xref: /netbsd-src/sys/netinet6/ip6_output.c (revision 80d9064ac03cbb6a4174695f0d5b237c8766d3d0)
1 /*	$NetBSD: ip6_output.c,v 1.158 2014/08/16 17:27:09 maxv Exp $	*/
2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.158 2014/08/16 17:27:09 maxv Exp $");
66 
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70 
71 #include <sys/param.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/errno.h>
75 #include <sys/protosw.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80 #include <sys/kauth.h>
81 
82 #include <net/if.h>
83 #include <net/route.h>
84 #include <net/pfil.h>
85 
86 #include <netinet/in.h>
87 #include <netinet/in_var.h>
88 #include <netinet/ip6.h>
89 #include <netinet/icmp6.h>
90 #include <netinet/in_offload.h>
91 #include <netinet/portalgo.h>
92 #include <netinet6/in6_offload.h>
93 #include <netinet6/ip6_var.h>
94 #include <netinet6/ip6_private.h>
95 #include <netinet6/in6_pcb.h>
96 #include <netinet6/nd6.h>
97 #include <netinet6/ip6protosw.h>
98 #include <netinet6/scope6_var.h>
99 
100 #ifdef IPSEC
101 #include <netipsec/ipsec.h>
102 #include <netipsec/ipsec6.h>
103 #include <netipsec/key.h>
104 #include <netipsec/xform.h>
105 #endif
106 
107 
108 #include <net/net_osdep.h>
109 
110 extern pfil_head_t *inet6_pfil_hook;	/* XXX */
111 
112 struct ip6_exthdrs {
113 	struct mbuf *ip6e_ip6;
114 	struct mbuf *ip6e_hbh;
115 	struct mbuf *ip6e_dest1;
116 	struct mbuf *ip6e_rthdr;
117 	struct mbuf *ip6e_dest2;
118 };
119 
120 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
121 	kauth_cred_t, int);
122 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
123 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t,
124 	int, int, int);
125 static int ip6_setmoptions(const struct sockopt *, struct ip6_moptions **);
126 static int ip6_getmoptions(struct sockopt *, struct ip6_moptions *);
127 static int ip6_copyexthdr(struct mbuf **, void *, int);
128 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
129 	struct ip6_frag **);
130 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
131 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
132 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *,
133     const struct in6_addr *, u_long *, int *);
134 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
135 
136 #ifdef RFC2292
137 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *);
138 #endif
139 
140 /*
141  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
142  * header (with pri, len, nxt, hlim, src, dst).
143  * This function may modify ver and hlim only.
144  * The mbuf chain containing the packet will be freed.
145  * The mbuf opt, if present, will not be freed.
146  *
147  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
148  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
149  * which is rt_rmx.rmx_mtu.
150  */
151 int
152 ip6_output(
153     struct mbuf *m0,
154     struct ip6_pktopts *opt,
155     struct route *ro,
156     int flags,
157     struct ip6_moptions *im6o,
158     struct socket *so,
159     struct ifnet **ifpp		/* XXX: just for statistics */
160 )
161 {
162 	struct ip6_hdr *ip6, *mhip6;
163 	struct ifnet *ifp, *origifp;
164 	struct mbuf *m = m0;
165 	int hlen, tlen, len, off;
166 	bool tso;
167 	struct route ip6route;
168 	struct rtentry *rt = NULL;
169 	const struct sockaddr_in6 *dst = NULL;
170 	struct sockaddr_in6 src_sa, dst_sa;
171 	int error = 0;
172 	struct in6_ifaddr *ia = NULL;
173 	u_long mtu;
174 	int alwaysfrag, dontfrag;
175 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
176 	struct ip6_exthdrs exthdrs;
177 	struct in6_addr finaldst, src0, dst0;
178 	u_int32_t zone;
179 	struct route *ro_pmtu = NULL;
180 	int hdrsplit = 0;
181 	int needipsec = 0;
182 #ifdef IPSEC
183 	struct secpolicy *sp = NULL;
184 #endif
185 
186 	memset(&ip6route, 0, sizeof(ip6route));
187 
188 #ifdef  DIAGNOSTIC
189 	if ((m->m_flags & M_PKTHDR) == 0)
190 		panic("ip6_output: no HDR");
191 
192 	if ((m->m_pkthdr.csum_flags &
193 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) {
194 		panic("ip6_output: IPv4 checksum offload flags: %d",
195 		    m->m_pkthdr.csum_flags);
196 	}
197 
198 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) ==
199 	    (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
200 		panic("ip6_output: conflicting checksum offload flags: %d",
201 		    m->m_pkthdr.csum_flags);
202 	}
203 #endif
204 
205 	M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
206 
207 #define MAKE_EXTHDR(hp, mp)						\
208     do {								\
209 	if (hp) {							\
210 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
211 		error = ip6_copyexthdr((mp), (void *)(hp), 		\
212 		    ((eh)->ip6e_len + 1) << 3);				\
213 		if (error)						\
214 			goto freehdrs;					\
215 	}								\
216     } while (/*CONSTCOND*/ 0)
217 
218 	memset(&exthdrs, 0, sizeof(exthdrs));
219 	if (opt) {
220 		/* Hop-by-Hop options header */
221 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
222 		/* Destination options header(1st part) */
223 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
224 		/* Routing header */
225 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
226 		/* Destination options header(2nd part) */
227 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
228 	}
229 
230 	/*
231 	 * Calculate the total length of the extension header chain.
232 	 * Keep the length of the unfragmentable part for fragmentation.
233 	 */
234 	optlen = 0;
235 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
236 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
237 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
238 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
239 	/* NOTE: we don't add AH/ESP length here. do that later. */
240 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
241 
242 #ifdef IPSEC
243 	if (ipsec_used) {
244 		/* Check the security policy (SP) for the packet */
245 
246 		sp = ipsec6_check_policy(m, so, flags, &needipsec, &error);
247 		if (error != 0) {
248 			/*
249 			 * Hack: -EINVAL is used to signal that a packet
250 			 * should be silently discarded.  This is typically
251 			 * because we asked key management for an SA and
252 			 * it was delayed (e.g. kicked up to IKE).
253 			 */
254 			if (error == -EINVAL)
255 				error = 0;
256 			goto freehdrs;
257 		}
258 	}
259 #endif /* IPSEC */
260 
261 
262 	if (needipsec &&
263 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
264 		in6_delayed_cksum(m);
265 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
266 	}
267 
268 
269 	/*
270 	 * If we need IPsec, or there is at least one extension header,
271 	 * separate IP6 header from the payload.
272 	 */
273 	if ((needipsec || optlen) && !hdrsplit) {
274 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
275 			m = NULL;
276 			goto freehdrs;
277 		}
278 		m = exthdrs.ip6e_ip6;
279 		hdrsplit++;
280 	}
281 
282 	/* adjust pointer */
283 	ip6 = mtod(m, struct ip6_hdr *);
284 
285 	/* adjust mbuf packet header length */
286 	m->m_pkthdr.len += optlen;
287 	plen = m->m_pkthdr.len - sizeof(*ip6);
288 
289 	/* If this is a jumbo payload, insert a jumbo payload option. */
290 	if (plen > IPV6_MAXPACKET) {
291 		if (!hdrsplit) {
292 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
293 				m = NULL;
294 				goto freehdrs;
295 			}
296 			m = exthdrs.ip6e_ip6;
297 			hdrsplit++;
298 		}
299 		/* adjust pointer */
300 		ip6 = mtod(m, struct ip6_hdr *);
301 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
302 			goto freehdrs;
303 		optlen += 8; /* XXX JUMBOOPTLEN */
304 		ip6->ip6_plen = 0;
305 	} else
306 		ip6->ip6_plen = htons(plen);
307 
308 	/*
309 	 * Concatenate headers and fill in next header fields.
310 	 * Here we have, on "m"
311 	 *	IPv6 payload
312 	 * and we insert headers accordingly.  Finally, we should be getting:
313 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
314 	 *
315 	 * during the header composing process, "m" points to IPv6 header.
316 	 * "mprev" points to an extension header prior to esp.
317 	 */
318 	{
319 		u_char *nexthdrp = &ip6->ip6_nxt;
320 		struct mbuf *mprev = m;
321 
322 		/*
323 		 * we treat dest2 specially.  this makes IPsec processing
324 		 * much easier.  the goal here is to make mprev point the
325 		 * mbuf prior to dest2.
326 		 *
327 		 * result: IPv6 dest2 payload
328 		 * m and mprev will point to IPv6 header.
329 		 */
330 		if (exthdrs.ip6e_dest2) {
331 			if (!hdrsplit)
332 				panic("assumption failed: hdr not split");
333 			exthdrs.ip6e_dest2->m_next = m->m_next;
334 			m->m_next = exthdrs.ip6e_dest2;
335 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
336 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
337 		}
338 
339 #define MAKE_CHAIN(m, mp, p, i)\
340     do {\
341 	if (m) {\
342 		if (!hdrsplit) \
343 			panic("assumption failed: hdr not split"); \
344 		*mtod((m), u_char *) = *(p);\
345 		*(p) = (i);\
346 		p = mtod((m), u_char *);\
347 		(m)->m_next = (mp)->m_next;\
348 		(mp)->m_next = (m);\
349 		(mp) = (m);\
350 	}\
351     } while (/*CONSTCOND*/ 0)
352 		/*
353 		 * result: IPv6 hbh dest1 rthdr dest2 payload
354 		 * m will point to IPv6 header.  mprev will point to the
355 		 * extension header prior to dest2 (rthdr in the above case).
356 		 */
357 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
358 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
359 		    IPPROTO_DSTOPTS);
360 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
361 		    IPPROTO_ROUTING);
362 
363 		M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
364 		    sizeof(struct ip6_hdr) + optlen);
365 	}
366 
367 	/*
368 	 * If there is a routing header, replace destination address field
369 	 * with the first hop of the routing header.
370 	 */
371 	if (exthdrs.ip6e_rthdr) {
372 		struct ip6_rthdr *rh;
373 		struct ip6_rthdr0 *rh0;
374 		struct in6_addr *addr;
375 		struct sockaddr_in6 sa;
376 
377 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
378 		    struct ip6_rthdr *));
379 		finaldst = ip6->ip6_dst;
380 		switch (rh->ip6r_type) {
381 		case IPV6_RTHDR_TYPE_0:
382 			 rh0 = (struct ip6_rthdr0 *)rh;
383 			 addr = (struct in6_addr *)(rh0 + 1);
384 
385 			 /*
386 			  * construct a sockaddr_in6 form of
387 			  * the first hop.
388 			  *
389 			  * XXX: we may not have enough
390 			  * information about its scope zone;
391 			  * there is no standard API to pass
392 			  * the information from the
393 			  * application.
394 			  */
395 			 sockaddr_in6_init(&sa, addr, 0, 0, 0);
396 			 if ((error = sa6_embedscope(&sa,
397 			     ip6_use_defzone)) != 0) {
398 				 goto bad;
399 			 }
400 			 ip6->ip6_dst = sa.sin6_addr;
401 			 (void)memmove(&addr[0], &addr[1],
402 			     sizeof(struct in6_addr) *
403 			     (rh0->ip6r0_segleft - 1));
404 			 addr[rh0->ip6r0_segleft - 1] = finaldst;
405 			 /* XXX */
406 			 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
407 			 break;
408 		default:	/* is it possible? */
409 			 error = EINVAL;
410 			 goto bad;
411 		}
412 	}
413 
414 	/* Source address validation */
415 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
416 	    (flags & IPV6_UNSPECSRC) == 0) {
417 		error = EOPNOTSUPP;
418 		IP6_STATINC(IP6_STAT_BADSCOPE);
419 		goto bad;
420 	}
421 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
422 		error = EOPNOTSUPP;
423 		IP6_STATINC(IP6_STAT_BADSCOPE);
424 		goto bad;
425 	}
426 
427 	IP6_STATINC(IP6_STAT_LOCALOUT);
428 
429 	/*
430 	 * Route packet.
431 	 */
432 	/* initialize cached route */
433 	if (ro == NULL) {
434 		ro = &ip6route;
435 	}
436 	ro_pmtu = ro;
437 	if (opt && opt->ip6po_rthdr)
438 		ro = &opt->ip6po_route;
439 
440  	/*
441 	 * if specified, try to fill in the traffic class field.
442 	 * do not override if a non-zero value is already set.
443 	 * we check the diffserv field and the ecn field separately.
444 	 */
445 	if (opt && opt->ip6po_tclass >= 0) {
446 		int mask = 0;
447 
448 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
449 			mask |= 0xfc;
450 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
451 			mask |= 0x03;
452 		if (mask != 0)
453 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
454 	}
455 
456 	/* fill in or override the hop limit field, if necessary. */
457 	if (opt && opt->ip6po_hlim != -1)
458 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
459 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
460 		if (im6o != NULL)
461 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
462 		else
463 			ip6->ip6_hlim = ip6_defmcasthlim;
464 	}
465 
466 #ifdef IPSEC
467 	if (needipsec) {
468 		int s = splsoftnet();
469 		error = ipsec6_process_packet(m, sp->req);
470 
471 		/*
472 		 * Preserve KAME behaviour: ENOENT can be returned
473 		 * when an SA acquire is in progress.  Don't propagate
474 		 * this to user-level; it confuses applications.
475 		 * XXX this will go away when the SADB is redone.
476 		 */
477 		if (error == ENOENT)
478 			error = 0;
479 		splx(s);
480 		goto done;
481 	}
482 #endif /* IPSEC */
483 
484 	/* adjust pointer */
485 	ip6 = mtod(m, struct ip6_hdr *);
486 
487 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
488 	if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
489 	    &ifp, &rt, 0)) != 0) {
490 		if (ifp != NULL)
491 			in6_ifstat_inc(ifp, ifs6_out_discard);
492 		goto bad;
493 	}
494 	if (rt == NULL) {
495 		/*
496 		 * If in6_selectroute() does not return a route entry,
497 		 * dst may not have been updated.
498 		 */
499 		error = rtcache_setdst(ro, sin6tosa(&dst_sa));
500 		if (error) {
501 			goto bad;
502 		}
503 	}
504 
505 	/*
506 	 * then rt (for unicast) and ifp must be non-NULL valid values.
507 	 */
508 	if ((flags & IPV6_FORWARDING) == 0) {
509 		/* XXX: the FORWARDING flag can be set for mrouting. */
510 		in6_ifstat_inc(ifp, ifs6_out_request);
511 	}
512 	if (rt != NULL) {
513 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
514 		rt->rt_use++;
515 	}
516 
517 	/*
518 	 * The outgoing interface must be in the zone of source and
519 	 * destination addresses.  We should use ia_ifp to support the
520 	 * case of sending packets to an address of our own.
521 	 */
522 	if (ia != NULL && ia->ia_ifp)
523 		origifp = ia->ia_ifp;
524 	else
525 		origifp = ifp;
526 
527 	src0 = ip6->ip6_src;
528 	if (in6_setscope(&src0, origifp, &zone))
529 		goto badscope;
530 	sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0);
531 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
532 		goto badscope;
533 
534 	dst0 = ip6->ip6_dst;
535 	if (in6_setscope(&dst0, origifp, &zone))
536 		goto badscope;
537 	/* re-initialize to be sure */
538 	sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
539 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
540 		goto badscope;
541 
542 	/* scope check is done. */
543 
544 	if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
545 		if (dst == NULL)
546 			dst = satocsin6(rtcache_getdst(ro));
547 		KASSERT(dst != NULL);
548 	} else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) {
549 		/*
550 		 * The nexthop is explicitly specified by the
551 		 * application.  We assume the next hop is an IPv6
552 		 * address.
553 		 */
554 		dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
555 	} else if ((rt->rt_flags & RTF_GATEWAY))
556 		dst = (struct sockaddr_in6 *)rt->rt_gateway;
557 	else if (dst == NULL)
558 		dst = satocsin6(rtcache_getdst(ro));
559 
560 	/*
561 	 * XXXXXX: original code follows:
562 	 */
563 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
564 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
565 	else {
566 		struct	in6_multi *in6m;
567 
568 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
569 
570 		in6_ifstat_inc(ifp, ifs6_out_mcast);
571 
572 		/*
573 		 * Confirm that the outgoing interface supports multicast.
574 		 */
575 		if (!(ifp->if_flags & IFF_MULTICAST)) {
576 			IP6_STATINC(IP6_STAT_NOROUTE);
577 			in6_ifstat_inc(ifp, ifs6_out_discard);
578 			error = ENETUNREACH;
579 			goto bad;
580 		}
581 
582 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
583 		if (in6m != NULL &&
584 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
585 			/*
586 			 * If we belong to the destination multicast group
587 			 * on the outgoing interface, and the caller did not
588 			 * forbid loopback, loop back a copy.
589 			 */
590 			KASSERT(dst != NULL);
591 			ip6_mloopback(ifp, m, dst);
592 		} else {
593 			/*
594 			 * If we are acting as a multicast router, perform
595 			 * multicast forwarding as if the packet had just
596 			 * arrived on the interface to which we are about
597 			 * to send.  The multicast forwarding function
598 			 * recursively calls this function, using the
599 			 * IPV6_FORWARDING flag to prevent infinite recursion.
600 			 *
601 			 * Multicasts that are looped back by ip6_mloopback(),
602 			 * above, will be forwarded by the ip6_input() routine,
603 			 * if necessary.
604 			 */
605 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
606 				if (ip6_mforward(ip6, ifp, m) != 0) {
607 					m_freem(m);
608 					goto done;
609 				}
610 			}
611 		}
612 		/*
613 		 * Multicasts with a hoplimit of zero may be looped back,
614 		 * above, but must not be transmitted on a network.
615 		 * Also, multicasts addressed to the loopback interface
616 		 * are not sent -- the above call to ip6_mloopback() will
617 		 * loop back a copy if this host actually belongs to the
618 		 * destination group on the loopback interface.
619 		 */
620 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
621 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
622 			m_freem(m);
623 			goto done;
624 		}
625 	}
626 
627 	/*
628 	 * Fill the outgoing inteface to tell the upper layer
629 	 * to increment per-interface statistics.
630 	 */
631 	if (ifpp)
632 		*ifpp = ifp;
633 
634 	/* Determine path MTU. */
635 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
636 	    &alwaysfrag)) != 0)
637 		goto bad;
638 
639 	/*
640 	 * The caller of this function may specify to use the minimum MTU
641 	 * in some cases.
642 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
643 	 * setting.  The logic is a bit complicated; by default, unicast
644 	 * packets will follow path MTU while multicast packets will be sent at
645 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
646 	 * including unicast ones will be sent at the minimum MTU.  Multicast
647 	 * packets will always be sent at the minimum MTU unless
648 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
649 	 * See RFC 3542 for more details.
650 	 */
651 	if (mtu > IPV6_MMTU) {
652 		if ((flags & IPV6_MINMTU))
653 			mtu = IPV6_MMTU;
654 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
655 			mtu = IPV6_MMTU;
656 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
657 			 (opt == NULL ||
658 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
659 			mtu = IPV6_MMTU;
660 		}
661 	}
662 
663 	/*
664 	 * clear embedded scope identifiers if necessary.
665 	 * in6_clearscope will touch the addresses only when necessary.
666 	 */
667 	in6_clearscope(&ip6->ip6_src);
668 	in6_clearscope(&ip6->ip6_dst);
669 
670 	/*
671 	 * If the outgoing packet contains a hop-by-hop options header,
672 	 * it must be examined and processed even by the source node.
673 	 * (RFC 2460, section 4.)
674 	 */
675 	if (ip6->ip6_nxt == IPV6_HOPOPTS) {
676 		u_int32_t dummy1; /* XXX unused */
677 		u_int32_t dummy2; /* XXX unused */
678 		int hoff = sizeof(struct ip6_hdr);
679 
680 		if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) {
681 			/* m was already freed at this point */
682 			error = EINVAL;/* better error? */
683 			goto done;
684 		}
685 
686 		ip6 = mtod(m, struct ip6_hdr *);
687 	}
688 
689 	/*
690 	 * Run through list of hooks for output packets.
691 	 */
692 	if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
693 		goto done;
694 	if (m == NULL)
695 		goto done;
696 	ip6 = mtod(m, struct ip6_hdr *);
697 
698 	/*
699 	 * Send the packet to the outgoing interface.
700 	 * If necessary, do IPv6 fragmentation before sending.
701 	 *
702 	 * the logic here is rather complex:
703 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
704 	 * 1-a:	send as is if tlen <= path mtu
705 	 * 1-b:	fragment if tlen > path mtu
706 	 *
707 	 * 2: if user asks us not to fragment (dontfrag == 1)
708 	 * 2-a:	send as is if tlen <= interface mtu
709 	 * 2-b:	error if tlen > interface mtu
710 	 *
711 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
712 	 *	always fragment
713 	 *
714 	 * 4: if dontfrag == 1 && alwaysfrag == 1
715 	 *	error, as we cannot handle this conflicting request
716 	 */
717 	tlen = m->m_pkthdr.len;
718 	tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0;
719 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
720 		dontfrag = 1;
721 	else
722 		dontfrag = 0;
723 
724 	if (dontfrag && alwaysfrag) {	/* case 4 */
725 		/* conflicting request - can't transmit */
726 		error = EMSGSIZE;
727 		goto bad;
728 	}
729 	if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) {	/* case 2-b */
730 		/*
731 		 * Even if the DONTFRAG option is specified, we cannot send the
732 		 * packet when the data length is larger than the MTU of the
733 		 * outgoing interface.
734 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
735 		 * well as returning an error code (the latter is not described
736 		 * in the API spec.)
737 		 */
738 		u_int32_t mtu32;
739 		struct ip6ctlparam ip6cp;
740 
741 		mtu32 = (u_int32_t)mtu;
742 		memset(&ip6cp, 0, sizeof(ip6cp));
743 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
744 		pfctlinput2(PRC_MSGSIZE,
745 		    rtcache_getdst(ro_pmtu), &ip6cp);
746 
747 		error = EMSGSIZE;
748 		goto bad;
749 	}
750 
751 	/*
752 	 * transmit packet without fragmentation
753 	 */
754 	if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) {
755 		/* case 1-a and 2-a */
756 		struct in6_ifaddr *ia6;
757 		int sw_csum;
758 
759 		ip6 = mtod(m, struct ip6_hdr *);
760 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
761 		if (ia6) {
762 			/* Record statistics for this interface address. */
763 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
764 		}
765 
766 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
767 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
768 			if (IN6_NEED_CHECKSUM(ifp,
769 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
770 				in6_delayed_cksum(m);
771 			}
772 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
773 		}
774 
775 		KASSERT(dst != NULL);
776 		if (__predict_true(!tso ||
777 		    (ifp->if_capenable & IFCAP_TSOv6) != 0)) {
778 			error = nd6_output(ifp, origifp, m, dst, rt);
779 		} else {
780 			error = ip6_tso_output(ifp, origifp, m, dst, rt);
781 		}
782 		goto done;
783 	}
784 
785 	if (tso) {
786 		error = EINVAL; /* XXX */
787 		goto bad;
788 	}
789 
790 	/*
791 	 * try to fragment the packet.  case 1-b and 3
792 	 */
793 	if (mtu < IPV6_MMTU) {
794 		/* path MTU cannot be less than IPV6_MMTU */
795 		error = EMSGSIZE;
796 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
797 		goto bad;
798 	} else if (ip6->ip6_plen == 0) {
799 		/* jumbo payload cannot be fragmented */
800 		error = EMSGSIZE;
801 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
802 		goto bad;
803 	} else {
804 		struct mbuf **mnext, *m_frgpart;
805 		struct ip6_frag *ip6f;
806 		u_int32_t id = htonl(ip6_randomid());
807 		u_char nextproto;
808 #if 0				/* see below */
809 		struct ip6ctlparam ip6cp;
810 		u_int32_t mtu32;
811 #endif
812 
813 		/*
814 		 * Too large for the destination or interface;
815 		 * fragment if possible.
816 		 * Must be able to put at least 8 bytes per fragment.
817 		 */
818 		hlen = unfragpartlen;
819 		if (mtu > IPV6_MAXPACKET)
820 			mtu = IPV6_MAXPACKET;
821 
822 #if 0
823 		/*
824 		 * It is believed this code is a leftover from the
825 		 * development of the IPV6_RECVPATHMTU sockopt and
826 		 * associated work to implement RFC3542.
827 		 * It's not entirely clear what the intent of the API
828 		 * is at this point, so disable this code for now.
829 		 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
830 		 * will send notifications if the application requests.
831 		 */
832 
833 		/* Notify a proper path MTU to applications. */
834 		mtu32 = (u_int32_t)mtu;
835 		memset(&ip6cp, 0, sizeof(ip6cp));
836 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
837 		pfctlinput2(PRC_MSGSIZE,
838 		    rtcache_getdst(ro_pmtu), &ip6cp);
839 #endif
840 
841 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
842 		if (len < 8) {
843 			error = EMSGSIZE;
844 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
845 			goto bad;
846 		}
847 
848 		mnext = &m->m_nextpkt;
849 
850 		/*
851 		 * Change the next header field of the last header in the
852 		 * unfragmentable part.
853 		 */
854 		if (exthdrs.ip6e_rthdr) {
855 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
856 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
857 		} else if (exthdrs.ip6e_dest1) {
858 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
859 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
860 		} else if (exthdrs.ip6e_hbh) {
861 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
862 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
863 		} else {
864 			nextproto = ip6->ip6_nxt;
865 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
866 		}
867 
868 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
869 		    != 0) {
870 			if (IN6_NEED_CHECKSUM(ifp,
871 			    m->m_pkthdr.csum_flags &
872 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
873 				in6_delayed_cksum(m);
874 			}
875 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
876 		}
877 
878 		/*
879 		 * Loop through length of segment after first fragment,
880 		 * make new header and copy data of each part and link onto
881 		 * chain.
882 		 */
883 		m0 = m;
884 		for (off = hlen; off < tlen; off += len) {
885 			struct mbuf *mlast;
886 
887 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
888 			if (!m) {
889 				error = ENOBUFS;
890 				IP6_STATINC(IP6_STAT_ODROPPED);
891 				goto sendorfree;
892 			}
893 			m->m_pkthdr.rcvif = NULL;
894 			m->m_flags = m0->m_flags & M_COPYFLAGS;
895 			*mnext = m;
896 			mnext = &m->m_nextpkt;
897 			m->m_data += max_linkhdr;
898 			mhip6 = mtod(m, struct ip6_hdr *);
899 			*mhip6 = *ip6;
900 			m->m_len = sizeof(*mhip6);
901 			/*
902 			 * ip6f must be valid if error is 0.  But how
903 			 * can a compiler be expected to infer this?
904 			 */
905 			ip6f = NULL;
906 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
907 			if (error) {
908 				IP6_STATINC(IP6_STAT_ODROPPED);
909 				goto sendorfree;
910 			}
911 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
912 			if (off + len >= tlen)
913 				len = tlen - off;
914 			else
915 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
916 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
917 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
918 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
919 				error = ENOBUFS;
920 				IP6_STATINC(IP6_STAT_ODROPPED);
921 				goto sendorfree;
922 			}
923 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
924 				;
925 			mlast->m_next = m_frgpart;
926 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
927 			m->m_pkthdr.rcvif = NULL;
928 			ip6f->ip6f_reserved = 0;
929 			ip6f->ip6f_ident = id;
930 			ip6f->ip6f_nxt = nextproto;
931 			IP6_STATINC(IP6_STAT_OFRAGMENTS);
932 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
933 		}
934 
935 		in6_ifstat_inc(ifp, ifs6_out_fragok);
936 	}
937 
938 	/*
939 	 * Remove leading garbages.
940 	 */
941 sendorfree:
942 	m = m0->m_nextpkt;
943 	m0->m_nextpkt = 0;
944 	m_freem(m0);
945 	for (m0 = m; m; m = m0) {
946 		m0 = m->m_nextpkt;
947 		m->m_nextpkt = 0;
948 		if (error == 0) {
949 			struct in6_ifaddr *ia6;
950 			ip6 = mtod(m, struct ip6_hdr *);
951 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
952 			if (ia6) {
953 				/*
954 				 * Record statistics for this interface
955 				 * address.
956 				 */
957 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
958 				    m->m_pkthdr.len;
959 			}
960 			KASSERT(dst != NULL);
961 			error = nd6_output(ifp, origifp, m, dst, rt);
962 		} else
963 			m_freem(m);
964 	}
965 
966 	if (error == 0)
967 		IP6_STATINC(IP6_STAT_FRAGMENTED);
968 
969 done:
970 	rtcache_free(&ip6route);
971 
972 #ifdef IPSEC
973 	if (sp != NULL)
974 		KEY_FREESP(&sp);
975 #endif /* IPSEC */
976 
977 
978 	return (error);
979 
980 freehdrs:
981 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
982 	m_freem(exthdrs.ip6e_dest1);
983 	m_freem(exthdrs.ip6e_rthdr);
984 	m_freem(exthdrs.ip6e_dest2);
985 	/* FALLTHROUGH */
986 bad:
987 	m_freem(m);
988 	goto done;
989 badscope:
990 	IP6_STATINC(IP6_STAT_BADSCOPE);
991 	in6_ifstat_inc(origifp, ifs6_out_discard);
992 	if (error == 0)
993 		error = EHOSTUNREACH; /* XXX */
994 	goto bad;
995 }
996 
997 static int
998 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen)
999 {
1000 	struct mbuf *m;
1001 
1002 	if (hlen > MCLBYTES)
1003 		return (ENOBUFS); /* XXX */
1004 
1005 	MGET(m, M_DONTWAIT, MT_DATA);
1006 	if (!m)
1007 		return (ENOBUFS);
1008 
1009 	if (hlen > MLEN) {
1010 		MCLGET(m, M_DONTWAIT);
1011 		if ((m->m_flags & M_EXT) == 0) {
1012 			m_free(m);
1013 			return (ENOBUFS);
1014 		}
1015 	}
1016 	m->m_len = hlen;
1017 	if (hdr)
1018 		bcopy(hdr, mtod(m, void *), hlen);
1019 
1020 	*mp = m;
1021 	return (0);
1022 }
1023 
1024 /*
1025  * Process a delayed payload checksum calculation.
1026  */
1027 void
1028 in6_delayed_cksum(struct mbuf *m)
1029 {
1030 	uint16_t csum, offset;
1031 
1032 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1033 	KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1034 	KASSERT((m->m_pkthdr.csum_flags
1035 	    & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1036 
1037 	offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1038 	csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1039 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1040 		csum = 0xffff;
1041 	}
1042 
1043 	offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1044 	if ((offset + sizeof(csum)) > m->m_len) {
1045 		m_copyback(m, offset, sizeof(csum), &csum);
1046 	} else {
1047 		*(uint16_t *)(mtod(m, char *) + offset) = csum;
1048 	}
1049 }
1050 
1051 /*
1052  * Insert jumbo payload option.
1053  */
1054 static int
1055 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1056 {
1057 	struct mbuf *mopt;
1058 	u_int8_t *optbuf;
1059 	u_int32_t v;
1060 
1061 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1062 
1063 	/*
1064 	 * If there is no hop-by-hop options header, allocate new one.
1065 	 * If there is one but it doesn't have enough space to store the
1066 	 * jumbo payload option, allocate a cluster to store the whole options.
1067 	 * Otherwise, use it to store the options.
1068 	 */
1069 	if (exthdrs->ip6e_hbh == 0) {
1070 		MGET(mopt, M_DONTWAIT, MT_DATA);
1071 		if (mopt == 0)
1072 			return (ENOBUFS);
1073 		mopt->m_len = JUMBOOPTLEN;
1074 		optbuf = mtod(mopt, u_int8_t *);
1075 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1076 		exthdrs->ip6e_hbh = mopt;
1077 	} else {
1078 		struct ip6_hbh *hbh;
1079 
1080 		mopt = exthdrs->ip6e_hbh;
1081 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1082 			/*
1083 			 * XXX assumption:
1084 			 * - exthdrs->ip6e_hbh is not referenced from places
1085 			 *   other than exthdrs.
1086 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1087 			 */
1088 			int oldoptlen = mopt->m_len;
1089 			struct mbuf *n;
1090 
1091 			/*
1092 			 * XXX: give up if the whole (new) hbh header does
1093 			 * not fit even in an mbuf cluster.
1094 			 */
1095 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1096 				return (ENOBUFS);
1097 
1098 			/*
1099 			 * As a consequence, we must always prepare a cluster
1100 			 * at this point.
1101 			 */
1102 			MGET(n, M_DONTWAIT, MT_DATA);
1103 			if (n) {
1104 				MCLGET(n, M_DONTWAIT);
1105 				if ((n->m_flags & M_EXT) == 0) {
1106 					m_freem(n);
1107 					n = NULL;
1108 				}
1109 			}
1110 			if (!n)
1111 				return (ENOBUFS);
1112 			n->m_len = oldoptlen + JUMBOOPTLEN;
1113 			bcopy(mtod(mopt, void *), mtod(n, void *),
1114 			    oldoptlen);
1115 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
1116 			m_freem(mopt);
1117 			mopt = exthdrs->ip6e_hbh = n;
1118 		} else {
1119 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1120 			mopt->m_len += JUMBOOPTLEN;
1121 		}
1122 		optbuf[0] = IP6OPT_PADN;
1123 		optbuf[1] = 0;
1124 
1125 		/*
1126 		 * Adjust the header length according to the pad and
1127 		 * the jumbo payload option.
1128 		 */
1129 		hbh = mtod(mopt, struct ip6_hbh *);
1130 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1131 	}
1132 
1133 	/* fill in the option. */
1134 	optbuf[2] = IP6OPT_JUMBO;
1135 	optbuf[3] = 4;
1136 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1137 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1138 
1139 	/* finally, adjust the packet header length */
1140 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1141 
1142 	return (0);
1143 #undef JUMBOOPTLEN
1144 }
1145 
1146 /*
1147  * Insert fragment header and copy unfragmentable header portions.
1148  *
1149  * *frghdrp will not be read, and it is guaranteed that either an
1150  * error is returned or that *frghdrp will point to space allocated
1151  * for the fragment header.
1152  */
1153 static int
1154 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1155 	struct ip6_frag **frghdrp)
1156 {
1157 	struct mbuf *n, *mlast;
1158 
1159 	if (hlen > sizeof(struct ip6_hdr)) {
1160 		n = m_copym(m0, sizeof(struct ip6_hdr),
1161 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1162 		if (n == 0)
1163 			return (ENOBUFS);
1164 		m->m_next = n;
1165 	} else
1166 		n = m;
1167 
1168 	/* Search for the last mbuf of unfragmentable part. */
1169 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1170 		;
1171 
1172 	if ((mlast->m_flags & M_EXT) == 0 &&
1173 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1174 		/* use the trailing space of the last mbuf for the fragment hdr */
1175 		*frghdrp = (struct ip6_frag *)(mtod(mlast, char *) +
1176 		    mlast->m_len);
1177 		mlast->m_len += sizeof(struct ip6_frag);
1178 		m->m_pkthdr.len += sizeof(struct ip6_frag);
1179 	} else {
1180 		/* allocate a new mbuf for the fragment header */
1181 		struct mbuf *mfrg;
1182 
1183 		MGET(mfrg, M_DONTWAIT, MT_DATA);
1184 		if (mfrg == 0)
1185 			return (ENOBUFS);
1186 		mfrg->m_len = sizeof(struct ip6_frag);
1187 		*frghdrp = mtod(mfrg, struct ip6_frag *);
1188 		mlast->m_next = mfrg;
1189 	}
1190 
1191 	return (0);
1192 }
1193 
1194 static int
1195 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp,
1196     const struct in6_addr *dst, u_long *mtup, int *alwaysfragp)
1197 {
1198 	struct rtentry *rt;
1199 	u_int32_t mtu = 0;
1200 	int alwaysfrag = 0;
1201 	int error = 0;
1202 
1203 	if (ro_pmtu != ro) {
1204 		union {
1205 			struct sockaddr		dst;
1206 			struct sockaddr_in6	dst6;
1207 		} u;
1208 
1209 		/* The first hop and the final destination may differ. */
1210 		sockaddr_in6_init(&u.dst6, dst, 0, 0, 0);
1211 		rt = rtcache_lookup(ro_pmtu, &u.dst);
1212 	} else
1213 		rt = rtcache_validate(ro_pmtu);
1214 	if (rt != NULL) {
1215 		u_int32_t ifmtu;
1216 
1217 		if (ifp == NULL)
1218 			ifp = rt->rt_ifp;
1219 		ifmtu = IN6_LINKMTU(ifp);
1220 		mtu = rt->rt_rmx.rmx_mtu;
1221 		if (mtu == 0)
1222 			mtu = ifmtu;
1223 		else if (mtu < IPV6_MMTU) {
1224 			/*
1225 			 * RFC2460 section 5, last paragraph:
1226 			 * if we record ICMPv6 too big message with
1227 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1228 			 * or smaller, with fragment header attached.
1229 			 * (fragment header is needed regardless from the
1230 			 * packet size, for translators to identify packets)
1231 			 */
1232 			alwaysfrag = 1;
1233 			mtu = IPV6_MMTU;
1234 		} else if (mtu > ifmtu) {
1235 			/*
1236 			 * The MTU on the route is larger than the MTU on
1237 			 * the interface!  This shouldn't happen, unless the
1238 			 * MTU of the interface has been changed after the
1239 			 * interface was brought up.  Change the MTU in the
1240 			 * route to match the interface MTU (as long as the
1241 			 * field isn't locked).
1242 			 */
1243 			mtu = ifmtu;
1244 			if (!(rt->rt_rmx.rmx_locks & RTV_MTU))
1245 				rt->rt_rmx.rmx_mtu = mtu;
1246 		}
1247 	} else if (ifp) {
1248 		mtu = IN6_LINKMTU(ifp);
1249 	} else
1250 		error = EHOSTUNREACH; /* XXX */
1251 
1252 	*mtup = mtu;
1253 	if (alwaysfragp)
1254 		*alwaysfragp = alwaysfrag;
1255 	return (error);
1256 }
1257 
1258 /*
1259  * IP6 socket option processing.
1260  */
1261 int
1262 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1263 {
1264 	int optdatalen, uproto;
1265 	void *optdata;
1266 	struct in6pcb *in6p = sotoin6pcb(so);
1267 	int error, optval;
1268 	int level, optname;
1269 
1270 	KASSERT(sopt != NULL);
1271 
1272 	level = sopt->sopt_level;
1273 	optname = sopt->sopt_name;
1274 
1275 	error = optval = 0;
1276 	uproto = (int)so->so_proto->pr_protocol;
1277 
1278 	if (level != IPPROTO_IPV6) {
1279 		return ENOPROTOOPT;
1280 	}
1281 	switch (op) {
1282 	case PRCO_SETOPT:
1283 		switch (optname) {
1284 #ifdef RFC2292
1285 		case IPV6_2292PKTOPTIONS:
1286 			error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt);
1287 			break;
1288 #endif
1289 
1290 		/*
1291 		 * Use of some Hop-by-Hop options or some
1292 		 * Destination options, might require special
1293 		 * privilege.  That is, normal applications
1294 		 * (without special privilege) might be forbidden
1295 		 * from setting certain options in outgoing packets,
1296 		 * and might never see certain options in received
1297 		 * packets. [RFC 2292 Section 6]
1298 		 * KAME specific note:
1299 		 *  KAME prevents non-privileged users from sending or
1300 		 *  receiving ANY hbh/dst options in order to avoid
1301 		 *  overhead of parsing options in the kernel.
1302 		 */
1303 		case IPV6_RECVHOPOPTS:
1304 		case IPV6_RECVDSTOPTS:
1305 		case IPV6_RECVRTHDRDSTOPTS:
1306 			error = kauth_authorize_network(kauth_cred_get(),
1307 			    KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP,
1308 			    NULL, NULL, NULL);
1309 			if (error)
1310 				break;
1311 			/* FALLTHROUGH */
1312 		case IPV6_UNICAST_HOPS:
1313 		case IPV6_HOPLIMIT:
1314 		case IPV6_FAITH:
1315 
1316 		case IPV6_RECVPKTINFO:
1317 		case IPV6_RECVHOPLIMIT:
1318 		case IPV6_RECVRTHDR:
1319 		case IPV6_RECVPATHMTU:
1320 		case IPV6_RECVTCLASS:
1321 		case IPV6_V6ONLY:
1322 			error = sockopt_getint(sopt, &optval);
1323 			if (error)
1324 				break;
1325 			switch (optname) {
1326 			case IPV6_UNICAST_HOPS:
1327 				if (optval < -1 || optval >= 256)
1328 					error = EINVAL;
1329 				else {
1330 					/* -1 = kernel default */
1331 					in6p->in6p_hops = optval;
1332 				}
1333 				break;
1334 #define OPTSET(bit) \
1335 do { \
1336 if (optval) \
1337 	in6p->in6p_flags |= (bit); \
1338 else \
1339 	in6p->in6p_flags &= ~(bit); \
1340 } while (/*CONSTCOND*/ 0)
1341 
1342 #ifdef RFC2292
1343 #define OPTSET2292(bit) 			\
1344 do { 						\
1345 in6p->in6p_flags |= IN6P_RFC2292; 	\
1346 if (optval) 				\
1347 	in6p->in6p_flags |= (bit); 	\
1348 else 					\
1349 	in6p->in6p_flags &= ~(bit); 	\
1350 } while (/*CONSTCOND*/ 0)
1351 #endif
1352 
1353 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1354 
1355 			case IPV6_RECVPKTINFO:
1356 #ifdef RFC2292
1357 				/* cannot mix with RFC2292 */
1358 				if (OPTBIT(IN6P_RFC2292)) {
1359 					error = EINVAL;
1360 					break;
1361 				}
1362 #endif
1363 				OPTSET(IN6P_PKTINFO);
1364 				break;
1365 
1366 			case IPV6_HOPLIMIT:
1367 			{
1368 				struct ip6_pktopts **optp;
1369 
1370 #ifdef RFC2292
1371 				/* cannot mix with RFC2292 */
1372 				if (OPTBIT(IN6P_RFC2292)) {
1373 					error = EINVAL;
1374 					break;
1375 				}
1376 #endif
1377 				optp = &in6p->in6p_outputopts;
1378 				error = ip6_pcbopt(IPV6_HOPLIMIT,
1379 						   (u_char *)&optval,
1380 						   sizeof(optval),
1381 						   optp,
1382 						   kauth_cred_get(), uproto);
1383 				break;
1384 			}
1385 
1386 			case IPV6_RECVHOPLIMIT:
1387 #ifdef RFC2292
1388 				/* cannot mix with RFC2292 */
1389 				if (OPTBIT(IN6P_RFC2292)) {
1390 					error = EINVAL;
1391 					break;
1392 				}
1393 #endif
1394 				OPTSET(IN6P_HOPLIMIT);
1395 				break;
1396 
1397 			case IPV6_RECVHOPOPTS:
1398 #ifdef RFC2292
1399 				/* cannot mix with RFC2292 */
1400 				if (OPTBIT(IN6P_RFC2292)) {
1401 					error = EINVAL;
1402 					break;
1403 				}
1404 #endif
1405 				OPTSET(IN6P_HOPOPTS);
1406 				break;
1407 
1408 			case IPV6_RECVDSTOPTS:
1409 #ifdef RFC2292
1410 				/* cannot mix with RFC2292 */
1411 				if (OPTBIT(IN6P_RFC2292)) {
1412 					error = EINVAL;
1413 					break;
1414 				}
1415 #endif
1416 				OPTSET(IN6P_DSTOPTS);
1417 				break;
1418 
1419 			case IPV6_RECVRTHDRDSTOPTS:
1420 #ifdef RFC2292
1421 				/* cannot mix with RFC2292 */
1422 				if (OPTBIT(IN6P_RFC2292)) {
1423 					error = EINVAL;
1424 					break;
1425 				}
1426 #endif
1427 				OPTSET(IN6P_RTHDRDSTOPTS);
1428 				break;
1429 
1430 			case IPV6_RECVRTHDR:
1431 #ifdef RFC2292
1432 				/* cannot mix with RFC2292 */
1433 				if (OPTBIT(IN6P_RFC2292)) {
1434 					error = EINVAL;
1435 					break;
1436 				}
1437 #endif
1438 				OPTSET(IN6P_RTHDR);
1439 				break;
1440 
1441 			case IPV6_FAITH:
1442 				OPTSET(IN6P_FAITH);
1443 				break;
1444 
1445 			case IPV6_RECVPATHMTU:
1446 				/*
1447 				 * We ignore this option for TCP
1448 				 * sockets.
1449 				 * (RFC3542 leaves this case
1450 				 * unspecified.)
1451 				 */
1452 				if (uproto != IPPROTO_TCP)
1453 					OPTSET(IN6P_MTU);
1454 				break;
1455 
1456 			case IPV6_V6ONLY:
1457 				/*
1458 				 * make setsockopt(IPV6_V6ONLY)
1459 				 * available only prior to bind(2).
1460 				 * see ipng mailing list, Jun 22 2001.
1461 				 */
1462 				if (in6p->in6p_lport ||
1463 				    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1464 					error = EINVAL;
1465 					break;
1466 				}
1467 #ifdef INET6_BINDV6ONLY
1468 				if (!optval)
1469 					error = EINVAL;
1470 #else
1471 				OPTSET(IN6P_IPV6_V6ONLY);
1472 #endif
1473 				break;
1474 			case IPV6_RECVTCLASS:
1475 #ifdef RFC2292
1476 				/* cannot mix with RFC2292 XXX */
1477 				if (OPTBIT(IN6P_RFC2292)) {
1478 					error = EINVAL;
1479 					break;
1480 				}
1481 #endif
1482 				OPTSET(IN6P_TCLASS);
1483 				break;
1484 
1485 			}
1486 			break;
1487 
1488 		case IPV6_OTCLASS:
1489 		{
1490 			struct ip6_pktopts **optp;
1491 			u_int8_t tclass;
1492 
1493 			error = sockopt_get(sopt, &tclass, sizeof(tclass));
1494 			if (error)
1495 				break;
1496 			optp = &in6p->in6p_outputopts;
1497 			error = ip6_pcbopt(optname,
1498 					   (u_char *)&tclass,
1499 					   sizeof(tclass),
1500 					   optp,
1501 					   kauth_cred_get(), uproto);
1502 			break;
1503 		}
1504 
1505 		case IPV6_TCLASS:
1506 		case IPV6_DONTFRAG:
1507 		case IPV6_USE_MIN_MTU:
1508 			error = sockopt_getint(sopt, &optval);
1509 			if (error)
1510 				break;
1511 			{
1512 				struct ip6_pktopts **optp;
1513 				optp = &in6p->in6p_outputopts;
1514 				error = ip6_pcbopt(optname,
1515 						   (u_char *)&optval,
1516 						   sizeof(optval),
1517 						   optp,
1518 						   kauth_cred_get(), uproto);
1519 				break;
1520 			}
1521 
1522 #ifdef RFC2292
1523 		case IPV6_2292PKTINFO:
1524 		case IPV6_2292HOPLIMIT:
1525 		case IPV6_2292HOPOPTS:
1526 		case IPV6_2292DSTOPTS:
1527 		case IPV6_2292RTHDR:
1528 			/* RFC 2292 */
1529 			error = sockopt_getint(sopt, &optval);
1530 			if (error)
1531 				break;
1532 
1533 			switch (optname) {
1534 			case IPV6_2292PKTINFO:
1535 				OPTSET2292(IN6P_PKTINFO);
1536 				break;
1537 			case IPV6_2292HOPLIMIT:
1538 				OPTSET2292(IN6P_HOPLIMIT);
1539 				break;
1540 			case IPV6_2292HOPOPTS:
1541 				/*
1542 				 * Check super-user privilege.
1543 				 * See comments for IPV6_RECVHOPOPTS.
1544 				 */
1545 				error =
1546 				    kauth_authorize_network(kauth_cred_get(),
1547 				    KAUTH_NETWORK_IPV6,
1548 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1549 				    NULL, NULL);
1550 				if (error)
1551 					return (error);
1552 				OPTSET2292(IN6P_HOPOPTS);
1553 				break;
1554 			case IPV6_2292DSTOPTS:
1555 				error =
1556 				    kauth_authorize_network(kauth_cred_get(),
1557 				    KAUTH_NETWORK_IPV6,
1558 				    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL,
1559 				    NULL, NULL);
1560 				if (error)
1561 					return (error);
1562 				OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1563 				break;
1564 			case IPV6_2292RTHDR:
1565 				OPTSET2292(IN6P_RTHDR);
1566 				break;
1567 			}
1568 			break;
1569 #endif
1570 		case IPV6_PKTINFO:
1571 		case IPV6_HOPOPTS:
1572 		case IPV6_RTHDR:
1573 		case IPV6_DSTOPTS:
1574 		case IPV6_RTHDRDSTOPTS:
1575 		case IPV6_NEXTHOP: {
1576 			/* new advanced API (RFC3542) */
1577 			void *optbuf;
1578 			int optbuflen;
1579 			struct ip6_pktopts **optp;
1580 
1581 #ifdef RFC2292
1582 			/* cannot mix with RFC2292 */
1583 			if (OPTBIT(IN6P_RFC2292)) {
1584 				error = EINVAL;
1585 				break;
1586 			}
1587 #endif
1588 
1589 			optbuflen = sopt->sopt_size;
1590 			optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT);
1591 			if (optbuf == NULL) {
1592 				error = ENOBUFS;
1593 				break;
1594 			}
1595 
1596 			error = sockopt_get(sopt, optbuf, optbuflen);
1597 			if (error) {
1598 				free(optbuf, M_IP6OPT);
1599 				break;
1600 			}
1601 			optp = &in6p->in6p_outputopts;
1602 			error = ip6_pcbopt(optname, optbuf, optbuflen,
1603 			    optp, kauth_cred_get(), uproto);
1604 
1605 			free(optbuf, M_IP6OPT);
1606 			break;
1607 			}
1608 #undef OPTSET
1609 
1610 		case IPV6_MULTICAST_IF:
1611 		case IPV6_MULTICAST_HOPS:
1612 		case IPV6_MULTICAST_LOOP:
1613 		case IPV6_JOIN_GROUP:
1614 		case IPV6_LEAVE_GROUP:
1615 			error = ip6_setmoptions(sopt, &in6p->in6p_moptions);
1616 			break;
1617 
1618 		case IPV6_PORTRANGE:
1619 			error = sockopt_getint(sopt, &optval);
1620 			if (error)
1621 				break;
1622 
1623 			switch (optval) {
1624 			case IPV6_PORTRANGE_DEFAULT:
1625 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
1626 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1627 				break;
1628 
1629 			case IPV6_PORTRANGE_HIGH:
1630 				in6p->in6p_flags &= ~(IN6P_LOWPORT);
1631 				in6p->in6p_flags |= IN6P_HIGHPORT;
1632 				break;
1633 
1634 			case IPV6_PORTRANGE_LOW:
1635 				in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1636 				in6p->in6p_flags |= IN6P_LOWPORT;
1637 				break;
1638 
1639 			default:
1640 				error = EINVAL;
1641 				break;
1642 			}
1643 			break;
1644 
1645 		case IPV6_PORTALGO:
1646 			error = sockopt_getint(sopt, &optval);
1647 			if (error)
1648 				break;
1649 
1650 			error = portalgo_algo_index_select(
1651 			    (struct inpcb_hdr *)in6p, optval);
1652 			break;
1653 
1654 #if defined(IPSEC)
1655 		case IPV6_IPSEC_POLICY:
1656 			if (ipsec_enabled) {
1657 				error = ipsec6_set_policy(in6p, optname,
1658 				    sopt->sopt_data, sopt->sopt_size,
1659 				    kauth_cred_get());
1660 				break;
1661 			}
1662 			/*FALLTHROUGH*/
1663 #endif /* IPSEC */
1664 
1665 		default:
1666 			error = ENOPROTOOPT;
1667 			break;
1668 		}
1669 		break;
1670 
1671 	case PRCO_GETOPT:
1672 		switch (optname) {
1673 #ifdef RFC2292
1674 		case IPV6_2292PKTOPTIONS:
1675 			/*
1676 			 * RFC3542 (effectively) deprecated the
1677 			 * semantics of the 2292-style pktoptions.
1678 			 * Since it was not reliable in nature (i.e.,
1679 			 * applications had to expect the lack of some
1680 			 * information after all), it would make sense
1681 			 * to simplify this part by always returning
1682 			 * empty data.
1683 			 */
1684 			break;
1685 #endif
1686 
1687 		case IPV6_RECVHOPOPTS:
1688 		case IPV6_RECVDSTOPTS:
1689 		case IPV6_RECVRTHDRDSTOPTS:
1690 		case IPV6_UNICAST_HOPS:
1691 		case IPV6_RECVPKTINFO:
1692 		case IPV6_RECVHOPLIMIT:
1693 		case IPV6_RECVRTHDR:
1694 		case IPV6_RECVPATHMTU:
1695 
1696 		case IPV6_FAITH:
1697 		case IPV6_V6ONLY:
1698 		case IPV6_PORTRANGE:
1699 		case IPV6_RECVTCLASS:
1700 			switch (optname) {
1701 
1702 			case IPV6_RECVHOPOPTS:
1703 				optval = OPTBIT(IN6P_HOPOPTS);
1704 				break;
1705 
1706 			case IPV6_RECVDSTOPTS:
1707 				optval = OPTBIT(IN6P_DSTOPTS);
1708 				break;
1709 
1710 			case IPV6_RECVRTHDRDSTOPTS:
1711 				optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1712 				break;
1713 
1714 			case IPV6_UNICAST_HOPS:
1715 				optval = in6p->in6p_hops;
1716 				break;
1717 
1718 			case IPV6_RECVPKTINFO:
1719 				optval = OPTBIT(IN6P_PKTINFO);
1720 				break;
1721 
1722 			case IPV6_RECVHOPLIMIT:
1723 				optval = OPTBIT(IN6P_HOPLIMIT);
1724 				break;
1725 
1726 			case IPV6_RECVRTHDR:
1727 				optval = OPTBIT(IN6P_RTHDR);
1728 				break;
1729 
1730 			case IPV6_RECVPATHMTU:
1731 				optval = OPTBIT(IN6P_MTU);
1732 				break;
1733 
1734 			case IPV6_FAITH:
1735 				optval = OPTBIT(IN6P_FAITH);
1736 				break;
1737 
1738 			case IPV6_V6ONLY:
1739 				optval = OPTBIT(IN6P_IPV6_V6ONLY);
1740 				break;
1741 
1742 			case IPV6_PORTRANGE:
1743 			    {
1744 				int flags;
1745 				flags = in6p->in6p_flags;
1746 				if (flags & IN6P_HIGHPORT)
1747 					optval = IPV6_PORTRANGE_HIGH;
1748 				else if (flags & IN6P_LOWPORT)
1749 					optval = IPV6_PORTRANGE_LOW;
1750 				else
1751 					optval = 0;
1752 				break;
1753 			    }
1754 			case IPV6_RECVTCLASS:
1755 				optval = OPTBIT(IN6P_TCLASS);
1756 				break;
1757 
1758 			}
1759 			if (error)
1760 				break;
1761 			error = sockopt_setint(sopt, optval);
1762 			break;
1763 
1764 		case IPV6_PATHMTU:
1765 		    {
1766 			u_long pmtu = 0;
1767 			struct ip6_mtuinfo mtuinfo;
1768 			struct route *ro = &in6p->in6p_route;
1769 
1770 			if (!(so->so_state & SS_ISCONNECTED))
1771 				return (ENOTCONN);
1772 			/*
1773 			 * XXX: we dot not consider the case of source
1774 			 * routing, or optional information to specify
1775 			 * the outgoing interface.
1776 			 */
1777 			error = ip6_getpmtu(ro, NULL, NULL,
1778 			    &in6p->in6p_faddr, &pmtu, NULL);
1779 			if (error)
1780 				break;
1781 			if (pmtu > IPV6_MAXPACKET)
1782 				pmtu = IPV6_MAXPACKET;
1783 
1784 			memset(&mtuinfo, 0, sizeof(mtuinfo));
1785 			mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1786 			optdata = (void *)&mtuinfo;
1787 			optdatalen = sizeof(mtuinfo);
1788 			if (optdatalen > MCLBYTES)
1789 				return (EMSGSIZE); /* XXX */
1790 			error = sockopt_set(sopt, optdata, optdatalen);
1791 			break;
1792 		    }
1793 
1794 #ifdef RFC2292
1795 		case IPV6_2292PKTINFO:
1796 		case IPV6_2292HOPLIMIT:
1797 		case IPV6_2292HOPOPTS:
1798 		case IPV6_2292RTHDR:
1799 		case IPV6_2292DSTOPTS:
1800 			switch (optname) {
1801 			case IPV6_2292PKTINFO:
1802 				optval = OPTBIT(IN6P_PKTINFO);
1803 				break;
1804 			case IPV6_2292HOPLIMIT:
1805 				optval = OPTBIT(IN6P_HOPLIMIT);
1806 				break;
1807 			case IPV6_2292HOPOPTS:
1808 				optval = OPTBIT(IN6P_HOPOPTS);
1809 				break;
1810 			case IPV6_2292RTHDR:
1811 				optval = OPTBIT(IN6P_RTHDR);
1812 				break;
1813 			case IPV6_2292DSTOPTS:
1814 				optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1815 				break;
1816 			}
1817 			error = sockopt_setint(sopt, optval);
1818 			break;
1819 #endif
1820 		case IPV6_PKTINFO:
1821 		case IPV6_HOPOPTS:
1822 		case IPV6_RTHDR:
1823 		case IPV6_DSTOPTS:
1824 		case IPV6_RTHDRDSTOPTS:
1825 		case IPV6_NEXTHOP:
1826 		case IPV6_OTCLASS:
1827 		case IPV6_TCLASS:
1828 		case IPV6_DONTFRAG:
1829 		case IPV6_USE_MIN_MTU:
1830 			error = ip6_getpcbopt(in6p->in6p_outputopts,
1831 			    optname, sopt);
1832 			break;
1833 
1834 		case IPV6_MULTICAST_IF:
1835 		case IPV6_MULTICAST_HOPS:
1836 		case IPV6_MULTICAST_LOOP:
1837 		case IPV6_JOIN_GROUP:
1838 		case IPV6_LEAVE_GROUP:
1839 			error = ip6_getmoptions(sopt, in6p->in6p_moptions);
1840 			break;
1841 
1842 		case IPV6_PORTALGO:
1843 			optval = ((struct inpcb_hdr *)in6p)->inph_portalgo;
1844 			error = sockopt_setint(sopt, optval);
1845 			break;
1846 
1847 #if defined(IPSEC)
1848 		case IPV6_IPSEC_POLICY:
1849 			if (ipsec_used) {
1850 				struct mbuf *m = NULL;
1851 
1852 				/*
1853 				 * XXX: this will return EINVAL as sopt is
1854 				 * empty
1855 				 */
1856 				error = ipsec6_get_policy(in6p, sopt->sopt_data,
1857 				    sopt->sopt_size, &m);
1858 				if (!error)
1859 					error = sockopt_setmbuf(sopt, m);
1860 				break;
1861 			}
1862 			/*FALLTHROUGH*/
1863 #endif /* IPSEC */
1864 
1865 		default:
1866 			error = ENOPROTOOPT;
1867 			break;
1868 		}
1869 		break;
1870 	}
1871 	return (error);
1872 }
1873 
1874 int
1875 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1876 {
1877 	int error = 0, optval;
1878 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1879 	struct in6pcb *in6p = sotoin6pcb(so);
1880 	int level, optname;
1881 
1882 	KASSERT(sopt != NULL);
1883 
1884 	level = sopt->sopt_level;
1885 	optname = sopt->sopt_name;
1886 
1887 	if (level != IPPROTO_IPV6) {
1888 		return ENOPROTOOPT;
1889 	}
1890 
1891 	switch (optname) {
1892 	case IPV6_CHECKSUM:
1893 		/*
1894 		 * For ICMPv6 sockets, no modification allowed for checksum
1895 		 * offset, permit "no change" values to help existing apps.
1896 		 *
1897 		 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
1898 		 * for an ICMPv6 socket will fail."  The current
1899 		 * behavior does not meet RFC3542.
1900 		 */
1901 		switch (op) {
1902 		case PRCO_SETOPT:
1903 			error = sockopt_getint(sopt, &optval);
1904 			if (error)
1905 				break;
1906 			if ((optval % 2) != 0) {
1907 				/* the API assumes even offset values */
1908 				error = EINVAL;
1909 			} else if (so->so_proto->pr_protocol ==
1910 			    IPPROTO_ICMPV6) {
1911 				if (optval != icmp6off)
1912 					error = EINVAL;
1913 			} else
1914 				in6p->in6p_cksum = optval;
1915 			break;
1916 
1917 		case PRCO_GETOPT:
1918 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1919 				optval = icmp6off;
1920 			else
1921 				optval = in6p->in6p_cksum;
1922 
1923 			error = sockopt_setint(sopt, optval);
1924 			break;
1925 
1926 		default:
1927 			error = EINVAL;
1928 			break;
1929 		}
1930 		break;
1931 
1932 	default:
1933 		error = ENOPROTOOPT;
1934 		break;
1935 	}
1936 
1937 	return (error);
1938 }
1939 
1940 #ifdef RFC2292
1941 /*
1942  * Set up IP6 options in pcb for insertion in output packets or
1943  * specifying behavior of outgoing packets.
1944  */
1945 static int
1946 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so,
1947     struct sockopt *sopt)
1948 {
1949 	struct ip6_pktopts *opt = *pktopt;
1950 	struct mbuf *m;
1951 	int error = 0;
1952 
1953 	/* turn off any old options. */
1954 	if (opt) {
1955 #ifdef DIAGNOSTIC
1956 	    if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
1957 		opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
1958 		opt->ip6po_rhinfo.ip6po_rhi_rthdr)
1959 		    printf("ip6_pcbopts: all specified options are cleared.\n");
1960 #endif
1961 		ip6_clearpktopts(opt, -1);
1962 	} else {
1963 		opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
1964 		if (opt == NULL)
1965 			return (ENOBUFS);
1966 	}
1967 	*pktopt = NULL;
1968 
1969 	if (sopt == NULL || sopt->sopt_size == 0) {
1970 		/*
1971 		 * Only turning off any previous options, regardless of
1972 		 * whether the opt is just created or given.
1973 		 */
1974 		free(opt, M_IP6OPT);
1975 		return (0);
1976 	}
1977 
1978 	/*  set options specified by user. */
1979 	m = sockopt_getmbuf(sopt);
1980 	if (m == NULL) {
1981 		free(opt, M_IP6OPT);
1982 		return (ENOBUFS);
1983 	}
1984 
1985 	error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(),
1986 	    so->so_proto->pr_protocol);
1987 	m_freem(m);
1988 	if (error != 0) {
1989 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
1990 		free(opt, M_IP6OPT);
1991 		return (error);
1992 	}
1993 	*pktopt = opt;
1994 	return (0);
1995 }
1996 #endif
1997 
1998 /*
1999  * initialize ip6_pktopts.  beware that there are non-zero default values in
2000  * the struct.
2001  */
2002 void
2003 ip6_initpktopts(struct ip6_pktopts *opt)
2004 {
2005 
2006 	memset(opt, 0, sizeof(*opt));
2007 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2008 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2009 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2010 }
2011 
2012 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
2013 static int
2014 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2015     kauth_cred_t cred, int uproto)
2016 {
2017 	struct ip6_pktopts *opt;
2018 
2019 	if (*pktopt == NULL) {
2020 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2021 		    M_NOWAIT);
2022 		if (*pktopt == NULL)
2023 			return (ENOBUFS);
2024 
2025 		ip6_initpktopts(*pktopt);
2026 	}
2027 	opt = *pktopt;
2028 
2029 	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2030 }
2031 
2032 static int
2033 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2034 {
2035 	void *optdata = NULL;
2036 	int optdatalen = 0;
2037 	struct ip6_ext *ip6e;
2038 	int error = 0;
2039 	struct in6_pktinfo null_pktinfo;
2040 	int deftclass = 0, on;
2041 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
2042 
2043 	switch (optname) {
2044 	case IPV6_PKTINFO:
2045 		if (pktopt && pktopt->ip6po_pktinfo)
2046 			optdata = (void *)pktopt->ip6po_pktinfo;
2047 		else {
2048 			/* XXX: we don't have to do this every time... */
2049 			memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2050 			optdata = (void *)&null_pktinfo;
2051 		}
2052 		optdatalen = sizeof(struct in6_pktinfo);
2053 		break;
2054 	case IPV6_OTCLASS:
2055 		/* XXX */
2056 		return (EINVAL);
2057 	case IPV6_TCLASS:
2058 		if (pktopt && pktopt->ip6po_tclass >= 0)
2059 			optdata = (void *)&pktopt->ip6po_tclass;
2060 		else
2061 			optdata = (void *)&deftclass;
2062 		optdatalen = sizeof(int);
2063 		break;
2064 	case IPV6_HOPOPTS:
2065 		if (pktopt && pktopt->ip6po_hbh) {
2066 			optdata = (void *)pktopt->ip6po_hbh;
2067 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2068 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2069 		}
2070 		break;
2071 	case IPV6_RTHDR:
2072 		if (pktopt && pktopt->ip6po_rthdr) {
2073 			optdata = (void *)pktopt->ip6po_rthdr;
2074 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2075 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2076 		}
2077 		break;
2078 	case IPV6_RTHDRDSTOPTS:
2079 		if (pktopt && pktopt->ip6po_dest1) {
2080 			optdata = (void *)pktopt->ip6po_dest1;
2081 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2082 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2083 		}
2084 		break;
2085 	case IPV6_DSTOPTS:
2086 		if (pktopt && pktopt->ip6po_dest2) {
2087 			optdata = (void *)pktopt->ip6po_dest2;
2088 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2089 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2090 		}
2091 		break;
2092 	case IPV6_NEXTHOP:
2093 		if (pktopt && pktopt->ip6po_nexthop) {
2094 			optdata = (void *)pktopt->ip6po_nexthop;
2095 			optdatalen = pktopt->ip6po_nexthop->sa_len;
2096 		}
2097 		break;
2098 	case IPV6_USE_MIN_MTU:
2099 		if (pktopt)
2100 			optdata = (void *)&pktopt->ip6po_minmtu;
2101 		else
2102 			optdata = (void *)&defminmtu;
2103 		optdatalen = sizeof(int);
2104 		break;
2105 	case IPV6_DONTFRAG:
2106 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2107 			on = 1;
2108 		else
2109 			on = 0;
2110 		optdata = (void *)&on;
2111 		optdatalen = sizeof(on);
2112 		break;
2113 	default:		/* should not happen */
2114 #ifdef DIAGNOSTIC
2115 		panic("ip6_getpcbopt: unexpected option\n");
2116 #endif
2117 		return (ENOPROTOOPT);
2118 	}
2119 
2120 	error = sockopt_set(sopt, optdata, optdatalen);
2121 
2122 	return (error);
2123 }
2124 
2125 void
2126 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2127 {
2128 	if (optname == -1 || optname == IPV6_PKTINFO) {
2129 		if (pktopt->ip6po_pktinfo)
2130 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
2131 		pktopt->ip6po_pktinfo = NULL;
2132 	}
2133 	if (optname == -1 || optname == IPV6_HOPLIMIT)
2134 		pktopt->ip6po_hlim = -1;
2135 	if (optname == -1 || optname == IPV6_TCLASS)
2136 		pktopt->ip6po_tclass = -1;
2137 	if (optname == -1 || optname == IPV6_NEXTHOP) {
2138 		rtcache_free(&pktopt->ip6po_nextroute);
2139 		if (pktopt->ip6po_nexthop)
2140 			free(pktopt->ip6po_nexthop, M_IP6OPT);
2141 		pktopt->ip6po_nexthop = NULL;
2142 	}
2143 	if (optname == -1 || optname == IPV6_HOPOPTS) {
2144 		if (pktopt->ip6po_hbh)
2145 			free(pktopt->ip6po_hbh, M_IP6OPT);
2146 		pktopt->ip6po_hbh = NULL;
2147 	}
2148 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2149 		if (pktopt->ip6po_dest1)
2150 			free(pktopt->ip6po_dest1, M_IP6OPT);
2151 		pktopt->ip6po_dest1 = NULL;
2152 	}
2153 	if (optname == -1 || optname == IPV6_RTHDR) {
2154 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2155 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2156 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2157 		rtcache_free(&pktopt->ip6po_route);
2158 	}
2159 	if (optname == -1 || optname == IPV6_DSTOPTS) {
2160 		if (pktopt->ip6po_dest2)
2161 			free(pktopt->ip6po_dest2, M_IP6OPT);
2162 		pktopt->ip6po_dest2 = NULL;
2163 	}
2164 }
2165 
2166 #define PKTOPT_EXTHDRCPY(type) 					\
2167 do {								\
2168 	if (src->type) {					\
2169 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2170 		dst->type = malloc(hlen, M_IP6OPT, canwait);	\
2171 		if (dst->type == NULL)				\
2172 			goto bad;				\
2173 		memcpy(dst->type, src->type, hlen);		\
2174 	}							\
2175 } while (/*CONSTCOND*/ 0)
2176 
2177 static int
2178 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2179 {
2180 	dst->ip6po_hlim = src->ip6po_hlim;
2181 	dst->ip6po_tclass = src->ip6po_tclass;
2182 	dst->ip6po_flags = src->ip6po_flags;
2183 	if (src->ip6po_pktinfo) {
2184 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2185 		    M_IP6OPT, canwait);
2186 		if (dst->ip6po_pktinfo == NULL)
2187 			goto bad;
2188 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2189 	}
2190 	if (src->ip6po_nexthop) {
2191 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2192 		    M_IP6OPT, canwait);
2193 		if (dst->ip6po_nexthop == NULL)
2194 			goto bad;
2195 		memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2196 		    src->ip6po_nexthop->sa_len);
2197 	}
2198 	PKTOPT_EXTHDRCPY(ip6po_hbh);
2199 	PKTOPT_EXTHDRCPY(ip6po_dest1);
2200 	PKTOPT_EXTHDRCPY(ip6po_dest2);
2201 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2202 	return (0);
2203 
2204   bad:
2205 	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2206 	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2207 	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2208 	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2209 	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2210 	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2211 
2212 	return (ENOBUFS);
2213 }
2214 #undef PKTOPT_EXTHDRCPY
2215 
2216 struct ip6_pktopts *
2217 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2218 {
2219 	int error;
2220 	struct ip6_pktopts *dst;
2221 
2222 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2223 	if (dst == NULL)
2224 		return (NULL);
2225 	ip6_initpktopts(dst);
2226 
2227 	if ((error = copypktopts(dst, src, canwait)) != 0) {
2228 		free(dst, M_IP6OPT);
2229 		return (NULL);
2230 	}
2231 
2232 	return (dst);
2233 }
2234 
2235 void
2236 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2237 {
2238 	if (pktopt == NULL)
2239 		return;
2240 
2241 	ip6_clearpktopts(pktopt, -1);
2242 
2243 	free(pktopt, M_IP6OPT);
2244 }
2245 
2246 /*
2247  * Set the IP6 multicast options in response to user setsockopt().
2248  */
2249 static int
2250 ip6_setmoptions(const struct sockopt *sopt, struct ip6_moptions **im6op)
2251 {
2252 	int error = 0;
2253 	u_int loop, ifindex;
2254 	struct ipv6_mreq mreq;
2255 	struct ifnet *ifp;
2256 	struct ip6_moptions *im6o = *im6op;
2257 	struct route ro;
2258 	struct in6_multi_mship *imm;
2259 	struct lwp *l = curlwp;	/* XXX */
2260 
2261 	if (im6o == NULL) {
2262 		/*
2263 		 * No multicast option buffer attached to the pcb;
2264 		 * allocate one and initialize to default values.
2265 		 */
2266 		im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT);
2267 		if (im6o == NULL)
2268 			return (ENOBUFS);
2269 
2270 		*im6op = im6o;
2271 		im6o->im6o_multicast_ifp = NULL;
2272 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2273 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2274 		LIST_INIT(&im6o->im6o_memberships);
2275 	}
2276 
2277 	switch (sopt->sopt_name) {
2278 
2279 	case IPV6_MULTICAST_IF:
2280 		/*
2281 		 * Select the interface for outgoing multicast packets.
2282 		 */
2283 		error = sockopt_get(sopt, &ifindex, sizeof(ifindex));
2284 		if (error != 0)
2285 			break;
2286 
2287 		if (ifindex != 0) {
2288 			if ((ifp = if_byindex(ifindex)) == NULL) {
2289 				error = ENXIO;	/* XXX EINVAL? */
2290 				break;
2291 			}
2292 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2293 				error = EADDRNOTAVAIL;
2294 				break;
2295 			}
2296 		} else
2297 			ifp = NULL;
2298 		im6o->im6o_multicast_ifp = ifp;
2299 		break;
2300 
2301 	case IPV6_MULTICAST_HOPS:
2302 	    {
2303 		/*
2304 		 * Set the IP6 hoplimit for outgoing multicast packets.
2305 		 */
2306 		int optval;
2307 
2308 		error = sockopt_getint(sopt, &optval);
2309 		if (error != 0)
2310 			break;
2311 
2312 		if (optval < -1 || optval >= 256)
2313 			error = EINVAL;
2314 		else if (optval == -1)
2315 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2316 		else
2317 			im6o->im6o_multicast_hlim = optval;
2318 		break;
2319 	    }
2320 
2321 	case IPV6_MULTICAST_LOOP:
2322 		/*
2323 		 * Set the loopback flag for outgoing multicast packets.
2324 		 * Must be zero or one.
2325 		 */
2326 		error = sockopt_get(sopt, &loop, sizeof(loop));
2327 		if (error != 0)
2328 			break;
2329 		if (loop > 1) {
2330 			error = EINVAL;
2331 			break;
2332 		}
2333 		im6o->im6o_multicast_loop = loop;
2334 		break;
2335 
2336 	case IPV6_JOIN_GROUP:
2337 		/*
2338 		 * Add a multicast group membership.
2339 		 * Group must be a valid IP6 multicast address.
2340 		 */
2341 		error = sockopt_get(sopt, &mreq, sizeof(mreq));
2342 		if (error != 0)
2343 			break;
2344 
2345 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq.ipv6mr_multiaddr)) {
2346 			/*
2347 			 * We use the unspecified address to specify to accept
2348 			 * all multicast addresses. Only super user is allowed
2349 			 * to do this.
2350 			 */
2351 			if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_IPV6,
2352 			    KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL))
2353 			{
2354 				error = EACCES;
2355 				break;
2356 			}
2357 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq.ipv6mr_multiaddr)) {
2358 			error = EINVAL;
2359 			break;
2360 		}
2361 
2362 		/*
2363 		 * If no interface was explicitly specified, choose an
2364 		 * appropriate one according to the given multicast address.
2365 		 */
2366 		if (mreq.ipv6mr_interface == 0) {
2367 			struct rtentry *rt;
2368 			union {
2369 				struct sockaddr		dst;
2370 				struct sockaddr_in6	dst6;
2371 			} u;
2372 
2373 			/*
2374 			 * Look up the routing table for the
2375 			 * address, and choose the outgoing interface.
2376 			 *   XXX: is it a good approach?
2377 			 */
2378 			memset(&ro, 0, sizeof(ro));
2379 			sockaddr_in6_init(&u.dst6, &mreq.ipv6mr_multiaddr, 0,
2380 			    0, 0);
2381 			rtcache_setdst(&ro, &u.dst);
2382 			ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
2383 			                                        : NULL;
2384 			rtcache_free(&ro);
2385 		} else {
2386 			/*
2387 			 * If the interface is specified, validate it.
2388 			 */
2389 			if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
2390 				error = ENXIO;	/* XXX EINVAL? */
2391 				break;
2392 			}
2393 		}
2394 
2395 		/*
2396 		 * See if we found an interface, and confirm that it
2397 		 * supports multicast
2398 		 */
2399 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2400 			error = EADDRNOTAVAIL;
2401 			break;
2402 		}
2403 
2404 		if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2405 			error = EADDRNOTAVAIL; /* XXX: should not happen */
2406 			break;
2407 		}
2408 
2409 		/*
2410 		 * See if the membership already exists.
2411 		 */
2412 		for (imm = im6o->im6o_memberships.lh_first;
2413 		     imm != NULL; imm = imm->i6mm_chain.le_next)
2414 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
2415 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2416 			    &mreq.ipv6mr_multiaddr))
2417 				break;
2418 		if (imm != NULL) {
2419 			error = EADDRINUSE;
2420 			break;
2421 		}
2422 		/*
2423 		 * Everything looks good; add a new record to the multicast
2424 		 * address list for the given interface.
2425 		 */
2426 		imm = in6_joingroup(ifp, &mreq.ipv6mr_multiaddr, &error, 0);
2427 		if (imm == NULL)
2428 			break;
2429 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2430 		break;
2431 
2432 	case IPV6_LEAVE_GROUP:
2433 		/*
2434 		 * Drop a multicast group membership.
2435 		 * Group must be a valid IP6 multicast address.
2436 		 */
2437 		error = sockopt_get(sopt, &mreq, sizeof(mreq));
2438 		if (error != 0)
2439 			break;
2440 
2441 		/*
2442 		 * If an interface address was specified, get a pointer
2443 		 * to its ifnet structure.
2444 		 */
2445 		if (mreq.ipv6mr_interface != 0) {
2446 			if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) {
2447 				error = ENXIO;	/* XXX EINVAL? */
2448 				break;
2449 			}
2450 		} else
2451 			ifp = NULL;
2452 
2453 		/* Fill in the scope zone ID */
2454 		if (ifp) {
2455 			if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) {
2456 				/* XXX: should not happen */
2457 				error = EADDRNOTAVAIL;
2458 				break;
2459 			}
2460 		} else if (mreq.ipv6mr_interface != 0) {
2461 			/*
2462 			 * XXX: This case would happens when the (positive)
2463 			 * index is in the valid range, but the corresponding
2464 			 * interface has been detached dynamically.  The above
2465 			 * check probably avoids such case to happen here, but
2466 			 * we check it explicitly for safety.
2467 			 */
2468 			error = EADDRNOTAVAIL;
2469 			break;
2470 		} else {	/* ipv6mr_interface == 0 */
2471 			struct sockaddr_in6 sa6_mc;
2472 
2473 			/*
2474 			 * The API spec says as follows:
2475 			 *  If the interface index is specified as 0, the
2476 			 *  system may choose a multicast group membership to
2477 			 *  drop by matching the multicast address only.
2478 			 * On the other hand, we cannot disambiguate the scope
2479 			 * zone unless an interface is provided.  Thus, we
2480 			 * check if there's ambiguity with the default scope
2481 			 * zone as the last resort.
2482 			 */
2483 			sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr,
2484 			    0, 0, 0);
2485 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2486 			if (error != 0)
2487 				break;
2488 			mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr;
2489 		}
2490 
2491 		/*
2492 		 * Find the membership in the membership list.
2493 		 */
2494 		for (imm = im6o->im6o_memberships.lh_first;
2495 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
2496 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2497 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2498 			    &mreq.ipv6mr_multiaddr))
2499 				break;
2500 		}
2501 		if (imm == NULL) {
2502 			/* Unable to resolve interface */
2503 			error = EADDRNOTAVAIL;
2504 			break;
2505 		}
2506 		/*
2507 		 * Give up the multicast address record to which the
2508 		 * membership points.
2509 		 */
2510 		LIST_REMOVE(imm, i6mm_chain);
2511 		in6_leavegroup(imm);
2512 		break;
2513 
2514 	default:
2515 		error = EOPNOTSUPP;
2516 		break;
2517 	}
2518 
2519 	/*
2520 	 * If all options have default values, no need to keep the mbuf.
2521 	 */
2522 	if (im6o->im6o_multicast_ifp == NULL &&
2523 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2524 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2525 	    im6o->im6o_memberships.lh_first == NULL) {
2526 		free(*im6op, M_IPMOPTS);
2527 		*im6op = NULL;
2528 	}
2529 
2530 	return (error);
2531 }
2532 
2533 /*
2534  * Return the IP6 multicast options in response to user getsockopt().
2535  */
2536 static int
2537 ip6_getmoptions(struct sockopt *sopt, struct ip6_moptions *im6o)
2538 {
2539 	u_int optval;
2540 	int error;
2541 
2542 	switch (sopt->sopt_name) {
2543 	case IPV6_MULTICAST_IF:
2544 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2545 			optval = 0;
2546 		else
2547 			optval = im6o->im6o_multicast_ifp->if_index;
2548 
2549 		error = sockopt_set(sopt, &optval, sizeof(optval));
2550 		break;
2551 
2552 	case IPV6_MULTICAST_HOPS:
2553 		if (im6o == NULL)
2554 			optval = ip6_defmcasthlim;
2555 		else
2556 			optval = im6o->im6o_multicast_hlim;
2557 
2558 		error = sockopt_set(sopt, &optval, sizeof(optval));
2559 		break;
2560 
2561 	case IPV6_MULTICAST_LOOP:
2562 		if (im6o == NULL)
2563 			optval = IPV6_DEFAULT_MULTICAST_LOOP;
2564 		else
2565 			optval = im6o->im6o_multicast_loop;
2566 
2567 		error = sockopt_set(sopt, &optval, sizeof(optval));
2568 		break;
2569 
2570 	default:
2571 		error = EOPNOTSUPP;
2572 	}
2573 
2574 	return (error);
2575 }
2576 
2577 /*
2578  * Discard the IP6 multicast options.
2579  */
2580 void
2581 ip6_freemoptions(struct ip6_moptions *im6o)
2582 {
2583 	struct in6_multi_mship *imm;
2584 
2585 	if (im6o == NULL)
2586 		return;
2587 
2588 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2589 		LIST_REMOVE(imm, i6mm_chain);
2590 		in6_leavegroup(imm);
2591 	}
2592 	free(im6o, M_IPMOPTS);
2593 }
2594 
2595 /*
2596  * Set IPv6 outgoing packet options based on advanced API.
2597  */
2598 int
2599 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2600 	struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto)
2601 {
2602 	struct cmsghdr *cm = 0;
2603 
2604 	if (control == NULL || opt == NULL)
2605 		return (EINVAL);
2606 
2607 	ip6_initpktopts(opt);
2608 	if (stickyopt) {
2609 		int error;
2610 
2611 		/*
2612 		 * If stickyopt is provided, make a local copy of the options
2613 		 * for this particular packet, then override them by ancillary
2614 		 * objects.
2615 		 * XXX: copypktopts() does not copy the cached route to a next
2616 		 * hop (if any).  This is not very good in terms of efficiency,
2617 		 * but we can allow this since this option should be rarely
2618 		 * used.
2619 		 */
2620 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2621 			return (error);
2622 	}
2623 
2624 	/*
2625 	 * XXX: Currently, we assume all the optional information is stored
2626 	 * in a single mbuf.
2627 	 */
2628 	if (control->m_next)
2629 		return (EINVAL);
2630 
2631 	/* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */
2632 	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2633 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2634 		int error;
2635 
2636 		if (control->m_len < CMSG_LEN(0))
2637 			return (EINVAL);
2638 
2639 		cm = mtod(control, struct cmsghdr *);
2640 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2641 			return (EINVAL);
2642 		if (cm->cmsg_level != IPPROTO_IPV6)
2643 			continue;
2644 
2645 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2646 		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2647 		if (error)
2648 			return (error);
2649 	}
2650 
2651 	return (0);
2652 }
2653 
2654 /*
2655  * Set a particular packet option, as a sticky option or an ancillary data
2656  * item.  "len" can be 0 only when it's a sticky option.
2657  * We have 4 cases of combination of "sticky" and "cmsg":
2658  * "sticky=0, cmsg=0": impossible
2659  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2660  * "sticky=1, cmsg=0": RFC3542 socket option
2661  * "sticky=1, cmsg=1": RFC2292 socket option
2662  */
2663 static int
2664 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2665     kauth_cred_t cred, int sticky, int cmsg, int uproto)
2666 {
2667 	int minmtupolicy;
2668 	int error;
2669 
2670 	if (!sticky && !cmsg) {
2671 #ifdef DIAGNOSTIC
2672 		printf("ip6_setpktopt: impossible case\n");
2673 #endif
2674 		return (EINVAL);
2675 	}
2676 
2677 	/*
2678 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2679 	 * not be specified in the context of RFC3542.  Conversely,
2680 	 * RFC3542 types should not be specified in the context of RFC2292.
2681 	 */
2682 	if (!cmsg) {
2683 		switch (optname) {
2684 		case IPV6_2292PKTINFO:
2685 		case IPV6_2292HOPLIMIT:
2686 		case IPV6_2292NEXTHOP:
2687 		case IPV6_2292HOPOPTS:
2688 		case IPV6_2292DSTOPTS:
2689 		case IPV6_2292RTHDR:
2690 		case IPV6_2292PKTOPTIONS:
2691 			return (ENOPROTOOPT);
2692 		}
2693 	}
2694 	if (sticky && cmsg) {
2695 		switch (optname) {
2696 		case IPV6_PKTINFO:
2697 		case IPV6_HOPLIMIT:
2698 		case IPV6_NEXTHOP:
2699 		case IPV6_HOPOPTS:
2700 		case IPV6_DSTOPTS:
2701 		case IPV6_RTHDRDSTOPTS:
2702 		case IPV6_RTHDR:
2703 		case IPV6_USE_MIN_MTU:
2704 		case IPV6_DONTFRAG:
2705 		case IPV6_OTCLASS:
2706 		case IPV6_TCLASS:
2707 			return (ENOPROTOOPT);
2708 		}
2709 	}
2710 
2711 	switch (optname) {
2712 #ifdef RFC2292
2713 	case IPV6_2292PKTINFO:
2714 #endif
2715 	case IPV6_PKTINFO:
2716 	{
2717 		struct ifnet *ifp = NULL;
2718 		struct in6_pktinfo *pktinfo;
2719 
2720 		if (len != sizeof(struct in6_pktinfo))
2721 			return (EINVAL);
2722 
2723 		pktinfo = (struct in6_pktinfo *)buf;
2724 
2725 		/*
2726 		 * An application can clear any sticky IPV6_PKTINFO option by
2727 		 * doing a "regular" setsockopt with ipi6_addr being
2728 		 * in6addr_any and ipi6_ifindex being zero.
2729 		 * [RFC 3542, Section 6]
2730 		 */
2731 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2732 		    pktinfo->ipi6_ifindex == 0 &&
2733 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2734 			ip6_clearpktopts(opt, optname);
2735 			break;
2736 		}
2737 
2738 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2739 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2740 			return (EINVAL);
2741 		}
2742 
2743 		/* Validate the interface index if specified. */
2744 		if (pktinfo->ipi6_ifindex) {
2745 			ifp = if_byindex(pktinfo->ipi6_ifindex);
2746 			if (ifp == NULL)
2747 				return (ENXIO);
2748 		}
2749 
2750 		/*
2751 		 * We store the address anyway, and let in6_selectsrc()
2752 		 * validate the specified address.  This is because ipi6_addr
2753 		 * may not have enough information about its scope zone, and
2754 		 * we may need additional information (such as outgoing
2755 		 * interface or the scope zone of a destination address) to
2756 		 * disambiguate the scope.
2757 		 * XXX: the delay of the validation may confuse the
2758 		 * application when it is used as a sticky option.
2759 		 */
2760 		if (opt->ip6po_pktinfo == NULL) {
2761 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2762 			    M_IP6OPT, M_NOWAIT);
2763 			if (opt->ip6po_pktinfo == NULL)
2764 				return (ENOBUFS);
2765 		}
2766 		memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2767 		break;
2768 	}
2769 
2770 #ifdef RFC2292
2771 	case IPV6_2292HOPLIMIT:
2772 #endif
2773 	case IPV6_HOPLIMIT:
2774 	{
2775 		int *hlimp;
2776 
2777 		/*
2778 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2779 		 * to simplify the ordering among hoplimit options.
2780 		 */
2781 		if (optname == IPV6_HOPLIMIT && sticky)
2782 			return (ENOPROTOOPT);
2783 
2784 		if (len != sizeof(int))
2785 			return (EINVAL);
2786 		hlimp = (int *)buf;
2787 		if (*hlimp < -1 || *hlimp > 255)
2788 			return (EINVAL);
2789 
2790 		opt->ip6po_hlim = *hlimp;
2791 		break;
2792 	}
2793 
2794 	case IPV6_OTCLASS:
2795 		if (len != sizeof(u_int8_t))
2796 			return (EINVAL);
2797 
2798 		opt->ip6po_tclass = *(u_int8_t *)buf;
2799 		break;
2800 
2801 	case IPV6_TCLASS:
2802 	{
2803 		int tclass;
2804 
2805 		if (len != sizeof(int))
2806 			return (EINVAL);
2807 		tclass = *(int *)buf;
2808 		if (tclass < -1 || tclass > 255)
2809 			return (EINVAL);
2810 
2811 		opt->ip6po_tclass = tclass;
2812 		break;
2813 	}
2814 
2815 #ifdef RFC2292
2816 	case IPV6_2292NEXTHOP:
2817 #endif
2818 	case IPV6_NEXTHOP:
2819 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
2820 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2821 		if (error)
2822 			return (error);
2823 
2824 		if (len == 0) {	/* just remove the option */
2825 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
2826 			break;
2827 		}
2828 
2829 		/* check if cmsg_len is large enough for sa_len */
2830 		if (len < sizeof(struct sockaddr) || len < *buf)
2831 			return (EINVAL);
2832 
2833 		switch (((struct sockaddr *)buf)->sa_family) {
2834 		case AF_INET6:
2835 		{
2836 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2837 
2838 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2839 				return (EINVAL);
2840 
2841 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2842 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2843 				return (EINVAL);
2844 			}
2845 			if ((error = sa6_embedscope(sa6, ip6_use_defzone))
2846 			    != 0) {
2847 				return (error);
2848 			}
2849 			break;
2850 		}
2851 		case AF_LINK:	/* eventually be supported? */
2852 		default:
2853 			return (EAFNOSUPPORT);
2854 		}
2855 
2856 		/* turn off the previous option, then set the new option. */
2857 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
2858 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2859 		if (opt->ip6po_nexthop == NULL)
2860 			return (ENOBUFS);
2861 		memcpy(opt->ip6po_nexthop, buf, *buf);
2862 		break;
2863 
2864 #ifdef RFC2292
2865 	case IPV6_2292HOPOPTS:
2866 #endif
2867 	case IPV6_HOPOPTS:
2868 	{
2869 		struct ip6_hbh *hbh;
2870 		int hbhlen;
2871 
2872 		/*
2873 		 * XXX: We don't allow a non-privileged user to set ANY HbH
2874 		 * options, since per-option restriction has too much
2875 		 * overhead.
2876 		 */
2877 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
2878 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2879 		if (error)
2880 			return (error);
2881 
2882 		if (len == 0) {
2883 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
2884 			break;	/* just remove the option */
2885 		}
2886 
2887 		/* message length validation */
2888 		if (len < sizeof(struct ip6_hbh))
2889 			return (EINVAL);
2890 		hbh = (struct ip6_hbh *)buf;
2891 		hbhlen = (hbh->ip6h_len + 1) << 3;
2892 		if (len != hbhlen)
2893 			return (EINVAL);
2894 
2895 		/* turn off the previous option, then set the new option. */
2896 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
2897 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2898 		if (opt->ip6po_hbh == NULL)
2899 			return (ENOBUFS);
2900 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
2901 
2902 		break;
2903 	}
2904 
2905 #ifdef RFC2292
2906 	case IPV6_2292DSTOPTS:
2907 #endif
2908 	case IPV6_DSTOPTS:
2909 	case IPV6_RTHDRDSTOPTS:
2910 	{
2911 		struct ip6_dest *dest, **newdest = NULL;
2912 		int destlen;
2913 
2914 		/* XXX: see the comment for IPV6_HOPOPTS */
2915 		error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6,
2916 		    KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL);
2917 		if (error)
2918 			return (error);
2919 
2920 		if (len == 0) {
2921 			ip6_clearpktopts(opt, optname);
2922 			break;	/* just remove the option */
2923 		}
2924 
2925 		/* message length validation */
2926 		if (len < sizeof(struct ip6_dest))
2927 			return (EINVAL);
2928 		dest = (struct ip6_dest *)buf;
2929 		destlen = (dest->ip6d_len + 1) << 3;
2930 		if (len != destlen)
2931 			return (EINVAL);
2932 		/*
2933 		 * Determine the position that the destination options header
2934 		 * should be inserted; before or after the routing header.
2935 		 */
2936 		switch (optname) {
2937 		case IPV6_2292DSTOPTS:
2938 			/*
2939 			 * The old advanced API is ambiguous on this point.
2940 			 * Our approach is to determine the position based
2941 			 * according to the existence of a routing header.
2942 			 * Note, however, that this depends on the order of the
2943 			 * extension headers in the ancillary data; the 1st
2944 			 * part of the destination options header must appear
2945 			 * before the routing header in the ancillary data,
2946 			 * too.
2947 			 * RFC3542 solved the ambiguity by introducing
2948 			 * separate ancillary data or option types.
2949 			 */
2950 			if (opt->ip6po_rthdr == NULL)
2951 				newdest = &opt->ip6po_dest1;
2952 			else
2953 				newdest = &opt->ip6po_dest2;
2954 			break;
2955 		case IPV6_RTHDRDSTOPTS:
2956 			newdest = &opt->ip6po_dest1;
2957 			break;
2958 		case IPV6_DSTOPTS:
2959 			newdest = &opt->ip6po_dest2;
2960 			break;
2961 		}
2962 
2963 		/* turn off the previous option, then set the new option. */
2964 		ip6_clearpktopts(opt, optname);
2965 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
2966 		if (*newdest == NULL)
2967 			return (ENOBUFS);
2968 		memcpy(*newdest, dest, destlen);
2969 
2970 		break;
2971 	}
2972 
2973 #ifdef RFC2292
2974 	case IPV6_2292RTHDR:
2975 #endif
2976 	case IPV6_RTHDR:
2977 	{
2978 		struct ip6_rthdr *rth;
2979 		int rthlen;
2980 
2981 		if (len == 0) {
2982 			ip6_clearpktopts(opt, IPV6_RTHDR);
2983 			break;	/* just remove the option */
2984 		}
2985 
2986 		/* message length validation */
2987 		if (len < sizeof(struct ip6_rthdr))
2988 			return (EINVAL);
2989 		rth = (struct ip6_rthdr *)buf;
2990 		rthlen = (rth->ip6r_len + 1) << 3;
2991 		if (len != rthlen)
2992 			return (EINVAL);
2993 		switch (rth->ip6r_type) {
2994 		case IPV6_RTHDR_TYPE_0:
2995 			if (rth->ip6r_len == 0)	/* must contain one addr */
2996 				return (EINVAL);
2997 			if (rth->ip6r_len % 2) /* length must be even */
2998 				return (EINVAL);
2999 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3000 				return (EINVAL);
3001 			break;
3002 		default:
3003 			return (EINVAL);	/* not supported */
3004 		}
3005 		/* turn off the previous option */
3006 		ip6_clearpktopts(opt, IPV6_RTHDR);
3007 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3008 		if (opt->ip6po_rthdr == NULL)
3009 			return (ENOBUFS);
3010 		memcpy(opt->ip6po_rthdr, rth, rthlen);
3011 		break;
3012 	}
3013 
3014 	case IPV6_USE_MIN_MTU:
3015 		if (len != sizeof(int))
3016 			return (EINVAL);
3017 		minmtupolicy = *(int *)buf;
3018 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3019 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
3020 		    minmtupolicy != IP6PO_MINMTU_ALL) {
3021 			return (EINVAL);
3022 		}
3023 		opt->ip6po_minmtu = minmtupolicy;
3024 		break;
3025 
3026 	case IPV6_DONTFRAG:
3027 		if (len != sizeof(int))
3028 			return (EINVAL);
3029 
3030 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3031 			/*
3032 			 * we ignore this option for TCP sockets.
3033 			 * (RFC3542 leaves this case unspecified.)
3034 			 */
3035 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3036 		} else
3037 			opt->ip6po_flags |= IP6PO_DONTFRAG;
3038 		break;
3039 
3040 	default:
3041 		return (ENOPROTOOPT);
3042 	} /* end of switch */
3043 
3044 	return (0);
3045 }
3046 
3047 /*
3048  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3049  * packet to the input queue of a specified interface.  Note that this
3050  * calls the output routine of the loopback "driver", but with an interface
3051  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3052  */
3053 void
3054 ip6_mloopback(struct ifnet *ifp, struct mbuf *m,
3055 	const struct sockaddr_in6 *dst)
3056 {
3057 	struct mbuf *copym;
3058 	struct ip6_hdr *ip6;
3059 
3060 	copym = m_copy(m, 0, M_COPYALL);
3061 	if (copym == NULL)
3062 		return;
3063 
3064 	/*
3065 	 * Make sure to deep-copy IPv6 header portion in case the data
3066 	 * is in an mbuf cluster, so that we can safely override the IPv6
3067 	 * header portion later.
3068 	 */
3069 	if ((copym->m_flags & M_EXT) != 0 ||
3070 	    copym->m_len < sizeof(struct ip6_hdr)) {
3071 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
3072 		if (copym == NULL)
3073 			return;
3074 	}
3075 
3076 #ifdef DIAGNOSTIC
3077 	if (copym->m_len < sizeof(*ip6)) {
3078 		m_freem(copym);
3079 		return;
3080 	}
3081 #endif
3082 
3083 	ip6 = mtod(copym, struct ip6_hdr *);
3084 	/*
3085 	 * clear embedded scope identifiers if necessary.
3086 	 * in6_clearscope will touch the addresses only when necessary.
3087 	 */
3088 	in6_clearscope(&ip6->ip6_src);
3089 	in6_clearscope(&ip6->ip6_dst);
3090 
3091 	(void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL);
3092 }
3093 
3094 /*
3095  * Chop IPv6 header off from the payload.
3096  */
3097 static int
3098 ip6_splithdr(struct mbuf *m,  struct ip6_exthdrs *exthdrs)
3099 {
3100 	struct mbuf *mh;
3101 	struct ip6_hdr *ip6;
3102 
3103 	ip6 = mtod(m, struct ip6_hdr *);
3104 	if (m->m_len > sizeof(*ip6)) {
3105 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3106 		if (mh == 0) {
3107 			m_freem(m);
3108 			return ENOBUFS;
3109 		}
3110 		M_MOVE_PKTHDR(mh, m);
3111 		MH_ALIGN(mh, sizeof(*ip6));
3112 		m->m_len -= sizeof(*ip6);
3113 		m->m_data += sizeof(*ip6);
3114 		mh->m_next = m;
3115 		m = mh;
3116 		m->m_len = sizeof(*ip6);
3117 		bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6));
3118 	}
3119 	exthdrs->ip6e_ip6 = m;
3120 	return 0;
3121 }
3122 
3123 /*
3124  * Compute IPv6 extension header length.
3125  */
3126 int
3127 ip6_optlen(struct in6pcb *in6p)
3128 {
3129 	int len;
3130 
3131 	if (!in6p->in6p_outputopts)
3132 		return 0;
3133 
3134 	len = 0;
3135 #define elen(x) \
3136     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3137 
3138 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
3139 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
3140 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3141 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
3142 	return len;
3143 #undef elen
3144 }
3145