1 /* $NetBSD: ip6_output.c,v 1.150 2012/07/21 14:52:40 gdt Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.150 2012/07/21 14:52:40 gdt Exp $"); 66 67 #include "opt_inet.h" 68 #include "opt_inet6.h" 69 #include "opt_ipsec.h" 70 #include "opt_pfil_hooks.h" 71 72 #include <sys/param.h> 73 #include <sys/malloc.h> 74 #include <sys/mbuf.h> 75 #include <sys/errno.h> 76 #include <sys/protosw.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/systm.h> 80 #include <sys/proc.h> 81 #include <sys/kauth.h> 82 83 #include <net/if.h> 84 #include <net/route.h> 85 #ifdef PFIL_HOOKS 86 #include <net/pfil.h> 87 #endif 88 89 #include <netinet/in.h> 90 #include <netinet/in_var.h> 91 #include <netinet/ip6.h> 92 #include <netinet/icmp6.h> 93 #include <netinet/in_offload.h> 94 #include <netinet/portalgo.h> 95 #include <netinet6/in6_offload.h> 96 #include <netinet6/ip6_var.h> 97 #include <netinet6/ip6_private.h> 98 #include <netinet6/in6_pcb.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6protosw.h> 101 #include <netinet6/scope6_var.h> 102 103 #ifdef FAST_IPSEC 104 #include <netipsec/ipsec.h> 105 #include <netipsec/ipsec6.h> 106 #include <netipsec/key.h> 107 #include <netipsec/xform.h> 108 #endif 109 110 111 #include <net/net_osdep.h> 112 113 #ifdef PFIL_HOOKS 114 extern struct pfil_head inet6_pfil_hook; /* XXX */ 115 #endif 116 117 struct ip6_exthdrs { 118 struct mbuf *ip6e_ip6; 119 struct mbuf *ip6e_hbh; 120 struct mbuf *ip6e_dest1; 121 struct mbuf *ip6e_rthdr; 122 struct mbuf *ip6e_dest2; 123 }; 124 125 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 126 kauth_cred_t, int); 127 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *); 128 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, kauth_cred_t, 129 int, int, int); 130 static int ip6_setmoptions(const struct sockopt *, struct ip6_moptions **); 131 static int ip6_getmoptions(struct sockopt *, struct ip6_moptions *); 132 static int ip6_copyexthdr(struct mbuf **, void *, int); 133 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 134 struct ip6_frag **); 135 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 136 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 137 static int ip6_getpmtu(struct route *, struct route *, struct ifnet *, 138 const struct in6_addr *, u_long *, int *); 139 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 140 141 #ifdef RFC2292 142 static int ip6_pcbopts(struct ip6_pktopts **, struct socket *, struct sockopt *); 143 #endif 144 145 /* 146 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 147 * header (with pri, len, nxt, hlim, src, dst). 148 * This function may modify ver and hlim only. 149 * The mbuf chain containing the packet will be freed. 150 * The mbuf opt, if present, will not be freed. 151 * 152 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 153 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 154 * which is rt_rmx.rmx_mtu. 155 */ 156 int 157 ip6_output( 158 struct mbuf *m0, 159 struct ip6_pktopts *opt, 160 struct route *ro, 161 int flags, 162 struct ip6_moptions *im6o, 163 struct socket *so, 164 struct ifnet **ifpp /* XXX: just for statistics */ 165 ) 166 { 167 struct ip6_hdr *ip6, *mhip6; 168 struct ifnet *ifp, *origifp; 169 struct mbuf *m = m0; 170 int hlen, tlen, len, off; 171 bool tso; 172 struct route ip6route; 173 struct rtentry *rt = NULL; 174 const struct sockaddr_in6 *dst = NULL; 175 struct sockaddr_in6 src_sa, dst_sa; 176 int error = 0; 177 struct in6_ifaddr *ia = NULL; 178 u_long mtu; 179 int alwaysfrag, dontfrag; 180 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 181 struct ip6_exthdrs exthdrs; 182 struct in6_addr finaldst, src0, dst0; 183 u_int32_t zone; 184 struct route *ro_pmtu = NULL; 185 int hdrsplit = 0; 186 int needipsec = 0; 187 #ifdef FAST_IPSEC 188 struct secpolicy *sp = NULL; 189 int s; 190 #endif 191 192 memset(&ip6route, 0, sizeof(ip6route)); 193 194 #ifdef DIAGNOSTIC 195 if ((m->m_flags & M_PKTHDR) == 0) 196 panic("ip6_output: no HDR"); 197 198 if ((m->m_pkthdr.csum_flags & 199 (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) != 0) { 200 panic("ip6_output: IPv4 checksum offload flags: %d", 201 m->m_pkthdr.csum_flags); 202 } 203 204 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 205 (M_CSUM_TCPv6|M_CSUM_UDPv6)) { 206 panic("ip6_output: conflicting checksum offload flags: %d", 207 m->m_pkthdr.csum_flags); 208 } 209 #endif 210 211 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr)); 212 213 #define MAKE_EXTHDR(hp, mp) \ 214 do { \ 215 if (hp) { \ 216 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 217 error = ip6_copyexthdr((mp), (void *)(hp), \ 218 ((eh)->ip6e_len + 1) << 3); \ 219 if (error) \ 220 goto freehdrs; \ 221 } \ 222 } while (/*CONSTCOND*/ 0) 223 224 memset(&exthdrs, 0, sizeof(exthdrs)); 225 if (opt) { 226 /* Hop-by-Hop options header */ 227 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 228 /* Destination options header(1st part) */ 229 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 230 /* Routing header */ 231 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 232 /* Destination options header(2nd part) */ 233 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 234 } 235 236 /* 237 * Calculate the total length of the extension header chain. 238 * Keep the length of the unfragmentable part for fragmentation. 239 */ 240 optlen = 0; 241 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 242 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 243 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 244 unfragpartlen = optlen + sizeof(struct ip6_hdr); 245 /* NOTE: we don't add AH/ESP length here. do that later. */ 246 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 247 248 #ifdef FAST_IPSEC 249 /* Check the security policy (SP) for the packet */ 250 251 sp = ipsec6_check_policy(m,so,flags,&needipsec,&error); 252 if (error != 0) { 253 /* 254 * Hack: -EINVAL is used to signal that a packet 255 * should be silently discarded. This is typically 256 * because we asked key management for an SA and 257 * it was delayed (e.g. kicked up to IKE). 258 */ 259 if (error == -EINVAL) 260 error = 0; 261 goto freehdrs; 262 } 263 #endif /* FAST_IPSEC */ 264 265 266 if (needipsec && 267 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 268 in6_delayed_cksum(m); 269 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 270 } 271 272 273 /* 274 * If we need IPsec, or there is at least one extension header, 275 * separate IP6 header from the payload. 276 */ 277 if ((needipsec || optlen) && !hdrsplit) { 278 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 279 m = NULL; 280 goto freehdrs; 281 } 282 m = exthdrs.ip6e_ip6; 283 hdrsplit++; 284 } 285 286 /* adjust pointer */ 287 ip6 = mtod(m, struct ip6_hdr *); 288 289 /* adjust mbuf packet header length */ 290 m->m_pkthdr.len += optlen; 291 plen = m->m_pkthdr.len - sizeof(*ip6); 292 293 /* If this is a jumbo payload, insert a jumbo payload option. */ 294 if (plen > IPV6_MAXPACKET) { 295 if (!hdrsplit) { 296 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 297 m = NULL; 298 goto freehdrs; 299 } 300 m = exthdrs.ip6e_ip6; 301 hdrsplit++; 302 } 303 /* adjust pointer */ 304 ip6 = mtod(m, struct ip6_hdr *); 305 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 306 goto freehdrs; 307 optlen += 8; /* XXX JUMBOOPTLEN */ 308 ip6->ip6_plen = 0; 309 } else 310 ip6->ip6_plen = htons(plen); 311 312 /* 313 * Concatenate headers and fill in next header fields. 314 * Here we have, on "m" 315 * IPv6 payload 316 * and we insert headers accordingly. Finally, we should be getting: 317 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 318 * 319 * during the header composing process, "m" points to IPv6 header. 320 * "mprev" points to an extension header prior to esp. 321 */ 322 { 323 u_char *nexthdrp = &ip6->ip6_nxt; 324 struct mbuf *mprev = m; 325 326 /* 327 * we treat dest2 specially. this makes IPsec processing 328 * much easier. the goal here is to make mprev point the 329 * mbuf prior to dest2. 330 * 331 * result: IPv6 dest2 payload 332 * m and mprev will point to IPv6 header. 333 */ 334 if (exthdrs.ip6e_dest2) { 335 if (!hdrsplit) 336 panic("assumption failed: hdr not split"); 337 exthdrs.ip6e_dest2->m_next = m->m_next; 338 m->m_next = exthdrs.ip6e_dest2; 339 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 340 ip6->ip6_nxt = IPPROTO_DSTOPTS; 341 } 342 343 #define MAKE_CHAIN(m, mp, p, i)\ 344 do {\ 345 if (m) {\ 346 if (!hdrsplit) \ 347 panic("assumption failed: hdr not split"); \ 348 *mtod((m), u_char *) = *(p);\ 349 *(p) = (i);\ 350 p = mtod((m), u_char *);\ 351 (m)->m_next = (mp)->m_next;\ 352 (mp)->m_next = (m);\ 353 (mp) = (m);\ 354 }\ 355 } while (/*CONSTCOND*/ 0) 356 /* 357 * result: IPv6 hbh dest1 rthdr dest2 payload 358 * m will point to IPv6 header. mprev will point to the 359 * extension header prior to dest2 (rthdr in the above case). 360 */ 361 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 362 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 363 IPPROTO_DSTOPTS); 364 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 365 IPPROTO_ROUTING); 366 367 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, 368 sizeof(struct ip6_hdr) + optlen); 369 } 370 371 /* 372 * If there is a routing header, replace destination address field 373 * with the first hop of the routing header. 374 */ 375 if (exthdrs.ip6e_rthdr) { 376 struct ip6_rthdr *rh; 377 struct ip6_rthdr0 *rh0; 378 struct in6_addr *addr; 379 struct sockaddr_in6 sa; 380 381 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 382 struct ip6_rthdr *)); 383 finaldst = ip6->ip6_dst; 384 switch (rh->ip6r_type) { 385 case IPV6_RTHDR_TYPE_0: 386 rh0 = (struct ip6_rthdr0 *)rh; 387 addr = (struct in6_addr *)(rh0 + 1); 388 389 /* 390 * construct a sockaddr_in6 form of 391 * the first hop. 392 * 393 * XXX: we may not have enough 394 * information about its scope zone; 395 * there is no standard API to pass 396 * the information from the 397 * application. 398 */ 399 sockaddr_in6_init(&sa, addr, 0, 0, 0); 400 if ((error = sa6_embedscope(&sa, 401 ip6_use_defzone)) != 0) { 402 goto bad; 403 } 404 ip6->ip6_dst = sa.sin6_addr; 405 (void)memmove(&addr[0], &addr[1], 406 sizeof(struct in6_addr) * 407 (rh0->ip6r0_segleft - 1)); 408 addr[rh0->ip6r0_segleft - 1] = finaldst; 409 /* XXX */ 410 in6_clearscope(addr + rh0->ip6r0_segleft - 1); 411 break; 412 default: /* is it possible? */ 413 error = EINVAL; 414 goto bad; 415 } 416 } 417 418 /* Source address validation */ 419 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 420 (flags & IPV6_UNSPECSRC) == 0) { 421 error = EOPNOTSUPP; 422 IP6_STATINC(IP6_STAT_BADSCOPE); 423 goto bad; 424 } 425 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 426 error = EOPNOTSUPP; 427 IP6_STATINC(IP6_STAT_BADSCOPE); 428 goto bad; 429 } 430 431 IP6_STATINC(IP6_STAT_LOCALOUT); 432 433 /* 434 * Route packet. 435 */ 436 /* initialize cached route */ 437 if (ro == NULL) { 438 ro = &ip6route; 439 } 440 ro_pmtu = ro; 441 if (opt && opt->ip6po_rthdr) 442 ro = &opt->ip6po_route; 443 444 /* 445 * if specified, try to fill in the traffic class field. 446 * do not override if a non-zero value is already set. 447 * we check the diffserv field and the ecn field separately. 448 */ 449 if (opt && opt->ip6po_tclass >= 0) { 450 int mask = 0; 451 452 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 453 mask |= 0xfc; 454 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 455 mask |= 0x03; 456 if (mask != 0) 457 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 458 } 459 460 /* fill in or override the hop limit field, if necessary. */ 461 if (opt && opt->ip6po_hlim != -1) 462 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 463 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 464 if (im6o != NULL) 465 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 466 else 467 ip6->ip6_hlim = ip6_defmcasthlim; 468 } 469 470 #ifdef FAST_IPSEC 471 if (needipsec) { 472 s = splsoftnet(); 473 error = ipsec6_process_packet(m,sp->req); 474 475 /* 476 * Preserve KAME behaviour: ENOENT can be returned 477 * when an SA acquire is in progress. Don't propagate 478 * this to user-level; it confuses applications. 479 * XXX this will go away when the SADB is redone. 480 */ 481 if (error == ENOENT) 482 error = 0; 483 splx(s); 484 goto done; 485 } 486 #endif /* FAST_IPSEC */ 487 488 489 490 /* adjust pointer */ 491 ip6 = mtod(m, struct ip6_hdr *); 492 493 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 494 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, 495 &ifp, &rt, 0)) != 0) { 496 if (ifp != NULL) 497 in6_ifstat_inc(ifp, ifs6_out_discard); 498 goto bad; 499 } 500 if (rt == NULL) { 501 /* 502 * If in6_selectroute() does not return a route entry, 503 * dst may not have been updated. 504 */ 505 error = rtcache_setdst(ro, sin6tosa(&dst_sa)); 506 if (error) { 507 goto bad; 508 } 509 } 510 511 /* 512 * then rt (for unicast) and ifp must be non-NULL valid values. 513 */ 514 if ((flags & IPV6_FORWARDING) == 0) { 515 /* XXX: the FORWARDING flag can be set for mrouting. */ 516 in6_ifstat_inc(ifp, ifs6_out_request); 517 } 518 if (rt != NULL) { 519 ia = (struct in6_ifaddr *)(rt->rt_ifa); 520 rt->rt_use++; 521 } 522 523 /* 524 * The outgoing interface must be in the zone of source and 525 * destination addresses. We should use ia_ifp to support the 526 * case of sending packets to an address of our own. 527 */ 528 if (ia != NULL && ia->ia_ifp) 529 origifp = ia->ia_ifp; 530 else 531 origifp = ifp; 532 533 src0 = ip6->ip6_src; 534 if (in6_setscope(&src0, origifp, &zone)) 535 goto badscope; 536 sockaddr_in6_init(&src_sa, &ip6->ip6_src, 0, 0, 0); 537 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id) 538 goto badscope; 539 540 dst0 = ip6->ip6_dst; 541 if (in6_setscope(&dst0, origifp, &zone)) 542 goto badscope; 543 /* re-initialize to be sure */ 544 sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0); 545 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) 546 goto badscope; 547 548 /* scope check is done. */ 549 550 if (rt == NULL || IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 551 if (dst == NULL) 552 dst = satocsin6(rtcache_getdst(ro)); 553 KASSERT(dst != NULL); 554 } else if (opt && rtcache_validate(&opt->ip6po_nextroute) != NULL) { 555 /* 556 * The nexthop is explicitly specified by the 557 * application. We assume the next hop is an IPv6 558 * address. 559 */ 560 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 561 } else if ((rt->rt_flags & RTF_GATEWAY)) 562 dst = (struct sockaddr_in6 *)rt->rt_gateway; 563 else if (dst == NULL) 564 dst = satocsin6(rtcache_getdst(ro)); 565 566 /* 567 * XXXXXX: original code follows: 568 */ 569 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 570 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 571 else { 572 struct in6_multi *in6m; 573 574 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 575 576 in6_ifstat_inc(ifp, ifs6_out_mcast); 577 578 /* 579 * Confirm that the outgoing interface supports multicast. 580 */ 581 if (!(ifp->if_flags & IFF_MULTICAST)) { 582 IP6_STATINC(IP6_STAT_NOROUTE); 583 in6_ifstat_inc(ifp, ifs6_out_discard); 584 error = ENETUNREACH; 585 goto bad; 586 } 587 588 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 589 if (in6m != NULL && 590 (im6o == NULL || im6o->im6o_multicast_loop)) { 591 /* 592 * If we belong to the destination multicast group 593 * on the outgoing interface, and the caller did not 594 * forbid loopback, loop back a copy. 595 */ 596 KASSERT(dst != NULL); 597 ip6_mloopback(ifp, m, dst); 598 } else { 599 /* 600 * If we are acting as a multicast router, perform 601 * multicast forwarding as if the packet had just 602 * arrived on the interface to which we are about 603 * to send. The multicast forwarding function 604 * recursively calls this function, using the 605 * IPV6_FORWARDING flag to prevent infinite recursion. 606 * 607 * Multicasts that are looped back by ip6_mloopback(), 608 * above, will be forwarded by the ip6_input() routine, 609 * if necessary. 610 */ 611 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 612 if (ip6_mforward(ip6, ifp, m) != 0) { 613 m_freem(m); 614 goto done; 615 } 616 } 617 } 618 /* 619 * Multicasts with a hoplimit of zero may be looped back, 620 * above, but must not be transmitted on a network. 621 * Also, multicasts addressed to the loopback interface 622 * are not sent -- the above call to ip6_mloopback() will 623 * loop back a copy if this host actually belongs to the 624 * destination group on the loopback interface. 625 */ 626 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 627 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 628 m_freem(m); 629 goto done; 630 } 631 } 632 633 /* 634 * Fill the outgoing inteface to tell the upper layer 635 * to increment per-interface statistics. 636 */ 637 if (ifpp) 638 *ifpp = ifp; 639 640 /* Determine path MTU. */ 641 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 642 &alwaysfrag)) != 0) 643 goto bad; 644 645 /* 646 * The caller of this function may specify to use the minimum MTU 647 * in some cases. 648 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 649 * setting. The logic is a bit complicated; by default, unicast 650 * packets will follow path MTU while multicast packets will be sent at 651 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 652 * including unicast ones will be sent at the minimum MTU. Multicast 653 * packets will always be sent at the minimum MTU unless 654 * IP6PO_MINMTU_DISABLE is explicitly specified. 655 * See RFC 3542 for more details. 656 */ 657 if (mtu > IPV6_MMTU) { 658 if ((flags & IPV6_MINMTU)) 659 mtu = IPV6_MMTU; 660 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 661 mtu = IPV6_MMTU; 662 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 663 (opt == NULL || 664 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 665 mtu = IPV6_MMTU; 666 } 667 } 668 669 /* 670 * clear embedded scope identifiers if necessary. 671 * in6_clearscope will touch the addresses only when necessary. 672 */ 673 in6_clearscope(&ip6->ip6_src); 674 in6_clearscope(&ip6->ip6_dst); 675 676 /* 677 * If the outgoing packet contains a hop-by-hop options header, 678 * it must be examined and processed even by the source node. 679 * (RFC 2460, section 4.) 680 */ 681 if (ip6->ip6_nxt == IPV6_HOPOPTS) { 682 u_int32_t dummy1; /* XXX unused */ 683 u_int32_t dummy2; /* XXX unused */ 684 int hoff = sizeof(struct ip6_hdr); 685 686 if (ip6_hopopts_input(&dummy1, &dummy2, &m, &hoff)) { 687 /* m was already freed at this point */ 688 error = EINVAL;/* better error? */ 689 goto done; 690 } 691 692 ip6 = mtod(m, struct ip6_hdr *); 693 } 694 695 #ifdef PFIL_HOOKS 696 /* 697 * Run through list of hooks for output packets. 698 */ 699 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0) 700 goto done; 701 if (m == NULL) 702 goto done; 703 ip6 = mtod(m, struct ip6_hdr *); 704 #endif /* PFIL_HOOKS */ 705 /* 706 * Send the packet to the outgoing interface. 707 * If necessary, do IPv6 fragmentation before sending. 708 * 709 * the logic here is rather complex: 710 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 711 * 1-a: send as is if tlen <= path mtu 712 * 1-b: fragment if tlen > path mtu 713 * 714 * 2: if user asks us not to fragment (dontfrag == 1) 715 * 2-a: send as is if tlen <= interface mtu 716 * 2-b: error if tlen > interface mtu 717 * 718 * 3: if we always need to attach fragment header (alwaysfrag == 1) 719 * always fragment 720 * 721 * 4: if dontfrag == 1 && alwaysfrag == 1 722 * error, as we cannot handle this conflicting request 723 */ 724 tlen = m->m_pkthdr.len; 725 tso = (m->m_pkthdr.csum_flags & M_CSUM_TSOv6) != 0; 726 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 727 dontfrag = 1; 728 else 729 dontfrag = 0; 730 731 if (dontfrag && alwaysfrag) { /* case 4 */ 732 /* conflicting request - can't transmit */ 733 error = EMSGSIZE; 734 goto bad; 735 } 736 if (dontfrag && (!tso && tlen > IN6_LINKMTU(ifp))) { /* case 2-b */ 737 /* 738 * Even if the DONTFRAG option is specified, we cannot send the 739 * packet when the data length is larger than the MTU of the 740 * outgoing interface. 741 * Notify the error by sending IPV6_PATHMTU ancillary data as 742 * well as returning an error code (the latter is not described 743 * in the API spec.) 744 */ 745 u_int32_t mtu32; 746 struct ip6ctlparam ip6cp; 747 748 mtu32 = (u_int32_t)mtu; 749 memset(&ip6cp, 0, sizeof(ip6cp)); 750 ip6cp.ip6c_cmdarg = (void *)&mtu32; 751 pfctlinput2(PRC_MSGSIZE, 752 rtcache_getdst(ro_pmtu), &ip6cp); 753 754 error = EMSGSIZE; 755 goto bad; 756 } 757 758 /* 759 * transmit packet without fragmentation 760 */ 761 if (dontfrag || (!alwaysfrag && (tlen <= mtu || tso))) { 762 /* case 1-a and 2-a */ 763 struct in6_ifaddr *ia6; 764 int sw_csum; 765 766 ip6 = mtod(m, struct ip6_hdr *); 767 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 768 if (ia6) { 769 /* Record statistics for this interface address. */ 770 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len; 771 } 772 773 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 774 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) { 775 if (IN6_NEED_CHECKSUM(ifp, 776 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 777 in6_delayed_cksum(m); 778 } 779 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 780 } 781 782 KASSERT(dst != NULL); 783 if (__predict_true(!tso || 784 (ifp->if_capenable & IFCAP_TSOv6) != 0)) { 785 error = nd6_output(ifp, origifp, m, dst, rt); 786 } else { 787 error = ip6_tso_output(ifp, origifp, m, dst, rt); 788 } 789 goto done; 790 } 791 792 if (tso) { 793 error = EINVAL; /* XXX */ 794 goto bad; 795 } 796 797 /* 798 * try to fragment the packet. case 1-b and 3 799 */ 800 if (mtu < IPV6_MMTU) { 801 /* path MTU cannot be less than IPV6_MMTU */ 802 error = EMSGSIZE; 803 in6_ifstat_inc(ifp, ifs6_out_fragfail); 804 goto bad; 805 } else if (ip6->ip6_plen == 0) { 806 /* jumbo payload cannot be fragmented */ 807 error = EMSGSIZE; 808 in6_ifstat_inc(ifp, ifs6_out_fragfail); 809 goto bad; 810 } else { 811 struct mbuf **mnext, *m_frgpart; 812 struct ip6_frag *ip6f; 813 u_int32_t id = htonl(ip6_randomid()); 814 u_char nextproto; 815 #if 0 /* see below */ 816 struct ip6ctlparam ip6cp; 817 u_int32_t mtu32; 818 #endif 819 820 /* 821 * Too large for the destination or interface; 822 * fragment if possible. 823 * Must be able to put at least 8 bytes per fragment. 824 */ 825 hlen = unfragpartlen; 826 if (mtu > IPV6_MAXPACKET) 827 mtu = IPV6_MAXPACKET; 828 829 #if 0 830 /* 831 * It is believed this code is a leftover from the 832 * development of the IPV6_RECVPATHMTU sockopt and 833 * associated work to implement RFC3542. 834 * It's not entirely clear what the intent of the API 835 * is at this point, so disable this code for now. 836 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG 837 * will send notifications if the application requests. 838 */ 839 840 /* Notify a proper path MTU to applications. */ 841 mtu32 = (u_int32_t)mtu; 842 memset(&ip6cp, 0, sizeof(ip6cp)); 843 ip6cp.ip6c_cmdarg = (void *)&mtu32; 844 pfctlinput2(PRC_MSGSIZE, 845 rtcache_getdst(ro_pmtu), &ip6cp); 846 #endif 847 848 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 849 if (len < 8) { 850 error = EMSGSIZE; 851 in6_ifstat_inc(ifp, ifs6_out_fragfail); 852 goto bad; 853 } 854 855 mnext = &m->m_nextpkt; 856 857 /* 858 * Change the next header field of the last header in the 859 * unfragmentable part. 860 */ 861 if (exthdrs.ip6e_rthdr) { 862 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 863 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 864 } else if (exthdrs.ip6e_dest1) { 865 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 866 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 867 } else if (exthdrs.ip6e_hbh) { 868 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 869 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 870 } else { 871 nextproto = ip6->ip6_nxt; 872 ip6->ip6_nxt = IPPROTO_FRAGMENT; 873 } 874 875 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) 876 != 0) { 877 if (IN6_NEED_CHECKSUM(ifp, 878 m->m_pkthdr.csum_flags & 879 (M_CSUM_UDPv6|M_CSUM_TCPv6))) { 880 in6_delayed_cksum(m); 881 } 882 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6); 883 } 884 885 /* 886 * Loop through length of segment after first fragment, 887 * make new header and copy data of each part and link onto 888 * chain. 889 */ 890 m0 = m; 891 for (off = hlen; off < tlen; off += len) { 892 struct mbuf *mlast; 893 894 MGETHDR(m, M_DONTWAIT, MT_HEADER); 895 if (!m) { 896 error = ENOBUFS; 897 IP6_STATINC(IP6_STAT_ODROPPED); 898 goto sendorfree; 899 } 900 m->m_pkthdr.rcvif = NULL; 901 m->m_flags = m0->m_flags & M_COPYFLAGS; 902 *mnext = m; 903 mnext = &m->m_nextpkt; 904 m->m_data += max_linkhdr; 905 mhip6 = mtod(m, struct ip6_hdr *); 906 *mhip6 = *ip6; 907 m->m_len = sizeof(*mhip6); 908 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 909 if (error) { 910 IP6_STATINC(IP6_STAT_ODROPPED); 911 goto sendorfree; 912 } 913 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 914 if (off + len >= tlen) 915 len = tlen - off; 916 else 917 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 918 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 919 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 920 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 921 error = ENOBUFS; 922 IP6_STATINC(IP6_STAT_ODROPPED); 923 goto sendorfree; 924 } 925 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 926 ; 927 mlast->m_next = m_frgpart; 928 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 929 m->m_pkthdr.rcvif = NULL; 930 ip6f->ip6f_reserved = 0; 931 ip6f->ip6f_ident = id; 932 ip6f->ip6f_nxt = nextproto; 933 IP6_STATINC(IP6_STAT_OFRAGMENTS); 934 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 935 } 936 937 in6_ifstat_inc(ifp, ifs6_out_fragok); 938 } 939 940 /* 941 * Remove leading garbages. 942 */ 943 sendorfree: 944 m = m0->m_nextpkt; 945 m0->m_nextpkt = 0; 946 m_freem(m0); 947 for (m0 = m; m; m = m0) { 948 m0 = m->m_nextpkt; 949 m->m_nextpkt = 0; 950 if (error == 0) { 951 struct in6_ifaddr *ia6; 952 ip6 = mtod(m, struct ip6_hdr *); 953 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 954 if (ia6) { 955 /* 956 * Record statistics for this interface 957 * address. 958 */ 959 ia6->ia_ifa.ifa_data.ifad_outbytes += 960 m->m_pkthdr.len; 961 } 962 KASSERT(dst != NULL); 963 error = nd6_output(ifp, origifp, m, dst, rt); 964 } else 965 m_freem(m); 966 } 967 968 if (error == 0) 969 IP6_STATINC(IP6_STAT_FRAGMENTED); 970 971 done: 972 rtcache_free(&ip6route); 973 974 #ifdef FAST_IPSEC 975 if (sp != NULL) 976 KEY_FREESP(&sp); 977 #endif /* FAST_IPSEC */ 978 979 980 return (error); 981 982 freehdrs: 983 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 984 m_freem(exthdrs.ip6e_dest1); 985 m_freem(exthdrs.ip6e_rthdr); 986 m_freem(exthdrs.ip6e_dest2); 987 /* FALLTHROUGH */ 988 bad: 989 m_freem(m); 990 goto done; 991 badscope: 992 IP6_STATINC(IP6_STAT_BADSCOPE); 993 in6_ifstat_inc(origifp, ifs6_out_discard); 994 if (error == 0) 995 error = EHOSTUNREACH; /* XXX */ 996 goto bad; 997 } 998 999 static int 1000 ip6_copyexthdr(struct mbuf **mp, void *hdr, int hlen) 1001 { 1002 struct mbuf *m; 1003 1004 if (hlen > MCLBYTES) 1005 return (ENOBUFS); /* XXX */ 1006 1007 MGET(m, M_DONTWAIT, MT_DATA); 1008 if (!m) 1009 return (ENOBUFS); 1010 1011 if (hlen > MLEN) { 1012 MCLGET(m, M_DONTWAIT); 1013 if ((m->m_flags & M_EXT) == 0) { 1014 m_free(m); 1015 return (ENOBUFS); 1016 } 1017 } 1018 m->m_len = hlen; 1019 if (hdr) 1020 bcopy(hdr, mtod(m, void *), hlen); 1021 1022 *mp = m; 1023 return (0); 1024 } 1025 1026 /* 1027 * Process a delayed payload checksum calculation. 1028 */ 1029 void 1030 in6_delayed_cksum(struct mbuf *m) 1031 { 1032 uint16_t csum, offset; 1033 1034 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1035 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0); 1036 KASSERT((m->m_pkthdr.csum_flags 1037 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0); 1038 1039 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data); 1040 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset); 1041 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) { 1042 csum = 0xffff; 1043 } 1044 1045 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data); 1046 if ((offset + sizeof(csum)) > m->m_len) { 1047 m_copyback(m, offset, sizeof(csum), &csum); 1048 } else { 1049 *(uint16_t *)(mtod(m, char *) + offset) = csum; 1050 } 1051 } 1052 1053 /* 1054 * Insert jumbo payload option. 1055 */ 1056 static int 1057 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1058 { 1059 struct mbuf *mopt; 1060 u_int8_t *optbuf; 1061 u_int32_t v; 1062 1063 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1064 1065 /* 1066 * If there is no hop-by-hop options header, allocate new one. 1067 * If there is one but it doesn't have enough space to store the 1068 * jumbo payload option, allocate a cluster to store the whole options. 1069 * Otherwise, use it to store the options. 1070 */ 1071 if (exthdrs->ip6e_hbh == 0) { 1072 MGET(mopt, M_DONTWAIT, MT_DATA); 1073 if (mopt == 0) 1074 return (ENOBUFS); 1075 mopt->m_len = JUMBOOPTLEN; 1076 optbuf = mtod(mopt, u_int8_t *); 1077 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1078 exthdrs->ip6e_hbh = mopt; 1079 } else { 1080 struct ip6_hbh *hbh; 1081 1082 mopt = exthdrs->ip6e_hbh; 1083 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1084 /* 1085 * XXX assumption: 1086 * - exthdrs->ip6e_hbh is not referenced from places 1087 * other than exthdrs. 1088 * - exthdrs->ip6e_hbh is not an mbuf chain. 1089 */ 1090 int oldoptlen = mopt->m_len; 1091 struct mbuf *n; 1092 1093 /* 1094 * XXX: give up if the whole (new) hbh header does 1095 * not fit even in an mbuf cluster. 1096 */ 1097 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1098 return (ENOBUFS); 1099 1100 /* 1101 * As a consequence, we must always prepare a cluster 1102 * at this point. 1103 */ 1104 MGET(n, M_DONTWAIT, MT_DATA); 1105 if (n) { 1106 MCLGET(n, M_DONTWAIT); 1107 if ((n->m_flags & M_EXT) == 0) { 1108 m_freem(n); 1109 n = NULL; 1110 } 1111 } 1112 if (!n) 1113 return (ENOBUFS); 1114 n->m_len = oldoptlen + JUMBOOPTLEN; 1115 bcopy(mtod(mopt, void *), mtod(n, void *), 1116 oldoptlen); 1117 optbuf = mtod(n, u_int8_t *) + oldoptlen; 1118 m_freem(mopt); 1119 mopt = exthdrs->ip6e_hbh = n; 1120 } else { 1121 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 1122 mopt->m_len += JUMBOOPTLEN; 1123 } 1124 optbuf[0] = IP6OPT_PADN; 1125 optbuf[1] = 0; 1126 1127 /* 1128 * Adjust the header length according to the pad and 1129 * the jumbo payload option. 1130 */ 1131 hbh = mtod(mopt, struct ip6_hbh *); 1132 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1133 } 1134 1135 /* fill in the option. */ 1136 optbuf[2] = IP6OPT_JUMBO; 1137 optbuf[3] = 4; 1138 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1139 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1140 1141 /* finally, adjust the packet header length */ 1142 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1143 1144 return (0); 1145 #undef JUMBOOPTLEN 1146 } 1147 1148 /* 1149 * Insert fragment header and copy unfragmentable header portions. 1150 * 1151 * *frghdrp will not be read, and it is guaranteed that either an 1152 * error is returned or that *frghdrp will point to space allocated 1153 * for the fragment header. 1154 */ 1155 static int 1156 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1157 struct ip6_frag **frghdrp) 1158 { 1159 struct mbuf *n, *mlast; 1160 1161 if (hlen > sizeof(struct ip6_hdr)) { 1162 n = m_copym(m0, sizeof(struct ip6_hdr), 1163 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1164 if (n == 0) 1165 return (ENOBUFS); 1166 m->m_next = n; 1167 } else 1168 n = m; 1169 1170 /* Search for the last mbuf of unfragmentable part. */ 1171 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1172 ; 1173 1174 if ((mlast->m_flags & M_EXT) == 0 && 1175 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1176 /* use the trailing space of the last mbuf for the fragment hdr */ 1177 *frghdrp = (struct ip6_frag *)(mtod(mlast, char *) + 1178 mlast->m_len); 1179 mlast->m_len += sizeof(struct ip6_frag); 1180 m->m_pkthdr.len += sizeof(struct ip6_frag); 1181 } else { 1182 /* allocate a new mbuf for the fragment header */ 1183 struct mbuf *mfrg; 1184 1185 MGET(mfrg, M_DONTWAIT, MT_DATA); 1186 if (mfrg == 0) 1187 return (ENOBUFS); 1188 mfrg->m_len = sizeof(struct ip6_frag); 1189 *frghdrp = mtod(mfrg, struct ip6_frag *); 1190 mlast->m_next = mfrg; 1191 } 1192 1193 return (0); 1194 } 1195 1196 static int 1197 ip6_getpmtu(struct route *ro_pmtu, struct route *ro, struct ifnet *ifp, 1198 const struct in6_addr *dst, u_long *mtup, int *alwaysfragp) 1199 { 1200 struct rtentry *rt; 1201 u_int32_t mtu = 0; 1202 int alwaysfrag = 0; 1203 int error = 0; 1204 1205 if (ro_pmtu != ro) { 1206 union { 1207 struct sockaddr dst; 1208 struct sockaddr_in6 dst6; 1209 } u; 1210 1211 /* The first hop and the final destination may differ. */ 1212 sockaddr_in6_init(&u.dst6, dst, 0, 0, 0); 1213 rt = rtcache_lookup(ro_pmtu, &u.dst); 1214 } else 1215 rt = rtcache_validate(ro_pmtu); 1216 if (rt != NULL) { 1217 u_int32_t ifmtu; 1218 1219 if (ifp == NULL) 1220 ifp = rt->rt_ifp; 1221 ifmtu = IN6_LINKMTU(ifp); 1222 mtu = rt->rt_rmx.rmx_mtu; 1223 if (mtu == 0) 1224 mtu = ifmtu; 1225 else if (mtu < IPV6_MMTU) { 1226 /* 1227 * RFC2460 section 5, last paragraph: 1228 * if we record ICMPv6 too big message with 1229 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1230 * or smaller, with fragment header attached. 1231 * (fragment header is needed regardless from the 1232 * packet size, for translators to identify packets) 1233 */ 1234 alwaysfrag = 1; 1235 mtu = IPV6_MMTU; 1236 } else if (mtu > ifmtu) { 1237 /* 1238 * The MTU on the route is larger than the MTU on 1239 * the interface! This shouldn't happen, unless the 1240 * MTU of the interface has been changed after the 1241 * interface was brought up. Change the MTU in the 1242 * route to match the interface MTU (as long as the 1243 * field isn't locked). 1244 */ 1245 mtu = ifmtu; 1246 if (!(rt->rt_rmx.rmx_locks & RTV_MTU)) 1247 rt->rt_rmx.rmx_mtu = mtu; 1248 } 1249 } else if (ifp) { 1250 mtu = IN6_LINKMTU(ifp); 1251 } else 1252 error = EHOSTUNREACH; /* XXX */ 1253 1254 *mtup = mtu; 1255 if (alwaysfragp) 1256 *alwaysfragp = alwaysfrag; 1257 return (error); 1258 } 1259 1260 /* 1261 * IP6 socket option processing. 1262 */ 1263 int 1264 ip6_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1265 { 1266 int optdatalen, uproto; 1267 void *optdata; 1268 struct in6pcb *in6p = sotoin6pcb(so); 1269 int error, optval; 1270 int level, optname; 1271 1272 KASSERT(sopt != NULL); 1273 1274 level = sopt->sopt_level; 1275 optname = sopt->sopt_name; 1276 1277 error = optval = 0; 1278 uproto = (int)so->so_proto->pr_protocol; 1279 1280 if (level != IPPROTO_IPV6) { 1281 return ENOPROTOOPT; 1282 } 1283 switch (op) { 1284 case PRCO_SETOPT: 1285 switch (optname) { 1286 #ifdef RFC2292 1287 case IPV6_2292PKTOPTIONS: 1288 error = ip6_pcbopts(&in6p->in6p_outputopts, so, sopt); 1289 break; 1290 #endif 1291 1292 /* 1293 * Use of some Hop-by-Hop options or some 1294 * Destination options, might require special 1295 * privilege. That is, normal applications 1296 * (without special privilege) might be forbidden 1297 * from setting certain options in outgoing packets, 1298 * and might never see certain options in received 1299 * packets. [RFC 2292 Section 6] 1300 * KAME specific note: 1301 * KAME prevents non-privileged users from sending or 1302 * receiving ANY hbh/dst options in order to avoid 1303 * overhead of parsing options in the kernel. 1304 */ 1305 case IPV6_RECVHOPOPTS: 1306 case IPV6_RECVDSTOPTS: 1307 case IPV6_RECVRTHDRDSTOPTS: 1308 error = kauth_authorize_network(kauth_cred_get(), 1309 KAUTH_NETWORK_IPV6, KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, 1310 NULL, NULL, NULL); 1311 if (error) 1312 break; 1313 /* FALLTHROUGH */ 1314 case IPV6_UNICAST_HOPS: 1315 case IPV6_HOPLIMIT: 1316 case IPV6_FAITH: 1317 1318 case IPV6_RECVPKTINFO: 1319 case IPV6_RECVHOPLIMIT: 1320 case IPV6_RECVRTHDR: 1321 case IPV6_RECVPATHMTU: 1322 case IPV6_RECVTCLASS: 1323 case IPV6_V6ONLY: 1324 error = sockopt_getint(sopt, &optval); 1325 if (error) 1326 break; 1327 switch (optname) { 1328 case IPV6_UNICAST_HOPS: 1329 if (optval < -1 || optval >= 256) 1330 error = EINVAL; 1331 else { 1332 /* -1 = kernel default */ 1333 in6p->in6p_hops = optval; 1334 } 1335 break; 1336 #define OPTSET(bit) \ 1337 do { \ 1338 if (optval) \ 1339 in6p->in6p_flags |= (bit); \ 1340 else \ 1341 in6p->in6p_flags &= ~(bit); \ 1342 } while (/*CONSTCOND*/ 0) 1343 1344 #ifdef RFC2292 1345 #define OPTSET2292(bit) \ 1346 do { \ 1347 in6p->in6p_flags |= IN6P_RFC2292; \ 1348 if (optval) \ 1349 in6p->in6p_flags |= (bit); \ 1350 else \ 1351 in6p->in6p_flags &= ~(bit); \ 1352 } while (/*CONSTCOND*/ 0) 1353 #endif 1354 1355 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0) 1356 1357 case IPV6_RECVPKTINFO: 1358 #ifdef RFC2292 1359 /* cannot mix with RFC2292 */ 1360 if (OPTBIT(IN6P_RFC2292)) { 1361 error = EINVAL; 1362 break; 1363 } 1364 #endif 1365 OPTSET(IN6P_PKTINFO); 1366 break; 1367 1368 case IPV6_HOPLIMIT: 1369 { 1370 struct ip6_pktopts **optp; 1371 1372 #ifdef RFC2292 1373 /* cannot mix with RFC2292 */ 1374 if (OPTBIT(IN6P_RFC2292)) { 1375 error = EINVAL; 1376 break; 1377 } 1378 #endif 1379 optp = &in6p->in6p_outputopts; 1380 error = ip6_pcbopt(IPV6_HOPLIMIT, 1381 (u_char *)&optval, 1382 sizeof(optval), 1383 optp, 1384 kauth_cred_get(), uproto); 1385 break; 1386 } 1387 1388 case IPV6_RECVHOPLIMIT: 1389 #ifdef RFC2292 1390 /* cannot mix with RFC2292 */ 1391 if (OPTBIT(IN6P_RFC2292)) { 1392 error = EINVAL; 1393 break; 1394 } 1395 #endif 1396 OPTSET(IN6P_HOPLIMIT); 1397 break; 1398 1399 case IPV6_RECVHOPOPTS: 1400 #ifdef RFC2292 1401 /* cannot mix with RFC2292 */ 1402 if (OPTBIT(IN6P_RFC2292)) { 1403 error = EINVAL; 1404 break; 1405 } 1406 #endif 1407 OPTSET(IN6P_HOPOPTS); 1408 break; 1409 1410 case IPV6_RECVDSTOPTS: 1411 #ifdef RFC2292 1412 /* cannot mix with RFC2292 */ 1413 if (OPTBIT(IN6P_RFC2292)) { 1414 error = EINVAL; 1415 break; 1416 } 1417 #endif 1418 OPTSET(IN6P_DSTOPTS); 1419 break; 1420 1421 case IPV6_RECVRTHDRDSTOPTS: 1422 #ifdef RFC2292 1423 /* cannot mix with RFC2292 */ 1424 if (OPTBIT(IN6P_RFC2292)) { 1425 error = EINVAL; 1426 break; 1427 } 1428 #endif 1429 OPTSET(IN6P_RTHDRDSTOPTS); 1430 break; 1431 1432 case IPV6_RECVRTHDR: 1433 #ifdef RFC2292 1434 /* cannot mix with RFC2292 */ 1435 if (OPTBIT(IN6P_RFC2292)) { 1436 error = EINVAL; 1437 break; 1438 } 1439 #endif 1440 OPTSET(IN6P_RTHDR); 1441 break; 1442 1443 case IPV6_FAITH: 1444 OPTSET(IN6P_FAITH); 1445 break; 1446 1447 case IPV6_RECVPATHMTU: 1448 /* 1449 * We ignore this option for TCP 1450 * sockets. 1451 * (RFC3542 leaves this case 1452 * unspecified.) 1453 */ 1454 if (uproto != IPPROTO_TCP) 1455 OPTSET(IN6P_MTU); 1456 break; 1457 1458 case IPV6_V6ONLY: 1459 /* 1460 * make setsockopt(IPV6_V6ONLY) 1461 * available only prior to bind(2). 1462 * see ipng mailing list, Jun 22 2001. 1463 */ 1464 if (in6p->in6p_lport || 1465 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) { 1466 error = EINVAL; 1467 break; 1468 } 1469 #ifdef INET6_BINDV6ONLY 1470 if (!optval) 1471 error = EINVAL; 1472 #else 1473 OPTSET(IN6P_IPV6_V6ONLY); 1474 #endif 1475 break; 1476 case IPV6_RECVTCLASS: 1477 #ifdef RFC2292 1478 /* cannot mix with RFC2292 XXX */ 1479 if (OPTBIT(IN6P_RFC2292)) { 1480 error = EINVAL; 1481 break; 1482 } 1483 #endif 1484 OPTSET(IN6P_TCLASS); 1485 break; 1486 1487 } 1488 break; 1489 1490 case IPV6_OTCLASS: 1491 { 1492 struct ip6_pktopts **optp; 1493 u_int8_t tclass; 1494 1495 error = sockopt_get(sopt, &tclass, sizeof(tclass)); 1496 if (error) 1497 break; 1498 optp = &in6p->in6p_outputopts; 1499 error = ip6_pcbopt(optname, 1500 (u_char *)&tclass, 1501 sizeof(tclass), 1502 optp, 1503 kauth_cred_get(), uproto); 1504 break; 1505 } 1506 1507 case IPV6_TCLASS: 1508 case IPV6_DONTFRAG: 1509 case IPV6_USE_MIN_MTU: 1510 error = sockopt_getint(sopt, &optval); 1511 if (error) 1512 break; 1513 { 1514 struct ip6_pktopts **optp; 1515 optp = &in6p->in6p_outputopts; 1516 error = ip6_pcbopt(optname, 1517 (u_char *)&optval, 1518 sizeof(optval), 1519 optp, 1520 kauth_cred_get(), uproto); 1521 break; 1522 } 1523 1524 #ifdef RFC2292 1525 case IPV6_2292PKTINFO: 1526 case IPV6_2292HOPLIMIT: 1527 case IPV6_2292HOPOPTS: 1528 case IPV6_2292DSTOPTS: 1529 case IPV6_2292RTHDR: 1530 /* RFC 2292 */ 1531 error = sockopt_getint(sopt, &optval); 1532 if (error) 1533 break; 1534 1535 switch (optname) { 1536 case IPV6_2292PKTINFO: 1537 OPTSET2292(IN6P_PKTINFO); 1538 break; 1539 case IPV6_2292HOPLIMIT: 1540 OPTSET2292(IN6P_HOPLIMIT); 1541 break; 1542 case IPV6_2292HOPOPTS: 1543 /* 1544 * Check super-user privilege. 1545 * See comments for IPV6_RECVHOPOPTS. 1546 */ 1547 error = 1548 kauth_authorize_network(kauth_cred_get(), 1549 KAUTH_NETWORK_IPV6, 1550 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1551 NULL, NULL); 1552 if (error) 1553 return (error); 1554 OPTSET2292(IN6P_HOPOPTS); 1555 break; 1556 case IPV6_2292DSTOPTS: 1557 error = 1558 kauth_authorize_network(kauth_cred_get(), 1559 KAUTH_NETWORK_IPV6, 1560 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, 1561 NULL, NULL); 1562 if (error) 1563 return (error); 1564 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1565 break; 1566 case IPV6_2292RTHDR: 1567 OPTSET2292(IN6P_RTHDR); 1568 break; 1569 } 1570 break; 1571 #endif 1572 case IPV6_PKTINFO: 1573 case IPV6_HOPOPTS: 1574 case IPV6_RTHDR: 1575 case IPV6_DSTOPTS: 1576 case IPV6_RTHDRDSTOPTS: 1577 case IPV6_NEXTHOP: { 1578 /* new advanced API (RFC3542) */ 1579 void *optbuf; 1580 int optbuflen; 1581 struct ip6_pktopts **optp; 1582 1583 #ifdef RFC2292 1584 /* cannot mix with RFC2292 */ 1585 if (OPTBIT(IN6P_RFC2292)) { 1586 error = EINVAL; 1587 break; 1588 } 1589 #endif 1590 1591 optbuflen = sopt->sopt_size; 1592 optbuf = malloc(optbuflen, M_IP6OPT, M_NOWAIT); 1593 if (optbuf == NULL) { 1594 error = ENOBUFS; 1595 break; 1596 } 1597 1598 sockopt_get(sopt, optbuf, optbuflen); 1599 optp = &in6p->in6p_outputopts; 1600 error = ip6_pcbopt(optname, optbuf, optbuflen, 1601 optp, kauth_cred_get(), uproto); 1602 break; 1603 } 1604 #undef OPTSET 1605 1606 case IPV6_MULTICAST_IF: 1607 case IPV6_MULTICAST_HOPS: 1608 case IPV6_MULTICAST_LOOP: 1609 case IPV6_JOIN_GROUP: 1610 case IPV6_LEAVE_GROUP: 1611 error = ip6_setmoptions(sopt, &in6p->in6p_moptions); 1612 break; 1613 1614 case IPV6_PORTRANGE: 1615 error = sockopt_getint(sopt, &optval); 1616 if (error) 1617 break; 1618 1619 switch (optval) { 1620 case IPV6_PORTRANGE_DEFAULT: 1621 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1622 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1623 break; 1624 1625 case IPV6_PORTRANGE_HIGH: 1626 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1627 in6p->in6p_flags |= IN6P_HIGHPORT; 1628 break; 1629 1630 case IPV6_PORTRANGE_LOW: 1631 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1632 in6p->in6p_flags |= IN6P_LOWPORT; 1633 break; 1634 1635 default: 1636 error = EINVAL; 1637 break; 1638 } 1639 break; 1640 1641 case IPV6_PORTALGO: 1642 error = sockopt_getint(sopt, &optval); 1643 if (error) 1644 break; 1645 1646 error = portalgo_algo_index_select( 1647 (struct inpcb_hdr *)in6p, optval); 1648 break; 1649 1650 #if defined(FAST_IPSEC) 1651 case IPV6_IPSEC_POLICY: 1652 error = ipsec6_set_policy(in6p, optname, 1653 sopt->sopt_data, sopt->sopt_size, kauth_cred_get()); 1654 break; 1655 #endif /* IPSEC */ 1656 1657 default: 1658 error = ENOPROTOOPT; 1659 break; 1660 } 1661 break; 1662 1663 case PRCO_GETOPT: 1664 switch (optname) { 1665 #ifdef RFC2292 1666 case IPV6_2292PKTOPTIONS: 1667 /* 1668 * RFC3542 (effectively) deprecated the 1669 * semantics of the 2292-style pktoptions. 1670 * Since it was not reliable in nature (i.e., 1671 * applications had to expect the lack of some 1672 * information after all), it would make sense 1673 * to simplify this part by always returning 1674 * empty data. 1675 */ 1676 break; 1677 #endif 1678 1679 case IPV6_RECVHOPOPTS: 1680 case IPV6_RECVDSTOPTS: 1681 case IPV6_RECVRTHDRDSTOPTS: 1682 case IPV6_UNICAST_HOPS: 1683 case IPV6_RECVPKTINFO: 1684 case IPV6_RECVHOPLIMIT: 1685 case IPV6_RECVRTHDR: 1686 case IPV6_RECVPATHMTU: 1687 1688 case IPV6_FAITH: 1689 case IPV6_V6ONLY: 1690 case IPV6_PORTRANGE: 1691 case IPV6_RECVTCLASS: 1692 switch (optname) { 1693 1694 case IPV6_RECVHOPOPTS: 1695 optval = OPTBIT(IN6P_HOPOPTS); 1696 break; 1697 1698 case IPV6_RECVDSTOPTS: 1699 optval = OPTBIT(IN6P_DSTOPTS); 1700 break; 1701 1702 case IPV6_RECVRTHDRDSTOPTS: 1703 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1704 break; 1705 1706 case IPV6_UNICAST_HOPS: 1707 optval = in6p->in6p_hops; 1708 break; 1709 1710 case IPV6_RECVPKTINFO: 1711 optval = OPTBIT(IN6P_PKTINFO); 1712 break; 1713 1714 case IPV6_RECVHOPLIMIT: 1715 optval = OPTBIT(IN6P_HOPLIMIT); 1716 break; 1717 1718 case IPV6_RECVRTHDR: 1719 optval = OPTBIT(IN6P_RTHDR); 1720 break; 1721 1722 case IPV6_RECVPATHMTU: 1723 optval = OPTBIT(IN6P_MTU); 1724 break; 1725 1726 case IPV6_FAITH: 1727 optval = OPTBIT(IN6P_FAITH); 1728 break; 1729 1730 case IPV6_V6ONLY: 1731 optval = OPTBIT(IN6P_IPV6_V6ONLY); 1732 break; 1733 1734 case IPV6_PORTRANGE: 1735 { 1736 int flags; 1737 flags = in6p->in6p_flags; 1738 if (flags & IN6P_HIGHPORT) 1739 optval = IPV6_PORTRANGE_HIGH; 1740 else if (flags & IN6P_LOWPORT) 1741 optval = IPV6_PORTRANGE_LOW; 1742 else 1743 optval = 0; 1744 break; 1745 } 1746 case IPV6_RECVTCLASS: 1747 optval = OPTBIT(IN6P_TCLASS); 1748 break; 1749 1750 } 1751 if (error) 1752 break; 1753 error = sockopt_setint(sopt, optval); 1754 break; 1755 1756 case IPV6_PATHMTU: 1757 { 1758 u_long pmtu = 0; 1759 struct ip6_mtuinfo mtuinfo; 1760 struct route *ro = &in6p->in6p_route; 1761 1762 if (!(so->so_state & SS_ISCONNECTED)) 1763 return (ENOTCONN); 1764 /* 1765 * XXX: we dot not consider the case of source 1766 * routing, or optional information to specify 1767 * the outgoing interface. 1768 */ 1769 error = ip6_getpmtu(ro, NULL, NULL, 1770 &in6p->in6p_faddr, &pmtu, NULL); 1771 if (error) 1772 break; 1773 if (pmtu > IPV6_MAXPACKET) 1774 pmtu = IPV6_MAXPACKET; 1775 1776 memset(&mtuinfo, 0, sizeof(mtuinfo)); 1777 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1778 optdata = (void *)&mtuinfo; 1779 optdatalen = sizeof(mtuinfo); 1780 if (optdatalen > MCLBYTES) 1781 return (EMSGSIZE); /* XXX */ 1782 error = sockopt_set(sopt, optdata, optdatalen); 1783 break; 1784 } 1785 1786 #ifdef RFC2292 1787 case IPV6_2292PKTINFO: 1788 case IPV6_2292HOPLIMIT: 1789 case IPV6_2292HOPOPTS: 1790 case IPV6_2292RTHDR: 1791 case IPV6_2292DSTOPTS: 1792 switch (optname) { 1793 case IPV6_2292PKTINFO: 1794 optval = OPTBIT(IN6P_PKTINFO); 1795 break; 1796 case IPV6_2292HOPLIMIT: 1797 optval = OPTBIT(IN6P_HOPLIMIT); 1798 break; 1799 case IPV6_2292HOPOPTS: 1800 optval = OPTBIT(IN6P_HOPOPTS); 1801 break; 1802 case IPV6_2292RTHDR: 1803 optval = OPTBIT(IN6P_RTHDR); 1804 break; 1805 case IPV6_2292DSTOPTS: 1806 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1807 break; 1808 } 1809 error = sockopt_setint(sopt, optval); 1810 break; 1811 #endif 1812 case IPV6_PKTINFO: 1813 case IPV6_HOPOPTS: 1814 case IPV6_RTHDR: 1815 case IPV6_DSTOPTS: 1816 case IPV6_RTHDRDSTOPTS: 1817 case IPV6_NEXTHOP: 1818 case IPV6_OTCLASS: 1819 case IPV6_TCLASS: 1820 case IPV6_DONTFRAG: 1821 case IPV6_USE_MIN_MTU: 1822 error = ip6_getpcbopt(in6p->in6p_outputopts, 1823 optname, sopt); 1824 break; 1825 1826 case IPV6_MULTICAST_IF: 1827 case IPV6_MULTICAST_HOPS: 1828 case IPV6_MULTICAST_LOOP: 1829 case IPV6_JOIN_GROUP: 1830 case IPV6_LEAVE_GROUP: 1831 error = ip6_getmoptions(sopt, in6p->in6p_moptions); 1832 break; 1833 1834 case IPV6_PORTALGO: 1835 optval = ((struct inpcb_hdr *)in6p)->inph_portalgo; 1836 error = sockopt_setint(sopt, optval); 1837 break; 1838 1839 #if defined(FAST_IPSEC) 1840 case IPV6_IPSEC_POLICY: 1841 { 1842 struct mbuf *m = NULL; 1843 1844 /* XXX this will return EINVAL as sopt is empty */ 1845 error = ipsec6_get_policy(in6p, sopt->sopt_data, 1846 sopt->sopt_size, &m); 1847 if (!error) 1848 error = sockopt_setmbuf(sopt, m); 1849 1850 break; 1851 } 1852 #endif /* IPSEC */ 1853 1854 default: 1855 error = ENOPROTOOPT; 1856 break; 1857 } 1858 break; 1859 } 1860 return (error); 1861 } 1862 1863 int 1864 ip6_raw_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1865 { 1866 int error = 0, optval; 1867 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 1868 struct in6pcb *in6p = sotoin6pcb(so); 1869 int level, optname; 1870 1871 KASSERT(sopt != NULL); 1872 1873 level = sopt->sopt_level; 1874 optname = sopt->sopt_name; 1875 1876 if (level != IPPROTO_IPV6) { 1877 return ENOPROTOOPT; 1878 } 1879 1880 switch (optname) { 1881 case IPV6_CHECKSUM: 1882 /* 1883 * For ICMPv6 sockets, no modification allowed for checksum 1884 * offset, permit "no change" values to help existing apps. 1885 * 1886 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM 1887 * for an ICMPv6 socket will fail." The current 1888 * behavior does not meet RFC3542. 1889 */ 1890 switch (op) { 1891 case PRCO_SETOPT: 1892 error = sockopt_getint(sopt, &optval); 1893 if (error) 1894 break; 1895 if ((optval % 2) != 0) { 1896 /* the API assumes even offset values */ 1897 error = EINVAL; 1898 } else if (so->so_proto->pr_protocol == 1899 IPPROTO_ICMPV6) { 1900 if (optval != icmp6off) 1901 error = EINVAL; 1902 } else 1903 in6p->in6p_cksum = optval; 1904 break; 1905 1906 case PRCO_GETOPT: 1907 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 1908 optval = icmp6off; 1909 else 1910 optval = in6p->in6p_cksum; 1911 1912 error = sockopt_setint(sopt, optval); 1913 break; 1914 1915 default: 1916 error = EINVAL; 1917 break; 1918 } 1919 break; 1920 1921 default: 1922 error = ENOPROTOOPT; 1923 break; 1924 } 1925 1926 return (error); 1927 } 1928 1929 #ifdef RFC2292 1930 /* 1931 * Set up IP6 options in pcb for insertion in output packets or 1932 * specifying behavior of outgoing packets. 1933 */ 1934 static int 1935 ip6_pcbopts(struct ip6_pktopts **pktopt, struct socket *so, 1936 struct sockopt *sopt) 1937 { 1938 struct ip6_pktopts *opt = *pktopt; 1939 struct mbuf *m; 1940 int error = 0; 1941 1942 /* turn off any old options. */ 1943 if (opt) { 1944 #ifdef DIAGNOSTIC 1945 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 1946 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 1947 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 1948 printf("ip6_pcbopts: all specified options are cleared.\n"); 1949 #endif 1950 ip6_clearpktopts(opt, -1); 1951 } else { 1952 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 1953 if (opt == NULL) 1954 return (ENOBUFS); 1955 } 1956 *pktopt = NULL; 1957 1958 if (sopt == NULL || sopt->sopt_size == 0) { 1959 /* 1960 * Only turning off any previous options, regardless of 1961 * whether the opt is just created or given. 1962 */ 1963 free(opt, M_IP6OPT); 1964 return (0); 1965 } 1966 1967 /* set options specified by user. */ 1968 m = sockopt_getmbuf(sopt); 1969 if (m == NULL) { 1970 free(opt, M_IP6OPT); 1971 return (ENOBUFS); 1972 } 1973 1974 error = ip6_setpktopts(m, opt, NULL, kauth_cred_get(), 1975 so->so_proto->pr_protocol); 1976 m_freem(m); 1977 if (error != 0) { 1978 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 1979 free(opt, M_IP6OPT); 1980 return (error); 1981 } 1982 *pktopt = opt; 1983 return (0); 1984 } 1985 #endif 1986 1987 /* 1988 * initialize ip6_pktopts. beware that there are non-zero default values in 1989 * the struct. 1990 */ 1991 void 1992 ip6_initpktopts(struct ip6_pktopts *opt) 1993 { 1994 1995 memset(opt, 0, sizeof(*opt)); 1996 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 1997 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 1998 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 1999 } 2000 2001 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */ 2002 static int 2003 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2004 kauth_cred_t cred, int uproto) 2005 { 2006 struct ip6_pktopts *opt; 2007 2008 if (*pktopt == NULL) { 2009 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2010 M_NOWAIT); 2011 if (*pktopt == NULL) 2012 return (ENOBUFS); 2013 2014 ip6_initpktopts(*pktopt); 2015 } 2016 opt = *pktopt; 2017 2018 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2019 } 2020 2021 static int 2022 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt) 2023 { 2024 void *optdata = NULL; 2025 int optdatalen = 0; 2026 struct ip6_ext *ip6e; 2027 int error = 0; 2028 struct in6_pktinfo null_pktinfo; 2029 int deftclass = 0, on; 2030 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2031 2032 switch (optname) { 2033 case IPV6_PKTINFO: 2034 if (pktopt && pktopt->ip6po_pktinfo) 2035 optdata = (void *)pktopt->ip6po_pktinfo; 2036 else { 2037 /* XXX: we don't have to do this every time... */ 2038 memset(&null_pktinfo, 0, sizeof(null_pktinfo)); 2039 optdata = (void *)&null_pktinfo; 2040 } 2041 optdatalen = sizeof(struct in6_pktinfo); 2042 break; 2043 case IPV6_OTCLASS: 2044 /* XXX */ 2045 return (EINVAL); 2046 case IPV6_TCLASS: 2047 if (pktopt && pktopt->ip6po_tclass >= 0) 2048 optdata = (void *)&pktopt->ip6po_tclass; 2049 else 2050 optdata = (void *)&deftclass; 2051 optdatalen = sizeof(int); 2052 break; 2053 case IPV6_HOPOPTS: 2054 if (pktopt && pktopt->ip6po_hbh) { 2055 optdata = (void *)pktopt->ip6po_hbh; 2056 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2057 optdatalen = (ip6e->ip6e_len + 1) << 3; 2058 } 2059 break; 2060 case IPV6_RTHDR: 2061 if (pktopt && pktopt->ip6po_rthdr) { 2062 optdata = (void *)pktopt->ip6po_rthdr; 2063 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2064 optdatalen = (ip6e->ip6e_len + 1) << 3; 2065 } 2066 break; 2067 case IPV6_RTHDRDSTOPTS: 2068 if (pktopt && pktopt->ip6po_dest1) { 2069 optdata = (void *)pktopt->ip6po_dest1; 2070 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2071 optdatalen = (ip6e->ip6e_len + 1) << 3; 2072 } 2073 break; 2074 case IPV6_DSTOPTS: 2075 if (pktopt && pktopt->ip6po_dest2) { 2076 optdata = (void *)pktopt->ip6po_dest2; 2077 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2078 optdatalen = (ip6e->ip6e_len + 1) << 3; 2079 } 2080 break; 2081 case IPV6_NEXTHOP: 2082 if (pktopt && pktopt->ip6po_nexthop) { 2083 optdata = (void *)pktopt->ip6po_nexthop; 2084 optdatalen = pktopt->ip6po_nexthop->sa_len; 2085 } 2086 break; 2087 case IPV6_USE_MIN_MTU: 2088 if (pktopt) 2089 optdata = (void *)&pktopt->ip6po_minmtu; 2090 else 2091 optdata = (void *)&defminmtu; 2092 optdatalen = sizeof(int); 2093 break; 2094 case IPV6_DONTFRAG: 2095 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2096 on = 1; 2097 else 2098 on = 0; 2099 optdata = (void *)&on; 2100 optdatalen = sizeof(on); 2101 break; 2102 default: /* should not happen */ 2103 #ifdef DIAGNOSTIC 2104 panic("ip6_getpcbopt: unexpected option\n"); 2105 #endif 2106 return (ENOPROTOOPT); 2107 } 2108 2109 error = sockopt_set(sopt, optdata, optdatalen); 2110 2111 return (error); 2112 } 2113 2114 void 2115 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2116 { 2117 if (optname == -1 || optname == IPV6_PKTINFO) { 2118 if (pktopt->ip6po_pktinfo) 2119 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2120 pktopt->ip6po_pktinfo = NULL; 2121 } 2122 if (optname == -1 || optname == IPV6_HOPLIMIT) 2123 pktopt->ip6po_hlim = -1; 2124 if (optname == -1 || optname == IPV6_TCLASS) 2125 pktopt->ip6po_tclass = -1; 2126 if (optname == -1 || optname == IPV6_NEXTHOP) { 2127 rtcache_free(&pktopt->ip6po_nextroute); 2128 if (pktopt->ip6po_nexthop) 2129 free(pktopt->ip6po_nexthop, M_IP6OPT); 2130 pktopt->ip6po_nexthop = NULL; 2131 } 2132 if (optname == -1 || optname == IPV6_HOPOPTS) { 2133 if (pktopt->ip6po_hbh) 2134 free(pktopt->ip6po_hbh, M_IP6OPT); 2135 pktopt->ip6po_hbh = NULL; 2136 } 2137 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2138 if (pktopt->ip6po_dest1) 2139 free(pktopt->ip6po_dest1, M_IP6OPT); 2140 pktopt->ip6po_dest1 = NULL; 2141 } 2142 if (optname == -1 || optname == IPV6_RTHDR) { 2143 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2144 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2145 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2146 rtcache_free(&pktopt->ip6po_route); 2147 } 2148 if (optname == -1 || optname == IPV6_DSTOPTS) { 2149 if (pktopt->ip6po_dest2) 2150 free(pktopt->ip6po_dest2, M_IP6OPT); 2151 pktopt->ip6po_dest2 = NULL; 2152 } 2153 } 2154 2155 #define PKTOPT_EXTHDRCPY(type) \ 2156 do { \ 2157 if (src->type) { \ 2158 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2159 dst->type = malloc(hlen, M_IP6OPT, canwait); \ 2160 if (dst->type == NULL) \ 2161 goto bad; \ 2162 memcpy(dst->type, src->type, hlen); \ 2163 } \ 2164 } while (/*CONSTCOND*/ 0) 2165 2166 static int 2167 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2168 { 2169 dst->ip6po_hlim = src->ip6po_hlim; 2170 dst->ip6po_tclass = src->ip6po_tclass; 2171 dst->ip6po_flags = src->ip6po_flags; 2172 if (src->ip6po_pktinfo) { 2173 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2174 M_IP6OPT, canwait); 2175 if (dst->ip6po_pktinfo == NULL) 2176 goto bad; 2177 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2178 } 2179 if (src->ip6po_nexthop) { 2180 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2181 M_IP6OPT, canwait); 2182 if (dst->ip6po_nexthop == NULL) 2183 goto bad; 2184 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop, 2185 src->ip6po_nexthop->sa_len); 2186 } 2187 PKTOPT_EXTHDRCPY(ip6po_hbh); 2188 PKTOPT_EXTHDRCPY(ip6po_dest1); 2189 PKTOPT_EXTHDRCPY(ip6po_dest2); 2190 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2191 return (0); 2192 2193 bad: 2194 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT); 2195 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT); 2196 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT); 2197 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT); 2198 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT); 2199 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT); 2200 2201 return (ENOBUFS); 2202 } 2203 #undef PKTOPT_EXTHDRCPY 2204 2205 struct ip6_pktopts * 2206 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2207 { 2208 int error; 2209 struct ip6_pktopts *dst; 2210 2211 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2212 if (dst == NULL) 2213 return (NULL); 2214 ip6_initpktopts(dst); 2215 2216 if ((error = copypktopts(dst, src, canwait)) != 0) { 2217 free(dst, M_IP6OPT); 2218 return (NULL); 2219 } 2220 2221 return (dst); 2222 } 2223 2224 void 2225 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2226 { 2227 if (pktopt == NULL) 2228 return; 2229 2230 ip6_clearpktopts(pktopt, -1); 2231 2232 free(pktopt, M_IP6OPT); 2233 } 2234 2235 /* 2236 * Set the IP6 multicast options in response to user setsockopt(). 2237 */ 2238 static int 2239 ip6_setmoptions(const struct sockopt *sopt, struct ip6_moptions **im6op) 2240 { 2241 int error = 0; 2242 u_int loop, ifindex; 2243 struct ipv6_mreq mreq; 2244 struct ifnet *ifp; 2245 struct ip6_moptions *im6o = *im6op; 2246 struct route ro; 2247 struct in6_multi_mship *imm; 2248 struct lwp *l = curlwp; /* XXX */ 2249 2250 if (im6o == NULL) { 2251 /* 2252 * No multicast option buffer attached to the pcb; 2253 * allocate one and initialize to default values. 2254 */ 2255 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_NOWAIT); 2256 if (im6o == NULL) 2257 return (ENOBUFS); 2258 2259 *im6op = im6o; 2260 im6o->im6o_multicast_ifp = NULL; 2261 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2262 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2263 LIST_INIT(&im6o->im6o_memberships); 2264 } 2265 2266 switch (sopt->sopt_name) { 2267 2268 case IPV6_MULTICAST_IF: 2269 /* 2270 * Select the interface for outgoing multicast packets. 2271 */ 2272 error = sockopt_get(sopt, &ifindex, sizeof(ifindex)); 2273 if (error != 0) 2274 break; 2275 2276 if (ifindex != 0) { 2277 if (if_indexlim <= ifindex || !ifindex2ifnet[ifindex]) { 2278 error = ENXIO; /* XXX EINVAL? */ 2279 break; 2280 } 2281 ifp = ifindex2ifnet[ifindex]; 2282 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 2283 error = EADDRNOTAVAIL; 2284 break; 2285 } 2286 } else 2287 ifp = NULL; 2288 im6o->im6o_multicast_ifp = ifp; 2289 break; 2290 2291 case IPV6_MULTICAST_HOPS: 2292 { 2293 /* 2294 * Set the IP6 hoplimit for outgoing multicast packets. 2295 */ 2296 int optval; 2297 2298 error = sockopt_getint(sopt, &optval); 2299 if (error != 0) 2300 break; 2301 2302 if (optval < -1 || optval >= 256) 2303 error = EINVAL; 2304 else if (optval == -1) 2305 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2306 else 2307 im6o->im6o_multicast_hlim = optval; 2308 break; 2309 } 2310 2311 case IPV6_MULTICAST_LOOP: 2312 /* 2313 * Set the loopback flag for outgoing multicast packets. 2314 * Must be zero or one. 2315 */ 2316 error = sockopt_get(sopt, &loop, sizeof(loop)); 2317 if (error != 0) 2318 break; 2319 if (loop > 1) { 2320 error = EINVAL; 2321 break; 2322 } 2323 im6o->im6o_multicast_loop = loop; 2324 break; 2325 2326 case IPV6_JOIN_GROUP: 2327 /* 2328 * Add a multicast group membership. 2329 * Group must be a valid IP6 multicast address. 2330 */ 2331 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2332 if (error != 0) 2333 break; 2334 2335 if (IN6_IS_ADDR_UNSPECIFIED(&mreq.ipv6mr_multiaddr)) { 2336 /* 2337 * We use the unspecified address to specify to accept 2338 * all multicast addresses. Only super user is allowed 2339 * to do this. 2340 */ 2341 if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_IPV6, 2342 KAUTH_REQ_NETWORK_IPV6_JOIN_MULTICAST, NULL, NULL, NULL)) 2343 { 2344 error = EACCES; 2345 break; 2346 } 2347 } else if (!IN6_IS_ADDR_MULTICAST(&mreq.ipv6mr_multiaddr)) { 2348 error = EINVAL; 2349 break; 2350 } 2351 2352 /* 2353 * If no interface was explicitly specified, choose an 2354 * appropriate one according to the given multicast address. 2355 */ 2356 if (mreq.ipv6mr_interface == 0) { 2357 struct rtentry *rt; 2358 union { 2359 struct sockaddr dst; 2360 struct sockaddr_in6 dst6; 2361 } u; 2362 2363 /* 2364 * Look up the routing table for the 2365 * address, and choose the outgoing interface. 2366 * XXX: is it a good approach? 2367 */ 2368 memset(&ro, 0, sizeof(ro)); 2369 sockaddr_in6_init(&u.dst6, &mreq.ipv6mr_multiaddr, 0, 2370 0, 0); 2371 rtcache_setdst(&ro, &u.dst); 2372 ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp 2373 : NULL; 2374 rtcache_free(&ro); 2375 } else { 2376 /* 2377 * If the interface is specified, validate it. 2378 */ 2379 if (if_indexlim <= mreq.ipv6mr_interface || 2380 !ifindex2ifnet[mreq.ipv6mr_interface]) { 2381 error = ENXIO; /* XXX EINVAL? */ 2382 break; 2383 } 2384 ifp = ifindex2ifnet[mreq.ipv6mr_interface]; 2385 } 2386 2387 /* 2388 * See if we found an interface, and confirm that it 2389 * supports multicast 2390 */ 2391 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2392 error = EADDRNOTAVAIL; 2393 break; 2394 } 2395 2396 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) { 2397 error = EADDRNOTAVAIL; /* XXX: should not happen */ 2398 break; 2399 } 2400 2401 /* 2402 * See if the membership already exists. 2403 */ 2404 for (imm = im6o->im6o_memberships.lh_first; 2405 imm != NULL; imm = imm->i6mm_chain.le_next) 2406 if (imm->i6mm_maddr->in6m_ifp == ifp && 2407 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2408 &mreq.ipv6mr_multiaddr)) 2409 break; 2410 if (imm != NULL) { 2411 error = EADDRINUSE; 2412 break; 2413 } 2414 /* 2415 * Everything looks good; add a new record to the multicast 2416 * address list for the given interface. 2417 */ 2418 imm = in6_joingroup(ifp, &mreq.ipv6mr_multiaddr, &error, 0); 2419 if (imm == NULL) 2420 break; 2421 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2422 break; 2423 2424 case IPV6_LEAVE_GROUP: 2425 /* 2426 * Drop a multicast group membership. 2427 * Group must be a valid IP6 multicast address. 2428 */ 2429 error = sockopt_get(sopt, &mreq, sizeof(mreq)); 2430 if (error != 0) 2431 break; 2432 2433 /* 2434 * If an interface address was specified, get a pointer 2435 * to its ifnet structure. 2436 */ 2437 if (mreq.ipv6mr_interface != 0) { 2438 if (if_indexlim <= mreq.ipv6mr_interface || 2439 !ifindex2ifnet[mreq.ipv6mr_interface]) { 2440 error = ENXIO; /* XXX EINVAL? */ 2441 break; 2442 } 2443 ifp = ifindex2ifnet[mreq.ipv6mr_interface]; 2444 } else 2445 ifp = NULL; 2446 2447 /* Fill in the scope zone ID */ 2448 if (ifp) { 2449 if (in6_setscope(&mreq.ipv6mr_multiaddr, ifp, NULL)) { 2450 /* XXX: should not happen */ 2451 error = EADDRNOTAVAIL; 2452 break; 2453 } 2454 } else if (mreq.ipv6mr_interface != 0) { 2455 /* 2456 * XXX: This case would happens when the (positive) 2457 * index is in the valid range, but the corresponding 2458 * interface has been detached dynamically. The above 2459 * check probably avoids such case to happen here, but 2460 * we check it explicitly for safety. 2461 */ 2462 error = EADDRNOTAVAIL; 2463 break; 2464 } else { /* ipv6mr_interface == 0 */ 2465 struct sockaddr_in6 sa6_mc; 2466 2467 /* 2468 * The API spec says as follows: 2469 * If the interface index is specified as 0, the 2470 * system may choose a multicast group membership to 2471 * drop by matching the multicast address only. 2472 * On the other hand, we cannot disambiguate the scope 2473 * zone unless an interface is provided. Thus, we 2474 * check if there's ambiguity with the default scope 2475 * zone as the last resort. 2476 */ 2477 sockaddr_in6_init(&sa6_mc, &mreq.ipv6mr_multiaddr, 2478 0, 0, 0); 2479 error = sa6_embedscope(&sa6_mc, ip6_use_defzone); 2480 if (error != 0) 2481 break; 2482 mreq.ipv6mr_multiaddr = sa6_mc.sin6_addr; 2483 } 2484 2485 /* 2486 * Find the membership in the membership list. 2487 */ 2488 for (imm = im6o->im6o_memberships.lh_first; 2489 imm != NULL; imm = imm->i6mm_chain.le_next) { 2490 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2491 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2492 &mreq.ipv6mr_multiaddr)) 2493 break; 2494 } 2495 if (imm == NULL) { 2496 /* Unable to resolve interface */ 2497 error = EADDRNOTAVAIL; 2498 break; 2499 } 2500 /* 2501 * Give up the multicast address record to which the 2502 * membership points. 2503 */ 2504 LIST_REMOVE(imm, i6mm_chain); 2505 in6_leavegroup(imm); 2506 break; 2507 2508 default: 2509 error = EOPNOTSUPP; 2510 break; 2511 } 2512 2513 /* 2514 * If all options have default values, no need to keep the mbuf. 2515 */ 2516 if (im6o->im6o_multicast_ifp == NULL && 2517 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2518 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2519 im6o->im6o_memberships.lh_first == NULL) { 2520 free(*im6op, M_IPMOPTS); 2521 *im6op = NULL; 2522 } 2523 2524 return (error); 2525 } 2526 2527 /* 2528 * Return the IP6 multicast options in response to user getsockopt(). 2529 */ 2530 static int 2531 ip6_getmoptions(struct sockopt *sopt, struct ip6_moptions *im6o) 2532 { 2533 u_int optval; 2534 int error; 2535 2536 switch (sopt->sopt_name) { 2537 case IPV6_MULTICAST_IF: 2538 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2539 optval = 0; 2540 else 2541 optval = im6o->im6o_multicast_ifp->if_index; 2542 2543 error = sockopt_set(sopt, &optval, sizeof(optval)); 2544 break; 2545 2546 case IPV6_MULTICAST_HOPS: 2547 if (im6o == NULL) 2548 optval = ip6_defmcasthlim; 2549 else 2550 optval = im6o->im6o_multicast_hlim; 2551 2552 error = sockopt_set(sopt, &optval, sizeof(optval)); 2553 break; 2554 2555 case IPV6_MULTICAST_LOOP: 2556 if (im6o == NULL) 2557 optval = ip6_defmcasthlim; 2558 else 2559 optval = im6o->im6o_multicast_loop; 2560 2561 error = sockopt_set(sopt, &optval, sizeof(optval)); 2562 break; 2563 2564 default: 2565 error = EOPNOTSUPP; 2566 } 2567 2568 return (error); 2569 } 2570 2571 /* 2572 * Discard the IP6 multicast options. 2573 */ 2574 void 2575 ip6_freemoptions(struct ip6_moptions *im6o) 2576 { 2577 struct in6_multi_mship *imm; 2578 2579 if (im6o == NULL) 2580 return; 2581 2582 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2583 LIST_REMOVE(imm, i6mm_chain); 2584 in6_leavegroup(imm); 2585 } 2586 free(im6o, M_IPMOPTS); 2587 } 2588 2589 /* 2590 * Set IPv6 outgoing packet options based on advanced API. 2591 */ 2592 int 2593 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2594 struct ip6_pktopts *stickyopt, kauth_cred_t cred, int uproto) 2595 { 2596 struct cmsghdr *cm = 0; 2597 2598 if (control == NULL || opt == NULL) 2599 return (EINVAL); 2600 2601 ip6_initpktopts(opt); 2602 if (stickyopt) { 2603 int error; 2604 2605 /* 2606 * If stickyopt is provided, make a local copy of the options 2607 * for this particular packet, then override them by ancillary 2608 * objects. 2609 * XXX: copypktopts() does not copy the cached route to a next 2610 * hop (if any). This is not very good in terms of efficiency, 2611 * but we can allow this since this option should be rarely 2612 * used. 2613 */ 2614 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2615 return (error); 2616 } 2617 2618 /* 2619 * XXX: Currently, we assume all the optional information is stored 2620 * in a single mbuf. 2621 */ 2622 if (control->m_next) 2623 return (EINVAL); 2624 2625 /* XXX if cm->cmsg_len is not aligned, control->m_len can become <0 */ 2626 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2627 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2628 int error; 2629 2630 if (control->m_len < CMSG_LEN(0)) 2631 return (EINVAL); 2632 2633 cm = mtod(control, struct cmsghdr *); 2634 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2635 return (EINVAL); 2636 if (cm->cmsg_level != IPPROTO_IPV6) 2637 continue; 2638 2639 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2640 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2641 if (error) 2642 return (error); 2643 } 2644 2645 return (0); 2646 } 2647 2648 /* 2649 * Set a particular packet option, as a sticky option or an ancillary data 2650 * item. "len" can be 0 only when it's a sticky option. 2651 * We have 4 cases of combination of "sticky" and "cmsg": 2652 * "sticky=0, cmsg=0": impossible 2653 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2654 * "sticky=1, cmsg=0": RFC3542 socket option 2655 * "sticky=1, cmsg=1": RFC2292 socket option 2656 */ 2657 static int 2658 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2659 kauth_cred_t cred, int sticky, int cmsg, int uproto) 2660 { 2661 int minmtupolicy; 2662 int error; 2663 2664 if (!sticky && !cmsg) { 2665 #ifdef DIAGNOSTIC 2666 printf("ip6_setpktopt: impossible case\n"); 2667 #endif 2668 return (EINVAL); 2669 } 2670 2671 /* 2672 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2673 * not be specified in the context of RFC3542. Conversely, 2674 * RFC3542 types should not be specified in the context of RFC2292. 2675 */ 2676 if (!cmsg) { 2677 switch (optname) { 2678 case IPV6_2292PKTINFO: 2679 case IPV6_2292HOPLIMIT: 2680 case IPV6_2292NEXTHOP: 2681 case IPV6_2292HOPOPTS: 2682 case IPV6_2292DSTOPTS: 2683 case IPV6_2292RTHDR: 2684 case IPV6_2292PKTOPTIONS: 2685 return (ENOPROTOOPT); 2686 } 2687 } 2688 if (sticky && cmsg) { 2689 switch (optname) { 2690 case IPV6_PKTINFO: 2691 case IPV6_HOPLIMIT: 2692 case IPV6_NEXTHOP: 2693 case IPV6_HOPOPTS: 2694 case IPV6_DSTOPTS: 2695 case IPV6_RTHDRDSTOPTS: 2696 case IPV6_RTHDR: 2697 case IPV6_USE_MIN_MTU: 2698 case IPV6_DONTFRAG: 2699 case IPV6_OTCLASS: 2700 case IPV6_TCLASS: 2701 return (ENOPROTOOPT); 2702 } 2703 } 2704 2705 switch (optname) { 2706 #ifdef RFC2292 2707 case IPV6_2292PKTINFO: 2708 #endif 2709 case IPV6_PKTINFO: 2710 { 2711 struct ifnet *ifp = NULL; 2712 struct in6_pktinfo *pktinfo; 2713 2714 if (len != sizeof(struct in6_pktinfo)) 2715 return (EINVAL); 2716 2717 pktinfo = (struct in6_pktinfo *)buf; 2718 2719 /* 2720 * An application can clear any sticky IPV6_PKTINFO option by 2721 * doing a "regular" setsockopt with ipi6_addr being 2722 * in6addr_any and ipi6_ifindex being zero. 2723 * [RFC 3542, Section 6] 2724 */ 2725 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2726 pktinfo->ipi6_ifindex == 0 && 2727 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2728 ip6_clearpktopts(opt, optname); 2729 break; 2730 } 2731 2732 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2733 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2734 return (EINVAL); 2735 } 2736 2737 /* validate the interface index if specified. */ 2738 if (pktinfo->ipi6_ifindex >= if_indexlim) { 2739 return (ENXIO); 2740 } 2741 if (pktinfo->ipi6_ifindex) { 2742 ifp = ifindex2ifnet[pktinfo->ipi6_ifindex]; 2743 if (ifp == NULL) 2744 return (ENXIO); 2745 } 2746 2747 /* 2748 * We store the address anyway, and let in6_selectsrc() 2749 * validate the specified address. This is because ipi6_addr 2750 * may not have enough information about its scope zone, and 2751 * we may need additional information (such as outgoing 2752 * interface or the scope zone of a destination address) to 2753 * disambiguate the scope. 2754 * XXX: the delay of the validation may confuse the 2755 * application when it is used as a sticky option. 2756 */ 2757 if (opt->ip6po_pktinfo == NULL) { 2758 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2759 M_IP6OPT, M_NOWAIT); 2760 if (opt->ip6po_pktinfo == NULL) 2761 return (ENOBUFS); 2762 } 2763 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo)); 2764 break; 2765 } 2766 2767 #ifdef RFC2292 2768 case IPV6_2292HOPLIMIT: 2769 #endif 2770 case IPV6_HOPLIMIT: 2771 { 2772 int *hlimp; 2773 2774 /* 2775 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2776 * to simplify the ordering among hoplimit options. 2777 */ 2778 if (optname == IPV6_HOPLIMIT && sticky) 2779 return (ENOPROTOOPT); 2780 2781 if (len != sizeof(int)) 2782 return (EINVAL); 2783 hlimp = (int *)buf; 2784 if (*hlimp < -1 || *hlimp > 255) 2785 return (EINVAL); 2786 2787 opt->ip6po_hlim = *hlimp; 2788 break; 2789 } 2790 2791 case IPV6_OTCLASS: 2792 if (len != sizeof(u_int8_t)) 2793 return (EINVAL); 2794 2795 opt->ip6po_tclass = *(u_int8_t *)buf; 2796 break; 2797 2798 case IPV6_TCLASS: 2799 { 2800 int tclass; 2801 2802 if (len != sizeof(int)) 2803 return (EINVAL); 2804 tclass = *(int *)buf; 2805 if (tclass < -1 || tclass > 255) 2806 return (EINVAL); 2807 2808 opt->ip6po_tclass = tclass; 2809 break; 2810 } 2811 2812 #ifdef RFC2292 2813 case IPV6_2292NEXTHOP: 2814 #endif 2815 case IPV6_NEXTHOP: 2816 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 2817 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 2818 if (error) 2819 return (error); 2820 2821 if (len == 0) { /* just remove the option */ 2822 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2823 break; 2824 } 2825 2826 /* check if cmsg_len is large enough for sa_len */ 2827 if (len < sizeof(struct sockaddr) || len < *buf) 2828 return (EINVAL); 2829 2830 switch (((struct sockaddr *)buf)->sa_family) { 2831 case AF_INET6: 2832 { 2833 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2834 2835 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2836 return (EINVAL); 2837 2838 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2839 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2840 return (EINVAL); 2841 } 2842 if ((error = sa6_embedscope(sa6, ip6_use_defzone)) 2843 != 0) { 2844 return (error); 2845 } 2846 break; 2847 } 2848 case AF_LINK: /* eventually be supported? */ 2849 default: 2850 return (EAFNOSUPPORT); 2851 } 2852 2853 /* turn off the previous option, then set the new option. */ 2854 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2855 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2856 if (opt->ip6po_nexthop == NULL) 2857 return (ENOBUFS); 2858 memcpy(opt->ip6po_nexthop, buf, *buf); 2859 break; 2860 2861 #ifdef RFC2292 2862 case IPV6_2292HOPOPTS: 2863 #endif 2864 case IPV6_HOPOPTS: 2865 { 2866 struct ip6_hbh *hbh; 2867 int hbhlen; 2868 2869 /* 2870 * XXX: We don't allow a non-privileged user to set ANY HbH 2871 * options, since per-option restriction has too much 2872 * overhead. 2873 */ 2874 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 2875 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 2876 if (error) 2877 return (error); 2878 2879 if (len == 0) { 2880 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2881 break; /* just remove the option */ 2882 } 2883 2884 /* message length validation */ 2885 if (len < sizeof(struct ip6_hbh)) 2886 return (EINVAL); 2887 hbh = (struct ip6_hbh *)buf; 2888 hbhlen = (hbh->ip6h_len + 1) << 3; 2889 if (len != hbhlen) 2890 return (EINVAL); 2891 2892 /* turn off the previous option, then set the new option. */ 2893 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2894 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2895 if (opt->ip6po_hbh == NULL) 2896 return (ENOBUFS); 2897 memcpy(opt->ip6po_hbh, hbh, hbhlen); 2898 2899 break; 2900 } 2901 2902 #ifdef RFC2292 2903 case IPV6_2292DSTOPTS: 2904 #endif 2905 case IPV6_DSTOPTS: 2906 case IPV6_RTHDRDSTOPTS: 2907 { 2908 struct ip6_dest *dest, **newdest = NULL; 2909 int destlen; 2910 2911 /* XXX: see the comment for IPV6_HOPOPTS */ 2912 error = kauth_authorize_network(cred, KAUTH_NETWORK_IPV6, 2913 KAUTH_REQ_NETWORK_IPV6_HOPBYHOP, NULL, NULL, NULL); 2914 if (error) 2915 return (error); 2916 2917 if (len == 0) { 2918 ip6_clearpktopts(opt, optname); 2919 break; /* just remove the option */ 2920 } 2921 2922 /* message length validation */ 2923 if (len < sizeof(struct ip6_dest)) 2924 return (EINVAL); 2925 dest = (struct ip6_dest *)buf; 2926 destlen = (dest->ip6d_len + 1) << 3; 2927 if (len != destlen) 2928 return (EINVAL); 2929 /* 2930 * Determine the position that the destination options header 2931 * should be inserted; before or after the routing header. 2932 */ 2933 switch (optname) { 2934 case IPV6_2292DSTOPTS: 2935 /* 2936 * The old advanced API is ambiguous on this point. 2937 * Our approach is to determine the position based 2938 * according to the existence of a routing header. 2939 * Note, however, that this depends on the order of the 2940 * extension headers in the ancillary data; the 1st 2941 * part of the destination options header must appear 2942 * before the routing header in the ancillary data, 2943 * too. 2944 * RFC3542 solved the ambiguity by introducing 2945 * separate ancillary data or option types. 2946 */ 2947 if (opt->ip6po_rthdr == NULL) 2948 newdest = &opt->ip6po_dest1; 2949 else 2950 newdest = &opt->ip6po_dest2; 2951 break; 2952 case IPV6_RTHDRDSTOPTS: 2953 newdest = &opt->ip6po_dest1; 2954 break; 2955 case IPV6_DSTOPTS: 2956 newdest = &opt->ip6po_dest2; 2957 break; 2958 } 2959 2960 /* turn off the previous option, then set the new option. */ 2961 ip6_clearpktopts(opt, optname); 2962 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2963 if (*newdest == NULL) 2964 return (ENOBUFS); 2965 memcpy(*newdest, dest, destlen); 2966 2967 break; 2968 } 2969 2970 #ifdef RFC2292 2971 case IPV6_2292RTHDR: 2972 #endif 2973 case IPV6_RTHDR: 2974 { 2975 struct ip6_rthdr *rth; 2976 int rthlen; 2977 2978 if (len == 0) { 2979 ip6_clearpktopts(opt, IPV6_RTHDR); 2980 break; /* just remove the option */ 2981 } 2982 2983 /* message length validation */ 2984 if (len < sizeof(struct ip6_rthdr)) 2985 return (EINVAL); 2986 rth = (struct ip6_rthdr *)buf; 2987 rthlen = (rth->ip6r_len + 1) << 3; 2988 if (len != rthlen) 2989 return (EINVAL); 2990 switch (rth->ip6r_type) { 2991 case IPV6_RTHDR_TYPE_0: 2992 if (rth->ip6r_len == 0) /* must contain one addr */ 2993 return (EINVAL); 2994 if (rth->ip6r_len % 2) /* length must be even */ 2995 return (EINVAL); 2996 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2997 return (EINVAL); 2998 break; 2999 default: 3000 return (EINVAL); /* not supported */ 3001 } 3002 /* turn off the previous option */ 3003 ip6_clearpktopts(opt, IPV6_RTHDR); 3004 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3005 if (opt->ip6po_rthdr == NULL) 3006 return (ENOBUFS); 3007 memcpy(opt->ip6po_rthdr, rth, rthlen); 3008 break; 3009 } 3010 3011 case IPV6_USE_MIN_MTU: 3012 if (len != sizeof(int)) 3013 return (EINVAL); 3014 minmtupolicy = *(int *)buf; 3015 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3016 minmtupolicy != IP6PO_MINMTU_DISABLE && 3017 minmtupolicy != IP6PO_MINMTU_ALL) { 3018 return (EINVAL); 3019 } 3020 opt->ip6po_minmtu = minmtupolicy; 3021 break; 3022 3023 case IPV6_DONTFRAG: 3024 if (len != sizeof(int)) 3025 return (EINVAL); 3026 3027 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3028 /* 3029 * we ignore this option for TCP sockets. 3030 * (RFC3542 leaves this case unspecified.) 3031 */ 3032 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3033 } else 3034 opt->ip6po_flags |= IP6PO_DONTFRAG; 3035 break; 3036 3037 default: 3038 return (ENOPROTOOPT); 3039 } /* end of switch */ 3040 3041 return (0); 3042 } 3043 3044 /* 3045 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3046 * packet to the input queue of a specified interface. Note that this 3047 * calls the output routine of the loopback "driver", but with an interface 3048 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 3049 */ 3050 void 3051 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, 3052 const struct sockaddr_in6 *dst) 3053 { 3054 struct mbuf *copym; 3055 struct ip6_hdr *ip6; 3056 3057 copym = m_copy(m, 0, M_COPYALL); 3058 if (copym == NULL) 3059 return; 3060 3061 /* 3062 * Make sure to deep-copy IPv6 header portion in case the data 3063 * is in an mbuf cluster, so that we can safely override the IPv6 3064 * header portion later. 3065 */ 3066 if ((copym->m_flags & M_EXT) != 0 || 3067 copym->m_len < sizeof(struct ip6_hdr)) { 3068 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3069 if (copym == NULL) 3070 return; 3071 } 3072 3073 #ifdef DIAGNOSTIC 3074 if (copym->m_len < sizeof(*ip6)) { 3075 m_freem(copym); 3076 return; 3077 } 3078 #endif 3079 3080 ip6 = mtod(copym, struct ip6_hdr *); 3081 /* 3082 * clear embedded scope identifiers if necessary. 3083 * in6_clearscope will touch the addresses only when necessary. 3084 */ 3085 in6_clearscope(&ip6->ip6_src); 3086 in6_clearscope(&ip6->ip6_dst); 3087 3088 (void)looutput(ifp, copym, (const struct sockaddr *)dst, NULL); 3089 } 3090 3091 /* 3092 * Chop IPv6 header off from the payload. 3093 */ 3094 static int 3095 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3096 { 3097 struct mbuf *mh; 3098 struct ip6_hdr *ip6; 3099 3100 ip6 = mtod(m, struct ip6_hdr *); 3101 if (m->m_len > sizeof(*ip6)) { 3102 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3103 if (mh == 0) { 3104 m_freem(m); 3105 return ENOBUFS; 3106 } 3107 M_MOVE_PKTHDR(mh, m); 3108 MH_ALIGN(mh, sizeof(*ip6)); 3109 m->m_len -= sizeof(*ip6); 3110 m->m_data += sizeof(*ip6); 3111 mh->m_next = m; 3112 m = mh; 3113 m->m_len = sizeof(*ip6); 3114 bcopy((void *)ip6, mtod(m, void *), sizeof(*ip6)); 3115 } 3116 exthdrs->ip6e_ip6 = m; 3117 return 0; 3118 } 3119 3120 /* 3121 * Compute IPv6 extension header length. 3122 */ 3123 int 3124 ip6_optlen(struct in6pcb *in6p) 3125 { 3126 int len; 3127 3128 if (!in6p->in6p_outputopts) 3129 return 0; 3130 3131 len = 0; 3132 #define elen(x) \ 3133 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3134 3135 len += elen(in6p->in6p_outputopts->ip6po_hbh); 3136 len += elen(in6p->in6p_outputopts->ip6po_dest1); 3137 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 3138 len += elen(in6p->in6p_outputopts->ip6po_dest2); 3139 return len; 3140 #undef elen 3141 } 3142