1 /* $NetBSD: ip6_output.c,v 1.166 2015/08/24 22:21:27 pooka Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.166 2015/08/24 22:21:27 pooka Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/malloc.h> 75 #include <sys/mbuf.h> 76 #include <sys/errno.h> 77 #include <sys/protosw.h> 78 #include <sys/socket.h> 79 #include <sys/socketvar.h> 80 #include <sys/systm.h> 81 #include <sys/proc.h> 82 #include <sys/kauth.h> 83 84 #include <net/if.h> 85 #include <net/route.h> 86 #include <net/pfil.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/ip6.h> 91 #include <netinet/ip_var.h> 92 #include <netinet/icmp6.h> 93 #include <netinet/in_offload.h> 94 #include <netinet/portalgo.h> 95 #include <netinet6/in6_offload.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/ip6_private.h> 98 #include <netinet6/in6_pcb.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6protosw.h> 101 #include <netinet6/scope6_var.h> 102 103 #ifdef IPSEC 104 #include <netipsec/ipsec.h> 105 #include <netipsec/ipsec6.h> 106 #include <netipsec/key.h> 107 #include <netipsec/xform.h> 108 #endif 109 110 111 #include <net/net_osdep.h> 112 113 extern pfil_head_t *inet6_pfil_hook; /* XXX */ 114 115 struct ip6_exthdrs { 116 struct mbuf *ip6e_ip6; 117 struct mbuf *ip6e_hbh; 118 struct mbuf *ip6e_dest1; 119 struct mbuf *ip6e_rthdr; 120 struct mbuf *ip6e_dest2; 121 }; 122 123 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 124 kauth_cred_t, int); 125 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 126 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t, 127 int, int, int); 128 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *); 129 static int ip6_getmoptions(struct sockopt *, struct in6pcb *); 130 static int ip6_copyexthdr(struct mbuf **, void *, int); 131 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 132 struct ip6_frag **); 133 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 134 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 135 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *, 136 const struct in6_addr *, u_long *, int *); 137 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 138 139 #ifdef RFC2292 140 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *); 141 #endif 142 143 /* 144 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 145 * header (with pri, len, nxt, hlim, src, dst). 146 * This function may modify ver and hlim only. 147 * The mbuf chain containing the packet will be freed. 148 * The mbuf opt, if present, will not be freed. 149 * 150 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 151 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 152 * which is rt_rmx.rmx_mtu. 153 */ 154 int 155 ip6_output( 156 struct mbuf *m0, 157 struct ip6_pktopts *opt, 158 struct route *ro, 159 int flags, 160 struct ip6_moptions *im6o, 161 struct socket *so, 162 struct ifnet **ifpp /* XXX: just for statistics */ 163 ) 164 { 165 struct ip6_hdr *ip6, *mhip6; 166 struct ifnet *ifp, *origifp; 167 struct mbuf *m = m0; 168 int hlen, tlen, len, off; 169 bool tso; 170 struct route ip6route; 171 struct rtentry *rt = NULL; 172 const struct sockaddr_in6 *dst; 173 struct sockaddr_in6 src_sa, dst_sa; 174 int error = 0; 175 struct in6_ifaddr *ia = NULL; 176 u_long mtu; 177 int alwaysfrag, dontfrag; 178 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 179 struct ip6_exthdrs exthdrs; 180 struct in6_addr finaldst, src0, dst0; 181 u_int32_t zone; 182 struct route *ro_pmtu = NULL; 183 int hdrsplit = 0; 184 int needipsec = 0; 185 #ifdef IPSEC 186 struct secpolicy *sp = NULL; 187 #endif 188 189 memset(&ip6route, 0, sizeof(ip6route)); 190 191 #ifdef DIAGNOSTIC 192 if ((m->m_flags & M_PKTHDR) == 0) 193 panic("ip6_output: no HDR"); 194 195 if ((m->m_pkthdr.csum_flags & 196 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) { 197 panic("ip6_output: IPv4 checksum offload flags: %d", 198 m->m_pkthdr.csum_flags); 199 } 200 201 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 202 (M_CSUM_TCPv6|M_CSUM_UDPv6)) { 203 panic("ip6_output: conflicting checksum offload flags: %d", 204 m->m_pkthdr.csum_flags); 205 } 206 #endif 207 208 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr)); 209 210 #define MAKE_EXTHDR(hp, mp) \ 211 do { \ 212 if (hp) { \ 213 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 214 error = ip6_copyexthdr((mp), (void *)(hp), \ 215 ((eh)->ip6e_len + 1) << 3); \ 216 if (error) \ 217 goto freehdrs; \ 218 } \ 219 } while (/*CONSTCOND*/ 0) 220 221 memset(&exthdrs, 0, sizeof(exthdrs)); 222 if (opt) { 223 /* Hop-by-Hop options header */ 224 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 225 /* Destination options header(1st part) */ 226 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 227 /* Routing header */ 228 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 229 /* Destination options header(2nd part) */ 230 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 231 } 232 233 /* 234 * Calculate the total length of the extension header chain. 235 * Keep the length of the unfragmentable part for fragmentation. 236 */ 237 optlen = 0; 238 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 239 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 240 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 241 unfragpartlen = optlen + sizeof(struct ip6_hdr); 242 /* NOTE: we don't add AH/ESP length here. do that later. */ 243 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 244 245 #ifdef IPSEC 246 if (ipsec_used) { 247 /* Check the security policy (SP) for the packet */ 248 249 sp = ipsec6_check_policy(m, so, flags, &needipsec, &error); 250 if (error != 0) { 251 /* 252 * Hack: -EINVAL is used to signal that a packet 253 * should be silently discarded. This is typically 254 * because we asked key management for an SA and 255 * it was delayed (e.g. kicked up to IKE). 256 */ 257 if (error == -EINVAL) 258 error = 0; 259 goto freehdrs; 260 } 261 } 262 #endif /* IPSEC */ 263 264 265 if (needipsec && 266 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 267 in6_delayed_cksum(m); 268 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 269 } 270 271 272 /* 273 * If we need IPsec, or there is at least one extension header, 274 * separate IP6 header from the payload. 275 */ 276 if ((needipsec || optlen) && !hdrsplit) { 277 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 278 m = NULL; 279 goto freehdrs; 280 } 281 m = exthdrs.ip6e_ip6; 282 hdrsplit++; 283 } 284 285 /* adjust pointer */ 286 ip6 = mtod(m, struct ip6_hdr *); 287 288 /* adjust mbuf packet header length */ 289 m->m_pkthdr.len += optlen; 290 plen = m->m_pkthdr.len - sizeof(*ip6); 291 292 /* If this is a jumbo payload, insert a jumbo payload option. */ 293 if (plen > IPV6_MAXPACKET) { 294 if (!hdrsplit) { 295 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 296 m = NULL; 297 goto freehdrs; 298 } 299 m = exthdrs.ip6e_ip6; 300 hdrsplit++; 301 } 302 /* adjust pointer */ 303 ip6 = mtod(m, struct ip6_hdr *); 304 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 305 goto freehdrs; 306 optlen += 8; /* XXX JUMBOOPTLEN */ 307 ip6->ip6_plen = 0; 308 } else 309 ip6->ip6_plen = htons(plen); 310 311 /* 312 * Concatenate headers and fill in next header fields. 313 * Here we have, on "m" 314 * IPv6 payload 315 * and we insert headers accordingly. Finally, we should be getting: 316 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 317 * 318 * during the header composing process, "m" points to IPv6 header. 319 * "mprev" points to an extension header prior to esp. 320 */ 321 { 322 u_char *nexthdrp = &ip6->ip6_nxt; 323 struct mbuf *mprev = m; 324 325 /* 326 * we treat dest2 specially. this makes IPsec processing 327 * much easier. the goal here is to make mprev point the 328 * mbuf prior to dest2. 329 * 330 * result: IPv6 dest2 payload 331 * m and mprev will point to IPv6 header. 332 */ 333 if (exthdrs.ip6e_dest2) { 334 if (!hdrsplit) 335 panic("assumption failed: hdr not split"); 336 exthdrs.ip6e_dest2->m_next = m->m_next; 337 m->m_next = exthdrs.ip6e_dest2; 338 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 339 ip6->ip6_nxt = IPPROTO_DSTOPTS; 340 } 341 342 #define MAKE_CHAIN(m, mp, p, i)\ 343 do {\ 344 if (m) {\ 345 if (!hdrsplit) \ 346 panic("assumption failed: hdr not split"); \ 347 *mtod((m), u_char *) = *(p);\ 348 *(p) = (i);\ 349 p = mtod((m), u_char *);\ 350 (m)->m_next = (mp)->m_next;\ 351 (mp)->m_next = (m);\ 352 (mp) = (m);\ 353 }\ 354 } while (/*CONSTCOND*/ 0) 355 /* 356 * result: IPv6 hbh dest1 rthdr dest2 payload 357 * m will point to IPv6 header. mprev will point to the 358 * extension header prior to dest2 (rthdr in the above case). 359 */ 360 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 361 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 362 IPPROTO_DSTOPTS); 363 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 364 IPPROTO_ROUTING); 365 366 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, 367 sizeof(struct ip6_hdr) + optlen); 368 } 369 370 /* 371 * If there is a routing header, replace destination address field 372 * with the first hop of the routing header. 373 */ 374 if (exthdrs.ip6e_rthdr) { 375 struct ip6_rthdr *rh; 376 struct ip6_rthdr0 *rh0; 377 struct in6_addr *addr; 378 struct sockaddr_in6 sa; 379 380 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 381 struct ip6_rthdr *)); 382 finaldst = ip6->ip6_dst; 383 switch (rh->ip6r_type) { 384 case IPV6_RTHDR_TYPE_0: 385 rh0 = (struct ip6_rthdr0 *)rh; 386 addr = (struct in6_addr *)(rh0 + 1); 387 388 /* 389 * construct a sockaddr_in6 form of 390 * the first hop. 391 * 392 * XXX: we may not have enough 393 * information about its scope zone; 394 * there is no standard API to pass 395 * the information from the 396 * application. 397 */ 398 sockaddr_in6_init(&sa, addr, 0, 0, 0); 399 if ((error = sa6_embedscope(&sa, 400 ip6_use_defzone)) != 0) { 401 goto bad; 402 } 403 ip6->ip6_dst = sa.sin6_addr; 404 (void)memmove(&addr[0], &addr[1], 405 sizeof(struct in6_addr) * 406 (rh0->ip6r0_segleft - 1)); 407 addr[rh0->ip6r0_segleft - 1] = finaldst; 408 /* XXX */ 409 in6_clearscope(addr + rh0->ip6r0_segleft - 1); 410 break; 411 default: /* is it possible? */ 412 error = EINVAL; 413 goto bad; 414 } 415 } 416 417 /* Source address validation */ 418 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 419 (flags & IPV6_UNSPECSRC) == 0) { 420 error = EOPNOTSUPP; 421 IP6_STATINC(IP6_STAT_BADSCOPE); 422 goto bad; 423 } 424 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 425 error = EOPNOTSUPP; 426 IP6_STATINC(IP6_STAT_BADSCOPE); 427 goto bad; 428 } 429 430 IP6_STATINC(IP6_STAT_LOCALOUT); 431 432 /* 433 * Route packet. 434 */ 435 /* initialize cached route */ 436 if (ro == NULL) { 437 ro = &ip6route; 438 } 439 ro_pmtu = ro; 440 if (opt && opt->ip6po_rthdr) 441 ro = &opt->ip6po_route; 442 443 /* 444 * if specified, try to fill in the traffic class field. 445 * do not override if a non-zero value is already set. 446 * we check the diffserv field and the ecn field separately. 447 */ 448 if (opt && opt->ip6po_tclass >= 0) { 449 int mask = 0; 450 451 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 452 mask |= 0xfc; 453 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 454 mask |= 0x03; 455 if (mask != 0) 456 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 457 } 458 459 /* fill in or override the hop limit field, if necessary. */ 460 if (opt && opt->ip6po_hlim != -1) 461 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 462 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 463 if (im6o != NULL) 464 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 465 else 466 ip6->ip6_hlim = ip6_defmcasthlim; 467 } 468 469 #ifdef IPSEC 470 if (needipsec) { 471 int s = splsoftnet(); 472 error = ipsec6_process_packet(m, sp->req); 473 474 /* 475 * Preserve KAME behaviour: ENOENT can be returned 476 * when an SA acquire is in progress. Don't propagate 477 * this to user-level; it confuses applications. 478 * XXX this will go away when the SADB is redone. 479 */ 480 if (error == ENOENT) 481 error = 0; 482 splx(s); 483 goto done; 484 } 485 #endif /* IPSEC */ 486 487 /* adjust pointer */ 488 ip6 = mtod(m, struct ip6_hdr *); 489 490 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 491 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, 492 &ifp, &rt, 0)) != 0) { 493 if (ifp != NULL) 494 in6_ifstat_inc(ifp, ifs6_out_discard); 495 goto bad; 496 } 497 if (rt == NULL) { 498 /* 499 * If in6_selectroute() does not return a route entry, 500 * dst may not have been updated. 501 */ 502 error = rtcache_setdst(ro, sin6tosa(&dst_sa)); 503 if (error) { 504 goto bad; 505 } 506 } 507 508 /* 509 * then rt (for unicast) and ifp must be non-NULL valid values. 510 */ 511 if ((flags & IPV6_FORWARDING) == 0) { 512 /* XXX: the FORWARDING flag can be set for mrouting. */ 513 in6_ifstat_inc(ifp, ifs6_out_request); 514 } 515 if (rt != NULL) { 516 ia = (struct in6_ifaddr *)(rt->rt_ifa); 517 rt->rt_use++; 518 } 519 520 /* 521 * The outgoing interface must be in the zone of source and 522 * destination addresses. We should use ia_ifp to support the 523 * case of sending packets to an address of our own. 524 */ 525 if (ia != NULL && ia->ia_ifp) 526 origifp = ia->ia_ifp; 527 else 528 origifp = ifp; 529 530 src0 = ip6->ip6_src; 531 if (in6_setscope(&src0, origifp, &zone)) 532 goto badscope; 533 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0); 534 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 535 goto badscope; 536 537 dst0 = ip6->ip6_dst; 538 if (in6_setscope(&dst0, origifp, &zone)) 539 goto badscope; 540 /* re-initialize to be sure */ 541 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 542 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) 543 goto badscope; 544 545 /* scope check is done. */ 546 547 if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 548 dst = satocsin6(rtcache_getdst(ro)); 549 KASSERT(dst != NULL); 550 } else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) { 551 /* 552 * The nexthop is explicitly specified by the 553 * application. We assume the next hop is an IPv6 554 * address. 555 */ 556 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 557 } else if ((rt->rt_flags & RTF_GATEWAY)) 558 dst = (struct sockaddr_in6 *)rt->rt_gateway; 559 else 560 dst = satocsin6(rtcache_getdst(ro)); 561 562 /* 563 * XXXXXX: original code follows: 564 */ 565 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 566 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 567 else { 568 struct in6_multi *in6m; 569 570 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 571 572 in6_ifstat_inc(ifp, ifs6_out_mcast); 573 574 /* 575 * Confirm that the outgoing interface supports multicast. 576 */ 577 if (!(ifp->if_flags & IFF_MULTICAST)) { 578 IP6_STATINC(IP6_STAT_NOROUTE); 579 in6_ifstat_inc(ifp, ifs6_out_discard); 580 error = ENETUNREACH; 581 goto bad; 582 } 583 584 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 585 if (in6m != NULL && 586 (im6o == NULL || im6o->im6o_multicast_loop)) { 587 /* 588 * If we belong to the destination multicast group 589 * on the outgoing interface, and the caller did not 590 * forbid loopback, loop back a copy. 591 */ 592 KASSERT(dst != NULL); 593 ip6_mloopback(ifp, m, dst); 594 } else { 595 /* 596 * If we are acting as a multicast router, perform 597 * multicast forwarding as if the packet had just 598 * arrived on the interface to which we are about 599 * to send. The multicast forwarding function 600 * recursively calls this function, using the 601 * IPV6_FORWARDING flag to prevent infinite recursion. 602 * 603 * Multicasts that are looped back by ip6_mloopback(), 604 * above, will be forwarded by the ip6_input() routine, 605 * if necessary. 606 */ 607 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 608 if (ip6_mforward(ip6, ifp, m) != 0) { 609 m_freem(m); 610 goto done; 611 } 612 } 613 } 614 /* 615 * Multicasts with a hoplimit of zero may be looped back, 616 * above, but must not be transmitted on a network. 617 * Also, multicasts addressed to the loopback interface 618 * are not sent -- the above call to ip6_mloopback() will 619 * loop back a copy if this host actually belongs to the 620 * destination group on the loopback interface. 621 */ 622 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 623 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 624 m_freem(m); 625 goto done; 626 } 627 } 628 629 /* 630 * Fill the outgoing inteface to tell the upper layer 631 * to increment per-interface statistics. 632 */ 633 if (ifpp) 634 *ifpp = ifp; 635 636 /* Determine path MTU. */ 637 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 638 &alwaysfrag)) != 0) 639 goto bad; 640 641 /* 642 * The caller of this function may specify to use the minimum MTU 643 * in some cases. 644 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 645 * setting. The logic is a bit complicated; by default, unicast 646 * packets will follow path MTU while multicast packets will be sent at 647 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 648 * including unicast ones will be sent at the minimum MTU. Multicast 649 * packets will always be sent at the minimum MTU unless 650 * IP6PO_MINMTU_DISABLE is explicitly specified. 651 * See RFC 3542 for more details. 652 */ 653 if (mtu > IPV6_MMTU) { 654 if ((flags & IPV6_MINMTU)) 655 mtu = IPV6_MMTU; 656 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 657 mtu = IPV6_MMTU; 658 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 659 (opt == NULL || 660 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 661 mtu = IPV6_MMTU; 662 } 663 } 664 665 /* 666 * clear embedded scope identifiers if necessary. 667 * in6_clearscope will touch the addresses only when necessary. 668 */ 669 in6_clearscope(&ip6->ip6_src); 670 in6_clearscope(&ip6->ip6_dst); 671 672 /* 673 * If the outgoing packet contains a hop-by-hop options header, 674 * it must be examined and processed even by the source node. 675 * (RFC 2460, section 4.) 676 */ 677 if (ip6->ip6_nxt == IPV6_HOPOPTS) { 678 u_int32_t dummy1; /* XXX unused */ 679 u_int32_t dummy2; /* XXX unused */ 680 int hoff = sizeof(struct ip6_hdr); 681 682 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) { 683 /* m was already freed at this point */ 684 error = EINVAL;/* better error? */ 685 goto done; 686 } 687 688 ip6 = mtod(m, struct ip6_hdr *); 689 } 690 691 /* 692 * Run through list of hooks for output packets. 693 */ 694 if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0) 695 goto done; 696 if (m == NULL) 697 goto done; 698 ip6 = mtod(m, struct ip6_hdr *); 699 700 /* 701 * Send the packet to the outgoing interface. 702 * If necessary, do IPv6 fragmentation before sending. 703 * 704 * the logic here is rather complex: 705 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 706 * 1-a: send as is if tlen <= path mtu 707 * 1-b: fragment if tlen > path mtu 708 * 709 * 2: if user asks us not to fragment (dontfrag == 1) 710 * 2-a: send as is if tlen <= interface mtu 711 * 2-b: error if tlen > interface mtu 712 * 713 * 3: if we always need to attach fragment header (alwaysfrag == 1) 714 * always fragment 715 * 716 * 4: if dontfrag == 1 && alwaysfrag == 1 717 * error, as we cannot handle this conflicting request 718 */ 719 tlen = m->m_pkthdr.len; 720 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0; 721 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 722 dontfrag = 1; 723 else 724 dontfrag = 0; 725 726 if (dontfrag && alwaysfrag) { /* case 4 */ 727 /* conflicting request - can't transmit */ 728 error = EMSGSIZE; 729 goto bad; 730 } 731 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */ 732 /* 733 * Even if the DONTFRAG option is specified, we cannot send the 734 * packet when the data length is larger than the MTU of the 735 * outgoing interface. 736 * Notify the error by sending IPV6_PATHMTU ancillary data as 737 * well as returning an error code (the latter is not described 738 * in the API spec.) 739 */ 740 u_int32_t mtu32; 741 struct ip6ctlparam ip6cp; 742 743 mtu32 = (u_int32_t)mtu; 744 memset(&ip6cp, 0, sizeof(ip6cp)); 745 ip6cp.ip6c_cmdarg = (void *)&mtu32; 746 pfctlinput2(PRC_MSGSIZE, 747 rtcache_getdst(ro_pmtu), &ip6cp); 748 749 error = EMSGSIZE; 750 goto bad; 751 } 752 753 /* 754 * transmit packet without fragmentation 755 */ 756 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) { 757 /* case 1-a and 2-a */ 758 struct in6_ifaddr *ia6; 759 int sw_csum; 760 761 ip6 = mtod(m, struct ip6_hdr *); 762 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 763 if (ia6) { 764 /* Record statistics for this interface address. */ 765 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len; 766 } 767 768 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 769 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 770 if (IN6_NEED_CHECKSUM(ifp, 771 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 772 in6_delayed_cksum(m); 773 } 774 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 775 } 776 777 KASSERT(dst != NULL); 778 if (__predict_true(!tso || 779 (ifp->if_capenable & IFCAP_TSOv6) != 0)) { 780 error = nd6_output(ifp, origifp, m, dst, rt); 781 } else { 782 error = ip6_tso_output(ifp, origifp, m, dst, rt); 783 } 784 goto done; 785 } 786 787 if (tso) { 788 error = EINVAL; /* XXX */ 789 goto bad; 790 } 791 792 /* 793 * try to fragment the packet. case 1-b and 3 794 */ 795 if (mtu < IPV6_MMTU) { 796 /* path MTU cannot be less than IPV6_MMTU */ 797 error = EMSGSIZE; 798 in6_ifstat_inc(ifp, ifs6_out_fragfail); 799 goto bad; 800 } else if (ip6->ip6_plen == 0) { 801 /* jumbo payload cannot be fragmented */ 802 error = EMSGSIZE; 803 in6_ifstat_inc(ifp, ifs6_out_fragfail); 804 goto bad; 805 } else { 806 struct mbuf **mnext, *m_frgpart; 807 struct ip6_frag *ip6f; 808 u_int32_t id = htonl(ip6_randomid()); 809 u_char nextproto; 810 #if 0 /* see below */ 811 struct ip6ctlparam ip6cp; 812 u_int32_t mtu32; 813 #endif 814 815 /* 816 * Too large for the destination or interface; 817 * fragment if possible. 818 * Must be able to put at least 8 bytes per fragment. 819 */ 820 hlen = unfragpartlen; 821 if (mtu > IPV6_MAXPACKET) 822 mtu = IPV6_MAXPACKET; 823 824 #if 0 825 /* 826 * It is believed this code is a leftover from the 827 * development of the IPV6_RECVPATHMTU sockopt and 828 * associated work to implement RFC3542. 829 * It's not entirely clear what the intent of the API 830 * is at this point, so disable this code for now. 831 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG 832 * will send notifications if the application requests. 833 */ 834 835 /* Notify a proper path MTU to applications. */ 836 mtu32 = (u_int32_t)mtu; 837 memset(&ip6cp, 0, sizeof(ip6cp)); 838 ip6cp.ip6c_cmdarg = (void *)&mtu32; 839 pfctlinput2(PRC_MSGSIZE, 840 rtcache_getdst(ro_pmtu), &ip6cp); 841 #endif 842 843 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 844 if (len < 8) { 845 error = EMSGSIZE; 846 in6_ifstat_inc(ifp, ifs6_out_fragfail); 847 goto bad; 848 } 849 850 mnext = &m->m_nextpkt; 851 852 /* 853 * Change the next header field of the last header in the 854 * unfragmentable part. 855 */ 856 if (exthdrs.ip6e_rthdr) { 857 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 858 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 859 } else if (exthdrs.ip6e_dest1) { 860 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 861 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 862 } else if (exthdrs.ip6e_hbh) { 863 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 864 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 865 } else { 866 nextproto = ip6->ip6_nxt; 867 ip6->ip6_nxt = IPPROTO_FRAGMENT; 868 } 869 870 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) 871 != 0) { 872 if (IN6_NEED_CHECKSUM(ifp, 873 m->m_pkthdr.csum_flags & 874 (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 875 in6_delayed_cksum(m); 876 } 877 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 878 } 879 880 /* 881 * Loop through length of segment after first fragment, 882 * make new header and copy data of each part and link onto 883 * chain. 884 */ 885 m0 = m; 886 for (off = hlen; off < tlen; off += len) { 887 struct mbuf *mlast; 888 889 MGETHDR(m, M_DONTWAIT, MT_HEADER); 890 if (!m) { 891 error = ENOBUFS; 892 IP6_STATINC(IP6_STAT_ODROPPED); 893 goto sendorfree; 894 } 895 m->m_pkthdr.rcvif = NULL; 896 m->m_flags = m0->m_flags & M_COPYFLAGS; 897 *mnext = m; 898 mnext = &m->m_nextpkt; 899 m->m_data += max_linkhdr; 900 mhip6 = mtod(m, struct ip6_hdr *); 901 *mhip6 = *ip6; 902 m->m_len = sizeof(*mhip6); 903 /* 904 * ip6f must be valid if error is 0. But how 905 * can a compiler be expected to infer this? 906 */ 907 ip6f = NULL; 908 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 909 if (error) { 910 IP6_STATINC(IP6_STAT_ODROPPED); 911 goto sendorfree; 912 } 913 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 914 if (off + len >= tlen) 915 len = tlen - off; 916 else 917 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 918 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 919 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 920 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 921 error = ENOBUFS; 922 IP6_STATINC(IP6_STAT_ODROPPED); 923 goto sendorfree; 924 } 925 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 926 ; 927 mlast->m_next = m_frgpart; 928 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 929 m->m_pkthdr.rcvif = NULL; 930 ip6f->ip6f_reserved = 0; 931 ip6f->ip6f_ident = id; 932 ip6f->ip6f_nxt = nextproto; 933 IP6_STATINC(IP6_STAT_OFRAGMENTS); 934 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 935 } 936 937 in6_ifstat_inc(ifp, ifs6_out_fragok); 938 } 939 940 /* 941 * Remove leading garbages. 942 */ 943 sendorfree: 944 m = m0->m_nextpkt; 945 m0->m_nextpkt = 0; 946 m_freem(m0); 947 for (m0 = m; m; m = m0) { 948 m0 = m->m_nextpkt; 949 m->m_nextpkt = 0; 950 if (error == 0) { 951 struct in6_ifaddr *ia6; 952 ip6 = mtod(m, struct ip6_hdr *); 953 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 954 if (ia6) { 955 /* 956 * Record statistics for this interface 957 * address. 958 */ 959 ia6->ia_ifa.ifa_data.ifad_outbytes += 960 m->m_pkthdr.len; 961 } 962 KASSERT(dst != NULL); 963 error = nd6_output(ifp, origifp, m, dst, rt); 964 } else 965 m_freem(m); 966 } 967 968 if (error == 0) 969 IP6_STATINC(IP6_STAT_FRAGMENTED); 970 971 done: 972 rtcache_free(&ip6route); 973 974 #ifdef IPSEC 975 if (sp != NULL) 976 KEY_FREESP(&sp); 977 #endif /* IPSEC */ 978 979 980 return (error); 981 982 freehdrs: 983 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 984 m_freem(exthdrs.ip6e_dest1); 985 m_freem(exthdrs.ip6e_rthdr); 986 m_freem(exthdrs.ip6e_dest2); 987 /* FALLTHROUGH */ 988 bad: 989 m_freem(m); 990 goto done; 991 badscope: 992 IP6_STATINC(IP6_STAT_BADSCOPE); 993 in6_ifstat_inc(origifp, ifs6_out_discard); 994 if (error == 0) 995 error = EHOSTUNREACH; /* XXX */ 996 goto bad; 997 } 998 999 static int 1000 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen) 1001 { 1002 struct mbuf *m; 1003 1004 if (hlen > MCLBYTES) 1005 return (ENOBUFS); /* XXX */ 1006 1007 MGET(m, M_DONTWAIT, MT_DATA); 1008 if (!m) 1009 return (ENOBUFS); 1010 1011 if (hlen > MLEN) { 1012 MCLGET(m, M_DONTWAIT); 1013 if ((m->m_flags & M_EXT) == 0) { 1014 m_free(m); 1015 return (ENOBUFS); 1016 } 1017 } 1018 m->m_len = hlen; 1019 if (hdr) 1020 bcopy(hdr, mtod(m, void *), hlen); 1021 1022 *mp = m; 1023 return (0); 1024 } 1025 1026 /* 1027 * Process a delayed payload checksum calculation. 1028 */ 1029 void 1030 in6_delayed_cksum(struct mbuf *m) 1031 { 1032 uint16_t csum, offset; 1033 1034 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1035 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1036 KASSERT((m->m_pkthdr.csum_flags 1037 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0); 1038 1039 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data); 1040 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset); 1041 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) { 1042 csum = 0xffff; 1043 } 1044 1045 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data); 1046 if ((offset + sizeof(csum)) > m->m_len) { 1047 m_copyback(m, offset, sizeof(csum), &csum); 1048 } else { 1049 *(uint16_t *)(mtod(m, char *) + offset) = csum; 1050 } 1051 } 1052 1053 /* 1054 * Insert jumbo payload option. 1055 */ 1056 static int 1057 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1058 { 1059 struct mbuf *mopt; 1060 u_int8_t *optbuf; 1061 u_int32_t v; 1062 1063 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1064 1065 /* 1066 * If there is no hop-by-hop options header, allocate new one. 1067 * If there is one but it doesn't have enough space to store the 1068 * jumbo payload option, allocate a cluster to store the whole options. 1069 * Otherwise, use it to store the options. 1070 */ 1071 if (exthdrs->ip6e_hbh == 0) { 1072 MGET(mopt, M_DONTWAIT, MT_DATA); 1073 if (mopt == 0) 1074 return (ENOBUFS); 1075 mopt->m_len = JUMBOOPTLEN; 1076 optbuf = mtod(mopt, u_int8_t *); 1077 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1078 exthdrs->ip6e_hbh = mopt; 1079 } else { 1080 struct ip6_hbh *hbh; 1081 1082 mopt = exthdrs->ip6e_hbh; 1083 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1084 /* 1085 * XXX assumption: 1086 * - exthdrs->ip6e_hbh is not referenced from places 1087 * other than exthdrs. 1088 * - exthdrs->ip6e_hbh is not an mbuf chain. 1089 */ 1090 int oldoptlen = mopt->m_len; 1091 struct mbuf *n; 1092 1093 /* 1094 * XXX: give up if the whole (new) hbh header does 1095 * not fit even in an mbuf cluster. 1096 */ 1097 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1098 return (ENOBUFS); 1099 1100 /* 1101 * As a consequence, we must always prepare a cluster 1102 * at this point. 1103 */ 1104 MGET(n, M_DONTWAIT, MT_DATA); 1105 if (n) { 1106 MCLGET(n, M_DONTWAIT); 1107 if ((n->m_flags & M_EXT) == 0) { 1108 m_freem(n); 1109 n = NULL; 1110 } 1111 } 1112 if (!n) 1113 return (ENOBUFS); 1114 n->m_len = oldoptlen + JUMBOOPTLEN; 1115 bcopy(mtod(mopt, void *), mtod(n, void *), 1116 oldoptlen); 1117 optbuf = mtod(n, u_int8_t *) + oldoptlen; 1118 m_freem(mopt); 1119 mopt = exthdrs->ip6e_hbh = n; 1120 } else { 1121 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 1122 mopt->m_len += JUMBOOPTLEN; 1123 } 1124 optbuf[0] = IP6OPT_PADN; 1125 optbuf[1] = 0; 1126 1127 /* 1128 * Adjust the header length according to the pad and 1129 * the jumbo payload option. 1130 */ 1131 hbh = mtod(mopt, struct ip6_hbh *); 1132 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1133 } 1134 1135 /* fill in the option. */ 1136 optbuf[2] = IP6OPT_JUMBO; 1137 optbuf[3] = 4; 1138 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1139 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1140 1141 /* finally, adjust the packet header length */ 1142 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1143 1144 return (0); 1145 #undef JUMBOOPTLEN 1146 } 1147 1148 /* 1149 * Insert fragment header and copy unfragmentable header portions. 1150 * 1151 * *frghdrp will not be read, and it is guaranteed that either an 1152 * error is returned or that *frghdrp will point to space allocated 1153 * for the fragment header. 1154 */ 1155 static int 1156 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1157 struct ip6_frag **frghdrp) 1158 { 1159 struct mbuf *n, *mlast; 1160 1161 if (hlen > sizeof(struct ip6_hdr)) { 1162 n = m_copym(m0, sizeof(struct ip6_hdr), 1163 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1164 if (n == 0) 1165 return (ENOBUFS); 1166 m->m_next = n; 1167 } else 1168 n = m; 1169 1170 /* Search for the last mbuf of unfragmentable part. */ 1171 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1172 ; 1173 1174 if ((mlast->m_flags & M_EXT) == 0 && 1175 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1176 /* use the trailing space of the last mbuf for the fragment hdr */ 1177 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) + 1178 mlast->m_len); 1179 mlast->m_len += sizeof(struct ip6_frag); 1180 m->m_pkthdr.len += sizeof(struct ip6_frag); 1181 } else { 1182 /* allocate a new mbuf for the fragment header */ 1183 struct mbuf *mfrg; 1184 1185 MGET(mfrg, M_DONTWAIT, MT_DATA); 1186 if (mfrg == 0) 1187 return (ENOBUFS); 1188 mfrg->m_len = sizeof(struct ip6_frag); 1189 *frghdrp = mtod(mfrg, struct ip6_frag *); 1190 mlast->m_next = mfrg; 1191 } 1192 1193 return (0); 1194 } 1195 1196 static int 1197 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp, 1198 const struct in6_addr *dst, u_long *mtup, int *alwaysfragp) 1199 { 1200 struct rtentry *rt; 1201 u_int32_t mtu = 0; 1202 int alwaysfrag = 0; 1203 int error = 0; 1204 1205 if (ro_pmtu != ro) { 1206 union { 1207 struct sockaddr dst; 1208 struct sockaddr_in6 dst6; 1209 } u; 1210 1211 /* The first hop and the final destination may differ. */ 1212 sockaddr_in6_init(&u.dst6, dst, 0, 0, 0); 1213 rt = rtcache_lookup(ro_pmtu, &u.dst); 1214 } else 1215 rt = rtcache_validate(ro_pmtu); 1216 if (rt != NULL) { 1217 u_int32_t ifmtu; 1218 1219 if (ifp == NULL) 1220 ifp = rt->rt_ifp; 1221 ifmtu = IN6_LINKMTU(ifp); 1222 mtu = rt->rt_rmx.rmx_mtu; 1223 if (mtu == 0) 1224 mtu = ifmtu; 1225 else if (mtu < IPV6_MMTU) { 1226 /* 1227 * RFC2460 section 5, last paragraph: 1228 * if we record ICMPv6 too big message with 1229 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1230 * or smaller, with fragment header attached. 1231 * (fragment header is needed regardless from the 1232 * packet size, for translators to identify packets) 1233 */ 1234 alwaysfrag = 1; 1235 mtu = IPV6_MMTU; 1236 } else if (mtu > ifmtu) { 1237 /* 1238 * The MTU on the route is larger than the MTU on 1239 * the interface! This shouldn't happen, unless the 1240 * MTU of the interface has been changed after the 1241 * interface was brought up. Change the MTU in the 1242 * route to match the interface MTU (as long as the 1243 * field isn't locked). 1244 */ 1245 mtu = ifmtu; 1246 if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) 1247 rt->rt_rmx.rmx_mtu = mtu; 1248 } 1249 } else if (ifp) { 1250 mtu = IN6_LINKMTU(ifp); 1251 } else 1252 error = EHOSTUNREACH; /* XXX */ 1253 1254 *mtup = mtu; 1255 if (alwaysfragp) 1256 *alwaysfragp = alwaysfrag; 1257 return (error); 1258 } 1259 1260 /* 1261 * IP6 socket option processing. 1262 */ 1263 int 1264 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1265 { 1266 int optdatalen, uproto; 1267 void *optdata; 1268 struct in6pcb *in6p = sotoin6pcb(so); 1269 struct ip_moptions **mopts; 1270 int error, optval; 1271 int level, optname; 1272 1273 KASSERT(sopt != NULL); 1274 1275 level = sopt->sopt_level; 1276 optname = sopt->sopt_name; 1277 1278 error = optval = 0; 1279 uproto = (int)so->so_proto->pr_protocol; 1280 1281 switch (level) { 1282 case IPPROTO_IP: 1283 switch (optname) { 1284 case IP_ADD_MEMBERSHIP: 1285 case IP_DROP_MEMBERSHIP: 1286 case IP_MULTICAST_IF: 1287 case IP_MULTICAST_LOOP: 1288 case IP_MULTICAST_TTL: 1289 mopts = &in6p->in6p_v4moptions; 1290 switch (op) { 1291 case PRCO_GETOPT: 1292 return ip_getmoptions(*mopts, sopt); 1293 case PRCO_SETOPT: 1294 return ip_setmoptions(mopts, sopt); 1295 default: 1296 return EINVAL; 1297 } 1298 default: 1299 return ENOPROTOOPT; 1300 } 1301 case IPPROTO_IPV6: 1302 break; 1303 default: 1304 return ENOPROTOOPT; 1305 } 1306 switch (op) { 1307 case PRCO_SETOPT: 1308 switch (optname) { 1309 #ifdef RFC2292 1310 case IPV6_2292PKTOPTIONS: 1311 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt); 1312 break; 1313 #endif 1314 1315 /* 1316 * Use of some Hop-by-Hop options or some 1317 * Destination options, might require special 1318 * privilege. That is, normal applications 1319 * (without special privilege) might be forbidden 1320 * from setting certain options in outgoing packets, 1321 * and might never see certain options in received 1322 * packets. [RFC 2292 Section 6] 1323 * KAME specific note: 1324 * KAME prevents non-privileged users from sending or 1325 * receiving ANY hbh/dst options in order to avoid 1326 * overhead of parsing options in the kernel. 1327 */ 1328 case IPV6_RECVHOPOPTS: 1329 case IPV6_RECVDSTOPTS: 1330 case IPV6_RECVRTHDRDSTOPTS: 1331 error = kauth_authorize_network(kauth_cred_get(), 1332 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, 1333 NULL, NULL, NULL); 1334 if (error) 1335 break; 1336 /* FALLTHROUGH */ 1337 case IPV6_UNICAST_HOPS: 1338 case IPV6_HOPLIMIT: 1339 case IPV6_FAITH: 1340 1341 case IPV6_RECVPKTINFO: 1342 case IPV6_RECVHOPLIMIT: 1343 case IPV6_RECVRTHDR: 1344 case IPV6_RECVPATHMTU: 1345 case IPV6_RECVTCLASS: 1346 case IPV6_V6ONLY: 1347 error = sockopt_getint(sopt, &optval); 1348 if (error) 1349 break; 1350 switch (optname) { 1351 case IPV6_UNICAST_HOPS: 1352 if (optval < -1 || optval >= 256) 1353 error = EINVAL; 1354 else { 1355 /* -1 = kernel default */ 1356 in6p->in6p_hops = optval; 1357 } 1358 break; 1359 #define OPTSET(bit) \ 1360 do { \ 1361 if (optval) \ 1362 in6p->in6p_flags |= (bit); \ 1363 else \ 1364 in6p->in6p_flags &= ~(bit); \ 1365 } while (/*CONSTCOND*/ 0) 1366 1367 #ifdef RFC2292 1368 #define OPTSET2292(bit) \ 1369 do { \ 1370 in6p->in6p_flags |= IN6P_RFC2292; \ 1371 if (optval) \ 1372 in6p->in6p_flags |= (bit); \ 1373 else \ 1374 in6p->in6p_flags &= ~(bit); \ 1375 } while (/*CONSTCOND*/ 0) 1376 #endif 1377 1378 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1379 1380 case IPV6_RECVPKTINFO: 1381 #ifdef RFC2292 1382 /* cannot mix with RFC2292 */ 1383 if (OPTBIT(IN6P_RFC2292)) { 1384 error = EINVAL; 1385 break; 1386 } 1387 #endif 1388 OPTSET(IN6P_PKTINFO); 1389 break; 1390 1391 case IPV6_HOPLIMIT: 1392 { 1393 struct ip6_pktopts **optp; 1394 1395 #ifdef RFC2292 1396 /* cannot mix with RFC2292 */ 1397 if (OPTBIT(IN6P_RFC2292)) { 1398 error = EINVAL; 1399 break; 1400 } 1401 #endif 1402 optp = &in6p->in6p_outputopts; 1403 error = ip6_pcbopt(IPV6_HOPLIMIT, 1404 (u_char *)&optval, 1405 sizeof(optval), 1406 optp, 1407 kauth_cred_get(), uproto); 1408 break; 1409 } 1410 1411 case IPV6_RECVHOPLIMIT: 1412 #ifdef RFC2292 1413 /* cannot mix with RFC2292 */ 1414 if (OPTBIT(IN6P_RFC2292)) { 1415 error = EINVAL; 1416 break; 1417 } 1418 #endif 1419 OPTSET(IN6P_HOPLIMIT); 1420 break; 1421 1422 case IPV6_RECVHOPOPTS: 1423 #ifdef RFC2292 1424 /* cannot mix with RFC2292 */ 1425 if (OPTBIT(IN6P_RFC2292)) { 1426 error = EINVAL; 1427 break; 1428 } 1429 #endif 1430 OPTSET(IN6P_HOPOPTS); 1431 break; 1432 1433 case IPV6_RECVDSTOPTS: 1434 #ifdef RFC2292 1435 /* cannot mix with RFC2292 */ 1436 if (OPTBIT(IN6P_RFC2292)) { 1437 error = EINVAL; 1438 break; 1439 } 1440 #endif 1441 OPTSET(IN6P_DSTOPTS); 1442 break; 1443 1444 case IPV6_RECVRTHDRDSTOPTS: 1445 #ifdef RFC2292 1446 /* cannot mix with RFC2292 */ 1447 if (OPTBIT(IN6P_RFC2292)) { 1448 error = EINVAL; 1449 break; 1450 } 1451 #endif 1452 OPTSET(IN6P_RTHDRDSTOPTS); 1453 break; 1454 1455 case IPV6_RECVRTHDR: 1456 #ifdef RFC2292 1457 /* cannot mix with RFC2292 */ 1458 if (OPTBIT(IN6P_RFC2292)) { 1459 error = EINVAL; 1460 break; 1461 } 1462 #endif 1463 OPTSET(IN6P_RTHDR); 1464 break; 1465 1466 case IPV6_FAITH: 1467 OPTSET(IN6P_FAITH); 1468 break; 1469 1470 case IPV6_RECVPATHMTU: 1471 /* 1472 * We ignore this option for TCP 1473 * sockets. 1474 * (RFC3542 leaves this case 1475 * unspecified.) 1476 */ 1477 if (uproto != IPPROTO_TCP) 1478 OPTSET(IN6P_MTU); 1479 break; 1480 1481 case IPV6_V6ONLY: 1482 /* 1483 * make setsockopt(IPV6_V6ONLY) 1484 * available only prior to bind(2). 1485 * see ipng mailing list, Jun 22 2001. 1486 */ 1487 if (in6p->in6p_lport || 1488 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1489 error = EINVAL; 1490 break; 1491 } 1492 #ifdef INET6_BINDV6ONLY 1493 if (!optval) 1494 error = EINVAL; 1495 #else 1496 OPTSET(IN6P_IPV6_V6ONLY); 1497 #endif 1498 break; 1499 case IPV6_RECVTCLASS: 1500 #ifdef RFC2292 1501 /* cannot mix with RFC2292 XXX */ 1502 if (OPTBIT(IN6P_RFC2292)) { 1503 error = EINVAL; 1504 break; 1505 } 1506 #endif 1507 OPTSET(IN6P_TCLASS); 1508 break; 1509 1510 } 1511 break; 1512 1513 case IPV6_OTCLASS: 1514 { 1515 struct ip6_pktopts **optp; 1516 u_int8_t tclass; 1517 1518 error = sockopt_get(sopt, &tclass, sizeof(tclass)); 1519 if (error) 1520 break; 1521 optp = &in6p->in6p_outputopts; 1522 error = ip6_pcbopt(optname, 1523 (u_char *)&tclass, 1524 sizeof(tclass), 1525 optp, 1526 kauth_cred_get(), uproto); 1527 break; 1528 } 1529 1530 case IPV6_TCLASS: 1531 case IPV6_DONTFRAG: 1532 case IPV6_USE_MIN_MTU: 1533 case IPV6_PREFER_TEMPADDR: 1534 error = sockopt_getint(sopt, &optval); 1535 if (error) 1536 break; 1537 { 1538 struct ip6_pktopts **optp; 1539 optp = &in6p->in6p_outputopts; 1540 error = ip6_pcbopt(optname, 1541 (u_char *)&optval, 1542 sizeof(optval), 1543 optp, 1544 kauth_cred_get(), uproto); 1545 break; 1546 } 1547 1548 #ifdef RFC2292 1549 case IPV6_2292PKTINFO: 1550 case IPV6_2292HOPLIMIT: 1551 case IPV6_2292HOPOPTS: 1552 case IPV6_2292DSTOPTS: 1553 case IPV6_2292RTHDR: 1554 /* RFC 2292 */ 1555 error = sockopt_getint(sopt, &optval); 1556 if (error) 1557 break; 1558 1559 switch (optname) { 1560 case IPV6_2292PKTINFO: 1561 OPTSET2292(IN6P_PKTINFO); 1562 break; 1563 case IPV6_2292HOPLIMIT: 1564 OPTSET2292(IN6P_HOPLIMIT); 1565 break; 1566 case IPV6_2292HOPOPTS: 1567 /* 1568 * Check super-user privilege. 1569 * See comments for IPV6_RECVHOPOPTS. 1570 */ 1571 error = 1572 kauth_authorize_network(kauth_cred_get(), 1573 KAUTH_NETWORK_IPV6, 1574 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1575 NULL, NULL); 1576 if (error) 1577 return (error); 1578 OPTSET2292(IN6P_HOPOPTS); 1579 break; 1580 case IPV6_2292DSTOPTS: 1581 error = 1582 kauth_authorize_network(kauth_cred_get(), 1583 KAUTH_NETWORK_IPV6, 1584 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1585 NULL, NULL); 1586 if (error) 1587 return (error); 1588 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1589 break; 1590 case IPV6_2292RTHDR: 1591 OPTSET2292(IN6P_RTHDR); 1592 break; 1593 } 1594 break; 1595 #endif 1596 case IPV6_PKTINFO: 1597 case IPV6_HOPOPTS: 1598 case IPV6_RTHDR: 1599 case IPV6_DSTOPTS: 1600 case IPV6_RTHDRDSTOPTS: 1601 case IPV6_NEXTHOP: { 1602 /* new advanced API (RFC3542) */ 1603 void *optbuf; 1604 int optbuflen; 1605 struct ip6_pktopts **optp; 1606 1607 #ifdef RFC2292 1608 /* cannot mix with RFC2292 */ 1609 if (OPTBIT(IN6P_RFC2292)) { 1610 error = EINVAL; 1611 break; 1612 } 1613 #endif 1614 1615 optbuflen = sopt->sopt_size; 1616 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT); 1617 if (optbuf == NULL) { 1618 error = ENOBUFS; 1619 break; 1620 } 1621 1622 error = sockopt_get(sopt, optbuf, optbuflen); 1623 if (error) { 1624 free(optbuf, M_IP6OPT); 1625 break; 1626 } 1627 optp = &in6p->in6p_outputopts; 1628 error = ip6_pcbopt(optname, optbuf, optbuflen, 1629 optp, kauth_cred_get(), uproto); 1630 1631 free(optbuf, M_IP6OPT); 1632 break; 1633 } 1634 #undef OPTSET 1635 1636 case IPV6_MULTICAST_IF: 1637 case IPV6_MULTICAST_HOPS: 1638 case IPV6_MULTICAST_LOOP: 1639 case IPV6_JOIN_GROUP: 1640 case IPV6_LEAVE_GROUP: 1641 error = ip6_setmoptions(sopt, in6p); 1642 break; 1643 1644 case IPV6_PORTRANGE: 1645 error = sockopt_getint(sopt, &optval); 1646 if (error) 1647 break; 1648 1649 switch (optval) { 1650 case IPV6_PORTRANGE_DEFAULT: 1651 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1652 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1653 break; 1654 1655 case IPV6_PORTRANGE_HIGH: 1656 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1657 in6p->in6p_flags |= IN6P_HIGHPORT; 1658 break; 1659 1660 case IPV6_PORTRANGE_LOW: 1661 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1662 in6p->in6p_flags |= IN6P_LOWPORT; 1663 break; 1664 1665 default: 1666 error = EINVAL; 1667 break; 1668 } 1669 break; 1670 1671 case IPV6_PORTALGO: 1672 error = sockopt_getint(sopt, &optval); 1673 if (error) 1674 break; 1675 1676 error = portalgo_algo_index_select( 1677 (struct inpcb_hdr *)in6p, optval); 1678 break; 1679 1680 #if defined(IPSEC) 1681 case IPV6_IPSEC_POLICY: 1682 if (ipsec_enabled) { 1683 error = ipsec6_set_policy(in6p, optname, 1684 sopt->sopt_data, sopt->sopt_size, 1685 kauth_cred_get()); 1686 break; 1687 } 1688 /*FALLTHROUGH*/ 1689 #endif /* IPSEC */ 1690 1691 default: 1692 error = ENOPROTOOPT; 1693 break; 1694 } 1695 break; 1696 1697 case PRCO_GETOPT: 1698 switch (optname) { 1699 #ifdef RFC2292 1700 case IPV6_2292PKTOPTIONS: 1701 /* 1702 * RFC3542 (effectively) deprecated the 1703 * semantics of the 2292-style pktoptions. 1704 * Since it was not reliable in nature (i.e., 1705 * applications had to expect the lack of some 1706 * information after all), it would make sense 1707 * to simplify this part by always returning 1708 * empty data. 1709 */ 1710 break; 1711 #endif 1712 1713 case IPV6_RECVHOPOPTS: 1714 case IPV6_RECVDSTOPTS: 1715 case IPV6_RECVRTHDRDSTOPTS: 1716 case IPV6_UNICAST_HOPS: 1717 case IPV6_RECVPKTINFO: 1718 case IPV6_RECVHOPLIMIT: 1719 case IPV6_RECVRTHDR: 1720 case IPV6_RECVPATHMTU: 1721 1722 case IPV6_FAITH: 1723 case IPV6_V6ONLY: 1724 case IPV6_PORTRANGE: 1725 case IPV6_RECVTCLASS: 1726 switch (optname) { 1727 1728 case IPV6_RECVHOPOPTS: 1729 optval = OPTBIT(IN6P_HOPOPTS); 1730 break; 1731 1732 case IPV6_RECVDSTOPTS: 1733 optval = OPTBIT(IN6P_DSTOPTS); 1734 break; 1735 1736 case IPV6_RECVRTHDRDSTOPTS: 1737 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1738 break; 1739 1740 case IPV6_UNICAST_HOPS: 1741 optval = in6p->in6p_hops; 1742 break; 1743 1744 case IPV6_RECVPKTINFO: 1745 optval = OPTBIT(IN6P_PKTINFO); 1746 break; 1747 1748 case IPV6_RECVHOPLIMIT: 1749 optval = OPTBIT(IN6P_HOPLIMIT); 1750 break; 1751 1752 case IPV6_RECVRTHDR: 1753 optval = OPTBIT(IN6P_RTHDR); 1754 break; 1755 1756 case IPV6_RECVPATHMTU: 1757 optval = OPTBIT(IN6P_MTU); 1758 break; 1759 1760 case IPV6_FAITH: 1761 optval = OPTBIT(IN6P_FAITH); 1762 break; 1763 1764 case IPV6_V6ONLY: 1765 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1766 break; 1767 1768 case IPV6_PORTRANGE: 1769 { 1770 int flags; 1771 flags = in6p->in6p_flags; 1772 if (flags & IN6P_HIGHPORT) 1773 optval = IPV6_PORTRANGE_HIGH; 1774 else if (flags & IN6P_LOWPORT) 1775 optval = IPV6_PORTRANGE_LOW; 1776 else 1777 optval = 0; 1778 break; 1779 } 1780 case IPV6_RECVTCLASS: 1781 optval = OPTBIT(IN6P_TCLASS); 1782 break; 1783 1784 } 1785 if (error) 1786 break; 1787 error = sockopt_setint(sopt, optval); 1788 break; 1789 1790 case IPV6_PATHMTU: 1791 { 1792 u_long pmtu = 0; 1793 struct ip6_mtuinfo mtuinfo; 1794 struct route *ro = &in6p->in6p_route; 1795 1796 if (!(so->so_state & SS_ISCONNECTED)) 1797 return (ENOTCONN); 1798 /* 1799 * XXX: we dot not consider the case of source 1800 * routing, or optional information to specify 1801 * the outgoing interface. 1802 */ 1803 error = ip6_getpmtu(ro, NULL, NULL, 1804 &in6p->in6p_faddr, &pmtu, NULL); 1805 if (error) 1806 break; 1807 if (pmtu > IPV6_MAXPACKET) 1808 pmtu = IPV6_MAXPACKET; 1809 1810 memset(&mtuinfo, 0, sizeof(mtuinfo)); 1811 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1812 optdata = (void *)&mtuinfo; 1813 optdatalen = sizeof(mtuinfo); 1814 if (optdatalen > MCLBYTES) 1815 return (EMSGSIZE); /* XXX */ 1816 error = sockopt_set(sopt, optdata, optdatalen); 1817 break; 1818 } 1819 1820 #ifdef RFC2292 1821 case IPV6_2292PKTINFO: 1822 case IPV6_2292HOPLIMIT: 1823 case IPV6_2292HOPOPTS: 1824 case IPV6_2292RTHDR: 1825 case IPV6_2292DSTOPTS: 1826 switch (optname) { 1827 case IPV6_2292PKTINFO: 1828 optval = OPTBIT(IN6P_PKTINFO); 1829 break; 1830 case IPV6_2292HOPLIMIT: 1831 optval = OPTBIT(IN6P_HOPLIMIT); 1832 break; 1833 case IPV6_2292HOPOPTS: 1834 optval = OPTBIT(IN6P_HOPOPTS); 1835 break; 1836 case IPV6_2292RTHDR: 1837 optval = OPTBIT(IN6P_RTHDR); 1838 break; 1839 case IPV6_2292DSTOPTS: 1840 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1841 break; 1842 } 1843 error = sockopt_setint(sopt, optval); 1844 break; 1845 #endif 1846 case IPV6_PKTINFO: 1847 case IPV6_HOPOPTS: 1848 case IPV6_RTHDR: 1849 case IPV6_DSTOPTS: 1850 case IPV6_RTHDRDSTOPTS: 1851 case IPV6_NEXTHOP: 1852 case IPV6_OTCLASS: 1853 case IPV6_TCLASS: 1854 case IPV6_DONTFRAG: 1855 case IPV6_USE_MIN_MTU: 1856 case IPV6_PREFER_TEMPADDR: 1857 error = ip6_getpcbopt(in6p->in6p_outputopts, 1858 optname, sopt); 1859 break; 1860 1861 case IPV6_MULTICAST_IF: 1862 case IPV6_MULTICAST_HOPS: 1863 case IPV6_MULTICAST_LOOP: 1864 case IPV6_JOIN_GROUP: 1865 case IPV6_LEAVE_GROUP: 1866 error = ip6_getmoptions(sopt, in6p); 1867 break; 1868 1869 case IPV6_PORTALGO: 1870 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo; 1871 error = sockopt_setint(sopt, optval); 1872 break; 1873 1874 #if defined(IPSEC) 1875 case IPV6_IPSEC_POLICY: 1876 if (ipsec_used) { 1877 struct mbuf *m = NULL; 1878 1879 /* 1880 * XXX: this will return EINVAL as sopt is 1881 * empty 1882 */ 1883 error = ipsec6_get_policy(in6p, sopt->sopt_data, 1884 sopt->sopt_size, &m); 1885 if (!error) 1886 error = sockopt_setmbuf(sopt, m); 1887 break; 1888 } 1889 /*FALLTHROUGH*/ 1890 #endif /* IPSEC */ 1891 1892 default: 1893 error = ENOPROTOOPT; 1894 break; 1895 } 1896 break; 1897 } 1898 return (error); 1899 } 1900 1901 int 1902 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1903 { 1904 int error = 0, optval; 1905 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 1906 struct in6pcb *in6p = sotoin6pcb(so); 1907 int level, optname; 1908 1909 KASSERT(sopt != NULL); 1910 1911 level = sopt->sopt_level; 1912 optname = sopt->sopt_name; 1913 1914 if (level != IPPROTO_IPV6) { 1915 return ENOPROTOOPT; 1916 } 1917 1918 switch (optname) { 1919 case IPV6_CHECKSUM: 1920 /* 1921 * For ICMPv6 sockets, no modification allowed for checksum 1922 * offset, permit "no change" values to help existing apps. 1923 * 1924 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM 1925 * for an ICMPv6 socket will fail." The current 1926 * behavior does not meet RFC3542. 1927 */ 1928 switch (op) { 1929 case PRCO_SETOPT: 1930 error = sockopt_getint(sopt, &optval); 1931 if (error) 1932 break; 1933 if ((optval % 2) != 0) { 1934 /* the API assumes even offset values */ 1935 error = EINVAL; 1936 } else if (so->so_proto->pr_protocol == 1937 IPPROTO_ICMPV6) { 1938 if (optval != icmp6off) 1939 error = EINVAL; 1940 } else 1941 in6p->in6p_cksum = optval; 1942 break; 1943 1944 case PRCO_GETOPT: 1945 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 1946 optval = icmp6off; 1947 else 1948 optval = in6p->in6p_cksum; 1949 1950 error = sockopt_setint(sopt, optval); 1951 break; 1952 1953 default: 1954 error = EINVAL; 1955 break; 1956 } 1957 break; 1958 1959 default: 1960 error = ENOPROTOOPT; 1961 break; 1962 } 1963 1964 return (error); 1965 } 1966 1967 #ifdef RFC2292 1968 /* 1969 * Set up IP6 options in pcb for insertion in output packets or 1970 * specifying behavior of outgoing packets. 1971 */ 1972 static int 1973 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so, 1974 struct sockopt *sopt) 1975 { 1976 struct ip6_pktopts *opt = *pktopt; 1977 struct mbuf *m; 1978 int error = 0; 1979 1980 /* turn off any old options. */ 1981 if (opt) { 1982 #ifdef DIAGNOSTIC 1983 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 1984 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 1985 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 1986 printf("ip6_pcbopts: all specified options are cleared.\n"); 1987 #endif 1988 ip6_clearpktopts(opt, -1); 1989 } else { 1990 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 1991 if (opt == NULL) 1992 return (ENOBUFS); 1993 } 1994 *pktopt = NULL; 1995 1996 if (sopt == NULL || sopt->sopt_size == 0) { 1997 /* 1998 * Only turning off any previous options, regardless of 1999 * whether the opt is just created or given. 2000 */ 2001 free(opt, M_IP6OPT); 2002 return (0); 2003 } 2004 2005 /* set options specified by user. */ 2006 m = sockopt_getmbuf(sopt); 2007 if (m == NULL) { 2008 free(opt, M_IP6OPT); 2009 return (ENOBUFS); 2010 } 2011 2012 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(), 2013 so->so_proto->pr_protocol); 2014 m_freem(m); 2015 if (error != 0) { 2016 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2017 free(opt, M_IP6OPT); 2018 return (error); 2019 } 2020 *pktopt = opt; 2021 return (0); 2022 } 2023 #endif 2024 2025 /* 2026 * initialize ip6_pktopts. beware that there are non-zero default values in 2027 * the struct. 2028 */ 2029 void 2030 ip6_initpktopts(struct ip6_pktopts *opt) 2031 { 2032 2033 memset(opt, 0, sizeof(*opt)); 2034 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2035 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2036 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2037 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2038 } 2039 2040 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */ 2041 static int 2042 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2043 kauth_cred_t cred, int uproto) 2044 { 2045 struct ip6_pktopts *opt; 2046 2047 if (*pktopt == NULL) { 2048 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2049 M_NOWAIT); 2050 if (*pktopt == NULL) 2051 return (ENOBUFS); 2052 2053 ip6_initpktopts(*pktopt); 2054 } 2055 opt = *pktopt; 2056 2057 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2058 } 2059 2060 static int 2061 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2062 { 2063 void *optdata = NULL; 2064 int optdatalen = 0; 2065 struct ip6_ext *ip6e; 2066 int error = 0; 2067 struct in6_pktinfo null_pktinfo; 2068 int deftclass = 0, on; 2069 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2070 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2071 2072 switch (optname) { 2073 case IPV6_PKTINFO: 2074 if (pktopt && pktopt->ip6po_pktinfo) 2075 optdata = (void *)pktopt->ip6po_pktinfo; 2076 else { 2077 /* XXX: we don't have to do this every time... */ 2078 memset(&null_pktinfo, 0, sizeof(null_pktinfo)); 2079 optdata = (void *)&null_pktinfo; 2080 } 2081 optdatalen = sizeof(struct in6_pktinfo); 2082 break; 2083 case IPV6_OTCLASS: 2084 /* XXX */ 2085 return (EINVAL); 2086 case IPV6_TCLASS: 2087 if (pktopt && pktopt->ip6po_tclass >= 0) 2088 optdata = (void *)&pktopt->ip6po_tclass; 2089 else 2090 optdata = (void *)&deftclass; 2091 optdatalen = sizeof(int); 2092 break; 2093 case IPV6_HOPOPTS: 2094 if (pktopt && pktopt->ip6po_hbh) { 2095 optdata = (void *)pktopt->ip6po_hbh; 2096 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2097 optdatalen = (ip6e->ip6e_len + 1) << 3; 2098 } 2099 break; 2100 case IPV6_RTHDR: 2101 if (pktopt && pktopt->ip6po_rthdr) { 2102 optdata = (void *)pktopt->ip6po_rthdr; 2103 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2104 optdatalen = (ip6e->ip6e_len + 1) << 3; 2105 } 2106 break; 2107 case IPV6_RTHDRDSTOPTS: 2108 if (pktopt && pktopt->ip6po_dest1) { 2109 optdata = (void *)pktopt->ip6po_dest1; 2110 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2111 optdatalen = (ip6e->ip6e_len + 1) << 3; 2112 } 2113 break; 2114 case IPV6_DSTOPTS: 2115 if (pktopt && pktopt->ip6po_dest2) { 2116 optdata = (void *)pktopt->ip6po_dest2; 2117 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2118 optdatalen = (ip6e->ip6e_len + 1) << 3; 2119 } 2120 break; 2121 case IPV6_NEXTHOP: 2122 if (pktopt && pktopt->ip6po_nexthop) { 2123 optdata = (void *)pktopt->ip6po_nexthop; 2124 optdatalen = pktopt->ip6po_nexthop->sa_len; 2125 } 2126 break; 2127 case IPV6_USE_MIN_MTU: 2128 if (pktopt) 2129 optdata = (void *)&pktopt->ip6po_minmtu; 2130 else 2131 optdata = (void *)&defminmtu; 2132 optdatalen = sizeof(int); 2133 break; 2134 case IPV6_DONTFRAG: 2135 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2136 on = 1; 2137 else 2138 on = 0; 2139 optdata = (void *)&on; 2140 optdatalen = sizeof(on); 2141 break; 2142 case IPV6_PREFER_TEMPADDR: 2143 if (pktopt) 2144 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2145 else 2146 optdata = (void *)&defpreftemp; 2147 optdatalen = sizeof(int); 2148 break; 2149 default: /* should not happen */ 2150 #ifdef DIAGNOSTIC 2151 panic("ip6_getpcbopt: unexpected option\n"); 2152 #endif 2153 return (ENOPROTOOPT); 2154 } 2155 2156 error = sockopt_set(sopt, optdata, optdatalen); 2157 2158 return (error); 2159 } 2160 2161 void 2162 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2163 { 2164 if (optname == -1 || optname == IPV6_PKTINFO) { 2165 if (pktopt->ip6po_pktinfo) 2166 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2167 pktopt->ip6po_pktinfo = NULL; 2168 } 2169 if (optname == -1 || optname == IPV6_HOPLIMIT) 2170 pktopt->ip6po_hlim = -1; 2171 if (optname == -1 || optname == IPV6_TCLASS) 2172 pktopt->ip6po_tclass = -1; 2173 if (optname == -1 || optname == IPV6_NEXTHOP) { 2174 rtcache_free(&pktopt->ip6po_nextroute); 2175 if (pktopt->ip6po_nexthop) 2176 free(pktopt->ip6po_nexthop, M_IP6OPT); 2177 pktopt->ip6po_nexthop = NULL; 2178 } 2179 if (optname == -1 || optname == IPV6_HOPOPTS) { 2180 if (pktopt->ip6po_hbh) 2181 free(pktopt->ip6po_hbh, M_IP6OPT); 2182 pktopt->ip6po_hbh = NULL; 2183 } 2184 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2185 if (pktopt->ip6po_dest1) 2186 free(pktopt->ip6po_dest1, M_IP6OPT); 2187 pktopt->ip6po_dest1 = NULL; 2188 } 2189 if (optname == -1 || optname == IPV6_RTHDR) { 2190 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2191 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2192 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2193 rtcache_free(&pktopt->ip6po_route); 2194 } 2195 if (optname == -1 || optname == IPV6_DSTOPTS) { 2196 if (pktopt->ip6po_dest2) 2197 free(pktopt->ip6po_dest2, M_IP6OPT); 2198 pktopt->ip6po_dest2 = NULL; 2199 } 2200 } 2201 2202 #define PKTOPT_EXTHDRCPY(type) \ 2203 do { \ 2204 if (src->type) { \ 2205 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2206 dst->type = malloc(hlen, M_IP6OPT, canwait); \ 2207 if (dst->type == NULL) \ 2208 goto bad; \ 2209 memcpy(dst->type, src->type, hlen); \ 2210 } \ 2211 } while (/*CONSTCOND*/ 0) 2212 2213 static int 2214 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2215 { 2216 dst->ip6po_hlim = src->ip6po_hlim; 2217 dst->ip6po_tclass = src->ip6po_tclass; 2218 dst->ip6po_flags = src->ip6po_flags; 2219 dst->ip6po_minmtu = src->ip6po_minmtu; 2220 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2221 if (src->ip6po_pktinfo) { 2222 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2223 M_IP6OPT, canwait); 2224 if (dst->ip6po_pktinfo == NULL) 2225 goto bad; 2226 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2227 } 2228 if (src->ip6po_nexthop) { 2229 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2230 M_IP6OPT, canwait); 2231 if (dst->ip6po_nexthop == NULL) 2232 goto bad; 2233 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop, 2234 src->ip6po_nexthop->sa_len); 2235 } 2236 PKTOPT_EXTHDRCPY(ip6po_hbh); 2237 PKTOPT_EXTHDRCPY(ip6po_dest1); 2238 PKTOPT_EXTHDRCPY(ip6po_dest2); 2239 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2240 return (0); 2241 2242 bad: 2243 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 2244 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 2245 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 2246 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 2247 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 2248 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 2249 2250 return (ENOBUFS); 2251 } 2252 #undef PKTOPT_EXTHDRCPY 2253 2254 struct ip6_pktopts * 2255 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2256 { 2257 int error; 2258 struct ip6_pktopts *dst; 2259 2260 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2261 if (dst == NULL) 2262 return (NULL); 2263 ip6_initpktopts(dst); 2264 2265 if ((error = copypktopts(dst, src, canwait)) != 0) { 2266 free(dst, M_IP6OPT); 2267 return (NULL); 2268 } 2269 2270 return (dst); 2271 } 2272 2273 void 2274 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2275 { 2276 if (pktopt == NULL) 2277 return; 2278 2279 ip6_clearpktopts(pktopt, -1); 2280 2281 free(pktopt, M_IP6OPT); 2282 } 2283 2284 int 2285 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp, void *v, 2286 size_t l) 2287 { 2288 struct ipv6_mreq mreq; 2289 int error; 2290 struct in6_addr *ia = &mreq.ipv6mr_multiaddr; 2291 struct in_addr *ia4 = (void *)&ia->s6_addr32[3]; 2292 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2293 if (error != 0) 2294 return error; 2295 2296 if (IN6_IS_ADDR_UNSPECIFIED(ia)) { 2297 /* 2298 * We use the unspecified address to specify to accept 2299 * all multicast addresses. Only super user is allowed 2300 * to do this. 2301 */ 2302 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6, 2303 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL)) 2304 return EACCES; 2305 } else if (IN6_IS_ADDR_V4MAPPED(ia)) { 2306 // Don't bother if we are not going to use ifp. 2307 if (l == sizeof(*ia)) { 2308 memcpy(v, ia, l); 2309 return 0; 2310 } 2311 } else if (!IN6_IS_ADDR_MULTICAST(ia)) { 2312 return EINVAL; 2313 } 2314 2315 /* 2316 * If no interface was explicitly specified, choose an 2317 * appropriate one according to the given multicast address. 2318 */ 2319 if (mreq.ipv6mr_interface == 0) { 2320 struct rtentry *rt; 2321 union { 2322 struct sockaddr dst; 2323 struct sockaddr_in dst4; 2324 struct sockaddr_in6 dst6; 2325 } u; 2326 struct route ro; 2327 2328 /* 2329 * Look up the routing table for the 2330 * address, and choose the outgoing interface. 2331 * XXX: is it a good approach? 2332 */ 2333 memset(&ro, 0, sizeof(ro)); 2334 if (IN6_IS_ADDR_V4MAPPED(ia)) 2335 sockaddr_in_init(&u.dst4, ia4, 0); 2336 else 2337 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0); 2338 error = rtcache_setdst(&ro, &u.dst); 2339 if (error != 0) 2340 return error; 2341 *ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp : NULL; 2342 rtcache_free(&ro); 2343 } else { 2344 /* 2345 * If the interface is specified, validate it. 2346 */ 2347 if ((*ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) 2348 return ENXIO; /* XXX EINVAL? */ 2349 } 2350 if (sizeof(*ia) == l) 2351 memcpy(v, ia, l); 2352 else 2353 memcpy(v, ia4, l); 2354 return 0; 2355 } 2356 2357 /* 2358 * Set the IP6 multicast options in response to user setsockopt(). 2359 */ 2360 static int 2361 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p) 2362 { 2363 int error = 0; 2364 u_int loop, ifindex; 2365 struct ipv6_mreq mreq; 2366 struct in6_addr ia; 2367 struct ifnet *ifp; 2368 struct ip6_moptions *im6o = in6p->in6p_moptions; 2369 struct in6_multi_mship *imm; 2370 2371 if (im6o == NULL) { 2372 /* 2373 * No multicast option buffer attached to the pcb; 2374 * allocate one and initialize to default values. 2375 */ 2376 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT); 2377 if (im6o == NULL) 2378 return (ENOBUFS); 2379 in6p->in6p_moptions = im6o; 2380 im6o->im6o_multicast_ifp = NULL; 2381 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2382 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2383 LIST_INIT(&im6o->im6o_memberships); 2384 } 2385 2386 switch (sopt->sopt_name) { 2387 2388 case IPV6_MULTICAST_IF: 2389 /* 2390 * Select the interface for outgoing multicast packets. 2391 */ 2392 error = sockopt_get(sopt, &ifindex, sizeof(ifindex)); 2393 if (error != 0) 2394 break; 2395 2396 if (ifindex != 0) { 2397 if ((ifp = if_byindex(ifindex)) == NULL) { 2398 error = ENXIO; /* XXX EINVAL? */ 2399 break; 2400 } 2401 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 2402 error = EADDRNOTAVAIL; 2403 break; 2404 } 2405 } else 2406 ifp = NULL; 2407 im6o->im6o_multicast_ifp = ifp; 2408 break; 2409 2410 case IPV6_MULTICAST_HOPS: 2411 { 2412 /* 2413 * Set the IP6 hoplimit for outgoing multicast packets. 2414 */ 2415 int optval; 2416 2417 error = sockopt_getint(sopt, &optval); 2418 if (error != 0) 2419 break; 2420 2421 if (optval < -1 || optval >= 256) 2422 error = EINVAL; 2423 else if (optval == -1) 2424 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2425 else 2426 im6o->im6o_multicast_hlim = optval; 2427 break; 2428 } 2429 2430 case IPV6_MULTICAST_LOOP: 2431 /* 2432 * Set the loopback flag for outgoing multicast packets. 2433 * Must be zero or one. 2434 */ 2435 error = sockopt_get(sopt, &loop, sizeof(loop)); 2436 if (error != 0) 2437 break; 2438 if (loop > 1) { 2439 error = EINVAL; 2440 break; 2441 } 2442 im6o->im6o_multicast_loop = loop; 2443 break; 2444 2445 case IPV6_JOIN_GROUP: 2446 /* 2447 * Add a multicast group membership. 2448 * Group must be a valid IP6 multicast address. 2449 */ 2450 if ((error = ip6_get_membership(sopt, &ifp, &ia, sizeof(ia)))) 2451 return error; 2452 2453 if (IN6_IS_ADDR_V4MAPPED(&ia)) { 2454 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt); 2455 break; 2456 } 2457 /* 2458 * See if we found an interface, and confirm that it 2459 * supports multicast 2460 */ 2461 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2462 error = EADDRNOTAVAIL; 2463 break; 2464 } 2465 2466 if (in6_setscope(&ia, ifp, NULL)) { 2467 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2468 break; 2469 } 2470 2471 /* 2472 * See if the membership already exists. 2473 */ 2474 for (imm = im6o->im6o_memberships.lh_first; 2475 imm != NULL; imm = imm->i6mm_chain.le_next) 2476 if (imm->i6mm_maddr->in6m_ifp == ifp && 2477 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2478 &ia)) 2479 break; 2480 if (imm != NULL) { 2481 error = EADDRINUSE; 2482 break; 2483 } 2484 /* 2485 * Everything looks good; add a new record to the multicast 2486 * address list for the given interface. 2487 */ 2488 imm = in6_joingroup(ifp, &ia, &error, 0); 2489 if (imm == NULL) 2490 break; 2491 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2492 break; 2493 2494 case IPV6_LEAVE_GROUP: 2495 /* 2496 * Drop a multicast group membership. 2497 * Group must be a valid IP6 multicast address. 2498 */ 2499 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2500 if (error != 0) 2501 break; 2502 2503 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) { 2504 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt); 2505 break; 2506 } 2507 /* 2508 * If an interface address was specified, get a pointer 2509 * to its ifnet structure. 2510 */ 2511 if (mreq.ipv6mr_interface != 0) { 2512 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) { 2513 error = ENXIO; /* XXX EINVAL? */ 2514 break; 2515 } 2516 } else 2517 ifp = NULL; 2518 2519 /* Fill in the scope zone ID */ 2520 if (ifp) { 2521 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) { 2522 /* XXX: should not happen */ 2523 error = EADDRNOTAVAIL; 2524 break; 2525 } 2526 } else if (mreq.ipv6mr_interface != 0) { 2527 /* 2528 * XXX: This case would happens when the (positive) 2529 * index is in the valid range, but the corresponding 2530 * interface has been detached dynamically. The above 2531 * check probably avoids such case to happen here, but 2532 * we check it explicitly for safety. 2533 */ 2534 error = EADDRNOTAVAIL; 2535 break; 2536 } else { /* ipv6mr_interface == 0 */ 2537 struct sockaddr_in6 sa6_mc; 2538 2539 /* 2540 * The API spec says as follows: 2541 * If the interface index is specified as 0, the 2542 * system may choose a multicast group membership to 2543 * drop by matching the multicast address only. 2544 * On the other hand, we cannot disambiguate the scope 2545 * zone unless an interface is provided. Thus, we 2546 * check if there's ambiguity with the default scope 2547 * zone as the last resort. 2548 */ 2549 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr, 2550 0, 0, 0); 2551 error = sa6_embedscope(&sa6_mc, ip6_use_defzone); 2552 if (error != 0) 2553 break; 2554 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr; 2555 } 2556 2557 /* 2558 * Find the membership in the membership list. 2559 */ 2560 for (imm = im6o->im6o_memberships.lh_first; 2561 imm != NULL; imm = imm->i6mm_chain.le_next) { 2562 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2563 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2564 &mreq.ipv6mr_multiaddr)) 2565 break; 2566 } 2567 if (imm == NULL) { 2568 /* Unable to resolve interface */ 2569 error = EADDRNOTAVAIL; 2570 break; 2571 } 2572 /* 2573 * Give up the multicast address record to which the 2574 * membership points. 2575 */ 2576 LIST_REMOVE(imm, i6mm_chain); 2577 in6_leavegroup(imm); 2578 break; 2579 2580 default: 2581 error = EOPNOTSUPP; 2582 break; 2583 } 2584 2585 /* 2586 * If all options have default values, no need to keep the mbuf. 2587 */ 2588 if (im6o->im6o_multicast_ifp == NULL && 2589 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2590 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2591 im6o->im6o_memberships.lh_first == NULL) { 2592 free(in6p->in6p_moptions, M_IPMOPTS); 2593 in6p->in6p_moptions = NULL; 2594 } 2595 2596 return (error); 2597 } 2598 2599 /* 2600 * Return the IP6 multicast options in response to user getsockopt(). 2601 */ 2602 static int 2603 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p) 2604 { 2605 u_int optval; 2606 int error; 2607 struct ip6_moptions *im6o = in6p->in6p_moptions; 2608 2609 switch (sopt->sopt_name) { 2610 case IPV6_MULTICAST_IF: 2611 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2612 optval = 0; 2613 else 2614 optval = im6o->im6o_multicast_ifp->if_index; 2615 2616 error = sockopt_set(sopt, &optval, sizeof(optval)); 2617 break; 2618 2619 case IPV6_MULTICAST_HOPS: 2620 if (im6o == NULL) 2621 optval = ip6_defmcasthlim; 2622 else 2623 optval = im6o->im6o_multicast_hlim; 2624 2625 error = sockopt_set(sopt, &optval, sizeof(optval)); 2626 break; 2627 2628 case IPV6_MULTICAST_LOOP: 2629 if (im6o == NULL) 2630 optval = IPV6_DEFAULT_MULTICAST_LOOP; 2631 else 2632 optval = im6o->im6o_multicast_loop; 2633 2634 error = sockopt_set(sopt, &optval, sizeof(optval)); 2635 break; 2636 2637 default: 2638 error = EOPNOTSUPP; 2639 } 2640 2641 return (error); 2642 } 2643 2644 /* 2645 * Discard the IP6 multicast options. 2646 */ 2647 void 2648 ip6_freemoptions(struct ip6_moptions *im6o) 2649 { 2650 struct in6_multi_mship *imm; 2651 2652 if (im6o == NULL) 2653 return; 2654 2655 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2656 LIST_REMOVE(imm, i6mm_chain); 2657 in6_leavegroup(imm); 2658 } 2659 free(im6o, M_IPMOPTS); 2660 } 2661 2662 /* 2663 * Set IPv6 outgoing packet options based on advanced API. 2664 */ 2665 int 2666 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2667 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto) 2668 { 2669 struct cmsghdr *cm = 0; 2670 2671 if (control == NULL || opt == NULL) 2672 return (EINVAL); 2673 2674 ip6_initpktopts(opt); 2675 if (stickyopt) { 2676 int error; 2677 2678 /* 2679 * If stickyopt is provided, make a local copy of the options 2680 * for this particular packet, then override them by ancillary 2681 * objects. 2682 * XXX: copypktopts() does not copy the cached route to a next 2683 * hop (if any). This is not very good in terms of efficiency, 2684 * but we can allow this since this option should be rarely 2685 * used. 2686 */ 2687 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2688 return (error); 2689 } 2690 2691 /* 2692 * XXX: Currently, we assume all the optional information is stored 2693 * in a single mbuf. 2694 */ 2695 if (control->m_next) 2696 return (EINVAL); 2697 2698 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */ 2699 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2700 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2701 int error; 2702 2703 if (control->m_len < CMSG_LEN(0)) 2704 return (EINVAL); 2705 2706 cm = mtod(control, struct cmsghdr *); 2707 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2708 return (EINVAL); 2709 if (cm->cmsg_level != IPPROTO_IPV6) 2710 continue; 2711 2712 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2713 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2714 if (error) 2715 return (error); 2716 } 2717 2718 return (0); 2719 } 2720 2721 /* 2722 * Set a particular packet option, as a sticky option or an ancillary data 2723 * item. "len" can be 0 only when it's a sticky option. 2724 * We have 4 cases of combination of "sticky" and "cmsg": 2725 * "sticky=0, cmsg=0": impossible 2726 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2727 * "sticky=1, cmsg=0": RFC3542 socket option 2728 * "sticky=1, cmsg=1": RFC2292 socket option 2729 */ 2730 static int 2731 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2732 kauth_cred_t cred, int sticky, int cmsg, int uproto) 2733 { 2734 int minmtupolicy; 2735 int error; 2736 2737 if (!sticky && !cmsg) { 2738 #ifdef DIAGNOSTIC 2739 printf("ip6_setpktopt: impossible case\n"); 2740 #endif 2741 return (EINVAL); 2742 } 2743 2744 /* 2745 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2746 * not be specified in the context of RFC3542. Conversely, 2747 * RFC3542 types should not be specified in the context of RFC2292. 2748 */ 2749 if (!cmsg) { 2750 switch (optname) { 2751 case IPV6_2292PKTINFO: 2752 case IPV6_2292HOPLIMIT: 2753 case IPV6_2292NEXTHOP: 2754 case IPV6_2292HOPOPTS: 2755 case IPV6_2292DSTOPTS: 2756 case IPV6_2292RTHDR: 2757 case IPV6_2292PKTOPTIONS: 2758 return (ENOPROTOOPT); 2759 } 2760 } 2761 if (sticky && cmsg) { 2762 switch (optname) { 2763 case IPV6_PKTINFO: 2764 case IPV6_HOPLIMIT: 2765 case IPV6_NEXTHOP: 2766 case IPV6_HOPOPTS: 2767 case IPV6_DSTOPTS: 2768 case IPV6_RTHDRDSTOPTS: 2769 case IPV6_RTHDR: 2770 case IPV6_USE_MIN_MTU: 2771 case IPV6_DONTFRAG: 2772 case IPV6_OTCLASS: 2773 case IPV6_TCLASS: 2774 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */ 2775 return (ENOPROTOOPT); 2776 } 2777 } 2778 2779 switch (optname) { 2780 #ifdef RFC2292 2781 case IPV6_2292PKTINFO: 2782 #endif 2783 case IPV6_PKTINFO: 2784 { 2785 struct ifnet *ifp = NULL; 2786 struct in6_pktinfo *pktinfo; 2787 2788 if (len != sizeof(struct in6_pktinfo)) 2789 return (EINVAL); 2790 2791 pktinfo = (struct in6_pktinfo *)buf; 2792 2793 /* 2794 * An application can clear any sticky IPV6_PKTINFO option by 2795 * doing a "regular" setsockopt with ipi6_addr being 2796 * in6addr_any and ipi6_ifindex being zero. 2797 * [RFC 3542, Section 6] 2798 */ 2799 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2800 pktinfo->ipi6_ifindex == 0 && 2801 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2802 ip6_clearpktopts(opt, optname); 2803 break; 2804 } 2805 2806 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2807 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2808 return (EINVAL); 2809 } 2810 2811 /* Validate the interface index if specified. */ 2812 if (pktinfo->ipi6_ifindex) { 2813 ifp = if_byindex(pktinfo->ipi6_ifindex); 2814 if (ifp == NULL) 2815 return (ENXIO); 2816 } 2817 2818 /* 2819 * We store the address anyway, and let in6_selectsrc() 2820 * validate the specified address. This is because ipi6_addr 2821 * may not have enough information about its scope zone, and 2822 * we may need additional information (such as outgoing 2823 * interface or the scope zone of a destination address) to 2824 * disambiguate the scope. 2825 * XXX: the delay of the validation may confuse the 2826 * application when it is used as a sticky option. 2827 */ 2828 if (opt->ip6po_pktinfo == NULL) { 2829 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2830 M_IP6OPT, M_NOWAIT); 2831 if (opt->ip6po_pktinfo == NULL) 2832 return (ENOBUFS); 2833 } 2834 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo)); 2835 break; 2836 } 2837 2838 #ifdef RFC2292 2839 case IPV6_2292HOPLIMIT: 2840 #endif 2841 case IPV6_HOPLIMIT: 2842 { 2843 int *hlimp; 2844 2845 /* 2846 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2847 * to simplify the ordering among hoplimit options. 2848 */ 2849 if (optname == IPV6_HOPLIMIT && sticky) 2850 return (ENOPROTOOPT); 2851 2852 if (len != sizeof(int)) 2853 return (EINVAL); 2854 hlimp = (int *)buf; 2855 if (*hlimp < -1 || *hlimp > 255) 2856 return (EINVAL); 2857 2858 opt->ip6po_hlim = *hlimp; 2859 break; 2860 } 2861 2862 case IPV6_OTCLASS: 2863 if (len != sizeof(u_int8_t)) 2864 return (EINVAL); 2865 2866 opt->ip6po_tclass = *(u_int8_t *)buf; 2867 break; 2868 2869 case IPV6_TCLASS: 2870 { 2871 int tclass; 2872 2873 if (len != sizeof(int)) 2874 return (EINVAL); 2875 tclass = *(int *)buf; 2876 if (tclass < -1 || tclass > 255) 2877 return (EINVAL); 2878 2879 opt->ip6po_tclass = tclass; 2880 break; 2881 } 2882 2883 #ifdef RFC2292 2884 case IPV6_2292NEXTHOP: 2885 #endif 2886 case IPV6_NEXTHOP: 2887 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 2888 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 2889 if (error) 2890 return (error); 2891 2892 if (len == 0) { /* just remove the option */ 2893 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2894 break; 2895 } 2896 2897 /* check if cmsg_len is large enough for sa_len */ 2898 if (len < sizeof(struct sockaddr) || len < *buf) 2899 return (EINVAL); 2900 2901 switch (((struct sockaddr *)buf)->sa_family) { 2902 case AF_INET6: 2903 { 2904 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2905 2906 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2907 return (EINVAL); 2908 2909 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2910 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2911 return (EINVAL); 2912 } 2913 if ((error = sa6_embedscope(sa6, ip6_use_defzone)) 2914 != 0) { 2915 return (error); 2916 } 2917 break; 2918 } 2919 case AF_LINK: /* eventually be supported? */ 2920 default: 2921 return (EAFNOSUPPORT); 2922 } 2923 2924 /* turn off the previous option, then set the new option. */ 2925 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2926 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2927 if (opt->ip6po_nexthop == NULL) 2928 return (ENOBUFS); 2929 memcpy(opt->ip6po_nexthop, buf, *buf); 2930 break; 2931 2932 #ifdef RFC2292 2933 case IPV6_2292HOPOPTS: 2934 #endif 2935 case IPV6_HOPOPTS: 2936 { 2937 struct ip6_hbh *hbh; 2938 int hbhlen; 2939 2940 /* 2941 * XXX: We don't allow a non-privileged user to set ANY HbH 2942 * options, since per-option restriction has too much 2943 * overhead. 2944 */ 2945 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 2946 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 2947 if (error) 2948 return (error); 2949 2950 if (len == 0) { 2951 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2952 break; /* just remove the option */ 2953 } 2954 2955 /* message length validation */ 2956 if (len < sizeof(struct ip6_hbh)) 2957 return (EINVAL); 2958 hbh = (struct ip6_hbh *)buf; 2959 hbhlen = (hbh->ip6h_len + 1) << 3; 2960 if (len != hbhlen) 2961 return (EINVAL); 2962 2963 /* turn off the previous option, then set the new option. */ 2964 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2965 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2966 if (opt->ip6po_hbh == NULL) 2967 return (ENOBUFS); 2968 memcpy(opt->ip6po_hbh, hbh, hbhlen); 2969 2970 break; 2971 } 2972 2973 #ifdef RFC2292 2974 case IPV6_2292DSTOPTS: 2975 #endif 2976 case IPV6_DSTOPTS: 2977 case IPV6_RTHDRDSTOPTS: 2978 { 2979 struct ip6_dest *dest, **newdest = NULL; 2980 int destlen; 2981 2982 /* XXX: see the comment for IPV6_HOPOPTS */ 2983 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 2984 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 2985 if (error) 2986 return (error); 2987 2988 if (len == 0) { 2989 ip6_clearpktopts(opt, optname); 2990 break; /* just remove the option */ 2991 } 2992 2993 /* message length validation */ 2994 if (len < sizeof(struct ip6_dest)) 2995 return (EINVAL); 2996 dest = (struct ip6_dest *)buf; 2997 destlen = (dest->ip6d_len + 1) << 3; 2998 if (len != destlen) 2999 return (EINVAL); 3000 /* 3001 * Determine the position that the destination options header 3002 * should be inserted; before or after the routing header. 3003 */ 3004 switch (optname) { 3005 case IPV6_2292DSTOPTS: 3006 /* 3007 * The old advanced API is ambiguous on this point. 3008 * Our approach is to determine the position based 3009 * according to the existence of a routing header. 3010 * Note, however, that this depends on the order of the 3011 * extension headers in the ancillary data; the 1st 3012 * part of the destination options header must appear 3013 * before the routing header in the ancillary data, 3014 * too. 3015 * RFC3542 solved the ambiguity by introducing 3016 * separate ancillary data or option types. 3017 */ 3018 if (opt->ip6po_rthdr == NULL) 3019 newdest = &opt->ip6po_dest1; 3020 else 3021 newdest = &opt->ip6po_dest2; 3022 break; 3023 case IPV6_RTHDRDSTOPTS: 3024 newdest = &opt->ip6po_dest1; 3025 break; 3026 case IPV6_DSTOPTS: 3027 newdest = &opt->ip6po_dest2; 3028 break; 3029 } 3030 3031 /* turn off the previous option, then set the new option. */ 3032 ip6_clearpktopts(opt, optname); 3033 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3034 if (*newdest == NULL) 3035 return (ENOBUFS); 3036 memcpy(*newdest, dest, destlen); 3037 3038 break; 3039 } 3040 3041 #ifdef RFC2292 3042 case IPV6_2292RTHDR: 3043 #endif 3044 case IPV6_RTHDR: 3045 { 3046 struct ip6_rthdr *rth; 3047 int rthlen; 3048 3049 if (len == 0) { 3050 ip6_clearpktopts(opt, IPV6_RTHDR); 3051 break; /* just remove the option */ 3052 } 3053 3054 /* message length validation */ 3055 if (len < sizeof(struct ip6_rthdr)) 3056 return (EINVAL); 3057 rth = (struct ip6_rthdr *)buf; 3058 rthlen = (rth->ip6r_len + 1) << 3; 3059 if (len != rthlen) 3060 return (EINVAL); 3061 switch (rth->ip6r_type) { 3062 case IPV6_RTHDR_TYPE_0: 3063 if (rth->ip6r_len == 0) /* must contain one addr */ 3064 return (EINVAL); 3065 if (rth->ip6r_len % 2) /* length must be even */ 3066 return (EINVAL); 3067 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3068 return (EINVAL); 3069 break; 3070 default: 3071 return (EINVAL); /* not supported */ 3072 } 3073 /* turn off the previous option */ 3074 ip6_clearpktopts(opt, IPV6_RTHDR); 3075 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3076 if (opt->ip6po_rthdr == NULL) 3077 return (ENOBUFS); 3078 memcpy(opt->ip6po_rthdr, rth, rthlen); 3079 break; 3080 } 3081 3082 case IPV6_USE_MIN_MTU: 3083 if (len != sizeof(int)) 3084 return (EINVAL); 3085 minmtupolicy = *(int *)buf; 3086 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3087 minmtupolicy != IP6PO_MINMTU_DISABLE && 3088 minmtupolicy != IP6PO_MINMTU_ALL) { 3089 return (EINVAL); 3090 } 3091 opt->ip6po_minmtu = minmtupolicy; 3092 break; 3093 3094 case IPV6_DONTFRAG: 3095 if (len != sizeof(int)) 3096 return (EINVAL); 3097 3098 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3099 /* 3100 * we ignore this option for TCP sockets. 3101 * (RFC3542 leaves this case unspecified.) 3102 */ 3103 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3104 } else 3105 opt->ip6po_flags |= IP6PO_DONTFRAG; 3106 break; 3107 3108 case IPV6_PREFER_TEMPADDR: 3109 { 3110 int preftemp; 3111 3112 if (len != sizeof(int)) 3113 return (EINVAL); 3114 preftemp = *(int *)buf; 3115 switch (preftemp) { 3116 case IP6PO_TEMPADDR_SYSTEM: 3117 case IP6PO_TEMPADDR_NOTPREFER: 3118 case IP6PO_TEMPADDR_PREFER: 3119 break; 3120 default: 3121 return (EINVAL); 3122 } 3123 opt->ip6po_prefer_tempaddr = preftemp; 3124 break; 3125 } 3126 3127 default: 3128 return (ENOPROTOOPT); 3129 } /* end of switch */ 3130 3131 return (0); 3132 } 3133 3134 /* 3135 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3136 * packet to the input queue of a specified interface. Note that this 3137 * calls the output routine of the loopback "driver", but with an interface 3138 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 3139 */ 3140 void 3141 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, 3142 const struct sockaddr_in6 *dst) 3143 { 3144 struct mbuf *copym; 3145 struct ip6_hdr *ip6; 3146 3147 copym = m_copy(m, 0, M_COPYALL); 3148 if (copym == NULL) 3149 return; 3150 3151 /* 3152 * Make sure to deep-copy IPv6 header portion in case the data 3153 * is in an mbuf cluster, so that we can safely override the IPv6 3154 * header portion later. 3155 */ 3156 if ((copym->m_flags & M_EXT) != 0 || 3157 copym->m_len < sizeof(struct ip6_hdr)) { 3158 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3159 if (copym == NULL) 3160 return; 3161 } 3162 3163 #ifdef DIAGNOSTIC 3164 if (copym->m_len < sizeof(*ip6)) { 3165 m_freem(copym); 3166 return; 3167 } 3168 #endif 3169 3170 ip6 = mtod(copym, struct ip6_hdr *); 3171 /* 3172 * clear embedded scope identifiers if necessary. 3173 * in6_clearscope will touch the addresses only when necessary. 3174 */ 3175 in6_clearscope(&ip6->ip6_src); 3176 in6_clearscope(&ip6->ip6_dst); 3177 3178 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL); 3179 } 3180 3181 /* 3182 * Chop IPv6 header off from the payload. 3183 */ 3184 static int 3185 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3186 { 3187 struct mbuf *mh; 3188 struct ip6_hdr *ip6; 3189 3190 ip6 = mtod(m, struct ip6_hdr *); 3191 if (m->m_len > sizeof(*ip6)) { 3192 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3193 if (mh == 0) { 3194 m_freem(m); 3195 return ENOBUFS; 3196 } 3197 M_MOVE_PKTHDR(mh, m); 3198 MH_ALIGN(mh, sizeof(*ip6)); 3199 m->m_len -= sizeof(*ip6); 3200 m->m_data += sizeof(*ip6); 3201 mh->m_next = m; 3202 m = mh; 3203 m->m_len = sizeof(*ip6); 3204 bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6)); 3205 } 3206 exthdrs->ip6e_ip6 = m; 3207 return 0; 3208 } 3209 3210 /* 3211 * Compute IPv6 extension header length. 3212 */ 3213 int 3214 ip6_optlen(struct in6pcb *in6p) 3215 { 3216 int len; 3217 3218 if (!in6p->in6p_outputopts) 3219 return 0; 3220 3221 len = 0; 3222 #define elen(x) \ 3223 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3224 3225 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3226 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3227 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3228 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3229 return len; 3230 #undef elen 3231 } 3232