 } 522 523 /* 524 * The outgoing interface must be in the zone of source and 525 * destination addresses. We should use ia_ifp to support the 526 * case of sending packets to an address of our own. 527 */ 528 if (ia != NULL && ia->ia_ifp) 529 origifp = ia->ia_ifp; 530 else 531 origifp = ifp; 532 533 src0 = ip6->ip6_src; 534 if (in6_setscope(&src0, origifp, &zone)) 535 goto badscope; 536 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0); 537 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 538 goto badscope; 539 540 dst0 = ip6->ip6_dst; 541 if (in6_setscope(&dst0, origifp, &zone)) 542 goto badscope; 543 /* re-initialize to be sure */ 544 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 545 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) 546 goto badscope; 547 548 /* scope check is done. */ 549 550 if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 551 if (dst == NULL) 552 dst = satocsin6(rtcache_getdst(ro)); 553 KASSERT(dst != NULL); 554 } else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) { 555 /* 556 * The nexthop is explicitly specified by the 557 * application. We assume the next hop is an IPv6 558 * address. 559 */ 560 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 561 } else if ((rt->rt_flags & RTF_GATEWAY)) 562 dst = (struct sockaddr_in6 *)rt->rt_gateway; 563 else if (dst == NULL) 564 dst = satocsin6(rtcache_getdst(ro)); 565 566 /* 567 * XXXXXX: original code follows: 568 */ 569 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 570 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 571 else { 572 struct in6_multi *in6m; 573 574 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 575 576 in6_ifstat_inc(ifp, ifs6_out_mcast); 577 578 /* 579 * Confirm that the outgoing interface supports multicast. 580 */ 581 if (!(ifp->if_flags & IFF_MULTICAST)) { 582 IP6_STATINC(IP6_STAT_NOROUTE); 583 in6_ifstat_inc(ifp, ifs6_out_discard); 584 error = ENETUNREACH; 585 goto bad; 586 } 587 588 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 589 if (in6m != NULL && 590 (im6o == NULL || im6o->im6o_multicast_loop)) { 591 /* 592 * If we belong to the destination multicast group 593 * on the outgoing interface, and the caller did not 594 * forbid loopback, loop back a copy. 595 */ 596 KASSERT(dst != NULL); 597 ip6_mloopback(ifp, m, dst); 598 } else { 599 /* 600 * If we are acting as a multicast router, perform 601 * multicast forwarding as if the packet had just 602 * arrived on the interface to which we are about 603 * to send. The multicast forwarding function 604 * recursively calls this function, using the 605 * IPV6_FORWARDING flag to prevent infinite recursion. 606 * 607 * Multicasts that are looped back by ip6_mloopback(), 608 * above, will be forwarded by the ip6_input() routine, 609 * if necessary. 610 */ 611 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 612 if (ip6_mforward(ip6, ifp, m) != 0) { 613 m_freem(m); 614 goto done; 615 } 616 } 617 } 618 /* 619 * Multicasts with a hoplimit of zero may be looped back, 620 * above, but must not be transmitted on a network. 621 * Also, multicasts addressed to the loopback interface 622 * are not sent -- the above call to ip6_mloopback() will 623 * loop back a copy if this host actually belongs to the 624 * destination group on the loopback interface. 625 */ 626 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 627 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 628 m_freem(m); 629 goto done; 630 } 631 } 632 633 /* 634 * Fill the outgoing inteface to tell the upper layer 635 * to increment per-interface statistics. 636 */ 637 if (ifpp) 638 *ifpp = ifp; 639 640 /* Determine path MTU. */ 641 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 642 &alwaysfrag)) != 0) 643 goto bad; 644 645 /* 646 * The caller of this function may specify to use the minimum MTU 647 * in some cases. 648 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 649 * setting. The logic is a bit complicated; by default, unicast 650 * packets will follow path MTU while multicast packets will be sent at 651 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 652 * including unicast ones will be sent at the minimum MTU. Multicast 653 * packets will always be sent at the minimum MTU unless 654 * IP6PO_MINMTU_DISABLE is explicitly specified. 655 * See RFC 3542 for more details. 656 */ 657 if (mtu > IPV6_MMTU) { 658 if ((flags & IPV6_MINMTU)) 659 mtu = IPV6_MMTU; 660 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 661 mtu = IPV6_MMTU; 662 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 663 (opt == NULL || 664 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 665 mtu = IPV6_MMTU; 666 } 667 } 668 669 /* 670 * clear embedded scope identifiers if necessary. 671 * in6_clearscope will touch the addresses only when necessary. 672 */ 673 in6_clearscope(&ip6->ip6_src); 674 in6_clearscope(&ip6->ip6_dst); 675 676 /* 677 * If the outgoing packet contains a hop-by-hop options header, 678 * it must be examined and processed even by the source node. 679 * (RFC 2460, section 4.) 680 */ 681 if (ip6->ip6_nxt == IPV6_HOPOPTS) { 682 u_int32_t dummy1; /* XXX unused */ 683 u_int32_t dummy2; /* XXX unused */ 684 int hoff = sizeof(struct ip6_hdr); 685 686 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) { 687 /* m was already freed at this point */ 688 error = EINVAL;/* better error? */ 689 goto done; 690 } 691 692 ip6 = mtod(m, struct ip6_hdr *); 693 } 694 695 #ifdef PFIL_HOOKS 696 /* 697 * Run through list of hooks for output packets. 698 */ 699 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0) 700 goto done; 701 if (m == NULL) 702 goto done; 703 ip6 = mtod(m, struct ip6_hdr *); 704 #endif /* PFIL_HOOKS */ 705 /* 706 * Send the packet to the outgoing interface. 707 * If necessary, do IPv6 fragmentation before sending. 708 * 709 * the logic here is rather complex: 710 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 711 * 1-a: send as is if tlen <= path mtu 712 * 1-b: fragment if tlen > path mtu 713 * 714 * 2: if user asks us not to fragment (dontfrag == 1) 715 * 2-a: send as is if tlen <= interface mtu 716 * 2-b: error if tlen > interface mtu 717 * 718 * 3: if we always need to attach fragment header (alwaysfrag == 1) 719 * always fragment 720 * 721 * 4: if dontfrag == 1 && alwaysfrag == 1 722 * error, as we cannot handle this conflicting request 723 */ 724 tlen = m->m_pkthdr.len; 725 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0; 726 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 727 dontfrag = 1; 728 else 729 dontfrag = 0; 730 731 if (dontfrag && alwaysfrag) { /* case 4 */ 732 /* conflicting request - can't transmit */ 733 error = EMSGSIZE; 734 goto bad; 735 } 736 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */ 737 /* 738 * Even if the DONTFRAG option is specified, we cannot send the 739 * packet when the data length is larger than the MTU of the 740 * outgoing interface. 741 * Notify the error by sending IPV6_PATHMTU ancillary data as 742 * well as returning an error code (the latter is not described 743 * in the API spec.) 744 */ 745 u_int32_t mtu32; 746 struct ip6ctlparam ip6cp; 747 748 mtu32 = (u_int32_t)mtu; 749 memset(&ip6cp, 0, sizeof(ip6cp)); 750 ip6cp.ip6c_cmdarg = (void *)&mtu32; 751 pfctlinput2(PRC_MSGSIZE, 752 rtcache_getdst(ro_pmtu), &ip6cp); 753 754 error = EMSGSIZE; 755 goto bad; 756 } 757 758 /* 759 * transmit packet without fragmentation 760 */ 761 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) { 762 /* case 1-a and 2-a */ 763 struct in6_ifaddr *ia6; 764 int sw_csum; 765 766 ip6 = mtod(m, struct ip6_hdr *); 767 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 768 if (ia6) { 769 /* Record statistics for this interface address. */ 770 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len; 771 } 772 773 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 774 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 775 if (IN6_NEED_CHECKSUM(ifp, 776 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 777 in6_delayed_cksum(m); 778 } 779 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 780 } 781 782 KASSERT(dst != NULL); 783 if (__predict_true(!tso || 784 (ifp->if_capenable & IFCAP_TSOv6) != 0)) { 785 error = nd6_output(ifp, origifp, m, dst, rt); 786 } else { 787 error = ip6_tso_output(ifp, origifp, m, dst, rt); 788 } 789 goto done; 790 } 791 792 if (tso) { 793 error = EINVAL; /* XXX */ 794 goto bad; 795 } 796 797 /* 798 * try to fragment the packet. case 1-b and 3 799 */ 800 if (mtu < IPV6_MMTU) { 801 /* path MTU cannot be less than IPV6_MMTU */ 802 error = EMSGSIZE; 803 in6_ifstat_inc(ifp, ifs6_out_fragfail); 804 goto bad; 805 } else if (ip6->ip6_plen == 0) { 806 /* jumbo payload cannot be fragmented */ 807 error = EMSGSIZE; 808 in6_ifstat_inc(ifp, ifs6_out_fragfail); 809 goto bad; 810 } else { 811 struct mbuf **mnext, *m_frgpart; 812 struct ip6_frag *ip6f; 813 u_int32_t id = htonl(ip6_randomid()); 814 u_char nextproto; 815 #if 0 /* see below */ 816 struct ip6ctlparam ip6cp; 817 u_int32_t mtu32; 818 #endif 819 820 /* 821 * Too large for the destination or interface; 822 * fragment if possible. 823 * Must be able to put at least 8 bytes per fragment. 824 */ 825 hlen = unfragpartlen; 826 if (mtu > IPV6_MAXPACKET) 827 mtu = IPV6_MAXPACKET; 828 829 #if 0 830 /* 831 * It is believed this code is a leftover from the 832 * development of the IPV6_RECVPATHMTU sockopt and 833 * associated work to implement RFC3542. 834 * It's not entirely clear what the intent of the API 835 * is at this point, so disable this code for now. 836 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG 837 * will send notifications if the application requests. 838 */ 839 840 /* Notify a proper path MTU to applications. */ 841 mtu32 = (u_int32_t)mtu; 842 memset(&ip6cp, 0, sizeof(ip6cp)); 843 ip6cp.ip6c_cmdarg = (void *)&mtu32; 844 pfctlinput2(PRC_MSGSIZE, 845 rtcache_getdst(ro_pmtu), &ip6cp); 846 #endif 847 848 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 849 if (len < 8) { 850 error = EMSGSIZE; 851 in6_ifstat_inc(ifp, ifs6_out_fragfail); 852 goto bad; 853 } 854 855 mnext = &m->m_nextpkt; 856 857 /* 858 * Change the next header field of the last header in the 859 * unfragmentable part. 860 */ 861 if (exthdrs.ip6e_rthdr) { 862 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 863 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 864 } else if (exthdrs.ip6e_dest1) { 865 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 866 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 867 } else if (exthdrs.ip6e_hbh) { 868 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 869 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 870 } else { 871 nextproto = ip6->ip6_nxt; 872 ip6->ip6_nxt = IPPROTO_FRAGMENT; 873 } 874 875 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) 876 != 0) { 877 if (IN6_NEED_CHECKSUM(ifp, 878 m->m_pkthdr.csum_flags & 879 (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 880 in6_delayed_cksum(m); 881 } 882 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 883 } 884 885 /* 886 * Loop through length of segment after first fragment, 887 * make new header and copy data of each part and link onto 888 * chain. 889 */ 890 m0 = m; 891 for (off = hlen; off < tlen; off += len) { 892 struct mbuf *mlast; 893 894 MGETHDR(m, M_DONTWAIT, MT_HEADER); 895 if (!m) { 896 error = ENOBUFS; 897 IP6_STATINC(IP6_STAT_ODROPPED); 898 goto sendorfree; 899 } 900 m->m_pkthdr.rcvif = NULL; 901 m->m_flags = m0->m_flags & M_COPYFLAGS; 902 *mnext = m; 903 mnext = &m->m_nextpkt; 904 m->m_data += max_linkhdr; 905 mhip6 = mtod(m, struct ip6_hdr *); 906 *mhip6 = *ip6; 907 m->m_len = sizeof(*mhip6); 908 /* 909 * ip6f must be valid if error is 0. But how 910 * can a compiler be expected to infer this? 911 */ 912 ip6f = NULL; 913 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 914 if (error) { 915 IP6_STATINC(IP6_STAT_ODROPPED); 916 goto sendorfree; 917 } 918 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 919 if (off + len >= tlen) 920 len = tlen - off; 921 else 922 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 923 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 924 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 925 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 926 error = ENOBUFS; 927 IP6_STATINC(IP6_STAT_ODROPPED); 928 goto sendorfree; 929 } 930 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 931 ; 932 mlast->m_next = m_frgpart; 933 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 934 m->m_pkthdr.rcvif = NULL; 935 ip6f->ip6f_reserved = 0; 936 ip6f->ip6f_ident = id; 937 ip6f->ip6f_nxt = nextproto; 938 IP6_STATINC(IP6_STAT_OFRAGMENTS); 939 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 940 } 941 942 in6_ifstat_inc(ifp, ifs6_out_fragok); 943 } 944 945 /* 946 * Remove leading garbages. 947 */ 948 sendorfree: 949 m = m0->m_nextpkt; 950 m0->m_nextpkt = 0; 951 m_freem(m0); 952 for (m0 = m; m; m = m0) { 953 m0 = m->m_nextpkt; 954 m->m_nextpkt = 0; 955 if (error == 0) { 956 struct in6_ifaddr *ia6; 957 ip6 = mtod(m, struct ip6_hdr *); 958 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 959 if (ia6) { 960 /* 961 * Record statistics for this interface 962 * address. 963 */ 964 ia6->ia_ifa.ifa_data.ifad_outbytes += 965 m->m_pkthdr.len; 966 } 967 KASSERT(dst != NULL); 968 error = nd6_output(ifp, origifp, m, dst, rt); 969 } else 970 m_freem(m); 971 } 972 973 if (error == 0) 974 IP6_STATINC(IP6_STAT_FRAGMENTED); 975 976 done: 977 rtcache_free(&ip6route); 978 979 #ifdef FAST_IPSEC 980 if (sp != NULL) 981 KEY_FREESP(&sp); 982 #endif /* FAST_IPSEC */ 983 984 985 return (error); 986 987 freehdrs: 988 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 989 m_freem(exthdrs.ip6e_dest1); 990 m_freem(exthdrs.ip6e_rthdr); 991 m_freem(exthdrs.ip6e_dest2); 992 /* FALLTHROUGH */ 993 bad: 994 m_freem(m); 995 goto done; 996 badscope: 997 IP6_STATINC(IP6_STAT_BADSCOPE); 998 in6_ifstat_inc(origifp, ifs6_out_discard); 999 if (error == 0) 1000 error = EHOSTUNREACH; /* XXX */ 1001 goto bad; 1002 } 1003 1004 static int 1005 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen) 1006 { 1007 struct mbuf *m; 1008 1009 if (hlen > MCLBYTES) 1010 return (ENOBUFS); /* XXX */ 1011 1012 MGET(m, M_DONTWAIT, MT_DATA); 1013 if (!m) 1014 return (ENOBUFS); 1015 1016 if (hlen > MLEN) { 1017 MCLGET(m, M_DONTWAIT); 1018 if ((m->m_flags & M_EXT) == 0) { 1019 m_free(m); 1020 return (ENOBUFS); 1021 } 1022 } 1023 m->m_len = hlen; 1024 if (hdr) 1025 bcopy(hdr, mtod(m, void *), hlen); 1026 1027 *mp = m; 1028 return (0); 1029 } 1030 1031 /* 1032 * Process a delayed payload checksum calculation. 1033 */ 1034 void 1035 in6_delayed_cksum(struct mbuf *m) 1036 { 1037 uint16_t csum, offset; 1038 1039 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1040 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1041 KASSERT((m->m_pkthdr.csum_flags 1042 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0); 1043 1044 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data); 1045 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset); 1046 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) { 1047 csum = 0xffff; 1048 } 1049 1050 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data); 1051 if ((offset + sizeof(csum)) > m->m_len) { 1052 m_copyback(m, offset, sizeof(csum), &csum); 1053 } else { 1054 *(uint16_t *)(mtod(m, char *) + offset) = csum; 1055 } 1056 } 1057 1058 /* 1059 * Insert jumbo payload option. 1060 */ 1061 static int 1062 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1063 { 1064 struct mbuf *mopt; 1065 u_int8_t *optbuf; 1066 u_int32_t v; 1067 1068 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1069 1070 /* 1071 * If there is no hop-by-hop options header, allocate new one. 1072 * If there is one but it doesn't have enough space to store the 1073 * jumbo payload option, allocate a cluster to store the whole options. 1074 * Otherwise, use it to store the options. 1075 */ 1076 if (exthdrs->ip6e_hbh == 0) { 1077 MGET(mopt, M_DONTWAIT, MT_DATA); 1078 if (mopt == 0) 1079 return (ENOBUFS); 1080 mopt->m_len = JUMBOOPTLEN; 1081 optbuf = mtod(mopt, u_int8_t *); 1082 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1083 exthdrs->ip6e_hbh = mopt; 1084 } else { 1085 struct ip6_hbh *hbh; 1086 1087 mopt = exthdrs->ip6e_hbh; 1088 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1089 /* 1090 * XXX assumption: 1091 * - exthdrs->ip6e_hbh is not referenced from places 1092 * other than exthdrs. 1093 * - exthdrs->ip6e_hbh is not an mbuf chain. 1094 */ 1095 int oldoptlen = mopt->m_len; 1096 struct mbuf *n; 1097 1098 /* 1099 * XXX: give up if the whole (new) hbh header does 1100 * not fit even in an mbuf cluster. 1101 */ 1102 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1103 return (ENOBUFS); 1104 1105 /* 1106 * As a consequence, we must always prepare a cluster 1107 * at this point. 1108 */ 1109 MGET(n, M_DONTWAIT, MT_DATA); 1110 if (n) { 1111 MCLGET(n, M_DONTWAIT); 1112 if ((n->m_flags & M_EXT) == 0) { 1113 m_freem(n); 1114 n = NULL; 1115 } 1116 } 1117 if (!n) 1118 return (ENOBUFS); 1119 n->m_len = oldoptlen + JUMBOOPTLEN; 1120 bcopy(mtod(mopt, void *), mtod(n, void *), 1121 oldoptlen); 1122 optbuf = mtod(n, u_int8_t *) + oldoptlen; 1123 m_freem(mopt); 1124 mopt = exthdrs->ip6e_hbh = n; 1125 } else { 1126 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 1127 mopt->m_len += JUMBOOPTLEN; 1128 } 1129 optbuf[0] = IP6OPT_PADN; 1130 optbuf[1] = 0; 1131 1132 /* 1133 * Adjust the header length according to the pad and 1134 * the jumbo payload option. 1135 */ 1136 hbh = mtod(mopt, struct ip6_hbh *); 1137 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1138 } 1139 1140 /* fill in the option. */ 1141 optbuf[2] = IP6OPT_JUMBO; 1142 optbuf[3] = 4; 1143 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1144 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1145 1146 /* finally, adjust the packet header length */ 1147 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1148 1149 return (0); 1150 #undef JUMBOOPTLEN 1151 } 1152 1153 /* 1154 * Insert fragment header and copy unfragmentable header portions. 1155 * 1156 * *frghdrp will not be read, and it is guaranteed that either an 1157 * error is returned or that *frghdrp will point to space allocated 1158 * for the fragment header. 1159 */ 1160 static int 1161 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1162 struct ip6_frag **frghdrp) 1163 { 1164 struct mbuf *n, *mlast; 1165 1166 if (hlen > sizeof(struct ip6_hdr)) { 1167 n = m_copym(m0, sizeof(struct ip6_hdr), 1168 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1169 if (n == 0) 1170 return (ENOBUFS); 1171 m->m_next = n; 1172 } else 1173 n = m; 1174 1175 /* Search for the last mbuf of unfragmentable part. */ 1176 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1177 ; 1178 1179 if ((mlast->m_flags & M_EXT) == 0 && 1180 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1181 /* use the trailing space of the last mbuf for the fragment hdr */ 1182 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) + 1183 mlast->m_len); 1184 mlast->m_len += sizeof(struct ip6_frag); 1185 m->m_pkthdr.len += sizeof(struct ip6_frag); 1186 } else { 1187 /* allocate a new mbuf for the fragment header */ 1188 struct mbuf *mfrg; 1189 1190 MGET(mfrg, M_DONTWAIT, MT_DATA); 1191 if (mfrg == 0) 1192 return (ENOBUFS); 1193 mfrg->m_len = sizeof(struct ip6_frag); 1194 *frghdrp = mtod(mfrg, struct ip6_frag *); 1195 mlast->m_next = mfrg; 1196 } 1197 1198 return (0); 1199 } 1200 1201 static int 1202 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp, 1203 const struct in6_addr *dst, u_long *mtup, int *alwaysfragp) 1204 { 1205 struct rtentry *rt; 1206 u_int32_t mtu = 0; 1207 int alwaysfrag = 0; 1208 int error = 0; 1209 1210 if (ro_pmtu != ro) { 1211 union { 1212 struct sockaddr dst; 1213 struct sockaddr_in6 dst6; 1214 } u; 1215 1216 /* The first hop and the final destination may differ. */ 1217 sockaddr_in6_init(&u.dst6, dst, 0, 0, 0); 1218 rt = rtcache_lookup(ro_pmtu, &u.dst); 1219 } else 1220 rt = rtcache_validate(ro_pmtu); 1221 if (rt != NULL) { 1222 u_int32_t ifmtu; 1223 1224 if (ifp == NULL) 1225 ifp = rt->rt_ifp; 1226 ifmtu = IN6_LINKMTU(ifp); 1227 mtu = rt->rt_rmx.rmx_mtu; 1228 if (mtu == 0) 1229 mtu = ifmtu; 1230 else if (mtu < IPV6_MMTU) { 1231 /* 1232 * RFC2460 section 5, last paragraph: 1233 * if we record ICMPv6 too big message with 1234 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1235 * or smaller, with fragment header attached. 1236 * (fragment header is needed regardless from the 1237 * packet size, for translators to identify packets) 1238 */ 1239 alwaysfrag = 1; 1240 mtu = IPV6_MMTU; 1241 } else if (mtu > ifmtu) { 1242 /* 1243 * The MTU on the route is larger than the MTU on 1244 * the interface! This shouldn't happen, unless the 1245 * MTU of the interface has been changed after the 1246 * interface was brought up. Change the MTU in the 1247 * route to match the interface MTU (as long as the 1248 * field isn't locked). 1249 */ 1250 mtu = ifmtu; 1251 if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) 1252 rt->rt_rmx.rmx_mtu = mtu; 1253 } 1254 } else if (ifp) { 1255 mtu = IN6_LINKMTU(ifp); 1256 } else 1257 error = EHOSTUNREACH; /* XXX */ 1258 1259 *mtup = mtu; 1260 if (alwaysfragp) 1261 *alwaysfragp = alwaysfrag; 1262 return (error); 1263 } 1264 1265 /* 1266 * IP6 socket option processing. 1267 */ 1268 int 1269 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1270 { 1271 int optdatalen, uproto; 1272 void *optdata; 1273 struct in6pcb *in6p = sotoin6pcb(so); 1274 int error, optval; 1275 int level, optname; 1276 1277 KASSERT(sopt != NULL); 1278 1279 level = sopt->sopt_level; 1280 optname = sopt->sopt_name; 1281 1282 error = optval = 0; 1283 uproto = (int)so->so_proto->pr_protocol; 1284 1285 if (level != IPPROTO_IPV6) { 1286 return ENOPROTOOPT; 1287 } 1288 switch (op) { 1289 case PRCO_SETOPT: 1290 switch (optname) { 1291 #ifdef RFC2292 1292 case IPV6_2292PKTOPTIONS: 1293 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt); 1294 break; 1295 #endif 1296 1297 /* 1298 * Use of some Hop-by-Hop options or some 1299 * Destination options, might require special 1300 * privilege. That is, normal applications 1301 * (without special privilege) might be forbidden 1302 * from setting certain options in outgoing packets, 1303 * and might never see certain options in received 1304 * packets. [RFC 2292 Section 6] 1305 * KAME specific note: 1306 * KAME prevents non-privileged users from sending or 1307 * receiving ANY hbh/dst options in order to avoid 1308 * overhead of parsing options in the kernel. 1309 */ 1310 case IPV6_RECVHOPOPTS: 1311 case IPV6_RECVDSTOPTS: 1312 case IPV6_RECVRTHDRDSTOPTS: 1313 error = kauth_authorize_network(kauth_cred_get(), 1314 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, 1315 NULL, NULL, NULL); 1316 if (error) 1317 break; 1318 /* FALLTHROUGH */ 1319 case IPV6_UNICAST_HOPS: 1320 case IPV6_HOPLIMIT: 1321 case IPV6_FAITH: 1322 1323 case IPV6_RECVPKTINFO: 1324 case IPV6_RECVHOPLIMIT: 1325 case IPV6_RECVRTHDR: 1326 case IPV6_RECVPATHMTU: 1327 case IPV6_RECVTCLASS: 1328 case IPV6_V6ONLY: 1329 error = sockopt_getint(sopt, &optval); 1330 if (error) 1331 break; 1332 switch (optname) { 1333 case IPV6_UNICAST_HOPS: 1334 if (optval < -1 || optval >= 256) 1335 error = EINVAL; 1336 else { 1337 /* -1 = kernel default */ 1338 in6p->in6p_hops = optval; 1339 } 1340 break; 1341 #define OPTSET(bit) \ 1342 do { \ 1343 if (optval) \ 1344 in6p->in6p_flags |= (bit); \ 1345 else \ 1346 in6p->in6p_flags &= ~(bit); \ 1347 } while (/*CONSTCOND*/ 0) 1348 1349 #ifdef RFC2292 1350 #define OPTSET2292(bit) \ 1351 do { \ 1352 in6p->in6p_flags |= IN6P_RFC2292; \ 1353 if (optval) \ 1354 in6p->in6p_flags |= (bit); \ 1355 else \ 1356 in6p->in6p_flags &= ~(bit); \ 1357 } while (/*CONSTCOND*/ 0) 1358 #endif 1359 1360 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1361 1362 case IPV6_RECVPKTINFO: 1363 #ifdef RFC2292 1364 /* cannot mix with RFC2292 */ 1365 if (OPTBIT(IN6P_RFC2292)) { 1366 error = EINVAL; 1367 break; 1368 } 1369 #endif 1370 OPTSET(IN6P_PKTINFO); 1371 break; 1372 1373 case IPV6_HOPLIMIT: 1374 { 1375 struct ip6_pktopts **optp; 1376 1377 #ifdef RFC2292 1378 /* cannot mix with RFC2292 */ 1379 if (OPTBIT(IN6P_RFC2292)) { 1380 error = EINVAL; 1381 break; 1382 } 1383 #endif 1384 optp = &in6p->in6p_outputopts; 1385 error = ip6_pcbopt(IPV6_HOPLIMIT, 1386 (u_char *)&optval, 1387 sizeof(optval), 1388 optp, 1389 kauth_cred_get(), uproto); 1390 break; 1391 } 1392 1393 case IPV6_RECVHOPLIMIT: 1394 #ifdef RFC2292 1395 /* cannot mix with RFC2292 */ 1396 if (OPTBIT(IN6P_RFC2292)) { 1397 error = EINVAL; 1398 break; 1399 } 1400 #endif 1401 OPTSET(IN6P_HOPLIMIT); 1402 break; 1403 1404 case IPV6_RECVHOPOPTS: 1405 #ifdef RFC2292 1406 /* cannot mix with RFC2292 */ 1407 if (OPTBIT(IN6P_RFC2292)) { 1408 error = EINVAL; 1409 break; 1410 } 1411 #endif 1412 OPTSET(IN6P_HOPOPTS); 1413 break; 1414 1415 case IPV6_RECVDSTOPTS: 1416 #ifdef RFC2292 1417 /* cannot mix with RFC2292 */ 1418 if (OPTBIT(IN6P_RFC2292)) { 1419 error = EINVAL; 1420 break; 1421 } 1422 #endif 1423 OPTSET(IN6P_DSTOPTS); 1424 break; 1425 1426 case IPV6_RECVRTHDRDSTOPTS: 1427 #ifdef RFC2292 1428 /* cannot mix with RFC2292 */ 1429 if (OPTBIT(IN6P_RFC2292)) { 1430 error = EINVAL; 1431 break; 1432 } 1433 #endif 1434 OPTSET(IN6P_RTHDRDSTOPTS); 1435 break; 1436 1437 case IPV6_RECVRTHDR: 1438 #ifdef RFC2292 1439 /* cannot mix with RFC2292 */ 1440 if (OPTBIT(IN6P_RFC2292)) { 1441 error = EINVAL; 1442 break; 1443 } 1444 #endif 1445 OPTSET(IN6P_RTHDR); 1446 break; 1447 1448 case IPV6_FAITH: 1449 OPTSET(IN6P_FAITH); 1450 break; 1451 1452 case IPV6_RECVPATHMTU: 1453 /* 1454 * We ignore this option for TCP 1455 * sockets. 1456 * (RFC3542 leaves this case 1457 * unspecified.) 1458 */ 1459 if (uproto != IPPROTO_TCP) 1460 OPTSET(IN6P_MTU); 1461 break; 1462 1463 case IPV6_V6ONLY: 1464 /* 1465 * make setsockopt(IPV6_V6ONLY) 1466 * available only prior to bind(2). 1467 * see ipng mailing list, Jun 22 2001. 1468 */ 1469 if (in6p->in6p_lport || 1470 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1471 error = EINVAL; 1472 break; 1473 } 1474 #ifdef INET6_BINDV6ONLY 1475 if (!optval) 1476 error = EINVAL; 1477 #else 1478 OPTSET(IN6P_IPV6_V6ONLY); 1479 #endif 1480 break; 1481 case IPV6_RECVTCLASS: 1482 #ifdef RFC2292 1483 /* cannot mix with RFC2292 XXX */ 1484 if (OPTBIT(IN6P_RFC2292)) { 1485 error = EINVAL; 1486 break; 1487 } 1488 #endif 1489 OPTSET(IN6P_TCLASS); 1490 break; 1491 1492 } 1493 break; 1494 1495 case IPV6_OTCLASS: 1496 { 1497 struct ip6_pktopts **optp; 1498 u_int8_t tclass; 1499 1500 error = sockopt_get(sopt, &tclass, sizeof(tclass)); 1501 if (error) 1502 break; 1503 optp = &in6p->in6p_outputopts; 1504 error = ip6_pcbopt(optname, 1505 (u_char *)&tclass, 1506 sizeof(tclass), 1507 optp, 1508 kauth_cred_get(), uproto); 1509 break; 1510 } 1511 1512 case IPV6_TCLASS: 1513 case IPV6_DONTFRAG: 1514 case IPV6_USE_MIN_MTU: 1515 error = sockopt_getint(sopt, &optval); 1516 if (error) 1517 break; 1518 { 1519 struct ip6_pktopts **optp; 1520 optp = &in6p->in6p_outputopts; 1521 error = ip6_pcbopt(optname, 1522 (u_char *)&optval, 1523 sizeof(optval), 1524 optp, 1525 kauth_cred_get(), uproto); 1526 break; 1527 } 1528 1529 #ifdef RFC2292 1530 case IPV6_2292PKTINFO: 1531 case IPV6_2292HOPLIMIT: 1532 case IPV6_2292HOPOPTS: 1533 case IPV6_2292DSTOPTS: 1534 case IPV6_2292RTHDR: 1535 /* RFC 2292 */ 1536 error = sockopt_getint(sopt, &optval); 1537 if (error) 1538 break; 1539 1540 switch (optname) { 1541 case IPV6_2292PKTINFO: 1542 OPTSET2292(IN6P_PKTINFO); 1543 break; 1544 case IPV6_2292HOPLIMIT: 1545 OPTSET2292(IN6P_HOPLIMIT); 1546 break; 1547 case IPV6_2292HOPOPTS: 1548 /* 1549 * Check super-user privilege. 1550 * See comments for IPV6_RECVHOPOPTS. 1551 */ 1552 error = 1553 kauth_authorize_network(kauth_cred_get(), 1554 KAUTH_NETWORK_IPV6, 1555 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1556 NULL, NULL); 1557 if (error) 1558 return (error); 1559 OPTSET2292(IN6P_HOPOPTS); 1560 break; 1561 case IPV6_2292DSTOPTS: 1562 error = 1563 kauth_authorize_network(kauth_cred_get(), 1564 KAUTH_NETWORK_IPV6, 1565 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1566 NULL, NULL); 1567 if (error) 1568 return (error); 1569 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1570 break; 1571 case IPV6_2292RTHDR: 1572 OPTSET2292(IN6P_RTHDR); 1573 break; 1574 } 1575 break; 1576 #endif 1577 case IPV6_PKTINFO: 1578 case IPV6_HOPOPTS: 1579 case IPV6_RTHDR: 1580 case IPV6_DSTOPTS: 1581 case IPV6_RTHDRDSTOPTS: 1582 case IPV6_NEXTHOP: { 1583 /* new advanced API (RFC3542) */ 1584 void *optbuf; 1585 int optbuflen; 1586 struct ip6_pktopts **optp; 1587 1588 #ifdef RFC2292 1589 /* cannot mix with RFC2292 */ 1590 if (OPTBIT(IN6P_RFC2292)) { 1591 error = EINVAL; 1592 break; 1593 } 1594 #endif 1595 1596 optbuflen = sopt->sopt_size; 1597 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT); 1598 if (optbuf == NULL) { 1599 error = ENOBUFS; 1600 break; 1601 } 1602 1603 sockopt_get(sopt, optbuf, optbuflen); 1604 optp = &in6p->in6p_outputopts; 1605 error = ip6_pcbopt(optname, optbuf, optbuflen, 1606 optp, kauth_cred_get(), uproto); 1607 break; 1608 } 1609 #undef OPTSET 1610 1611 case IPV6_MULTICAST_IF: 1612 case IPV6_MULTICAST_HOPS: 1613 case IPV6_MULTICAST_LOOP: 1614 case IPV6_JOIN_GROUP: 1615 case IPV6_LEAVE_GROUP: 1616 error = ip6_setmoptions(sopt, &in6p->in6p_moptions); 1617 break; 1618 1619 case IPV6_PORTRANGE: 1620 error = sockopt_getint(sopt, &optval); 1621 if (error) 1622 break; 1623 1624 switch (optval) { 1625 case IPV6_PORTRANGE_DEFAULT: 1626 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1627 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1628 break; 1629 1630 case IPV6_PORTRANGE_HIGH: 1631 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1632 in6p->in6p_flags |= IN6P_HIGHPORT; 1633 break; 1634 1635 case IPV6_PORTRANGE_LOW: 1636 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1637 in6p->in6p_flags |= IN6P_LOWPORT; 1638 break; 1639 1640 default: 1641 error = EINVAL; 1642 break; 1643 } 1644 break; 1645 1646 case IPV6_PORTALGO: 1647 error = sockopt_getint(sopt, &optval); 1648 if (error) 1649 break; 1650 1651 error = portalgo_algo_index_select( 1652 (struct inpcb_hdr *)in6p, optval); 1653 break; 1654 1655 #if defined(FAST_IPSEC) 1656 case IPV6_IPSEC_POLICY: 1657 error = ipsec6_set_policy(in6p, optname, 1658 sopt->sopt_data, sopt->sopt_size, kauth_cred_get()); 1659 break; 1660 #endif /* IPSEC */ 1661 1662 default: 1663 error = ENOPROTOOPT; 1664 break; 1665 } 1666 break; 1667 1668 case PRCO_GETOPT: 1669 switch (optname) { 1670 #ifdef RFC2292 1671 case IPV6_2292PKTOPTIONS: 1672 /* 1673 * RFC3542 (effectively) deprecated the 1674 * semantics of the 2292-style pktoptions. 1675 * Since it was not reliable in nature (i.e., 1676 * applications had to expect the lack of some 1677 * information after all), it would make sense 1678 * to simplify this part by always returning 1679 * empty data. 1680 */ 1681 break; 1682 #endif 1683 1684 case IPV6_RECVHOPOPTS: 1685 case IPV6_RECVDSTOPTS: 1686 case IPV6_RECVRTHDRDSTOPTS: 1687 case IPV6_UNICAST_HOPS: 1688 case IPV6_RECVPKTINFO: 1689 case IPV6_RECVHOPLIMIT: 1690 case IPV6_RECVRTHDR: 1691 case IPV6_RECVPATHMTU: 1692 1693 case IPV6_FAITH: 1694 case IPV6_V6ONLY: 1695 case IPV6_PORTRANGE: 1696 case IPV6_RECVTCLASS: 1697 switch (optname) { 1698 1699 case IPV6_RECVHOPOPTS: 1700 optval = OPTBIT(IN6P_HOPOPTS); 1701 break; 1702 1703 case IPV6_RECVDSTOPTS: 1704 optval = OPTBIT(IN6P_DSTOPTS); 1705 break; 1706 1707 case IPV6_RECVRTHDRDSTOPTS: 1708 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1709 break; 1710 1711 case IPV6_UNICAST_HOPS: 1712 optval = in6p->in6p_hops; 1713 break; 1714 1715 case IPV6_RECVPKTINFO: 1716 optval = OPTBIT(IN6P_PKTINFO); 1717 break; 1718 1719 case IPV6_RECVHOPLIMIT: 1720 optval = OPTBIT(IN6P_HOPLIMIT); 1721 break; 1722 1723 case IPV6_RECVRTHDR: 1724 optval = OPTBIT(IN6P_RTHDR); 1725 break; 1726 1727 case IPV6_RECVPATHMTU: 1728 optval = OPTBIT(IN6P_MTU); 1729 break; 1730 1731 case IPV6_FAITH: 1732 optval = OPTBIT(IN6P_FAITH); 1733 break; 1734 1735 case IPV6_V6ONLY: 1736 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1737 break; 1738 1739 case IPV6_PORTRANGE: 1740 { 1741 int flags; 1742 flags = in6p->in6p_flags; 1743 if (flags & IN6P_HIGHPORT) 1744 optval = IPV6_PORTRANGE_HIGH; 1745 else if (flags & IN6P_LOWPORT) 1746 optval = IPV6_PORTRANGE_LOW; 1747 else 1748 optval = 0; 1749 break; 1750 } 1751 case IPV6_RECVTCLASS: 1752 optval = OPTBIT(IN6P_TCLASS); 1753 break; 1754 1755 } 1756 if (error) 1757 break; 1758 error = sockopt_setint(sopt, optval); 1759 break; 1760 1761 case IPV6_PATHMTU: 1762 { 1763 u_long pmtu = 0; 1764 struct ip6_mtuinfo mtuinfo; 1765 struct route *ro = &in6p->in6p_route; 1766 1767 if (!(so->so_state & SS_ISCONNECTED)) 1768 return (ENOTCONN); 1769 /* 1770 * XXX: we dot not consider the case of source 1771 * routing, or optional information to specify 1772 * the outgoing interface. 1773 */ 1774 error = ip6_getpmtu(ro, NULL, NULL, 1775 &in6p->in6p_faddr, &pmtu, NULL); 1776 if (error) 1777 break; 1778 if (pmtu > IPV6_MAXPACKET) 1779 pmtu = IPV6_MAXPACKET; 1780 1781 memset(&mtuinfo, 0, sizeof(mtuinfo)); 1782 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1783 optdata = (void *)&mtuinfo; 1784 optdatalen = sizeof(mtuinfo); 1785 if (optdatalen > MCLBYTES) 1786 return (EMSGSIZE); /* XXX */ 1787 error = sockopt_set(sopt, optdata, optdatalen); 1788 break; 1789 } 1790 1791 #ifdef RFC2292 1792 case IPV6_2292PKTINFO: 1793 case IPV6_2292HOPLIMIT: 1794 case IPV6_2292HOPOPTS: 1795 case IPV6_2292RTHDR: 1796 case IPV6_2292DSTOPTS: 1797 switch (optname) { 1798 case IPV6_2292PKTINFO: 1799 optval = OPTBIT(IN6P_PKTINFO); 1800 break; 1801 case IPV6_2292HOPLIMIT: 1802 optval = OPTBIT(IN6P_HOPLIMIT); 1803 break; 1804 case IPV6_2292HOPOPTS: 1805 optval = OPTBIT(IN6P_HOPOPTS); 1806 break; 1807 case IPV6_2292RTHDR: 1808 optval = OPTBIT(IN6P_RTHDR); 1809 break; 1810 case IPV6_2292DSTOPTS: 1811 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1812 break; 1813 } 1814 error = sockopt_setint(sopt, optval); 1815 break; 1816 #endif 1817 case IPV6_PKTINFO: 1818 case IPV6_HOPOPTS: 1819 case IPV6_RTHDR: 1820 case IPV6_DSTOPTS: 1821 case IPV6_RTHDRDSTOPTS: 1822 case IPV6_NEXTHOP: 1823 case IPV6_OTCLASS: 1824 case IPV6_TCLASS: 1825 case IPV6_DONTFRAG: 1826 case IPV6_USE_MIN_MTU: 1827 error = ip6_getpcbopt(in6p->in6p_outputopts, 1828 optname, sopt); 1829 break; 1830 1831 case IPV6_MULTICAST_IF: 1832 case IPV6_MULTICAST_HOPS: 1833 case IPV6_MULTICAST_LOOP: 1834 case IPV6_JOIN_GROUP: 1835 case IPV6_LEAVE_GROUP: 1836 error = ip6_getmoptions(sopt, in6p->in6p_moptions); 1837 break; 1838 1839 case IPV6_PORTALGO: 1840 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo; 1841 error = sockopt_setint(sopt, optval); 1842 break; 1843 1844 #if defined(FAST_IPSEC) 1845 case IPV6_IPSEC_POLICY: 1846 { 1847 struct mbuf *m = NULL; 1848 1849 /* XXX this will return EINVAL as sopt is empty */ 1850 error = ipsec6_get_policy(in6p, sopt->sopt_data, 1851 sopt->sopt_size, &m); 1852 if (!error) 1853 error = sockopt_setmbuf(sopt, m); 1854 1855 break; 1856 } 1857 #endif /* IPSEC */ 1858 1859 default: 1860 error = ENOPROTOOPT; 1861 break; 1862 } 1863 break; 1864 } 1865 return (error); 1866 } 1867 1868 int 1869 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1870 { 1871 int error = 0, optval; 1872 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 1873 struct in6pcb *in6p = sotoin6pcb(so); 1874 int level, optname; 1875 1876 KASSERT(sopt != NULL); 1877 1878 level = sopt->sopt_level; 1879 optname = sopt->sopt_name; 1880 1881 if (level != IPPROTO_IPV6) { 1882 return ENOPROTOOPT; 1883 } 1884 1885 switch (optname) { 1886 case IPV6_CHECKSUM: 1887 /* 1888 * For ICMPv6 sockets, no modification allowed for checksum 1889 * offset, permit "no change" values to help existing apps. 1890 * 1891 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM 1892 * for an ICMPv6 socket will fail." The current 1893 * behavior does not meet RFC3542. 1894 */ 1895 switch (op) { 1896 case PRCO_SETOPT: 1897 error = sockopt_getint(sopt, &optval); 1898 if (error) 1899 break; 1900 if ((optval % 2) != 0) { 1901 /* the API assumes even offset values */ 1902 error = EINVAL; 1903 } else if (so->so_proto->pr_protocol == 1904 IPPROTO_ICMPV6) { 1905 if (optval != icmp6off) 1906 error = EINVAL; 1907 } else 1908 in6p->in6p_cksum = optval; 1909 break; 1910 1911 case PRCO_GETOPT: 1912 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 1913 optval = icmp6off; 1914 else 1915 optval = in6p->in6p_cksum; 1916 1917 error = sockopt_setint(sopt, optval); 1918 break; 1919 1920 default: 1921 error = EINVAL; 1922 break; 1923 } 1924 break; 1925 1926 default: 1927 error = ENOPROTOOPT; 1928 break; 1929 } 1930 1931 return (error); 1932 } 1933 1934 #ifdef RFC2292 1935 /* 1936 * Set up IP6 options in pcb for insertion in output packets or 1937 * specifying behavior of outgoing packets. 1938 */ 1939 static int 1940 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so, 1941 struct sockopt *sopt) 1942 { 1943 struct ip6_pktopts *opt = *pktopt; 1944 struct mbuf *m; 1945 int error = 0; 1946 1947 /* turn off any old options. */ 1948 if (opt) { 1949 #ifdef DIAGNOSTIC 1950 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 1951 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 1952 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 1953 printf("ip6_pcbopts: all specified options are cleared.\n"); 1954 #endif 1955 ip6_clearpktopts(opt, -1); 1956 } else { 1957 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 1958 if (opt == NULL) 1959 return (ENOBUFS); 1960 } 1961 *pktopt = NULL; 1962 1963 if (sopt == NULL || sopt->sopt_size == 0) { 1964 /* 1965 * Only turning off any previous options, regardless of 1966 * whether the opt is just created or given. 1967 */ 1968 free(opt, M_IP6OPT); 1969 return (0); 1970 } 1971 1972 /* set options specified by user. */ 1973 m = sockopt_getmbuf(sopt); 1974 if (m == NULL) { 1975 free(opt, M_IP6OPT); 1976 return (ENOBUFS); 1977 } 1978 1979 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(), 1980 so->so_proto->pr_protocol); 1981 m_freem(m); 1982 if (error != 0) { 1983 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 1984 free(opt, M_IP6OPT); 1985 return (error); 1986 } 1987 *pktopt = opt; 1988 return (0); 1989 } 1990 #endif 1991 1992 /* 1993 * initialize ip6_pktopts. beware that there are non-zero default values in 1994 * the struct. 1995 */ 1996 void 1997 ip6_initpktopts(struct ip6_pktopts *opt) 1998 { 1999 2000 memset(opt, 0, sizeof(*opt)); 2001 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2002 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2003 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2004 } 2005 2006 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */ 2007 static int 2008 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2009 kauth_cred_t cred, int uproto) 2010 { 2011 struct ip6_pktopts *opt; 2012 2013 if (*pktopt == NULL) { 2014 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2015 M_NOWAIT); 2016 if (*pktopt == NULL) 2017 return (ENOBUFS); 2018 2019 ip6_initpktopts(*pktopt); 2020 } 2021 opt = *pktopt; 2022 2023 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2024 } 2025 2026 static int 2027 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2028 { 2029 void *optdata = NULL; 2030 int optdatalen = 0; 2031 struct ip6_ext *ip6e; 2032 int error = 0; 2033 struct in6_pktinfo null_pktinfo; 2034 int deftclass = 0, on; 2035 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2036 2037 switch (optname) { 2038 case IPV6_PKTINFO: 2039 if (pktopt && pktopt->ip6po_pktinfo) 2040 optdata = (void *)pktopt->ip6po_pktinfo; 2041 else { 2042 /* XXX: we don't have to do this every time... */ 2043 memset(&null_pktinfo, 0, sizeof(null_pktinfo)); 2044 optdata = (void *)&null_pktinfo; 2045 } 2046 optdatalen = sizeof(struct in6_pktinfo); 2047 break; 2048 case IPV6_OTCLASS: 2049 /* XXX */ 2050 return (EINVAL); 2051 case IPV6_TCLASS: 2052 if (pktopt && pktopt->ip6po_tclass >= 0) 2053 optdata = (void *)&pktopt->ip6po_tclass; 2054 else 2055 optdata = (void *)&deftclass; 2056 optdatalen = sizeof(int); 2057 break; 2058 case IPV6_HOPOPTS: 2059 if (pktopt && pktopt->ip6po_hbh) { 2060 optdata = (void *)pktopt->ip6po_hbh; 2061 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2062 optdatalen = (ip6e->ip6e_len + 1) << 3; 2063 } 2064 break; 2065 case IPV6_RTHDR: 2066 if (pktopt && pktopt->ip6po_rthdr) { 2067 optdata = (void *)pktopt->ip6po_rthdr; 2068 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2069 optdatalen = (ip6e->ip6e_len + 1) << 3; 2070 } 2071 break; 2072 case IPV6_RTHDRDSTOPTS: 2073 if (pktopt && pktopt->ip6po_dest1) { 2074 optdata = (void *)pktopt->ip6po_dest1; 2075 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2076 optdatalen = (ip6e->ip6e_len + 1) << 3; 2077 } 2078 break; 2079 case IPV6_DSTOPTS: 2080 if (pktopt && pktopt->ip6po_dest2) { 2081 optdata = (void *)pktopt->ip6po_dest2; 2082 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2083 optdatalen = (ip6e->ip6e_len + 1) << 3; 2084 } 2085 break; 2086 case IPV6_NEXTHOP: 2087 if (pktopt && pktopt->ip6po_nexthop) { 2088 optdata = (void *)pktopt->ip6po_nexthop; 2089 optdatalen = pktopt->ip6po_nexthop->sa_len; 2090 } 2091 break; 2092 case IPV6_USE_MIN_MTU: 2093 if (pktopt) 2094 optdata = (void *)&pktopt->ip6po_minmtu; 2095 else 2096 optdata = (void *)&defminmtu; 2097 optdatalen = sizeof(int); 2098 break; 2099 case IPV6_DONTFRAG: 2100 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2101 on = 1; 2102 else 2103 on = 0; 2104 optdata = (void *)&on; 2105 optdatalen = sizeof(on); 2106 break; 2107 default: /* should not happen */ 2108 #ifdef DIAGNOSTIC 2109 panic("ip6_getpcbopt: unexpected option\n"); 2110 #endif 2111 return (ENOPROTOOPT); 2112 } 2113 2114 error = sockopt_set(sopt, optdata, optdatalen); 2115 2116 return (error); 2117 } 2118 2119 void 2120 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2121 { 2122 if (optname == -1 || optname == IPV6_PKTINFO) { 2123 if (pktopt->ip6po_pktinfo) 2124 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2125 pktopt->ip6po_pktinfo = NULL; 2126 } 2127 if (optname == -1 || optname == IPV6_HOPLIMIT) 2128 pktopt->ip6po_hlim = -1; 2129 if (optname == -1 || optname == IPV6_TCLASS) 2130 pktopt->ip6po_tclass = -1; 2131 if (optname == -1 || optname == IPV6_NEXTHOP) { 2132 rtcache_free(&pktopt->ip6po_nextroute); 2133 if (pktopt->ip6po_nexthop) 2134 free(pktopt->ip6po_nexthop, M_IP6OPT); 2135 pktopt->ip6po_nexthop = NULL; 2136 } 2137 if (optname == -1 || optname == IPV6_HOPOPTS) { 2138 if (pktopt->ip6po_hbh) 2139 free(pktopt->ip6po_hbh, M_IP6OPT); 2140 pktopt->ip6po_hbh = NULL; 2141 } 2142 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2143 if (pktopt->ip6po_dest1) 2144 free(pktopt->ip6po_dest1, M_IP6OPT); 2145 pktopt->ip6po_dest1 = NULL; 2146 } 2147 if (optname == -1 || optname == IPV6_RTHDR) { 2148 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2149 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2150 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2151 rtcache_free(&pktopt->ip6po_route); 2152 } 2153 if (optname == -1 || optname == IPV6_DSTOPTS) { 2154 if (pktopt->ip6po_dest2) 2155 free(pktopt->ip6po_dest2, M_IP6OPT); 2156 pktopt->ip6po_dest2 = NULL; 2157 } 2158 } 2159 2160 #define PKTOPT_EXTHDRCPY(type) \ 2161 do { \ 2162 if (src->type) { \ 2163 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2164 dst->type = malloc(hlen, M_IP6OPT, canwait); \ 2165 if (dst->type == NULL) \ 2166 goto bad; \ 2167 memcpy(dst->type, src->type, hlen); \ 2168 } \ 2169 } while (/*CONSTCOND*/ 0) 2170 2171 static int 2172 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2173 { 2174 dst->ip6po_hlim = src->ip6po_hlim; 2175 dst->ip6po_tclass = src->ip6po_tclass; 2176 dst->ip6po_flags = src->ip6po_flags; 2177 if (src->ip6po_pktinfo) { 2178 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2179 M_IP6OPT, canwait); 2180 if (dst->ip6po_pktinfo == NULL) 2181 goto bad; 2182 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2183 } 2184 if (src->ip6po_nexthop) { 2185 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2186 M_IP6OPT, canwait); 2187 if (dst->ip6po_nexthop == NULL) 2188 goto bad; 2189 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop, 2190 src->ip6po_nexthop->sa_len); 2191 } 2192 PKTOPT_EXTHDRCPY(ip6po_hbh); 2193 PKTOPT_EXTHDRCPY(ip6po_dest1); 2194 PKTOPT_EXTHDRCPY(ip6po_dest2); 2195 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2196 return (0); 2197 2198 bad: 2199 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 2200 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 2201 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 2202 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 2203 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 2204 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 2205 2206 return (ENOBUFS); 2207 } 2208 #undef PKTOPT_EXTHDRCPY 2209 2210 struct ip6_pktopts * 2211 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2212 { 2213 int error; 2214 struct ip6_pktopts *dst; 2215 2216 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2217 if (dst == NULL) 2218 return (NULL); 2219 ip6_initpktopts(dst); 2220 2221 if ((error = copypktopts(dst, src, canwait)) != 0) { 2222 free(dst, M_IP6OPT); 2223 return (NULL); 2224 } 2225 2226 return (dst); 2227 } 2228 2229 void 2230 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2231 { 2232 if (pktopt == NULL) 2233 return; 2234 2235 ip6_clearpktopts(pktopt, -1); 2236 2237 free(pktopt, M_IP6OPT); 2238 } 2239 2240 /* 2241 * Set the IP6 multicast options in response to user setsockopt(). 2242 */ 2243 static int 2244 ip6_setmoptions(const struct sockopt *sopt, struct ip6_moptions **im6op) 2245 { 2246 int error = 0; 2247 u_int loop, ifindex; 2248 struct ipv6_mreq mreq; 2249 struct ifnet *ifp; 2250 struct ip6_moptions *im6o = *im6op; 2251 struct route ro; 2252 struct in6_multi_mship *imm; 2253 struct lwp *l = curlwp; /* XXX */ 2254 2255 if (im6o == NULL) { 2256 /* 2257 * No multicast option buffer attached to the pcb; 2258 * allocate one and initialize to default values. 2259 */ 2260 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT); 2261 if (im6o == NULL) 2262 return (ENOBUFS); 2263 2264 *im6op = im6o; 2265 im6o->im6o_multicast_ifp = NULL; 2266 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2267 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2268 LIST_INIT(&im6o->im6o_memberships); 2269 } 2270 2271 switch (sopt->sopt_name) { 2272 2273 case IPV6_MULTICAST_IF: 2274 /* 2275 * Select the interface for outgoing multicast packets. 2276 */ 2277 error = sockopt_get(sopt, &ifindex, sizeof(ifindex)); 2278 if (error != 0) 2279 break; 2280 2281 if (ifindex != 0) { 2282 if (if_indexlim <= ifindex || !ifindex2ifnet[ifindex]) { 2283 error = ENXIO; /* XXX EINVAL? */ 2284 break; 2285 } 2286 ifp = ifindex2ifnet[ifindex]; 2287 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 2288 error = EADDRNOTAVAIL; 2289 break; 2290 } 2291 } else 2292 ifp = NULL; 2293 im6o->im6o_multicast_ifp = ifp; 2294 break; 2295 2296 case IPV6_MULTICAST_HOPS: 2297 { 2298 /* 2299 * Set the IP6 hoplimit for outgoing multicast packets. 2300 */ 2301 int optval; 2302 2303 error = sockopt_getint(sopt, &optval); 2304 if (error != 0) 2305 break; 2306 2307 if (optval < -1 || optval >= 256) 2308 error = EINVAL; 2309 else if (optval == -1) 2310 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2311 else 2312 im6o->im6o_multicast_hlim = optval; 2313 break; 2314 } 2315 2316 case IPV6_MULTICAST_LOOP: 2317 /* 2318 * Set the loopback flag for outgoing multicast packets. 2319 * Must be zero or one. 2320 */ 2321 error = sockopt_get(sopt, &loop, sizeof(loop)); 2322 if (error != 0) 2323 break; 2324 if (loop > 1) { 2325 error = EINVAL; 2326 break; 2327 } 2328 im6o->im6o_multicast_loop = loop; 2329 break; 2330 2331 case IPV6_JOIN_GROUP: 2332 /* 2333 * Add a multicast group membership. 2334 * Group must be a valid IP6 multicast address. 2335 */ 2336 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2337 if (error != 0) 2338 break; 2339 2340 if (IN6_IS_ADDR_UNSPECIFIED(&mreq.ipv6mr_multiaddr)) { 2341 /* 2342 * We use the unspecified address to specify to accept 2343 * all multicast addresses. Only super user is allowed 2344 * to do this. 2345 */ 2346 if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_IPV6, 2347 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL)) 2348 { 2349 error = EACCES; 2350 break; 2351 } 2352 } else if (!IN6_IS_ADDR_MULTICAST(&mreq.ipv6mr_multiaddr)) { 2353 error = EINVAL; 2354 break; 2355 } 2356 2357 /* 2358 * If no interface was explicitly specified, choose an 2359 * appropriate one according to the given multicast address. 2360 */ 2361 if (mreq.ipv6mr_interface == 0) { 2362 struct rtentry *rt; 2363 union { 2364 struct sockaddr dst; 2365 struct sockaddr_in6 dst6; 2366 } u; 2367 2368 /* 2369 * Look up the routing table for the 2370 * address, and choose the outgoing interface. 2371 * XXX: is it a good approach? 2372 */ 2373 memset(&ro, 0, sizeof(ro)); 2374 sockaddr_in6_init(&u.dst6, &mreq.ipv6mr_multiaddr, 0, 2375 0, 0); 2376 rtcache_setdst(&ro, &u.dst); 2377 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp 2378 : NULL; 2379 rtcache_free(&ro); 2380 } else { 2381 /* 2382 * If the interface is specified, validate it. 2383 */ 2384 if (if_indexlim <= mreq.ipv6mr_interface || 2385 !ifindex2ifnet[mreq.ipv6mr_interface]) { 2386 error = ENXIO; /* XXX EINVAL? */ 2387 break; 2388 } 2389 ifp = ifindex2ifnet[mreq.ipv6mr_interface]; 2390 } 2391 2392 /* 2393 * See if we found an interface, and confirm that it 2394 * supports multicast 2395 */ 2396 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2397 error = EADDRNOTAVAIL; 2398 break; 2399 } 2400 2401 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) { 2402 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2403 break; 2404 } 2405 2406 /* 2407 * See if the membership already exists. 2408 */ 2409 for (imm = im6o->im6o_memberships.lh_first; 2410 imm != NULL; imm = imm->i6mm_chain.le_next) 2411 if (imm->i6mm_maddr->in6m_ifp == ifp && 2412 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2413 &mreq.ipv6mr_multiaddr)) 2414 break; 2415 if (imm != NULL) { 2416 error = EADDRINUSE; 2417 break; 2418 } 2419 /* 2420 * Everything looks good; add a new record to the multicast 2421 * address list for the given interface. 2422 */ 2423 imm = in6_joingroup(ifp, &mreq.ipv6mr_multiaddr, &error, 0); 2424 if (imm == NULL) 2425 break; 2426 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2427 break; 2428 2429 case IPV6_LEAVE_GROUP: 2430 /* 2431 * Drop a multicast group membership. 2432 * Group must be a valid IP6 multicast address. 2433 */ 2434 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2435 if (error != 0) 2436 break; 2437 2438 /* 2439 * If an interface address was specified, get a pointer 2440 * to its ifnet structure. 2441 */ 2442 if (mreq.ipv6mr_interface != 0) { 2443 if (if_indexlim <= mreq.ipv6mr_interface || 2444 !ifindex2ifnet[mreq.ipv6mr_interface]) { 2445 error = ENXIO; /* XXX EINVAL? */ 2446 break; 2447 } 2448 ifp = ifindex2ifnet[mreq.ipv6mr_interface]; 2449 } else 2450 ifp = NULL; 2451 2452 /* Fill in the scope zone ID */ 2453 if (ifp) { 2454 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) { 2455 /* XXX: should not happen */ 2456 error = EADDRNOTAVAIL; 2457 break; 2458 } 2459 } else if (mreq.ipv6mr_interface != 0) { 2460 /* 2461 * XXX: This case would happens when the (positive) 2462 * index is in the valid range, but the corresponding 2463 * interface has been detached dynamically. The above 2464 * check probably avoids such case to happen here, but 2465 * we check it explicitly for safety. 2466 */ 2467 error = EADDRNOTAVAIL; 2468 break; 2469 } else { /* ipv6mr_interface == 0 */ 2470 struct sockaddr_in6 sa6_mc; 2471 2472 /* 2473 * The API spec says as follows: 2474 * If the interface index is specified as 0, the 2475 * system may choose a multicast group membership to 2476 * drop by matching the multicast address only. 2477 * On the other hand, we cannot disambiguate the scope 2478 * zone unless an interface is provided. Thus, we 2479 * check if there's ambiguity with the default scope 2480 * zone as the last resort. 2481 */ 2482 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr, 2483 0, 0, 0); 2484 error = sa6_embedscope(&sa6_mc, ip6_use_defzone); 2485 if (error != 0) 2486 break; 2487 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr; 2488 } 2489 2490 /* 2491 * Find the membership in the membership list. 2492 */ 2493 for (imm = im6o->im6o_memberships.lh_first; 2494 imm != NULL; imm = imm->i6mm_chain.le_next) { 2495 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2496 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2497 &mreq.ipv6mr_multiaddr)) 2498 break; 2499 } 2500 if (imm == NULL) { 2501 /* Unable to resolve interface */ 2502 error = EADDRNOTAVAIL; 2503 break; 2504 } 2505 /* 2506 * Give up the multicast address record to which the 2507 * membership points. 2508 */ 2509 LIST_REMOVE(imm, i6mm_chain); 2510 in6_leavegroup(imm); 2511 break; 2512 2513 default: 2514 error = EOPNOTSUPP; 2515 break; 2516 } 2517 2518 /* 2519 * If all options have default values, no need to keep the mbuf. 2520 */ 2521 if (im6o->im6o_multicast_ifp == NULL && 2522 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2523 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2524 im6o->im6o_memberships.lh_first == NULL) { 2525 free(*im6op, M_IPMOPTS); 2526 *im6op = NULL; 2527 } 2528 2529 return (error); 2530 } 2531 2532 /* 2533 * Return the IP6 multicast options in response to user getsockopt(). 2534 */ 2535 static int 2536 ip6_getmoptions(struct sockopt *sopt, struct ip6_moptions *im6o) 2537 { 2538 u_int optval; 2539 int error; 2540 2541 switch (sopt->sopt_name) { 2542 case IPV6_MULTICAST_IF: 2543 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2544 optval = 0; 2545 else 2546 optval = im6o->im6o_multicast_ifp->if_index; 2547 2548 error = sockopt_set(sopt, &optval, sizeof(optval)); 2549 break; 2550 2551 case IPV6_MULTICAST_HOPS: 2552 if (im6o == NULL) 2553 optval = ip6_defmcasthlim; 2554 else 2555 optval = im6o->im6o_multicast_hlim; 2556 2557 error = sockopt_set(sopt, &optval, sizeof(optval)); 2558 break; 2559 2560 case IPV6_MULTICAST_LOOP: 2561 if (im6o == NULL) 2562 optval = IPV6_DEFAULT_MULTICAST_LOOP; 2563 else 2564 optval = im6o->im6o_multicast_loop; 2565 2566 error = sockopt_set(sopt, &optval, sizeof(optval)); 2567 break; 2568 2569 default: 2570 error = EOPNOTSUPP; 2571 } 2572 2573 return (error); 2574 } 2575 2576 /* 2577 * Discard the IP6 multicast options. 2578 */ 2579 void 2580 ip6_freemoptions(struct ip6_moptions *im6o) 2581 { 2582 struct in6_multi_mship *imm; 2583 2584 if (im6o == NULL) 2585 return; 2586 2587 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2588 LIST_REMOVE(imm, i6mm_chain); 2589 in6_leavegroup(imm); 2590 } 2591 free(im6o, M_IPMOPTS); 2592 } 2593 2594 /* 2595 * Set IPv6 outgoing packet options based on advanced API. 2596 */ 2597 int 2598 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2599 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto) 2600 { 2601 struct cmsghdr *cm = 0; 2602 2603 if (control == NULL || opt == NULL) 2604 return (EINVAL); 2605 2606 ip6_initpktopts(opt); 2607 if (stickyopt) { 2608 int error; 2609 2610 /* 2611 * If stickyopt is provided, make a local copy of the options 2612 * for this particular packet, then override them by ancillary 2613 * objects. 2614 * XXX: copypktopts() does not copy the cached route to a next 2615 * hop (if any). This is not very good in terms of efficiency, 2616 * but we can allow this since this option should be rarely 2617 * used. 2618 */ 2619 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2620 return (error); 2621 } 2622 2623 /* 2624 * XXX: Currently, we assume all the optional information is stored 2625 * in a single mbuf. 2626 */ 2627 if (control->m_next) 2628 return (EINVAL); 2629 2630 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */ 2631 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2632 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2633 int error; 2634 2635 if (control->m_len < CMSG_LEN(0)) 2636 return (EINVAL); 2637 2638 cm = mtod(control, struct cmsghdr *); 2639 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2640 return (EINVAL); 2641 if (cm->cmsg_level != IPPROTO_IPV6) 2642 continue; 2643 2644 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2645 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2646 if (error) 2647 return (error); 2648 } 2649 2650 return (0); 2651 } 2652 2653 /* 2654 * Set a particular packet option, as a sticky option or an ancillary data 2655 * item. "len" can be 0 only when it's a sticky option. 2656 * We have 4 cases of combination of "sticky" and "cmsg": 2657 * "sticky=0, cmsg=0": impossible 2658 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2659 * "sticky=1, cmsg=0": RFC3542 socket option 2660 * "sticky=1, cmsg=1": RFC2292 socket option 2661 */ 2662 static int 2663 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2664 kauth_cred_t cred, int sticky, int cmsg, int uproto) 2665 { 2666 int minmtupolicy; 2667 int error; 2668 2669 if (!sticky && !cmsg) { 2670 #ifdef DIAGNOSTIC 2671 printf("ip6_setpktopt: impossible case\n"); 2672 #endif 2673 return (EINVAL); 2674 } 2675 2676 /* 2677 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2678 * not be specified in the context of RFC3542. Conversely, 2679 * RFC3542 types should not be specified in the context of RFC2292. 2680 */ 2681 if (!cmsg) { 2682 switch (optname) { 2683 case IPV6_2292PKTINFO: 2684 case IPV6_2292HOPLIMIT: 2685 case IPV6_2292NEXTHOP: 2686 case IPV6_2292HOPOPTS: 2687 case IPV6_2292DSTOPTS: 2688 case IPV6_2292RTHDR: 2689 case IPV6_2292PKTOPTIONS: 2690 return (ENOPROTOOPT); 2691 } 2692 } 2693 if (sticky && cmsg) { 2694 switch (optname) { 2695 case IPV6_PKTINFO: 2696 case IPV6_HOPLIMIT: 2697 case IPV6_NEXTHOP: 2698 case IPV6_HOPOPTS: 2699 case IPV6_DSTOPTS: 2700 case IPV6_RTHDRDSTOPTS: 2701 case IPV6_RTHDR: 2702 case IPV6_USE_MIN_MTU: 2703 case IPV6_DONTFRAG: 2704 case IPV6_OTCLASS: 2705 case IPV6_TCLASS: 2706 return (ENOPROTOOPT); 2707 } 2708 } 2709 2710 switch (optname) { 2711 #ifdef RFC2292 2712 case IPV6_2292PKTINFO: 2713 #endif 2714 case IPV6_PKTINFO: 2715 { 2716 struct ifnet *ifp = NULL; 2717 struct in6_pktinfo *pktinfo; 2718 2719 if (len != sizeof(struct in6_pktinfo)) 2720 return (EINVAL); 2721 2722 pktinfo = (struct in6_pktinfo *)buf; 2723 2724 /* 2725 * An application can clear any sticky IPV6_PKTINFO option by 2726 * doing a "regular" setsockopt with ipi6_addr being 2727 * in6addr_any and ipi6_ifindex being zero. 2728 * [RFC 3542, Section 6] 2729 */ 2730 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2731 pktinfo->ipi6_ifindex == 0 && 2732 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2733 ip6_clearpktopts(opt, optname); 2734 break; 2735 } 2736 2737 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2738 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2739 return (EINVAL); 2740 } 2741 2742 /* validate the interface index if specified. */ 2743 if (pktinfo->ipi6_ifindex >= if_indexlim) { 2744 return (ENXIO); 2745 } 2746 if (pktinfo->ipi6_ifindex) { 2747 ifp = ifindex2ifnet[pktinfo->ipi6_ifindex]; 2748 if (ifp == NULL) 2749 return (ENXIO); 2750 } 2751 2752 /* 2753 * We store the address anyway, and let in6_selectsrc() 2754 * validate the specified address. This is because ipi6_addr 2755 * may not have enough information about its scope zone, and 2756 * we may need additional information (such as outgoing 2757 * interface or the scope zone of a destination address) to 2758 * disambiguate the scope. 2759 * XXX: the delay of the validation may confuse the 2760 * application when it is used as a sticky option. 2761 */ 2762 if (opt->ip6po_pktinfo == NULL) { 2763 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2764 M_IP6OPT, M_NOWAIT); 2765 if (opt->ip6po_pktinfo == NULL) 2766 return (ENOBUFS); 2767 } 2768 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo)); 2769 break; 2770 } 2771 2772 #ifdef RFC2292 2773 case IPV6_2292HOPLIMIT: 2774 #endif 2775 case IPV6_HOPLIMIT: 2776 { 2777 int *hlimp; 2778 2779 /* 2780 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2781 * to simplify the ordering among hoplimit options. 2782 */ 2783 if (optname == IPV6_HOPLIMIT && sticky) 2784 return (ENOPROTOOPT); 2785 2786 if (len != sizeof(int)) 2787 return (EINVAL); 2788 hlimp = (int *)buf; 2789 if (*hlimp < -1 || *hlimp > 255) 2790 return (EINVAL); 2791 2792 opt->ip6po_hlim = *hlimp; 2793 break; 2794 } 2795 2796 case IPV6_OTCLASS: 2797 if (len != sizeof(u_int8_t)) 2798 return (EINVAL); 2799 2800 opt->ip6po_tclass = *(u_int8_t *)buf; 2801 break; 2802 2803 case IPV6_TCLASS: 2804 { 2805 int tclass; 2806 2807 if (len != sizeof(int)) 2808 return (EINVAL); 2809 tclass = *(int *)buf; 2810 if (tclass < -1 || tclass > 255) 2811 return (EINVAL); 2812 2813 opt->ip6po_tclass = tclass; 2814 break; 2815 } 2816 2817 #ifdef RFC2292 2818 case IPV6_2292NEXTHOP: 2819 #endif 2820 case IPV6_NEXTHOP: 2821 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 2822 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 2823 if (error) 2824 return (error); 2825 2826 if (len == 0) { /* just remove the option */ 2827 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2828 break; 2829 } 2830 2831 /* check if cmsg_len is large enough for sa_len */ 2832 if (len < sizeof(struct sockaddr) || len < *buf) 2833 return (EINVAL); 2834 2835 switch (((struct sockaddr *)buf)->sa_family) { 2836 case AF_INET6: 2837 { 2838 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2839 2840 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2841 return (EINVAL); 2842 2843 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2844 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2845 return (EINVAL); 2846 } 2847 if ((error = sa6_embedscope(sa6, ip6_use_defzone)) 2848 != 0) { 2849 return (error); 2850 } 2851 break; 2852 } 2853 case AF_LINK: /* eventually be supported? */ 2854 default: 2855 return (EAFNOSUPPORT); 2856 } 2857 2858 /* turn off the previous option, then set the new option. */ 2859 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2860 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2861 if (opt->ip6po_nexthop == NULL) 2862 return (ENOBUFS); 2863 memcpy(opt->ip6po_nexthop, buf, *buf); 2864 break; 2865 2866 #ifdef RFC2292 2867 case IPV6_2292HOPOPTS: 2868 #endif 2869 case IPV6_HOPOPTS: 2870 { 2871 struct ip6_hbh *hbh; 2872 int hbhlen; 2873 2874 /* 2875 * XXX: We don't allow a non-privileged user to set ANY HbH 2876 * options, since per-option restriction has too much 2877 * overhead. 2878 */ 2879 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 2880 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 2881 if (error) 2882 return (error); 2883 2884 if (len == 0) { 2885 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2886 break; /* just remove the option */ 2887 } 2888 2889 /* message length validation */ 2890 if (len < sizeof(struct ip6_hbh)) 2891 return (EINVAL); 2892 hbh = (struct ip6_hbh *)buf; 2893 hbhlen = (hbh->ip6h_len + 1) << 3; 2894 if (len != hbhlen) 2895 return (EINVAL); 2896 2897 /* turn off the previous option, then set the new option. */ 2898 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2899 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2900 if (opt->ip6po_hbh == NULL) 2901 return (ENOBUFS); 2902 memcpy(opt->ip6po_hbh, hbh, hbhlen); 2903 2904 break; 2905 } 2906 2907 #ifdef RFC2292 2908 case IPV6_2292DSTOPTS: 2909 #endif 2910 case IPV6_DSTOPTS: 2911 case IPV6_RTHDRDSTOPTS: 2912 { 2913 struct ip6_dest *dest, **newdest = NULL; 2914 int destlen; 2915 2916 /* XXX: see the comment for IPV6_HOPOPTS */ 2917 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 2918 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 2919 if (error) 2920 return (error); 2921 2922 if (len == 0) { 2923 ip6_clearpktopts(opt, optname); 2924 break; /* just remove the option */ 2925 } 2926 2927 /* message length validation */ 2928 if (len < sizeof(struct ip6_dest)) 2929 return (EINVAL); 2930 dest = (struct ip6_dest *)buf; 2931 destlen = (dest->ip6d_len + 1) << 3; 2932 if (len != destlen) 2933 return (EINVAL); 2934 /* 2935 * Determine the position that the destination options header 2936 * should be inserted; before or after the routing header. 2937 */ 2938 switch (optname) { 2939 case IPV6_2292DSTOPTS: 2940 /* 2941 * The old advanced API is ambiguous on this point. 2942 * Our approach is to determine the position based 2943 * according to the existence of a routing header. 2944 * Note, however, that this depends on the order of the 2945 * extension headers in the ancillary data; the 1st 2946 * part of the destination options header must appear 2947 * before the routing header in the ancillary data, 2948 * too. 2949 * RFC3542 solved the ambiguity by introducing 2950 * separate ancillary data or option types. 2951 */ 2952 if (opt->ip6po_rthdr == NULL) 2953 newdest = &opt->ip6po_dest1; 2954 else 2955 newdest = &opt->ip6po_dest2; 2956 break; 2957 case IPV6_RTHDRDSTOPTS: 2958 newdest = &opt->ip6po_dest1; 2959 break; 2960 case IPV6_DSTOPTS: 2961 newdest = &opt->ip6po_dest2; 2962 break; 2963 } 2964 2965 /* turn off the previous option, then set the new option. */ 2966 ip6_clearpktopts(opt, optname); 2967 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2968 if (*newdest == NULL) 2969 return (ENOBUFS); 2970 memcpy(*newdest, dest, destlen); 2971 2972 break; 2973 } 2974 2975 #ifdef RFC2292 2976 case IPV6_2292RTHDR: 2977 #endif 2978 case IPV6_RTHDR: 2979 { 2980 struct ip6_rthdr *rth; 2981 int rthlen; 2982 2983 if (len == 0) { 2984 ip6_clearpktopts(opt, IPV6_RTHDR); 2985 break; /* just remove the option */ 2986 } 2987 2988 /* message length validation */ 2989 if (len < sizeof(struct ip6_rthdr)) 2990 return (EINVAL); 2991 rth = (struct ip6_rthdr *)buf; 2992 rthlen = (rth->ip6r_len + 1) << 3; 2993 if (len != rthlen) 2994 return (EINVAL); 2995 switch (rth->ip6r_type) { 2996 case IPV6_RTHDR_TYPE_0: 2997 if (rth->ip6r_len == 0) /* must contain one addr */ 2998 return (EINVAL); 2999 if (rth->ip6r_len % 2) /* length must be even */ 3000 return (EINVAL); 3001 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3002 return (EINVAL); 3003 break; 3004 default: 3005 return (EINVAL); /* not supported */ 3006 } 3007 /* turn off the previous option */ 3008 ip6_clearpktopts(opt, IPV6_RTHDR); 3009 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3010 if (opt->ip6po_rthdr == NULL) 3011 return (ENOBUFS); 3012 memcpy(opt->ip6po_rthdr, rth, rthlen); 3013 break; 3014 } 3015 3016 case IPV6_USE_MIN_MTU: 3017 if (len != sizeof(int)) 3018 return (EINVAL); 3019 minmtupolicy = *(int *)buf; 3020 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3021 minmtupolicy != IP6PO_MINMTU_DISABLE && 3022 minmtupolicy != IP6PO_MINMTU_ALL) { 3023 return (EINVAL); 3024 } 3025 opt->ip6po_minmtu = minmtupolicy; 3026 break; 3027 3028 case IPV6_DONTFRAG: 3029 if (len != sizeof(int)) 3030 return (EINVAL); 3031 3032 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3033 /* 3034 * we ignore this option for TCP sockets. 3035 * (RFC3542 leaves this case unspecified.) 3036 */ 3037 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3038 } else 3039 opt->ip6po_flags |= IP6PO_DONTFRAG; 3040 break; 3041 3042 default: 3043 return (ENOPROTOOPT); 3044 } /* end of switch */ 3045 3046 return (0); 3047 } 3048 3049 /* 3050 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3051 * packet to the input queue of a specified interface. Note that this 3052 * calls the output routine of the loopback "driver", but with an interface 3053 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 3054 */ 3055 void 3056 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, 3057 const struct sockaddr_in6 *dst) 3058 { 3059 struct mbuf *copym; 3060 struct ip6_hdr *ip6; 3061 3062 copym = m_copy(m, 0, M_COPYALL); 3063 if (copym == NULL) 3064 return; 3065 3066 /* 3067 * Make sure to deep-copy IPv6 header portion in case the data 3068 * is in an mbuf cluster, so that we can safely override the IPv6 3069 * header portion later. 3070 */ 3071 if ((copym->m_flags & M_EXT) != 0 || 3072 copym->m_len < sizeof(struct ip6_hdr)) { 3073 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3074 if (copym == NULL) 3075 return; 3076 } 3077 3078 #ifdef DIAGNOSTIC 3079 if (copym->m_len < sizeof(*ip6)) { 3080 m_freem(copym); 3081 return; 3082 } 3083 #endif 3084 3085 ip6 = mtod(copym, struct ip6_hdr *); 3086 /* 3087 * clear embedded scope identifiers if necessary. 3088 * in6_clearscope will touch the addresses only when necessary. 3089 */ 3090 in6_clearscope(&ip6->ip6_src); 3091 in6_clearscope(&ip6->ip6_dst); 3092 3093 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL); 3094 } 3095 3096 /* 3097 * Chop IPv6 header off from the payload. 3098 */ 3099 static int 3100 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3101 { 3102 struct mbuf *mh; 3103 struct ip6_hdr *ip6; 3104 3105 ip6 = mtod(m, struct ip6_hdr *); 3106 if (m->m_len > sizeof(*ip6)) { 3107 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3108 if (mh == 0) { 3109 m_freem(m); 3110 return ENOBUFS; 3111 } 3112 M_MOVE_PKTHDR(mh, m); 3113 MH_ALIGN(mh, sizeof(*ip6)); 3114 m->m_len -= sizeof(*ip6); 3115 m->m_data += sizeof(*ip6); 3116 mh->m_next = m; 3117 m = mh; 3118 m->m_len = sizeof(*ip6); 3119 bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6)); 3120 } 3121 exthdrs->ip6e_ip6 = m; 3122 return 0; 3123 } 3124 3125 /* 3126 * Compute IPv6 extension header length. 3127 */ 3128 int 3129 ip6_optlen(struct in6pcb *in6p) 3130 { 3131 int len; 3132 3133 if (!in6p->in6p_outputopts) 3134 return 0; 3135 3136 len = 0; 3137 #define elen(x) \ 3138 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3139 3140 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3141 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3142 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3143 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3144 return len; 3145 #undef elen 3146 } 3147