1 /* $NetBSD: ip6_output.c,v 1.17 2000/03/01 12:49:46 itojun Exp $ */ 2 3 /* 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1982, 1986, 1988, 1990, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. All advertising materials mentioning features or use of this software 45 * must display the following acknowledgement: 46 * This product includes software developed by the University of 47 * California, Berkeley and its contributors. 48 * 4. Neither the name of the University nor the names of its contributors 49 * may be used to endorse or promote products derived from this software 50 * without specific prior written permission. 51 * 52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 62 * SUCH DAMAGE. 63 * 64 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 65 */ 66 67 #include "opt_inet.h" 68 #include "opt_ipsec.h" 69 #include "opt_pfil_hooks.h" 70 71 #include <sys/param.h> 72 #include <sys/malloc.h> 73 #include <sys/mbuf.h> 74 #include <sys/errno.h> 75 #include <sys/protosw.h> 76 #include <sys/socket.h> 77 #include <sys/socketvar.h> 78 #include <sys/systm.h> 79 #include <sys/proc.h> 80 81 #include <net/if.h> 82 #include <net/route.h> 83 #ifdef PFIL_HOOKS 84 #include <net/pfil.h> 85 #endif 86 87 #include <netinet/in.h> 88 #include <netinet/in_var.h> 89 #include <netinet/ip6.h> 90 #include <netinet/icmp6.h> 91 #include <netinet6/ip6_var.h> 92 #include <netinet6/in6_pcb.h> 93 #include <netinet6/nd6.h> 94 95 #ifdef IPSEC 96 #include <netinet6/ipsec.h> 97 #include <netkey/key.h> 98 #include <netkey/key_debug.h> 99 #endif /* IPSEC */ 100 101 #include "loop.h" 102 103 #include <net/net_osdep.h> 104 105 #ifdef IPV6FIREWALL 106 #include <netinet6/ip6_fw.h> 107 #endif 108 109 struct ip6_exthdrs { 110 struct mbuf *ip6e_ip6; 111 struct mbuf *ip6e_hbh; 112 struct mbuf *ip6e_dest1; 113 struct mbuf *ip6e_rthdr; 114 struct mbuf *ip6e_dest2; 115 }; 116 117 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 118 struct socket *)); 119 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 120 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 121 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 122 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 123 struct ip6_frag **)); 124 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 125 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 126 127 extern struct ifnet **ifindex2ifnet; 128 extern struct ifnet loif[NLOOP]; 129 130 /* 131 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 132 * header (with pri, len, nxt, hlim, src, dst). 133 * This function may modify ver and hlim only. 134 * The mbuf chain containing the packet will be freed. 135 * The mbuf opt, if present, will not be freed. 136 */ 137 int 138 ip6_output(m0, opt, ro, flags, im6o, ifpp) 139 struct mbuf *m0; 140 struct ip6_pktopts *opt; 141 struct route_in6 *ro; 142 int flags; 143 struct ip6_moptions *im6o; 144 struct ifnet **ifpp; /* XXX: just for statistics */ 145 { 146 struct ip6_hdr *ip6, *mhip6; 147 struct ifnet *ifp; 148 struct mbuf *m = m0; 149 int hlen, tlen, len, off; 150 struct route_in6 ip6route; 151 struct sockaddr_in6 *dst; 152 int error = 0; 153 struct in6_ifaddr *ia; 154 u_long mtu; 155 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 156 struct ip6_exthdrs exthdrs; 157 struct in6_addr finaldst; 158 struct route_in6 *ro_pmtu = NULL; 159 int hdrsplit = 0; 160 int needipsec = 0; 161 #ifdef PFIL_HOOKS 162 struct packet_filter_hook *pfh; 163 struct mbuf *m1; 164 int rv; 165 #endif /* PFIL_HOOKS */ 166 #ifdef IPSEC 167 int needipsectun = 0; 168 struct socket *so; 169 struct secpolicy *sp = NULL; 170 171 /* for AH processing. stupid to have "socket" variable in IP layer... */ 172 so = ipsec_getsocket(m); 173 ipsec_setsocket(m, NULL); 174 ip6 = mtod(m, struct ip6_hdr *); 175 #endif /* IPSEC */ 176 177 #define MAKE_EXTHDR(hp,mp) \ 178 { \ 179 if (hp) { \ 180 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 181 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 182 ((eh)->ip6e_len + 1) << 3); \ 183 if (error) \ 184 goto freehdrs; \ 185 } \ 186 } 187 188 bzero(&exthdrs, sizeof(exthdrs)); 189 if (opt) { 190 /* Hop-by-Hop options header */ 191 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 192 /* Destination options header(1st part) */ 193 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 194 /* Routing header */ 195 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 196 /* Destination options header(2nd part) */ 197 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 198 } 199 200 #ifdef IPSEC 201 /* get a security policy for this packet */ 202 if (so == NULL) 203 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 204 else 205 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 206 207 if (sp == NULL) { 208 ipsec6stat.out_inval++; 209 goto bad; 210 } 211 212 error = 0; 213 214 /* check policy */ 215 switch (sp->policy) { 216 case IPSEC_POLICY_DISCARD: 217 /* 218 * This packet is just discarded. 219 */ 220 ipsec6stat.out_polvio++; 221 goto bad; 222 223 case IPSEC_POLICY_BYPASS: 224 case IPSEC_POLICY_NONE: 225 /* no need to do IPsec. */ 226 needipsec = 0; 227 break; 228 229 case IPSEC_POLICY_IPSEC: 230 if (sp->req == NULL) { 231 /* XXX should be panic ? */ 232 printf("ip6_output: No IPsec request specified.\n"); 233 error = EINVAL; 234 goto bad; 235 } 236 needipsec = 1; 237 break; 238 239 case IPSEC_POLICY_ENTRUST: 240 default: 241 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 242 } 243 #endif /* IPSEC */ 244 245 /* 246 * Calculate the total length of the extension header chain. 247 * Keep the length of the unfragmentable part for fragmentation. 248 */ 249 optlen = 0; 250 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 251 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 252 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 253 unfragpartlen = optlen + sizeof(struct ip6_hdr); 254 /* NOTE: we don't add AH/ESP length here. do that later. */ 255 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 256 257 /* 258 * If we need IPsec, or there is at least one extension header, 259 * separate IP6 header from the payload. 260 */ 261 if ((needipsec || optlen) && !hdrsplit) { 262 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 263 m = NULL; 264 goto freehdrs; 265 } 266 m = exthdrs.ip6e_ip6; 267 hdrsplit++; 268 } 269 270 /* adjust pointer */ 271 ip6 = mtod(m, struct ip6_hdr *); 272 273 /* adjust mbuf packet header length */ 274 m->m_pkthdr.len += optlen; 275 plen = m->m_pkthdr.len - sizeof(*ip6); 276 277 /* If this is a jumbo payload, insert a jumbo payload option. */ 278 if (plen > IPV6_MAXPACKET) { 279 if (!hdrsplit) { 280 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 281 m = NULL; 282 goto freehdrs; 283 } 284 m = exthdrs.ip6e_ip6; 285 hdrsplit++; 286 } 287 /* adjust pointer */ 288 ip6 = mtod(m, struct ip6_hdr *); 289 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 290 goto freehdrs; 291 ip6->ip6_plen = 0; 292 } else 293 ip6->ip6_plen = htons(plen); 294 295 /* 296 * Concatenate headers and fill in next header fields. 297 * Here we have, on "m" 298 * IPv6 payload 299 * and we insert headers accordingly. Finally, we should be getting: 300 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 301 * 302 * during the header composing process, "m" points to IPv6 header. 303 * "mprev" points to an extension header prior to esp. 304 */ 305 { 306 u_char *nexthdrp = &ip6->ip6_nxt; 307 struct mbuf *mprev = m; 308 309 /* 310 * we treat dest2 specially. this makes IPsec processing 311 * much easier. 312 * 313 * result: IPv6 dest2 payload 314 * m and mprev will point to IPv6 header. 315 */ 316 if (exthdrs.ip6e_dest2) { 317 if (!hdrsplit) 318 panic("assumption failed: hdr not split"); 319 exthdrs.ip6e_dest2->m_next = m->m_next; 320 m->m_next = exthdrs.ip6e_dest2; 321 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 322 ip6->ip6_nxt = IPPROTO_DSTOPTS; 323 } 324 325 #define MAKE_CHAIN(m,mp,p,i)\ 326 {\ 327 if (m) {\ 328 if (!hdrsplit) \ 329 panic("assumption failed: hdr not split"); \ 330 *mtod((m), u_char *) = *(p);\ 331 *(p) = (i);\ 332 p = mtod((m), u_char *);\ 333 (m)->m_next = (mp)->m_next;\ 334 (mp)->m_next = (m);\ 335 (mp) = (m);\ 336 }\ 337 } 338 /* 339 * result: IPv6 hbh dest1 rthdr dest2 payload 340 * m will point to IPv6 header. mprev will point to the 341 * extension header prior to dest2 (rthdr in the above case). 342 */ 343 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, 344 nexthdrp, IPPROTO_HOPOPTS); 345 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, 346 nexthdrp, IPPROTO_DSTOPTS); 347 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, 348 nexthdrp, IPPROTO_ROUTING); 349 350 #ifdef IPSEC 351 if (!needipsec) 352 goto skip_ipsec2; 353 354 /* 355 * pointers after IPsec headers are not valid any more. 356 * other pointers need a great care too. 357 * (IPsec routines should not mangle mbufs prior to AH/ESP) 358 */ 359 exthdrs.ip6e_dest2 = NULL; 360 361 { 362 struct ip6_rthdr *rh = NULL; 363 int segleft_org = 0; 364 struct ipsec_output_state state; 365 366 if (exthdrs.ip6e_rthdr) { 367 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 368 segleft_org = rh->ip6r_segleft; 369 rh->ip6r_segleft = 0; 370 } 371 372 bzero(&state, sizeof(state)); 373 state.m = m; 374 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 375 &needipsectun); 376 m = state.m; 377 if (error) { 378 /* mbuf is already reclaimed in ipsec6_output_trans. */ 379 m = NULL; 380 switch (error) { 381 case EHOSTUNREACH: 382 case ENETUNREACH: 383 case EMSGSIZE: 384 case ENOBUFS: 385 case ENOMEM: 386 break; 387 default: 388 printf("ip6_output (ipsec): error code %d\n", error); 389 /*fall through*/ 390 case ENOENT: 391 /* don't show these error codes to the user */ 392 error = 0; 393 break; 394 } 395 goto bad; 396 } 397 if (exthdrs.ip6e_rthdr) { 398 /* ah6_output doesn't modify mbuf chain */ 399 rh->ip6r_segleft = segleft_org; 400 } 401 } 402 skip_ipsec2:; 403 #endif 404 } 405 406 /* 407 * If there is a routing header, replace destination address field 408 * with the first hop of the routing header. 409 */ 410 if (exthdrs.ip6e_rthdr) { 411 struct ip6_rthdr *rh = 412 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 413 struct ip6_rthdr *)); 414 struct ip6_rthdr0 *rh0; 415 416 finaldst = ip6->ip6_dst; 417 switch(rh->ip6r_type) { 418 case IPV6_RTHDR_TYPE_0: 419 rh0 = (struct ip6_rthdr0 *)rh; 420 ip6->ip6_dst = rh0->ip6r0_addr[0]; 421 bcopy((caddr_t)&rh0->ip6r0_addr[1], 422 (caddr_t)&rh0->ip6r0_addr[0], 423 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1) 424 ); 425 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst; 426 break; 427 default: /* is it possible? */ 428 error = EINVAL; 429 goto bad; 430 } 431 } 432 433 /* Source address validation */ 434 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 435 (flags & IPV6_DADOUTPUT) == 0) { 436 error = EOPNOTSUPP; 437 ip6stat.ip6s_badscope++; 438 goto bad; 439 } 440 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 441 error = EOPNOTSUPP; 442 ip6stat.ip6s_badscope++; 443 goto bad; 444 } 445 446 ip6stat.ip6s_localout++; 447 448 /* 449 * Route packet. 450 */ 451 if (ro == 0) { 452 ro = &ip6route; 453 bzero((caddr_t)ro, sizeof(*ro)); 454 } 455 ro_pmtu = ro; 456 if (opt && opt->ip6po_rthdr) 457 ro = &opt->ip6po_route; 458 dst = (struct sockaddr_in6 *)&ro->ro_dst; 459 /* 460 * If there is a cached route, 461 * check that it is to the same destination 462 * and is still up. If not, free it and try again. 463 */ 464 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 465 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 466 RTFREE(ro->ro_rt); 467 ro->ro_rt = (struct rtentry *)0; 468 } 469 if (ro->ro_rt == 0) { 470 bzero(dst, sizeof(*dst)); 471 dst->sin6_family = AF_INET6; 472 dst->sin6_len = sizeof(struct sockaddr_in6); 473 dst->sin6_addr = ip6->ip6_dst; 474 } 475 #ifdef IPSEC 476 if (needipsec && needipsectun) { 477 struct ipsec_output_state state; 478 479 /* 480 * All the extension headers will become inaccessible 481 * (since they can be encrypted). 482 * Don't panic, we need no more updates to extension headers 483 * on inner IPv6 packet (since they are now encapsulated). 484 * 485 * IPv6 [ESP|AH] IPv6 [extension headers] payload 486 */ 487 bzero(&exthdrs, sizeof(exthdrs)); 488 exthdrs.ip6e_ip6 = m; 489 490 bzero(&state, sizeof(state)); 491 state.m = m; 492 state.ro = (struct route *)ro; 493 state.dst = (struct sockaddr *)dst; 494 495 error = ipsec6_output_tunnel(&state, sp, flags); 496 497 m = state.m; 498 ro = (struct route_in6 *)state.ro; 499 dst = (struct sockaddr_in6 *)state.dst; 500 if (error) { 501 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 502 m0 = m = NULL; 503 m = NULL; 504 switch (error) { 505 case EHOSTUNREACH: 506 case ENETUNREACH: 507 case EMSGSIZE: 508 case ENOBUFS: 509 case ENOMEM: 510 break; 511 default: 512 printf("ip6_output (ipsec): error code %d\n", error); 513 /*fall through*/ 514 case ENOENT: 515 /* don't show these error codes to the user */ 516 error = 0; 517 break; 518 } 519 goto bad; 520 } 521 522 exthdrs.ip6e_ip6 = m; 523 } 524 #endif /*IPESC*/ 525 526 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 527 /* Unicast */ 528 529 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 530 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 531 /* xxx 532 * interface selection comes here 533 * if an interface is specified from an upper layer, 534 * ifp must point it. 535 */ 536 if (ro->ro_rt == 0) { 537 /* 538 * NetBSD/OpenBSD always clones routes, if parent is 539 * PRF_CLONING. 540 */ 541 rtalloc((struct route *)ro); 542 } 543 if (ro->ro_rt == 0) { 544 ip6stat.ip6s_noroute++; 545 error = EHOSTUNREACH; 546 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 547 goto bad; 548 } 549 ia = ifatoia6(ro->ro_rt->rt_ifa); 550 ifp = ro->ro_rt->rt_ifp; 551 ro->ro_rt->rt_use++; 552 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 553 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 554 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 555 556 in6_ifstat_inc(ifp, ifs6_out_request); 557 558 /* 559 * Check if there is the outgoing interface conflicts with 560 * the interface specified by ifi6_ifindex(if specified). 561 * Note that loopback interface is always okay. 562 * (this happens when we are sending packet toward my 563 * interface) 564 */ 565 if (opt && opt->ip6po_pktinfo 566 && opt->ip6po_pktinfo->ipi6_ifindex) { 567 if (!(ifp->if_flags & IFF_LOOPBACK) 568 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 569 ip6stat.ip6s_noroute++; 570 in6_ifstat_inc(ifp, ifs6_out_discard); 571 error = EHOSTUNREACH; 572 goto bad; 573 } 574 } 575 576 if (opt && opt->ip6po_hlim != -1) 577 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 578 } else { 579 /* Multicast */ 580 struct in6_multi *in6m; 581 582 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 583 584 /* 585 * See if the caller provided any multicast options 586 */ 587 ifp = NULL; 588 if (im6o != NULL) { 589 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 590 if (im6o->im6o_multicast_ifp != NULL) 591 ifp = im6o->im6o_multicast_ifp; 592 } else 593 ip6->ip6_hlim = ip6_defmcasthlim; 594 595 /* 596 * See if the caller provided the outgoing interface 597 * as an ancillary data. 598 * Boundary check for ifindex is assumed to be already done. 599 */ 600 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 601 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]; 602 603 /* 604 * If the destination is a node-local scope multicast, 605 * the packet should be loop-backed only. 606 */ 607 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 608 /* 609 * If the outgoing interface is already specified, 610 * it should be a loopback interface. 611 */ 612 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 613 ip6stat.ip6s_badscope++; 614 error = ENETUNREACH; /* XXX: better error? */ 615 /* XXX correct ifp? */ 616 in6_ifstat_inc(ifp, ifs6_out_discard); 617 goto bad; 618 } 619 else { 620 ifp = &loif[0]; 621 } 622 } 623 624 if (opt && opt->ip6po_hlim != -1) 625 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 626 627 /* 628 * If caller did not provide an interface lookup a 629 * default in the routing table. This is either a 630 * default for the speicfied group (i.e. a host 631 * route), or a multicast default (a route for the 632 * ``net'' ff00::/8). 633 */ 634 if (ifp == NULL) { 635 if (ro->ro_rt == 0) { 636 ro->ro_rt = rtalloc1((struct sockaddr *) 637 &ro->ro_dst, 0 638 ); 639 } 640 if (ro->ro_rt == 0) { 641 ip6stat.ip6s_noroute++; 642 error = EHOSTUNREACH; 643 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 644 goto bad; 645 } 646 ia = ifatoia6(ro->ro_rt->rt_ifa); 647 ifp = ro->ro_rt->rt_ifp; 648 ro->ro_rt->rt_use++; 649 } 650 651 if ((flags & IPV6_FORWARDING) == 0) 652 in6_ifstat_inc(ifp, ifs6_out_request); 653 in6_ifstat_inc(ifp, ifs6_out_mcast); 654 655 /* 656 * Confirm that the outgoing interface supports multicast. 657 */ 658 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 659 ip6stat.ip6s_noroute++; 660 in6_ifstat_inc(ifp, ifs6_out_discard); 661 error = ENETUNREACH; 662 goto bad; 663 } 664 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 665 if (in6m != NULL && 666 (im6o == NULL || im6o->im6o_multicast_loop)) { 667 /* 668 * If we belong to the destination multicast group 669 * on the outgoing interface, and the caller did not 670 * forbid loopback, loop back a copy. 671 */ 672 ip6_mloopback(ifp, m, dst); 673 } else { 674 /* 675 * If we are acting as a multicast router, perform 676 * multicast forwarding as if the packet had just 677 * arrived on the interface to which we are about 678 * to send. The multicast forwarding function 679 * recursively calls this function, using the 680 * IPV6_FORWARDING flag to prevent infinite recursion. 681 * 682 * Multicasts that are looped back by ip6_mloopback(), 683 * above, will be forwarded by the ip6_input() routine, 684 * if necessary. 685 */ 686 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 687 if (ip6_mforward(ip6, ifp, m) != NULL) { 688 m_freem(m); 689 goto done; 690 } 691 } 692 } 693 /* 694 * Multicasts with a hoplimit of zero may be looped back, 695 * above, but must not be transmitted on a network. 696 * Also, multicasts addressed to the loopback interface 697 * are not sent -- the above call to ip6_mloopback() will 698 * loop back a copy if this host actually belongs to the 699 * destination group on the loopback interface. 700 */ 701 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 702 m_freem(m); 703 goto done; 704 } 705 } 706 707 /* 708 * Fill the outgoing inteface to tell the upper layer 709 * to increment per-interface statistics. 710 */ 711 if (ifpp) 712 *ifpp = ifp; 713 714 /* 715 * Determine path MTU. 716 */ 717 if (ro_pmtu != ro) { 718 /* The first hop and the final destination may differ. */ 719 struct sockaddr_in6 *sin6_fin = 720 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 721 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 722 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, 723 &finaldst))) { 724 RTFREE(ro_pmtu->ro_rt); 725 ro_pmtu->ro_rt = (struct rtentry *)0; 726 } 727 if (ro_pmtu->ro_rt == 0) { 728 bzero(sin6_fin, sizeof(*sin6_fin)); 729 sin6_fin->sin6_family = AF_INET6; 730 sin6_fin->sin6_len = sizeof(struct sockaddr_in6); 731 sin6_fin->sin6_addr = finaldst; 732 733 rtalloc((struct route *)ro_pmtu); 734 } 735 } 736 if (ro_pmtu->ro_rt != NULL) { 737 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu; 738 739 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 740 if (mtu > ifmtu) { 741 /* 742 * The MTU on the route is larger than the MTU on 743 * the interface! This shouldn't happen, unless the 744 * MTU of the interface has been changed after the 745 * interface was brought up. Change the MTU in the 746 * route to match the interface MTU (as long as the 747 * field isn't locked). 748 */ 749 mtu = ifmtu; 750 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 751 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */ 752 } 753 } else { 754 mtu = nd_ifinfo[ifp->if_index].linkmtu; 755 } 756 757 /* 758 * Fake link-local scope-class addresses 759 */ 760 if ((ifp->if_flags & IFF_LOOPBACK) == 0) { 761 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 762 ip6->ip6_src.s6_addr16[1] = 0; 763 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 764 ip6->ip6_dst.s6_addr16[1] = 0; 765 } 766 767 /* 768 * If the outgoing packet contains a hop-by-hop options header, 769 * it must be examined and processed even by the source node. 770 * (RFC 2460, section 4.) 771 */ 772 if (exthdrs.ip6e_hbh) { 773 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, 774 struct ip6_hbh *); 775 u_int32_t dummy1; /* XXX unused */ 776 u_int32_t dummy2; /* XXX unused */ 777 778 /* 779 * XXX: if we have to send an ICMPv6 error to the sender, 780 * we need the M_LOOP flag since icmp6_error() expects 781 * the IPv6 and the hop-by-hop options header are 782 * continuous unless the flag is set. 783 */ 784 m->m_flags |= M_LOOP; 785 m->m_pkthdr.rcvif = ifp; 786 if (ip6_process_hopopts(m, 787 (u_int8_t *)(hbh + 1), 788 ((hbh->ip6h_len + 1) << 3) - 789 sizeof(struct ip6_hbh), 790 &dummy1, &dummy2) < 0) { 791 /* m was already freed at this point */ 792 error = EINVAL;/* better error? */ 793 goto done; 794 } 795 m->m_flags &= ~M_LOOP; /* XXX */ 796 m->m_pkthdr.rcvif = NULL; 797 } 798 799 #ifdef PFIL_HOOKS 800 /* 801 * Run through list of hooks for output packets. 802 */ 803 m1 = m; 804 pfh = pfil_hook_get(PFIL_OUT, &inetsw[ip_protox[IPPROTO_IPV6]].pr_pfh); 805 for (; pfh; pfh = pfh->pfil_link.tqe_next) 806 if (pfh->pfil_func) { 807 rv = pfh->pfil_func(ip6, sizeof(*ip6), ifp, 1, &m1); 808 if (rv) { 809 error = EHOSTUNREACH; 810 goto done; 811 } 812 m = m1; 813 if (m == NULL) 814 goto done; 815 ip6 = mtod(m, struct ip6_hdr *); 816 } 817 #endif /* PFIL_HOOKS */ 818 /* 819 * Send the packet to the outgoing interface. 820 * If necessary, do IPv6 fragmentation before sending. 821 */ 822 tlen = m->m_pkthdr.len; 823 if (tlen <= mtu 824 #ifdef notyet 825 /* 826 * On any link that cannot convey a 1280-octet packet in one piece, 827 * link-specific fragmentation and reassembly must be provided at 828 * a layer below IPv6. [RFC 2460, sec.5] 829 * Thus if the interface has ability of link-level fragmentation, 830 * we can just send the packet even if the packet size is 831 * larger than the link's MTU. 832 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet... 833 */ 834 835 || ifp->if_flags & IFF_FRAGMENTABLE 836 #endif 837 ) 838 { 839 #ifdef IFA_STATS 840 if (IFA_STATS) { 841 struct in6_ifaddr *ia6; 842 ip6 = mtod(m, struct ip6_hdr *); 843 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 844 if (ia6) { 845 ia->ia_ifa.ifa_data.ifad_outbytes += 846 m->m_pkthdr.len; 847 } 848 } 849 #endif 850 #ifdef OLDIP6OUTPUT 851 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, 852 ro->ro_rt); 853 #else 854 error = nd6_output(ifp, m, dst, ro->ro_rt); 855 #endif 856 goto done; 857 } else if (mtu < IPV6_MMTU) { 858 /* 859 * note that path MTU is never less than IPV6_MMTU 860 * (see icmp6_input). 861 */ 862 error = EMSGSIZE; 863 in6_ifstat_inc(ifp, ifs6_out_fragfail); 864 goto bad; 865 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 866 error = EMSGSIZE; 867 in6_ifstat_inc(ifp, ifs6_out_fragfail); 868 goto bad; 869 } else { 870 struct mbuf **mnext, *m_frgpart; 871 struct ip6_frag *ip6f; 872 u_int32_t id = htonl(ip6_id++); 873 u_char nextproto; 874 875 /* 876 * Too large for the destination or interface; 877 * fragment if possible. 878 * Must be able to put at least 8 bytes per fragment. 879 */ 880 hlen = unfragpartlen; 881 if (mtu > IPV6_MAXPACKET) 882 mtu = IPV6_MAXPACKET; 883 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 884 if (len < 8) { 885 error = EMSGSIZE; 886 in6_ifstat_inc(ifp, ifs6_out_fragfail); 887 goto bad; 888 } 889 890 mnext = &m->m_nextpkt; 891 892 /* 893 * Change the next header field of the last header in the 894 * unfragmentable part. 895 */ 896 if (exthdrs.ip6e_rthdr) { 897 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 898 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 899 } 900 else if (exthdrs.ip6e_dest1) { 901 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 902 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 903 } 904 else if (exthdrs.ip6e_hbh) { 905 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 906 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 907 } 908 else { 909 nextproto = ip6->ip6_nxt; 910 ip6->ip6_nxt = IPPROTO_FRAGMENT; 911 } 912 913 /* 914 * Loop through length of segment after first fragment, 915 * make new header and copy data of each part and link onto chain. 916 */ 917 m0 = m; 918 for (off = hlen; off < tlen; off += len) { 919 MGETHDR(m, M_DONTWAIT, MT_HEADER); 920 if (!m) { 921 error = ENOBUFS; 922 ip6stat.ip6s_odropped++; 923 goto sendorfree; 924 } 925 m->m_flags = m0->m_flags & M_COPYFLAGS; 926 *mnext = m; 927 mnext = &m->m_nextpkt; 928 m->m_data += max_linkhdr; 929 mhip6 = mtod(m, struct ip6_hdr *); 930 *mhip6 = *ip6; 931 m->m_len = sizeof(*mhip6); 932 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 933 if (error) { 934 ip6stat.ip6s_odropped++; 935 goto sendorfree; 936 } 937 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 938 if (off + len >= tlen) 939 len = tlen - off; 940 else 941 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 942 mhip6->ip6_plen = htons((u_short)(len + hlen + 943 sizeof(*ip6f) - 944 sizeof(struct ip6_hdr))); 945 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 946 error = ENOBUFS; 947 ip6stat.ip6s_odropped++; 948 goto sendorfree; 949 } 950 m_cat(m, m_frgpart); 951 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 952 m->m_pkthdr.rcvif = (struct ifnet *)0; 953 ip6f->ip6f_reserved = 0; 954 ip6f->ip6f_ident = id; 955 ip6f->ip6f_nxt = nextproto; 956 ip6stat.ip6s_ofragments++; 957 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 958 } 959 960 in6_ifstat_inc(ifp, ifs6_out_fragok); 961 } 962 963 /* 964 * Remove leading garbages. 965 */ 966 sendorfree: 967 m = m0->m_nextpkt; 968 m0->m_nextpkt = 0; 969 m_freem(m0); 970 for (m0 = m; m; m = m0) { 971 m0 = m->m_nextpkt; 972 m->m_nextpkt = 0; 973 if (error == 0) { 974 #ifdef IFA_STATS 975 if (IFA_STATS) { 976 struct in6_ifaddr *ia6; 977 ip6 = mtod(m, struct ip6_hdr *); 978 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 979 if (ia6) { 980 ia->ia_ifa.ifa_data.ifad_outbytes += 981 m->m_pkthdr.len; 982 } 983 } 984 #endif 985 #ifdef OLDIP6OUTPUT 986 error = (*ifp->if_output)(ifp, m, 987 (struct sockaddr *)dst, 988 ro->ro_rt); 989 #else 990 error = nd6_output(ifp, m, dst, ro->ro_rt); 991 #endif 992 } 993 else 994 m_freem(m); 995 } 996 997 if (error == 0) 998 ip6stat.ip6s_fragmented++; 999 1000 done: 1001 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1002 RTFREE(ro->ro_rt); 1003 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1004 RTFREE(ro_pmtu->ro_rt); 1005 } 1006 1007 #ifdef IPSEC 1008 if (sp != NULL) 1009 key_freesp(sp); 1010 #endif /* IPSEC */ 1011 1012 return(error); 1013 1014 freehdrs: 1015 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1016 m_freem(exthdrs.ip6e_dest1); 1017 m_freem(exthdrs.ip6e_rthdr); 1018 m_freem(exthdrs.ip6e_dest2); 1019 /* fall through */ 1020 bad: 1021 m_freem(m); 1022 goto done; 1023 } 1024 1025 static int 1026 ip6_copyexthdr(mp, hdr, hlen) 1027 struct mbuf **mp; 1028 caddr_t hdr; 1029 int hlen; 1030 { 1031 struct mbuf *m; 1032 1033 if (hlen > MCLBYTES) 1034 return(ENOBUFS); /* XXX */ 1035 1036 MGET(m, M_DONTWAIT, MT_DATA); 1037 if (!m) 1038 return(ENOBUFS); 1039 1040 if (hlen > MLEN) { 1041 MCLGET(m, M_DONTWAIT); 1042 if ((m->m_flags & M_EXT) == 0) { 1043 m_free(m); 1044 return(ENOBUFS); 1045 } 1046 } 1047 m->m_len = hlen; 1048 if (hdr) 1049 bcopy(hdr, mtod(m, caddr_t), hlen); 1050 1051 *mp = m; 1052 return(0); 1053 } 1054 1055 /* 1056 * Insert jumbo payload option. 1057 */ 1058 static int 1059 ip6_insert_jumboopt(exthdrs, plen) 1060 struct ip6_exthdrs *exthdrs; 1061 u_int32_t plen; 1062 { 1063 struct mbuf *mopt; 1064 u_char *optbuf; 1065 1066 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1067 1068 /* 1069 * If there is no hop-by-hop options header, allocate new one. 1070 * If there is one but it doesn't have enough space to store the 1071 * jumbo payload option, allocate a cluster to store the whole options. 1072 * Otherwise, use it to store the options. 1073 */ 1074 if (exthdrs->ip6e_hbh == 0) { 1075 MGET(mopt, M_DONTWAIT, MT_DATA); 1076 if (mopt == 0) 1077 return(ENOBUFS); 1078 mopt->m_len = JUMBOOPTLEN; 1079 optbuf = mtod(mopt, u_char *); 1080 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1081 exthdrs->ip6e_hbh = mopt; 1082 } 1083 else { 1084 struct ip6_hbh *hbh; 1085 1086 mopt = exthdrs->ip6e_hbh; 1087 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1088 caddr_t oldoptp = mtod(mopt, caddr_t); 1089 int oldoptlen = mopt->m_len; 1090 1091 if (mopt->m_flags & M_EXT) 1092 return(ENOBUFS); /* XXX */ 1093 MCLGET(mopt, M_DONTWAIT); 1094 if ((mopt->m_flags & M_EXT) == 0) 1095 return(ENOBUFS); 1096 1097 bcopy(oldoptp, mtod(mopt, caddr_t), oldoptlen); 1098 optbuf = mtod(mopt, caddr_t) + oldoptlen; 1099 mopt->m_len = oldoptlen + JUMBOOPTLEN; 1100 } 1101 else { 1102 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1103 mopt->m_len += JUMBOOPTLEN; 1104 } 1105 optbuf[0] = IP6OPT_PADN; 1106 optbuf[1] = 1; 1107 1108 /* 1109 * Adjust the header length according to the pad and 1110 * the jumbo payload option. 1111 */ 1112 hbh = mtod(mopt, struct ip6_hbh *); 1113 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1114 } 1115 1116 /* fill in the option. */ 1117 optbuf[2] = IP6OPT_JUMBO; 1118 optbuf[3] = 4; 1119 *(u_int32_t *)&optbuf[4] = htonl(plen + JUMBOOPTLEN); 1120 1121 /* finally, adjust the packet header length */ 1122 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1123 1124 return(0); 1125 #undef JUMBOOPTLEN 1126 } 1127 1128 /* 1129 * Insert fragment header and copy unfragmentable header portions. 1130 */ 1131 static int 1132 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1133 struct mbuf *m0, *m; 1134 int hlen; 1135 struct ip6_frag **frghdrp; 1136 { 1137 struct mbuf *n, *mlast; 1138 1139 if (hlen > sizeof(struct ip6_hdr)) { 1140 n = m_copym(m0, sizeof(struct ip6_hdr), 1141 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1142 if (n == 0) 1143 return(ENOBUFS); 1144 m->m_next = n; 1145 } 1146 else 1147 n = m; 1148 1149 /* Search for the last mbuf of unfragmentable part. */ 1150 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1151 ; 1152 1153 if ((mlast->m_flags & M_EXT) == 0 && 1154 M_TRAILINGSPACE(mlast) < sizeof(struct ip6_frag)) { 1155 /* use the trailing space of the last mbuf for the fragment hdr */ 1156 *frghdrp = 1157 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1158 mlast->m_len += sizeof(struct ip6_frag); 1159 m->m_pkthdr.len += sizeof(struct ip6_frag); 1160 } 1161 else { 1162 /* allocate a new mbuf for the fragment header */ 1163 struct mbuf *mfrg; 1164 1165 MGET(mfrg, M_DONTWAIT, MT_DATA); 1166 if (mfrg == 0) 1167 return(ENOBUFS); 1168 mfrg->m_len = sizeof(struct ip6_frag); 1169 *frghdrp = mtod(mfrg, struct ip6_frag *); 1170 mlast->m_next = mfrg; 1171 } 1172 1173 return(0); 1174 } 1175 1176 /* 1177 * IP6 socket option processing. 1178 */ 1179 int 1180 ip6_ctloutput(op, so, level, optname, mp) 1181 int op; 1182 struct socket *so; 1183 int level, optname; 1184 struct mbuf **mp; 1185 { 1186 register struct in6pcb *in6p = sotoin6pcb(so); 1187 register struct mbuf *m = *mp; 1188 register int optval = 0; 1189 int error = 0; 1190 struct proc *p = curproc; /* XXX */ 1191 1192 if (level == IPPROTO_IPV6) 1193 switch (op) { 1194 1195 case PRCO_SETOPT: 1196 switch (optname) { 1197 case IPV6_PKTOPTIONS: 1198 return(ip6_pcbopts(&in6p->in6p_outputopts, 1199 m, so)); 1200 case IPV6_HOPOPTS: 1201 case IPV6_DSTOPTS: 1202 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1203 error = EPERM; 1204 break; 1205 } 1206 /* fall through */ 1207 case IPV6_UNICAST_HOPS: 1208 case IPV6_RECVOPTS: 1209 case IPV6_RECVRETOPTS: 1210 case IPV6_RECVDSTADDR: 1211 case IPV6_PKTINFO: 1212 case IPV6_HOPLIMIT: 1213 case IPV6_RTHDR: 1214 case IPV6_CHECKSUM: 1215 case IPV6_FAITH: 1216 #ifndef INET6_BINDV6ONLY 1217 case IPV6_BINDV6ONLY: 1218 #endif 1219 if (!m || m->m_len != sizeof(int)) 1220 error = EINVAL; 1221 else { 1222 optval = *mtod(m, int *); 1223 switch (optname) { 1224 1225 case IPV6_UNICAST_HOPS: 1226 if (optval < -1 || optval >= 256) 1227 error = EINVAL; 1228 else { 1229 /* -1 = kernel default */ 1230 in6p->in6p_hops = optval; 1231 } 1232 break; 1233 #define OPTSET(bit) \ 1234 if (optval) \ 1235 in6p->in6p_flags |= bit; \ 1236 else \ 1237 in6p->in6p_flags &= ~bit; 1238 1239 case IPV6_RECVOPTS: 1240 OPTSET(IN6P_RECVOPTS); 1241 break; 1242 1243 case IPV6_RECVRETOPTS: 1244 OPTSET(IN6P_RECVRETOPTS); 1245 break; 1246 1247 case IPV6_RECVDSTADDR: 1248 OPTSET(IN6P_RECVDSTADDR); 1249 break; 1250 1251 case IPV6_PKTINFO: 1252 OPTSET(IN6P_PKTINFO); 1253 break; 1254 1255 case IPV6_HOPLIMIT: 1256 OPTSET(IN6P_HOPLIMIT); 1257 break; 1258 1259 case IPV6_HOPOPTS: 1260 OPTSET(IN6P_HOPOPTS); 1261 break; 1262 1263 case IPV6_DSTOPTS: 1264 OPTSET(IN6P_DSTOPTS); 1265 break; 1266 1267 case IPV6_RTHDR: 1268 OPTSET(IN6P_RTHDR); 1269 break; 1270 1271 case IPV6_CHECKSUM: 1272 in6p->in6p_cksum = optval; 1273 break; 1274 1275 case IPV6_FAITH: 1276 OPTSET(IN6P_FAITH); 1277 break; 1278 1279 #ifndef INET6_BINDV6ONLY 1280 case IPV6_BINDV6ONLY: 1281 OPTSET(IN6P_BINDV6ONLY); 1282 break; 1283 #endif 1284 } 1285 } 1286 break; 1287 #undef OPTSET 1288 1289 case IPV6_MULTICAST_IF: 1290 case IPV6_MULTICAST_HOPS: 1291 case IPV6_MULTICAST_LOOP: 1292 case IPV6_JOIN_GROUP: 1293 case IPV6_LEAVE_GROUP: 1294 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m); 1295 break; 1296 1297 case IPV6_PORTRANGE: 1298 optval = *mtod(m, int *); 1299 1300 switch (optval) { 1301 case IPV6_PORTRANGE_DEFAULT: 1302 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1303 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1304 break; 1305 1306 case IPV6_PORTRANGE_HIGH: 1307 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1308 in6p->in6p_flags |= IN6P_HIGHPORT; 1309 break; 1310 1311 case IPV6_PORTRANGE_LOW: 1312 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1313 in6p->in6p_flags |= IN6P_LOWPORT; 1314 break; 1315 1316 default: 1317 error = EINVAL; 1318 break; 1319 } 1320 break; 1321 1322 #ifdef IPSEC 1323 case IPV6_IPSEC_POLICY: 1324 { 1325 caddr_t req = NULL; 1326 size_t len = 0; 1327 1328 int priv = 0; 1329 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) 1330 priv = 0; 1331 else 1332 priv = 1; 1333 if (m) { 1334 req = mtod(m, caddr_t); 1335 len = m->m_len; 1336 } 1337 error = ipsec6_set_policy(in6p, 1338 optname, req, len, priv); 1339 } 1340 break; 1341 #endif /* IPSEC */ 1342 1343 default: 1344 error = ENOPROTOOPT; 1345 break; 1346 } 1347 if (m) 1348 (void)m_free(m); 1349 break; 1350 1351 case PRCO_GETOPT: 1352 switch (optname) { 1353 1354 case IPV6_OPTIONS: 1355 case IPV6_RETOPTS: 1356 #if 0 1357 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1358 if (in6p->in6p_options) { 1359 m->m_len = in6p->in6p_options->m_len; 1360 bcopy(mtod(in6p->in6p_options, caddr_t), 1361 mtod(m, caddr_t), 1362 (unsigned)m->m_len); 1363 } else 1364 m->m_len = 0; 1365 break; 1366 #else 1367 error = ENOPROTOOPT; 1368 break; 1369 #endif 1370 1371 case IPV6_PKTOPTIONS: 1372 if (in6p->in6p_options) { 1373 *mp = m_copym(in6p->in6p_options, 0, 1374 M_COPYALL, M_WAIT); 1375 } else { 1376 *mp = m_get(M_WAIT, MT_SOOPTS); 1377 (*mp)->m_len = 0; 1378 } 1379 break; 1380 1381 case IPV6_HOPOPTS: 1382 case IPV6_DSTOPTS: 1383 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1384 error = EPERM; 1385 break; 1386 } 1387 /* fall through */ 1388 case IPV6_UNICAST_HOPS: 1389 case IPV6_RECVOPTS: 1390 case IPV6_RECVRETOPTS: 1391 case IPV6_RECVDSTADDR: 1392 case IPV6_PORTRANGE: 1393 case IPV6_PKTINFO: 1394 case IPV6_HOPLIMIT: 1395 case IPV6_RTHDR: 1396 case IPV6_CHECKSUM: 1397 case IPV6_FAITH: 1398 #ifndef INET6_BINDV6ONLY 1399 case IPV6_BINDV6ONLY: 1400 #endif 1401 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1402 m->m_len = sizeof(int); 1403 switch (optname) { 1404 1405 case IPV6_UNICAST_HOPS: 1406 optval = in6p->in6p_hops; 1407 break; 1408 1409 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0) 1410 1411 case IPV6_RECVOPTS: 1412 optval = OPTBIT(IN6P_RECVOPTS); 1413 break; 1414 1415 case IPV6_RECVRETOPTS: 1416 optval = OPTBIT(IN6P_RECVRETOPTS); 1417 break; 1418 1419 case IPV6_RECVDSTADDR: 1420 optval = OPTBIT(IN6P_RECVDSTADDR); 1421 break; 1422 1423 case IPV6_PORTRANGE: 1424 { 1425 int flags; 1426 flags = in6p->in6p_flags; 1427 if (flags & IN6P_HIGHPORT) 1428 optval = IPV6_PORTRANGE_HIGH; 1429 else if (flags & IN6P_LOWPORT) 1430 optval = IPV6_PORTRANGE_LOW; 1431 else 1432 optval = 0; 1433 break; 1434 } 1435 1436 case IPV6_PKTINFO: 1437 optval = OPTBIT(IN6P_PKTINFO); 1438 break; 1439 1440 case IPV6_HOPLIMIT: 1441 optval = OPTBIT(IN6P_HOPLIMIT); 1442 break; 1443 1444 case IPV6_HOPOPTS: 1445 optval = OPTBIT(IN6P_HOPOPTS); 1446 break; 1447 1448 case IPV6_DSTOPTS: 1449 optval = OPTBIT(IN6P_DSTOPTS); 1450 break; 1451 1452 case IPV6_RTHDR: 1453 optval = OPTBIT(IN6P_RTHDR); 1454 break; 1455 1456 case IPV6_CHECKSUM: 1457 optval = in6p->in6p_cksum; 1458 break; 1459 1460 case IPV6_FAITH: 1461 optval = OPTBIT(IN6P_FAITH); 1462 break; 1463 1464 #ifndef INET6_BINDV6ONLY 1465 case IPV6_BINDV6ONLY: 1466 optval = OPTBIT(IN6P_BINDV6ONLY); 1467 break; 1468 #endif 1469 } 1470 *mtod(m, int *) = optval; 1471 break; 1472 1473 case IPV6_MULTICAST_IF: 1474 case IPV6_MULTICAST_HOPS: 1475 case IPV6_MULTICAST_LOOP: 1476 case IPV6_JOIN_GROUP: 1477 case IPV6_LEAVE_GROUP: 1478 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp); 1479 break; 1480 1481 #ifdef IPSEC 1482 case IPV6_IPSEC_POLICY: 1483 { 1484 caddr_t req = NULL; 1485 size_t len = 0; 1486 1487 if (m) { 1488 req = mtod(m, caddr_t); 1489 len = m->m_len; 1490 } 1491 error = ipsec6_get_policy(in6p, req, len, mp); 1492 break; 1493 } 1494 #endif /* IPSEC */ 1495 1496 default: 1497 error = ENOPROTOOPT; 1498 break; 1499 } 1500 break; 1501 } 1502 else { 1503 error = EINVAL; 1504 if (op == PRCO_SETOPT && *mp) 1505 (void)m_free(*mp); 1506 } 1507 return(error); 1508 } 1509 1510 /* 1511 * Set up IP6 options in pcb for insertion in output packets. 1512 * Store in mbuf with pointer in pcbopt, adding pseudo-option 1513 * with destination address if source routed. 1514 */ 1515 static int 1516 ip6_pcbopts(pktopt, m, so) 1517 struct ip6_pktopts **pktopt; 1518 register struct mbuf *m; 1519 struct socket *so; 1520 { 1521 register struct ip6_pktopts *opt = *pktopt; 1522 int error = 0; 1523 struct proc *p = curproc; /* XXX */ 1524 int priv = 0; 1525 1526 /* turn off any old options. */ 1527 if (opt) { 1528 if (opt->ip6po_m) 1529 (void)m_free(opt->ip6po_m); 1530 } 1531 else 1532 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 1533 *pktopt = 0; 1534 1535 if (!m || m->m_len == 0) { 1536 /* 1537 * Only turning off any previous options. 1538 */ 1539 if (opt) 1540 free(opt, M_IP6OPT); 1541 if (m) 1542 (void)m_free(m); 1543 return(0); 1544 } 1545 1546 /* set options specified by user. */ 1547 if (p && !suser(p->p_ucred, &p->p_acflag)) 1548 priv = 1; 1549 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) { 1550 (void)m_free(m); 1551 return(error); 1552 } 1553 *pktopt = opt; 1554 return(0); 1555 } 1556 1557 /* 1558 * Set the IP6 multicast options in response to user setsockopt(). 1559 */ 1560 static int 1561 ip6_setmoptions(optname, im6op, m) 1562 int optname; 1563 struct ip6_moptions **im6op; 1564 struct mbuf *m; 1565 { 1566 int error = 0; 1567 u_int loop, ifindex; 1568 struct ipv6_mreq *mreq; 1569 struct ifnet *ifp; 1570 struct ip6_moptions *im6o = *im6op; 1571 struct route_in6 ro; 1572 struct sockaddr_in6 *dst; 1573 struct in6_multi_mship *imm; 1574 struct proc *p = curproc; /* XXX */ 1575 1576 if (im6o == NULL) { 1577 /* 1578 * No multicast option buffer attached to the pcb; 1579 * allocate one and initialize to default values. 1580 */ 1581 im6o = (struct ip6_moptions *) 1582 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1583 1584 if (im6o == NULL) 1585 return(ENOBUFS); 1586 *im6op = im6o; 1587 im6o->im6o_multicast_ifp = NULL; 1588 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1589 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1590 LIST_INIT(&im6o->im6o_memberships); 1591 } 1592 1593 switch (optname) { 1594 1595 case IPV6_MULTICAST_IF: 1596 /* 1597 * Select the interface for outgoing multicast packets. 1598 */ 1599 if (m == NULL || m->m_len != sizeof(u_int)) { 1600 error = EINVAL; 1601 break; 1602 } 1603 ifindex = *(mtod(m, u_int *)); 1604 if (ifindex < 0 || if_index < ifindex) { 1605 error = ENXIO; /* XXX EINVAL? */ 1606 break; 1607 } 1608 ifp = ifindex2ifnet[ifindex]; 1609 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1610 error = EADDRNOTAVAIL; 1611 break; 1612 } 1613 im6o->im6o_multicast_ifp = ifp; 1614 break; 1615 1616 case IPV6_MULTICAST_HOPS: 1617 { 1618 /* 1619 * Set the IP6 hoplimit for outgoing multicast packets. 1620 */ 1621 int optval; 1622 if (m == NULL || m->m_len != sizeof(int)) { 1623 error = EINVAL; 1624 break; 1625 } 1626 optval = *(mtod(m, u_int *)); 1627 if (optval < -1 || optval >= 256) 1628 error = EINVAL; 1629 else if (optval == -1) 1630 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1631 else 1632 im6o->im6o_multicast_hlim = optval; 1633 break; 1634 } 1635 1636 case IPV6_MULTICAST_LOOP: 1637 /* 1638 * Set the loopback flag for outgoing multicast packets. 1639 * Must be zero or one. 1640 */ 1641 if (m == NULL || m->m_len != sizeof(u_int) || 1642 (loop = *(mtod(m, u_int *))) > 1) { 1643 error = EINVAL; 1644 break; 1645 } 1646 im6o->im6o_multicast_loop = loop; 1647 break; 1648 1649 case IPV6_JOIN_GROUP: 1650 /* 1651 * Add a multicast group membership. 1652 * Group must be a valid IP6 multicast address. 1653 */ 1654 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1655 error = EINVAL; 1656 break; 1657 } 1658 mreq = mtod(m, struct ipv6_mreq *); 1659 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1660 /* 1661 * We use the unspecified address to specify to accept 1662 * all multicast addresses. Only super user is allowed 1663 * to do this. 1664 */ 1665 if (suser(p->p_ucred, &p->p_acflag)) { 1666 error = EACCES; 1667 break; 1668 } 1669 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1670 error = EINVAL; 1671 break; 1672 } 1673 1674 /* 1675 * If the interface is specified, validate it. 1676 */ 1677 if (mreq->ipv6mr_interface < 0 1678 || if_index < mreq->ipv6mr_interface) { 1679 error = ENXIO; /* XXX EINVAL? */ 1680 break; 1681 } 1682 /* 1683 * If no interface was explicitly specified, choose an 1684 * appropriate one according to the given multicast address. 1685 */ 1686 if (mreq->ipv6mr_interface == 0) { 1687 /* 1688 * If the multicast address is in node-local scope, 1689 * the interface should be a loopback interface. 1690 * Otherwise, look up the routing table for the 1691 * address, and choose the outgoing interface. 1692 * XXX: is it a good approach? 1693 */ 1694 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 1695 ifp = &loif[0]; 1696 } 1697 else { 1698 ro.ro_rt = NULL; 1699 dst = (struct sockaddr_in6 *)&ro.ro_dst; 1700 bzero(dst, sizeof(*dst)); 1701 dst->sin6_len = sizeof(struct sockaddr_in6); 1702 dst->sin6_family = AF_INET6; 1703 dst->sin6_addr = mreq->ipv6mr_multiaddr; 1704 rtalloc((struct route *)&ro); 1705 if (ro.ro_rt == NULL) { 1706 error = EADDRNOTAVAIL; 1707 break; 1708 } 1709 ifp = ro.ro_rt->rt_ifp; 1710 rtfree(ro.ro_rt); 1711 } 1712 } else 1713 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1714 1715 /* 1716 * See if we found an interface, and confirm that it 1717 * supports multicast 1718 */ 1719 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1720 error = EADDRNOTAVAIL; 1721 break; 1722 } 1723 /* 1724 * Put interface index into the multicast address, 1725 * if the address has link-local scope. 1726 */ 1727 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1728 mreq->ipv6mr_multiaddr.s6_addr16[1] 1729 = htons(mreq->ipv6mr_interface); 1730 } 1731 /* 1732 * See if the membership already exists. 1733 */ 1734 for (imm = im6o->im6o_memberships.lh_first; 1735 imm != NULL; imm = imm->i6mm_chain.le_next) 1736 if (imm->i6mm_maddr->in6m_ifp == ifp && 1737 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1738 &mreq->ipv6mr_multiaddr)) 1739 break; 1740 if (imm != NULL) { 1741 error = EADDRINUSE; 1742 break; 1743 } 1744 /* 1745 * Everything looks good; add a new record to the multicast 1746 * address list for the given interface. 1747 */ 1748 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 1749 if (imm == NULL) { 1750 error = ENOBUFS; 1751 break; 1752 } 1753 if ((imm->i6mm_maddr = 1754 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 1755 free(imm, M_IPMADDR); 1756 break; 1757 } 1758 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 1759 break; 1760 1761 case IPV6_LEAVE_GROUP: 1762 /* 1763 * Drop a multicast group membership. 1764 * Group must be a valid IP6 multicast address. 1765 */ 1766 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1767 error = EINVAL; 1768 break; 1769 } 1770 mreq = mtod(m, struct ipv6_mreq *); 1771 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1772 if (suser(p->p_ucred, &p->p_acflag)) { 1773 error = EACCES; 1774 break; 1775 } 1776 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1777 error = EINVAL; 1778 break; 1779 } 1780 /* 1781 * If an interface address was specified, get a pointer 1782 * to its ifnet structure. 1783 */ 1784 if (mreq->ipv6mr_interface < 0 1785 || if_index < mreq->ipv6mr_interface) { 1786 error = ENXIO; /* XXX EINVAL? */ 1787 break; 1788 } 1789 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1790 /* 1791 * Put interface index into the multicast address, 1792 * if the address has link-local scope. 1793 */ 1794 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1795 mreq->ipv6mr_multiaddr.s6_addr16[1] 1796 = htons(mreq->ipv6mr_interface); 1797 } 1798 /* 1799 * Find the membership in the membership list. 1800 */ 1801 for (imm = im6o->im6o_memberships.lh_first; 1802 imm != NULL; imm = imm->i6mm_chain.le_next) { 1803 if ((ifp == NULL || 1804 imm->i6mm_maddr->in6m_ifp == ifp) && 1805 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1806 &mreq->ipv6mr_multiaddr)) 1807 break; 1808 } 1809 if (imm == NULL) { 1810 /* Unable to resolve interface */ 1811 error = EADDRNOTAVAIL; 1812 break; 1813 } 1814 /* 1815 * Give up the multicast address record to which the 1816 * membership points. 1817 */ 1818 LIST_REMOVE(imm, i6mm_chain); 1819 in6_delmulti(imm->i6mm_maddr); 1820 free(imm, M_IPMADDR); 1821 break; 1822 1823 default: 1824 error = EOPNOTSUPP; 1825 break; 1826 } 1827 1828 /* 1829 * If all options have default values, no need to keep the mbuf. 1830 */ 1831 if (im6o->im6o_multicast_ifp == NULL && 1832 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 1833 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 1834 im6o->im6o_memberships.lh_first == NULL) { 1835 free(*im6op, M_IPMOPTS); 1836 *im6op = NULL; 1837 } 1838 1839 return(error); 1840 } 1841 1842 /* 1843 * Return the IP6 multicast options in response to user getsockopt(). 1844 */ 1845 static int 1846 ip6_getmoptions(optname, im6o, mp) 1847 int optname; 1848 register struct ip6_moptions *im6o; 1849 register struct mbuf **mp; 1850 { 1851 u_int *hlim, *loop, *ifindex; 1852 1853 *mp = m_get(M_WAIT, MT_SOOPTS); 1854 1855 switch (optname) { 1856 1857 case IPV6_MULTICAST_IF: 1858 ifindex = mtod(*mp, u_int *); 1859 (*mp)->m_len = sizeof(u_int); 1860 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 1861 *ifindex = 0; 1862 else 1863 *ifindex = im6o->im6o_multicast_ifp->if_index; 1864 return(0); 1865 1866 case IPV6_MULTICAST_HOPS: 1867 hlim = mtod(*mp, u_int *); 1868 (*mp)->m_len = sizeof(u_int); 1869 if (im6o == NULL) 1870 *hlim = ip6_defmcasthlim; 1871 else 1872 *hlim = im6o->im6o_multicast_hlim; 1873 return(0); 1874 1875 case IPV6_MULTICAST_LOOP: 1876 loop = mtod(*mp, u_int *); 1877 (*mp)->m_len = sizeof(u_int); 1878 if (im6o == NULL) 1879 *loop = ip6_defmcasthlim; 1880 else 1881 *loop = im6o->im6o_multicast_loop; 1882 return(0); 1883 1884 default: 1885 return(EOPNOTSUPP); 1886 } 1887 } 1888 1889 /* 1890 * Discard the IP6 multicast options. 1891 */ 1892 void 1893 ip6_freemoptions(im6o) 1894 register struct ip6_moptions *im6o; 1895 { 1896 struct in6_multi_mship *imm; 1897 1898 if (im6o == NULL) 1899 return; 1900 1901 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 1902 LIST_REMOVE(imm, i6mm_chain); 1903 if (imm->i6mm_maddr) 1904 in6_delmulti(imm->i6mm_maddr); 1905 free(imm, M_IPMADDR); 1906 } 1907 free(im6o, M_IPMOPTS); 1908 } 1909 1910 /* 1911 * Set IPv6 outgoing packet options based on advanced API. 1912 */ 1913 int 1914 ip6_setpktoptions(control, opt, priv) 1915 struct mbuf *control; 1916 struct ip6_pktopts *opt; 1917 int priv; 1918 { 1919 register struct cmsghdr *cm = 0; 1920 1921 if (control == 0 || opt == 0) 1922 return(EINVAL); 1923 1924 bzero(opt, sizeof(*opt)); 1925 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */ 1926 1927 /* 1928 * XXX: Currently, we assume all the optional information is stored 1929 * in a single mbuf. 1930 */ 1931 if (control->m_next) 1932 return(EINVAL); 1933 1934 opt->ip6po_m = control; 1935 1936 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 1937 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1938 cm = mtod(control, struct cmsghdr *); 1939 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 1940 return(EINVAL); 1941 if (cm->cmsg_level != IPPROTO_IPV6) 1942 continue; 1943 1944 switch(cm->cmsg_type) { 1945 case IPV6_PKTINFO: 1946 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 1947 return(EINVAL); 1948 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 1949 if (opt->ip6po_pktinfo->ipi6_ifindex && 1950 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr)) 1951 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] = 1952 htons(opt->ip6po_pktinfo->ipi6_ifindex); 1953 1954 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index 1955 || opt->ip6po_pktinfo->ipi6_ifindex < 0) { 1956 return(ENXIO); 1957 } 1958 1959 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 1960 struct ifaddr *ia; 1961 struct sockaddr_in6 sin6; 1962 1963 bzero(&sin6, sizeof(sin6)); 1964 sin6.sin6_len = sizeof(sin6); 1965 sin6.sin6_family = AF_INET6; 1966 sin6.sin6_addr = 1967 opt->ip6po_pktinfo->ipi6_addr; 1968 ia = ifa_ifwithaddr(sin6tosa(&sin6)); 1969 if (ia == NULL || 1970 (opt->ip6po_pktinfo->ipi6_ifindex && 1971 (ia->ifa_ifp->if_index != 1972 opt->ip6po_pktinfo->ipi6_ifindex))) { 1973 return(EADDRNOTAVAIL); 1974 } 1975 /* 1976 * Check if the requested source address is 1977 * indeed a unicast address assigned to the 1978 * node. 1979 */ 1980 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr)) 1981 return(EADDRNOTAVAIL); 1982 } 1983 break; 1984 1985 case IPV6_HOPLIMIT: 1986 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 1987 return(EINVAL); 1988 1989 opt->ip6po_hlim = *(int *)CMSG_DATA(cm); 1990 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255) 1991 return(EINVAL); 1992 break; 1993 1994 case IPV6_NEXTHOP: 1995 if (!priv) 1996 return(EPERM); 1997 if (cm->cmsg_len < sizeof(u_char) || 1998 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 1999 return(EINVAL); 2000 2001 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm); 2002 2003 break; 2004 2005 case IPV6_HOPOPTS: 2006 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2007 return(EINVAL); 2008 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm); 2009 if (cm->cmsg_len != 2010 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3)) 2011 return(EINVAL); 2012 break; 2013 2014 case IPV6_DSTOPTS: 2015 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2016 return(EINVAL); 2017 2018 /* 2019 * If there is no routing header yet, the destination 2020 * options header should be put on the 1st part. 2021 * Otherwise, the header should be on the 2nd part. 2022 * (See RFC 2460, section 4.1) 2023 */ 2024 if (opt->ip6po_rthdr == NULL) { 2025 opt->ip6po_dest1 = 2026 (struct ip6_dest *)CMSG_DATA(cm); 2027 if (cm->cmsg_len != 2028 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1) 2029 << 3)) 2030 return(EINVAL); 2031 } 2032 else { 2033 opt->ip6po_dest2 = 2034 (struct ip6_dest *)CMSG_DATA(cm); 2035 if (cm->cmsg_len != 2036 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) 2037 << 3)) 2038 return(EINVAL); 2039 } 2040 break; 2041 2042 case IPV6_RTHDR: 2043 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2044 return(EINVAL); 2045 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm); 2046 if (cm->cmsg_len != 2047 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3)) 2048 return(EINVAL); 2049 switch(opt->ip6po_rthdr->ip6r_type) { 2050 case IPV6_RTHDR_TYPE_0: 2051 if (opt->ip6po_rthdr->ip6r_segleft == 0) 2052 return(EINVAL); 2053 break; 2054 default: 2055 return(EINVAL); 2056 } 2057 break; 2058 2059 default: 2060 return(ENOPROTOOPT); 2061 } 2062 } 2063 2064 return(0); 2065 } 2066 2067 /* 2068 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2069 * packet to the input queue of a specified interface. Note that this 2070 * calls the output routine of the loopback "driver", but with an interface 2071 * pointer that might NOT be &loif -- easier than replicating that code here. 2072 */ 2073 void 2074 ip6_mloopback(ifp, m, dst) 2075 struct ifnet *ifp; 2076 register struct mbuf *m; 2077 register struct sockaddr_in6 *dst; 2078 { 2079 struct mbuf *copym; 2080 2081 copym = m_copy(m, 0, M_COPYALL); 2082 if (copym != NULL) 2083 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL); 2084 } 2085 2086 /* 2087 * Chop IPv6 header off from the payload. 2088 */ 2089 static int 2090 ip6_splithdr(m, exthdrs) 2091 struct mbuf *m; 2092 struct ip6_exthdrs *exthdrs; 2093 { 2094 struct mbuf *mh; 2095 struct ip6_hdr *ip6; 2096 2097 ip6 = mtod(m, struct ip6_hdr *); 2098 if (m->m_len > sizeof(*ip6)) { 2099 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2100 if (mh == 0) { 2101 m_freem(m); 2102 return ENOBUFS; 2103 } 2104 M_COPY_PKTHDR(mh, m); 2105 MH_ALIGN(mh, sizeof(*ip6)); 2106 m->m_flags &= ~M_PKTHDR; 2107 m->m_len -= sizeof(*ip6); 2108 m->m_data += sizeof(*ip6); 2109 mh->m_next = m; 2110 m = mh; 2111 m->m_len = sizeof(*ip6); 2112 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2113 } 2114 exthdrs->ip6e_ip6 = m; 2115 return 0; 2116 } 2117 2118 /* 2119 * Compute IPv6 extension header length. 2120 */ 2121 int 2122 ip6_optlen(in6p) 2123 struct in6pcb *in6p; 2124 { 2125 int len; 2126 2127 if (!in6p->in6p_outputopts) 2128 return 0; 2129 2130 len = 0; 2131 #define elen(x) \ 2132 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2133 2134 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2135 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2136 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2137 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2138 return len; 2139 #undef elen 2140 } 2141