1 /* $NetBSD: ip6_output.c,v 1.27 2000/11/11 00:52:39 thorpej Exp $ */ 2 /* $KAME: ip6_output.c,v 1.122 2000/08/19 02:12:02 jinmei Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 66 */ 67 68 #include "opt_inet.h" 69 #include "opt_ipsec.h" 70 #include "opt_pfil_hooks.h" 71 72 #include <sys/param.h> 73 #include <sys/malloc.h> 74 #include <sys/mbuf.h> 75 #include <sys/errno.h> 76 #include <sys/protosw.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/systm.h> 80 #include <sys/proc.h> 81 82 #include <net/if.h> 83 #include <net/route.h> 84 #ifdef PFIL_HOOKS 85 #include <net/pfil.h> 86 #endif 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/ip6.h> 91 #include <netinet/icmp6.h> 92 #include <netinet6/ip6_var.h> 93 #include <netinet6/in6_pcb.h> 94 #include <netinet6/nd6.h> 95 96 #ifdef IPSEC 97 #include <netinet6/ipsec.h> 98 #include <netkey/key.h> 99 #endif /* IPSEC */ 100 101 #include "loop.h" 102 103 #include <net/net_osdep.h> 104 105 #ifdef IPV6FIREWALL 106 #include <netinet6/ip6_fw.h> 107 #endif 108 109 #ifdef PFIL_HOOKS 110 extern struct pfil_head inet6_pfil_hook; /* XXX */ 111 #endif 112 113 struct ip6_exthdrs { 114 struct mbuf *ip6e_ip6; 115 struct mbuf *ip6e_hbh; 116 struct mbuf *ip6e_dest1; 117 struct mbuf *ip6e_rthdr; 118 struct mbuf *ip6e_dest2; 119 }; 120 121 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 122 struct socket *)); 123 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 124 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 125 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 126 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 127 struct ip6_frag **)); 128 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 129 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 130 131 extern struct ifnet loif[NLOOP]; 132 133 /* 134 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 135 * header (with pri, len, nxt, hlim, src, dst). 136 * This function may modify ver and hlim only. 137 * The mbuf chain containing the packet will be freed. 138 * The mbuf opt, if present, will not be freed. 139 */ 140 int 141 ip6_output(m0, opt, ro, flags, im6o, ifpp) 142 struct mbuf *m0; 143 struct ip6_pktopts *opt; 144 struct route_in6 *ro; 145 int flags; 146 struct ip6_moptions *im6o; 147 struct ifnet **ifpp; /* XXX: just for statistics */ 148 { 149 struct ip6_hdr *ip6, *mhip6; 150 struct ifnet *ifp, *origifp; 151 struct mbuf *m = m0; 152 int hlen, tlen, len, off; 153 struct route_in6 ip6route; 154 struct sockaddr_in6 *dst; 155 int error = 0; 156 struct in6_ifaddr *ia; 157 u_long mtu; 158 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 159 struct ip6_exthdrs exthdrs; 160 struct in6_addr finaldst; 161 struct route_in6 *ro_pmtu = NULL; 162 int hdrsplit = 0; 163 int needipsec = 0; 164 #ifdef IPSEC 165 int needipsectun = 0; 166 struct socket *so; 167 struct secpolicy *sp = NULL; 168 169 /* for AH processing. stupid to have "socket" variable in IP layer... */ 170 so = ipsec_getsocket(m); 171 ipsec_setsocket(m, NULL); 172 ip6 = mtod(m, struct ip6_hdr *); 173 #endif /* IPSEC */ 174 175 #define MAKE_EXTHDR(hp, mp) \ 176 do { \ 177 if (hp) { \ 178 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 179 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 180 ((eh)->ip6e_len + 1) << 3); \ 181 if (error) \ 182 goto freehdrs; \ 183 } \ 184 } while (0) 185 186 bzero(&exthdrs, sizeof(exthdrs)); 187 if (opt) { 188 /* Hop-by-Hop options header */ 189 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 190 /* Destination options header(1st part) */ 191 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 192 /* Routing header */ 193 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 194 /* Destination options header(2nd part) */ 195 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 196 } 197 198 #ifdef IPSEC 199 /* get a security policy for this packet */ 200 if (so == NULL) 201 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 202 else 203 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 204 205 if (sp == NULL) { 206 ipsec6stat.out_inval++; 207 goto freehdrs; 208 } 209 210 error = 0; 211 212 /* check policy */ 213 switch (sp->policy) { 214 case IPSEC_POLICY_DISCARD: 215 /* 216 * This packet is just discarded. 217 */ 218 ipsec6stat.out_polvio++; 219 goto freehdrs; 220 221 case IPSEC_POLICY_BYPASS: 222 case IPSEC_POLICY_NONE: 223 /* no need to do IPsec. */ 224 needipsec = 0; 225 break; 226 227 case IPSEC_POLICY_IPSEC: 228 if (sp->req == NULL) { 229 /* XXX should be panic ? */ 230 printf("ip6_output: No IPsec request specified.\n"); 231 error = EINVAL; 232 goto freehdrs; 233 } 234 needipsec = 1; 235 break; 236 237 case IPSEC_POLICY_ENTRUST: 238 default: 239 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 240 } 241 #endif /* IPSEC */ 242 243 /* 244 * Calculate the total length of the extension header chain. 245 * Keep the length of the unfragmentable part for fragmentation. 246 */ 247 optlen = 0; 248 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 249 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 250 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 251 unfragpartlen = optlen + sizeof(struct ip6_hdr); 252 /* NOTE: we don't add AH/ESP length here. do that later. */ 253 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 254 255 /* 256 * If we need IPsec, or there is at least one extension header, 257 * separate IP6 header from the payload. 258 */ 259 if ((needipsec || optlen) && !hdrsplit) { 260 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 261 m = NULL; 262 goto freehdrs; 263 } 264 m = exthdrs.ip6e_ip6; 265 hdrsplit++; 266 } 267 268 /* adjust pointer */ 269 ip6 = mtod(m, struct ip6_hdr *); 270 271 /* adjust mbuf packet header length */ 272 m->m_pkthdr.len += optlen; 273 plen = m->m_pkthdr.len - sizeof(*ip6); 274 275 /* If this is a jumbo payload, insert a jumbo payload option. */ 276 if (plen > IPV6_MAXPACKET) { 277 if (!hdrsplit) { 278 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 279 m = NULL; 280 goto freehdrs; 281 } 282 m = exthdrs.ip6e_ip6; 283 hdrsplit++; 284 } 285 /* adjust pointer */ 286 ip6 = mtod(m, struct ip6_hdr *); 287 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 288 goto freehdrs; 289 ip6->ip6_plen = 0; 290 } else 291 ip6->ip6_plen = htons(plen); 292 293 /* 294 * Concatenate headers and fill in next header fields. 295 * Here we have, on "m" 296 * IPv6 payload 297 * and we insert headers accordingly. Finally, we should be getting: 298 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 299 * 300 * during the header composing process, "m" points to IPv6 header. 301 * "mprev" points to an extension header prior to esp. 302 */ 303 { 304 u_char *nexthdrp = &ip6->ip6_nxt; 305 struct mbuf *mprev = m; 306 307 /* 308 * we treat dest2 specially. this makes IPsec processing 309 * much easier. 310 * 311 * result: IPv6 dest2 payload 312 * m and mprev will point to IPv6 header. 313 */ 314 if (exthdrs.ip6e_dest2) { 315 if (!hdrsplit) 316 panic("assumption failed: hdr not split"); 317 exthdrs.ip6e_dest2->m_next = m->m_next; 318 m->m_next = exthdrs.ip6e_dest2; 319 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 320 ip6->ip6_nxt = IPPROTO_DSTOPTS; 321 } 322 323 #define MAKE_CHAIN(m, mp, p, i)\ 324 do {\ 325 if (m) {\ 326 if (!hdrsplit) \ 327 panic("assumption failed: hdr not split"); \ 328 *mtod((m), u_char *) = *(p);\ 329 *(p) = (i);\ 330 p = mtod((m), u_char *);\ 331 (m)->m_next = (mp)->m_next;\ 332 (mp)->m_next = (m);\ 333 (mp) = (m);\ 334 }\ 335 } while (0) 336 /* 337 * result: IPv6 hbh dest1 rthdr dest2 payload 338 * m will point to IPv6 header. mprev will point to the 339 * extension header prior to dest2 (rthdr in the above case). 340 */ 341 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, 342 nexthdrp, IPPROTO_HOPOPTS); 343 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, 344 nexthdrp, IPPROTO_DSTOPTS); 345 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, 346 nexthdrp, IPPROTO_ROUTING); 347 348 #ifdef IPSEC 349 if (!needipsec) 350 goto skip_ipsec2; 351 352 /* 353 * pointers after IPsec headers are not valid any more. 354 * other pointers need a great care too. 355 * (IPsec routines should not mangle mbufs prior to AH/ESP) 356 */ 357 exthdrs.ip6e_dest2 = NULL; 358 359 { 360 struct ip6_rthdr *rh = NULL; 361 int segleft_org = 0; 362 struct ipsec_output_state state; 363 364 if (exthdrs.ip6e_rthdr) { 365 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 366 segleft_org = rh->ip6r_segleft; 367 rh->ip6r_segleft = 0; 368 } 369 370 bzero(&state, sizeof(state)); 371 state.m = m; 372 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 373 &needipsectun); 374 m = state.m; 375 if (error) { 376 /* mbuf is already reclaimed in ipsec6_output_trans. */ 377 m = NULL; 378 switch (error) { 379 case EHOSTUNREACH: 380 case ENETUNREACH: 381 case EMSGSIZE: 382 case ENOBUFS: 383 case ENOMEM: 384 break; 385 default: 386 printf("ip6_output (ipsec): error code %d\n", error); 387 /*fall through*/ 388 case ENOENT: 389 /* don't show these error codes to the user */ 390 error = 0; 391 break; 392 } 393 goto bad; 394 } 395 if (exthdrs.ip6e_rthdr) { 396 /* ah6_output doesn't modify mbuf chain */ 397 rh->ip6r_segleft = segleft_org; 398 } 399 } 400 skip_ipsec2:; 401 #endif 402 } 403 404 /* 405 * If there is a routing header, replace destination address field 406 * with the first hop of the routing header. 407 */ 408 if (exthdrs.ip6e_rthdr) { 409 struct ip6_rthdr *rh = 410 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 411 struct ip6_rthdr *)); 412 struct ip6_rthdr0 *rh0; 413 414 finaldst = ip6->ip6_dst; 415 switch(rh->ip6r_type) { 416 case IPV6_RTHDR_TYPE_0: 417 rh0 = (struct ip6_rthdr0 *)rh; 418 ip6->ip6_dst = rh0->ip6r0_addr[0]; 419 bcopy((caddr_t)&rh0->ip6r0_addr[1], 420 (caddr_t)&rh0->ip6r0_addr[0], 421 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1) 422 ); 423 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst; 424 break; 425 default: /* is it possible? */ 426 error = EINVAL; 427 goto bad; 428 } 429 } 430 431 /* Source address validation */ 432 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 433 (flags & IPV6_DADOUTPUT) == 0) { 434 error = EOPNOTSUPP; 435 ip6stat.ip6s_badscope++; 436 goto bad; 437 } 438 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 439 error = EOPNOTSUPP; 440 ip6stat.ip6s_badscope++; 441 goto bad; 442 } 443 444 ip6stat.ip6s_localout++; 445 446 /* 447 * Route packet. 448 */ 449 if (ro == 0) { 450 ro = &ip6route; 451 bzero((caddr_t)ro, sizeof(*ro)); 452 } 453 ro_pmtu = ro; 454 if (opt && opt->ip6po_rthdr) 455 ro = &opt->ip6po_route; 456 dst = (struct sockaddr_in6 *)&ro->ro_dst; 457 /* 458 * If there is a cached route, 459 * check that it is to the same destination 460 * and is still up. If not, free it and try again. 461 */ 462 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 463 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 464 RTFREE(ro->ro_rt); 465 ro->ro_rt = (struct rtentry *)0; 466 } 467 if (ro->ro_rt == 0) { 468 bzero(dst, sizeof(*dst)); 469 dst->sin6_family = AF_INET6; 470 dst->sin6_len = sizeof(struct sockaddr_in6); 471 dst->sin6_addr = ip6->ip6_dst; 472 } 473 #ifdef IPSEC 474 if (needipsec && needipsectun) { 475 struct ipsec_output_state state; 476 477 /* 478 * All the extension headers will become inaccessible 479 * (since they can be encrypted). 480 * Don't panic, we need no more updates to extension headers 481 * on inner IPv6 packet (since they are now encapsulated). 482 * 483 * IPv6 [ESP|AH] IPv6 [extension headers] payload 484 */ 485 bzero(&exthdrs, sizeof(exthdrs)); 486 exthdrs.ip6e_ip6 = m; 487 488 bzero(&state, sizeof(state)); 489 state.m = m; 490 state.ro = (struct route *)ro; 491 state.dst = (struct sockaddr *)dst; 492 493 error = ipsec6_output_tunnel(&state, sp, flags); 494 495 m = state.m; 496 ro = (struct route_in6 *)state.ro; 497 dst = (struct sockaddr_in6 *)state.dst; 498 if (error) { 499 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 500 m0 = m = NULL; 501 m = NULL; 502 switch (error) { 503 case EHOSTUNREACH: 504 case ENETUNREACH: 505 case EMSGSIZE: 506 case ENOBUFS: 507 case ENOMEM: 508 break; 509 default: 510 printf("ip6_output (ipsec): error code %d\n", error); 511 /*fall through*/ 512 case ENOENT: 513 /* don't show these error codes to the user */ 514 error = 0; 515 break; 516 } 517 goto bad; 518 } 519 520 exthdrs.ip6e_ip6 = m; 521 } 522 #endif /*IPSEC*/ 523 524 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 525 /* Unicast */ 526 527 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 528 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 529 /* xxx 530 * interface selection comes here 531 * if an interface is specified from an upper layer, 532 * ifp must point it. 533 */ 534 if (ro->ro_rt == 0) { 535 /* 536 * non-bsdi always clone routes, if parent is 537 * PRF_CLONING. 538 */ 539 rtalloc((struct route *)ro); 540 } 541 if (ro->ro_rt == 0) { 542 ip6stat.ip6s_noroute++; 543 error = EHOSTUNREACH; 544 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 545 goto bad; 546 } 547 ia = ifatoia6(ro->ro_rt->rt_ifa); 548 ifp = ro->ro_rt->rt_ifp; 549 ro->ro_rt->rt_use++; 550 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 551 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 552 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 553 554 in6_ifstat_inc(ifp, ifs6_out_request); 555 556 /* 557 * Check if the outgoing interface conflicts with 558 * the interface specified by ifi6_ifindex (if specified). 559 * Note that loopback interface is always okay. 560 * (this may happen when we are sending a packet to one of 561 * our own addresses.) 562 */ 563 if (opt && opt->ip6po_pktinfo 564 && opt->ip6po_pktinfo->ipi6_ifindex) { 565 if (!(ifp->if_flags & IFF_LOOPBACK) 566 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 567 ip6stat.ip6s_noroute++; 568 in6_ifstat_inc(ifp, ifs6_out_discard); 569 error = EHOSTUNREACH; 570 goto bad; 571 } 572 } 573 574 if (opt && opt->ip6po_hlim != -1) 575 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 576 } else { 577 /* Multicast */ 578 struct in6_multi *in6m; 579 580 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 581 582 /* 583 * See if the caller provided any multicast options 584 */ 585 ifp = NULL; 586 if (im6o != NULL) { 587 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 588 if (im6o->im6o_multicast_ifp != NULL) 589 ifp = im6o->im6o_multicast_ifp; 590 } else 591 ip6->ip6_hlim = ip6_defmcasthlim; 592 593 /* 594 * See if the caller provided the outgoing interface 595 * as an ancillary data. 596 * Boundary check for ifindex is assumed to be already done. 597 */ 598 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 599 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]; 600 601 /* 602 * If the destination is a node-local scope multicast, 603 * the packet should be loop-backed only. 604 */ 605 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 606 /* 607 * If the outgoing interface is already specified, 608 * it should be a loopback interface. 609 */ 610 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 611 ip6stat.ip6s_badscope++; 612 error = ENETUNREACH; /* XXX: better error? */ 613 /* XXX correct ifp? */ 614 in6_ifstat_inc(ifp, ifs6_out_discard); 615 goto bad; 616 } else { 617 ifp = &loif[0]; 618 } 619 } 620 621 if (opt && opt->ip6po_hlim != -1) 622 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 623 624 /* 625 * If caller did not provide an interface lookup a 626 * default in the routing table. This is either a 627 * default for the speicfied group (i.e. a host 628 * route), or a multicast default (a route for the 629 * ``net'' ff00::/8). 630 */ 631 if (ifp == NULL) { 632 if (ro->ro_rt == 0) { 633 ro->ro_rt = rtalloc1((struct sockaddr *) 634 &ro->ro_dst, 0 635 ); 636 } 637 if (ro->ro_rt == 0) { 638 ip6stat.ip6s_noroute++; 639 error = EHOSTUNREACH; 640 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 641 goto bad; 642 } 643 ia = ifatoia6(ro->ro_rt->rt_ifa); 644 ifp = ro->ro_rt->rt_ifp; 645 ro->ro_rt->rt_use++; 646 } 647 648 if ((flags & IPV6_FORWARDING) == 0) 649 in6_ifstat_inc(ifp, ifs6_out_request); 650 in6_ifstat_inc(ifp, ifs6_out_mcast); 651 652 /* 653 * Confirm that the outgoing interface supports multicast. 654 */ 655 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 656 ip6stat.ip6s_noroute++; 657 in6_ifstat_inc(ifp, ifs6_out_discard); 658 error = ENETUNREACH; 659 goto bad; 660 } 661 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 662 if (in6m != NULL && 663 (im6o == NULL || im6o->im6o_multicast_loop)) { 664 /* 665 * If we belong to the destination multicast group 666 * on the outgoing interface, and the caller did not 667 * forbid loopback, loop back a copy. 668 */ 669 ip6_mloopback(ifp, m, dst); 670 } else { 671 /* 672 * If we are acting as a multicast router, perform 673 * multicast forwarding as if the packet had just 674 * arrived on the interface to which we are about 675 * to send. The multicast forwarding function 676 * recursively calls this function, using the 677 * IPV6_FORWARDING flag to prevent infinite recursion. 678 * 679 * Multicasts that are looped back by ip6_mloopback(), 680 * above, will be forwarded by the ip6_input() routine, 681 * if necessary. 682 */ 683 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 684 if (ip6_mforward(ip6, ifp, m) != 0) { 685 m_freem(m); 686 goto done; 687 } 688 } 689 } 690 /* 691 * Multicasts with a hoplimit of zero may be looped back, 692 * above, but must not be transmitted on a network. 693 * Also, multicasts addressed to the loopback interface 694 * are not sent -- the above call to ip6_mloopback() will 695 * loop back a copy if this host actually belongs to the 696 * destination group on the loopback interface. 697 */ 698 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 699 m_freem(m); 700 goto done; 701 } 702 } 703 704 /* 705 * Fill the outgoing inteface to tell the upper layer 706 * to increment per-interface statistics. 707 */ 708 if (ifpp) 709 *ifpp = ifp; 710 711 /* 712 * Determine path MTU. 713 */ 714 if (ro_pmtu != ro) { 715 /* The first hop and the final destination may differ. */ 716 struct sockaddr_in6 *sin6_fin = 717 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 718 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 719 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, 720 &finaldst))) { 721 RTFREE(ro_pmtu->ro_rt); 722 ro_pmtu->ro_rt = (struct rtentry *)0; 723 } 724 if (ro_pmtu->ro_rt == 0) { 725 bzero(sin6_fin, sizeof(*sin6_fin)); 726 sin6_fin->sin6_family = AF_INET6; 727 sin6_fin->sin6_len = sizeof(struct sockaddr_in6); 728 sin6_fin->sin6_addr = finaldst; 729 730 rtalloc((struct route *)ro_pmtu); 731 } 732 } 733 if (ro_pmtu->ro_rt != NULL) { 734 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu; 735 736 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 737 if (mtu > ifmtu) { 738 /* 739 * The MTU on the route is larger than the MTU on 740 * the interface! This shouldn't happen, unless the 741 * MTU of the interface has been changed after the 742 * interface was brought up. Change the MTU in the 743 * route to match the interface MTU (as long as the 744 * field isn't locked). 745 */ 746 mtu = ifmtu; 747 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 748 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */ 749 } 750 } else { 751 mtu = nd_ifinfo[ifp->if_index].linkmtu; 752 } 753 754 /* Fake scoped addresses */ 755 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 756 /* 757 * If source or destination address is a scoped address, and 758 * the packet is going to be sent to a loopback interface, 759 * we should keep the original interface. 760 */ 761 762 /* 763 * XXX: this is a very experimental and temporary solution. 764 * We eventually have sockaddr_in6 and use the sin6_scope_id 765 * field of the structure here. 766 * We rely on the consistency between two scope zone ids 767 * of source add destination, which should already be assured 768 * Larger scopes than link will be supported in the near 769 * future. 770 */ 771 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 772 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])]; 773 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 774 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])]; 775 else 776 origifp = ifp; 777 } 778 else 779 origifp = ifp; 780 #ifndef FAKE_LOOPBACK_IF 781 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 782 #else 783 if (1) 784 #endif 785 { 786 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 787 ip6->ip6_src.s6_addr16[1] = 0; 788 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 789 ip6->ip6_dst.s6_addr16[1] = 0; 790 } 791 792 /* 793 * If the outgoing packet contains a hop-by-hop options header, 794 * it must be examined and processed even by the source node. 795 * (RFC 2460, section 4.) 796 */ 797 if (exthdrs.ip6e_hbh) { 798 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, 799 struct ip6_hbh *); 800 u_int32_t dummy1; /* XXX unused */ 801 u_int32_t dummy2; /* XXX unused */ 802 803 /* 804 * XXX: if we have to send an ICMPv6 error to the sender, 805 * we need the M_LOOP flag since icmp6_error() expects 806 * the IPv6 and the hop-by-hop options header are 807 * continuous unless the flag is set. 808 */ 809 m->m_flags |= M_LOOP; 810 m->m_pkthdr.rcvif = ifp; 811 if (ip6_process_hopopts(m, 812 (u_int8_t *)(hbh + 1), 813 ((hbh->ip6h_len + 1) << 3) - 814 sizeof(struct ip6_hbh), 815 &dummy1, &dummy2) < 0) { 816 /* m was already freed at this point */ 817 error = EINVAL;/* better error? */ 818 goto done; 819 } 820 m->m_flags &= ~M_LOOP; /* XXX */ 821 m->m_pkthdr.rcvif = NULL; 822 } 823 824 #ifdef PFIL_HOOKS 825 /* 826 * Run through list of hooks for output packets. 827 */ 828 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, 829 PFIL_OUT)) != 0) 830 goto done; 831 if (m == NULL) 832 goto done; 833 ip6 = mtod(m, struct ip6_hdr *); 834 #endif /* PFIL_HOOKS */ 835 /* 836 * Send the packet to the outgoing interface. 837 * If necessary, do IPv6 fragmentation before sending. 838 */ 839 tlen = m->m_pkthdr.len; 840 if (tlen <= mtu 841 #ifdef notyet 842 /* 843 * On any link that cannot convey a 1280-octet packet in one piece, 844 * link-specific fragmentation and reassembly must be provided at 845 * a layer below IPv6. [RFC 2460, sec.5] 846 * Thus if the interface has ability of link-level fragmentation, 847 * we can just send the packet even if the packet size is 848 * larger than the link's MTU. 849 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet... 850 */ 851 852 || ifp->if_flags & IFF_FRAGMENTABLE 853 #endif 854 ) 855 { 856 #ifdef IFA_STATS 857 struct in6_ifaddr *ia6; 858 ip6 = mtod(m, struct ip6_hdr *); 859 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 860 if (ia6) { 861 ia6->ia_ifa.ifa_data.ifad_outbytes += 862 m->m_pkthdr.len; 863 } 864 #endif 865 #ifdef OLDIP6OUTPUT 866 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, 867 ro->ro_rt); 868 #else 869 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 870 #endif 871 goto done; 872 } else if (mtu < IPV6_MMTU) { 873 /* 874 * note that path MTU is never less than IPV6_MMTU 875 * (see icmp6_input). 876 */ 877 error = EMSGSIZE; 878 in6_ifstat_inc(ifp, ifs6_out_fragfail); 879 goto bad; 880 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 881 error = EMSGSIZE; 882 in6_ifstat_inc(ifp, ifs6_out_fragfail); 883 goto bad; 884 } else { 885 struct mbuf **mnext, *m_frgpart; 886 struct ip6_frag *ip6f; 887 u_int32_t id = htonl(ip6_id++); 888 u_char nextproto; 889 890 /* 891 * Too large for the destination or interface; 892 * fragment if possible. 893 * Must be able to put at least 8 bytes per fragment. 894 */ 895 hlen = unfragpartlen; 896 if (mtu > IPV6_MAXPACKET) 897 mtu = IPV6_MAXPACKET; 898 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 899 if (len < 8) { 900 error = EMSGSIZE; 901 in6_ifstat_inc(ifp, ifs6_out_fragfail); 902 goto bad; 903 } 904 905 mnext = &m->m_nextpkt; 906 907 /* 908 * Change the next header field of the last header in the 909 * unfragmentable part. 910 */ 911 if (exthdrs.ip6e_rthdr) { 912 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 913 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 914 } else if (exthdrs.ip6e_dest1) { 915 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 916 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 917 } else if (exthdrs.ip6e_hbh) { 918 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 919 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 920 } else { 921 nextproto = ip6->ip6_nxt; 922 ip6->ip6_nxt = IPPROTO_FRAGMENT; 923 } 924 925 /* 926 * Loop through length of segment after first fragment, 927 * make new header and copy data of each part and link onto chain. 928 */ 929 m0 = m; 930 for (off = hlen; off < tlen; off += len) { 931 MGETHDR(m, M_DONTWAIT, MT_HEADER); 932 if (!m) { 933 error = ENOBUFS; 934 ip6stat.ip6s_odropped++; 935 goto sendorfree; 936 } 937 m->m_flags = m0->m_flags & M_COPYFLAGS; 938 *mnext = m; 939 mnext = &m->m_nextpkt; 940 m->m_data += max_linkhdr; 941 mhip6 = mtod(m, struct ip6_hdr *); 942 *mhip6 = *ip6; 943 m->m_len = sizeof(*mhip6); 944 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 945 if (error) { 946 ip6stat.ip6s_odropped++; 947 goto sendorfree; 948 } 949 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 950 if (off + len >= tlen) 951 len = tlen - off; 952 else 953 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 954 mhip6->ip6_plen = htons((u_short)(len + hlen + 955 sizeof(*ip6f) - 956 sizeof(struct ip6_hdr))); 957 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 958 error = ENOBUFS; 959 ip6stat.ip6s_odropped++; 960 goto sendorfree; 961 } 962 m_cat(m, m_frgpart); 963 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 964 m->m_pkthdr.rcvif = (struct ifnet *)0; 965 ip6f->ip6f_reserved = 0; 966 ip6f->ip6f_ident = id; 967 ip6f->ip6f_nxt = nextproto; 968 ip6stat.ip6s_ofragments++; 969 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 970 } 971 972 in6_ifstat_inc(ifp, ifs6_out_fragok); 973 } 974 975 /* 976 * Remove leading garbages. 977 */ 978 sendorfree: 979 m = m0->m_nextpkt; 980 m0->m_nextpkt = 0; 981 m_freem(m0); 982 for (m0 = m; m; m = m0) { 983 m0 = m->m_nextpkt; 984 m->m_nextpkt = 0; 985 if (error == 0) { 986 #ifdef IFA_STATS 987 struct in6_ifaddr *ia6; 988 ip6 = mtod(m, struct ip6_hdr *); 989 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 990 if (ia6) { 991 ia6->ia_ifa.ifa_data.ifad_outbytes += 992 m->m_pkthdr.len; 993 } 994 #endif 995 #ifdef OLDIP6OUTPUT 996 error = (*ifp->if_output)(ifp, m, 997 (struct sockaddr *)dst, 998 ro->ro_rt); 999 #else 1000 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1001 #endif 1002 } else 1003 m_freem(m); 1004 } 1005 1006 if (error == 0) 1007 ip6stat.ip6s_fragmented++; 1008 1009 done: 1010 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1011 RTFREE(ro->ro_rt); 1012 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1013 RTFREE(ro_pmtu->ro_rt); 1014 } 1015 1016 #ifdef IPSEC 1017 if (sp != NULL) 1018 key_freesp(sp); 1019 #endif /* IPSEC */ 1020 1021 return(error); 1022 1023 freehdrs: 1024 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1025 m_freem(exthdrs.ip6e_dest1); 1026 m_freem(exthdrs.ip6e_rthdr); 1027 m_freem(exthdrs.ip6e_dest2); 1028 /* fall through */ 1029 bad: 1030 m_freem(m); 1031 goto done; 1032 } 1033 1034 static int 1035 ip6_copyexthdr(mp, hdr, hlen) 1036 struct mbuf **mp; 1037 caddr_t hdr; 1038 int hlen; 1039 { 1040 struct mbuf *m; 1041 1042 if (hlen > MCLBYTES) 1043 return(ENOBUFS); /* XXX */ 1044 1045 MGET(m, M_DONTWAIT, MT_DATA); 1046 if (!m) 1047 return(ENOBUFS); 1048 1049 if (hlen > MLEN) { 1050 MCLGET(m, M_DONTWAIT); 1051 if ((m->m_flags & M_EXT) == 0) { 1052 m_free(m); 1053 return(ENOBUFS); 1054 } 1055 } 1056 m->m_len = hlen; 1057 if (hdr) 1058 bcopy(hdr, mtod(m, caddr_t), hlen); 1059 1060 *mp = m; 1061 return(0); 1062 } 1063 1064 /* 1065 * Insert jumbo payload option. 1066 */ 1067 static int 1068 ip6_insert_jumboopt(exthdrs, plen) 1069 struct ip6_exthdrs *exthdrs; 1070 u_int32_t plen; 1071 { 1072 struct mbuf *mopt; 1073 u_char *optbuf; 1074 u_int32_t v; 1075 1076 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1077 1078 /* 1079 * If there is no hop-by-hop options header, allocate new one. 1080 * If there is one but it doesn't have enough space to store the 1081 * jumbo payload option, allocate a cluster to store the whole options. 1082 * Otherwise, use it to store the options. 1083 */ 1084 if (exthdrs->ip6e_hbh == 0) { 1085 MGET(mopt, M_DONTWAIT, MT_DATA); 1086 if (mopt == 0) 1087 return(ENOBUFS); 1088 mopt->m_len = JUMBOOPTLEN; 1089 optbuf = mtod(mopt, u_char *); 1090 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1091 exthdrs->ip6e_hbh = mopt; 1092 } else { 1093 struct ip6_hbh *hbh; 1094 1095 mopt = exthdrs->ip6e_hbh; 1096 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1097 /* 1098 * XXX assumption: 1099 * - exthdrs->ip6e_hbh is not referenced from places 1100 * other than exthdrs. 1101 * - exthdrs->ip6e_hbh is not an mbuf chain. 1102 */ 1103 int oldoptlen = mopt->m_len; 1104 struct mbuf *n; 1105 1106 /* 1107 * XXX: give up if the whole (new) hbh header does 1108 * not fit even in an mbuf cluster. 1109 */ 1110 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1111 return(ENOBUFS); 1112 1113 /* 1114 * As a consequence, we must always prepare a cluster 1115 * at this point. 1116 */ 1117 MGET(n, M_DONTWAIT, MT_DATA); 1118 if (n) { 1119 MCLGET(n, M_DONTWAIT); 1120 if ((n->m_flags & M_EXT) == 0) { 1121 m_freem(n); 1122 n = NULL; 1123 } 1124 } 1125 if (!n) 1126 return(ENOBUFS); 1127 n->m_len = oldoptlen + JUMBOOPTLEN; 1128 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1129 oldoptlen); 1130 optbuf = mtod(n, caddr_t) + oldoptlen; 1131 m_freem(mopt); 1132 exthdrs->ip6e_hbh = n; 1133 } else { 1134 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1135 mopt->m_len += JUMBOOPTLEN; 1136 } 1137 optbuf[0] = IP6OPT_PADN; 1138 optbuf[1] = 1; 1139 1140 /* 1141 * Adjust the header length according to the pad and 1142 * the jumbo payload option. 1143 */ 1144 hbh = mtod(mopt, struct ip6_hbh *); 1145 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1146 } 1147 1148 /* fill in the option. */ 1149 optbuf[2] = IP6OPT_JUMBO; 1150 optbuf[3] = 4; 1151 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1152 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1153 1154 /* finally, adjust the packet header length */ 1155 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1156 1157 return(0); 1158 #undef JUMBOOPTLEN 1159 } 1160 1161 /* 1162 * Insert fragment header and copy unfragmentable header portions. 1163 */ 1164 static int 1165 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1166 struct mbuf *m0, *m; 1167 int hlen; 1168 struct ip6_frag **frghdrp; 1169 { 1170 struct mbuf *n, *mlast; 1171 1172 if (hlen > sizeof(struct ip6_hdr)) { 1173 n = m_copym(m0, sizeof(struct ip6_hdr), 1174 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1175 if (n == 0) 1176 return(ENOBUFS); 1177 m->m_next = n; 1178 } else 1179 n = m; 1180 1181 /* Search for the last mbuf of unfragmentable part. */ 1182 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1183 ; 1184 1185 if ((mlast->m_flags & M_EXT) == 0 && 1186 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1187 /* use the trailing space of the last mbuf for the fragment hdr */ 1188 *frghdrp = 1189 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1190 mlast->m_len += sizeof(struct ip6_frag); 1191 m->m_pkthdr.len += sizeof(struct ip6_frag); 1192 } else { 1193 /* allocate a new mbuf for the fragment header */ 1194 struct mbuf *mfrg; 1195 1196 MGET(mfrg, M_DONTWAIT, MT_DATA); 1197 if (mfrg == 0) 1198 return(ENOBUFS); 1199 mfrg->m_len = sizeof(struct ip6_frag); 1200 *frghdrp = mtod(mfrg, struct ip6_frag *); 1201 mlast->m_next = mfrg; 1202 } 1203 1204 return(0); 1205 } 1206 1207 /* 1208 * IP6 socket option processing. 1209 */ 1210 int 1211 ip6_ctloutput(op, so, level, optname, mp) 1212 int op; 1213 struct socket *so; 1214 int level, optname; 1215 struct mbuf **mp; 1216 { 1217 register struct in6pcb *in6p = sotoin6pcb(so); 1218 register struct mbuf *m = *mp; 1219 register int optval = 0; 1220 int error = 0; 1221 struct proc *p = curproc; /* XXX */ 1222 1223 if (level == IPPROTO_IPV6) { 1224 switch (op) { 1225 1226 case PRCO_SETOPT: 1227 switch (optname) { 1228 case IPV6_PKTOPTIONS: 1229 /* m is freed in ip6_pcbopts */ 1230 return(ip6_pcbopts(&in6p->in6p_outputopts, 1231 m, so)); 1232 case IPV6_HOPOPTS: 1233 case IPV6_DSTOPTS: 1234 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1235 error = EPERM; 1236 break; 1237 } 1238 /* fall through */ 1239 case IPV6_UNICAST_HOPS: 1240 case IPV6_RECVOPTS: 1241 case IPV6_RECVRETOPTS: 1242 case IPV6_RECVDSTADDR: 1243 case IPV6_PKTINFO: 1244 case IPV6_HOPLIMIT: 1245 case IPV6_RTHDR: 1246 case IPV6_CHECKSUM: 1247 case IPV6_FAITH: 1248 #ifndef INET6_BINDV6ONLY 1249 case IPV6_BINDV6ONLY: 1250 #endif 1251 if (!m || m->m_len != sizeof(int)) 1252 error = EINVAL; 1253 else { 1254 optval = *mtod(m, int *); 1255 switch (optname) { 1256 1257 case IPV6_UNICAST_HOPS: 1258 if (optval < -1 || optval >= 256) 1259 error = EINVAL; 1260 else { 1261 /* -1 = kernel default */ 1262 in6p->in6p_hops = optval; 1263 } 1264 break; 1265 #define OPTSET(bit) \ 1266 if (optval) \ 1267 in6p->in6p_flags |= bit; \ 1268 else \ 1269 in6p->in6p_flags &= ~bit; 1270 1271 case IPV6_RECVOPTS: 1272 OPTSET(IN6P_RECVOPTS); 1273 break; 1274 1275 case IPV6_RECVRETOPTS: 1276 OPTSET(IN6P_RECVRETOPTS); 1277 break; 1278 1279 case IPV6_RECVDSTADDR: 1280 OPTSET(IN6P_RECVDSTADDR); 1281 break; 1282 1283 case IPV6_PKTINFO: 1284 OPTSET(IN6P_PKTINFO); 1285 break; 1286 1287 case IPV6_HOPLIMIT: 1288 OPTSET(IN6P_HOPLIMIT); 1289 break; 1290 1291 case IPV6_HOPOPTS: 1292 OPTSET(IN6P_HOPOPTS); 1293 break; 1294 1295 case IPV6_DSTOPTS: 1296 OPTSET(IN6P_DSTOPTS); 1297 break; 1298 1299 case IPV6_RTHDR: 1300 OPTSET(IN6P_RTHDR); 1301 break; 1302 1303 case IPV6_CHECKSUM: 1304 in6p->in6p_cksum = optval; 1305 break; 1306 1307 case IPV6_FAITH: 1308 OPTSET(IN6P_FAITH); 1309 break; 1310 1311 #ifndef INET6_BINDV6ONLY 1312 case IPV6_BINDV6ONLY: 1313 OPTSET(IN6P_BINDV6ONLY); 1314 break; 1315 #endif 1316 } 1317 } 1318 break; 1319 #undef OPTSET 1320 1321 case IPV6_MULTICAST_IF: 1322 case IPV6_MULTICAST_HOPS: 1323 case IPV6_MULTICAST_LOOP: 1324 case IPV6_JOIN_GROUP: 1325 case IPV6_LEAVE_GROUP: 1326 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m); 1327 break; 1328 1329 case IPV6_PORTRANGE: 1330 optval = *mtod(m, int *); 1331 1332 switch (optval) { 1333 case IPV6_PORTRANGE_DEFAULT: 1334 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1335 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1336 break; 1337 1338 case IPV6_PORTRANGE_HIGH: 1339 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1340 in6p->in6p_flags |= IN6P_HIGHPORT; 1341 break; 1342 1343 case IPV6_PORTRANGE_LOW: 1344 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1345 in6p->in6p_flags |= IN6P_LOWPORT; 1346 break; 1347 1348 default: 1349 error = EINVAL; 1350 break; 1351 } 1352 break; 1353 1354 #ifdef IPSEC 1355 case IPV6_IPSEC_POLICY: 1356 { 1357 caddr_t req = NULL; 1358 size_t len = 0; 1359 1360 int priv = 0; 1361 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) 1362 priv = 0; 1363 else 1364 priv = 1; 1365 if (m) { 1366 req = mtod(m, caddr_t); 1367 len = m->m_len; 1368 } 1369 error = ipsec6_set_policy(in6p, 1370 optname, req, len, priv); 1371 } 1372 break; 1373 #endif /* IPSEC */ 1374 1375 default: 1376 error = ENOPROTOOPT; 1377 break; 1378 } 1379 if (m) 1380 (void)m_free(m); 1381 break; 1382 1383 case PRCO_GETOPT: 1384 switch (optname) { 1385 1386 case IPV6_OPTIONS: 1387 case IPV6_RETOPTS: 1388 #if 0 1389 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1390 if (in6p->in6p_options) { 1391 m->m_len = in6p->in6p_options->m_len; 1392 bcopy(mtod(in6p->in6p_options, caddr_t), 1393 mtod(m, caddr_t), 1394 (unsigned)m->m_len); 1395 } else 1396 m->m_len = 0; 1397 break; 1398 #else 1399 error = ENOPROTOOPT; 1400 break; 1401 #endif 1402 1403 case IPV6_PKTOPTIONS: 1404 if (in6p->in6p_options) { 1405 *mp = m_copym(in6p->in6p_options, 0, 1406 M_COPYALL, M_WAIT); 1407 } else { 1408 *mp = m_get(M_WAIT, MT_SOOPTS); 1409 (*mp)->m_len = 0; 1410 } 1411 break; 1412 1413 case IPV6_HOPOPTS: 1414 case IPV6_DSTOPTS: 1415 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1416 error = EPERM; 1417 break; 1418 } 1419 /* fall through */ 1420 case IPV6_UNICAST_HOPS: 1421 case IPV6_RECVOPTS: 1422 case IPV6_RECVRETOPTS: 1423 case IPV6_RECVDSTADDR: 1424 case IPV6_PORTRANGE: 1425 case IPV6_PKTINFO: 1426 case IPV6_HOPLIMIT: 1427 case IPV6_RTHDR: 1428 case IPV6_CHECKSUM: 1429 case IPV6_FAITH: 1430 #ifndef INET6_BINDV6ONLY 1431 case IPV6_BINDV6ONLY: 1432 #endif 1433 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1434 m->m_len = sizeof(int); 1435 switch (optname) { 1436 1437 case IPV6_UNICAST_HOPS: 1438 optval = in6p->in6p_hops; 1439 break; 1440 1441 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0) 1442 1443 case IPV6_RECVOPTS: 1444 optval = OPTBIT(IN6P_RECVOPTS); 1445 break; 1446 1447 case IPV6_RECVRETOPTS: 1448 optval = OPTBIT(IN6P_RECVRETOPTS); 1449 break; 1450 1451 case IPV6_RECVDSTADDR: 1452 optval = OPTBIT(IN6P_RECVDSTADDR); 1453 break; 1454 1455 case IPV6_PORTRANGE: 1456 { 1457 int flags; 1458 flags = in6p->in6p_flags; 1459 if (flags & IN6P_HIGHPORT) 1460 optval = IPV6_PORTRANGE_HIGH; 1461 else if (flags & IN6P_LOWPORT) 1462 optval = IPV6_PORTRANGE_LOW; 1463 else 1464 optval = 0; 1465 break; 1466 } 1467 1468 case IPV6_PKTINFO: 1469 optval = OPTBIT(IN6P_PKTINFO); 1470 break; 1471 1472 case IPV6_HOPLIMIT: 1473 optval = OPTBIT(IN6P_HOPLIMIT); 1474 break; 1475 1476 case IPV6_HOPOPTS: 1477 optval = OPTBIT(IN6P_HOPOPTS); 1478 break; 1479 1480 case IPV6_DSTOPTS: 1481 optval = OPTBIT(IN6P_DSTOPTS); 1482 break; 1483 1484 case IPV6_RTHDR: 1485 optval = OPTBIT(IN6P_RTHDR); 1486 break; 1487 1488 case IPV6_CHECKSUM: 1489 optval = in6p->in6p_cksum; 1490 break; 1491 1492 case IPV6_FAITH: 1493 optval = OPTBIT(IN6P_FAITH); 1494 break; 1495 1496 #ifndef INET6_BINDV6ONLY 1497 case IPV6_BINDV6ONLY: 1498 optval = OPTBIT(IN6P_BINDV6ONLY); 1499 break; 1500 #endif 1501 } 1502 *mtod(m, int *) = optval; 1503 break; 1504 1505 case IPV6_MULTICAST_IF: 1506 case IPV6_MULTICAST_HOPS: 1507 case IPV6_MULTICAST_LOOP: 1508 case IPV6_JOIN_GROUP: 1509 case IPV6_LEAVE_GROUP: 1510 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp); 1511 break; 1512 1513 #ifdef IPSEC 1514 case IPV6_IPSEC_POLICY: 1515 { 1516 caddr_t req = NULL; 1517 size_t len = 0; 1518 1519 if (m) { 1520 req = mtod(m, caddr_t); 1521 len = m->m_len; 1522 } 1523 error = ipsec6_get_policy(in6p, req, len, mp); 1524 break; 1525 } 1526 #endif /* IPSEC */ 1527 1528 default: 1529 error = ENOPROTOOPT; 1530 break; 1531 } 1532 break; 1533 } 1534 } else { 1535 error = EINVAL; 1536 if (op == PRCO_SETOPT && *mp) 1537 (void)m_free(*mp); 1538 } 1539 return(error); 1540 } 1541 1542 /* 1543 * Set up IP6 options in pcb for insertion in output packets. 1544 * Store in mbuf with pointer in pcbopt, adding pseudo-option 1545 * with destination address if source routed. 1546 */ 1547 static int 1548 ip6_pcbopts(pktopt, m, so) 1549 struct ip6_pktopts **pktopt; 1550 register struct mbuf *m; 1551 struct socket *so; 1552 { 1553 register struct ip6_pktopts *opt = *pktopt; 1554 int error = 0; 1555 struct proc *p = curproc; /* XXX */ 1556 int priv = 0; 1557 1558 /* turn off any old options. */ 1559 if (opt) { 1560 if (opt->ip6po_m) 1561 (void)m_free(opt->ip6po_m); 1562 } else 1563 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 1564 *pktopt = 0; 1565 1566 if (!m || m->m_len == 0) { 1567 /* 1568 * Only turning off any previous options. 1569 */ 1570 if (opt) 1571 free(opt, M_IP6OPT); 1572 if (m) 1573 (void)m_free(m); 1574 return(0); 1575 } 1576 1577 /* set options specified by user. */ 1578 if (p && !suser(p->p_ucred, &p->p_acflag)) 1579 priv = 1; 1580 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) { 1581 (void)m_free(m); 1582 return(error); 1583 } 1584 *pktopt = opt; 1585 return(0); 1586 } 1587 1588 /* 1589 * Set the IP6 multicast options in response to user setsockopt(). 1590 */ 1591 static int 1592 ip6_setmoptions(optname, im6op, m) 1593 int optname; 1594 struct ip6_moptions **im6op; 1595 struct mbuf *m; 1596 { 1597 int error = 0; 1598 u_int loop, ifindex; 1599 struct ipv6_mreq *mreq; 1600 struct ifnet *ifp; 1601 struct ip6_moptions *im6o = *im6op; 1602 struct route_in6 ro; 1603 struct sockaddr_in6 *dst; 1604 struct in6_multi_mship *imm; 1605 struct proc *p = curproc; /* XXX */ 1606 1607 if (im6o == NULL) { 1608 /* 1609 * No multicast option buffer attached to the pcb; 1610 * allocate one and initialize to default values. 1611 */ 1612 im6o = (struct ip6_moptions *) 1613 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1614 1615 if (im6o == NULL) 1616 return(ENOBUFS); 1617 *im6op = im6o; 1618 im6o->im6o_multicast_ifp = NULL; 1619 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1620 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1621 LIST_INIT(&im6o->im6o_memberships); 1622 } 1623 1624 switch (optname) { 1625 1626 case IPV6_MULTICAST_IF: 1627 /* 1628 * Select the interface for outgoing multicast packets. 1629 */ 1630 if (m == NULL || m->m_len != sizeof(u_int)) { 1631 error = EINVAL; 1632 break; 1633 } 1634 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 1635 if (ifindex < 0 || if_index < ifindex) { 1636 error = ENXIO; /* XXX EINVAL? */ 1637 break; 1638 } 1639 ifp = ifindex2ifnet[ifindex]; 1640 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1641 error = EADDRNOTAVAIL; 1642 break; 1643 } 1644 im6o->im6o_multicast_ifp = ifp; 1645 break; 1646 1647 case IPV6_MULTICAST_HOPS: 1648 { 1649 /* 1650 * Set the IP6 hoplimit for outgoing multicast packets. 1651 */ 1652 int optval; 1653 if (m == NULL || m->m_len != sizeof(int)) { 1654 error = EINVAL; 1655 break; 1656 } 1657 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 1658 if (optval < -1 || optval >= 256) 1659 error = EINVAL; 1660 else if (optval == -1) 1661 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1662 else 1663 im6o->im6o_multicast_hlim = optval; 1664 break; 1665 } 1666 1667 case IPV6_MULTICAST_LOOP: 1668 /* 1669 * Set the loopback flag for outgoing multicast packets. 1670 * Must be zero or one. 1671 */ 1672 if (m == NULL || m->m_len != sizeof(u_int)) { 1673 error = EINVAL; 1674 break; 1675 } 1676 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 1677 if (loop > 1) { 1678 error = EINVAL; 1679 break; 1680 } 1681 im6o->im6o_multicast_loop = loop; 1682 break; 1683 1684 case IPV6_JOIN_GROUP: 1685 /* 1686 * Add a multicast group membership. 1687 * Group must be a valid IP6 multicast address. 1688 */ 1689 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1690 error = EINVAL; 1691 break; 1692 } 1693 mreq = mtod(m, struct ipv6_mreq *); 1694 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1695 /* 1696 * We use the unspecified address to specify to accept 1697 * all multicast addresses. Only super user is allowed 1698 * to do this. 1699 */ 1700 if (suser(p->p_ucred, &p->p_acflag)) { 1701 error = EACCES; 1702 break; 1703 } 1704 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1705 error = EINVAL; 1706 break; 1707 } 1708 1709 /* 1710 * If the interface is specified, validate it. 1711 */ 1712 if (mreq->ipv6mr_interface < 0 1713 || if_index < mreq->ipv6mr_interface) { 1714 error = ENXIO; /* XXX EINVAL? */ 1715 break; 1716 } 1717 /* 1718 * If no interface was explicitly specified, choose an 1719 * appropriate one according to the given multicast address. 1720 */ 1721 if (mreq->ipv6mr_interface == 0) { 1722 /* 1723 * If the multicast address is in node-local scope, 1724 * the interface should be a loopback interface. 1725 * Otherwise, look up the routing table for the 1726 * address, and choose the outgoing interface. 1727 * XXX: is it a good approach? 1728 */ 1729 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 1730 ifp = &loif[0]; 1731 } else { 1732 ro.ro_rt = NULL; 1733 dst = (struct sockaddr_in6 *)&ro.ro_dst; 1734 bzero(dst, sizeof(*dst)); 1735 dst->sin6_len = sizeof(struct sockaddr_in6); 1736 dst->sin6_family = AF_INET6; 1737 dst->sin6_addr = mreq->ipv6mr_multiaddr; 1738 rtalloc((struct route *)&ro); 1739 if (ro.ro_rt == NULL) { 1740 error = EADDRNOTAVAIL; 1741 break; 1742 } 1743 ifp = ro.ro_rt->rt_ifp; 1744 rtfree(ro.ro_rt); 1745 } 1746 } else 1747 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1748 1749 /* 1750 * See if we found an interface, and confirm that it 1751 * supports multicast 1752 */ 1753 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1754 error = EADDRNOTAVAIL; 1755 break; 1756 } 1757 /* 1758 * Put interface index into the multicast address, 1759 * if the address has link-local scope. 1760 */ 1761 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1762 mreq->ipv6mr_multiaddr.s6_addr16[1] 1763 = htons(mreq->ipv6mr_interface); 1764 } 1765 /* 1766 * See if the membership already exists. 1767 */ 1768 for (imm = im6o->im6o_memberships.lh_first; 1769 imm != NULL; imm = imm->i6mm_chain.le_next) 1770 if (imm->i6mm_maddr->in6m_ifp == ifp && 1771 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1772 &mreq->ipv6mr_multiaddr)) 1773 break; 1774 if (imm != NULL) { 1775 error = EADDRINUSE; 1776 break; 1777 } 1778 /* 1779 * Everything looks good; add a new record to the multicast 1780 * address list for the given interface. 1781 */ 1782 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 1783 if (imm == NULL) { 1784 error = ENOBUFS; 1785 break; 1786 } 1787 if ((imm->i6mm_maddr = 1788 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 1789 free(imm, M_IPMADDR); 1790 break; 1791 } 1792 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 1793 break; 1794 1795 case IPV6_LEAVE_GROUP: 1796 /* 1797 * Drop a multicast group membership. 1798 * Group must be a valid IP6 multicast address. 1799 */ 1800 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1801 error = EINVAL; 1802 break; 1803 } 1804 mreq = mtod(m, struct ipv6_mreq *); 1805 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1806 if (suser(p->p_ucred, &p->p_acflag)) { 1807 error = EACCES; 1808 break; 1809 } 1810 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1811 error = EINVAL; 1812 break; 1813 } 1814 /* 1815 * If an interface address was specified, get a pointer 1816 * to its ifnet structure. 1817 */ 1818 if (mreq->ipv6mr_interface < 0 1819 || if_index < mreq->ipv6mr_interface) { 1820 error = ENXIO; /* XXX EINVAL? */ 1821 break; 1822 } 1823 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1824 /* 1825 * Put interface index into the multicast address, 1826 * if the address has link-local scope. 1827 */ 1828 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1829 mreq->ipv6mr_multiaddr.s6_addr16[1] 1830 = htons(mreq->ipv6mr_interface); 1831 } 1832 /* 1833 * Find the membership in the membership list. 1834 */ 1835 for (imm = im6o->im6o_memberships.lh_first; 1836 imm != NULL; imm = imm->i6mm_chain.le_next) { 1837 if ((ifp == NULL || 1838 imm->i6mm_maddr->in6m_ifp == ifp) && 1839 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1840 &mreq->ipv6mr_multiaddr)) 1841 break; 1842 } 1843 if (imm == NULL) { 1844 /* Unable to resolve interface */ 1845 error = EADDRNOTAVAIL; 1846 break; 1847 } 1848 /* 1849 * Give up the multicast address record to which the 1850 * membership points. 1851 */ 1852 LIST_REMOVE(imm, i6mm_chain); 1853 in6_delmulti(imm->i6mm_maddr); 1854 free(imm, M_IPMADDR); 1855 break; 1856 1857 default: 1858 error = EOPNOTSUPP; 1859 break; 1860 } 1861 1862 /* 1863 * If all options have default values, no need to keep the mbuf. 1864 */ 1865 if (im6o->im6o_multicast_ifp == NULL && 1866 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 1867 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 1868 im6o->im6o_memberships.lh_first == NULL) { 1869 free(*im6op, M_IPMOPTS); 1870 *im6op = NULL; 1871 } 1872 1873 return(error); 1874 } 1875 1876 /* 1877 * Return the IP6 multicast options in response to user getsockopt(). 1878 */ 1879 static int 1880 ip6_getmoptions(optname, im6o, mp) 1881 int optname; 1882 register struct ip6_moptions *im6o; 1883 register struct mbuf **mp; 1884 { 1885 u_int *hlim, *loop, *ifindex; 1886 1887 *mp = m_get(M_WAIT, MT_SOOPTS); 1888 1889 switch (optname) { 1890 1891 case IPV6_MULTICAST_IF: 1892 ifindex = mtod(*mp, u_int *); 1893 (*mp)->m_len = sizeof(u_int); 1894 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 1895 *ifindex = 0; 1896 else 1897 *ifindex = im6o->im6o_multicast_ifp->if_index; 1898 return(0); 1899 1900 case IPV6_MULTICAST_HOPS: 1901 hlim = mtod(*mp, u_int *); 1902 (*mp)->m_len = sizeof(u_int); 1903 if (im6o == NULL) 1904 *hlim = ip6_defmcasthlim; 1905 else 1906 *hlim = im6o->im6o_multicast_hlim; 1907 return(0); 1908 1909 case IPV6_MULTICAST_LOOP: 1910 loop = mtod(*mp, u_int *); 1911 (*mp)->m_len = sizeof(u_int); 1912 if (im6o == NULL) 1913 *loop = ip6_defmcasthlim; 1914 else 1915 *loop = im6o->im6o_multicast_loop; 1916 return(0); 1917 1918 default: 1919 return(EOPNOTSUPP); 1920 } 1921 } 1922 1923 /* 1924 * Discard the IP6 multicast options. 1925 */ 1926 void 1927 ip6_freemoptions(im6o) 1928 register struct ip6_moptions *im6o; 1929 { 1930 struct in6_multi_mship *imm; 1931 1932 if (im6o == NULL) 1933 return; 1934 1935 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 1936 LIST_REMOVE(imm, i6mm_chain); 1937 if (imm->i6mm_maddr) 1938 in6_delmulti(imm->i6mm_maddr); 1939 free(imm, M_IPMADDR); 1940 } 1941 free(im6o, M_IPMOPTS); 1942 } 1943 1944 /* 1945 * Set IPv6 outgoing packet options based on advanced API. 1946 */ 1947 int 1948 ip6_setpktoptions(control, opt, priv) 1949 struct mbuf *control; 1950 struct ip6_pktopts *opt; 1951 int priv; 1952 { 1953 register struct cmsghdr *cm = 0; 1954 1955 if (control == 0 || opt == 0) 1956 return(EINVAL); 1957 1958 bzero(opt, sizeof(*opt)); 1959 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */ 1960 1961 /* 1962 * XXX: Currently, we assume all the optional information is stored 1963 * in a single mbuf. 1964 */ 1965 if (control->m_next) 1966 return(EINVAL); 1967 1968 opt->ip6po_m = control; 1969 1970 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 1971 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1972 cm = mtod(control, struct cmsghdr *); 1973 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 1974 return(EINVAL); 1975 if (cm->cmsg_level != IPPROTO_IPV6) 1976 continue; 1977 1978 switch(cm->cmsg_type) { 1979 case IPV6_PKTINFO: 1980 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 1981 return(EINVAL); 1982 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 1983 if (opt->ip6po_pktinfo->ipi6_ifindex && 1984 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr)) 1985 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] = 1986 htons(opt->ip6po_pktinfo->ipi6_ifindex); 1987 1988 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index 1989 || opt->ip6po_pktinfo->ipi6_ifindex < 0) { 1990 return(ENXIO); 1991 } 1992 1993 /* 1994 * Check if the requested source address is indeed a 1995 * unicast address assigned to the node. 1996 */ 1997 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 1998 struct ifaddr *ia; 1999 struct sockaddr_in6 sin6; 2000 2001 bzero(&sin6, sizeof(sin6)); 2002 sin6.sin6_len = sizeof(sin6); 2003 sin6.sin6_family = AF_INET6; 2004 sin6.sin6_addr = 2005 opt->ip6po_pktinfo->ipi6_addr; 2006 ia = ifa_ifwithaddr(sin6tosa(&sin6)); 2007 if (ia == NULL || 2008 (opt->ip6po_pktinfo->ipi6_ifindex && 2009 (ia->ifa_ifp->if_index != 2010 opt->ip6po_pktinfo->ipi6_ifindex))) { 2011 return(EADDRNOTAVAIL); 2012 } 2013 /* 2014 * Check if the requested source address is 2015 * indeed a unicast address assigned to the 2016 * node. 2017 */ 2018 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr)) 2019 return(EADDRNOTAVAIL); 2020 } 2021 break; 2022 2023 case IPV6_HOPLIMIT: 2024 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 2025 return(EINVAL); 2026 2027 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim, 2028 sizeof(opt->ip6po_hlim)); 2029 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255) 2030 return(EINVAL); 2031 break; 2032 2033 case IPV6_NEXTHOP: 2034 if (!priv) 2035 return(EPERM); 2036 2037 if (cm->cmsg_len < sizeof(u_char) || 2038 /* check if cmsg_len is large enough for sa_len */ 2039 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 2040 return(EINVAL); 2041 2042 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm); 2043 2044 break; 2045 2046 case IPV6_HOPOPTS: 2047 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2048 return(EINVAL); 2049 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm); 2050 if (cm->cmsg_len != 2051 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3)) 2052 return(EINVAL); 2053 break; 2054 2055 case IPV6_DSTOPTS: 2056 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2057 return(EINVAL); 2058 2059 /* 2060 * If there is no routing header yet, the destination 2061 * options header should be put on the 1st part. 2062 * Otherwise, the header should be on the 2nd part. 2063 * (See RFC 2460, section 4.1) 2064 */ 2065 if (opt->ip6po_rthdr == NULL) { 2066 opt->ip6po_dest1 = 2067 (struct ip6_dest *)CMSG_DATA(cm); 2068 if (cm->cmsg_len != 2069 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1) 2070 << 3)) 2071 return(EINVAL); 2072 } 2073 else { 2074 opt->ip6po_dest2 = 2075 (struct ip6_dest *)CMSG_DATA(cm); 2076 if (cm->cmsg_len != 2077 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) 2078 << 3)) 2079 return(EINVAL); 2080 } 2081 break; 2082 2083 case IPV6_RTHDR: 2084 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2085 return(EINVAL); 2086 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm); 2087 if (cm->cmsg_len != 2088 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3)) 2089 return(EINVAL); 2090 switch(opt->ip6po_rthdr->ip6r_type) { 2091 case IPV6_RTHDR_TYPE_0: 2092 if (opt->ip6po_rthdr->ip6r_segleft == 0) 2093 return(EINVAL); 2094 break; 2095 default: 2096 return(EINVAL); 2097 } 2098 break; 2099 2100 default: 2101 return(ENOPROTOOPT); 2102 } 2103 } 2104 2105 return(0); 2106 } 2107 2108 /* 2109 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2110 * packet to the input queue of a specified interface. Note that this 2111 * calls the output routine of the loopback "driver", but with an interface 2112 * pointer that might NOT be &loif -- easier than replicating that code here. 2113 */ 2114 void 2115 ip6_mloopback(ifp, m, dst) 2116 struct ifnet *ifp; 2117 register struct mbuf *m; 2118 register struct sockaddr_in6 *dst; 2119 { 2120 struct mbuf *copym; 2121 struct ip6_hdr *ip6; 2122 2123 copym = m_copy(m, 0, M_COPYALL); 2124 if (copym == NULL) 2125 return; 2126 2127 /* 2128 * Make sure to deep-copy IPv6 header portion in case the data 2129 * is in an mbuf cluster, so that we can safely override the IPv6 2130 * header portion later. 2131 */ 2132 if ((copym->m_flags & M_EXT) != 0 || 2133 copym->m_len < sizeof(struct ip6_hdr)) { 2134 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2135 if (copym == NULL) 2136 return; 2137 } 2138 2139 #ifdef DIAGNOSTIC 2140 if (copym->m_len < sizeof(*ip6)) { 2141 m_freem(copym); 2142 return; 2143 } 2144 #endif 2145 2146 #ifndef FAKE_LOOPBACK_IF 2147 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2148 #else 2149 if (1) 2150 #endif 2151 { 2152 ip6 = mtod(copym, struct ip6_hdr *); 2153 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 2154 ip6->ip6_src.s6_addr16[1] = 0; 2155 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 2156 ip6->ip6_dst.s6_addr16[1] = 0; 2157 } 2158 2159 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL); 2160 } 2161 2162 /* 2163 * Chop IPv6 header off from the payload. 2164 */ 2165 static int 2166 ip6_splithdr(m, exthdrs) 2167 struct mbuf *m; 2168 struct ip6_exthdrs *exthdrs; 2169 { 2170 struct mbuf *mh; 2171 struct ip6_hdr *ip6; 2172 2173 ip6 = mtod(m, struct ip6_hdr *); 2174 if (m->m_len > sizeof(*ip6)) { 2175 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2176 if (mh == 0) { 2177 m_freem(m); 2178 return ENOBUFS; 2179 } 2180 M_COPY_PKTHDR(mh, m); 2181 MH_ALIGN(mh, sizeof(*ip6)); 2182 m->m_flags &= ~M_PKTHDR; 2183 m->m_len -= sizeof(*ip6); 2184 m->m_data += sizeof(*ip6); 2185 mh->m_next = m; 2186 m = mh; 2187 m->m_len = sizeof(*ip6); 2188 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2189 } 2190 exthdrs->ip6e_ip6 = m; 2191 return 0; 2192 } 2193 2194 /* 2195 * Compute IPv6 extension header length. 2196 */ 2197 int 2198 ip6_optlen(in6p) 2199 struct in6pcb *in6p; 2200 { 2201 int len; 2202 2203 if (!in6p->in6p_outputopts) 2204 return 0; 2205 2206 len = 0; 2207 #define elen(x) \ 2208 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2209 2210 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2211 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2212 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2213 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2214 return len; 2215 #undef elen 2216 } 2217