1 /* $NetBSD: ip6_output.c,v 1.221 2019/11/01 04:23:21 knakahara Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.221 2019/11/01 04:23:21 knakahara Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #endif 72 73 #include <sys/param.h> 74 #include <sys/malloc.h> 75 #include <sys/mbuf.h> 76 #include <sys/errno.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/syslog.h> 80 #include <sys/systm.h> 81 #include <sys/proc.h> 82 #include <sys/kauth.h> 83 84 #include <net/if.h> 85 #include <net/route.h> 86 #include <net/pfil.h> 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/ip6.h> 91 #include <netinet/ip_var.h> 92 #include <netinet/icmp6.h> 93 #include <netinet/in_offload.h> 94 #include <netinet/portalgo.h> 95 #include <netinet6/in6_offload.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/ip6_private.h> 98 #include <netinet6/in6_pcb.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6protosw.h> 101 #include <netinet6/scope6_var.h> 102 103 #ifdef IPSEC 104 #include <netipsec/ipsec.h> 105 #include <netipsec/ipsec6.h> 106 #include <netipsec/key.h> 107 #endif 108 109 extern pfil_head_t *inet6_pfil_hook; /* XXX */ 110 111 struct ip6_exthdrs { 112 struct mbuf *ip6e_ip6; 113 struct mbuf *ip6e_hbh; 114 struct mbuf *ip6e_dest1; 115 struct mbuf *ip6e_rthdr; 116 struct mbuf *ip6e_dest2; 117 }; 118 119 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 120 kauth_cred_t, int); 121 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 122 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t, 123 int, int, int); 124 static int ip6_setmoptions(const struct sockopt *, struct in6pcb *); 125 static int ip6_getmoptions(struct sockopt *, struct in6pcb *); 126 static int ip6_copyexthdr(struct mbuf **, void *, int); 127 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 128 struct ip6_frag **); 129 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 130 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 131 static int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *, int *); 132 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 133 static int ip6_ifaddrvalid(const struct in6_addr *, const struct in6_addr *); 134 static int ip6_handle_rthdr(struct ip6_rthdr *, struct ip6_hdr *); 135 136 #ifdef RFC2292 137 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *); 138 #endif 139 140 static int 141 ip6_handle_rthdr(struct ip6_rthdr *rh, struct ip6_hdr *ip6) 142 { 143 int error = 0; 144 145 switch (rh->ip6r_type) { 146 case IPV6_RTHDR_TYPE_0: 147 /* Dropped, RFC5095. */ 148 default: /* is it possible? */ 149 error = EINVAL; 150 } 151 152 return error; 153 } 154 155 /* 156 * Send an IP packet to a host. 157 */ 158 int 159 ip6_if_output(struct ifnet * const ifp, struct ifnet * const origifp, 160 struct mbuf * const m, const struct sockaddr_in6 * const dst, 161 const struct rtentry *rt) 162 { 163 int error = 0; 164 165 if (rt != NULL) { 166 error = rt_check_reject_route(rt, ifp); 167 if (error != 0) { 168 m_freem(m); 169 return error; 170 } 171 } 172 173 if ((ifp->if_flags & IFF_LOOPBACK) != 0) 174 error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt); 175 else 176 error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt); 177 return error; 178 } 179 180 /* 181 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 182 * header (with pri, len, nxt, hlim, src, dst). 183 * 184 * This function may modify ver and hlim only. The mbuf chain containing the 185 * packet will be freed. The mbuf opt, if present, will not be freed. 186 * 187 * Type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 188 * nd_ifinfo.linkmtu is u_int32_t. So we use u_long to hold largest one, 189 * which is rt_rmx.rmx_mtu. 190 */ 191 int 192 ip6_output( 193 struct mbuf *m0, 194 struct ip6_pktopts *opt, 195 struct route *ro, 196 int flags, 197 struct ip6_moptions *im6o, 198 struct in6pcb *in6p, 199 struct ifnet **ifpp /* XXX: just for statistics */ 200 ) 201 { 202 struct ip6_hdr *ip6, *mhip6; 203 struct ifnet *ifp = NULL, *origifp = NULL; 204 struct mbuf *m = m0; 205 int tlen, len, off; 206 bool tso; 207 struct route ip6route; 208 struct rtentry *rt = NULL, *rt_pmtu; 209 const struct sockaddr_in6 *dst; 210 struct sockaddr_in6 src_sa, dst_sa; 211 int error = 0; 212 struct in6_ifaddr *ia = NULL; 213 u_long mtu; 214 int alwaysfrag, dontfrag; 215 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 216 struct ip6_exthdrs exthdrs; 217 struct in6_addr finaldst, src0, dst0; 218 u_int32_t zone; 219 struct route *ro_pmtu = NULL; 220 int hdrsplit = 0; 221 int needipsec = 0; 222 #ifdef IPSEC 223 struct secpolicy *sp = NULL; 224 #endif 225 struct psref psref, psref_ia; 226 int bound = curlwp_bind(); 227 bool release_psref_ia = false; 228 229 #ifdef DIAGNOSTIC 230 if ((m->m_flags & M_PKTHDR) == 0) 231 panic("ip6_output: no HDR"); 232 if ((m->m_pkthdr.csum_flags & 233 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) { 234 panic("ip6_output: IPv4 checksum offload flags: %d", 235 m->m_pkthdr.csum_flags); 236 } 237 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 238 (M_CSUM_TCPv6|M_CSUM_UDPv6)) { 239 panic("ip6_output: conflicting checksum offload flags: %d", 240 m->m_pkthdr.csum_flags); 241 } 242 #endif 243 244 M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr)); 245 246 #define MAKE_EXTHDR(hp, mp) \ 247 do { \ 248 if (hp) { \ 249 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 250 error = ip6_copyexthdr((mp), (void *)(hp), \ 251 ((eh)->ip6e_len + 1) << 3); \ 252 if (error) \ 253 goto freehdrs; \ 254 } \ 255 } while (/*CONSTCOND*/ 0) 256 257 memset(&exthdrs, 0, sizeof(exthdrs)); 258 if (opt) { 259 /* Hop-by-Hop options header */ 260 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 261 /* Destination options header (1st part) */ 262 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 263 /* Routing header */ 264 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 265 /* Destination options header (2nd part) */ 266 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 267 } 268 269 /* 270 * Calculate the total length of the extension header chain. 271 * Keep the length of the unfragmentable part for fragmentation. 272 */ 273 optlen = 0; 274 if (exthdrs.ip6e_hbh) 275 optlen += exthdrs.ip6e_hbh->m_len; 276 if (exthdrs.ip6e_dest1) 277 optlen += exthdrs.ip6e_dest1->m_len; 278 if (exthdrs.ip6e_rthdr) 279 optlen += exthdrs.ip6e_rthdr->m_len; 280 unfragpartlen = optlen + sizeof(struct ip6_hdr); 281 /* NOTE: we don't add AH/ESP length here. do that later. */ 282 if (exthdrs.ip6e_dest2) 283 optlen += exthdrs.ip6e_dest2->m_len; 284 285 #ifdef IPSEC 286 if (ipsec_used) { 287 /* Check the security policy (SP) for the packet */ 288 sp = ipsec6_check_policy(m, in6p, flags, &needipsec, &error); 289 if (error != 0) { 290 /* 291 * Hack: -EINVAL is used to signal that a packet 292 * should be silently discarded. This is typically 293 * because we asked key management for an SA and 294 * it was delayed (e.g. kicked up to IKE). 295 */ 296 if (error == -EINVAL) 297 error = 0; 298 goto freehdrs; 299 } 300 } 301 #endif 302 303 if (needipsec && 304 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 305 in6_undefer_cksum_tcpudp(m); 306 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 307 } 308 309 /* 310 * If we need IPsec, or there is at least one extension header, 311 * separate IP6 header from the payload. 312 */ 313 if ((needipsec || optlen) && !hdrsplit) { 314 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 315 m = NULL; 316 goto freehdrs; 317 } 318 m = exthdrs.ip6e_ip6; 319 hdrsplit++; 320 } 321 322 /* adjust pointer */ 323 ip6 = mtod(m, struct ip6_hdr *); 324 325 /* adjust mbuf packet header length */ 326 m->m_pkthdr.len += optlen; 327 plen = m->m_pkthdr.len - sizeof(*ip6); 328 329 /* If this is a jumbo payload, insert a jumbo payload option. */ 330 if (plen > IPV6_MAXPACKET) { 331 if (!hdrsplit) { 332 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 333 m = NULL; 334 goto freehdrs; 335 } 336 m = exthdrs.ip6e_ip6; 337 hdrsplit++; 338 } 339 /* adjust pointer */ 340 ip6 = mtod(m, struct ip6_hdr *); 341 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 342 goto freehdrs; 343 optlen += 8; /* XXX JUMBOOPTLEN */ 344 ip6->ip6_plen = 0; 345 } else 346 ip6->ip6_plen = htons(plen); 347 348 /* 349 * Concatenate headers and fill in next header fields. 350 * Here we have, on "m" 351 * IPv6 payload 352 * and we insert headers accordingly. Finally, we should be getting: 353 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 354 * 355 * during the header composing process, "m" points to IPv6 header. 356 * "mprev" points to an extension header prior to esp. 357 */ 358 { 359 u_char *nexthdrp = &ip6->ip6_nxt; 360 struct mbuf *mprev = m; 361 362 /* 363 * we treat dest2 specially. this makes IPsec processing 364 * much easier. the goal here is to make mprev point the 365 * mbuf prior to dest2. 366 * 367 * result: IPv6 dest2 payload 368 * m and mprev will point to IPv6 header. 369 */ 370 if (exthdrs.ip6e_dest2) { 371 if (!hdrsplit) 372 panic("assumption failed: hdr not split"); 373 exthdrs.ip6e_dest2->m_next = m->m_next; 374 m->m_next = exthdrs.ip6e_dest2; 375 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 376 ip6->ip6_nxt = IPPROTO_DSTOPTS; 377 } 378 379 #define MAKE_CHAIN(m, mp, p, i)\ 380 do {\ 381 if (m) {\ 382 if (!hdrsplit) \ 383 panic("assumption failed: hdr not split"); \ 384 *mtod((m), u_char *) = *(p);\ 385 *(p) = (i);\ 386 p = mtod((m), u_char *);\ 387 (m)->m_next = (mp)->m_next;\ 388 (mp)->m_next = (m);\ 389 (mp) = (m);\ 390 }\ 391 } while (/*CONSTCOND*/ 0) 392 /* 393 * result: IPv6 hbh dest1 rthdr dest2 payload 394 * m will point to IPv6 header. mprev will point to the 395 * extension header prior to dest2 (rthdr in the above case). 396 */ 397 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 398 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 399 IPPROTO_DSTOPTS); 400 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 401 IPPROTO_ROUTING); 402 403 M_CSUM_DATA_IPv6_SET(m->m_pkthdr.csum_data, 404 sizeof(struct ip6_hdr) + optlen); 405 } 406 407 /* Need to save for pmtu */ 408 finaldst = ip6->ip6_dst; 409 410 /* 411 * If there is a routing header, replace destination address field 412 * with the first hop of the routing header. 413 */ 414 if (exthdrs.ip6e_rthdr) { 415 struct ip6_rthdr *rh; 416 417 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 418 419 error = ip6_handle_rthdr(rh, ip6); 420 if (error != 0) 421 goto bad; 422 } 423 424 /* Source address validation */ 425 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 426 (flags & IPV6_UNSPECSRC) == 0) { 427 error = EOPNOTSUPP; 428 IP6_STATINC(IP6_STAT_BADSCOPE); 429 goto bad; 430 } 431 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 432 error = EOPNOTSUPP; 433 IP6_STATINC(IP6_STAT_BADSCOPE); 434 goto bad; 435 } 436 437 IP6_STATINC(IP6_STAT_LOCALOUT); 438 439 /* 440 * Route packet. 441 */ 442 /* initialize cached route */ 443 if (ro == NULL) { 444 memset(&ip6route, 0, sizeof(ip6route)); 445 ro = &ip6route; 446 } 447 ro_pmtu = ro; 448 if (opt && opt->ip6po_rthdr) 449 ro = &opt->ip6po_route; 450 451 /* 452 * if specified, try to fill in the traffic class field. 453 * do not override if a non-zero value is already set. 454 * we check the diffserv field and the ecn field separately. 455 */ 456 if (opt && opt->ip6po_tclass >= 0) { 457 int mask = 0; 458 459 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 460 mask |= 0xfc; 461 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 462 mask |= 0x03; 463 if (mask != 0) 464 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 465 } 466 467 /* fill in or override the hop limit field, if necessary. */ 468 if (opt && opt->ip6po_hlim != -1) 469 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 470 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 471 if (im6o != NULL) 472 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 473 else 474 ip6->ip6_hlim = ip6_defmcasthlim; 475 } 476 477 #ifdef IPSEC 478 if (needipsec) { 479 int s = splsoftnet(); 480 error = ipsec6_process_packet(m, sp->req, flags); 481 splx(s); 482 483 /* 484 * Preserve KAME behaviour: ENOENT can be returned 485 * when an SA acquire is in progress. Don't propagate 486 * this to user-level; it confuses applications. 487 * XXX this will go away when the SADB is redone. 488 */ 489 if (error == ENOENT) 490 error = 0; 491 492 goto done; 493 } 494 #endif 495 496 /* adjust pointer */ 497 ip6 = mtod(m, struct ip6_hdr *); 498 499 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 500 501 /* We do not need a route for multicast */ 502 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 503 struct in6_pktinfo *pi = NULL; 504 505 /* 506 * If the outgoing interface for the address is specified by 507 * the caller, use it. 508 */ 509 if (opt && (pi = opt->ip6po_pktinfo) != NULL) { 510 /* XXX boundary check is assumed to be already done. */ 511 ifp = if_get_byindex(pi->ipi6_ifindex, &psref); 512 } else if (im6o != NULL) { 513 ifp = if_get_byindex(im6o->im6o_multicast_if_index, 514 &psref); 515 } 516 } 517 518 if (ifp == NULL) { 519 error = in6_selectroute(&dst_sa, opt, &ro, &rt, true); 520 if (error != 0) 521 goto bad; 522 ifp = if_get_byindex(rt->rt_ifp->if_index, &psref); 523 } 524 525 if (rt == NULL) { 526 /* 527 * If in6_selectroute() does not return a route entry, 528 * dst may not have been updated. 529 */ 530 error = rtcache_setdst(ro, sin6tosa(&dst_sa)); 531 if (error) { 532 goto bad; 533 } 534 } 535 536 /* 537 * then rt (for unicast) and ifp must be non-NULL valid values. 538 */ 539 if ((flags & IPV6_FORWARDING) == 0) { 540 /* XXX: the FORWARDING flag can be set for mrouting. */ 541 in6_ifstat_inc(ifp, ifs6_out_request); 542 } 543 if (rt != NULL) { 544 ia = (struct in6_ifaddr *)(rt->rt_ifa); 545 rt->rt_use++; 546 } 547 548 /* 549 * The outgoing interface must be in the zone of source and 550 * destination addresses. We should use ia_ifp to support the 551 * case of sending packets to an address of our own. 552 */ 553 if (ia != NULL && ia->ia_ifp) { 554 origifp = ia->ia_ifp; 555 if (if_is_deactivated(origifp)) 556 goto bad; 557 if_acquire(origifp, &psref_ia); 558 release_psref_ia = true; 559 } else 560 origifp = ifp; 561 562 src0 = ip6->ip6_src; 563 if (in6_setscope(&src0, origifp, &zone)) 564 goto badscope; 565 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0); 566 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 567 goto badscope; 568 569 dst0 = ip6->ip6_dst; 570 if (in6_setscope(&dst0, origifp, &zone)) 571 goto badscope; 572 /* re-initialize to be sure */ 573 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 574 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) 575 goto badscope; 576 577 /* scope check is done. */ 578 579 /* Ensure we only send from a valid address. */ 580 if ((ifp->if_flags & IFF_LOOPBACK) == 0 && 581 (flags & IPV6_FORWARDING) == 0 && 582 (error = ip6_ifaddrvalid(&src0, &dst0)) != 0) 583 { 584 char ip6buf[INET6_ADDRSTRLEN]; 585 nd6log(LOG_ERR, 586 "refusing to send from invalid address %s (pid %d)\n", 587 IN6_PRINT(ip6buf, &src0), curproc->p_pid); 588 IP6_STATINC(IP6_STAT_ODROPPED); 589 in6_ifstat_inc(origifp, ifs6_out_discard); 590 if (error == 1) 591 /* 592 * Address exists, but is tentative or detached. 593 * We can't send from it because it's invalid, 594 * so we drop the packet. 595 */ 596 error = 0; 597 else 598 error = EADDRNOTAVAIL; 599 goto bad; 600 } 601 602 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) && 603 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 604 dst = satocsin6(rt->rt_gateway); 605 else 606 dst = satocsin6(rtcache_getdst(ro)); 607 608 /* 609 * XXXXXX: original code follows: 610 */ 611 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 612 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 613 else { 614 bool ingroup; 615 616 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 617 618 in6_ifstat_inc(ifp, ifs6_out_mcast); 619 620 /* 621 * Confirm that the outgoing interface supports multicast. 622 */ 623 if (!(ifp->if_flags & IFF_MULTICAST)) { 624 IP6_STATINC(IP6_STAT_NOROUTE); 625 in6_ifstat_inc(ifp, ifs6_out_discard); 626 error = ENETUNREACH; 627 goto bad; 628 } 629 630 ingroup = in6_multi_group(&ip6->ip6_dst, ifp); 631 if (ingroup && (im6o == NULL || im6o->im6o_multicast_loop)) { 632 /* 633 * If we belong to the destination multicast group 634 * on the outgoing interface, and the caller did not 635 * forbid loopback, loop back a copy. 636 */ 637 KASSERT(dst != NULL); 638 ip6_mloopback(ifp, m, dst); 639 } else { 640 /* 641 * If we are acting as a multicast router, perform 642 * multicast forwarding as if the packet had just 643 * arrived on the interface to which we are about 644 * to send. The multicast forwarding function 645 * recursively calls this function, using the 646 * IPV6_FORWARDING flag to prevent infinite recursion. 647 * 648 * Multicasts that are looped back by ip6_mloopback(), 649 * above, will be forwarded by the ip6_input() routine, 650 * if necessary. 651 */ 652 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 653 if (ip6_mforward(ip6, ifp, m) != 0) { 654 m_freem(m); 655 goto done; 656 } 657 } 658 } 659 /* 660 * Multicasts with a hoplimit of zero may be looped back, 661 * above, but must not be transmitted on a network. 662 * Also, multicasts addressed to the loopback interface 663 * are not sent -- the above call to ip6_mloopback() will 664 * loop back a copy if this host actually belongs to the 665 * destination group on the loopback interface. 666 */ 667 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 668 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 669 m_freem(m); 670 goto done; 671 } 672 } 673 674 /* 675 * Fill the outgoing inteface to tell the upper layer 676 * to increment per-interface statistics. 677 */ 678 if (ifpp) 679 *ifpp = ifp; 680 681 /* Determine path MTU. */ 682 /* 683 * ro_pmtu represent final destination while 684 * ro might represent immediate destination. 685 * Use ro_pmtu destination since MTU might differ. 686 */ 687 if (ro_pmtu != ro) { 688 union { 689 struct sockaddr dst; 690 struct sockaddr_in6 dst6; 691 } u; 692 693 /* ro_pmtu may not have a cache */ 694 sockaddr_in6_init(&u.dst6, &finaldst, 0, 0, 0); 695 rt_pmtu = rtcache_lookup(ro_pmtu, &u.dst); 696 } else 697 rt_pmtu = rt; 698 error = ip6_getpmtu(rt_pmtu, ifp, &mtu, &alwaysfrag); 699 if (rt_pmtu != NULL && rt_pmtu != rt) 700 rtcache_unref(rt_pmtu, ro_pmtu); 701 if (error != 0) 702 goto bad; 703 704 /* 705 * The caller of this function may specify to use the minimum MTU 706 * in some cases. 707 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 708 * setting. The logic is a bit complicated; by default, unicast 709 * packets will follow path MTU while multicast packets will be sent at 710 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 711 * including unicast ones will be sent at the minimum MTU. Multicast 712 * packets will always be sent at the minimum MTU unless 713 * IP6PO_MINMTU_DISABLE is explicitly specified. 714 * See RFC 3542 for more details. 715 */ 716 if (mtu > IPV6_MMTU) { 717 if ((flags & IPV6_MINMTU)) 718 mtu = IPV6_MMTU; 719 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 720 mtu = IPV6_MMTU; 721 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 722 (opt == NULL || 723 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 724 mtu = IPV6_MMTU; 725 } 726 } 727 728 /* 729 * clear embedded scope identifiers if necessary. 730 * in6_clearscope will touch the addresses only when necessary. 731 */ 732 in6_clearscope(&ip6->ip6_src); 733 in6_clearscope(&ip6->ip6_dst); 734 735 /* 736 * If the outgoing packet contains a hop-by-hop options header, 737 * it must be examined and processed even by the source node. 738 * (RFC 2460, section 4.) 739 * 740 * XXX Is this really necessary? 741 */ 742 if (ip6->ip6_nxt == IPPROTO_HOPOPTS) { 743 u_int32_t dummy1; /* XXX unused */ 744 u_int32_t dummy2; /* XXX unused */ 745 int hoff = sizeof(struct ip6_hdr); 746 747 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) { 748 /* m was already freed at this point */ 749 error = EINVAL; 750 goto done; 751 } 752 753 ip6 = mtod(m, struct ip6_hdr *); 754 } 755 756 /* 757 * Run through list of hooks for output packets. 758 */ 759 error = pfil_run_hooks(inet6_pfil_hook, &m, ifp, PFIL_OUT); 760 if (error != 0 || m == NULL) { 761 IP6_STATINC(IP6_STAT_PFILDROP_OUT); 762 goto done; 763 } 764 ip6 = mtod(m, struct ip6_hdr *); 765 766 /* 767 * Send the packet to the outgoing interface. 768 * If necessary, do IPv6 fragmentation before sending. 769 * 770 * the logic here is rather complex: 771 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 772 * 1-a: send as is if tlen <= path mtu 773 * 1-b: fragment if tlen > path mtu 774 * 775 * 2: if user asks us not to fragment (dontfrag == 1) 776 * 2-a: send as is if tlen <= interface mtu 777 * 2-b: error if tlen > interface mtu 778 * 779 * 3: if we always need to attach fragment header (alwaysfrag == 1) 780 * always fragment 781 * 782 * 4: if dontfrag == 1 && alwaysfrag == 1 783 * error, as we cannot handle this conflicting request 784 */ 785 tlen = m->m_pkthdr.len; 786 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0; 787 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 788 dontfrag = 1; 789 else 790 dontfrag = 0; 791 792 if (dontfrag && alwaysfrag) { /* case 4 */ 793 /* conflicting request - can't transmit */ 794 error = EMSGSIZE; 795 goto bad; 796 } 797 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */ 798 /* 799 * Even if the DONTFRAG option is specified, we cannot send the 800 * packet when the data length is larger than the MTU of the 801 * outgoing interface. 802 * Notify the error by sending IPV6_PATHMTU ancillary data as 803 * well as returning an error code (the latter is not described 804 * in the API spec.) 805 */ 806 u_int32_t mtu32; 807 struct ip6ctlparam ip6cp; 808 809 mtu32 = (u_int32_t)mtu; 810 memset(&ip6cp, 0, sizeof(ip6cp)); 811 ip6cp.ip6c_cmdarg = (void *)&mtu32; 812 pfctlinput2(PRC_MSGSIZE, 813 rtcache_getdst(ro_pmtu), &ip6cp); 814 815 error = EMSGSIZE; 816 goto bad; 817 } 818 819 /* 820 * transmit packet without fragmentation 821 */ 822 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) { 823 /* case 1-a and 2-a */ 824 struct in6_ifaddr *ia6; 825 int sw_csum; 826 int s; 827 828 ip6 = mtod(m, struct ip6_hdr *); 829 s = pserialize_read_enter(); 830 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 831 if (ia6) { 832 /* Record statistics for this interface address. */ 833 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len; 834 } 835 pserialize_read_exit(s); 836 837 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 838 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 839 if (IN6_NEED_CHECKSUM(ifp, 840 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 841 in6_undefer_cksum_tcpudp(m); 842 } 843 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 844 } 845 846 KASSERT(dst != NULL); 847 if (__predict_false(sw_csum & M_CSUM_TSOv6)) { 848 /* 849 * TSO6 is required by a packet, but disabled for 850 * the interface. 851 */ 852 error = ip6_tso_output(ifp, origifp, m, dst, rt); 853 } else 854 error = ip6_if_output(ifp, origifp, m, dst, rt); 855 goto done; 856 } 857 858 if (tso) { 859 error = EINVAL; /* XXX */ 860 goto bad; 861 } 862 863 /* 864 * try to fragment the packet. case 1-b and 3 865 */ 866 if (mtu < IPV6_MMTU) { 867 /* path MTU cannot be less than IPV6_MMTU */ 868 error = EMSGSIZE; 869 in6_ifstat_inc(ifp, ifs6_out_fragfail); 870 goto bad; 871 } else if (ip6->ip6_plen == 0) { 872 /* jumbo payload cannot be fragmented */ 873 error = EMSGSIZE; 874 in6_ifstat_inc(ifp, ifs6_out_fragfail); 875 goto bad; 876 } else { 877 const u_int32_t id = htonl(ip6_randomid()); 878 struct mbuf **mnext, *m_frgpart; 879 const int hlen = unfragpartlen; 880 struct ip6_frag *ip6f; 881 u_char nextproto; 882 883 if (mtu > IPV6_MAXPACKET) 884 mtu = IPV6_MAXPACKET; 885 886 /* 887 * Must be able to put at least 8 bytes per fragment. 888 */ 889 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 890 if (len < 8) { 891 error = EMSGSIZE; 892 in6_ifstat_inc(ifp, ifs6_out_fragfail); 893 goto bad; 894 } 895 896 mnext = &m->m_nextpkt; 897 898 /* 899 * Change the next header field of the last header in the 900 * unfragmentable part. 901 */ 902 if (exthdrs.ip6e_rthdr) { 903 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 904 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 905 } else if (exthdrs.ip6e_dest1) { 906 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 907 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 908 } else if (exthdrs.ip6e_hbh) { 909 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 910 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 911 } else { 912 nextproto = ip6->ip6_nxt; 913 ip6->ip6_nxt = IPPROTO_FRAGMENT; 914 } 915 916 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) 917 != 0) { 918 if (IN6_NEED_CHECKSUM(ifp, 919 m->m_pkthdr.csum_flags & 920 (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 921 in6_undefer_cksum_tcpudp(m); 922 } 923 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 924 } 925 926 /* 927 * Loop through length of segment after first fragment, 928 * make new header and copy data of each part and link onto 929 * chain. 930 */ 931 m0 = m; 932 for (off = hlen; off < tlen; off += len) { 933 struct mbuf *mlast; 934 935 MGETHDR(m, M_DONTWAIT, MT_HEADER); 936 if (!m) { 937 error = ENOBUFS; 938 IP6_STATINC(IP6_STAT_ODROPPED); 939 goto sendorfree; 940 } 941 m_reset_rcvif(m); 942 m->m_flags = m0->m_flags & M_COPYFLAGS; 943 *mnext = m; 944 mnext = &m->m_nextpkt; 945 m->m_data += max_linkhdr; 946 mhip6 = mtod(m, struct ip6_hdr *); 947 *mhip6 = *ip6; 948 m->m_len = sizeof(*mhip6); 949 950 ip6f = NULL; 951 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 952 if (error) { 953 IP6_STATINC(IP6_STAT_ODROPPED); 954 goto sendorfree; 955 } 956 957 /* Fill in the Frag6 Header */ 958 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 959 if (off + len >= tlen) 960 len = tlen - off; 961 else 962 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 963 ip6f->ip6f_reserved = 0; 964 ip6f->ip6f_ident = id; 965 ip6f->ip6f_nxt = nextproto; 966 967 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 968 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 969 if ((m_frgpart = m_copym(m0, off, len, M_DONTWAIT)) == NULL) { 970 error = ENOBUFS; 971 IP6_STATINC(IP6_STAT_ODROPPED); 972 goto sendorfree; 973 } 974 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 975 ; 976 mlast->m_next = m_frgpart; 977 978 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 979 m_reset_rcvif(m); 980 IP6_STATINC(IP6_STAT_OFRAGMENTS); 981 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 982 } 983 984 in6_ifstat_inc(ifp, ifs6_out_fragok); 985 } 986 987 sendorfree: 988 m = m0->m_nextpkt; 989 m0->m_nextpkt = 0; 990 m_freem(m0); 991 for (m0 = m; m; m = m0) { 992 m0 = m->m_nextpkt; 993 m->m_nextpkt = 0; 994 if (error == 0) { 995 struct in6_ifaddr *ia6; 996 int s; 997 ip6 = mtod(m, struct ip6_hdr *); 998 s = pserialize_read_enter(); 999 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1000 if (ia6) { 1001 /* 1002 * Record statistics for this interface 1003 * address. 1004 */ 1005 ia6->ia_ifa.ifa_data.ifad_outbytes += 1006 m->m_pkthdr.len; 1007 } 1008 pserialize_read_exit(s); 1009 KASSERT(dst != NULL); 1010 error = ip6_if_output(ifp, origifp, m, dst, rt); 1011 } else 1012 m_freem(m); 1013 } 1014 1015 if (error == 0) 1016 IP6_STATINC(IP6_STAT_FRAGMENTED); 1017 1018 done: 1019 rtcache_unref(rt, ro); 1020 if (ro == &ip6route) 1021 rtcache_free(&ip6route); 1022 #ifdef IPSEC 1023 if (sp != NULL) 1024 KEY_SP_UNREF(&sp); 1025 #endif 1026 if_put(ifp, &psref); 1027 if (release_psref_ia) 1028 if_put(origifp, &psref_ia); 1029 curlwp_bindx(bound); 1030 1031 return error; 1032 1033 freehdrs: 1034 m_freem(exthdrs.ip6e_hbh); 1035 m_freem(exthdrs.ip6e_dest1); 1036 m_freem(exthdrs.ip6e_rthdr); 1037 m_freem(exthdrs.ip6e_dest2); 1038 /* FALLTHROUGH */ 1039 bad: 1040 m_freem(m); 1041 goto done; 1042 1043 badscope: 1044 IP6_STATINC(IP6_STAT_BADSCOPE); 1045 in6_ifstat_inc(origifp, ifs6_out_discard); 1046 if (error == 0) 1047 error = EHOSTUNREACH; /* XXX */ 1048 goto bad; 1049 } 1050 1051 static int 1052 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen) 1053 { 1054 struct mbuf *m; 1055 1056 if (hlen > MCLBYTES) 1057 return ENOBUFS; /* XXX */ 1058 1059 MGET(m, M_DONTWAIT, MT_DATA); 1060 if (!m) 1061 return ENOBUFS; 1062 1063 if (hlen > MLEN) { 1064 MCLGET(m, M_DONTWAIT); 1065 if ((m->m_flags & M_EXT) == 0) { 1066 m_free(m); 1067 return ENOBUFS; 1068 } 1069 } 1070 m->m_len = hlen; 1071 if (hdr) 1072 memcpy(mtod(m, void *), hdr, hlen); 1073 1074 *mp = m; 1075 return 0; 1076 } 1077 1078 /* 1079 * Insert jumbo payload option. 1080 */ 1081 static int 1082 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1083 { 1084 struct mbuf *mopt; 1085 u_int8_t *optbuf; 1086 u_int32_t v; 1087 1088 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1089 1090 /* 1091 * If there is no hop-by-hop options header, allocate new one. 1092 * If there is one but it doesn't have enough space to store the 1093 * jumbo payload option, allocate a cluster to store the whole options. 1094 * Otherwise, use it to store the options. 1095 */ 1096 if (exthdrs->ip6e_hbh == NULL) { 1097 MGET(mopt, M_DONTWAIT, MT_DATA); 1098 if (mopt == 0) 1099 return (ENOBUFS); 1100 mopt->m_len = JUMBOOPTLEN; 1101 optbuf = mtod(mopt, u_int8_t *); 1102 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1103 exthdrs->ip6e_hbh = mopt; 1104 } else { 1105 struct ip6_hbh *hbh; 1106 1107 mopt = exthdrs->ip6e_hbh; 1108 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1109 const int oldoptlen = mopt->m_len; 1110 struct mbuf *n; 1111 1112 /* 1113 * Assumptions: 1114 * - exthdrs->ip6e_hbh is not referenced from places 1115 * other than exthdrs. 1116 * - exthdrs->ip6e_hbh is not an mbuf chain. 1117 */ 1118 KASSERT(mopt->m_next == NULL); 1119 1120 /* 1121 * Give up if the whole (new) hbh header does not fit 1122 * even in an mbuf cluster. 1123 */ 1124 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1125 return ENOBUFS; 1126 1127 /* 1128 * At this point, we must always prepare a cluster. 1129 */ 1130 MGET(n, M_DONTWAIT, MT_DATA); 1131 if (n) { 1132 MCLGET(n, M_DONTWAIT); 1133 if ((n->m_flags & M_EXT) == 0) { 1134 m_freem(n); 1135 n = NULL; 1136 } 1137 } 1138 if (!n) 1139 return ENOBUFS; 1140 1141 n->m_len = oldoptlen + JUMBOOPTLEN; 1142 bcopy(mtod(mopt, void *), mtod(n, void *), 1143 oldoptlen); 1144 optbuf = mtod(n, u_int8_t *) + oldoptlen; 1145 m_freem(mopt); 1146 mopt = exthdrs->ip6e_hbh = n; 1147 } else { 1148 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 1149 mopt->m_len += JUMBOOPTLEN; 1150 } 1151 optbuf[0] = IP6OPT_PADN; 1152 optbuf[1] = 0; 1153 1154 /* 1155 * Adjust the header length according to the pad and 1156 * the jumbo payload option. 1157 */ 1158 hbh = mtod(mopt, struct ip6_hbh *); 1159 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1160 } 1161 1162 /* fill in the option. */ 1163 optbuf[2] = IP6OPT_JUMBO; 1164 optbuf[3] = 4; 1165 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1166 memcpy(&optbuf[4], &v, sizeof(u_int32_t)); 1167 1168 /* finally, adjust the packet header length */ 1169 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1170 1171 return 0; 1172 #undef JUMBOOPTLEN 1173 } 1174 1175 /* 1176 * Insert fragment header and copy unfragmentable header portions. 1177 * 1178 * *frghdrp will not be read, and it is guaranteed that either an 1179 * error is returned or that *frghdrp will point to space allocated 1180 * for the fragment header. 1181 * 1182 * On entry, m contains: 1183 * IPv6 Header 1184 * On exit, it contains: 1185 * IPv6 Header -> Unfragmentable Part -> Frag6 Header 1186 */ 1187 static int 1188 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1189 struct ip6_frag **frghdrp) 1190 { 1191 struct mbuf *n, *mlast; 1192 1193 if (hlen > sizeof(struct ip6_hdr)) { 1194 n = m_copym(m0, sizeof(struct ip6_hdr), 1195 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1196 if (n == NULL) 1197 return ENOBUFS; 1198 m->m_next = n; 1199 } else 1200 n = m; 1201 1202 /* Search for the last mbuf of unfragmentable part. */ 1203 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1204 ; 1205 1206 if ((mlast->m_flags & M_EXT) == 0 && 1207 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1208 /* use the trailing space of the last mbuf for the fragment hdr */ 1209 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) + 1210 mlast->m_len); 1211 mlast->m_len += sizeof(struct ip6_frag); 1212 } else { 1213 /* allocate a new mbuf for the fragment header */ 1214 struct mbuf *mfrg; 1215 1216 MGET(mfrg, M_DONTWAIT, MT_DATA); 1217 if (mfrg == NULL) 1218 return ENOBUFS; 1219 mfrg->m_len = sizeof(struct ip6_frag); 1220 *frghdrp = mtod(mfrg, struct ip6_frag *); 1221 mlast->m_next = mfrg; 1222 } 1223 1224 return 0; 1225 } 1226 1227 static int 1228 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup, 1229 int *alwaysfragp) 1230 { 1231 u_int32_t mtu = 0; 1232 int alwaysfrag = 0; 1233 int error = 0; 1234 1235 if (rt != NULL) { 1236 u_int32_t ifmtu; 1237 1238 if (ifp == NULL) 1239 ifp = rt->rt_ifp; 1240 ifmtu = IN6_LINKMTU(ifp); 1241 mtu = rt->rt_rmx.rmx_mtu; 1242 if (mtu == 0) 1243 mtu = ifmtu; 1244 else if (mtu < IPV6_MMTU) { 1245 /* 1246 * RFC2460 section 5, last paragraph: 1247 * if we record ICMPv6 too big message with 1248 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1249 * or smaller, with fragment header attached. 1250 * (fragment header is needed regardless from the 1251 * packet size, for translators to identify packets) 1252 */ 1253 alwaysfrag = 1; 1254 mtu = IPV6_MMTU; 1255 } else if (mtu > ifmtu) { 1256 /* 1257 * The MTU on the route is larger than the MTU on 1258 * the interface! This shouldn't happen, unless the 1259 * MTU of the interface has been changed after the 1260 * interface was brought up. Change the MTU in the 1261 * route to match the interface MTU (as long as the 1262 * field isn't locked). 1263 */ 1264 mtu = ifmtu; 1265 if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) 1266 rt->rt_rmx.rmx_mtu = mtu; 1267 } 1268 } else if (ifp) { 1269 mtu = IN6_LINKMTU(ifp); 1270 } else 1271 error = EHOSTUNREACH; /* XXX */ 1272 1273 *mtup = mtu; 1274 if (alwaysfragp) 1275 *alwaysfragp = alwaysfrag; 1276 return (error); 1277 } 1278 1279 /* 1280 * IP6 socket option processing. 1281 */ 1282 int 1283 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1284 { 1285 int optdatalen, uproto; 1286 void *optdata; 1287 struct in6pcb *in6p = sotoin6pcb(so); 1288 struct ip_moptions **mopts; 1289 int error, optval; 1290 int level, optname; 1291 1292 KASSERT(solocked(so)); 1293 KASSERT(sopt != NULL); 1294 1295 level = sopt->sopt_level; 1296 optname = sopt->sopt_name; 1297 1298 error = optval = 0; 1299 uproto = (int)so->so_proto->pr_protocol; 1300 1301 switch (level) { 1302 case IPPROTO_IP: 1303 switch (optname) { 1304 case IP_ADD_MEMBERSHIP: 1305 case IP_DROP_MEMBERSHIP: 1306 case IP_MULTICAST_IF: 1307 case IP_MULTICAST_LOOP: 1308 case IP_MULTICAST_TTL: 1309 mopts = &in6p->in6p_v4moptions; 1310 switch (op) { 1311 case PRCO_GETOPT: 1312 return ip_getmoptions(*mopts, sopt); 1313 case PRCO_SETOPT: 1314 return ip_setmoptions(mopts, sopt); 1315 default: 1316 return EINVAL; 1317 } 1318 default: 1319 return ENOPROTOOPT; 1320 } 1321 case IPPROTO_IPV6: 1322 break; 1323 default: 1324 return ENOPROTOOPT; 1325 } 1326 switch (op) { 1327 case PRCO_SETOPT: 1328 switch (optname) { 1329 #ifdef RFC2292 1330 case IPV6_2292PKTOPTIONS: 1331 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt); 1332 break; 1333 #endif 1334 1335 /* 1336 * Use of some Hop-by-Hop options or some 1337 * Destination options, might require special 1338 * privilege. That is, normal applications 1339 * (without special privilege) might be forbidden 1340 * from setting certain options in outgoing packets, 1341 * and might never see certain options in received 1342 * packets. [RFC 2292 Section 6] 1343 * KAME specific note: 1344 * KAME prevents non-privileged users from sending or 1345 * receiving ANY hbh/dst options in order to avoid 1346 * overhead of parsing options in the kernel. 1347 */ 1348 case IPV6_RECVHOPOPTS: 1349 case IPV6_RECVDSTOPTS: 1350 case IPV6_RECVRTHDRDSTOPTS: 1351 error = kauth_authorize_network(kauth_cred_get(), 1352 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, 1353 NULL, NULL, NULL); 1354 if (error) 1355 break; 1356 /* FALLTHROUGH */ 1357 case IPV6_UNICAST_HOPS: 1358 case IPV6_HOPLIMIT: 1359 case IPV6_FAITH: 1360 1361 case IPV6_RECVPKTINFO: 1362 case IPV6_RECVHOPLIMIT: 1363 case IPV6_RECVRTHDR: 1364 case IPV6_RECVPATHMTU: 1365 case IPV6_RECVTCLASS: 1366 case IPV6_V6ONLY: 1367 error = sockopt_getint(sopt, &optval); 1368 if (error) 1369 break; 1370 switch (optname) { 1371 case IPV6_UNICAST_HOPS: 1372 if (optval < -1 || optval >= 256) 1373 error = EINVAL; 1374 else { 1375 /* -1 = kernel default */ 1376 in6p->in6p_hops = optval; 1377 } 1378 break; 1379 #define OPTSET(bit) \ 1380 do { \ 1381 if (optval) \ 1382 in6p->in6p_flags |= (bit); \ 1383 else \ 1384 in6p->in6p_flags &= ~(bit); \ 1385 } while (/*CONSTCOND*/ 0) 1386 1387 #ifdef RFC2292 1388 #define OPTSET2292(bit) \ 1389 do { \ 1390 in6p->in6p_flags |= IN6P_RFC2292; \ 1391 if (optval) \ 1392 in6p->in6p_flags |= (bit); \ 1393 else \ 1394 in6p->in6p_flags &= ~(bit); \ 1395 } while (/*CONSTCOND*/ 0) 1396 #endif 1397 1398 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1399 1400 case IPV6_RECVPKTINFO: 1401 #ifdef RFC2292 1402 /* cannot mix with RFC2292 */ 1403 if (OPTBIT(IN6P_RFC2292)) { 1404 error = EINVAL; 1405 break; 1406 } 1407 #endif 1408 OPTSET(IN6P_PKTINFO); 1409 break; 1410 1411 case IPV6_HOPLIMIT: 1412 { 1413 struct ip6_pktopts **optp; 1414 1415 #ifdef RFC2292 1416 /* cannot mix with RFC2292 */ 1417 if (OPTBIT(IN6P_RFC2292)) { 1418 error = EINVAL; 1419 break; 1420 } 1421 #endif 1422 optp = &in6p->in6p_outputopts; 1423 error = ip6_pcbopt(IPV6_HOPLIMIT, 1424 (u_char *)&optval, 1425 sizeof(optval), 1426 optp, 1427 kauth_cred_get(), uproto); 1428 break; 1429 } 1430 1431 case IPV6_RECVHOPLIMIT: 1432 #ifdef RFC2292 1433 /* cannot mix with RFC2292 */ 1434 if (OPTBIT(IN6P_RFC2292)) { 1435 error = EINVAL; 1436 break; 1437 } 1438 #endif 1439 OPTSET(IN6P_HOPLIMIT); 1440 break; 1441 1442 case IPV6_RECVHOPOPTS: 1443 #ifdef RFC2292 1444 /* cannot mix with RFC2292 */ 1445 if (OPTBIT(IN6P_RFC2292)) { 1446 error = EINVAL; 1447 break; 1448 } 1449 #endif 1450 OPTSET(IN6P_HOPOPTS); 1451 break; 1452 1453 case IPV6_RECVDSTOPTS: 1454 #ifdef RFC2292 1455 /* cannot mix with RFC2292 */ 1456 if (OPTBIT(IN6P_RFC2292)) { 1457 error = EINVAL; 1458 break; 1459 } 1460 #endif 1461 OPTSET(IN6P_DSTOPTS); 1462 break; 1463 1464 case IPV6_RECVRTHDRDSTOPTS: 1465 #ifdef RFC2292 1466 /* cannot mix with RFC2292 */ 1467 if (OPTBIT(IN6P_RFC2292)) { 1468 error = EINVAL; 1469 break; 1470 } 1471 #endif 1472 OPTSET(IN6P_RTHDRDSTOPTS); 1473 break; 1474 1475 case IPV6_RECVRTHDR: 1476 #ifdef RFC2292 1477 /* cannot mix with RFC2292 */ 1478 if (OPTBIT(IN6P_RFC2292)) { 1479 error = EINVAL; 1480 break; 1481 } 1482 #endif 1483 OPTSET(IN6P_RTHDR); 1484 break; 1485 1486 case IPV6_FAITH: 1487 OPTSET(IN6P_FAITH); 1488 break; 1489 1490 case IPV6_RECVPATHMTU: 1491 /* 1492 * We ignore this option for TCP 1493 * sockets. 1494 * (RFC3542 leaves this case 1495 * unspecified.) 1496 */ 1497 if (uproto != IPPROTO_TCP) 1498 OPTSET(IN6P_MTU); 1499 break; 1500 1501 case IPV6_V6ONLY: 1502 /* 1503 * make setsockopt(IPV6_V6ONLY) 1504 * available only prior to bind(2). 1505 * see ipng mailing list, Jun 22 2001. 1506 */ 1507 if (in6p->in6p_lport || 1508 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1509 error = EINVAL; 1510 break; 1511 } 1512 #ifdef INET6_BINDV6ONLY 1513 if (!optval) 1514 error = EINVAL; 1515 #else 1516 OPTSET(IN6P_IPV6_V6ONLY); 1517 #endif 1518 break; 1519 case IPV6_RECVTCLASS: 1520 #ifdef RFC2292 1521 /* cannot mix with RFC2292 XXX */ 1522 if (OPTBIT(IN6P_RFC2292)) { 1523 error = EINVAL; 1524 break; 1525 } 1526 #endif 1527 OPTSET(IN6P_TCLASS); 1528 break; 1529 1530 } 1531 break; 1532 1533 case IPV6_OTCLASS: 1534 { 1535 struct ip6_pktopts **optp; 1536 u_int8_t tclass; 1537 1538 error = sockopt_get(sopt, &tclass, sizeof(tclass)); 1539 if (error) 1540 break; 1541 optp = &in6p->in6p_outputopts; 1542 error = ip6_pcbopt(optname, 1543 (u_char *)&tclass, 1544 sizeof(tclass), 1545 optp, 1546 kauth_cred_get(), uproto); 1547 break; 1548 } 1549 1550 case IPV6_TCLASS: 1551 case IPV6_DONTFRAG: 1552 case IPV6_USE_MIN_MTU: 1553 case IPV6_PREFER_TEMPADDR: 1554 error = sockopt_getint(sopt, &optval); 1555 if (error) 1556 break; 1557 { 1558 struct ip6_pktopts **optp; 1559 optp = &in6p->in6p_outputopts; 1560 error = ip6_pcbopt(optname, 1561 (u_char *)&optval, 1562 sizeof(optval), 1563 optp, 1564 kauth_cred_get(), uproto); 1565 break; 1566 } 1567 1568 #ifdef RFC2292 1569 case IPV6_2292PKTINFO: 1570 case IPV6_2292HOPLIMIT: 1571 case IPV6_2292HOPOPTS: 1572 case IPV6_2292DSTOPTS: 1573 case IPV6_2292RTHDR: 1574 /* RFC 2292 */ 1575 error = sockopt_getint(sopt, &optval); 1576 if (error) 1577 break; 1578 1579 switch (optname) { 1580 case IPV6_2292PKTINFO: 1581 OPTSET2292(IN6P_PKTINFO); 1582 break; 1583 case IPV6_2292HOPLIMIT: 1584 OPTSET2292(IN6P_HOPLIMIT); 1585 break; 1586 case IPV6_2292HOPOPTS: 1587 /* 1588 * Check super-user privilege. 1589 * See comments for IPV6_RECVHOPOPTS. 1590 */ 1591 error = 1592 kauth_authorize_network(kauth_cred_get(), 1593 KAUTH_NETWORK_IPV6, 1594 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1595 NULL, NULL); 1596 if (error) 1597 return (error); 1598 OPTSET2292(IN6P_HOPOPTS); 1599 break; 1600 case IPV6_2292DSTOPTS: 1601 error = 1602 kauth_authorize_network(kauth_cred_get(), 1603 KAUTH_NETWORK_IPV6, 1604 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1605 NULL, NULL); 1606 if (error) 1607 return (error); 1608 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1609 break; 1610 case IPV6_2292RTHDR: 1611 OPTSET2292(IN6P_RTHDR); 1612 break; 1613 } 1614 break; 1615 #endif 1616 case IPV6_PKTINFO: 1617 case IPV6_HOPOPTS: 1618 case IPV6_RTHDR: 1619 case IPV6_DSTOPTS: 1620 case IPV6_RTHDRDSTOPTS: 1621 case IPV6_NEXTHOP: { 1622 /* new advanced API (RFC3542) */ 1623 void *optbuf; 1624 int optbuflen; 1625 struct ip6_pktopts **optp; 1626 1627 #ifdef RFC2292 1628 /* cannot mix with RFC2292 */ 1629 if (OPTBIT(IN6P_RFC2292)) { 1630 error = EINVAL; 1631 break; 1632 } 1633 #endif 1634 1635 optbuflen = sopt->sopt_size; 1636 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT); 1637 if (optbuf == NULL) { 1638 error = ENOBUFS; 1639 break; 1640 } 1641 1642 error = sockopt_get(sopt, optbuf, optbuflen); 1643 if (error) { 1644 free(optbuf, M_IP6OPT); 1645 break; 1646 } 1647 optp = &in6p->in6p_outputopts; 1648 error = ip6_pcbopt(optname, optbuf, optbuflen, 1649 optp, kauth_cred_get(), uproto); 1650 1651 free(optbuf, M_IP6OPT); 1652 break; 1653 } 1654 #undef OPTSET 1655 1656 case IPV6_MULTICAST_IF: 1657 case IPV6_MULTICAST_HOPS: 1658 case IPV6_MULTICAST_LOOP: 1659 case IPV6_JOIN_GROUP: 1660 case IPV6_LEAVE_GROUP: 1661 error = ip6_setmoptions(sopt, in6p); 1662 break; 1663 1664 case IPV6_PORTRANGE: 1665 error = sockopt_getint(sopt, &optval); 1666 if (error) 1667 break; 1668 1669 switch (optval) { 1670 case IPV6_PORTRANGE_DEFAULT: 1671 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1672 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1673 break; 1674 1675 case IPV6_PORTRANGE_HIGH: 1676 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1677 in6p->in6p_flags |= IN6P_HIGHPORT; 1678 break; 1679 1680 case IPV6_PORTRANGE_LOW: 1681 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1682 in6p->in6p_flags |= IN6P_LOWPORT; 1683 break; 1684 1685 default: 1686 error = EINVAL; 1687 break; 1688 } 1689 break; 1690 1691 case IPV6_PORTALGO: 1692 error = sockopt_getint(sopt, &optval); 1693 if (error) 1694 break; 1695 1696 error = portalgo_algo_index_select( 1697 (struct inpcb_hdr *)in6p, optval); 1698 break; 1699 1700 #if defined(IPSEC) 1701 case IPV6_IPSEC_POLICY: 1702 if (ipsec_enabled) { 1703 error = ipsec_set_policy(in6p, 1704 sopt->sopt_data, sopt->sopt_size, 1705 kauth_cred_get()); 1706 } else 1707 error = ENOPROTOOPT; 1708 break; 1709 #endif /* IPSEC */ 1710 1711 default: 1712 error = ENOPROTOOPT; 1713 break; 1714 } 1715 break; 1716 1717 case PRCO_GETOPT: 1718 switch (optname) { 1719 #ifdef RFC2292 1720 case IPV6_2292PKTOPTIONS: 1721 /* 1722 * RFC3542 (effectively) deprecated the 1723 * semantics of the 2292-style pktoptions. 1724 * Since it was not reliable in nature (i.e., 1725 * applications had to expect the lack of some 1726 * information after all), it would make sense 1727 * to simplify this part by always returning 1728 * empty data. 1729 */ 1730 break; 1731 #endif 1732 1733 case IPV6_RECVHOPOPTS: 1734 case IPV6_RECVDSTOPTS: 1735 case IPV6_RECVRTHDRDSTOPTS: 1736 case IPV6_UNICAST_HOPS: 1737 case IPV6_RECVPKTINFO: 1738 case IPV6_RECVHOPLIMIT: 1739 case IPV6_RECVRTHDR: 1740 case IPV6_RECVPATHMTU: 1741 1742 case IPV6_FAITH: 1743 case IPV6_V6ONLY: 1744 case IPV6_PORTRANGE: 1745 case IPV6_RECVTCLASS: 1746 switch (optname) { 1747 1748 case IPV6_RECVHOPOPTS: 1749 optval = OPTBIT(IN6P_HOPOPTS); 1750 break; 1751 1752 case IPV6_RECVDSTOPTS: 1753 optval = OPTBIT(IN6P_DSTOPTS); 1754 break; 1755 1756 case IPV6_RECVRTHDRDSTOPTS: 1757 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1758 break; 1759 1760 case IPV6_UNICAST_HOPS: 1761 optval = in6p->in6p_hops; 1762 break; 1763 1764 case IPV6_RECVPKTINFO: 1765 optval = OPTBIT(IN6P_PKTINFO); 1766 break; 1767 1768 case IPV6_RECVHOPLIMIT: 1769 optval = OPTBIT(IN6P_HOPLIMIT); 1770 break; 1771 1772 case IPV6_RECVRTHDR: 1773 optval = OPTBIT(IN6P_RTHDR); 1774 break; 1775 1776 case IPV6_RECVPATHMTU: 1777 optval = OPTBIT(IN6P_MTU); 1778 break; 1779 1780 case IPV6_FAITH: 1781 optval = OPTBIT(IN6P_FAITH); 1782 break; 1783 1784 case IPV6_V6ONLY: 1785 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1786 break; 1787 1788 case IPV6_PORTRANGE: 1789 { 1790 int flags; 1791 flags = in6p->in6p_flags; 1792 if (flags & IN6P_HIGHPORT) 1793 optval = IPV6_PORTRANGE_HIGH; 1794 else if (flags & IN6P_LOWPORT) 1795 optval = IPV6_PORTRANGE_LOW; 1796 else 1797 optval = 0; 1798 break; 1799 } 1800 case IPV6_RECVTCLASS: 1801 optval = OPTBIT(IN6P_TCLASS); 1802 break; 1803 1804 } 1805 if (error) 1806 break; 1807 error = sockopt_setint(sopt, optval); 1808 break; 1809 1810 case IPV6_PATHMTU: 1811 { 1812 u_long pmtu = 0; 1813 struct ip6_mtuinfo mtuinfo; 1814 struct route *ro = &in6p->in6p_route; 1815 struct rtentry *rt; 1816 union { 1817 struct sockaddr dst; 1818 struct sockaddr_in6 dst6; 1819 } u; 1820 1821 if (!(so->so_state & SS_ISCONNECTED)) 1822 return (ENOTCONN); 1823 /* 1824 * XXX: we dot not consider the case of source 1825 * routing, or optional information to specify 1826 * the outgoing interface. 1827 */ 1828 sockaddr_in6_init(&u.dst6, &in6p->in6p_faddr, 0, 0, 0); 1829 rt = rtcache_lookup(ro, &u.dst); 1830 error = ip6_getpmtu(rt, NULL, &pmtu, NULL); 1831 rtcache_unref(rt, ro); 1832 if (error) 1833 break; 1834 if (pmtu > IPV6_MAXPACKET) 1835 pmtu = IPV6_MAXPACKET; 1836 1837 memset(&mtuinfo, 0, sizeof(mtuinfo)); 1838 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1839 optdata = (void *)&mtuinfo; 1840 optdatalen = sizeof(mtuinfo); 1841 if (optdatalen > MCLBYTES) 1842 return (EMSGSIZE); /* XXX */ 1843 error = sockopt_set(sopt, optdata, optdatalen); 1844 break; 1845 } 1846 1847 #ifdef RFC2292 1848 case IPV6_2292PKTINFO: 1849 case IPV6_2292HOPLIMIT: 1850 case IPV6_2292HOPOPTS: 1851 case IPV6_2292RTHDR: 1852 case IPV6_2292DSTOPTS: 1853 switch (optname) { 1854 case IPV6_2292PKTINFO: 1855 optval = OPTBIT(IN6P_PKTINFO); 1856 break; 1857 case IPV6_2292HOPLIMIT: 1858 optval = OPTBIT(IN6P_HOPLIMIT); 1859 break; 1860 case IPV6_2292HOPOPTS: 1861 optval = OPTBIT(IN6P_HOPOPTS); 1862 break; 1863 case IPV6_2292RTHDR: 1864 optval = OPTBIT(IN6P_RTHDR); 1865 break; 1866 case IPV6_2292DSTOPTS: 1867 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1868 break; 1869 } 1870 error = sockopt_setint(sopt, optval); 1871 break; 1872 #endif 1873 case IPV6_PKTINFO: 1874 case IPV6_HOPOPTS: 1875 case IPV6_RTHDR: 1876 case IPV6_DSTOPTS: 1877 case IPV6_RTHDRDSTOPTS: 1878 case IPV6_NEXTHOP: 1879 case IPV6_OTCLASS: 1880 case IPV6_TCLASS: 1881 case IPV6_DONTFRAG: 1882 case IPV6_USE_MIN_MTU: 1883 case IPV6_PREFER_TEMPADDR: 1884 error = ip6_getpcbopt(in6p->in6p_outputopts, 1885 optname, sopt); 1886 break; 1887 1888 case IPV6_MULTICAST_IF: 1889 case IPV6_MULTICAST_HOPS: 1890 case IPV6_MULTICAST_LOOP: 1891 case IPV6_JOIN_GROUP: 1892 case IPV6_LEAVE_GROUP: 1893 error = ip6_getmoptions(sopt, in6p); 1894 break; 1895 1896 case IPV6_PORTALGO: 1897 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo; 1898 error = sockopt_setint(sopt, optval); 1899 break; 1900 1901 #if defined(IPSEC) 1902 case IPV6_IPSEC_POLICY: 1903 if (ipsec_used) { 1904 struct mbuf *m = NULL; 1905 1906 /* 1907 * XXX: this will return EINVAL as sopt is 1908 * empty 1909 */ 1910 error = ipsec_get_policy(in6p, sopt->sopt_data, 1911 sopt->sopt_size, &m); 1912 if (!error) 1913 error = sockopt_setmbuf(sopt, m); 1914 } else 1915 error = ENOPROTOOPT; 1916 break; 1917 #endif /* IPSEC */ 1918 1919 default: 1920 error = ENOPROTOOPT; 1921 break; 1922 } 1923 break; 1924 } 1925 return (error); 1926 } 1927 1928 int 1929 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1930 { 1931 int error = 0, optval; 1932 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 1933 struct in6pcb *in6p = sotoin6pcb(so); 1934 int level, optname; 1935 1936 KASSERT(sopt != NULL); 1937 1938 level = sopt->sopt_level; 1939 optname = sopt->sopt_name; 1940 1941 if (level != IPPROTO_IPV6) { 1942 return ENOPROTOOPT; 1943 } 1944 1945 switch (optname) { 1946 case IPV6_CHECKSUM: 1947 /* 1948 * For ICMPv6 sockets, no modification allowed for checksum 1949 * offset, permit "no change" values to help existing apps. 1950 * 1951 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM 1952 * for an ICMPv6 socket will fail." The current 1953 * behavior does not meet RFC3542. 1954 */ 1955 switch (op) { 1956 case PRCO_SETOPT: 1957 error = sockopt_getint(sopt, &optval); 1958 if (error) 1959 break; 1960 if ((optval % 2) != 0) { 1961 /* the API assumes even offset values */ 1962 error = EINVAL; 1963 } else if (so->so_proto->pr_protocol == 1964 IPPROTO_ICMPV6) { 1965 if (optval != icmp6off) 1966 error = EINVAL; 1967 } else 1968 in6p->in6p_cksum = optval; 1969 break; 1970 1971 case PRCO_GETOPT: 1972 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 1973 optval = icmp6off; 1974 else 1975 optval = in6p->in6p_cksum; 1976 1977 error = sockopt_setint(sopt, optval); 1978 break; 1979 1980 default: 1981 error = EINVAL; 1982 break; 1983 } 1984 break; 1985 1986 default: 1987 error = ENOPROTOOPT; 1988 break; 1989 } 1990 1991 return (error); 1992 } 1993 1994 #ifdef RFC2292 1995 /* 1996 * Set up IP6 options in pcb for insertion in output packets or 1997 * specifying behavior of outgoing packets. 1998 */ 1999 static int 2000 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so, 2001 struct sockopt *sopt) 2002 { 2003 struct ip6_pktopts *opt = *pktopt; 2004 struct mbuf *m; 2005 int error = 0; 2006 2007 KASSERT(solocked(so)); 2008 2009 /* turn off any old options. */ 2010 if (opt) { 2011 #ifdef DIAGNOSTIC 2012 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2013 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2014 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2015 printf("ip6_pcbopts: all specified options are cleared.\n"); 2016 #endif 2017 ip6_clearpktopts(opt, -1); 2018 } else { 2019 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2020 if (opt == NULL) 2021 return (ENOBUFS); 2022 } 2023 *pktopt = NULL; 2024 2025 if (sopt == NULL || sopt->sopt_size == 0) { 2026 /* 2027 * Only turning off any previous options, regardless of 2028 * whether the opt is just created or given. 2029 */ 2030 free(opt, M_IP6OPT); 2031 return (0); 2032 } 2033 2034 /* set options specified by user. */ 2035 m = sockopt_getmbuf(sopt); 2036 if (m == NULL) { 2037 free(opt, M_IP6OPT); 2038 return (ENOBUFS); 2039 } 2040 2041 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(), 2042 so->so_proto->pr_protocol); 2043 m_freem(m); 2044 if (error != 0) { 2045 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2046 free(opt, M_IP6OPT); 2047 return (error); 2048 } 2049 *pktopt = opt; 2050 return (0); 2051 } 2052 #endif 2053 2054 /* 2055 * initialize ip6_pktopts. beware that there are non-zero default values in 2056 * the struct. 2057 */ 2058 void 2059 ip6_initpktopts(struct ip6_pktopts *opt) 2060 { 2061 2062 memset(opt, 0, sizeof(*opt)); 2063 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2064 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2065 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2066 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2067 } 2068 2069 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */ 2070 static int 2071 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2072 kauth_cred_t cred, int uproto) 2073 { 2074 struct ip6_pktopts *opt; 2075 2076 if (*pktopt == NULL) { 2077 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2078 M_NOWAIT); 2079 if (*pktopt == NULL) 2080 return (ENOBUFS); 2081 2082 ip6_initpktopts(*pktopt); 2083 } 2084 opt = *pktopt; 2085 2086 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2087 } 2088 2089 static int 2090 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2091 { 2092 void *optdata = NULL; 2093 int optdatalen = 0; 2094 struct ip6_ext *ip6e; 2095 int error = 0; 2096 struct in6_pktinfo null_pktinfo; 2097 int deftclass = 0, on; 2098 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2099 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2100 2101 switch (optname) { 2102 case IPV6_PKTINFO: 2103 if (pktopt && pktopt->ip6po_pktinfo) 2104 optdata = (void *)pktopt->ip6po_pktinfo; 2105 else { 2106 /* XXX: we don't have to do this every time... */ 2107 memset(&null_pktinfo, 0, sizeof(null_pktinfo)); 2108 optdata = (void *)&null_pktinfo; 2109 } 2110 optdatalen = sizeof(struct in6_pktinfo); 2111 break; 2112 case IPV6_OTCLASS: 2113 /* XXX */ 2114 return (EINVAL); 2115 case IPV6_TCLASS: 2116 if (pktopt && pktopt->ip6po_tclass >= 0) 2117 optdata = (void *)&pktopt->ip6po_tclass; 2118 else 2119 optdata = (void *)&deftclass; 2120 optdatalen = sizeof(int); 2121 break; 2122 case IPV6_HOPOPTS: 2123 if (pktopt && pktopt->ip6po_hbh) { 2124 optdata = (void *)pktopt->ip6po_hbh; 2125 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2126 optdatalen = (ip6e->ip6e_len + 1) << 3; 2127 } 2128 break; 2129 case IPV6_RTHDR: 2130 if (pktopt && pktopt->ip6po_rthdr) { 2131 optdata = (void *)pktopt->ip6po_rthdr; 2132 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2133 optdatalen = (ip6e->ip6e_len + 1) << 3; 2134 } 2135 break; 2136 case IPV6_RTHDRDSTOPTS: 2137 if (pktopt && pktopt->ip6po_dest1) { 2138 optdata = (void *)pktopt->ip6po_dest1; 2139 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2140 optdatalen = (ip6e->ip6e_len + 1) << 3; 2141 } 2142 break; 2143 case IPV6_DSTOPTS: 2144 if (pktopt && pktopt->ip6po_dest2) { 2145 optdata = (void *)pktopt->ip6po_dest2; 2146 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2147 optdatalen = (ip6e->ip6e_len + 1) << 3; 2148 } 2149 break; 2150 case IPV6_NEXTHOP: 2151 if (pktopt && pktopt->ip6po_nexthop) { 2152 optdata = (void *)pktopt->ip6po_nexthop; 2153 optdatalen = pktopt->ip6po_nexthop->sa_len; 2154 } 2155 break; 2156 case IPV6_USE_MIN_MTU: 2157 if (pktopt) 2158 optdata = (void *)&pktopt->ip6po_minmtu; 2159 else 2160 optdata = (void *)&defminmtu; 2161 optdatalen = sizeof(int); 2162 break; 2163 case IPV6_DONTFRAG: 2164 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2165 on = 1; 2166 else 2167 on = 0; 2168 optdata = (void *)&on; 2169 optdatalen = sizeof(on); 2170 break; 2171 case IPV6_PREFER_TEMPADDR: 2172 if (pktopt) 2173 optdata = (void *)&pktopt->ip6po_prefer_tempaddr; 2174 else 2175 optdata = (void *)&defpreftemp; 2176 optdatalen = sizeof(int); 2177 break; 2178 default: /* should not happen */ 2179 #ifdef DIAGNOSTIC 2180 panic("ip6_getpcbopt: unexpected option\n"); 2181 #endif 2182 return (ENOPROTOOPT); 2183 } 2184 2185 error = sockopt_set(sopt, optdata, optdatalen); 2186 2187 return (error); 2188 } 2189 2190 void 2191 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2192 { 2193 if (optname == -1 || optname == IPV6_PKTINFO) { 2194 if (pktopt->ip6po_pktinfo) 2195 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2196 pktopt->ip6po_pktinfo = NULL; 2197 } 2198 if (optname == -1 || optname == IPV6_HOPLIMIT) 2199 pktopt->ip6po_hlim = -1; 2200 if (optname == -1 || optname == IPV6_TCLASS) 2201 pktopt->ip6po_tclass = -1; 2202 if (optname == -1 || optname == IPV6_NEXTHOP) { 2203 rtcache_free(&pktopt->ip6po_nextroute); 2204 if (pktopt->ip6po_nexthop) 2205 free(pktopt->ip6po_nexthop, M_IP6OPT); 2206 pktopt->ip6po_nexthop = NULL; 2207 } 2208 if (optname == -1 || optname == IPV6_HOPOPTS) { 2209 if (pktopt->ip6po_hbh) 2210 free(pktopt->ip6po_hbh, M_IP6OPT); 2211 pktopt->ip6po_hbh = NULL; 2212 } 2213 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2214 if (pktopt->ip6po_dest1) 2215 free(pktopt->ip6po_dest1, M_IP6OPT); 2216 pktopt->ip6po_dest1 = NULL; 2217 } 2218 if (optname == -1 || optname == IPV6_RTHDR) { 2219 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2220 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2221 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2222 rtcache_free(&pktopt->ip6po_route); 2223 } 2224 if (optname == -1 || optname == IPV6_DSTOPTS) { 2225 if (pktopt->ip6po_dest2) 2226 free(pktopt->ip6po_dest2, M_IP6OPT); 2227 pktopt->ip6po_dest2 = NULL; 2228 } 2229 } 2230 2231 #define PKTOPT_EXTHDRCPY(type) \ 2232 do { \ 2233 if (src->type) { \ 2234 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2235 dst->type = malloc(hlen, M_IP6OPT, canwait); \ 2236 if (dst->type == NULL) \ 2237 goto bad; \ 2238 memcpy(dst->type, src->type, hlen); \ 2239 } \ 2240 } while (/*CONSTCOND*/ 0) 2241 2242 static int 2243 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2244 { 2245 dst->ip6po_hlim = src->ip6po_hlim; 2246 dst->ip6po_tclass = src->ip6po_tclass; 2247 dst->ip6po_flags = src->ip6po_flags; 2248 dst->ip6po_minmtu = src->ip6po_minmtu; 2249 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2250 if (src->ip6po_pktinfo) { 2251 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2252 M_IP6OPT, canwait); 2253 if (dst->ip6po_pktinfo == NULL) 2254 goto bad; 2255 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2256 } 2257 if (src->ip6po_nexthop) { 2258 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2259 M_IP6OPT, canwait); 2260 if (dst->ip6po_nexthop == NULL) 2261 goto bad; 2262 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop, 2263 src->ip6po_nexthop->sa_len); 2264 } 2265 PKTOPT_EXTHDRCPY(ip6po_hbh); 2266 PKTOPT_EXTHDRCPY(ip6po_dest1); 2267 PKTOPT_EXTHDRCPY(ip6po_dest2); 2268 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2269 return (0); 2270 2271 bad: 2272 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 2273 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 2274 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 2275 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 2276 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 2277 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 2278 2279 return (ENOBUFS); 2280 } 2281 #undef PKTOPT_EXTHDRCPY 2282 2283 struct ip6_pktopts * 2284 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2285 { 2286 int error; 2287 struct ip6_pktopts *dst; 2288 2289 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2290 if (dst == NULL) 2291 return (NULL); 2292 ip6_initpktopts(dst); 2293 2294 if ((error = copypktopts(dst, src, canwait)) != 0) { 2295 free(dst, M_IP6OPT); 2296 return (NULL); 2297 } 2298 2299 return (dst); 2300 } 2301 2302 void 2303 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2304 { 2305 if (pktopt == NULL) 2306 return; 2307 2308 ip6_clearpktopts(pktopt, -1); 2309 2310 free(pktopt, M_IP6OPT); 2311 } 2312 2313 int 2314 ip6_get_membership(const struct sockopt *sopt, struct ifnet **ifp, 2315 struct psref *psref, void *v, size_t l) 2316 { 2317 struct ipv6_mreq mreq; 2318 int error; 2319 struct in6_addr *ia = &mreq.ipv6mr_multiaddr; 2320 struct in_addr *ia4 = (void *)&ia->s6_addr32[3]; 2321 2322 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2323 if (error != 0) 2324 return error; 2325 2326 if (IN6_IS_ADDR_UNSPECIFIED(ia)) { 2327 /* 2328 * We use the unspecified address to specify to accept 2329 * all multicast addresses. Only super user is allowed 2330 * to do this. 2331 */ 2332 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_IPV6, 2333 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL)) 2334 return EACCES; 2335 } else if (IN6_IS_ADDR_V4MAPPED(ia)) { 2336 // Don't bother if we are not going to use ifp. 2337 if (l == sizeof(*ia)) { 2338 memcpy(v, ia, l); 2339 return 0; 2340 } 2341 } else if (!IN6_IS_ADDR_MULTICAST(ia)) { 2342 return EINVAL; 2343 } 2344 2345 /* 2346 * If no interface was explicitly specified, choose an 2347 * appropriate one according to the given multicast address. 2348 */ 2349 if (mreq.ipv6mr_interface == 0) { 2350 struct rtentry *rt; 2351 union { 2352 struct sockaddr dst; 2353 struct sockaddr_in dst4; 2354 struct sockaddr_in6 dst6; 2355 } u; 2356 struct route ro; 2357 2358 /* 2359 * Look up the routing table for the 2360 * address, and choose the outgoing interface. 2361 * XXX: is it a good approach? 2362 */ 2363 memset(&ro, 0, sizeof(ro)); 2364 if (IN6_IS_ADDR_V4MAPPED(ia)) 2365 sockaddr_in_init(&u.dst4, ia4, 0); 2366 else 2367 sockaddr_in6_init(&u.dst6, ia, 0, 0, 0); 2368 error = rtcache_setdst(&ro, &u.dst); 2369 if (error != 0) 2370 return error; 2371 rt = rtcache_init(&ro); 2372 *ifp = rt != NULL ? 2373 if_get_byindex(rt->rt_ifp->if_index, psref) : NULL; 2374 rtcache_unref(rt, &ro); 2375 rtcache_free(&ro); 2376 } else { 2377 /* 2378 * If the interface is specified, validate it. 2379 */ 2380 *ifp = if_get_byindex(mreq.ipv6mr_interface, psref); 2381 if (*ifp == NULL) 2382 return ENXIO; /* XXX EINVAL? */ 2383 } 2384 if (sizeof(*ia) == l) 2385 memcpy(v, ia, l); 2386 else 2387 memcpy(v, ia4, l); 2388 return 0; 2389 } 2390 2391 /* 2392 * Set the IP6 multicast options in response to user setsockopt(). 2393 */ 2394 static int 2395 ip6_setmoptions(const struct sockopt *sopt, struct in6pcb *in6p) 2396 { 2397 int error = 0; 2398 u_int loop, ifindex; 2399 struct ipv6_mreq mreq; 2400 struct in6_addr ia; 2401 struct ifnet *ifp; 2402 struct ip6_moptions *im6o = in6p->in6p_moptions; 2403 struct in6_multi_mship *imm; 2404 2405 KASSERT(in6p_locked(in6p)); 2406 2407 if (im6o == NULL) { 2408 /* 2409 * No multicast option buffer attached to the pcb; 2410 * allocate one and initialize to default values. 2411 */ 2412 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT); 2413 if (im6o == NULL) 2414 return (ENOBUFS); 2415 in6p->in6p_moptions = im6o; 2416 im6o->im6o_multicast_if_index = 0; 2417 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2418 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2419 LIST_INIT(&im6o->im6o_memberships); 2420 } 2421 2422 switch (sopt->sopt_name) { 2423 2424 case IPV6_MULTICAST_IF: { 2425 int s; 2426 /* 2427 * Select the interface for outgoing multicast packets. 2428 */ 2429 error = sockopt_get(sopt, &ifindex, sizeof(ifindex)); 2430 if (error != 0) 2431 break; 2432 2433 s = pserialize_read_enter(); 2434 if (ifindex != 0) { 2435 if ((ifp = if_byindex(ifindex)) == NULL) { 2436 pserialize_read_exit(s); 2437 error = ENXIO; /* XXX EINVAL? */ 2438 break; 2439 } 2440 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 2441 pserialize_read_exit(s); 2442 error = EADDRNOTAVAIL; 2443 break; 2444 } 2445 } else 2446 ifp = NULL; 2447 im6o->im6o_multicast_if_index = if_get_index(ifp); 2448 pserialize_read_exit(s); 2449 break; 2450 } 2451 2452 case IPV6_MULTICAST_HOPS: 2453 { 2454 /* 2455 * Set the IP6 hoplimit for outgoing multicast packets. 2456 */ 2457 int optval; 2458 2459 error = sockopt_getint(sopt, &optval); 2460 if (error != 0) 2461 break; 2462 2463 if (optval < -1 || optval >= 256) 2464 error = EINVAL; 2465 else if (optval == -1) 2466 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2467 else 2468 im6o->im6o_multicast_hlim = optval; 2469 break; 2470 } 2471 2472 case IPV6_MULTICAST_LOOP: 2473 /* 2474 * Set the loopback flag for outgoing multicast packets. 2475 * Must be zero or one. 2476 */ 2477 error = sockopt_get(sopt, &loop, sizeof(loop)); 2478 if (error != 0) 2479 break; 2480 if (loop > 1) { 2481 error = EINVAL; 2482 break; 2483 } 2484 im6o->im6o_multicast_loop = loop; 2485 break; 2486 2487 case IPV6_JOIN_GROUP: { 2488 int bound; 2489 struct psref psref; 2490 /* 2491 * Add a multicast group membership. 2492 * Group must be a valid IP6 multicast address. 2493 */ 2494 bound = curlwp_bind(); 2495 ifp = NULL; 2496 error = ip6_get_membership(sopt, &ifp, &psref, &ia, sizeof(ia)); 2497 if (error != 0) { 2498 KASSERT(ifp == NULL); 2499 curlwp_bindx(bound); 2500 return error; 2501 } 2502 2503 if (IN6_IS_ADDR_V4MAPPED(&ia)) { 2504 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt); 2505 goto put_break; 2506 } 2507 /* 2508 * See if we found an interface, and confirm that it 2509 * supports multicast 2510 */ 2511 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2512 error = EADDRNOTAVAIL; 2513 goto put_break; 2514 } 2515 2516 if (in6_setscope(&ia, ifp, NULL)) { 2517 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2518 goto put_break; 2519 } 2520 2521 /* 2522 * See if the membership already exists. 2523 */ 2524 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2525 if (imm->i6mm_maddr->in6m_ifp == ifp && 2526 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2527 &ia)) 2528 goto put_break; 2529 } 2530 if (imm != NULL) { 2531 error = EADDRINUSE; 2532 goto put_break; 2533 } 2534 /* 2535 * Everything looks good; add a new record to the multicast 2536 * address list for the given interface. 2537 */ 2538 imm = in6_joingroup(ifp, &ia, &error, 0); 2539 if (imm == NULL) 2540 goto put_break; 2541 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2542 put_break: 2543 if_put(ifp, &psref); 2544 curlwp_bindx(bound); 2545 break; 2546 } 2547 2548 case IPV6_LEAVE_GROUP: { 2549 /* 2550 * Drop a multicast group membership. 2551 * Group must be a valid IP6 multicast address. 2552 */ 2553 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2554 if (error != 0) 2555 break; 2556 2557 if (IN6_IS_ADDR_V4MAPPED(&mreq.ipv6mr_multiaddr)) { 2558 error = ip_setmoptions(&in6p->in6p_v4moptions, sopt); 2559 break; 2560 } 2561 /* 2562 * If an interface address was specified, get a pointer 2563 * to its ifnet structure. 2564 */ 2565 if (mreq.ipv6mr_interface != 0) { 2566 if ((ifp = if_byindex(mreq.ipv6mr_interface)) == NULL) { 2567 error = ENXIO; /* XXX EINVAL? */ 2568 break; 2569 } 2570 } else 2571 ifp = NULL; 2572 2573 /* Fill in the scope zone ID */ 2574 if (ifp) { 2575 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) { 2576 /* XXX: should not happen */ 2577 error = EADDRNOTAVAIL; 2578 break; 2579 } 2580 } else if (mreq.ipv6mr_interface != 0) { 2581 /* 2582 * XXX: This case would happens when the (positive) 2583 * index is in the valid range, but the corresponding 2584 * interface has been detached dynamically. The above 2585 * check probably avoids such case to happen here, but 2586 * we check it explicitly for safety. 2587 */ 2588 error = EADDRNOTAVAIL; 2589 break; 2590 } else { /* ipv6mr_interface == 0 */ 2591 struct sockaddr_in6 sa6_mc; 2592 2593 /* 2594 * The API spec says as follows: 2595 * If the interface index is specified as 0, the 2596 * system may choose a multicast group membership to 2597 * drop by matching the multicast address only. 2598 * On the other hand, we cannot disambiguate the scope 2599 * zone unless an interface is provided. Thus, we 2600 * check if there's ambiguity with the default scope 2601 * zone as the last resort. 2602 */ 2603 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr, 2604 0, 0, 0); 2605 error = sa6_embedscope(&sa6_mc, ip6_use_defzone); 2606 if (error != 0) 2607 break; 2608 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr; 2609 } 2610 2611 /* 2612 * Find the membership in the membership list. 2613 */ 2614 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2615 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2616 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2617 &mreq.ipv6mr_multiaddr)) 2618 break; 2619 } 2620 if (imm == NULL) { 2621 /* Unable to resolve interface */ 2622 error = EADDRNOTAVAIL; 2623 break; 2624 } 2625 /* 2626 * Give up the multicast address record to which the 2627 * membership points. 2628 */ 2629 LIST_REMOVE(imm, i6mm_chain); 2630 in6_leavegroup(imm); 2631 /* in6m_ifp should not leave thanks to in6p_lock */ 2632 break; 2633 } 2634 2635 default: 2636 error = EOPNOTSUPP; 2637 break; 2638 } 2639 2640 /* 2641 * If all options have default values, no need to keep the mbuf. 2642 */ 2643 if (im6o->im6o_multicast_if_index == 0 && 2644 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2645 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2646 LIST_EMPTY(&im6o->im6o_memberships)) { 2647 free(in6p->in6p_moptions, M_IPMOPTS); 2648 in6p->in6p_moptions = NULL; 2649 } 2650 2651 return (error); 2652 } 2653 2654 /* 2655 * Return the IP6 multicast options in response to user getsockopt(). 2656 */ 2657 static int 2658 ip6_getmoptions(struct sockopt *sopt, struct in6pcb *in6p) 2659 { 2660 u_int optval; 2661 int error; 2662 struct ip6_moptions *im6o = in6p->in6p_moptions; 2663 2664 switch (sopt->sopt_name) { 2665 case IPV6_MULTICAST_IF: 2666 if (im6o == NULL || im6o->im6o_multicast_if_index == 0) 2667 optval = 0; 2668 else 2669 optval = im6o->im6o_multicast_if_index; 2670 2671 error = sockopt_set(sopt, &optval, sizeof(optval)); 2672 break; 2673 2674 case IPV6_MULTICAST_HOPS: 2675 if (im6o == NULL) 2676 optval = ip6_defmcasthlim; 2677 else 2678 optval = im6o->im6o_multicast_hlim; 2679 2680 error = sockopt_set(sopt, &optval, sizeof(optval)); 2681 break; 2682 2683 case IPV6_MULTICAST_LOOP: 2684 if (im6o == NULL) 2685 optval = IPV6_DEFAULT_MULTICAST_LOOP; 2686 else 2687 optval = im6o->im6o_multicast_loop; 2688 2689 error = sockopt_set(sopt, &optval, sizeof(optval)); 2690 break; 2691 2692 default: 2693 error = EOPNOTSUPP; 2694 } 2695 2696 return (error); 2697 } 2698 2699 /* 2700 * Discard the IP6 multicast options. 2701 */ 2702 void 2703 ip6_freemoptions(struct ip6_moptions *im6o) 2704 { 2705 struct in6_multi_mship *imm, *nimm; 2706 2707 if (im6o == NULL) 2708 return; 2709 2710 /* The owner of im6o (in6p) should be protected by solock */ 2711 LIST_FOREACH_SAFE(imm, &im6o->im6o_memberships, i6mm_chain, nimm) { 2712 LIST_REMOVE(imm, i6mm_chain); 2713 in6_leavegroup(imm); 2714 } 2715 free(im6o, M_IPMOPTS); 2716 } 2717 2718 /* 2719 * Set IPv6 outgoing packet options based on advanced API. 2720 */ 2721 int 2722 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2723 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto) 2724 { 2725 struct cmsghdr *cm = 0; 2726 2727 if (control == NULL || opt == NULL) 2728 return (EINVAL); 2729 2730 ip6_initpktopts(opt); 2731 if (stickyopt) { 2732 int error; 2733 2734 /* 2735 * If stickyopt is provided, make a local copy of the options 2736 * for this particular packet, then override them by ancillary 2737 * objects. 2738 * XXX: copypktopts() does not copy the cached route to a next 2739 * hop (if any). This is not very good in terms of efficiency, 2740 * but we can allow this since this option should be rarely 2741 * used. 2742 */ 2743 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2744 return (error); 2745 } 2746 2747 /* 2748 * XXX: Currently, we assume all the optional information is stored 2749 * in a single mbuf. 2750 */ 2751 if (control->m_next) 2752 return (EINVAL); 2753 2754 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */ 2755 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2756 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2757 int error; 2758 2759 if (control->m_len < CMSG_LEN(0)) 2760 return (EINVAL); 2761 2762 cm = mtod(control, struct cmsghdr *); 2763 if (cm->cmsg_len < CMSG_LEN(0) || cm->cmsg_len > control->m_len) 2764 return (EINVAL); 2765 if (cm->cmsg_level != IPPROTO_IPV6) 2766 continue; 2767 2768 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2769 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2770 if (error) 2771 return (error); 2772 } 2773 2774 return (0); 2775 } 2776 2777 /* 2778 * Set a particular packet option, as a sticky option or an ancillary data 2779 * item. "len" can be 0 only when it's a sticky option. 2780 * We have 4 cases of combination of "sticky" and "cmsg": 2781 * "sticky=0, cmsg=0": impossible 2782 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2783 * "sticky=1, cmsg=0": RFC3542 socket option 2784 * "sticky=1, cmsg=1": RFC2292 socket option 2785 */ 2786 static int 2787 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2788 kauth_cred_t cred, int sticky, int cmsg, int uproto) 2789 { 2790 int minmtupolicy; 2791 int error; 2792 2793 if (!sticky && !cmsg) { 2794 #ifdef DIAGNOSTIC 2795 printf("ip6_setpktopt: impossible case\n"); 2796 #endif 2797 return (EINVAL); 2798 } 2799 2800 /* 2801 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2802 * not be specified in the context of RFC3542. Conversely, 2803 * RFC3542 types should not be specified in the context of RFC2292. 2804 */ 2805 if (!cmsg) { 2806 switch (optname) { 2807 case IPV6_2292PKTINFO: 2808 case IPV6_2292HOPLIMIT: 2809 case IPV6_2292NEXTHOP: 2810 case IPV6_2292HOPOPTS: 2811 case IPV6_2292DSTOPTS: 2812 case IPV6_2292RTHDR: 2813 case IPV6_2292PKTOPTIONS: 2814 return (ENOPROTOOPT); 2815 } 2816 } 2817 if (sticky && cmsg) { 2818 switch (optname) { 2819 case IPV6_PKTINFO: 2820 case IPV6_HOPLIMIT: 2821 case IPV6_NEXTHOP: 2822 case IPV6_HOPOPTS: 2823 case IPV6_DSTOPTS: 2824 case IPV6_RTHDRDSTOPTS: 2825 case IPV6_RTHDR: 2826 case IPV6_USE_MIN_MTU: 2827 case IPV6_DONTFRAG: 2828 case IPV6_OTCLASS: 2829 case IPV6_TCLASS: 2830 case IPV6_PREFER_TEMPADDR: /* XXX not an RFC3542 option */ 2831 return (ENOPROTOOPT); 2832 } 2833 } 2834 2835 switch (optname) { 2836 #ifdef RFC2292 2837 case IPV6_2292PKTINFO: 2838 #endif 2839 case IPV6_PKTINFO: 2840 { 2841 struct in6_pktinfo *pktinfo; 2842 2843 if (len != sizeof(struct in6_pktinfo)) 2844 return (EINVAL); 2845 2846 pktinfo = (struct in6_pktinfo *)buf; 2847 2848 /* 2849 * An application can clear any sticky IPV6_PKTINFO option by 2850 * doing a "regular" setsockopt with ipi6_addr being 2851 * in6addr_any and ipi6_ifindex being zero. 2852 * [RFC 3542, Section 6] 2853 */ 2854 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2855 pktinfo->ipi6_ifindex == 0 && 2856 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2857 ip6_clearpktopts(opt, optname); 2858 break; 2859 } 2860 2861 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2862 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2863 return (EINVAL); 2864 } 2865 2866 /* Validate the interface index if specified. */ 2867 if (pktinfo->ipi6_ifindex) { 2868 struct ifnet *ifp; 2869 int s = pserialize_read_enter(); 2870 ifp = if_byindex(pktinfo->ipi6_ifindex); 2871 if (ifp == NULL) { 2872 pserialize_read_exit(s); 2873 return ENXIO; 2874 } 2875 pserialize_read_exit(s); 2876 } 2877 2878 /* 2879 * We store the address anyway, and let in6_selectsrc() 2880 * validate the specified address. This is because ipi6_addr 2881 * may not have enough information about its scope zone, and 2882 * we may need additional information (such as outgoing 2883 * interface or the scope zone of a destination address) to 2884 * disambiguate the scope. 2885 * XXX: the delay of the validation may confuse the 2886 * application when it is used as a sticky option. 2887 */ 2888 if (opt->ip6po_pktinfo == NULL) { 2889 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2890 M_IP6OPT, M_NOWAIT); 2891 if (opt->ip6po_pktinfo == NULL) 2892 return (ENOBUFS); 2893 } 2894 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo)); 2895 break; 2896 } 2897 2898 #ifdef RFC2292 2899 case IPV6_2292HOPLIMIT: 2900 #endif 2901 case IPV6_HOPLIMIT: 2902 { 2903 int *hlimp; 2904 2905 /* 2906 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2907 * to simplify the ordering among hoplimit options. 2908 */ 2909 if (optname == IPV6_HOPLIMIT && sticky) 2910 return (ENOPROTOOPT); 2911 2912 if (len != sizeof(int)) 2913 return (EINVAL); 2914 hlimp = (int *)buf; 2915 if (*hlimp < -1 || *hlimp > 255) 2916 return (EINVAL); 2917 2918 opt->ip6po_hlim = *hlimp; 2919 break; 2920 } 2921 2922 case IPV6_OTCLASS: 2923 if (len != sizeof(u_int8_t)) 2924 return (EINVAL); 2925 2926 opt->ip6po_tclass = *(u_int8_t *)buf; 2927 break; 2928 2929 case IPV6_TCLASS: 2930 { 2931 int tclass; 2932 2933 if (len != sizeof(int)) 2934 return (EINVAL); 2935 tclass = *(int *)buf; 2936 if (tclass < -1 || tclass > 255) 2937 return (EINVAL); 2938 2939 opt->ip6po_tclass = tclass; 2940 break; 2941 } 2942 2943 #ifdef RFC2292 2944 case IPV6_2292NEXTHOP: 2945 #endif 2946 case IPV6_NEXTHOP: 2947 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 2948 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 2949 if (error) 2950 return (error); 2951 2952 if (len == 0) { /* just remove the option */ 2953 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2954 break; 2955 } 2956 2957 /* check if cmsg_len is large enough for sa_len */ 2958 if (len < sizeof(struct sockaddr) || len < *buf) 2959 return (EINVAL); 2960 2961 switch (((struct sockaddr *)buf)->sa_family) { 2962 case AF_INET6: 2963 { 2964 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2965 2966 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2967 return (EINVAL); 2968 2969 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2970 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2971 return (EINVAL); 2972 } 2973 if ((error = sa6_embedscope(sa6, ip6_use_defzone)) 2974 != 0) { 2975 return (error); 2976 } 2977 break; 2978 } 2979 case AF_LINK: /* eventually be supported? */ 2980 default: 2981 return (EAFNOSUPPORT); 2982 } 2983 2984 /* turn off the previous option, then set the new option. */ 2985 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2986 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2987 if (opt->ip6po_nexthop == NULL) 2988 return (ENOBUFS); 2989 memcpy(opt->ip6po_nexthop, buf, *buf); 2990 break; 2991 2992 #ifdef RFC2292 2993 case IPV6_2292HOPOPTS: 2994 #endif 2995 case IPV6_HOPOPTS: 2996 { 2997 struct ip6_hbh *hbh; 2998 int hbhlen; 2999 3000 /* 3001 * XXX: We don't allow a non-privileged user to set ANY HbH 3002 * options, since per-option restriction has too much 3003 * overhead. 3004 */ 3005 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 3006 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 3007 if (error) 3008 return (error); 3009 3010 if (len == 0) { 3011 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3012 break; /* just remove the option */ 3013 } 3014 3015 /* message length validation */ 3016 if (len < sizeof(struct ip6_hbh)) 3017 return (EINVAL); 3018 hbh = (struct ip6_hbh *)buf; 3019 hbhlen = (hbh->ip6h_len + 1) << 3; 3020 if (len != hbhlen) 3021 return (EINVAL); 3022 3023 /* turn off the previous option, then set the new option. */ 3024 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3025 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3026 if (opt->ip6po_hbh == NULL) 3027 return (ENOBUFS); 3028 memcpy(opt->ip6po_hbh, hbh, hbhlen); 3029 3030 break; 3031 } 3032 3033 #ifdef RFC2292 3034 case IPV6_2292DSTOPTS: 3035 #endif 3036 case IPV6_DSTOPTS: 3037 case IPV6_RTHDRDSTOPTS: 3038 { 3039 struct ip6_dest *dest, **newdest = NULL; 3040 int destlen; 3041 3042 /* XXX: see the comment for IPV6_HOPOPTS */ 3043 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 3044 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 3045 if (error) 3046 return (error); 3047 3048 if (len == 0) { 3049 ip6_clearpktopts(opt, optname); 3050 break; /* just remove the option */ 3051 } 3052 3053 /* message length validation */ 3054 if (len < sizeof(struct ip6_dest)) 3055 return (EINVAL); 3056 dest = (struct ip6_dest *)buf; 3057 destlen = (dest->ip6d_len + 1) << 3; 3058 if (len != destlen) 3059 return (EINVAL); 3060 /* 3061 * Determine the position that the destination options header 3062 * should be inserted; before or after the routing header. 3063 */ 3064 switch (optname) { 3065 case IPV6_2292DSTOPTS: 3066 /* 3067 * The old advanced API is ambiguous on this point. 3068 * Our approach is to determine the position based 3069 * according to the existence of a routing header. 3070 * Note, however, that this depends on the order of the 3071 * extension headers in the ancillary data; the 1st 3072 * part of the destination options header must appear 3073 * before the routing header in the ancillary data, 3074 * too. 3075 * RFC3542 solved the ambiguity by introducing 3076 * separate ancillary data or option types. 3077 */ 3078 if (opt->ip6po_rthdr == NULL) 3079 newdest = &opt->ip6po_dest1; 3080 else 3081 newdest = &opt->ip6po_dest2; 3082 break; 3083 case IPV6_RTHDRDSTOPTS: 3084 newdest = &opt->ip6po_dest1; 3085 break; 3086 case IPV6_DSTOPTS: 3087 newdest = &opt->ip6po_dest2; 3088 break; 3089 } 3090 3091 /* turn off the previous option, then set the new option. */ 3092 ip6_clearpktopts(opt, optname); 3093 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3094 if (*newdest == NULL) 3095 return (ENOBUFS); 3096 memcpy(*newdest, dest, destlen); 3097 3098 break; 3099 } 3100 3101 #ifdef RFC2292 3102 case IPV6_2292RTHDR: 3103 #endif 3104 case IPV6_RTHDR: 3105 { 3106 struct ip6_rthdr *rth; 3107 int rthlen; 3108 3109 if (len == 0) { 3110 ip6_clearpktopts(opt, IPV6_RTHDR); 3111 break; /* just remove the option */ 3112 } 3113 3114 /* message length validation */ 3115 if (len < sizeof(struct ip6_rthdr)) 3116 return (EINVAL); 3117 rth = (struct ip6_rthdr *)buf; 3118 rthlen = (rth->ip6r_len + 1) << 3; 3119 if (len != rthlen) 3120 return (EINVAL); 3121 switch (rth->ip6r_type) { 3122 case IPV6_RTHDR_TYPE_0: 3123 /* Dropped, RFC5095. */ 3124 default: 3125 return (EINVAL); /* not supported */ 3126 } 3127 /* turn off the previous option */ 3128 ip6_clearpktopts(opt, IPV6_RTHDR); 3129 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3130 if (opt->ip6po_rthdr == NULL) 3131 return (ENOBUFS); 3132 memcpy(opt->ip6po_rthdr, rth, rthlen); 3133 break; 3134 } 3135 3136 case IPV6_USE_MIN_MTU: 3137 if (len != sizeof(int)) 3138 return (EINVAL); 3139 minmtupolicy = *(int *)buf; 3140 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3141 minmtupolicy != IP6PO_MINMTU_DISABLE && 3142 minmtupolicy != IP6PO_MINMTU_ALL) { 3143 return (EINVAL); 3144 } 3145 opt->ip6po_minmtu = minmtupolicy; 3146 break; 3147 3148 case IPV6_DONTFRAG: 3149 if (len != sizeof(int)) 3150 return (EINVAL); 3151 3152 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3153 /* 3154 * we ignore this option for TCP sockets. 3155 * (RFC3542 leaves this case unspecified.) 3156 */ 3157 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3158 } else 3159 opt->ip6po_flags |= IP6PO_DONTFRAG; 3160 break; 3161 3162 case IPV6_PREFER_TEMPADDR: 3163 { 3164 int preftemp; 3165 3166 if (len != sizeof(int)) 3167 return (EINVAL); 3168 preftemp = *(int *)buf; 3169 switch (preftemp) { 3170 case IP6PO_TEMPADDR_SYSTEM: 3171 case IP6PO_TEMPADDR_NOTPREFER: 3172 case IP6PO_TEMPADDR_PREFER: 3173 break; 3174 default: 3175 return (EINVAL); 3176 } 3177 opt->ip6po_prefer_tempaddr = preftemp; 3178 break; 3179 } 3180 3181 default: 3182 return (ENOPROTOOPT); 3183 } /* end of switch */ 3184 3185 return (0); 3186 } 3187 3188 /* 3189 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3190 * packet to the input queue of a specified interface. Note that this 3191 * calls the output routine of the loopback "driver", but with an interface 3192 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 3193 */ 3194 void 3195 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, 3196 const struct sockaddr_in6 *dst) 3197 { 3198 struct mbuf *copym; 3199 struct ip6_hdr *ip6; 3200 3201 copym = m_copypacket(m, M_DONTWAIT); 3202 if (copym == NULL) 3203 return; 3204 3205 /* 3206 * Make sure to deep-copy IPv6 header portion in case the data 3207 * is in an mbuf cluster, so that we can safely override the IPv6 3208 * header portion later. 3209 */ 3210 if ((copym->m_flags & M_EXT) != 0 || 3211 copym->m_len < sizeof(struct ip6_hdr)) { 3212 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3213 if (copym == NULL) 3214 return; 3215 } 3216 3217 #ifdef DIAGNOSTIC 3218 if (copym->m_len < sizeof(*ip6)) { 3219 m_freem(copym); 3220 return; 3221 } 3222 #endif 3223 3224 ip6 = mtod(copym, struct ip6_hdr *); 3225 /* 3226 * clear embedded scope identifiers if necessary. 3227 * in6_clearscope will touch the addresses only when necessary. 3228 */ 3229 in6_clearscope(&ip6->ip6_src); 3230 in6_clearscope(&ip6->ip6_dst); 3231 3232 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL); 3233 } 3234 3235 /* 3236 * Chop IPv6 header off from the payload. 3237 */ 3238 static int 3239 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3240 { 3241 struct mbuf *mh; 3242 struct ip6_hdr *ip6; 3243 3244 ip6 = mtod(m, struct ip6_hdr *); 3245 if (m->m_len > sizeof(*ip6)) { 3246 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3247 if (mh == NULL) { 3248 m_freem(m); 3249 return ENOBUFS; 3250 } 3251 m_move_pkthdr(mh, m); 3252 m_align(mh, sizeof(*ip6)); 3253 m->m_len -= sizeof(*ip6); 3254 m->m_data += sizeof(*ip6); 3255 mh->m_next = m; 3256 mh->m_len = sizeof(*ip6); 3257 memcpy(mtod(mh, void *), (void *)ip6, sizeof(*ip6)); 3258 m = mh; 3259 } 3260 exthdrs->ip6e_ip6 = m; 3261 return 0; 3262 } 3263 3264 /* 3265 * Compute IPv6 extension header length. 3266 */ 3267 int 3268 ip6_optlen(struct in6pcb *in6p) 3269 { 3270 int len; 3271 3272 if (!in6p->in6p_outputopts) 3273 return 0; 3274 3275 len = 0; 3276 #define elen(x) \ 3277 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3278 3279 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3280 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3281 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3282 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3283 return len; 3284 #undef elen 3285 } 3286 3287 /* 3288 * Ensure sending address is valid. 3289 * Returns 0 on success, -1 if an error should be sent back or 1 3290 * if the packet could be dropped without error (protocol dependent). 3291 */ 3292 static int 3293 ip6_ifaddrvalid(const struct in6_addr *src, const struct in6_addr *dst) 3294 { 3295 struct sockaddr_in6 sin6; 3296 int s, error; 3297 struct ifaddr *ifa; 3298 struct in6_ifaddr *ia6; 3299 3300 if (IN6_IS_ADDR_UNSPECIFIED(src)) 3301 return 0; 3302 3303 memset(&sin6, 0, sizeof(sin6)); 3304 sin6.sin6_family = AF_INET6; 3305 sin6.sin6_len = sizeof(sin6); 3306 sin6.sin6_addr = *src; 3307 3308 s = pserialize_read_enter(); 3309 ifa = ifa_ifwithaddr(sin6tosa(&sin6)); 3310 if ((ia6 = ifatoia6(ifa)) == NULL || 3311 ia6->ia6_flags & (IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED)) 3312 error = -1; 3313 else if (ia6->ia6_flags & IN6_IFF_TENTATIVE) 3314 error = 1; 3315 else if (ia6->ia6_flags & IN6_IFF_DETACHED && 3316 (sin6.sin6_addr = *dst, ifa_ifwithaddr(sin6tosa(&sin6)) == NULL)) 3317 /* Allow internal traffic to DETACHED addresses */ 3318 error = 1; 3319 else 3320 error = 0; 3321 pserialize_read_exit(s); 3322 3323 return error; 3324 } 3325