1 /* $NetBSD: ip6_output.c,v 1.195 2017/11/25 13:18:02 kre Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.195 2017/11/25 13:18:02 kre Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/malloc.h> 75 #include <sys/mbuf.h> 76 #include <sys/errno.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/syslog.h> 80 #include <sys/systm.h> 81 #include <sys/proc.h> 82 #include <sys/kauth.h> 83 84 #include <net/if.h> 85 #include <net/route.h> 86 #include <net/pfil.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/ip6.h> 91 #include <netinet/ip_var.h> 92 #include <netinet/icmp6.h> 93 #include <netinet/in_offload.h> 94 #include <netinet/portalgo.h> 95 #include <netinet6/in6_offload.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/ip6_private.h> 98 #include <netinet6/in6_pcb.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6protosw.h> 101 #include <netinet6/scope6_var.h> 102 103 #ifdef IPSEC 104 #include <netipsec/ipsec.h> 105 #include <netipsec/ipsec6.h> 106 #include <netipsec/key.h> 107 #include <netipsec/xform.h> 108 #endif 109 110 111 #include <net/net_osdep.h> 112 113 extern pfil_head_t *inet6_pfil_hook; /* XXX */ 114 115 struct ip6_exthdrs { 116 struct mbuf *ip6e_ip6; 117 struct mbuf *ip6e_hbh; 118 struct mbuf *ip6e_dest1; 119 struct mbuf *ip6e_rthdr; 120 struct mbuf *ip6e_dest2; 121 }; 122 123 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 124 kauth_cred_t, int); 125 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 126 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t, 127 int, int, int); 128 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *); 129 static int ip6_getmoptions(struct sockopt *, struct in6pcb *); 130 static int ip6_copyexthdr(struct mbuf **, void *, int); 131 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 132 struct ip6_frag **); 133 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 134 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 135 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *); 136 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 137 static int ip6_ifaddrvalid(const struct in6_addr *, const struct in6_addr *); 138 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *); 139 140 #ifdef RFC2292 141 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *); 142 #endif 143 144 static int 145 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6) 146 { 147 struct ip6_rthdr0 *rh0; 148 struct in6_addr *addr; 149 struct sockaddr_in6 sa; 150 int error = 0; 151 152 switch (rh->ip6r_type) { 153 case IPV6_RTHDR_TYPE_0: 154 rh0 = (struct ip6_rthdr0 *)rh; 155 addr = (struct in6_addr *)(rh0 + 1); 156 157 /* 158 * construct a sockaddr_in6 form of the first hop. 159 * 160 * XXX we may not have enough information about its scope zone; 161 * there is no standard API to pass the information from the 162 * application. 163 */ 164 sockaddr_in6_init(&sa, addr, 0, 0, 0); 165 error = sa6_embedscope(&sa, ip6_use_defzone); 166 if (error != 0) 167 break; 168 (void)memmove(&addr[0], &addr[1], 169 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)); 170 addr[rh0->ip6r0_segleft - 1] = ip6->ip6_dst; 171 ip6->ip6_dst = sa.sin6_addr; 172 /* XXX */ 173 in6_clearscope(addr + rh0->ip6r0_segleft - 1); 174 break; 175 default: /* is it possible? */ 176 error = EINVAL; 177 } 178 179 return error; 180 } 181 182 /* 183 * Send an IP packet to a host. 184 */ 185 int 186 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp, 187 struct mbuf * const m, 188 const struct sockaddr_in6 * const dst, const struct rtentry *rt) 189 { 190 int error = 0; 191 192 if (rt != NULL) { 193 error = rt_check_reject_route(rt, ifp); 194 if (error != 0) { 195 m_freem(m); 196 return error; 197 } 198 } 199 200 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 201 error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt); 202 else 203 error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt); 204 return error; 205 } 206 207 /* 208 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 209 * header (with pri, len, nxt, hlim, src, dst). 210 * This function may modify ver and hlim only. 211 * The mbuf chain containing the packet will be freed. 212 * The mbuf opt, if present, will not be freed. 213 * 214 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 215 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 216 * which is rt_rmx.rmx_mtu. 217 */ 218 int 219 ip6_output( 220 struct mbuf *m0, 221 struct ip6_pktopts *opt, 222 struct route *ro, 223 int flags, 224 struct ip6_moptions *im6o, 225 struct in6pcb *in6p, 226 struct ifnet **ifpp /* XXX: just for statistics */ 227 ) 228 { 229 struct ip6_hdr *ip6, *mhip6; 230 struct ifnet *ifp = NULL, *origifp = NULL; 231 struct mbuf *m = m0; 232 int hlen, tlen, len, off; 233 bool tso; 234 struct route ip6route; 235 struct rtentry *rt = NULL, *rt_pmtu; 236 const struct sockaddr_in6 *dst; 237 struct sockaddr_in6 src_sa, dst_sa; 238 int error = 0; 239 struct in6_ifaddr *ia = NULL; 240 u_long mtu; 241 int alwaysfrag, dontfrag; 242 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 243 struct ip6_exthdrs exthdrs; 244 struct in6_addr finaldst, src0, dst0; 245 u_int32_t zone; 246 struct route *ro_pmtu = NULL; 247 int hdrsplit = 0; 248 int needipsec = 0; 249 #ifdef IPSEC 250 struct secpolicy *sp = NULL; 251 #endif 252 struct psref psref, psref_ia; 253 int bound = curlwp_bind(); 254 bool release_psref_ia = false; 255 256 #ifdef DIAGNOSTIC 257 if ((m->m_flags & M_PKTHDR) == 0) 258 panic("ip6_output: no HDR"); 259 260 if ((m->m_pkthdr.csum_flags & 261 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) { 262 panic("ip6_output: IPv4 checksum offload flags: %d", 263 m->m_pkthdr.csum_flags); 264 } 265 266 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 267 (M_CSUM_TCPv6|M_CSUM_UDPv6)) { 268 panic("ip6_output: conflicting checksum offload flags: %d", 269 m->m_pkthdr.csum_flags); 270 } 271 #endif 272 273 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr)); 274 275 #define MAKE_EXTHDR(hp, mp) \ 276 do { \ 277 if (hp) { \ 278 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 279 error = ip6_copyexthdr((mp), (void *)(hp), \ 280 ((eh)->ip6e_len + 1) << 3); \ 281 if (error) \ 282 goto freehdrs; \ 283 } \ 284 } while (/*CONSTCOND*/ 0) 285 286 memset(&exthdrs, 0, sizeof(exthdrs)); 287 if (opt) { 288 /* Hop-by-Hop options header */ 289 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 290 /* Destination options header(1st part) */ 291 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 292 /* Routing header */ 293 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 294 /* Destination options header(2nd part) */ 295 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 296 } 297 298 /* 299 * Calculate the total length of the extension header chain. 300 * Keep the length of the unfragmentable part for fragmentation. 301 */ 302 optlen = 0; 303 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 304 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 305 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 306 unfragpartlen = optlen + sizeof(struct ip6_hdr); 307 /* NOTE: we don't add AH/ESP length here. do that later. */ 308 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 309 310 #ifdef IPSEC 311 if (ipsec_used) { 312 /* Check the security policy (SP) for the packet */ 313 314 sp = ipsec6_check_policy(m, in6p, flags, &needipsec, &error); 315 if (error != 0) { 316 /* 317 * Hack: -EINVAL is used to signal that a packet 318 * should be silently discarded. This is typically 319 * because we asked key management for an SA and 320 * it was delayed (e.g. kicked up to IKE). 321 */ 322 if (error == -EINVAL) 323 error = 0; 324 goto freehdrs; 325 } 326 } 327 #endif /* IPSEC */ 328 329 330 if (needipsec && 331 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 332 in6_delayed_cksum(m); 333 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 334 } 335 336 337 /* 338 * If we need IPsec, or there is at least one extension header, 339 * separate IP6 header from the payload. 340 */ 341 if ((needipsec || optlen) && !hdrsplit) { 342 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 343 m = NULL; 344 goto freehdrs; 345 } 346 m = exthdrs.ip6e_ip6; 347 hdrsplit++; 348 } 349 350 /* adjust pointer */ 351 ip6 = mtod(m, struct ip6_hdr *); 352 353 /* adjust mbuf packet header length */ 354 m->m_pkthdr.len += optlen; 355 plen = m->m_pkthdr.len - sizeof(*ip6); 356 357 /* If this is a jumbo payload, insert a jumbo payload option. */ 358 if (plen > IPV6_MAXPACKET) { 359 if (!hdrsplit) { 360 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 361 m = NULL; 362 goto freehdrs; 363 } 364 m = exthdrs.ip6e_ip6; 365 hdrsplit++; 366 } 367 /* adjust pointer */ 368 ip6 = mtod(m, struct ip6_hdr *); 369 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 370 goto freehdrs; 371 optlen += 8; /* XXX JUMBOOPTLEN */ 372 ip6->ip6_plen = 0; 373 } else 374 ip6->ip6_plen = htons(plen); 375 376 /* 377 * Concatenate headers and fill in next header fields. 378 * Here we have, on "m" 379 * IPv6 payload 380 * and we insert headers accordingly. Finally, we should be getting: 381 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 382 * 383 * during the header composing process, "m" points to IPv6 header. 384 * "mprev" points to an extension header prior to esp. 385 */ 386 { 387 u_char *nexthdrp = &ip6->ip6_nxt; 388 struct mbuf *mprev = m; 389 390 /* 391 * we treat dest2 specially. this makes IPsec processing 392 * much easier. the goal here is to make mprev point the 393 * mbuf prior to dest2. 394 * 395 * result: IPv6 dest2 payload 396 * m and mprev will point to IPv6 header. 397 */ 398 if (exthdrs.ip6e_dest2) { 399 if (!hdrsplit) 400 panic("assumption failed: hdr not split"); 401 exthdrs.ip6e_dest2->m_next = m->m_next; 402 m->m_next = exthdrs.ip6e_dest2; 403 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 404 ip6->ip6_nxt = IPPROTO_DSTOPTS; 405 } 406 407 #define MAKE_CHAIN(m, mp, p, i)\ 408 do {\ 409 if (m) {\ 410 if (!hdrsplit) \ 411 panic("assumption failed: hdr not split"); \ 412 *mtod((m), u_char *) = *(p);\ 413 *(p) = (i);\ 414 p = mtod((m), u_char *);\ 415 (m)->m_next = (mp)->m_next;\ 416 (mp)->m_next = (m);\ 417 (mp) = (m);\ 418 }\ 419 } while (/*CONSTCOND*/ 0) 420 /* 421 * result: IPv6 hbh dest1 rthdr dest2 payload 422 * m will point to IPv6 header. mprev will point to the 423 * extension header prior to dest2 (rthdr in the above case). 424 */ 425 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 426 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 427 IPPROTO_DSTOPTS); 428 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 429 IPPROTO_ROUTING); 430 431 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, 432 sizeof(struct ip6_hdr) + optlen); 433 } 434 435 /* Need to save for pmtu */ 436 finaldst = ip6->ip6_dst; 437 438 /* 439 * If there is a routing header, replace destination address field 440 * with the first hop of the routing header. 441 */ 442 if (exthdrs.ip6e_rthdr) { 443 struct ip6_rthdr *rh; 444 445 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 446 struct ip6_rthdr *)); 447 448 error = ip6_handle_rthdr(rh, ip6); 449 if (error != 0) 450 goto bad; 451 } 452 453 /* Source address validation */ 454 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 455 (flags & IPV6_UNSPECSRC) == 0) { 456 error = EOPNOTSUPP; 457 IP6_STATINC(IP6_STAT_BADSCOPE); 458 goto bad; 459 } 460 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 461 error = EOPNOTSUPP; 462 IP6_STATINC(IP6_STAT_BADSCOPE); 463 goto bad; 464 } 465 466 IP6_STATINC(IP6_STAT_LOCALOUT); 467 468 /* 469 * Route packet. 470 */ 471 /* initialize cached route */ 472 if (ro == NULL) { 473 memset(&ip6route, 0, sizeof(ip6route)); 474 ro = &ip6route; 475 } 476 ro_pmtu = ro; 477 if (opt && opt->ip6po_rthdr) 478 ro = &opt->ip6po_route; 479 480 /* 481 * if specified, try to fill in the traffic class field. 482 * do not override if a non-zero value is already set. 483 * we check the diffserv field and the ecn field separately. 484 */ 485 if (opt && opt->ip6po_tclass >= 0) { 486 int mask = 0; 487 488 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 489 mask |= 0xfc; 490 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 491 mask |= 0x03; 492 if (mask != 0) 493 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 494 } 495 496 /* fill in or override the hop limit field, if necessary. */ 497 if (opt && opt->ip6po_hlim != -1) 498 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 499 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 500 if (im6o != NULL) 501 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 502 else 503 ip6->ip6_hlim = ip6_defmcasthlim; 504 } 505 506 #ifdef IPSEC 507 if (needipsec) { 508 int s = splsoftnet(); 509 error = ipsec6_process_packet(m, sp->req); 510 511 /* 512 * Preserve KAME behaviour: ENOENT can be returned 513 * when an SA acquire is in progress. Don't propagate 514 * this to user-level; it confuses applications. 515 * XXX this will go away when the SADB is redone. 516 */ 517 if (error == ENOENT) 518 error = 0; 519 splx(s); 520 goto done; 521 } 522 #endif /* IPSEC */ 523 524 /* adjust pointer */ 525 ip6 = mtod(m, struct ip6_hdr *); 526 527 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 528 529 /* We do not need a route for multicast */ 530 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 531 struct in6_pktinfo *pi = NULL; 532 533 /* 534 * If the outgoing interface for the address is specified by 535 * the caller, use it. 536 */ 537 if (opt && (pi = opt->ip6po_pktinfo) != NULL) { 538 /* XXX boundary check is assumed to be already done. */ 539 ifp = if_get_byindex(pi->ipi6_ifindex, &psref); 540 } else if (im6o != NULL) { 541 ifp = if_get_byindex(im6o->im6o_multicast_if_index, 542 &psref); 543 } 544 } 545 546 if (ifp == NULL) { 547 error = in6_selectroute(&dst_sa, opt, &ro, &rt, true); 548 if (error != 0) 549 goto bad; 550 ifp = if_get_byindex(rt->rt_ifp->if_index, &psref); 551 } 552 553 if (rt == NULL) { 554 /* 555 * If in6_selectroute() does not return a route entry, 556 * dst may not have been updated. 557 */ 558 error = rtcache_setdst(ro, sin6tosa(&dst_sa)); 559 if (error) { 560 goto bad; 561 } 562 } 563 564 /* 565 * then rt (for unicast) and ifp must be non-NULL valid values. 566 */ 567 if ((flags & IPV6_FORWARDING) == 0) { 568 /* XXX: the FORWARDING flag can be set for mrouting. */ 569 in6_ifstat_inc(ifp, ifs6_out_request); 570 } 571 if (rt != NULL) { 572 ia = (struct in6_ifaddr *)(rt->rt_ifa); 573 rt->rt_use++; 574 } 575 576 /* 577 * The outgoing interface must be in the zone of source and 578 * destination addresses. We should use ia_ifp to support the 579 * case of sending packets to an address of our own. 580 */ 581 if (ia != NULL && ia->ia_ifp) { 582 origifp = ia->ia_ifp; 583 if (if_is_deactivated(origifp)) 584 goto bad; 585 if_acquire(origifp, &psref_ia); 586 release_psref_ia = true; 587 } else 588 origifp = ifp; 589 590 src0 = ip6->ip6_src; 591 if (in6_setscope(&src0, origifp, &zone)) 592 goto badscope; 593 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0); 594 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 595 goto badscope; 596 597 dst0 = ip6->ip6_dst; 598 if (in6_setscope(&dst0, origifp, &zone)) 599 goto badscope; 600 /* re-initialize to be sure */ 601 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 602 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) 603 goto badscope; 604 605 /* scope check is done. */ 606 607 /* Ensure we only send from a valid address. */ 608 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 609 (error = ip6_ifaddrvalid(&src0, &dst0)) != 0) 610 { 611 char ip6buf[INET6_ADDRSTRLEN]; 612 nd6log(LOG_ERR, 613 "refusing to send from invalid address %s (pid %d)\n", 614 IN6_PRINT(ip6buf, &src0), curproc->p_pid); 615 IP6_STATINC(IP6_STAT_ODROPPED); 616 in6_ifstat_inc(origifp, ifs6_out_discard); 617 if (error == 1) 618 /* 619 * Address exists, but is tentative or detached. 620 * We can't send from it because it's invalid, 621 * so we drop the packet. 622 */ 623 error = 0; 624 else 625 error = EADDRNOTAVAIL; 626 goto bad; 627 } 628 629 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) && 630 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 631 dst = satocsin6(rt->rt_gateway); 632 else 633 dst = satocsin6(rtcache_getdst(ro)); 634 635 /* 636 * XXXXXX: original code follows: 637 */ 638 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 639 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 640 else { 641 bool ingroup; 642 643 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 644 645 in6_ifstat_inc(ifp, ifs6_out_mcast); 646 647 /* 648 * Confirm that the outgoing interface supports multicast. 649 */ 650 if (!(ifp->if_flags & IFF_MULTICAST)) { 651 IP6_STATINC(IP6_STAT_NOROUTE); 652 in6_ifstat_inc(ifp, ifs6_out_discard); 653 error = ENETUNREACH; 654 goto bad; 655 } 656 657 ingroup = in6_multi_group(&ip6->ip6_dst, ifp); 658 if (ingroup && (im6o == NULL || im6o->im6o_multicast_loop)) { 659 /* 660 * If we belong to the destination multicast group 661 * on the outgoing interface, and the caller did not 662 * forbid loopback, loop back a copy. 663 */ 664 KASSERT(dst != NULL); 665 ip6_mloopback(ifp, m, dst); 666 } else { 667 /* 668 * If we are acting as a multicast router, perform 669 * multicast forwarding as if the packet had just 670 * arrived on the interface to which we are about 671 * to send. The multicast forwarding function 672 * recursively calls this function, using the 673 * IPV6_FORWARDING flag to prevent infinite recursion. 674 * 675 * Multicasts that are looped back by ip6_mloopback(), 676 * above, will be forwarded by the ip6_input() routine, 677 * if necessary. 678 */ 679 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 680 if (ip6_mforward(ip6, ifp, m) != 0) { 681 m_freem(m); 682 goto done; 683 } 684 } 685 } 686 /* 687 * Multicasts with a hoplimit of zero may be looped back, 688 * above, but must not be transmitted on a network. 689 * Also, multicasts addressed to the loopback interface 690 * are not sent -- the above call to ip6_mloopback() will 691 * loop back a copy if this host actually belongs to the 692 * destination group on the loopback interface. 693 */ 694 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 695 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 696 m_freem(m); 697 goto done; 698 } 699 } 700 701 /* 702 * Fill the outgoing inteface to tell the upper layer 703 * to increment per-interface statistics. 704 */ 705 if (ifpp) 706 *ifpp = ifp; 707 708 /* Determine path MTU. */ 709 /* 710 * ro_pmtu represent final destination while 711 * ro might represent immediate destination. 712 * Use ro_pmtu destination since MTU might differ. 713 */ 714 if (ro_pmtu != ro) { 715 union { 716 struct sockaddr dst; 717 struct sockaddr_in6 dst6; 718 } u; 719 720 /* ro_pmtu may not have a cache */ 721 sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0); 722 rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst); 723 } else 724 rt_pmtu = rt; 725 error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag); 726 if (rt_pmtu != NULL && rt_pmtu != rt) 727 rtcache_unref(rt_pmtu, ro_pmtu); 728 if (error != 0) 729 goto bad; 730 731 /* 732 * The caller of this function may specify to use the minimum MTU 733 * in some cases. 734 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 735 * setting. The logic is a bit complicated; by default, unicast 736 * packets will follow path MTU while multicast packets will be sent at 737 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 738 * including unicast ones will be sent at the minimum MTU. Multicast 739 * packets will always be sent at the minimum MTU unless 740 * IP6PO_MINMTU_DISABLE is explicitly specified. 741 * See RFC 3542 for more details. 742 */ 743 if (mtu > IPV6_MMTU) { 744 if ((flags & IPV6_MINMTU)) 745 mtu = IPV6_MMTU; 746 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 747 mtu = IPV6_MMTU; 748 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 749 (opt == NULL || 750 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 751 mtu = IPV6_MMTU; 752 } 753 } 754 755 /* 756 * clear embedded scope identifiers if necessary. 757 * in6_clearscope will touch the addresses only when necessary. 758 */ 759 in6_clearscope(&ip6->ip6_src); 760 in6_clearscope(&ip6->ip6_dst); 761 762 /* 763 * If the outgoing packet contains a hop-by-hop options header, 764 * it must be examined and processed even by the source node. 765 * (RFC 2460, section 4.) 766 */ 767 if (ip6->ip6_nxt == IPV6_HOPOPTS) { 768 u_int32_t dummy1; /* XXX unused */ 769 u_int32_t dummy2; /* XXX unused */ 770 int hoff = sizeof(struct ip6_hdr); 771 772 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) { 773 /* m was already freed at this point */ 774 error = EINVAL;/* better error? */ 775 goto done; 776 } 777 778 ip6 = mtod(m, struct ip6_hdr *); 779 } 780 781 /* 782 * Run through list of hooks for output packets. 783 */ 784 if ((error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0) 785 goto done; 786 if (m == NULL) 787 goto done; 788 ip6 = mtod(m, struct ip6_hdr *); 789 790 /* 791 * Send the packet to the outgoing interface. 792 * If necessary, do IPv6 fragmentation before sending. 793 * 794 * the logic here is rather complex: 795 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 796 * 1-a: send as is if tlen <= path mtu 797 * 1-b: fragment if tlen > path mtu 798 * 799 * 2: if user asks us not to fragment (dontfrag == 1) 800 * 2-a: send as is if tlen <= interface mtu 801 * 2-b: error if tlen > interface mtu 802 * 803 * 3: if we always need to attach fragment header (alwaysfrag == 1) 804 * always fragment 805 * 806 * 4: if dontfrag == 1 && alwaysfrag == 1 807 * error, as we cannot handle this conflicting request 808 */ 809 tlen = m->m_pkthdr.len; 810 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0; 811 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 812 dontfrag = 1; 813 else 814 dontfrag = 0; 815 816 if (dontfrag && alwaysfrag) { /* case 4 */ 817 /* conflicting request - can't transmit */ 818 error = EMSGSIZE; 819 goto bad; 820 } 821 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */ 822 /* 823 * Even if the DONTFRAG option is specified, we cannot send the 824 * packet when the data length is larger than the MTU of the 825 * outgoing interface. 826 * Notify the error by sending IPV6_PATHMTU ancillary data as 827 * well as returning an error code (the latter is not described 828 * in the API spec.) 829 */ 830 u_int32_t mtu32; 831 struct ip6ctlparam ip6cp; 832 833 mtu32 = (u_int32_t)mtu; 834 memset(&ip6cp, 0, sizeof(ip6cp)); 835 ip6cp.ip6c_cmdarg = (void *)&mtu32; 836 pfctlinput2(PRC_MSGSIZE, 837 rtcache_getdst(ro_pmtu), &ip6cp); 838 839 error = EMSGSIZE; 840 goto bad; 841 } 842 843 /* 844 * transmit packet without fragmentation 845 */ 846 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) { 847 /* case 1-a and 2-a */ 848 struct in6_ifaddr *ia6; 849 int sw_csum; 850 int s; 851 852 ip6 = mtod(m, struct ip6_hdr *); 853 s = pserialize_read_enter(); 854 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 855 if (ia6) { 856 /* Record statistics for this interface address. */ 857 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len; 858 } 859 pserialize_read_exit(s); 860 861 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 862 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 863 if (IN6_NEED_CHECKSUM(ifp, 864 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 865 in6_delayed_cksum(m); 866 } 867 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 868 } 869 870 KASSERT(dst != NULL); 871 if (__predict_true(!tso || 872 (ifp->if_capenable & IFCAP_TSOv6) != 0)) { 873 error = ip6_if_output(ifp, origifp, m, dst, rt); 874 } else { 875 error = ip6_tso_output(ifp, origifp, m, dst, rt); 876 } 877 goto done; 878 } 879 880 if (tso) { 881 error = EINVAL; /* XXX */ 882 goto bad; 883 } 884 885 /* 886 * try to fragment the packet. case 1-b and 3 887 */ 888 if (mtu < IPV6_MMTU) { 889 /* path MTU cannot be less than IPV6_MMTU */ 890 error = EMSGSIZE; 891 in6_ifstat_inc(ifp, ifs6_out_fragfail); 892 goto bad; 893 } else if (ip6->ip6_plen == 0) { 894 /* jumbo payload cannot be fragmented */ 895 error = EMSGSIZE; 896 in6_ifstat_inc(ifp, ifs6_out_fragfail); 897 goto bad; 898 } else { 899 struct mbuf **mnext, *m_frgpart; 900 struct ip6_frag *ip6f; 901 u_int32_t id = htonl(ip6_randomid()); 902 u_char nextproto; 903 #if 0 /* see below */ 904 struct ip6ctlparam ip6cp; 905 u_int32_t mtu32; 906 #endif 907 908 /* 909 * Too large for the destination or interface; 910 * fragment if possible. 911 * Must be able to put at least 8 bytes per fragment. 912 */ 913 hlen = unfragpartlen; 914 if (mtu > IPV6_MAXPACKET) 915 mtu = IPV6_MAXPACKET; 916 917 #if 0 918 /* 919 * It is believed this code is a leftover from the 920 * development of the IPV6_RECVPATHMTU sockopt and 921 * associated work to implement RFC3542. 922 * It's not entirely clear what the intent of the API 923 * is at this point, so disable this code for now. 924 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG 925 * will send notifications if the application requests. 926 */ 927 928 /* Notify a proper path MTU to applications. */ 929 mtu32 = (u_int32_t)mtu; 930 memset(&ip6cp, 0, sizeof(ip6cp)); 931 ip6cp.ip6c_cmdarg = (void *)&mtu32; 932 pfctlinput2(PRC_MSGSIZE, 933 rtcache_getdst(ro_pmtu), &ip6cp); 934 #endif 935 936 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 937 if (len < 8) { 938 error = EMSGSIZE; 939 in6_ifstat_inc(ifp, ifs6_out_fragfail); 940 goto bad; 941 } 942 943 mnext = &m->m_nextpkt; 944 945 /* 946 * Change the next header field of the last header in the 947 * unfragmentable part. 948 */ 949 if (exthdrs.ip6e_rthdr) { 950 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 951 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 952 } else if (exthdrs.ip6e_dest1) { 953 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 954 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 955 } else if (exthdrs.ip6e_hbh) { 956 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 957 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 958 } else { 959 nextproto = ip6->ip6_nxt; 960 ip6->ip6_nxt = IPPROTO_FRAGMENT; 961 } 962 963 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) 964 != 0) { 965 if (IN6_NEED_CHECKSUM(ifp, 966 m->m_pkthdr.csum_flags & 967 (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 968 in6_delayed_cksum(m); 969 } 970 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 971 } 972 973 /* 974 * Loop through length of segment after first fragment, 975 * make new header and copy data of each part and link onto 976 * chain. 977 */ 978 m0 = m; 979 for (off = hlen; off < tlen; off += len) { 980 struct mbuf *mlast; 981 982 MGETHDR(m, M_DONTWAIT, MT_HEADER); 983 if (!m) { 984 error = ENOBUFS; 985 IP6_STATINC(IP6_STAT_ODROPPED); 986 goto sendorfree; 987 } 988 m_reset_rcvif(m); 989 m->m_flags = m0->m_flags & M_COPYFLAGS; 990 *mnext = m; 991 mnext = &m->m_nextpkt; 992 m->m_data += max_linkhdr; 993 mhip6 = mtod(m, struct ip6_hdr *); 994 *mhip6 = *ip6; 995 m->m_len = sizeof(*mhip6); 996 /* 997 * ip6f must be valid if error is 0. But how 998 * can a compiler be expected to infer this? 999 */ 1000 ip6f = NULL; 1001 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 1002 if (error) { 1003 IP6_STATINC(IP6_STAT_ODROPPED); 1004 goto sendorfree; 1005 } 1006 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 1007 if (off + len >= tlen) 1008 len = tlen - off; 1009 else 1010 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1011 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 1012 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1013 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 1014 error = ENOBUFS; 1015 IP6_STATINC(IP6_STAT_ODROPPED); 1016 goto sendorfree; 1017 } 1018 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 1019 ; 1020 mlast->m_next = m_frgpart; 1021 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1022 m_reset_rcvif(m); 1023 ip6f->ip6f_reserved = 0; 1024 ip6f->ip6f_ident = id; 1025 ip6f->ip6f_nxt = nextproto; 1026 IP6_STATINC(IP6_STAT_OFRAGMENTS); 1027 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1028 } 1029 1030 in6_ifstat_inc(ifp, ifs6_out_fragok); 1031 } 1032 1033 /* 1034 * Remove leading garbages. 1035 */ 1036 sendorfree: 1037 m = m0->m_nextpkt; 1038 m0->m_nextpkt = 0; 1039 m_freem(m0); 1040 for (m0 = m; m; m = m0) { 1041 m0 = m->m_nextpkt; 1042 m->m_nextpkt = 0; 1043 if (error == 0) { 1044 struct in6_ifaddr *ia6; 1045 int s; 1046 ip6 = mtod(m, struct ip6_hdr *); 1047 s = pserialize_read_enter(); 1048 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1049 if (ia6) { 1050 /* 1051 * Record statistics for this interface 1052 * address. 1053 */ 1054 ia6->ia_ifa.ifa_data.ifad_outbytes += 1055 m->m_pkthdr.len; 1056 } 1057 pserialize_read_exit(s); 1058 KASSERT(dst != NULL); 1059 error = ip6_if_output(ifp, origifp, m, dst, rt); 1060 } else 1061 m_freem(m); 1062 } 1063 1064 if (error == 0) 1065 IP6_STATINC(IP6_STAT_FRAGMENTED); 1066 1067 done: 1068 rtcache_unref(rt, ro); 1069 if (ro == &ip6route) 1070 rtcache_free(&ip6route); 1071 1072 #ifdef IPSEC 1073 if (sp != NULL) 1074 KEY_SP_UNREF(&sp); 1075 #endif /* IPSEC */ 1076 1077 if_put(ifp, &psref); 1078 if (release_psref_ia) 1079 if_put(origifp, &psref_ia); 1080 curlwp_bindx(bound); 1081 1082 return (error); 1083 1084 freehdrs: 1085 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1086 m_freem(exthdrs.ip6e_dest1); 1087 m_freem(exthdrs.ip6e_rthdr); 1088 m_freem(exthdrs.ip6e_dest2); 1089 /* FALLTHROUGH */ 1090 bad: 1091 m_freem(m); 1092 goto done; 1093 badscope: 1094 IP6_STATINC(IP6_STAT_BADSCOPE); 1095 in6_ifstat_inc(origifp, ifs6_out_discard); 1096 if (error == 0) 1097 error = EHOSTUNREACH; /* XXX */ 1098 goto bad; 1099 } 1100 1101 static int 1102 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen) 1103 { 1104 struct mbuf *m; 1105 1106 if (hlen > MCLBYTES) 1107 return (ENOBUFS); /* XXX */ 1108 1109 MGET(m, M_DONTWAIT, MT_DATA); 1110 if (!m) 1111 return (ENOBUFS); 1112 1113 if (hlen > MLEN) { 1114 MCLGET(m, M_DONTWAIT); 1115 if ((m->m_flags & M_EXT) == 0) { 1116 m_free(m); 1117 return (ENOBUFS); 1118 } 1119 } 1120 m->m_len = hlen; 1121 if (hdr) 1122 bcopy(hdr, mtod(m, void *), hlen); 1123 1124 *mp = m; 1125 return (0); 1126 } 1127 1128 /* 1129 * Process a delayed payload checksum calculation. 1130 */ 1131 void 1132 in6_delayed_cksum(struct mbuf *m) 1133 { 1134 uint16_t csum, offset; 1135 1136 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1137 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1138 KASSERT((m->m_pkthdr.csum_flags 1139 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0); 1140 1141 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data); 1142 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset); 1143 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) { 1144 csum = 0xffff; 1145 } 1146 1147 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data); 1148 if ((offset + sizeof(csum)) > m->m_len) { 1149 m_copyback(m, offset, sizeof(csum), &csum); 1150 } else { 1151 *(uint16_t *)(mtod(m, char *) + offset) = csum; 1152 } 1153 } 1154 1155 /* 1156 * Insert jumbo payload option. 1157 */ 1158 static int 1159 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1160 { 1161 struct mbuf *mopt; 1162 u_int8_t *optbuf; 1163 u_int32_t v; 1164 1165 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1166 1167 /* 1168 * If there is no hop-by-hop options header, allocate new one. 1169 * If there is one but it doesn't have enough space to store the 1170 * jumbo payload option, allocate a cluster to store the whole options. 1171 * Otherwise, use it to store the options. 1172 */ 1173 if (exthdrs->ip6e_hbh == 0) { 1174 MGET(mopt, M_DONTWAIT, MT_DATA); 1175 if (mopt == 0) 1176 return (ENOBUFS); 1177 mopt->m_len = JUMBOOPTLEN; 1178 optbuf = mtod(mopt, u_int8_t *); 1179 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1180 exthdrs->ip6e_hbh = mopt; 1181 } else { 1182 struct ip6_hbh *hbh; 1183 1184 mopt = exthdrs->ip6e_hbh; 1185 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1186 /* 1187 * XXX assumption: 1188 * - exthdrs->ip6e_hbh is not referenced from places 1189 * other than exthdrs. 1190 * - exthdrs->ip6e_hbh is not an mbuf chain. 1191 */ 1192 int oldoptlen = mopt->m_len; 1193 struct mbuf *n; 1194 1195 /* 1196 * XXX: give up if the whole (new) hbh header does 1197 * not fit even in an mbuf cluster. 1198 */ 1199 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1200 return (ENOBUFS); 1201 1202 /* 1203 * As a consequence, we must always prepare a cluster 1204 * at this point. 1205 */ 1206 MGET(n, M_DONTWAIT, MT_DATA); 1207 if (n) { 1208 MCLGET(n, M_DONTWAIT); 1209 if ((n->m_flags & M_EXT) == 0) { 1210 m_freem(n); 1211 n = NULL; 1212 } 1213 } 1214 if (!n) 1215 return (ENOBUFS); 1216 n->m_len = oldoptlen + JUMBOOPTLEN; 1217 bcopy(mtod(mopt, void *), mtod(n, void *), 1218 oldoptlen); 1219 optbuf = mtod(n, u_int8_t *) + oldoptlen; 1220 m_freem(mopt); 1221 mopt = exthdrs->ip6e_hbh = n; 1222 } else { 1223 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 1224 mopt->m_len += JUMBOOPTLEN; 1225 } 1226 optbuf[0] = IP6OPT_PADN; 1227 optbuf[1] = 0; 1228 1229 /* 1230 * Adjust the header length according to the pad and 1231 * the jumbo payload option. 1232 */ 1233 hbh = mtod(mopt, struct ip6_hbh *); 1234 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1235 } 1236 1237 /* fill in the option. */ 1238 optbuf[2] = IP6OPT_JUMBO; 1239 optbuf[3] = 4; 1240 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1241 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1242 1243 /* finally, adjust the packet header length */ 1244 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1245 1246 return (0); 1247 #undef JUMBOOPTLEN 1248 } 1249 1250 /* 1251 * Insert fragment header and copy unfragmentable header portions. 1252 * 1253 * *frghdrp will not be read, and it is guaranteed that either an 1254 * error is returned or that *frghdrp will point to space allocated 1255 * for the fragment header. 1256 */ 1257 static int 1258 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1259 struct ip6_frag **frghdrp) 1260 { 1261 struct mbuf *n, *mlast; 1262 1263 if (hlen > sizeof(struct ip6_hdr)) { 1264 n = m_copym(m0, sizeof(struct ip6_hdr), 1265 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1266 if (n == 0) 1267 return (ENOBUFS); 1268 m->m_next = n; 1269 } else 1270 n = m; 1271 1272 /* Search for the last mbuf of unfragmentable part. */ 1273 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1274 ; 1275 1276 if ((mlast->m_flags & M_EXT) == 0 && 1277 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1278 /* use the trailing space of the last mbuf for the fragment hdr */ 1279 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) + 1280 mlast->m_len); 1281 mlast->m_len += sizeof(struct ip6_frag); 1282 m->m_pkthdr.len += sizeof(struct ip6_frag); 1283 } else { 1284 /* allocate a new mbuf for the fragment header */ 1285 struct mbuf *mfrg; 1286 1287 MGET(mfrg, M_DONTWAIT, MT_DATA); 1288 if (mfrg == 0) 1289 return (ENOBUFS); 1290 mfrg->m_len = sizeof(struct ip6_frag); 1291 *frghdrp = mtod(mfrg, struct ip6_frag *); 1292 mlast->m_next = mfrg; 1293 } 1294 1295 return (0); 1296 } 1297 1298 static int 1299 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup, 1300 int *alwaysfragp) 1301 { 1302 u_int32_t mtu = 0; 1303 int alwaysfrag = 0; 1304 int error = 0; 1305 1306 if (rt != NULL) { 1307 u_int32_t ifmtu; 1308 1309 if (ifp == NULL) 1310 ifp = rt->rt_ifp; 1311 ifmtu = IN6_LINKMTU(ifp); 1312 mtu = rt->rt_rmx.rmx_mtu; 1313 if (mtu == 0) 1314 mtu = ifmtu; 1315 else if (mtu < IPV6_MMTU) { 1316 /* 1317 * RFC2460 section 5, last paragraph: 1318 * if we record ICMPv6 too big message with 1319 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1320 * or smaller, with fragment header attached. 1321 * (fragment header is needed regardless from the 1322 * packet size, for translators to identify packets) 1323 */ 1324 alwaysfrag = 1; 1325 mtu = IPV6_MMTU; 1326 } else if (mtu > ifmtu) { 1327 /* 1328 * The MTU on the route is larger than the MTU on 1329 * the interface! This shouldn't happen, unless the 1330 * MTU of the interface has been changed after the 1331 * interface was brought up. Change the MTU in the 1332 * route to match the interface MTU (as long as the 1333 * field isn't locked). 1334 */ 1335 mtu = ifmtu; 1336 if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) 1337 rt->rt_rmx.rmx_mtu = mtu; 1338 } 1339 } else if (ifp) { 1340 mtu = IN6_LINKMTU(ifp); 1341 } else 1342 error = EHOSTUNREACH; /* XXX */ 1343 1344 *mtup = mtu; 1345 if (alwaysfragp) 1346 *alwaysfragp = alwaysfrag; 1347 return (error); 1348 } 1349 1350 /* 1351 * IP6 socket option processing. 1352 */ 1353 int 1354 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1355 { 1356 int optdatalen, uproto; 1357 void *optdata; 1358 struct in6pcb *in6p = sotoin6pcb(so); 1359 struct ip_moptions **mopts; 1360 int error, optval; 1361 int level, optname; 1362 1363 KASSERT(solocked(so)); 1364 KASSERT(sopt != NULL); 1365 1366 level = sopt->sopt_level; 1367 optname = sopt->sopt_name; 1368 1369 error = optval = 0; 1370 uproto = (int)so->so_proto->pr_protocol; 1371 1372 switch (level) { 1373 case IPPROTO_IP: 1374 switch (optname) { 1375 case IP_ADD_MEMBERSHIP: 1376 case IP_DROP_MEMBERSHIP: 1377 case IP_MULTICAST_IF: 1378 case IP_MULTICAST_LOOP: 1379 case IP_MULTICAST_TTL: 1380 mopts = &in6p->in6p_v4moptions; 1381 switch (op) { 1382 case PRCO_GETOPT: 1383 return ip_getmoptions(*mopts, sopt); 1384 case PRCO_SETOPT: 1385 return ip_setmoptions(mopts, sopt); 1386 default: 1387 return EINVAL; 1388 } 1389 default: 1390 return ENOPROTOOPT; 1391 } 1392 case IPPROTO_IPV6: 1393 break; 1394 default: 1395 return ENOPROTOOPT; 1396 } 1397 switch (op) { 1398 case PRCO_SETOPT: 1399 switch (optname) { 1400 #ifdef RFC2292 1401 case IPV6_2292PKTOPTIONS: 1402 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt); 1403 break; 1404 #endif 1405 1406 /* 1407 * Use of some Hop-by-Hop options or some 1408 * Destination options, might require special 1409 * privilege. That is, normal applications 1410 * (without special privilege) might be forbidden 1411 * from setting certain options in outgoing packets, 1412 * and might never see certain options in received 1413 * packets. [RFC 2292 Section 6] 1414 * KAME specific note: 1415 * KAME prevents non-privileged users from sending or 1416 * receiving ANY hbh/dst options in order to avoid 1417 * overhead of parsing options in the kernel. 1418 */ 1419 case IPV6_RECVHOPOPTS: 1420 case IPV6_RECVDSTOPTS: 1421 case IPV6_RECVRTHDRDSTOPTS: 1422 error = kauth_authorize_network(kauth_cred_get(), 1423 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, 1424 NULL, NULL, NULL); 1425 if (error) 1426 break; 1427 /* FALLTHROUGH */ 1428 case IPV6_UNICAST_HOPS: 1429 case IPV6_HOPLIMIT: 1430 case IPV6_FAITH: 1431 1432 case IPV6_RECVPKTINFO: 1433 case IPV6_RECVHOPLIMIT: 1434 case IPV6_RECVRTHDR: 1435 case IPV6_RECVPATHMTU: 1436 case IPV6_RECVTCLASS: 1437 case IPV6_V6ONLY: 1438 error = sockopt_getint(sopt, &optval); 1439 if (error) 1440 break; 1441 switch (optname) { 1442 case IPV6_UNICAST_HOPS: 1443 if (optval < -1 || optval >= 256) 1444 error = EINVAL; 1445 else { 1446 /* -1 = kernel default */ 1447 in6p->in6p_hops = optval; 1448 } 1449 break; 1450 #define OPTSET(bit) \ 1451 do { \ 1452 if (optval) \ 1453 in6p->in6p_flags |= (bit); \ 1454 else \ 1455 in6p->in6p_flags &= ~(bit); \ 1456 } while (/*CONSTCOND*/ 0) 1457 1458 #ifdef RFC2292 1459 #define OPTSET2292(bit) \ 1460 do { \ 1461 in6p->in6p_flags |= IN6P_RFC2292; \ 1462 if (optval) \ 1463 in6p->in6p_flags |= (bit); \ 1464 else \ 1465 in6p->in6p_flags &= ~(bit); \ 1466 } while (/*CONSTCOND*/ 0) 1467 #endif 1468 1469 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1470 1471 case IPV6_RECVPKTINFO: 1472 #ifdef RFC2292 1473 /* cannot mix with RFC2292 */ 1474 if (OPTBIT(IN6P_RFC2292)) { 1475 error = EINVAL; 1476 break; 1477 } 1478 #endif 1479 OPTSET(IN6P_PKTINFO); 1480 break; 1481 1482 case IPV6_HOPLIMIT: 1483 { 1484 struct ip6_pktopts **optp; 1485 1486 #ifdef RFC2292 1487 /* cannot mix with RFC2292 */ 1488 if (OPTBIT(IN6P_RFC2292)) { 1489 error = EINVAL; 1490 break; 1491 } 1492 #endif 1493 optp = &in6p->in6p_outputopts; 1494 error = ip6_pcbopt(IPV6_HOPLIMIT, 1495 (u_char *)&optval, 1496 sizeof(optval), 1497 optp, 1498 kauth_cred_get(), uproto); 1499 break; 1500 } 1501 1502 case IPV6_RECVHOPLIMIT: 1503 #ifdef RFC2292 1504 /* cannot mix with RFC2292 */ 1505 if (OPTBIT(IN6P_RFC2292)) { 1506 error = EINVAL; 1507 break; 1508 } 1509 #endif 1510 OPTSET(IN6P_HOPLIMIT); 1511 break; 1512 1513 case IPV6_RECVHOPOPTS: 1514 #ifdef RFC2292 1515 /* cannot mix with RFC2292 */ 1516 if (OPTBIT(IN6P_RFC2292)) { 1517 error = EINVAL; 1518 break; 1519 } 1520 #endif 1521 OPTSET(IN6P_HOPOPTS); 1522 break; 1523 1524 case IPV6_RECVDSTOPTS: 1525 #ifdef RFC2292 1526 /* cannot mix with RFC2292 */ 1527 if (OPTBIT(IN6P_RFC2292)) { 1528 error = EINVAL; 1529 break; 1530 } 1531 #endif 1532 OPTSET(IN6P_DSTOPTS); 1533 break; 1534 1535 case IPV6_RECVRTHDRDSTOPTS: 1536 #ifdef RFC2292 1537 /* cannot mix with RFC2292 */ 1538 if (OPTBIT(IN6P_RFC2292)) { 1539 error = EINVAL; 1540 break; 1541 } 1542 #endif 1543 OPTSET(IN6P_RTHDRDSTOPTS); 1544 break; 1545 1546 case IPV6_RECVRTHDR: 1547 #ifdef RFC2292 1548 /* cannot mix with RFC2292 */ 1549 if (OPTBIT(IN6P_RFC2292)) { 1550 error = EINVAL; 1551 break; 1552 } 1553 #endif 1554 OPTSET(IN6P_RTHDR); 1555 break; 1556 1557 case IPV6_FAITH: 1558 OPTSET(IN6P_FAITH); 1559 break; 1560 1561 case IPV6_RECVPATHMTU: 1562 /* 1563 * We ignore this option for TCP 1564 * sockets. 1565 * (RFC3542 leaves this case 1566 * unspecified.) 1567 */ 1568 if (uproto != IPPROTO_TCP) 1569 OPTSET(IN6P_MTU); 1570 break; 1571 1572 case IPV6_V6ONLY: 1573 /* 1574 * make setsockopt(IPV6_V6ONLY) 1575 * available only prior to bind(2). 1576 * see ipng mailing list, Jun 22 2001. 1577 */ 1578 if (in6p->in6p_lport || 1579 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1580 error = EINVAL; 1581 break; 1582 } 1583 #ifdef INET6_BINDV6ONLY 1584 if (!optval) 1585 error = EINVAL; 1586 #else 1587 OPTSET(IN6P_IPV6_V6ONLY); 1588 #endif 1589 break; 1590 case IPV6_RECVTCLASS: 1591 #ifdef RFC2292 1592 /* cannot mix with RFC2292 XXX */ 1593 if (OPTBIT(IN6P_RFC2292)) { 1594 error = EINVAL; 1595 break; 1596 } 1597 #endif 1598 OPTSET(IN6P_TCLASS); 1599 break; 1600 1601 } 1602 break; 1603 1604 case IPV6_OTCLASS: 1605 { 1606 struct ip6_pktopts **optp; 1607 u_int8_t tclass; 1608 1609 error = sockopt_get(sopt, &tclass, sizeof(tclass)); 1610 if (error) 1611 break; 1612 optp = &in6p->in6p_outputopts; 1613 error = ip6_pcbopt(optname, 1614 (u_char *)&tclass, 1615 sizeof(tclass), 1616 optp, 1617 kauth_cred_get(), uproto); 1618 break; 1619 } 1620 1621 case IPV6_TCLASS: 1622 case IPV6_DONTFRAG: 1623 case IPV6_USE_MIN_MTU: 1624 case IPV6_PREFER_TEMPADDR: 1625 error = sockopt_getint(sopt, &optval); 1626 if (error) 1627 break; 1628 { 1629 struct ip6_pktopts **optp; 1630 optp = &in6p->in6p_outputopts; 1631 error = ip6_pcbopt(optname, 1632 (u_char *)&optval, 1633 sizeof(optval), 1634 optp, 1635 kauth_cred_get(), uproto); 1636 break; 1637 } 1638 1639 #ifdef RFC2292 1640 case IPV6_2292PKTINFO: 1641 case IPV6_2292HOPLIMIT: 1642 case IPV6_2292HOPOPTS: 1643 case IPV6_2292DSTOPTS: 1644 case IPV6_2292RTHDR: 1645 /* RFC 2292 */ 1646 error = sockopt_getint(sopt, &optval); 1647 if (error) 1648 break; 1649 1650 switch (optname) { 1651 case IPV6_2292PKTINFO: 1652 OPTSET2292(IN6P_PKTINFO); 1653 break; 1654 case IPV6_2292HOPLIMIT: 1655 OPTSET2292(IN6P_HOPLIMIT); 1656 break; 1657 case IPV6_2292HOPOPTS: 1658 /* 1659 * Check super-user privilege. 1660 * See comments for IPV6_RECVHOPOPTS. 1661 */ 1662 error = 1663 kauth_authorize_network(kauth_cred_get(), 1664 KAUTH_NETWORK_IPV6, 1665 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1666 NULL, NULL); 1667 if (error) 1668 return (error); 1669 OPTSET2292(IN6P_HOPOPTS); 1670 break; 1671 case IPV6_2292DSTOPTS: 1672 error = 1673 kauth_authorize_network(kauth_cred_get(), 1674 KAUTH_NETWORK_IPV6, 1675 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1676 NULL, NULL); 1677 if (error) 1678 return (error); 1679 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1680 break; 1681 case IPV6_2292RTHDR: 1682 OPTSET2292(IN6P_RTHDR); 1683 break; 1684 } 1685 break; 1686 #endif 1687 case IPV6_PKTINFO: 1688 case IPV6_HOPOPTS: 1689 case IPV6_RTHDR: 1690 case IPV6_DSTOPTS: 1691 case IPV6_RTHDRDSTOPTS: 1692 case IPV6_NEXTHOP: { 1693 /* new advanced API (RFC3542) */ 1694 void *optbuf; 1695 int optbuflen; 1696 struct ip6_pktopts **optp; 1697 1698 #ifdef RFC2292 1699 /* cannot mix with RFC2292 */ 1700 if (OPTBIT(IN6P_RFC2292)) { 1701 error = EINVAL; 1702 break; 1703 } 1704 #endif 1705 1706 optbuflen = sopt->sopt_size; 1707 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT); 1708 if (optbuf == NULL) { 1709 error = ENOBUFS; 1710 break; 1711 } 1712 1713 error = sockopt_get(sopt, optbuf, optbuflen); 1714 if (error) { 1715 free(optbuf, M_IP6OPT); 1716 break; 1717 } 1718 optp = &in6p->in6p_outputopts; 1719 error = ip6_pcbopt(optname, optbuf, optbuflen, 1720 optp, kauth_cred_get(), uproto); 1721 1722 free(optbuf, M_IP6OPT); 1723 break; 1724 } 1725 #undef OPTSET 1726 1727 case IPV6_MULTICAST_IF: 1728 case IPV6_MULTICAST_HOPS: 1729 case IPV6_MULTICAST_LOOP: 1730 case IPV6_JOIN_GROUP: 1731 case IPV6_LEAVE_GROUP: 1732 error = ip6_setmoptions(sopt, in6p); 1733 break; 1734 1735 case IPV6_PORTRANGE: 1736 error = sockopt_getint(sopt, &optval); 1737 if (error) 1738 break; 1739 1740 switch (optval) { 1741 case IPV6_PORTRANGE_DEFAULT: 1742 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1743 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1744 break; 1745 1746 case IPV6_PORTRANGE_HIGH: 1747 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1748 in6p->in6p_flags |= IN6P_HIGHPORT; 1749 break; 1750 1751 case IPV6_PORTRANGE_LOW: 1752 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1753 in6p->in6p_flags |= IN6P_LOWPORT; 1754 break; 1755 1756 default: 1757 error = EINVAL; 1758 break; 1759 } 1760 break; 1761 1762 case IPV6_PORTALGO: 1763 error = sockopt_getint(sopt, &optval); 1764 if (error) 1765 break; 1766 1767 error = portalgo_algo_index_select( 1768 (struct inpcb_hdr *)in6p, optval); 1769 break; 1770 1771 #if defined(IPSEC) 1772 case IPV6_IPSEC_POLICY: 1773 if (ipsec_enabled) { 1774 error = ipsec6_set_policy(in6p, optname, 1775 sopt->sopt_data, sopt->sopt_size, 1776 kauth_cred_get()); 1777 break; 1778 } 1779 /*FALLTHROUGH*/ 1780 #endif /* IPSEC */ 1781 1782 default: 1783 error = ENOPROTOOPT; 1784 break; 1785 } 1786 break; 1787 1788 case PRCO_GETOPT: 1789 switch (optname) { 1790 #ifdef RFC2292 1791 case IPV6_2292PKTOPTIONS: 1792 /* 1793 * RFC3542 (effectively) deprecated the 1794 * semantics of the 2292-style pktoptions. 1795 * Since it was not reliable in nature (i.e., 1796 * applications had to expect the lack of some 1797 * information after all), it would make sense 1798 * to simplify this part by always returning 1799 * empty data. 1800 */ 1801 break; 1802 #endif 1803 1804 case IPV6_RECVHOPOPTS: 1805 case IPV6_RECVDSTOPTS: 1806 case IPV6_RECVRTHDRDSTOPTS: 1807 case IPV6_UNICAST_HOPS: 1808 case IPV6_RECVPKTINFO: 1809 case IPV6_RECVHOPLIMIT: 1810 case IPV6_RECVRTHDR: 1811 case IPV6_RECVPATHMTU: 1812 1813 case IPV6_FAITH: 1814 case IPV6_V6ONLY: 1815 case IPV6_PORTRANGE: 1816 case IPV6_RECVTCLASS: 1817 switch (optname) { 1818 1819 case IPV6_RECVHOPOPTS: 1820 optval = OPTBIT(IN6P_HOPOPTS); 1821 break; 1822 1823 case IPV6_RECVDSTOPTS: 1824 optval = OPTBIT(IN6P_DSTOPTS); 1825 break; 1826 1827 case IPV6_RECVRTHDRDSTOPTS: 1828 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1829 break; 1830 1831 case IPV6_UNICAST_HOPS: 1832 optval = in6p->in6p_hops; 1833 break; 1834 1835 case IPV6_RECVPKTINFO: 1836 optval = OPTBIT(IN6P_PKTINFO); 1837 break; 1838 1839 case IPV6_RECVHOPLIMIT: 1840 optval = OPTBIT(IN6P_HOPLIMIT); 1841 break; 1842 1843 case IPV6_RECVRTHDR: 1844 optval = OPTBIT(IN6P_RTHDR); 1845 break; 1846 1847 case IPV6_RECVPATHMTU: 1848 optval = OPTBIT(IN6P_MTU); 1849 break; 1850 1851 case IPV6_FAITH: 1852 optval = OPTBIT(IN6P_FAITH); 1853 break; 1854 1855 case IPV6_V6ONLY: 1856 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1857 break; 1858 1859 case IPV6_PORTRANGE: 1860 { 1861 int flags; 1862 flags = in6p->in6p_flags; 1863 if (flags & IN6P_HIGHPORT) 1864 optval = IPV6_PORTRANGE_HIGH; 1865 else if (flags & IN6P_LOWPORT) 1866 optval = IPV6_PORTRANGE_LOW; 1867 else 1868 optval = 0; 1869 break; 1870 } 1871 case IPV6_RECVTCLASS: 1872 optval = OPTBIT(IN6P_TCLASS); 1873 break; 1874 1875 } 1876 if (error) 1877 break; 1878 error = sockopt_setint(sopt, optval); 1879 break; 1880 1881 case IPV6_PATHMTU: 1882 { 1883 u_long pmtu = 0; 1884 struct ip6_mtuinfo mtuinfo; 1885 struct route *ro = &in6p->in6p_route; 1886 struct rtentry *rt; 1887 union { 1888 struct sockaddr dst; 1889 struct sockaddr_in6 dst6; 1890 } u; 1891 1892 if (!(so->so_state & SS_ISCONNECTED)) 1893 return (ENOTCONN); 1894 /* 1895 * XXX: we dot not consider the case of source 1896 * routing, or optional information to specify 1897 * the outgoing interface. 1898 */ 1899 sockaddr_in6_init(&u.dst6, &in6p->in6p_faddr, 0, 0, 0); 1900 rt = rtcache_lookup(ro, &u.dst); 1901 error = ip6_getpmtu(rt, NULL, &pmtu, NULL); 1902 rtcache_unref(rt, ro); 1903 if (error) 1904 break; 1905 if (pmtu > IPV6_MAXPACKET) 1906 pmtu = IPV6_MAXPACKET; 1907 1908 memset(&mtuinfo, 0, sizeof(mtuinfo)); 1909 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1910 optdata = (void *)&mtuinfo; 1911 optdatalen = sizeof(mtuinfo); 1912 if (optdatalen > MCLBYTES) 1913 return (EMSGSIZE); /* XXX */ 1914 error = sockopt_set(sopt, optdata, optdatalen); 1915 break; 1916 } 1917 1918 #ifdef RFC2292 1919 case IPV6_2292PKTINFO: 1920 case IPV6_2292HOPLIMIT: 1921 case IPV6_2292HOPOPTS: 1922 case IPV6_2292RTHDR: 1923 case IPV6_2292DSTOPTS: 1924 switch (optname) { 1925 case IPV6_2292PKTINFO: 1926 optval = OPTBIT(IN6P_PKTINFO); 1927 break; 1928 case IPV6_2292HOPLIMIT: 1929 optval = OPTBIT(IN6P_HOPLIMIT); 1930 break; 1931 case IPV6_2292HOPOPTS: 1932 optval = OPTBIT(IN6P_HOPOPTS); 1933 break; 1934 case IPV6_2292RTHDR: 1935 optval = OPTBIT(IN6P_RTHDR); 1936 break; 1937 case IPV6_2292DSTOPTS: 1938 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1939 break; 1940 } 1941 error = sockopt_setint(sopt, optval); 1942 break; 1943 #endif 1944 case IPV6_PKTINFO: 1945 case IPV6_HOPOPTS: 1946 case IPV6_RTHDR: 1947 case IPV6_DSTOPTS: 1948 case IPV6_RTHDRDSTOPTS: 1949 case IPV6_NEXTHOP: 1950 case IPV6_OTCLASS: 1951 case IPV6_TCLASS: 1952 case IPV6_DONTFRAG: 1953 case IPV6_USE_MIN_MTU: 1954 case IPV6_PREFER_TEMPADDR: 1955 error = ip6_getpcbopt(in6p->in6p_outputopts, 1956 optname, sopt); 1957 break; 1958 1959 case IPV6_MULTICAST_IF: 1960 case IPV6_MULTICAST_HOPS: 1961 case IPV6_MULTICAST_LOOP: 1962 case IPV6_JOIN_GROUP: 1963 case IPV6_LEAVE_GROUP: 1964 error = ip6_getmoptions(sopt, in6p); 1965 break; 1966 1967 case IPV6_PORTALGO: 1968 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo; 1969 error = sockopt_setint(sopt, optval); 1970 break; 1971 1972 #if defined(IPSEC) 1973 case IPV6_IPSEC_POLICY: 1974 if (ipsec_used) { 1975 struct mbuf *m = NULL; 1976 1977 /* 1978 * XXX: this will return EINVAL as sopt is 1979 * empty 1980 */ 1981 error = ipsec6_get_policy(in6p, sopt->sopt_data, 1982 sopt->sopt_size, &m); 1983 if (!error) 1984 error = sockopt_setmbuf(sopt, m); 1985 break; 1986 } 1987 /*FALLTHROUGH*/ 1988 #endif /* IPSEC */ 1989 1990 default: 1991 error = ENOPROTOOPT; 1992 break; 1993 } 1994 break; 1995 } 1996 return (error); 1997 } 1998 1999 int 2000 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt) 2001 { 2002 int error = 0, optval; 2003 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2004 struct in6pcb *in6p = sotoin6pcb(so); 2005 int level, optname; 2006 2007 KASSERT(sopt != NULL); 2008 2009 level = sopt->sopt_level; 2010 optname = sopt->sopt_name; 2011 2012 if (level != IPPROTO_IPV6) { 2013 return ENOPROTOOPT; 2014 } 2015 2016 switch (optname) { 2017 case IPV6_CHECKSUM: 2018 /* 2019 * For ICMPv6 sockets, no modification allowed for checksum 2020 * offset, permit "no change" values to help existing apps. 2021 * 2022 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM 2023 * for an ICMPv6 socket will fail." The current 2024 * behavior does not meet RFC3542. 2025 */ 2026 switch (op) { 2027 case PRCO_SETOPT: 2028 error = sockopt_getint(sopt, &optval); 2029 if (error) 2030 break; 2031 if ((optval % 2) != 0) { 2032 /* the API assumes even offset values */ 2033 error = EINVAL; 2034 } else if (so->so_proto->pr_protocol == 2035 IPPROTO_ICMPV6) { 2036 if (optval != icmp6off) 2037 error = EINVAL; 2038 } else 2039 in6p->in6p_cksum = optval; 2040 break; 2041 2042 case PRCO_GETOPT: 2043 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2044 optval = icmp6off; 2045 else 2046 optval = in6p->in6p_cksum; 2047 2048 error = sockopt_setint(sopt, optval); 2049 break; 2050 2051 default: 2052 error = EINVAL; 2053 break; 2054 } 2055 break; 2056 2057 default: 2058 error = ENOPROTOOPT; 2059 break; 2060 } 2061 2062 return (error); 2063 } 2064 2065 #ifdef RFC2292 2066 /* 2067 * Set up IP6 options in pcb for insertion in output packets or 2068 * specifying behavior of outgoing packets. 2069 */ 2070 static int 2071 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so, 2072 struct sockopt *sopt) 2073 { 2074 struct ip6_pktopts *opt = *pktopt; 2075 struct mbuf *m; 2076 int error = 0; 2077 2078 KASSERT(solocked(so)); 2079 2080 /* turn off any old options. */ 2081 if (opt) { 2082 #ifdef DIAGNOSTIC 2083 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2084 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2085 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2086 printf("ip6_pcbopts: all specified options are cleared.\n"); 2087 #endif 2088 ip6_clearpktopts(opt, -1); 2089 } else { 2090 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2091 if (opt == NULL) 2092 return (ENOBUFS); 2093 } 2094 *pktopt = NULL; 2095 2096 if (sopt == NULL || sopt->sopt_size == 0) { 2097 /* 2098 * Only turning off any previous options, regardless of 2099 * whether the opt is just created or given. 2100 */ 2101 free(opt, M_IP6OPT); 2102 return (0); 2103 } 2104 2105 /* set options specified by user. */ 2106 m = sockopt_getmbuf(sopt); 2107 if (m == NULL) { 2108 free(opt, M_IP6OPT); 2109 return (ENOBUFS); 2110 } 2111 2112 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(), 2113 so->so_proto->pr_protocol); 2114 m_freem(m); 2115 if (error != 0) { 2116 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2117 free(opt, M_IP6OPT); 2118 return (error); 2119 } 2120 *pktopt = opt; 2121 return (0); 2122 } 2123 #endif 2124 2125 /* 2126 * initialize ip6_pktopts. beware that there are non-zero default values in 2127 * the struct. 2128 */ 2129 void 2130 ip6_initpktopts(struct ip6_pktopts *opt) 2131 { 2132 2133 memset(opt, 0, sizeof(*opt)); 2134 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2135 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2136 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2137 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2138 } 2139 2140 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */ 2141 static int 2142 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2143 kauth_cred_t cred, int uproto) 2144 { 2145 struct ip6_pktopts *opt; 2146 2147 if (*pktopt == NULL) { 2148 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2149 M_NOWAIT); 2150 if (*pktopt == NULL) 2151 return (ENOBUFS); 2152 2153 ip6_initpktopts(*pktopt); 2154 } 2155 opt = *pktopt; 2156 2157 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2158 } 2159 2160 static int 2161 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2162 { 2163 void *optdata = NULL; 2164 int optdatalen = 0; 2165 struct ip6_ext *ip6e; 2166 int error = 0; 2167 struct in6_pktinfo null_pktinfo; 2168 int deftclass = 0, on; 2169 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2170 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2171 2172 switch (optname) { 2173 case IPV6_PKTINFO: 2174 if (pktopt && pktopt->ip6po_pktinfo) 2175 optdata = (void *)pktopt->ip6po_pktinfo; 2176 else { 2177 /* XXX: we don't have to do this every time... */ 2178 memset(&null_pktinfo, 0, sizeof(null_pktinfo)); 2179 optdata = (void *)&null_pktinfo; 2180 } 2181 optdatalen = sizeof(struct in6_pktinfo); 2182 break; 2183 case IPV6_OTCLASS: 2184 /* XXX */ 2185 return (EINVAL); 2186 case IPV6_TCLASS: 2187 if (pktopt && pktopt->ip6po_tclass >= 0) 2188 optdata = (void *)&pktopt->ip6po_tclass; 2189 else 2190 optdata = (void *)&deftclass; 2191 optdatalen = sizeof(int); 2192 break; 2193 case IPV6_HOPOPTS: 2194 if (pktopt && pktopt->ip6po_hbh) { 2195 optdata = (void *)pktopt->ip6po_hbh; 2196 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2197 optdatalen = (ip6e->ip6e_len + 1) << 3; 2198 } 2199 break; 2200 case IPV6_RTHDR: 2201 if (pktopt && pktopt->ip6po_rthdr) { 2202 optdata = (void *)pktopt->ip6po_rthdr; 2203 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2204 optdatalen = (ip6e->ip6e_len + 1) << 3; 2205 } 2206 break; 2207 case IPV6_RTHDRDSTOPTS: 2208 if (pktopt && pktopt->ip6po_dest1) { 2209 optdata = (void *)pktopt->ip6po_dest1; 2210 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2211 optdatalen = (ip6e->ip6e_len + 1) << 3; 2212 } 2213 break; 2214 case IPV6_DSTOPTS: 2215 if (pktopt && pktopt->ip6po_dest2) { 2216 optdata = (void *)pktopt->ip6po_dest2; 2217 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2218 optdatalen = (ip6e->ip6e_len + 1) << 3; 2219 } 2220 break; 2221 case IPV6_NEXTHOP: 2222 if (pktopt && pktopt->ip6po_nexthop) { 2223 optdata = (void *)pktopt->ip6po_nexthop; 2224 optdatalen = pktopt->ip6po_nexthop->sa_len; 2225 } 2226 break; 2227 case IPV6_USE_MIN_MTU: 2228 if (pktopt) 2229 optdata = (void *)&pktopt->ip6po_minmtu; 2230 else 2231 optdata = (void *)&defminmtu; 2232 optdatalen = sizeof(int); 2233 break; 2234 case IPV6_DONTFRAG: 2235 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2236 on = 1; 2237 else 2238 on = 0; 2239 optdata = (void *)&on; 2240 optdatalen = sizeof(on); 2241 break; 2242 case IPV6_PREFER_TEMPADDR: 2243 if (pktopt) 2244 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2245 else 2246 optdata = (void *)&defpreftemp; 2247 optdatalen = sizeof(int); 2248 break; 2249 default: /* should not happen */ 2250 #ifdef DIAGNOSTIC 2251 panic("ip6_getpcbopt: unexpected option\n"); 2252 #endif 2253 return (ENOPROTOOPT); 2254 } 2255 2256 error = sockopt_set(sopt, optdata, optdatalen); 2257 2258 return (error); 2259 } 2260 2261 void 2262 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2263 { 2264 if (optname == -1 || optname == IPV6_PKTINFO) { 2265 if (pktopt->ip6po_pktinfo) 2266 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2267 pktopt->ip6po_pktinfo = NULL; 2268 } 2269 if (optname == -1 || optname == IPV6_HOPLIMIT) 2270 pktopt->ip6po_hlim = -1; 2271 if (optname == -1 || optname == IPV6_TCLASS) 2272 pktopt->ip6po_tclass = -1; 2273 if (optname == -1 || optname == IPV6_NEXTHOP) { 2274 rtcache_free(&pktopt->ip6po_nextroute); 2275 if (pktopt->ip6po_nexthop) 2276 free(pktopt->ip6po_nexthop, M_IP6OPT); 2277 pktopt->ip6po_nexthop = NULL; 2278 } 2279 if (optname == -1 || optname == IPV6_HOPOPTS) { 2280 if (pktopt->ip6po_hbh) 2281 free(pktopt->ip6po_hbh, M_IP6OPT); 2282 pktopt->ip6po_hbh = NULL; 2283 } 2284 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2285 if (pktopt->ip6po_dest1) 2286 free(pktopt->ip6po_dest1, M_IP6OPT); 2287 pktopt->ip6po_dest1 = NULL; 2288 } 2289 if (optname == -1 || optname == IPV6_RTHDR) { 2290 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2291 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2292 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2293 rtcache_free(&pktopt->ip6po_route); 2294 } 2295 if (optname == -1 || optname == IPV6_DSTOPTS) { 2296 if (pktopt->ip6po_dest2) 2297 free(pktopt->ip6po_dest2, M_IP6OPT); 2298 pktopt->ip6po_dest2 = NULL; 2299 } 2300 } 2301 2302 #define PKTOPT_EXTHDRCPY(type) \ 2303 do { \ 2304 if (src->type) { \ 2305 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2306 dst->type = malloc(hlen, M_IP6OPT, canwait); \ 2307 if (dst->type == NULL) \ 2308 goto bad; \ 2309 memcpy(dst->type, src->type, hlen); \ 2310 } \ 2311 } while (/*CONSTCOND*/ 0) 2312 2313 static int 2314 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2315 { 2316 dst->ip6po_hlim = src->ip6po_hlim; 2317 dst->ip6po_tclass = src->ip6po_tclass; 2318 dst->ip6po_flags = src->ip6po_flags; 2319 dst->ip6po_minmtu = src->ip6po_minmtu; 2320 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2321 if (src->ip6po_pktinfo) { 2322 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2323 M_IP6OPT, canwait); 2324 if (dst->ip6po_pktinfo == NULL) 2325 goto bad; 2326 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2327 } 2328 if (src->ip6po_nexthop) { 2329 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2330 M_IP6OPT, canwait); 2331 if (dst->ip6po_nexthop == NULL) 2332 goto bad; 2333 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop, 2334 src->ip6po_nexthop->sa_len); 2335 } 2336 PKTOPT_EXTHDRCPY(ip6po_hbh); 2337 PKTOPT_EXTHDRCPY(ip6po_dest1); 2338 PKTOPT_EXTHDRCPY(ip6po_dest2); 2339 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2340 return (0); 2341 2342 bad: 2343 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 2344 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 2345 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 2346 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 2347 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 2348 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 2349 2350 return (ENOBUFS); 2351 } 2352 #undef PKTOPT_EXTHDRCPY 2353 2354 struct ip6_pktopts * 2355 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2356 { 2357 int error; 2358 struct ip6_pktopts *dst; 2359 2360 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2361 if (dst == NULL) 2362 return (NULL); 2363 ip6_initpktopts(dst); 2364 2365 if ((error = copypktopts(dst, src, canwait)) != 0) { 2366 free(dst, M_IP6OPT); 2367 return (NULL); 2368 } 2369 2370 return (dst); 2371 } 2372 2373 void 2374 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2375 { 2376 if (pktopt == NULL) 2377 return; 2378 2379 ip6_clearpktopts(pktopt, -1); 2380 2381 free(pktopt, M_IP6OPT); 2382 } 2383 2384 int 2385 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp, 2386 struct psref *psref, void *v, size_t l) 2387 { 2388 struct ipv6_mreq mreq; 2389 int error; 2390 struct in6_addr *ia = &mreq.ipv6mr_multiaddr; 2391 struct in_addr *ia4 = (void *)&ia->s6_addr32[3]; 2392 2393 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2394 if (error != 0) 2395 return error; 2396 2397 if (IN6_IS_ADDR_UNSPECIFIED(ia)) { 2398 /* 2399 * We use the unspecified address to specify to accept 2400 * all multicast addresses. Only super user is allowed 2401 * to do this. 2402 */ 2403 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6, 2404 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL)) 2405 return EACCES; 2406 } else if (IN6_IS_ADDR_V4MAPPED(ia)) { 2407 // Don't bother if we are not going to use ifp. 2408 if (l == sizeof(*ia)) { 2409 memcpy(v, ia, l); 2410 return 0; 2411 } 2412 } else if (!IN6_IS_ADDR_MULTICAST(ia)) { 2413 return EINVAL; 2414 } 2415 2416 /* 2417 * If no interface was explicitly specified, choose an 2418 * appropriate one according to the given multicast address. 2419 */ 2420 if (mreq.ipv6mr_interface == 0) { 2421 struct rtentry *rt; 2422 union { 2423 struct sockaddr dst; 2424 struct sockaddr_in dst4; 2425 struct sockaddr_in6 dst6; 2426 } u; 2427 struct route ro; 2428 2429 /* 2430 * Look up the routing table for the 2431 * address, and choose the outgoing interface. 2432 * XXX: is it a good approach? 2433 */ 2434 memset(&ro, 0, sizeof(ro)); 2435 if (IN6_IS_ADDR_V4MAPPED(ia)) 2436 sockaddr_in_init(&u.dst4, ia4, 0); 2437 else 2438 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0); 2439 error = rtcache_setdst(&ro, &u.dst); 2440 if (error != 0) 2441 return error; 2442 rt = rtcache_init(&ro); 2443 *ifp = rt != NULL ? 2444 if_get_byindex(rt->rt_ifp->if_index, psref) : NULL; 2445 rtcache_unref(rt, &ro); 2446 rtcache_free(&ro); 2447 } else { 2448 /* 2449 * If the interface is specified, validate it. 2450 */ 2451 *ifp = if_get_byindex(mreq.ipv6mr_interface, psref); 2452 if (*ifp == NULL) 2453 return ENXIO; /* XXX EINVAL? */ 2454 } 2455 if (sizeof(*ia) == l) 2456 memcpy(v, ia, l); 2457 else 2458 memcpy(v, ia4, l); 2459 return 0; 2460 } 2461 2462 /* 2463 * Set the IP6 multicast options in response to user setsockopt(). 2464 */ 2465 static int 2466 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p) 2467 { 2468 int error = 0; 2469 u_int loop, ifindex; 2470 struct ipv6_mreq mreq; 2471 struct in6_addr ia; 2472 struct ifnet *ifp; 2473 struct ip6_moptions *im6o = in6p->in6p_moptions; 2474 struct in6_multi_mship *imm; 2475 2476 KASSERT(in6p_locked(in6p)); 2477 2478 if (im6o == NULL) { 2479 /* 2480 * No multicast option buffer attached to the pcb; 2481 * allocate one and initialize to default values. 2482 */ 2483 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT); 2484 if (im6o == NULL) 2485 return (ENOBUFS); 2486 in6p->in6p_moptions = im6o; 2487 im6o->im6o_multicast_if_index = 0; 2488 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2489 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2490 LIST_INIT(&im6o->im6o_memberships); 2491 } 2492 2493 switch (sopt->sopt_name) { 2494 2495 case IPV6_MULTICAST_IF: { 2496 int s; 2497 /* 2498 * Select the interface for outgoing multicast packets. 2499 */ 2500 error = sockopt_get(sopt, &ifindex, sizeof(ifindex)); 2501 if (error != 0) 2502 break; 2503 2504 s = pserialize_read_enter(); 2505 if (ifindex != 0) { 2506 if ((ifp = if_byindex(ifindex)) == NULL) { 2507 pserialize_read_exit(s); 2508 error = ENXIO; /* XXX EINVAL? */ 2509 break; 2510 } 2511 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 2512 pserialize_read_exit(s); 2513 error = EADDRNOTAVAIL; 2514 break; 2515 } 2516 } else 2517 ifp = NULL; 2518 im6o->im6o_multicast_if_index = if_get_index(ifp); 2519 pserialize_read_exit(s); 2520 break; 2521 } 2522 2523 case IPV6_MULTICAST_HOPS: 2524 { 2525 /* 2526 * Set the IP6 hoplimit for outgoing multicast packets. 2527 */ 2528 int optval; 2529 2530 error = sockopt_getint(sopt, &optval); 2531 if (error != 0) 2532 break; 2533 2534 if (optval < -1 || optval >= 256) 2535 error = EINVAL; 2536 else if (optval == -1) 2537 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2538 else 2539 im6o->im6o_multicast_hlim = optval; 2540 break; 2541 } 2542 2543 case IPV6_MULTICAST_LOOP: 2544 /* 2545 * Set the loopback flag for outgoing multicast packets. 2546 * Must be zero or one. 2547 */ 2548 error = sockopt_get(sopt, &loop, sizeof(loop)); 2549 if (error != 0) 2550 break; 2551 if (loop > 1) { 2552 error = EINVAL; 2553 break; 2554 } 2555 im6o->im6o_multicast_loop = loop; 2556 break; 2557 2558 case IPV6_JOIN_GROUP: { 2559 int bound; 2560 struct psref psref; 2561 /* 2562 * Add a multicast group membership. 2563 * Group must be a valid IP6 multicast address. 2564 */ 2565 bound = curlwp_bind(); 2566 ifp = NULL; 2567 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia)); 2568 if (error != 0) { 2569 KASSERT(ifp == NULL); 2570 curlwp_bindx(bound); 2571 return error; 2572 } 2573 2574 if (IN6_IS_ADDR_V4MAPPED(&ia)) { 2575 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt); 2576 goto put_break; 2577 } 2578 /* 2579 * See if we found an interface, and confirm that it 2580 * supports multicast 2581 */ 2582 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2583 error = EADDRNOTAVAIL; 2584 goto put_break; 2585 } 2586 2587 if (in6_setscope(&ia, ifp, NULL)) { 2588 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2589 goto put_break; 2590 } 2591 2592 /* 2593 * See if the membership already exists. 2594 */ 2595 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2596 if (imm->i6mm_maddr->in6m_ifp == ifp && 2597 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2598 &ia)) 2599 goto put_break; 2600 } 2601 if (imm != NULL) { 2602 error = EADDRINUSE; 2603 goto put_break; 2604 } 2605 /* 2606 * Everything looks good; add a new record to the multicast 2607 * address list for the given interface. 2608 */ 2609 imm = in6_joingroup(ifp, &ia, &error, 0); 2610 if (imm == NULL) 2611 goto put_break; 2612 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2613 put_break: 2614 if_put(ifp, &psref); 2615 curlwp_bindx(bound); 2616 break; 2617 } 2618 2619 case IPV6_LEAVE_GROUP: 2620 /* 2621 * Drop a multicast group membership. 2622 * Group must be a valid IP6 multicast address. 2623 */ 2624 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2625 if (error != 0) 2626 break; 2627 2628 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) { 2629 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt); 2630 break; 2631 } 2632 /* 2633 * If an interface address was specified, get a pointer 2634 * to its ifnet structure. 2635 */ 2636 if (mreq.ipv6mr_interface != 0) { 2637 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) { 2638 error = ENXIO; /* XXX EINVAL? */ 2639 break; 2640 } 2641 } else 2642 ifp = NULL; 2643 2644 /* Fill in the scope zone ID */ 2645 if (ifp) { 2646 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) { 2647 /* XXX: should not happen */ 2648 error = EADDRNOTAVAIL; 2649 break; 2650 } 2651 } else if (mreq.ipv6mr_interface != 0) { 2652 /* 2653 * XXX: This case would happens when the (positive) 2654 * index is in the valid range, but the corresponding 2655 * interface has been detached dynamically. The above 2656 * check probably avoids such case to happen here, but 2657 * we check it explicitly for safety. 2658 */ 2659 error = EADDRNOTAVAIL; 2660 break; 2661 } else { /* ipv6mr_interface == 0 */ 2662 struct sockaddr_in6 sa6_mc; 2663 2664 /* 2665 * The API spec says as follows: 2666 * If the interface index is specified as 0, the 2667 * system may choose a multicast group membership to 2668 * drop by matching the multicast address only. 2669 * On the other hand, we cannot disambiguate the scope 2670 * zone unless an interface is provided. Thus, we 2671 * check if there's ambiguity with the default scope 2672 * zone as the last resort. 2673 */ 2674 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr, 2675 0, 0, 0); 2676 error = sa6_embedscope(&sa6_mc, ip6_use_defzone); 2677 if (error != 0) 2678 break; 2679 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr; 2680 } 2681 2682 /* 2683 * Find the membership in the membership list. 2684 */ 2685 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2686 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2687 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2688 &mreq.ipv6mr_multiaddr)) 2689 break; 2690 } 2691 if (imm == NULL) { 2692 /* Unable to resolve interface */ 2693 error = EADDRNOTAVAIL; 2694 break; 2695 } 2696 /* 2697 * Give up the multicast address record to which the 2698 * membership points. 2699 */ 2700 LIST_REMOVE(imm, i6mm_chain); 2701 in6_leavegroup(imm); 2702 break; 2703 2704 default: 2705 error = EOPNOTSUPP; 2706 break; 2707 } 2708 2709 /* 2710 * If all options have default values, no need to keep the mbuf. 2711 */ 2712 if (im6o->im6o_multicast_if_index == 0 && 2713 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2714 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2715 LIST_EMPTY(&im6o->im6o_memberships)) { 2716 free(in6p->in6p_moptions, M_IPMOPTS); 2717 in6p->in6p_moptions = NULL; 2718 } 2719 2720 return (error); 2721 } 2722 2723 /* 2724 * Return the IP6 multicast options in response to user getsockopt(). 2725 */ 2726 static int 2727 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p) 2728 { 2729 u_int optval; 2730 int error; 2731 struct ip6_moptions *im6o = in6p->in6p_moptions; 2732 2733 switch (sopt->sopt_name) { 2734 case IPV6_MULTICAST_IF: 2735 if (im6o == NULL || im6o->im6o_multicast_if_index == 0) 2736 optval = 0; 2737 else 2738 optval = im6o->im6o_multicast_if_index; 2739 2740 error = sockopt_set(sopt, &optval, sizeof(optval)); 2741 break; 2742 2743 case IPV6_MULTICAST_HOPS: 2744 if (im6o == NULL) 2745 optval = ip6_defmcasthlim; 2746 else 2747 optval = im6o->im6o_multicast_hlim; 2748 2749 error = sockopt_set(sopt, &optval, sizeof(optval)); 2750 break; 2751 2752 case IPV6_MULTICAST_LOOP: 2753 if (im6o == NULL) 2754 optval = IPV6_DEFAULT_MULTICAST_LOOP; 2755 else 2756 optval = im6o->im6o_multicast_loop; 2757 2758 error = sockopt_set(sopt, &optval, sizeof(optval)); 2759 break; 2760 2761 default: 2762 error = EOPNOTSUPP; 2763 } 2764 2765 return (error); 2766 } 2767 2768 /* 2769 * Discard the IP6 multicast options. 2770 */ 2771 void 2772 ip6_freemoptions(struct ip6_moptions *im6o) 2773 { 2774 struct in6_multi_mship *imm, *nimm; 2775 2776 if (im6o == NULL) 2777 return; 2778 2779 /* The owner of im6o (in6p) should be protected by solock */ 2780 LIST_FOREACH_SAFE(imm, &im6o->im6o_memberships, i6mm_chain, nimm) { 2781 LIST_REMOVE(imm, i6mm_chain); 2782 in6_leavegroup(imm); 2783 } 2784 free(im6o, M_IPMOPTS); 2785 } 2786 2787 /* 2788 * Set IPv6 outgoing packet options based on advanced API. 2789 */ 2790 int 2791 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2792 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto) 2793 { 2794 struct cmsghdr *cm = 0; 2795 2796 if (control == NULL || opt == NULL) 2797 return (EINVAL); 2798 2799 ip6_initpktopts(opt); 2800 if (stickyopt) { 2801 int error; 2802 2803 /* 2804 * If stickyopt is provided, make a local copy of the options 2805 * for this particular packet, then override them by ancillary 2806 * objects. 2807 * XXX: copypktopts() does not copy the cached route to a next 2808 * hop (if any). This is not very good in terms of efficiency, 2809 * but we can allow this since this option should be rarely 2810 * used. 2811 */ 2812 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2813 return (error); 2814 } 2815 2816 /* 2817 * XXX: Currently, we assume all the optional information is stored 2818 * in a single mbuf. 2819 */ 2820 if (control->m_next) 2821 return (EINVAL); 2822 2823 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */ 2824 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2825 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2826 int error; 2827 2828 if (control->m_len < CMSG_LEN(0)) 2829 return (EINVAL); 2830 2831 cm = mtod(control, struct cmsghdr *); 2832 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2833 return (EINVAL); 2834 if (cm->cmsg_level != IPPROTO_IPV6) 2835 continue; 2836 2837 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2838 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2839 if (error) 2840 return (error); 2841 } 2842 2843 return (0); 2844 } 2845 2846 /* 2847 * Set a particular packet option, as a sticky option or an ancillary data 2848 * item. "len" can be 0 only when it's a sticky option. 2849 * We have 4 cases of combination of "sticky" and "cmsg": 2850 * "sticky=0, cmsg=0": impossible 2851 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2852 * "sticky=1, cmsg=0": RFC3542 socket option 2853 * "sticky=1, cmsg=1": RFC2292 socket option 2854 */ 2855 static int 2856 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2857 kauth_cred_t cred, int sticky, int cmsg, int uproto) 2858 { 2859 int minmtupolicy; 2860 int error; 2861 2862 if (!sticky && !cmsg) { 2863 #ifdef DIAGNOSTIC 2864 printf("ip6_setpktopt: impossible case\n"); 2865 #endif 2866 return (EINVAL); 2867 } 2868 2869 /* 2870 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2871 * not be specified in the context of RFC3542. Conversely, 2872 * RFC3542 types should not be specified in the context of RFC2292. 2873 */ 2874 if (!cmsg) { 2875 switch (optname) { 2876 case IPV6_2292PKTINFO: 2877 case IPV6_2292HOPLIMIT: 2878 case IPV6_2292NEXTHOP: 2879 case IPV6_2292HOPOPTS: 2880 case IPV6_2292DSTOPTS: 2881 case IPV6_2292RTHDR: 2882 case IPV6_2292PKTOPTIONS: 2883 return (ENOPROTOOPT); 2884 } 2885 } 2886 if (sticky && cmsg) { 2887 switch (optname) { 2888 case IPV6_PKTINFO: 2889 case IPV6_HOPLIMIT: 2890 case IPV6_NEXTHOP: 2891 case IPV6_HOPOPTS: 2892 case IPV6_DSTOPTS: 2893 case IPV6_RTHDRDSTOPTS: 2894 case IPV6_RTHDR: 2895 case IPV6_USE_MIN_MTU: 2896 case IPV6_DONTFRAG: 2897 case IPV6_OTCLASS: 2898 case IPV6_TCLASS: 2899 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */ 2900 return (ENOPROTOOPT); 2901 } 2902 } 2903 2904 switch (optname) { 2905 #ifdef RFC2292 2906 case IPV6_2292PKTINFO: 2907 #endif 2908 case IPV6_PKTINFO: 2909 { 2910 struct in6_pktinfo *pktinfo; 2911 2912 if (len != sizeof(struct in6_pktinfo)) 2913 return (EINVAL); 2914 2915 pktinfo = (struct in6_pktinfo *)buf; 2916 2917 /* 2918 * An application can clear any sticky IPV6_PKTINFO option by 2919 * doing a "regular" setsockopt with ipi6_addr being 2920 * in6addr_any and ipi6_ifindex being zero. 2921 * [RFC 3542, Section 6] 2922 */ 2923 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2924 pktinfo->ipi6_ifindex == 0 && 2925 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2926 ip6_clearpktopts(opt, optname); 2927 break; 2928 } 2929 2930 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2931 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2932 return (EINVAL); 2933 } 2934 2935 /* Validate the interface index if specified. */ 2936 if (pktinfo->ipi6_ifindex) { 2937 struct ifnet *ifp; 2938 int s = pserialize_read_enter(); 2939 ifp = if_byindex(pktinfo->ipi6_ifindex); 2940 if (ifp == NULL) { 2941 pserialize_read_exit(s); 2942 return ENXIO; 2943 } 2944 pserialize_read_exit(s); 2945 } 2946 2947 /* 2948 * We store the address anyway, and let in6_selectsrc() 2949 * validate the specified address. This is because ipi6_addr 2950 * may not have enough information about its scope zone, and 2951 * we may need additional information (such as outgoing 2952 * interface or the scope zone of a destination address) to 2953 * disambiguate the scope. 2954 * XXX: the delay of the validation may confuse the 2955 * application when it is used as a sticky option. 2956 */ 2957 if (opt->ip6po_pktinfo == NULL) { 2958 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2959 M_IP6OPT, M_NOWAIT); 2960 if (opt->ip6po_pktinfo == NULL) 2961 return (ENOBUFS); 2962 } 2963 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo)); 2964 break; 2965 } 2966 2967 #ifdef RFC2292 2968 case IPV6_2292HOPLIMIT: 2969 #endif 2970 case IPV6_HOPLIMIT: 2971 { 2972 int *hlimp; 2973 2974 /* 2975 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2976 * to simplify the ordering among hoplimit options. 2977 */ 2978 if (optname == IPV6_HOPLIMIT && sticky) 2979 return (ENOPROTOOPT); 2980 2981 if (len != sizeof(int)) 2982 return (EINVAL); 2983 hlimp = (int *)buf; 2984 if (*hlimp < -1 || *hlimp > 255) 2985 return (EINVAL); 2986 2987 opt->ip6po_hlim = *hlimp; 2988 break; 2989 } 2990 2991 case IPV6_OTCLASS: 2992 if (len != sizeof(u_int8_t)) 2993 return (EINVAL); 2994 2995 opt->ip6po_tclass = *(u_int8_t *)buf; 2996 break; 2997 2998 case IPV6_TCLASS: 2999 { 3000 int tclass; 3001 3002 if (len != sizeof(int)) 3003 return (EINVAL); 3004 tclass = *(int *)buf; 3005 if (tclass < -1 || tclass > 255) 3006 return (EINVAL); 3007 3008 opt->ip6po_tclass = tclass; 3009 break; 3010 } 3011 3012 #ifdef RFC2292 3013 case IPV6_2292NEXTHOP: 3014 #endif 3015 case IPV6_NEXTHOP: 3016 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 3017 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 3018 if (error) 3019 return (error); 3020 3021 if (len == 0) { /* just remove the option */ 3022 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3023 break; 3024 } 3025 3026 /* check if cmsg_len is large enough for sa_len */ 3027 if (len < sizeof(struct sockaddr) || len < *buf) 3028 return (EINVAL); 3029 3030 switch (((struct sockaddr *)buf)->sa_family) { 3031 case AF_INET6: 3032 { 3033 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3034 3035 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3036 return (EINVAL); 3037 3038 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3039 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3040 return (EINVAL); 3041 } 3042 if ((error = sa6_embedscope(sa6, ip6_use_defzone)) 3043 != 0) { 3044 return (error); 3045 } 3046 break; 3047 } 3048 case AF_LINK: /* eventually be supported? */ 3049 default: 3050 return (EAFNOSUPPORT); 3051 } 3052 3053 /* turn off the previous option, then set the new option. */ 3054 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3055 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3056 if (opt->ip6po_nexthop == NULL) 3057 return (ENOBUFS); 3058 memcpy(opt->ip6po_nexthop, buf, *buf); 3059 break; 3060 3061 #ifdef RFC2292 3062 case IPV6_2292HOPOPTS: 3063 #endif 3064 case IPV6_HOPOPTS: 3065 { 3066 struct ip6_hbh *hbh; 3067 int hbhlen; 3068 3069 /* 3070 * XXX: We don't allow a non-privileged user to set ANY HbH 3071 * options, since per-option restriction has too much 3072 * overhead. 3073 */ 3074 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 3075 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 3076 if (error) 3077 return (error); 3078 3079 if (len == 0) { 3080 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3081 break; /* just remove the option */ 3082 } 3083 3084 /* message length validation */ 3085 if (len < sizeof(struct ip6_hbh)) 3086 return (EINVAL); 3087 hbh = (struct ip6_hbh *)buf; 3088 hbhlen = (hbh->ip6h_len + 1) << 3; 3089 if (len != hbhlen) 3090 return (EINVAL); 3091 3092 /* turn off the previous option, then set the new option. */ 3093 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3094 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3095 if (opt->ip6po_hbh == NULL) 3096 return (ENOBUFS); 3097 memcpy(opt->ip6po_hbh, hbh, hbhlen); 3098 3099 break; 3100 } 3101 3102 #ifdef RFC2292 3103 case IPV6_2292DSTOPTS: 3104 #endif 3105 case IPV6_DSTOPTS: 3106 case IPV6_RTHDRDSTOPTS: 3107 { 3108 struct ip6_dest *dest, **newdest = NULL; 3109 int destlen; 3110 3111 /* XXX: see the comment for IPV6_HOPOPTS */ 3112 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 3113 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 3114 if (error) 3115 return (error); 3116 3117 if (len == 0) { 3118 ip6_clearpktopts(opt, optname); 3119 break; /* just remove the option */ 3120 } 3121 3122 /* message length validation */ 3123 if (len < sizeof(struct ip6_dest)) 3124 return (EINVAL); 3125 dest = (struct ip6_dest *)buf; 3126 destlen = (dest->ip6d_len + 1) << 3; 3127 if (len != destlen) 3128 return (EINVAL); 3129 /* 3130 * Determine the position that the destination options header 3131 * should be inserted; before or after the routing header. 3132 */ 3133 switch (optname) { 3134 case IPV6_2292DSTOPTS: 3135 /* 3136 * The old advanced API is ambiguous on this point. 3137 * Our approach is to determine the position based 3138 * according to the existence of a routing header. 3139 * Note, however, that this depends on the order of the 3140 * extension headers in the ancillary data; the 1st 3141 * part of the destination options header must appear 3142 * before the routing header in the ancillary data, 3143 * too. 3144 * RFC3542 solved the ambiguity by introducing 3145 * separate ancillary data or option types. 3146 */ 3147 if (opt->ip6po_rthdr == NULL) 3148 newdest = &opt->ip6po_dest1; 3149 else 3150 newdest = &opt->ip6po_dest2; 3151 break; 3152 case IPV6_RTHDRDSTOPTS: 3153 newdest = &opt->ip6po_dest1; 3154 break; 3155 case IPV6_DSTOPTS: 3156 newdest = &opt->ip6po_dest2; 3157 break; 3158 } 3159 3160 /* turn off the previous option, then set the new option. */ 3161 ip6_clearpktopts(opt, optname); 3162 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3163 if (*newdest == NULL) 3164 return (ENOBUFS); 3165 memcpy(*newdest, dest, destlen); 3166 3167 break; 3168 } 3169 3170 #ifdef RFC2292 3171 case IPV6_2292RTHDR: 3172 #endif 3173 case IPV6_RTHDR: 3174 { 3175 struct ip6_rthdr *rth; 3176 int rthlen; 3177 3178 if (len == 0) { 3179 ip6_clearpktopts(opt, IPV6_RTHDR); 3180 break; /* just remove the option */ 3181 } 3182 3183 /* message length validation */ 3184 if (len < sizeof(struct ip6_rthdr)) 3185 return (EINVAL); 3186 rth = (struct ip6_rthdr *)buf; 3187 rthlen = (rth->ip6r_len + 1) << 3; 3188 if (len != rthlen) 3189 return (EINVAL); 3190 switch (rth->ip6r_type) { 3191 case IPV6_RTHDR_TYPE_0: 3192 if (rth->ip6r_len == 0) /* must contain one addr */ 3193 return (EINVAL); 3194 if (rth->ip6r_len % 2) /* length must be even */ 3195 return (EINVAL); 3196 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3197 return (EINVAL); 3198 break; 3199 default: 3200 return (EINVAL); /* not supported */ 3201 } 3202 /* turn off the previous option */ 3203 ip6_clearpktopts(opt, IPV6_RTHDR); 3204 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3205 if (opt->ip6po_rthdr == NULL) 3206 return (ENOBUFS); 3207 memcpy(opt->ip6po_rthdr, rth, rthlen); 3208 break; 3209 } 3210 3211 case IPV6_USE_MIN_MTU: 3212 if (len != sizeof(int)) 3213 return (EINVAL); 3214 minmtupolicy = *(int *)buf; 3215 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3216 minmtupolicy != IP6PO_MINMTU_DISABLE && 3217 minmtupolicy != IP6PO_MINMTU_ALL) { 3218 return (EINVAL); 3219 } 3220 opt->ip6po_minmtu = minmtupolicy; 3221 break; 3222 3223 case IPV6_DONTFRAG: 3224 if (len != sizeof(int)) 3225 return (EINVAL); 3226 3227 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3228 /* 3229 * we ignore this option for TCP sockets. 3230 * (RFC3542 leaves this case unspecified.) 3231 */ 3232 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3233 } else 3234 opt->ip6po_flags |= IP6PO_DONTFRAG; 3235 break; 3236 3237 case IPV6_PREFER_TEMPADDR: 3238 { 3239 int preftemp; 3240 3241 if (len != sizeof(int)) 3242 return (EINVAL); 3243 preftemp = *(int *)buf; 3244 switch (preftemp) { 3245 case IP6PO_TEMPADDR_SYSTEM: 3246 case IP6PO_TEMPADDR_NOTPREFER: 3247 case IP6PO_TEMPADDR_PREFER: 3248 break; 3249 default: 3250 return (EINVAL); 3251 } 3252 opt->ip6po_prefer_tempaddr = preftemp; 3253 break; 3254 } 3255 3256 default: 3257 return (ENOPROTOOPT); 3258 } /* end of switch */ 3259 3260 return (0); 3261 } 3262 3263 /* 3264 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3265 * packet to the input queue of a specified interface. Note that this 3266 * calls the output routine of the loopback "driver", but with an interface 3267 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 3268 */ 3269 void 3270 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, 3271 const struct sockaddr_in6 *dst) 3272 { 3273 struct mbuf *copym; 3274 struct ip6_hdr *ip6; 3275 3276 copym = m_copy(m, 0, M_COPYALL); 3277 if (copym == NULL) 3278 return; 3279 3280 /* 3281 * Make sure to deep-copy IPv6 header portion in case the data 3282 * is in an mbuf cluster, so that we can safely override the IPv6 3283 * header portion later. 3284 */ 3285 if ((copym->m_flags & M_EXT) != 0 || 3286 copym->m_len < sizeof(struct ip6_hdr)) { 3287 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3288 if (copym == NULL) 3289 return; 3290 } 3291 3292 #ifdef DIAGNOSTIC 3293 if (copym->m_len < sizeof(*ip6)) { 3294 m_freem(copym); 3295 return; 3296 } 3297 #endif 3298 3299 ip6 = mtod(copym, struct ip6_hdr *); 3300 /* 3301 * clear embedded scope identifiers if necessary. 3302 * in6_clearscope will touch the addresses only when necessary. 3303 */ 3304 in6_clearscope(&ip6->ip6_src); 3305 in6_clearscope(&ip6->ip6_dst); 3306 3307 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL); 3308 } 3309 3310 /* 3311 * Chop IPv6 header off from the payload. 3312 */ 3313 static int 3314 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3315 { 3316 struct mbuf *mh; 3317 struct ip6_hdr *ip6; 3318 3319 ip6 = mtod(m, struct ip6_hdr *); 3320 if (m->m_len > sizeof(*ip6)) { 3321 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3322 if (mh == 0) { 3323 m_freem(m); 3324 return ENOBUFS; 3325 } 3326 M_MOVE_PKTHDR(mh, m); 3327 MH_ALIGN(mh, sizeof(*ip6)); 3328 m->m_len -= sizeof(*ip6); 3329 m->m_data += sizeof(*ip6); 3330 mh->m_next = m; 3331 m = mh; 3332 m->m_len = sizeof(*ip6); 3333 bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6)); 3334 } 3335 exthdrs->ip6e_ip6 = m; 3336 return 0; 3337 } 3338 3339 /* 3340 * Compute IPv6 extension header length. 3341 */ 3342 int 3343 ip6_optlen(struct in6pcb *in6p) 3344 { 3345 int len; 3346 3347 if (!in6p->in6p_outputopts) 3348 return 0; 3349 3350 len = 0; 3351 #define elen(x) \ 3352 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3353 3354 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3355 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3356 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3357 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3358 return len; 3359 #undef elen 3360 } 3361 3362 /* 3363 * Ensure sending address is valid. 3364 * Returns 0 on success, -1 if an error should be sent back or 1 3365 * if the packet could be dropped without error (protocol dependent). 3366 */ 3367 static int 3368 ip6_ifaddrvalid(const struct in6_addr *src, const struct in6_addr *dst) 3369 { 3370 struct sockaddr_in6 sin6; 3371 int s, error; 3372 struct ifaddr *ifa; 3373 struct in6_ifaddr *ia6; 3374 3375 if (IN6_IS_ADDR_UNSPECIFIED(src)) 3376 return 0; 3377 3378 memset(&sin6, 0, sizeof(sin6)); 3379 sin6.sin6_family = AF_INET6; 3380 sin6.sin6_len = sizeof(sin6); 3381 sin6.sin6_addr = *src; 3382 3383 s = pserialize_read_enter(); 3384 ifa = ifa_ifwithaddr(sin6tosa(&sin6)); 3385 if ((ia6 = ifatoia6(ifa)) == NULL || 3386 ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED)) 3387 error = -1; 3388 else if (ia6->ia6_flags & IN6_IFF_TENTATIVE) 3389 error = 1; 3390 else if (ia6->ia6_flags & IN6_IFF_DETACHED && 3391 (sin6.sin6_addr = *dst, ifa_ifwithaddr(sin6tosa(&sin6)) == NULL)) 3392 /* Allow internal traffic to DETACHED addresses */ 3393 error = 1; 3394 else 3395 error = 0; 3396 pserialize_read_exit(s); 3397 3398 return error; 3399 } 3400