1 /* $NetBSD: ip6_output.c,v 1.46 2002/05/31 03:18:54 itojun Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 66 */ 67 68 #include <sys/cdefs.h> 69 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.46 2002/05/31 03:18:54 itojun Exp $"); 70 71 #include "opt_inet.h" 72 #include "opt_ipsec.h" 73 #include "opt_pfil_hooks.h" 74 75 #include <sys/param.h> 76 #include <sys/malloc.h> 77 #include <sys/mbuf.h> 78 #include <sys/errno.h> 79 #include <sys/protosw.h> 80 #include <sys/socket.h> 81 #include <sys/socketvar.h> 82 #include <sys/systm.h> 83 #include <sys/proc.h> 84 85 #include <net/if.h> 86 #include <net/route.h> 87 #ifdef PFIL_HOOKS 88 #include <net/pfil.h> 89 #endif 90 91 #include <netinet/in.h> 92 #include <netinet/in_var.h> 93 #include <netinet/ip6.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/in6_pcb.h> 97 #include <netinet6/nd6.h> 98 99 #ifdef IPSEC 100 #include <netinet6/ipsec.h> 101 #include <netkey/key.h> 102 #endif /* IPSEC */ 103 104 #include "loop.h" 105 106 #include <net/net_osdep.h> 107 108 #ifdef PFIL_HOOKS 109 extern struct pfil_head inet6_pfil_hook; /* XXX */ 110 #endif 111 112 struct ip6_exthdrs { 113 struct mbuf *ip6e_ip6; 114 struct mbuf *ip6e_hbh; 115 struct mbuf *ip6e_dest1; 116 struct mbuf *ip6e_rthdr; 117 struct mbuf *ip6e_dest2; 118 }; 119 120 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 121 struct socket *)); 122 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 123 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 124 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 125 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 126 struct ip6_frag **)); 127 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 128 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 129 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *, 130 struct ifnet *, struct in6_addr *, u_long *)); 131 132 extern struct ifnet loif[NLOOP]; 133 134 /* 135 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 136 * header (with pri, len, nxt, hlim, src, dst). 137 * This function may modify ver and hlim only. 138 * The mbuf chain containing the packet will be freed. 139 * The mbuf opt, if present, will not be freed. 140 */ 141 int 142 ip6_output(m0, opt, ro, flags, im6o, ifpp) 143 struct mbuf *m0; 144 struct ip6_pktopts *opt; 145 struct route_in6 *ro; 146 int flags; 147 struct ip6_moptions *im6o; 148 struct ifnet **ifpp; /* XXX: just for statistics */ 149 { 150 struct ip6_hdr *ip6, *mhip6; 151 struct ifnet *ifp, *origifp; 152 struct mbuf *m = m0; 153 int hlen, tlen, len, off; 154 struct route_in6 ip6route; 155 struct sockaddr_in6 *dst; 156 int error = 0; 157 struct in6_ifaddr *ia; 158 u_long mtu; 159 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 160 struct ip6_exthdrs exthdrs; 161 struct in6_addr finaldst; 162 struct route_in6 *ro_pmtu = NULL; 163 int hdrsplit = 0; 164 int needipsec = 0; 165 #ifdef IPSEC 166 int needipsectun = 0; 167 struct socket *so; 168 struct secpolicy *sp = NULL; 169 170 /* for AH processing. stupid to have "socket" variable in IP layer... */ 171 so = ipsec_getsocket(m); 172 (void)ipsec_setsocket(m, NULL); 173 ip6 = mtod(m, struct ip6_hdr *); 174 #endif /* IPSEC */ 175 176 #define MAKE_EXTHDR(hp, mp) \ 177 do { \ 178 if (hp) { \ 179 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 180 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 181 ((eh)->ip6e_len + 1) << 3); \ 182 if (error) \ 183 goto freehdrs; \ 184 } \ 185 } while (0) 186 187 bzero(&exthdrs, sizeof(exthdrs)); 188 if (opt) { 189 /* Hop-by-Hop options header */ 190 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 191 /* Destination options header(1st part) */ 192 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 193 /* Routing header */ 194 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 195 /* Destination options header(2nd part) */ 196 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 197 } 198 199 #ifdef IPSEC 200 /* get a security policy for this packet */ 201 if (so == NULL) 202 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 203 else 204 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 205 206 if (sp == NULL) { 207 ipsec6stat.out_inval++; 208 goto freehdrs; 209 } 210 211 error = 0; 212 213 /* check policy */ 214 switch (sp->policy) { 215 case IPSEC_POLICY_DISCARD: 216 /* 217 * This packet is just discarded. 218 */ 219 ipsec6stat.out_polvio++; 220 goto freehdrs; 221 222 case IPSEC_POLICY_BYPASS: 223 case IPSEC_POLICY_NONE: 224 /* no need to do IPsec. */ 225 needipsec = 0; 226 break; 227 228 case IPSEC_POLICY_IPSEC: 229 if (sp->req == NULL) { 230 /* XXX should be panic ? */ 231 printf("ip6_output: No IPsec request specified.\n"); 232 error = EINVAL; 233 goto freehdrs; 234 } 235 needipsec = 1; 236 break; 237 238 case IPSEC_POLICY_ENTRUST: 239 default: 240 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 241 } 242 #endif /* IPSEC */ 243 244 /* 245 * Calculate the total length of the extension header chain. 246 * Keep the length of the unfragmentable part for fragmentation. 247 */ 248 optlen = 0; 249 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 250 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 251 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 252 unfragpartlen = optlen + sizeof(struct ip6_hdr); 253 /* NOTE: we don't add AH/ESP length here. do that later. */ 254 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 255 256 /* 257 * If we need IPsec, or there is at least one extension header, 258 * separate IP6 header from the payload. 259 */ 260 if ((needipsec || optlen) && !hdrsplit) { 261 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 262 m = NULL; 263 goto freehdrs; 264 } 265 m = exthdrs.ip6e_ip6; 266 hdrsplit++; 267 } 268 269 /* adjust pointer */ 270 ip6 = mtod(m, struct ip6_hdr *); 271 272 /* adjust mbuf packet header length */ 273 m->m_pkthdr.len += optlen; 274 plen = m->m_pkthdr.len - sizeof(*ip6); 275 276 /* If this is a jumbo payload, insert a jumbo payload option. */ 277 if (plen > IPV6_MAXPACKET) { 278 if (!hdrsplit) { 279 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 280 m = NULL; 281 goto freehdrs; 282 } 283 m = exthdrs.ip6e_ip6; 284 hdrsplit++; 285 } 286 /* adjust pointer */ 287 ip6 = mtod(m, struct ip6_hdr *); 288 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 289 goto freehdrs; 290 ip6->ip6_plen = 0; 291 } else 292 ip6->ip6_plen = htons(plen); 293 294 /* 295 * Concatenate headers and fill in next header fields. 296 * Here we have, on "m" 297 * IPv6 payload 298 * and we insert headers accordingly. Finally, we should be getting: 299 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 300 * 301 * during the header composing process, "m" points to IPv6 header. 302 * "mprev" points to an extension header prior to esp. 303 */ 304 { 305 u_char *nexthdrp = &ip6->ip6_nxt; 306 struct mbuf *mprev = m; 307 308 /* 309 * we treat dest2 specially. this makes IPsec processing 310 * much easier. 311 * 312 * result: IPv6 dest2 payload 313 * m and mprev will point to IPv6 header. 314 */ 315 if (exthdrs.ip6e_dest2) { 316 if (!hdrsplit) 317 panic("assumption failed: hdr not split"); 318 exthdrs.ip6e_dest2->m_next = m->m_next; 319 m->m_next = exthdrs.ip6e_dest2; 320 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 321 ip6->ip6_nxt = IPPROTO_DSTOPTS; 322 } 323 324 #define MAKE_CHAIN(m, mp, p, i)\ 325 do {\ 326 if (m) {\ 327 if (!hdrsplit) \ 328 panic("assumption failed: hdr not split"); \ 329 *mtod((m), u_char *) = *(p);\ 330 *(p) = (i);\ 331 p = mtod((m), u_char *);\ 332 (m)->m_next = (mp)->m_next;\ 333 (mp)->m_next = (m);\ 334 (mp) = (m);\ 335 }\ 336 } while (0) 337 /* 338 * result: IPv6 hbh dest1 rthdr dest2 payload 339 * m will point to IPv6 header. mprev will point to the 340 * extension header prior to dest2 (rthdr in the above case). 341 */ 342 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, 343 nexthdrp, IPPROTO_HOPOPTS); 344 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, 345 nexthdrp, IPPROTO_DSTOPTS); 346 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, 347 nexthdrp, IPPROTO_ROUTING); 348 349 #ifdef IPSEC 350 if (!needipsec) 351 goto skip_ipsec2; 352 353 /* 354 * pointers after IPsec headers are not valid any more. 355 * other pointers need a great care too. 356 * (IPsec routines should not mangle mbufs prior to AH/ESP) 357 */ 358 exthdrs.ip6e_dest2 = NULL; 359 360 { 361 struct ip6_rthdr *rh = NULL; 362 int segleft_org = 0; 363 struct ipsec_output_state state; 364 365 if (exthdrs.ip6e_rthdr) { 366 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 367 segleft_org = rh->ip6r_segleft; 368 rh->ip6r_segleft = 0; 369 } 370 371 bzero(&state, sizeof(state)); 372 state.m = m; 373 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 374 &needipsectun); 375 m = state.m; 376 if (error) { 377 /* mbuf is already reclaimed in ipsec6_output_trans. */ 378 m = NULL; 379 switch (error) { 380 case EHOSTUNREACH: 381 case ENETUNREACH: 382 case EMSGSIZE: 383 case ENOBUFS: 384 case ENOMEM: 385 break; 386 default: 387 printf("ip6_output (ipsec): error code %d\n", error); 388 /* fall through */ 389 case ENOENT: 390 /* don't show these error codes to the user */ 391 error = 0; 392 break; 393 } 394 goto bad; 395 } 396 if (exthdrs.ip6e_rthdr) { 397 /* ah6_output doesn't modify mbuf chain */ 398 rh->ip6r_segleft = segleft_org; 399 } 400 } 401 skip_ipsec2:; 402 #endif 403 } 404 405 /* 406 * If there is a routing header, replace destination address field 407 * with the first hop of the routing header. 408 */ 409 if (exthdrs.ip6e_rthdr) { 410 struct ip6_rthdr *rh = 411 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 412 struct ip6_rthdr *)); 413 struct ip6_rthdr0 *rh0; 414 415 finaldst = ip6->ip6_dst; 416 switch (rh->ip6r_type) { 417 case IPV6_RTHDR_TYPE_0: 418 rh0 = (struct ip6_rthdr0 *)rh; 419 ip6->ip6_dst = rh0->ip6r0_addr[0]; 420 bcopy((caddr_t)&rh0->ip6r0_addr[1], 421 (caddr_t)&rh0->ip6r0_addr[0], 422 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1) 423 ); 424 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst; 425 break; 426 default: /* is it possible? */ 427 error = EINVAL; 428 goto bad; 429 } 430 } 431 432 /* Source address validation */ 433 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 434 (flags & IPV6_DADOUTPUT) == 0) { 435 error = EOPNOTSUPP; 436 ip6stat.ip6s_badscope++; 437 goto bad; 438 } 439 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 440 error = EOPNOTSUPP; 441 ip6stat.ip6s_badscope++; 442 goto bad; 443 } 444 445 ip6stat.ip6s_localout++; 446 447 /* 448 * Route packet. 449 */ 450 if (ro == 0) { 451 ro = &ip6route; 452 bzero((caddr_t)ro, sizeof(*ro)); 453 } 454 ro_pmtu = ro; 455 if (opt && opt->ip6po_rthdr) 456 ro = &opt->ip6po_route; 457 dst = (struct sockaddr_in6 *)&ro->ro_dst; 458 /* 459 * If there is a cached route, 460 * check that it is to the same destination 461 * and is still up. If not, free it and try again. 462 */ 463 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 464 dst->sin6_family != AF_INET6 || 465 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 466 RTFREE(ro->ro_rt); 467 ro->ro_rt = (struct rtentry *)0; 468 } 469 if (ro->ro_rt == 0) { 470 bzero(dst, sizeof(*dst)); 471 dst->sin6_family = AF_INET6; 472 dst->sin6_len = sizeof(struct sockaddr_in6); 473 dst->sin6_addr = ip6->ip6_dst; 474 } 475 #ifdef IPSEC 476 if (needipsec && needipsectun) { 477 struct ipsec_output_state state; 478 479 /* 480 * All the extension headers will become inaccessible 481 * (since they can be encrypted). 482 * Don't panic, we need no more updates to extension headers 483 * on inner IPv6 packet (since they are now encapsulated). 484 * 485 * IPv6 [ESP|AH] IPv6 [extension headers] payload 486 */ 487 bzero(&exthdrs, sizeof(exthdrs)); 488 exthdrs.ip6e_ip6 = m; 489 490 bzero(&state, sizeof(state)); 491 state.m = m; 492 state.ro = (struct route *)ro; 493 state.dst = (struct sockaddr *)dst; 494 495 error = ipsec6_output_tunnel(&state, sp, flags); 496 497 m = state.m; 498 ro = (struct route_in6 *)state.ro; 499 dst = (struct sockaddr_in6 *)state.dst; 500 if (error) { 501 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 502 m0 = m = NULL; 503 m = NULL; 504 switch (error) { 505 case EHOSTUNREACH: 506 case ENETUNREACH: 507 case EMSGSIZE: 508 case ENOBUFS: 509 case ENOMEM: 510 break; 511 default: 512 printf("ip6_output (ipsec): error code %d\n", error); 513 /* fall through */ 514 case ENOENT: 515 /* don't show these error codes to the user */ 516 error = 0; 517 break; 518 } 519 goto bad; 520 } 521 522 exthdrs.ip6e_ip6 = m; 523 } 524 #endif /* IPSEC */ 525 526 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 527 /* Unicast */ 528 529 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 530 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 531 /* xxx 532 * interface selection comes here 533 * if an interface is specified from an upper layer, 534 * ifp must point it. 535 */ 536 if (ro->ro_rt == 0) { 537 /* 538 * non-bsdi always clone routes, if parent is 539 * PRF_CLONING. 540 */ 541 rtalloc((struct route *)ro); 542 } 543 if (ro->ro_rt == 0) { 544 ip6stat.ip6s_noroute++; 545 error = EHOSTUNREACH; 546 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 547 goto bad; 548 } 549 ia = ifatoia6(ro->ro_rt->rt_ifa); 550 ifp = ro->ro_rt->rt_ifp; 551 ro->ro_rt->rt_use++; 552 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 553 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 554 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 555 556 in6_ifstat_inc(ifp, ifs6_out_request); 557 558 /* 559 * Check if the outgoing interface conflicts with 560 * the interface specified by ifi6_ifindex (if specified). 561 * Note that loopback interface is always okay. 562 * (this may happen when we are sending a packet to one of 563 * our own addresses.) 564 */ 565 if (opt && opt->ip6po_pktinfo 566 && opt->ip6po_pktinfo->ipi6_ifindex) { 567 if (!(ifp->if_flags & IFF_LOOPBACK) 568 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 569 ip6stat.ip6s_noroute++; 570 in6_ifstat_inc(ifp, ifs6_out_discard); 571 error = EHOSTUNREACH; 572 goto bad; 573 } 574 } 575 576 if (opt && opt->ip6po_hlim != -1) 577 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 578 } else { 579 /* Multicast */ 580 struct in6_multi *in6m; 581 582 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 583 584 /* 585 * See if the caller provided any multicast options 586 */ 587 ifp = NULL; 588 if (im6o != NULL) { 589 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 590 if (im6o->im6o_multicast_ifp != NULL) 591 ifp = im6o->im6o_multicast_ifp; 592 } else 593 ip6->ip6_hlim = ip6_defmcasthlim; 594 595 /* 596 * See if the caller provided the outgoing interface 597 * as an ancillary data. 598 * Boundary check for ifindex is assumed to be already done. 599 */ 600 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 601 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]; 602 603 /* 604 * If the destination is a node-local scope multicast, 605 * the packet should be loop-backed only. 606 */ 607 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 608 /* 609 * If the outgoing interface is already specified, 610 * it should be a loopback interface. 611 */ 612 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 613 ip6stat.ip6s_badscope++; 614 error = ENETUNREACH; /* XXX: better error? */ 615 /* XXX correct ifp? */ 616 in6_ifstat_inc(ifp, ifs6_out_discard); 617 goto bad; 618 } else { 619 ifp = &loif[0]; 620 } 621 } 622 623 if (opt && opt->ip6po_hlim != -1) 624 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 625 626 /* 627 * If caller did not provide an interface lookup a 628 * default in the routing table. This is either a 629 * default for the speicfied group (i.e. a host 630 * route), or a multicast default (a route for the 631 * ``net'' ff00::/8). 632 */ 633 if (ifp == NULL) { 634 if (ro->ro_rt == 0) { 635 ro->ro_rt = rtalloc1((struct sockaddr *) 636 &ro->ro_dst, 0 637 ); 638 } 639 if (ro->ro_rt == 0) { 640 ip6stat.ip6s_noroute++; 641 error = EHOSTUNREACH; 642 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 643 goto bad; 644 } 645 ia = ifatoia6(ro->ro_rt->rt_ifa); 646 ifp = ro->ro_rt->rt_ifp; 647 ro->ro_rt->rt_use++; 648 } 649 650 if ((flags & IPV6_FORWARDING) == 0) 651 in6_ifstat_inc(ifp, ifs6_out_request); 652 in6_ifstat_inc(ifp, ifs6_out_mcast); 653 654 /* 655 * Confirm that the outgoing interface supports multicast. 656 */ 657 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 658 ip6stat.ip6s_noroute++; 659 in6_ifstat_inc(ifp, ifs6_out_discard); 660 error = ENETUNREACH; 661 goto bad; 662 } 663 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 664 if (in6m != NULL && 665 (im6o == NULL || im6o->im6o_multicast_loop)) { 666 /* 667 * If we belong to the destination multicast group 668 * on the outgoing interface, and the caller did not 669 * forbid loopback, loop back a copy. 670 */ 671 ip6_mloopback(ifp, m, dst); 672 } else { 673 /* 674 * If we are acting as a multicast router, perform 675 * multicast forwarding as if the packet had just 676 * arrived on the interface to which we are about 677 * to send. The multicast forwarding function 678 * recursively calls this function, using the 679 * IPV6_FORWARDING flag to prevent infinite recursion. 680 * 681 * Multicasts that are looped back by ip6_mloopback(), 682 * above, will be forwarded by the ip6_input() routine, 683 * if necessary. 684 */ 685 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 686 if (ip6_mforward(ip6, ifp, m) != 0) { 687 m_freem(m); 688 goto done; 689 } 690 } 691 } 692 /* 693 * Multicasts with a hoplimit of zero may be looped back, 694 * above, but must not be transmitted on a network. 695 * Also, multicasts addressed to the loopback interface 696 * are not sent -- the above call to ip6_mloopback() will 697 * loop back a copy if this host actually belongs to the 698 * destination group on the loopback interface. 699 */ 700 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 701 m_freem(m); 702 goto done; 703 } 704 } 705 706 /* 707 * Fill the outgoing inteface to tell the upper layer 708 * to increment per-interface statistics. 709 */ 710 if (ifpp) 711 *ifpp = ifp; 712 713 /* Determine path MTU. */ 714 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu)) != 0) 715 goto bad; 716 717 /* 718 * The caller of this function may specify to use the minimum MTU 719 * in some cases. 720 */ 721 if (mtu > IPV6_MMTU) { 722 if ((flags & IPV6_MINMTU)) 723 mtu = IPV6_MMTU; 724 } 725 726 /* Fake scoped addresses */ 727 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 728 /* 729 * If source or destination address is a scoped address, and 730 * the packet is going to be sent to a loopback interface, 731 * we should keep the original interface. 732 */ 733 734 /* 735 * XXX: this is a very experimental and temporary solution. 736 * We eventually have sockaddr_in6 and use the sin6_scope_id 737 * field of the structure here. 738 * We rely on the consistency between two scope zone ids 739 * of source add destination, which should already be assured 740 * Larger scopes than link will be supported in the near 741 * future. 742 */ 743 origifp = NULL; 744 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 745 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])]; 746 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 747 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])]; 748 /* 749 * XXX: origifp can be NULL even in those two cases above. 750 * For example, if we remove the (only) link-local address 751 * from the loopback interface, and try to send a link-local 752 * address without link-id information. Then the source 753 * address is ::1, and the destination address is the 754 * link-local address with its s6_addr16[1] being zero. 755 * What is worse, if the packet goes to the loopback interface 756 * by a default rejected route, the null pointer would be 757 * passed to looutput, and the kernel would hang. 758 * The following last resort would prevent such disaster. 759 */ 760 if (origifp == NULL) 761 origifp = ifp; 762 } 763 else 764 origifp = ifp; 765 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 766 ip6->ip6_src.s6_addr16[1] = 0; 767 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 768 ip6->ip6_dst.s6_addr16[1] = 0; 769 770 /* 771 * If the outgoing packet contains a hop-by-hop options header, 772 * it must be examined and processed even by the source node. 773 * (RFC 2460, section 4.) 774 */ 775 if (exthdrs.ip6e_hbh) { 776 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 777 u_int32_t dummy1; /* XXX unused */ 778 u_int32_t dummy2; /* XXX unused */ 779 780 /* 781 * XXX: if we have to send an ICMPv6 error to the sender, 782 * we need the M_LOOP flag since icmp6_error() expects 783 * the IPv6 and the hop-by-hop options header are 784 * continuous unless the flag is set. 785 */ 786 m->m_flags |= M_LOOP; 787 m->m_pkthdr.rcvif = ifp; 788 if (ip6_process_hopopts(m, 789 (u_int8_t *)(hbh + 1), 790 ((hbh->ip6h_len + 1) << 3) - 791 sizeof(struct ip6_hbh), 792 &dummy1, &dummy2) < 0) { 793 /* m was already freed at this point */ 794 error = EINVAL;/* better error? */ 795 goto done; 796 } 797 m->m_flags &= ~M_LOOP; /* XXX */ 798 m->m_pkthdr.rcvif = NULL; 799 } 800 801 #ifdef PFIL_HOOKS 802 /* 803 * Run through list of hooks for output packets. 804 */ 805 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, 806 PFIL_OUT)) != 0) 807 goto done; 808 if (m == NULL) 809 goto done; 810 ip6 = mtod(m, struct ip6_hdr *); 811 #endif /* PFIL_HOOKS */ 812 /* 813 * Send the packet to the outgoing interface. 814 * If necessary, do IPv6 fragmentation before sending. 815 */ 816 tlen = m->m_pkthdr.len; 817 if (tlen <= mtu 818 #ifdef notyet 819 /* 820 * On any link that cannot convey a 1280-octet packet in one piece, 821 * link-specific fragmentation and reassembly must be provided at 822 * a layer below IPv6. [RFC 2460, sec.5] 823 * Thus if the interface has ability of link-level fragmentation, 824 * we can just send the packet even if the packet size is 825 * larger than the link's MTU. 826 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet... 827 */ 828 829 || ifp->if_flags & IFF_FRAGMENTABLE 830 #endif 831 ) 832 { 833 #ifdef IFA_STATS 834 struct in6_ifaddr *ia6; 835 ip6 = mtod(m, struct ip6_hdr *); 836 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 837 if (ia6) { 838 /* Record statistics for this interface address. */ 839 ia6->ia_ifa.ifa_data.ifad_outbytes += 840 m->m_pkthdr.len; 841 } 842 #endif 843 #ifdef IPSEC 844 /* clean ipsec history once it goes out of the node */ 845 ipsec_delaux(m); 846 #endif 847 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 848 goto done; 849 } else if (mtu < IPV6_MMTU) { 850 /* 851 * note that path MTU is never less than IPV6_MMTU 852 * (see icmp6_input). 853 */ 854 error = EMSGSIZE; 855 in6_ifstat_inc(ifp, ifs6_out_fragfail); 856 goto bad; 857 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 858 error = EMSGSIZE; 859 in6_ifstat_inc(ifp, ifs6_out_fragfail); 860 goto bad; 861 } else { 862 struct mbuf **mnext, *m_frgpart; 863 struct ip6_frag *ip6f; 864 u_int32_t id = htonl(ip6_id++); 865 u_char nextproto; 866 867 /* 868 * Too large for the destination or interface; 869 * fragment if possible. 870 * Must be able to put at least 8 bytes per fragment. 871 */ 872 hlen = unfragpartlen; 873 if (mtu > IPV6_MAXPACKET) 874 mtu = IPV6_MAXPACKET; 875 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 876 if (len < 8) { 877 error = EMSGSIZE; 878 in6_ifstat_inc(ifp, ifs6_out_fragfail); 879 goto bad; 880 } 881 882 mnext = &m->m_nextpkt; 883 884 /* 885 * Change the next header field of the last header in the 886 * unfragmentable part. 887 */ 888 if (exthdrs.ip6e_rthdr) { 889 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 890 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 891 } else if (exthdrs.ip6e_dest1) { 892 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 893 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 894 } else if (exthdrs.ip6e_hbh) { 895 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 896 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 897 } else { 898 nextproto = ip6->ip6_nxt; 899 ip6->ip6_nxt = IPPROTO_FRAGMENT; 900 } 901 902 /* 903 * Loop through length of segment after first fragment, 904 * make new header and copy data of each part and link onto 905 * chain. 906 */ 907 m0 = m; 908 for (off = hlen; off < tlen; off += len) { 909 MGETHDR(m, M_DONTWAIT, MT_HEADER); 910 if (!m) { 911 error = ENOBUFS; 912 ip6stat.ip6s_odropped++; 913 goto sendorfree; 914 } 915 m->m_flags = m0->m_flags & M_COPYFLAGS; 916 *mnext = m; 917 mnext = &m->m_nextpkt; 918 m->m_data += max_linkhdr; 919 mhip6 = mtod(m, struct ip6_hdr *); 920 *mhip6 = *ip6; 921 m->m_len = sizeof(*mhip6); 922 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 923 if (error) { 924 ip6stat.ip6s_odropped++; 925 goto sendorfree; 926 } 927 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 928 if (off + len >= tlen) 929 len = tlen - off; 930 else 931 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 932 mhip6->ip6_plen = htons((u_short)(len + hlen + 933 sizeof(*ip6f) - 934 sizeof(struct ip6_hdr))); 935 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 936 error = ENOBUFS; 937 ip6stat.ip6s_odropped++; 938 goto sendorfree; 939 } 940 m_cat(m, m_frgpart); 941 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 942 m->m_pkthdr.rcvif = (struct ifnet *)0; 943 ip6f->ip6f_reserved = 0; 944 ip6f->ip6f_ident = id; 945 ip6f->ip6f_nxt = nextproto; 946 ip6stat.ip6s_ofragments++; 947 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 948 } 949 950 in6_ifstat_inc(ifp, ifs6_out_fragok); 951 } 952 953 /* 954 * Remove leading garbages. 955 */ 956 sendorfree: 957 m = m0->m_nextpkt; 958 m0->m_nextpkt = 0; 959 m_freem(m0); 960 for (m0 = m; m; m = m0) { 961 m0 = m->m_nextpkt; 962 m->m_nextpkt = 0; 963 if (error == 0) { 964 #ifdef IFA_STATS 965 struct in6_ifaddr *ia6; 966 ip6 = mtod(m, struct ip6_hdr *); 967 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 968 if (ia6) { 969 /* 970 * Record statistics for this interface 971 * address. 972 */ 973 ia6->ia_ifa.ifa_data.ifad_outbytes += 974 m->m_pkthdr.len; 975 } 976 #endif 977 #ifdef IPSEC 978 /* clean ipsec history once it goes out of the node */ 979 ipsec_delaux(m); 980 #endif 981 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 982 } else 983 m_freem(m); 984 } 985 986 if (error == 0) 987 ip6stat.ip6s_fragmented++; 988 989 done: 990 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 991 RTFREE(ro->ro_rt); 992 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 993 RTFREE(ro_pmtu->ro_rt); 994 } 995 996 #ifdef IPSEC 997 if (sp != NULL) 998 key_freesp(sp); 999 #endif /* IPSEC */ 1000 1001 return(error); 1002 1003 freehdrs: 1004 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1005 m_freem(exthdrs.ip6e_dest1); 1006 m_freem(exthdrs.ip6e_rthdr); 1007 m_freem(exthdrs.ip6e_dest2); 1008 /* fall through */ 1009 bad: 1010 m_freem(m); 1011 goto done; 1012 } 1013 1014 static int 1015 ip6_copyexthdr(mp, hdr, hlen) 1016 struct mbuf **mp; 1017 caddr_t hdr; 1018 int hlen; 1019 { 1020 struct mbuf *m; 1021 1022 if (hlen > MCLBYTES) 1023 return(ENOBUFS); /* XXX */ 1024 1025 MGET(m, M_DONTWAIT, MT_DATA); 1026 if (!m) 1027 return(ENOBUFS); 1028 1029 if (hlen > MLEN) { 1030 MCLGET(m, M_DONTWAIT); 1031 if ((m->m_flags & M_EXT) == 0) { 1032 m_free(m); 1033 return(ENOBUFS); 1034 } 1035 } 1036 m->m_len = hlen; 1037 if (hdr) 1038 bcopy(hdr, mtod(m, caddr_t), hlen); 1039 1040 *mp = m; 1041 return(0); 1042 } 1043 1044 /* 1045 * Insert jumbo payload option. 1046 */ 1047 static int 1048 ip6_insert_jumboopt(exthdrs, plen) 1049 struct ip6_exthdrs *exthdrs; 1050 u_int32_t plen; 1051 { 1052 struct mbuf *mopt; 1053 u_char *optbuf; 1054 u_int32_t v; 1055 1056 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1057 1058 /* 1059 * If there is no hop-by-hop options header, allocate new one. 1060 * If there is one but it doesn't have enough space to store the 1061 * jumbo payload option, allocate a cluster to store the whole options. 1062 * Otherwise, use it to store the options. 1063 */ 1064 if (exthdrs->ip6e_hbh == 0) { 1065 MGET(mopt, M_DONTWAIT, MT_DATA); 1066 if (mopt == 0) 1067 return(ENOBUFS); 1068 mopt->m_len = JUMBOOPTLEN; 1069 optbuf = mtod(mopt, u_char *); 1070 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1071 exthdrs->ip6e_hbh = mopt; 1072 } else { 1073 struct ip6_hbh *hbh; 1074 1075 mopt = exthdrs->ip6e_hbh; 1076 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1077 /* 1078 * XXX assumption: 1079 * - exthdrs->ip6e_hbh is not referenced from places 1080 * other than exthdrs. 1081 * - exthdrs->ip6e_hbh is not an mbuf chain. 1082 */ 1083 int oldoptlen = mopt->m_len; 1084 struct mbuf *n; 1085 1086 /* 1087 * XXX: give up if the whole (new) hbh header does 1088 * not fit even in an mbuf cluster. 1089 */ 1090 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1091 return(ENOBUFS); 1092 1093 /* 1094 * As a consequence, we must always prepare a cluster 1095 * at this point. 1096 */ 1097 MGET(n, M_DONTWAIT, MT_DATA); 1098 if (n) { 1099 MCLGET(n, M_DONTWAIT); 1100 if ((n->m_flags & M_EXT) == 0) { 1101 m_freem(n); 1102 n = NULL; 1103 } 1104 } 1105 if (!n) 1106 return(ENOBUFS); 1107 n->m_len = oldoptlen + JUMBOOPTLEN; 1108 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1109 oldoptlen); 1110 optbuf = mtod(n, caddr_t) + oldoptlen; 1111 m_freem(mopt); 1112 mopt = exthdrs->ip6e_hbh = n; 1113 } else { 1114 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1115 mopt->m_len += JUMBOOPTLEN; 1116 } 1117 optbuf[0] = IP6OPT_PADN; 1118 optbuf[1] = 1; 1119 1120 /* 1121 * Adjust the header length according to the pad and 1122 * the jumbo payload option. 1123 */ 1124 hbh = mtod(mopt, struct ip6_hbh *); 1125 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1126 } 1127 1128 /* fill in the option. */ 1129 optbuf[2] = IP6OPT_JUMBO; 1130 optbuf[3] = 4; 1131 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1132 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1133 1134 /* finally, adjust the packet header length */ 1135 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1136 1137 return(0); 1138 #undef JUMBOOPTLEN 1139 } 1140 1141 /* 1142 * Insert fragment header and copy unfragmentable header portions. 1143 */ 1144 static int 1145 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1146 struct mbuf *m0, *m; 1147 int hlen; 1148 struct ip6_frag **frghdrp; 1149 { 1150 struct mbuf *n, *mlast; 1151 1152 if (hlen > sizeof(struct ip6_hdr)) { 1153 n = m_copym(m0, sizeof(struct ip6_hdr), 1154 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1155 if (n == 0) 1156 return(ENOBUFS); 1157 m->m_next = n; 1158 } else 1159 n = m; 1160 1161 /* Search for the last mbuf of unfragmentable part. */ 1162 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1163 ; 1164 1165 if ((mlast->m_flags & M_EXT) == 0 && 1166 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1167 /* use the trailing space of the last mbuf for the fragment hdr */ 1168 *frghdrp = 1169 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1170 mlast->m_len += sizeof(struct ip6_frag); 1171 m->m_pkthdr.len += sizeof(struct ip6_frag); 1172 } else { 1173 /* allocate a new mbuf for the fragment header */ 1174 struct mbuf *mfrg; 1175 1176 MGET(mfrg, M_DONTWAIT, MT_DATA); 1177 if (mfrg == 0) 1178 return(ENOBUFS); 1179 mfrg->m_len = sizeof(struct ip6_frag); 1180 *frghdrp = mtod(mfrg, struct ip6_frag *); 1181 mlast->m_next = mfrg; 1182 } 1183 1184 return(0); 1185 } 1186 1187 static int 1188 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup) 1189 struct route_in6 *ro_pmtu, *ro; 1190 struct ifnet *ifp; 1191 struct in6_addr *dst; 1192 u_long *mtup; 1193 { 1194 u_int32_t mtu = 0; 1195 int error = 0; 1196 1197 if (ro_pmtu != ro) { 1198 /* The first hop and the final destination may differ. */ 1199 struct sockaddr_in6 *sa6_dst = 1200 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1201 if (ro_pmtu->ro_rt && 1202 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1203 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1204 RTFREE(ro_pmtu->ro_rt); 1205 ro_pmtu->ro_rt = (struct rtentry *)0; 1206 } 1207 if (ro_pmtu->ro_rt == 0) { 1208 bzero(sa6_dst, sizeof(*sa6_dst)); 1209 sa6_dst->sin6_family = AF_INET6; 1210 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1211 sa6_dst->sin6_addr = *dst; 1212 1213 rtalloc((struct route *)ro_pmtu); 1214 } 1215 } 1216 if (ro_pmtu->ro_rt) { 1217 u_int32_t ifmtu; 1218 1219 if (ifp == NULL) 1220 ifp = ro_pmtu->ro_rt->rt_ifp; 1221 ifmtu = IN6_LINKMTU(ifp); 1222 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1223 if (mtu == 0) 1224 mtu = ifmtu; 1225 else if (mtu > ifmtu) { 1226 /* 1227 * The MTU on the route is larger than the MTU on 1228 * the interface! This shouldn't happen, unless the 1229 * MTU of the interface has been changed after the 1230 * interface was brought up. Change the MTU in the 1231 * route to match the interface MTU (as long as the 1232 * field isn't locked). 1233 * 1234 * if MTU on the route is 0, we need to fix the MTU. 1235 * this case happens with path MTU discovery timeouts. 1236 */ 1237 mtu = ifmtu; 1238 if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU)) 1239 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1240 } 1241 } else if (ifp) { 1242 mtu = IN6_LINKMTU(ifp); 1243 } else 1244 error = EHOSTUNREACH; /* XXX */ 1245 1246 *mtup = mtu; 1247 return(error); 1248 } 1249 1250 /* 1251 * IP6 socket option processing. 1252 */ 1253 int 1254 ip6_ctloutput(op, so, level, optname, mp) 1255 int op; 1256 struct socket *so; 1257 int level, optname; 1258 struct mbuf **mp; 1259 { 1260 struct in6pcb *in6p = sotoin6pcb(so); 1261 struct mbuf *m = *mp; 1262 int optval = 0; 1263 int error = 0; 1264 struct proc *p = curproc; /* XXX */ 1265 1266 if (level == IPPROTO_IPV6) { 1267 switch (op) { 1268 1269 case PRCO_SETOPT: 1270 switch (optname) { 1271 case IPV6_PKTOPTIONS: 1272 /* m is freed in ip6_pcbopts */ 1273 return(ip6_pcbopts(&in6p->in6p_outputopts, 1274 m, so)); 1275 case IPV6_HOPOPTS: 1276 case IPV6_DSTOPTS: 1277 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1278 error = EPERM; 1279 break; 1280 } 1281 /* fall through */ 1282 case IPV6_UNICAST_HOPS: 1283 case IPV6_RECVOPTS: 1284 case IPV6_RECVRETOPTS: 1285 case IPV6_RECVDSTADDR: 1286 case IPV6_PKTINFO: 1287 case IPV6_HOPLIMIT: 1288 case IPV6_RTHDR: 1289 case IPV6_FAITH: 1290 case IPV6_V6ONLY: 1291 if (!m || m->m_len != sizeof(int)) { 1292 error = EINVAL; 1293 break; 1294 } 1295 optval = *mtod(m, int *); 1296 switch (optname) { 1297 1298 case IPV6_UNICAST_HOPS: 1299 if (optval < -1 || optval >= 256) 1300 error = EINVAL; 1301 else { 1302 /* -1 = kernel default */ 1303 in6p->in6p_hops = optval; 1304 } 1305 break; 1306 #define OPTSET(bit) \ 1307 if (optval) \ 1308 in6p->in6p_flags |= bit; \ 1309 else \ 1310 in6p->in6p_flags &= ~bit; 1311 1312 case IPV6_RECVOPTS: 1313 OPTSET(IN6P_RECVOPTS); 1314 break; 1315 1316 case IPV6_RECVRETOPTS: 1317 OPTSET(IN6P_RECVRETOPTS); 1318 break; 1319 1320 case IPV6_RECVDSTADDR: 1321 OPTSET(IN6P_RECVDSTADDR); 1322 break; 1323 1324 case IPV6_PKTINFO: 1325 OPTSET(IN6P_PKTINFO); 1326 break; 1327 1328 case IPV6_HOPLIMIT: 1329 OPTSET(IN6P_HOPLIMIT); 1330 break; 1331 1332 case IPV6_HOPOPTS: 1333 OPTSET(IN6P_HOPOPTS); 1334 break; 1335 1336 case IPV6_DSTOPTS: 1337 OPTSET(IN6P_DSTOPTS); 1338 break; 1339 1340 case IPV6_RTHDR: 1341 OPTSET(IN6P_RTHDR); 1342 break; 1343 1344 case IPV6_FAITH: 1345 OPTSET(IN6P_FAITH); 1346 break; 1347 1348 case IPV6_V6ONLY: 1349 /* 1350 * make setsockopt(IPV6_V6ONLY) 1351 * available only prior to bind(2). 1352 * see ipng mailing list, Jun 22 2001. 1353 */ 1354 if (in6p->in6p_lport || 1355 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) 1356 { 1357 error = EINVAL; 1358 break; 1359 } 1360 #ifdef INET6_BINDV6ONLY 1361 if (!optval) 1362 error = EINVAL; 1363 #else 1364 OPTSET(IN6P_IPV6_V6ONLY); 1365 #endif 1366 break; 1367 } 1368 break; 1369 #undef OPTSET 1370 1371 case IPV6_MULTICAST_IF: 1372 case IPV6_MULTICAST_HOPS: 1373 case IPV6_MULTICAST_LOOP: 1374 case IPV6_JOIN_GROUP: 1375 case IPV6_LEAVE_GROUP: 1376 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m); 1377 break; 1378 1379 case IPV6_PORTRANGE: 1380 optval = *mtod(m, int *); 1381 1382 switch (optval) { 1383 case IPV6_PORTRANGE_DEFAULT: 1384 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1385 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1386 break; 1387 1388 case IPV6_PORTRANGE_HIGH: 1389 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1390 in6p->in6p_flags |= IN6P_HIGHPORT; 1391 break; 1392 1393 case IPV6_PORTRANGE_LOW: 1394 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1395 in6p->in6p_flags |= IN6P_LOWPORT; 1396 break; 1397 1398 default: 1399 error = EINVAL; 1400 break; 1401 } 1402 break; 1403 1404 #ifdef IPSEC 1405 case IPV6_IPSEC_POLICY: 1406 { 1407 caddr_t req = NULL; 1408 size_t len = 0; 1409 1410 int priv = 0; 1411 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) 1412 priv = 0; 1413 else 1414 priv = 1; 1415 if (m) { 1416 req = mtod(m, caddr_t); 1417 len = m->m_len; 1418 } 1419 error = ipsec6_set_policy(in6p, 1420 optname, req, len, priv); 1421 } 1422 break; 1423 #endif /* IPSEC */ 1424 1425 default: 1426 error = ENOPROTOOPT; 1427 break; 1428 } 1429 if (m) 1430 (void)m_free(m); 1431 break; 1432 1433 case PRCO_GETOPT: 1434 switch (optname) { 1435 1436 case IPV6_OPTIONS: 1437 case IPV6_RETOPTS: 1438 #if 0 1439 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1440 if (in6p->in6p_options) { 1441 m->m_len = in6p->in6p_options->m_len; 1442 bcopy(mtod(in6p->in6p_options, caddr_t), 1443 mtod(m, caddr_t), 1444 (unsigned)m->m_len); 1445 } else 1446 m->m_len = 0; 1447 break; 1448 #else 1449 error = ENOPROTOOPT; 1450 break; 1451 #endif 1452 1453 case IPV6_PKTOPTIONS: 1454 if (in6p->in6p_options) { 1455 *mp = m_copym(in6p->in6p_options, 0, 1456 M_COPYALL, M_WAIT); 1457 } else { 1458 *mp = m_get(M_WAIT, MT_SOOPTS); 1459 (*mp)->m_len = 0; 1460 } 1461 break; 1462 1463 case IPV6_HOPOPTS: 1464 case IPV6_DSTOPTS: 1465 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1466 error = EPERM; 1467 break; 1468 } 1469 /* fall through */ 1470 case IPV6_UNICAST_HOPS: 1471 case IPV6_RECVOPTS: 1472 case IPV6_RECVRETOPTS: 1473 case IPV6_RECVDSTADDR: 1474 case IPV6_PORTRANGE: 1475 case IPV6_PKTINFO: 1476 case IPV6_HOPLIMIT: 1477 case IPV6_RTHDR: 1478 case IPV6_FAITH: 1479 case IPV6_V6ONLY: 1480 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1481 m->m_len = sizeof(int); 1482 switch (optname) { 1483 1484 case IPV6_UNICAST_HOPS: 1485 optval = in6p->in6p_hops; 1486 break; 1487 1488 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0) 1489 1490 case IPV6_RECVOPTS: 1491 optval = OPTBIT(IN6P_RECVOPTS); 1492 break; 1493 1494 case IPV6_RECVRETOPTS: 1495 optval = OPTBIT(IN6P_RECVRETOPTS); 1496 break; 1497 1498 case IPV6_RECVDSTADDR: 1499 optval = OPTBIT(IN6P_RECVDSTADDR); 1500 break; 1501 1502 case IPV6_PORTRANGE: 1503 { 1504 int flags; 1505 flags = in6p->in6p_flags; 1506 if (flags & IN6P_HIGHPORT) 1507 optval = IPV6_PORTRANGE_HIGH; 1508 else if (flags & IN6P_LOWPORT) 1509 optval = IPV6_PORTRANGE_LOW; 1510 else 1511 optval = 0; 1512 break; 1513 } 1514 1515 case IPV6_PKTINFO: 1516 optval = OPTBIT(IN6P_PKTINFO); 1517 break; 1518 1519 case IPV6_HOPLIMIT: 1520 optval = OPTBIT(IN6P_HOPLIMIT); 1521 break; 1522 1523 case IPV6_HOPOPTS: 1524 optval = OPTBIT(IN6P_HOPOPTS); 1525 break; 1526 1527 case IPV6_DSTOPTS: 1528 optval = OPTBIT(IN6P_DSTOPTS); 1529 break; 1530 1531 case IPV6_RTHDR: 1532 optval = OPTBIT(IN6P_RTHDR); 1533 break; 1534 1535 case IPV6_FAITH: 1536 optval = OPTBIT(IN6P_FAITH); 1537 break; 1538 1539 case IPV6_V6ONLY: 1540 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1541 break; 1542 } 1543 *mtod(m, int *) = optval; 1544 break; 1545 1546 case IPV6_MULTICAST_IF: 1547 case IPV6_MULTICAST_HOPS: 1548 case IPV6_MULTICAST_LOOP: 1549 case IPV6_JOIN_GROUP: 1550 case IPV6_LEAVE_GROUP: 1551 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp); 1552 break; 1553 1554 #ifdef IPSEC 1555 case IPV6_IPSEC_POLICY: 1556 { 1557 caddr_t req = NULL; 1558 size_t len = 0; 1559 1560 if (m) { 1561 req = mtod(m, caddr_t); 1562 len = m->m_len; 1563 } 1564 error = ipsec6_get_policy(in6p, req, len, mp); 1565 break; 1566 } 1567 #endif /* IPSEC */ 1568 1569 default: 1570 error = ENOPROTOOPT; 1571 break; 1572 } 1573 break; 1574 } 1575 } else { 1576 error = EINVAL; 1577 if (op == PRCO_SETOPT && *mp) 1578 (void)m_free(*mp); 1579 } 1580 return(error); 1581 } 1582 1583 /* 1584 * Set up IP6 options in pcb for insertion in output packets. 1585 * Store in mbuf with pointer in pcbopt, adding pseudo-option 1586 * with destination address if source routed. 1587 */ 1588 static int 1589 ip6_pcbopts(pktopt, m, so) 1590 struct ip6_pktopts **pktopt; 1591 struct mbuf *m; 1592 struct socket *so; 1593 { 1594 struct ip6_pktopts *opt = *pktopt; 1595 int error = 0; 1596 struct proc *p = curproc; /* XXX */ 1597 int priv = 0; 1598 1599 /* turn off any old options. */ 1600 if (opt) { 1601 if (opt->ip6po_m) 1602 (void)m_free(opt->ip6po_m); 1603 } else 1604 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 1605 *pktopt = 0; 1606 1607 if (!m || m->m_len == 0) { 1608 /* 1609 * Only turning off any previous options. 1610 */ 1611 if (opt) 1612 free(opt, M_IP6OPT); 1613 if (m) 1614 (void)m_free(m); 1615 return(0); 1616 } 1617 1618 /* set options specified by user. */ 1619 if (p && !suser(p->p_ucred, &p->p_acflag)) 1620 priv = 1; 1621 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) { 1622 (void)m_free(m); 1623 return(error); 1624 } 1625 *pktopt = opt; 1626 return(0); 1627 } 1628 1629 /* 1630 * Set the IP6 multicast options in response to user setsockopt(). 1631 */ 1632 static int 1633 ip6_setmoptions(optname, im6op, m) 1634 int optname; 1635 struct ip6_moptions **im6op; 1636 struct mbuf *m; 1637 { 1638 int error = 0; 1639 u_int loop, ifindex; 1640 struct ipv6_mreq *mreq; 1641 struct ifnet *ifp; 1642 struct ip6_moptions *im6o = *im6op; 1643 struct route_in6 ro; 1644 struct sockaddr_in6 *dst; 1645 struct in6_multi_mship *imm; 1646 struct proc *p = curproc; /* XXX */ 1647 1648 if (im6o == NULL) { 1649 /* 1650 * No multicast option buffer attached to the pcb; 1651 * allocate one and initialize to default values. 1652 */ 1653 im6o = (struct ip6_moptions *) 1654 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1655 1656 if (im6o == NULL) 1657 return(ENOBUFS); 1658 *im6op = im6o; 1659 im6o->im6o_multicast_ifp = NULL; 1660 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1661 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1662 LIST_INIT(&im6o->im6o_memberships); 1663 } 1664 1665 switch (optname) { 1666 1667 case IPV6_MULTICAST_IF: 1668 /* 1669 * Select the interface for outgoing multicast packets. 1670 */ 1671 if (m == NULL || m->m_len != sizeof(u_int)) { 1672 error = EINVAL; 1673 break; 1674 } 1675 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 1676 if (ifindex < 0 || if_index < ifindex) { 1677 error = ENXIO; /* XXX EINVAL? */ 1678 break; 1679 } 1680 ifp = ifindex2ifnet[ifindex]; 1681 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1682 error = EADDRNOTAVAIL; 1683 break; 1684 } 1685 im6o->im6o_multicast_ifp = ifp; 1686 break; 1687 1688 case IPV6_MULTICAST_HOPS: 1689 { 1690 /* 1691 * Set the IP6 hoplimit for outgoing multicast packets. 1692 */ 1693 int optval; 1694 if (m == NULL || m->m_len != sizeof(int)) { 1695 error = EINVAL; 1696 break; 1697 } 1698 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 1699 if (optval < -1 || optval >= 256) 1700 error = EINVAL; 1701 else if (optval == -1) 1702 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1703 else 1704 im6o->im6o_multicast_hlim = optval; 1705 break; 1706 } 1707 1708 case IPV6_MULTICAST_LOOP: 1709 /* 1710 * Set the loopback flag for outgoing multicast packets. 1711 * Must be zero or one. 1712 */ 1713 if (m == NULL || m->m_len != sizeof(u_int)) { 1714 error = EINVAL; 1715 break; 1716 } 1717 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 1718 if (loop > 1) { 1719 error = EINVAL; 1720 break; 1721 } 1722 im6o->im6o_multicast_loop = loop; 1723 break; 1724 1725 case IPV6_JOIN_GROUP: 1726 /* 1727 * Add a multicast group membership. 1728 * Group must be a valid IP6 multicast address. 1729 */ 1730 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1731 error = EINVAL; 1732 break; 1733 } 1734 mreq = mtod(m, struct ipv6_mreq *); 1735 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1736 /* 1737 * We use the unspecified address to specify to accept 1738 * all multicast addresses. Only super user is allowed 1739 * to do this. 1740 */ 1741 if (suser(p->p_ucred, &p->p_acflag)) 1742 { 1743 error = EACCES; 1744 break; 1745 } 1746 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1747 error = EINVAL; 1748 break; 1749 } 1750 1751 /* 1752 * If the interface is specified, validate it. 1753 */ 1754 if (mreq->ipv6mr_interface < 0 1755 || if_index < mreq->ipv6mr_interface) { 1756 error = ENXIO; /* XXX EINVAL? */ 1757 break; 1758 } 1759 /* 1760 * If no interface was explicitly specified, choose an 1761 * appropriate one according to the given multicast address. 1762 */ 1763 if (mreq->ipv6mr_interface == 0) { 1764 /* 1765 * If the multicast address is in node-local scope, 1766 * the interface should be a loopback interface. 1767 * Otherwise, look up the routing table for the 1768 * address, and choose the outgoing interface. 1769 * XXX: is it a good approach? 1770 */ 1771 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 1772 ifp = &loif[0]; 1773 } else { 1774 ro.ro_rt = NULL; 1775 dst = (struct sockaddr_in6 *)&ro.ro_dst; 1776 bzero(dst, sizeof(*dst)); 1777 dst->sin6_len = sizeof(struct sockaddr_in6); 1778 dst->sin6_family = AF_INET6; 1779 dst->sin6_addr = mreq->ipv6mr_multiaddr; 1780 rtalloc((struct route *)&ro); 1781 if (ro.ro_rt == NULL) { 1782 error = EADDRNOTAVAIL; 1783 break; 1784 } 1785 ifp = ro.ro_rt->rt_ifp; 1786 rtfree(ro.ro_rt); 1787 } 1788 } else 1789 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1790 1791 /* 1792 * See if we found an interface, and confirm that it 1793 * supports multicast 1794 */ 1795 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1796 error = EADDRNOTAVAIL; 1797 break; 1798 } 1799 /* 1800 * Put interface index into the multicast address, 1801 * if the address has link-local scope. 1802 */ 1803 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1804 mreq->ipv6mr_multiaddr.s6_addr16[1] 1805 = htons(mreq->ipv6mr_interface); 1806 } 1807 /* 1808 * See if the membership already exists. 1809 */ 1810 for (imm = im6o->im6o_memberships.lh_first; 1811 imm != NULL; imm = imm->i6mm_chain.le_next) 1812 if (imm->i6mm_maddr->in6m_ifp == ifp && 1813 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1814 &mreq->ipv6mr_multiaddr)) 1815 break; 1816 if (imm != NULL) { 1817 error = EADDRINUSE; 1818 break; 1819 } 1820 /* 1821 * Everything looks good; add a new record to the multicast 1822 * address list for the given interface. 1823 */ 1824 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error); 1825 if (!imm) 1826 break; 1827 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 1828 break; 1829 1830 case IPV6_LEAVE_GROUP: 1831 /* 1832 * Drop a multicast group membership. 1833 * Group must be a valid IP6 multicast address. 1834 */ 1835 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1836 error = EINVAL; 1837 break; 1838 } 1839 mreq = mtod(m, struct ipv6_mreq *); 1840 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1841 if (suser(p->p_ucred, &p->p_acflag)) 1842 { 1843 error = EACCES; 1844 break; 1845 } 1846 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1847 error = EINVAL; 1848 break; 1849 } 1850 /* 1851 * If an interface address was specified, get a pointer 1852 * to its ifnet structure. 1853 */ 1854 if (mreq->ipv6mr_interface < 0 1855 || if_index < mreq->ipv6mr_interface) { 1856 error = ENXIO; /* XXX EINVAL? */ 1857 break; 1858 } 1859 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1860 /* 1861 * Put interface index into the multicast address, 1862 * if the address has link-local scope. 1863 */ 1864 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1865 mreq->ipv6mr_multiaddr.s6_addr16[1] 1866 = htons(mreq->ipv6mr_interface); 1867 } 1868 /* 1869 * Find the membership in the membership list. 1870 */ 1871 for (imm = im6o->im6o_memberships.lh_first; 1872 imm != NULL; imm = imm->i6mm_chain.le_next) { 1873 if ((ifp == NULL || 1874 imm->i6mm_maddr->in6m_ifp == ifp) && 1875 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1876 &mreq->ipv6mr_multiaddr)) 1877 break; 1878 } 1879 if (imm == NULL) { 1880 /* Unable to resolve interface */ 1881 error = EADDRNOTAVAIL; 1882 break; 1883 } 1884 /* 1885 * Give up the multicast address record to which the 1886 * membership points. 1887 */ 1888 LIST_REMOVE(imm, i6mm_chain); 1889 in6_leavegroup(imm); 1890 break; 1891 1892 default: 1893 error = EOPNOTSUPP; 1894 break; 1895 } 1896 1897 /* 1898 * If all options have default values, no need to keep the mbuf. 1899 */ 1900 if (im6o->im6o_multicast_ifp == NULL && 1901 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 1902 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 1903 im6o->im6o_memberships.lh_first == NULL) { 1904 free(*im6op, M_IPMOPTS); 1905 *im6op = NULL; 1906 } 1907 1908 return(error); 1909 } 1910 1911 /* 1912 * Return the IP6 multicast options in response to user getsockopt(). 1913 */ 1914 static int 1915 ip6_getmoptions(optname, im6o, mp) 1916 int optname; 1917 struct ip6_moptions *im6o; 1918 struct mbuf **mp; 1919 { 1920 u_int *hlim, *loop, *ifindex; 1921 1922 *mp = m_get(M_WAIT, MT_SOOPTS); 1923 1924 switch (optname) { 1925 1926 case IPV6_MULTICAST_IF: 1927 ifindex = mtod(*mp, u_int *); 1928 (*mp)->m_len = sizeof(u_int); 1929 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 1930 *ifindex = 0; 1931 else 1932 *ifindex = im6o->im6o_multicast_ifp->if_index; 1933 return(0); 1934 1935 case IPV6_MULTICAST_HOPS: 1936 hlim = mtod(*mp, u_int *); 1937 (*mp)->m_len = sizeof(u_int); 1938 if (im6o == NULL) 1939 *hlim = ip6_defmcasthlim; 1940 else 1941 *hlim = im6o->im6o_multicast_hlim; 1942 return(0); 1943 1944 case IPV6_MULTICAST_LOOP: 1945 loop = mtod(*mp, u_int *); 1946 (*mp)->m_len = sizeof(u_int); 1947 if (im6o == NULL) 1948 *loop = ip6_defmcasthlim; 1949 else 1950 *loop = im6o->im6o_multicast_loop; 1951 return(0); 1952 1953 default: 1954 return(EOPNOTSUPP); 1955 } 1956 } 1957 1958 /* 1959 * Discard the IP6 multicast options. 1960 */ 1961 void 1962 ip6_freemoptions(im6o) 1963 struct ip6_moptions *im6o; 1964 { 1965 struct in6_multi_mship *imm; 1966 1967 if (im6o == NULL) 1968 return; 1969 1970 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 1971 LIST_REMOVE(imm, i6mm_chain); 1972 in6_leavegroup(imm); 1973 } 1974 free(im6o, M_IPMOPTS); 1975 } 1976 1977 /* 1978 * Set IPv6 outgoing packet options based on advanced API. 1979 */ 1980 int 1981 ip6_setpktoptions(control, opt, priv) 1982 struct mbuf *control; 1983 struct ip6_pktopts *opt; 1984 int priv; 1985 { 1986 struct cmsghdr *cm = 0; 1987 1988 if (control == 0 || opt == 0) 1989 return(EINVAL); 1990 1991 bzero(opt, sizeof(*opt)); 1992 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */ 1993 1994 /* 1995 * XXX: Currently, we assume all the optional information is stored 1996 * in a single mbuf. 1997 */ 1998 if (control->m_next) 1999 return(EINVAL); 2000 2001 opt->ip6po_m = control; 2002 2003 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2004 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2005 cm = mtod(control, struct cmsghdr *); 2006 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2007 return(EINVAL); 2008 if (cm->cmsg_level != IPPROTO_IPV6) 2009 continue; 2010 2011 switch (cm->cmsg_type) { 2012 case IPV6_PKTINFO: 2013 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 2014 return(EINVAL); 2015 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 2016 if (opt->ip6po_pktinfo->ipi6_ifindex && 2017 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr)) 2018 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] = 2019 htons(opt->ip6po_pktinfo->ipi6_ifindex); 2020 2021 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index 2022 || opt->ip6po_pktinfo->ipi6_ifindex < 0) { 2023 return(ENXIO); 2024 } 2025 2026 /* 2027 * Check if the requested source address is indeed a 2028 * unicast address assigned to the node, and can be 2029 * used as the packet's source address. 2030 */ 2031 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 2032 struct ifaddr *ia; 2033 struct in6_ifaddr *ia6; 2034 struct sockaddr_in6 sin6; 2035 2036 bzero(&sin6, sizeof(sin6)); 2037 sin6.sin6_len = sizeof(sin6); 2038 sin6.sin6_family = AF_INET6; 2039 sin6.sin6_addr = 2040 opt->ip6po_pktinfo->ipi6_addr; 2041 ia = ifa_ifwithaddr(sin6tosa(&sin6)); 2042 if (ia == NULL || 2043 (opt->ip6po_pktinfo->ipi6_ifindex && 2044 (ia->ifa_ifp->if_index != 2045 opt->ip6po_pktinfo->ipi6_ifindex))) { 2046 return(EADDRNOTAVAIL); 2047 } 2048 ia6 = (struct in6_ifaddr *)ia; 2049 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) { 2050 return(EADDRNOTAVAIL); 2051 } 2052 2053 /* 2054 * Check if the requested source address is 2055 * indeed a unicast address assigned to the 2056 * node. 2057 */ 2058 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr)) 2059 return(EADDRNOTAVAIL); 2060 } 2061 break; 2062 2063 case IPV6_HOPLIMIT: 2064 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 2065 return(EINVAL); 2066 2067 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim, 2068 sizeof(opt->ip6po_hlim)); 2069 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255) 2070 return(EINVAL); 2071 break; 2072 2073 case IPV6_NEXTHOP: 2074 if (!priv) 2075 return(EPERM); 2076 2077 if (cm->cmsg_len < sizeof(u_char) || 2078 /* check if cmsg_len is large enough for sa_len */ 2079 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 2080 return(EINVAL); 2081 2082 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm); 2083 2084 break; 2085 2086 case IPV6_HOPOPTS: 2087 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2088 return(EINVAL); 2089 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm); 2090 if (cm->cmsg_len != 2091 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3)) 2092 return(EINVAL); 2093 break; 2094 2095 case IPV6_DSTOPTS: 2096 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2097 return(EINVAL); 2098 2099 /* 2100 * If there is no routing header yet, the destination 2101 * options header should be put on the 1st part. 2102 * Otherwise, the header should be on the 2nd part. 2103 * (See RFC 2460, section 4.1) 2104 */ 2105 if (opt->ip6po_rthdr == NULL) { 2106 opt->ip6po_dest1 = 2107 (struct ip6_dest *)CMSG_DATA(cm); 2108 if (cm->cmsg_len != 2109 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1) 2110 << 3)) 2111 return(EINVAL); 2112 } 2113 else { 2114 opt->ip6po_dest2 = 2115 (struct ip6_dest *)CMSG_DATA(cm); 2116 if (cm->cmsg_len != 2117 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) 2118 << 3)) 2119 return(EINVAL); 2120 } 2121 break; 2122 2123 case IPV6_RTHDR: 2124 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2125 return(EINVAL); 2126 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm); 2127 if (cm->cmsg_len != 2128 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3)) 2129 return(EINVAL); 2130 switch (opt->ip6po_rthdr->ip6r_type) { 2131 case IPV6_RTHDR_TYPE_0: 2132 if (opt->ip6po_rthdr->ip6r_segleft == 0) 2133 return(EINVAL); 2134 break; 2135 default: 2136 return(EINVAL); 2137 } 2138 break; 2139 2140 default: 2141 return(ENOPROTOOPT); 2142 } 2143 } 2144 2145 return(0); 2146 } 2147 2148 /* 2149 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2150 * packet to the input queue of a specified interface. Note that this 2151 * calls the output routine of the loopback "driver", but with an interface 2152 * pointer that might NOT be &loif -- easier than replicating that code here. 2153 */ 2154 void 2155 ip6_mloopback(ifp, m, dst) 2156 struct ifnet *ifp; 2157 struct mbuf *m; 2158 struct sockaddr_in6 *dst; 2159 { 2160 struct mbuf *copym; 2161 struct ip6_hdr *ip6; 2162 2163 copym = m_copy(m, 0, M_COPYALL); 2164 if (copym == NULL) 2165 return; 2166 2167 /* 2168 * Make sure to deep-copy IPv6 header portion in case the data 2169 * is in an mbuf cluster, so that we can safely override the IPv6 2170 * header portion later. 2171 */ 2172 if ((copym->m_flags & M_EXT) != 0 || 2173 copym->m_len < sizeof(struct ip6_hdr)) { 2174 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2175 if (copym == NULL) 2176 return; 2177 } 2178 2179 #ifdef DIAGNOSTIC 2180 if (copym->m_len < sizeof(*ip6)) { 2181 m_freem(copym); 2182 return; 2183 } 2184 #endif 2185 2186 ip6 = mtod(copym, struct ip6_hdr *); 2187 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 2188 ip6->ip6_src.s6_addr16[1] = 0; 2189 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 2190 ip6->ip6_dst.s6_addr16[1] = 0; 2191 2192 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL); 2193 } 2194 2195 /* 2196 * Chop IPv6 header off from the payload. 2197 */ 2198 static int 2199 ip6_splithdr(m, exthdrs) 2200 struct mbuf *m; 2201 struct ip6_exthdrs *exthdrs; 2202 { 2203 struct mbuf *mh; 2204 struct ip6_hdr *ip6; 2205 2206 ip6 = mtod(m, struct ip6_hdr *); 2207 if (m->m_len > sizeof(*ip6)) { 2208 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2209 if (mh == 0) { 2210 m_freem(m); 2211 return ENOBUFS; 2212 } 2213 M_COPY_PKTHDR(mh, m); 2214 MH_ALIGN(mh, sizeof(*ip6)); 2215 m->m_flags &= ~M_PKTHDR; 2216 m->m_len -= sizeof(*ip6); 2217 m->m_data += sizeof(*ip6); 2218 mh->m_next = m; 2219 m = mh; 2220 m->m_len = sizeof(*ip6); 2221 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2222 } 2223 exthdrs->ip6e_ip6 = m; 2224 return 0; 2225 } 2226 2227 /* 2228 * Compute IPv6 extension header length. 2229 */ 2230 int 2231 ip6_optlen(in6p) 2232 struct in6pcb *in6p; 2233 { 2234 int len; 2235 2236 if (!in6p->in6p_outputopts) 2237 return 0; 2238 2239 len = 0; 2240 #define elen(x) \ 2241 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2242 2243 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2244 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2245 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2246 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2247 return len; 2248 #undef elen 2249 } 2250