1 /* $NetBSD: ip6_output.c,v 1.24 2000/07/06 12:51:41 itojun Exp $ */ 2 /* $KAME: ip6_output.c,v 1.115 2000/07/03 13:23:28 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 66 */ 67 68 #include "opt_inet.h" 69 #include "opt_ipsec.h" 70 #include "opt_pfil_hooks.h" 71 72 #include <sys/param.h> 73 #include <sys/malloc.h> 74 #include <sys/mbuf.h> 75 #include <sys/errno.h> 76 #include <sys/protosw.h> 77 #include <sys/socket.h> 78 #include <sys/socketvar.h> 79 #include <sys/systm.h> 80 #include <sys/proc.h> 81 82 #include <net/if.h> 83 #include <net/route.h> 84 #ifdef PFIL_HOOKS 85 #include <net/pfil.h> 86 #endif 87 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 #include <netinet/ip6.h> 91 #include <netinet/icmp6.h> 92 #include <netinet6/ip6_var.h> 93 #include <netinet6/in6_pcb.h> 94 #include <netinet6/nd6.h> 95 96 #ifdef IPSEC 97 #include <netinet6/ipsec.h> 98 #include <netkey/key.h> 99 #endif /* IPSEC */ 100 101 #include "loop.h" 102 103 #include <net/net_osdep.h> 104 105 #ifdef IPV6FIREWALL 106 #include <netinet6/ip6_fw.h> 107 #endif 108 109 struct ip6_exthdrs { 110 struct mbuf *ip6e_ip6; 111 struct mbuf *ip6e_hbh; 112 struct mbuf *ip6e_dest1; 113 struct mbuf *ip6e_rthdr; 114 struct mbuf *ip6e_dest2; 115 }; 116 117 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 118 struct socket *)); 119 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 120 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 121 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 122 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 123 struct ip6_frag **)); 124 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 125 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 126 127 extern struct ifnet loif[NLOOP]; 128 129 /* 130 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 131 * header (with pri, len, nxt, hlim, src, dst). 132 * This function may modify ver and hlim only. 133 * The mbuf chain containing the packet will be freed. 134 * The mbuf opt, if present, will not be freed. 135 */ 136 int 137 ip6_output(m0, opt, ro, flags, im6o, ifpp) 138 struct mbuf *m0; 139 struct ip6_pktopts *opt; 140 struct route_in6 *ro; 141 int flags; 142 struct ip6_moptions *im6o; 143 struct ifnet **ifpp; /* XXX: just for statistics */ 144 { 145 struct ip6_hdr *ip6, *mhip6; 146 struct ifnet *ifp, *origifp; 147 struct mbuf *m = m0; 148 int hlen, tlen, len, off; 149 struct route_in6 ip6route; 150 struct sockaddr_in6 *dst; 151 int error = 0; 152 struct in6_ifaddr *ia; 153 u_long mtu; 154 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 155 struct ip6_exthdrs exthdrs; 156 struct in6_addr finaldst; 157 struct route_in6 *ro_pmtu = NULL; 158 int hdrsplit = 0; 159 int needipsec = 0; 160 #ifdef PFIL_HOOKS 161 struct packet_filter_hook *pfh; 162 struct mbuf *m1; 163 int rv; 164 #endif /* PFIL_HOOKS */ 165 #ifdef IPSEC 166 int needipsectun = 0; 167 struct socket *so; 168 struct secpolicy *sp = NULL; 169 170 /* for AH processing. stupid to have "socket" variable in IP layer... */ 171 so = ipsec_getsocket(m); 172 ipsec_setsocket(m, NULL); 173 ip6 = mtod(m, struct ip6_hdr *); 174 #endif /* IPSEC */ 175 176 #define MAKE_EXTHDR(hp, mp) \ 177 do { \ 178 if (hp) { \ 179 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 180 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 181 ((eh)->ip6e_len + 1) << 3); \ 182 if (error) \ 183 goto freehdrs; \ 184 } \ 185 } while (0) 186 187 bzero(&exthdrs, sizeof(exthdrs)); 188 if (opt) { 189 /* Hop-by-Hop options header */ 190 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 191 /* Destination options header(1st part) */ 192 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 193 /* Routing header */ 194 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 195 /* Destination options header(2nd part) */ 196 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 197 } 198 199 #ifdef IPSEC 200 /* get a security policy for this packet */ 201 if (so == NULL) 202 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error); 203 else 204 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error); 205 206 if (sp == NULL) { 207 ipsec6stat.out_inval++; 208 goto freehdrs; 209 } 210 211 error = 0; 212 213 /* check policy */ 214 switch (sp->policy) { 215 case IPSEC_POLICY_DISCARD: 216 /* 217 * This packet is just discarded. 218 */ 219 ipsec6stat.out_polvio++; 220 goto freehdrs; 221 222 case IPSEC_POLICY_BYPASS: 223 case IPSEC_POLICY_NONE: 224 /* no need to do IPsec. */ 225 needipsec = 0; 226 break; 227 228 case IPSEC_POLICY_IPSEC: 229 if (sp->req == NULL) { 230 /* XXX should be panic ? */ 231 printf("ip6_output: No IPsec request specified.\n"); 232 error = EINVAL; 233 goto freehdrs; 234 } 235 needipsec = 1; 236 break; 237 238 case IPSEC_POLICY_ENTRUST: 239 default: 240 printf("ip6_output: Invalid policy found. %d\n", sp->policy); 241 } 242 #endif /* IPSEC */ 243 244 /* 245 * Calculate the total length of the extension header chain. 246 * Keep the length of the unfragmentable part for fragmentation. 247 */ 248 optlen = 0; 249 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 250 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 251 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 252 unfragpartlen = optlen + sizeof(struct ip6_hdr); 253 /* NOTE: we don't add AH/ESP length here. do that later. */ 254 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 255 256 /* 257 * If we need IPsec, or there is at least one extension header, 258 * separate IP6 header from the payload. 259 */ 260 if ((needipsec || optlen) && !hdrsplit) { 261 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 262 m = NULL; 263 goto freehdrs; 264 } 265 m = exthdrs.ip6e_ip6; 266 hdrsplit++; 267 } 268 269 /* adjust pointer */ 270 ip6 = mtod(m, struct ip6_hdr *); 271 272 /* adjust mbuf packet header length */ 273 m->m_pkthdr.len += optlen; 274 plen = m->m_pkthdr.len - sizeof(*ip6); 275 276 /* If this is a jumbo payload, insert a jumbo payload option. */ 277 if (plen > IPV6_MAXPACKET) { 278 if (!hdrsplit) { 279 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 280 m = NULL; 281 goto freehdrs; 282 } 283 m = exthdrs.ip6e_ip6; 284 hdrsplit++; 285 } 286 /* adjust pointer */ 287 ip6 = mtod(m, struct ip6_hdr *); 288 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 289 goto freehdrs; 290 ip6->ip6_plen = 0; 291 } else 292 ip6->ip6_plen = htons(plen); 293 294 /* 295 * Concatenate headers and fill in next header fields. 296 * Here we have, on "m" 297 * IPv6 payload 298 * and we insert headers accordingly. Finally, we should be getting: 299 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 300 * 301 * during the header composing process, "m" points to IPv6 header. 302 * "mprev" points to an extension header prior to esp. 303 */ 304 { 305 u_char *nexthdrp = &ip6->ip6_nxt; 306 struct mbuf *mprev = m; 307 308 /* 309 * we treat dest2 specially. this makes IPsec processing 310 * much easier. 311 * 312 * result: IPv6 dest2 payload 313 * m and mprev will point to IPv6 header. 314 */ 315 if (exthdrs.ip6e_dest2) { 316 if (!hdrsplit) 317 panic("assumption failed: hdr not split"); 318 exthdrs.ip6e_dest2->m_next = m->m_next; 319 m->m_next = exthdrs.ip6e_dest2; 320 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 321 ip6->ip6_nxt = IPPROTO_DSTOPTS; 322 } 323 324 #define MAKE_CHAIN(m, mp, p, i)\ 325 do {\ 326 if (m) {\ 327 if (!hdrsplit) \ 328 panic("assumption failed: hdr not split"); \ 329 *mtod((m), u_char *) = *(p);\ 330 *(p) = (i);\ 331 p = mtod((m), u_char *);\ 332 (m)->m_next = (mp)->m_next;\ 333 (mp)->m_next = (m);\ 334 (mp) = (m);\ 335 }\ 336 } while (0) 337 /* 338 * result: IPv6 hbh dest1 rthdr dest2 payload 339 * m will point to IPv6 header. mprev will point to the 340 * extension header prior to dest2 (rthdr in the above case). 341 */ 342 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, 343 nexthdrp, IPPROTO_HOPOPTS); 344 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, 345 nexthdrp, IPPROTO_DSTOPTS); 346 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, 347 nexthdrp, IPPROTO_ROUTING); 348 349 #ifdef IPSEC 350 if (!needipsec) 351 goto skip_ipsec2; 352 353 /* 354 * pointers after IPsec headers are not valid any more. 355 * other pointers need a great care too. 356 * (IPsec routines should not mangle mbufs prior to AH/ESP) 357 */ 358 exthdrs.ip6e_dest2 = NULL; 359 360 { 361 struct ip6_rthdr *rh = NULL; 362 int segleft_org = 0; 363 struct ipsec_output_state state; 364 365 if (exthdrs.ip6e_rthdr) { 366 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 367 segleft_org = rh->ip6r_segleft; 368 rh->ip6r_segleft = 0; 369 } 370 371 bzero(&state, sizeof(state)); 372 state.m = m; 373 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 374 &needipsectun); 375 m = state.m; 376 if (error) { 377 /* mbuf is already reclaimed in ipsec6_output_trans. */ 378 m = NULL; 379 switch (error) { 380 case EHOSTUNREACH: 381 case ENETUNREACH: 382 case EMSGSIZE: 383 case ENOBUFS: 384 case ENOMEM: 385 break; 386 default: 387 printf("ip6_output (ipsec): error code %d\n", error); 388 /*fall through*/ 389 case ENOENT: 390 /* don't show these error codes to the user */ 391 error = 0; 392 break; 393 } 394 goto bad; 395 } 396 if (exthdrs.ip6e_rthdr) { 397 /* ah6_output doesn't modify mbuf chain */ 398 rh->ip6r_segleft = segleft_org; 399 } 400 } 401 skip_ipsec2:; 402 #endif 403 } 404 405 /* 406 * If there is a routing header, replace destination address field 407 * with the first hop of the routing header. 408 */ 409 if (exthdrs.ip6e_rthdr) { 410 struct ip6_rthdr *rh = 411 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 412 struct ip6_rthdr *)); 413 struct ip6_rthdr0 *rh0; 414 415 finaldst = ip6->ip6_dst; 416 switch(rh->ip6r_type) { 417 case IPV6_RTHDR_TYPE_0: 418 rh0 = (struct ip6_rthdr0 *)rh; 419 ip6->ip6_dst = rh0->ip6r0_addr[0]; 420 bcopy((caddr_t)&rh0->ip6r0_addr[1], 421 (caddr_t)&rh0->ip6r0_addr[0], 422 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1) 423 ); 424 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst; 425 break; 426 default: /* is it possible? */ 427 error = EINVAL; 428 goto bad; 429 } 430 } 431 432 /* Source address validation */ 433 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 434 (flags & IPV6_DADOUTPUT) == 0) { 435 error = EOPNOTSUPP; 436 ip6stat.ip6s_badscope++; 437 goto bad; 438 } 439 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 440 error = EOPNOTSUPP; 441 ip6stat.ip6s_badscope++; 442 goto bad; 443 } 444 445 ip6stat.ip6s_localout++; 446 447 /* 448 * Route packet. 449 */ 450 if (ro == 0) { 451 ro = &ip6route; 452 bzero((caddr_t)ro, sizeof(*ro)); 453 } 454 ro_pmtu = ro; 455 if (opt && opt->ip6po_rthdr) 456 ro = &opt->ip6po_route; 457 dst = (struct sockaddr_in6 *)&ro->ro_dst; 458 /* 459 * If there is a cached route, 460 * check that it is to the same destination 461 * and is still up. If not, free it and try again. 462 */ 463 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 464 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 465 RTFREE(ro->ro_rt); 466 ro->ro_rt = (struct rtentry *)0; 467 } 468 if (ro->ro_rt == 0) { 469 bzero(dst, sizeof(*dst)); 470 dst->sin6_family = AF_INET6; 471 dst->sin6_len = sizeof(struct sockaddr_in6); 472 dst->sin6_addr = ip6->ip6_dst; 473 } 474 #ifdef IPSEC 475 if (needipsec && needipsectun) { 476 struct ipsec_output_state state; 477 478 /* 479 * All the extension headers will become inaccessible 480 * (since they can be encrypted). 481 * Don't panic, we need no more updates to extension headers 482 * on inner IPv6 packet (since they are now encapsulated). 483 * 484 * IPv6 [ESP|AH] IPv6 [extension headers] payload 485 */ 486 bzero(&exthdrs, sizeof(exthdrs)); 487 exthdrs.ip6e_ip6 = m; 488 489 bzero(&state, sizeof(state)); 490 state.m = m; 491 state.ro = (struct route *)ro; 492 state.dst = (struct sockaddr *)dst; 493 494 error = ipsec6_output_tunnel(&state, sp, flags); 495 496 m = state.m; 497 ro = (struct route_in6 *)state.ro; 498 dst = (struct sockaddr_in6 *)state.dst; 499 if (error) { 500 /* mbuf is already reclaimed in ipsec6_output_tunnel. */ 501 m0 = m = NULL; 502 m = NULL; 503 switch (error) { 504 case EHOSTUNREACH: 505 case ENETUNREACH: 506 case EMSGSIZE: 507 case ENOBUFS: 508 case ENOMEM: 509 break; 510 default: 511 printf("ip6_output (ipsec): error code %d\n", error); 512 /*fall through*/ 513 case ENOENT: 514 /* don't show these error codes to the user */ 515 error = 0; 516 break; 517 } 518 goto bad; 519 } 520 521 exthdrs.ip6e_ip6 = m; 522 } 523 #endif /*IPSEC*/ 524 525 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 526 /* Unicast */ 527 528 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 529 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 530 /* xxx 531 * interface selection comes here 532 * if an interface is specified from an upper layer, 533 * ifp must point it. 534 */ 535 if (ro->ro_rt == 0) { 536 /* 537 * non-bsdi always clone routes, if parent is 538 * PRF_CLONING. 539 */ 540 rtalloc((struct route *)ro); 541 } 542 if (ro->ro_rt == 0) { 543 ip6stat.ip6s_noroute++; 544 error = EHOSTUNREACH; 545 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 546 goto bad; 547 } 548 ia = ifatoia6(ro->ro_rt->rt_ifa); 549 ifp = ro->ro_rt->rt_ifp; 550 ro->ro_rt->rt_use++; 551 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 552 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 553 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 554 555 in6_ifstat_inc(ifp, ifs6_out_request); 556 557 /* 558 * Check if the outgoing interface conflicts with 559 * the interface specified by ifi6_ifindex (if specified). 560 * Note that loopback interface is always okay. 561 * (this may happen when we are sending a packet to one of 562 * our own addresses.) 563 */ 564 if (opt && opt->ip6po_pktinfo 565 && opt->ip6po_pktinfo->ipi6_ifindex) { 566 if (!(ifp->if_flags & IFF_LOOPBACK) 567 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 568 ip6stat.ip6s_noroute++; 569 in6_ifstat_inc(ifp, ifs6_out_discard); 570 error = EHOSTUNREACH; 571 goto bad; 572 } 573 } 574 575 if (opt && opt->ip6po_hlim != -1) 576 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 577 } else { 578 /* Multicast */ 579 struct in6_multi *in6m; 580 581 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 582 583 /* 584 * See if the caller provided any multicast options 585 */ 586 ifp = NULL; 587 if (im6o != NULL) { 588 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 589 if (im6o->im6o_multicast_ifp != NULL) 590 ifp = im6o->im6o_multicast_ifp; 591 } else 592 ip6->ip6_hlim = ip6_defmcasthlim; 593 594 /* 595 * See if the caller provided the outgoing interface 596 * as an ancillary data. 597 * Boundary check for ifindex is assumed to be already done. 598 */ 599 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 600 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]; 601 602 /* 603 * If the destination is a node-local scope multicast, 604 * the packet should be loop-backed only. 605 */ 606 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 607 /* 608 * If the outgoing interface is already specified, 609 * it should be a loopback interface. 610 */ 611 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 612 ip6stat.ip6s_badscope++; 613 error = ENETUNREACH; /* XXX: better error? */ 614 /* XXX correct ifp? */ 615 in6_ifstat_inc(ifp, ifs6_out_discard); 616 goto bad; 617 } else { 618 ifp = &loif[0]; 619 } 620 } 621 622 if (opt && opt->ip6po_hlim != -1) 623 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 624 625 /* 626 * If caller did not provide an interface lookup a 627 * default in the routing table. This is either a 628 * default for the speicfied group (i.e. a host 629 * route), or a multicast default (a route for the 630 * ``net'' ff00::/8). 631 */ 632 if (ifp == NULL) { 633 if (ro->ro_rt == 0) { 634 ro->ro_rt = rtalloc1((struct sockaddr *) 635 &ro->ro_dst, 0 636 ); 637 } 638 if (ro->ro_rt == 0) { 639 ip6stat.ip6s_noroute++; 640 error = EHOSTUNREACH; 641 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 642 goto bad; 643 } 644 ia = ifatoia6(ro->ro_rt->rt_ifa); 645 ifp = ro->ro_rt->rt_ifp; 646 ro->ro_rt->rt_use++; 647 } 648 649 if ((flags & IPV6_FORWARDING) == 0) 650 in6_ifstat_inc(ifp, ifs6_out_request); 651 in6_ifstat_inc(ifp, ifs6_out_mcast); 652 653 /* 654 * Confirm that the outgoing interface supports multicast. 655 */ 656 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 657 ip6stat.ip6s_noroute++; 658 in6_ifstat_inc(ifp, ifs6_out_discard); 659 error = ENETUNREACH; 660 goto bad; 661 } 662 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 663 if (in6m != NULL && 664 (im6o == NULL || im6o->im6o_multicast_loop)) { 665 /* 666 * If we belong to the destination multicast group 667 * on the outgoing interface, and the caller did not 668 * forbid loopback, loop back a copy. 669 */ 670 ip6_mloopback(ifp, m, dst); 671 } else { 672 /* 673 * If we are acting as a multicast router, perform 674 * multicast forwarding as if the packet had just 675 * arrived on the interface to which we are about 676 * to send. The multicast forwarding function 677 * recursively calls this function, using the 678 * IPV6_FORWARDING flag to prevent infinite recursion. 679 * 680 * Multicasts that are looped back by ip6_mloopback(), 681 * above, will be forwarded by the ip6_input() routine, 682 * if necessary. 683 */ 684 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 685 if (ip6_mforward(ip6, ifp, m) != 0) { 686 m_freem(m); 687 goto done; 688 } 689 } 690 } 691 /* 692 * Multicasts with a hoplimit of zero may be looped back, 693 * above, but must not be transmitted on a network. 694 * Also, multicasts addressed to the loopback interface 695 * are not sent -- the above call to ip6_mloopback() will 696 * loop back a copy if this host actually belongs to the 697 * destination group on the loopback interface. 698 */ 699 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 700 m_freem(m); 701 goto done; 702 } 703 } 704 705 /* 706 * Fill the outgoing inteface to tell the upper layer 707 * to increment per-interface statistics. 708 */ 709 if (ifpp) 710 *ifpp = ifp; 711 712 /* 713 * Determine path MTU. 714 */ 715 if (ro_pmtu != ro) { 716 /* The first hop and the final destination may differ. */ 717 struct sockaddr_in6 *sin6_fin = 718 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 719 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 720 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, 721 &finaldst))) { 722 RTFREE(ro_pmtu->ro_rt); 723 ro_pmtu->ro_rt = (struct rtentry *)0; 724 } 725 if (ro_pmtu->ro_rt == 0) { 726 bzero(sin6_fin, sizeof(*sin6_fin)); 727 sin6_fin->sin6_family = AF_INET6; 728 sin6_fin->sin6_len = sizeof(struct sockaddr_in6); 729 sin6_fin->sin6_addr = finaldst; 730 731 rtalloc((struct route *)ro_pmtu); 732 } 733 } 734 if (ro_pmtu->ro_rt != NULL) { 735 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu; 736 737 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 738 if (mtu > ifmtu) { 739 /* 740 * The MTU on the route is larger than the MTU on 741 * the interface! This shouldn't happen, unless the 742 * MTU of the interface has been changed after the 743 * interface was brought up. Change the MTU in the 744 * route to match the interface MTU (as long as the 745 * field isn't locked). 746 */ 747 mtu = ifmtu; 748 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 749 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */ 750 } 751 } else { 752 mtu = nd_ifinfo[ifp->if_index].linkmtu; 753 } 754 755 /* Fake scoped addresses */ 756 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 757 /* 758 * If source or destination address is a scoped address, and 759 * the packet is going to be sent to a loopback interface, 760 * we should keep the original interface. 761 */ 762 763 /* 764 * XXX: this is a very experimental and temporary solution. 765 * We eventually have sockaddr_in6 and use the sin6_scope_id 766 * field of the structure here. 767 * We rely on the consistency between two scope zone ids 768 * of source add destination, which should already be assured 769 * Larger scopes than link will be supported in the near 770 * future. 771 */ 772 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 773 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])]; 774 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 775 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])]; 776 else 777 origifp = ifp; 778 } 779 else 780 origifp = ifp; 781 #ifndef FAKE_LOOPBACK_IF 782 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 783 #else 784 if (1) 785 #endif 786 { 787 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 788 ip6->ip6_src.s6_addr16[1] = 0; 789 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 790 ip6->ip6_dst.s6_addr16[1] = 0; 791 } 792 793 /* 794 * If the outgoing packet contains a hop-by-hop options header, 795 * it must be examined and processed even by the source node. 796 * (RFC 2460, section 4.) 797 */ 798 if (exthdrs.ip6e_hbh) { 799 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, 800 struct ip6_hbh *); 801 u_int32_t dummy1; /* XXX unused */ 802 u_int32_t dummy2; /* XXX unused */ 803 804 /* 805 * XXX: if we have to send an ICMPv6 error to the sender, 806 * we need the M_LOOP flag since icmp6_error() expects 807 * the IPv6 and the hop-by-hop options header are 808 * continuous unless the flag is set. 809 */ 810 m->m_flags |= M_LOOP; 811 m->m_pkthdr.rcvif = ifp; 812 if (ip6_process_hopopts(m, 813 (u_int8_t *)(hbh + 1), 814 ((hbh->ip6h_len + 1) << 3) - 815 sizeof(struct ip6_hbh), 816 &dummy1, &dummy2) < 0) { 817 /* m was already freed at this point */ 818 error = EINVAL;/* better error? */ 819 goto done; 820 } 821 m->m_flags &= ~M_LOOP; /* XXX */ 822 m->m_pkthdr.rcvif = NULL; 823 } 824 825 #ifdef PFIL_HOOKS 826 /* 827 * Run through list of hooks for output packets. 828 */ 829 m1 = m; 830 pfh = pfil_hook_get(PFIL_OUT, &inetsw[ip_protox[IPPROTO_IPV6]].pr_pfh); 831 for (; pfh; pfh = pfh->pfil_link.tqe_next) 832 if (pfh->pfil_func) { 833 rv = pfh->pfil_func(ip6, sizeof(*ip6), ifp, 1, &m1); 834 if (rv) { 835 error = EHOSTUNREACH; 836 goto done; 837 } 838 m = m1; 839 if (m == NULL) 840 goto done; 841 ip6 = mtod(m, struct ip6_hdr *); 842 } 843 #endif /* PFIL_HOOKS */ 844 /* 845 * Send the packet to the outgoing interface. 846 * If necessary, do IPv6 fragmentation before sending. 847 */ 848 tlen = m->m_pkthdr.len; 849 if (tlen <= mtu 850 #ifdef notyet 851 /* 852 * On any link that cannot convey a 1280-octet packet in one piece, 853 * link-specific fragmentation and reassembly must be provided at 854 * a layer below IPv6. [RFC 2460, sec.5] 855 * Thus if the interface has ability of link-level fragmentation, 856 * we can just send the packet even if the packet size is 857 * larger than the link's MTU. 858 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet... 859 */ 860 861 || ifp->if_flags & IFF_FRAGMENTABLE 862 #endif 863 ) 864 { 865 #ifdef IFA_STATS 866 if (IFA_STATS) { 867 struct in6_ifaddr *ia6; 868 ip6 = mtod(m, struct ip6_hdr *); 869 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 870 if (ia6) { 871 ia->ia_ifa.ifa_data.ifad_outbytes += 872 m->m_pkthdr.len; 873 } 874 } 875 #endif 876 #ifdef OLDIP6OUTPUT 877 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, 878 ro->ro_rt); 879 #else 880 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 881 #endif 882 goto done; 883 } else if (mtu < IPV6_MMTU) { 884 /* 885 * note that path MTU is never less than IPV6_MMTU 886 * (see icmp6_input). 887 */ 888 error = EMSGSIZE; 889 in6_ifstat_inc(ifp, ifs6_out_fragfail); 890 goto bad; 891 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 892 error = EMSGSIZE; 893 in6_ifstat_inc(ifp, ifs6_out_fragfail); 894 goto bad; 895 } else { 896 struct mbuf **mnext, *m_frgpart; 897 struct ip6_frag *ip6f; 898 u_int32_t id = htonl(ip6_id++); 899 u_char nextproto; 900 901 /* 902 * Too large for the destination or interface; 903 * fragment if possible. 904 * Must be able to put at least 8 bytes per fragment. 905 */ 906 hlen = unfragpartlen; 907 if (mtu > IPV6_MAXPACKET) 908 mtu = IPV6_MAXPACKET; 909 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 910 if (len < 8) { 911 error = EMSGSIZE; 912 in6_ifstat_inc(ifp, ifs6_out_fragfail); 913 goto bad; 914 } 915 916 mnext = &m->m_nextpkt; 917 918 /* 919 * Change the next header field of the last header in the 920 * unfragmentable part. 921 */ 922 if (exthdrs.ip6e_rthdr) { 923 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 924 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 925 } else if (exthdrs.ip6e_dest1) { 926 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 927 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 928 } else if (exthdrs.ip6e_hbh) { 929 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 930 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 931 } else { 932 nextproto = ip6->ip6_nxt; 933 ip6->ip6_nxt = IPPROTO_FRAGMENT; 934 } 935 936 /* 937 * Loop through length of segment after first fragment, 938 * make new header and copy data of each part and link onto chain. 939 */ 940 m0 = m; 941 for (off = hlen; off < tlen; off += len) { 942 MGETHDR(m, M_DONTWAIT, MT_HEADER); 943 if (!m) { 944 error = ENOBUFS; 945 ip6stat.ip6s_odropped++; 946 goto sendorfree; 947 } 948 m->m_flags = m0->m_flags & M_COPYFLAGS; 949 *mnext = m; 950 mnext = &m->m_nextpkt; 951 m->m_data += max_linkhdr; 952 mhip6 = mtod(m, struct ip6_hdr *); 953 *mhip6 = *ip6; 954 m->m_len = sizeof(*mhip6); 955 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 956 if (error) { 957 ip6stat.ip6s_odropped++; 958 goto sendorfree; 959 } 960 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 961 if (off + len >= tlen) 962 len = tlen - off; 963 else 964 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 965 mhip6->ip6_plen = htons((u_short)(len + hlen + 966 sizeof(*ip6f) - 967 sizeof(struct ip6_hdr))); 968 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 969 error = ENOBUFS; 970 ip6stat.ip6s_odropped++; 971 goto sendorfree; 972 } 973 m_cat(m, m_frgpart); 974 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 975 m->m_pkthdr.rcvif = (struct ifnet *)0; 976 ip6f->ip6f_reserved = 0; 977 ip6f->ip6f_ident = id; 978 ip6f->ip6f_nxt = nextproto; 979 ip6stat.ip6s_ofragments++; 980 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 981 } 982 983 in6_ifstat_inc(ifp, ifs6_out_fragok); 984 } 985 986 /* 987 * Remove leading garbages. 988 */ 989 sendorfree: 990 m = m0->m_nextpkt; 991 m0->m_nextpkt = 0; 992 m_freem(m0); 993 for (m0 = m; m; m = m0) { 994 m0 = m->m_nextpkt; 995 m->m_nextpkt = 0; 996 if (error == 0) { 997 #ifdef IFA_STATS 998 if (IFA_STATS) { 999 struct in6_ifaddr *ia6; 1000 ip6 = mtod(m, struct ip6_hdr *); 1001 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1002 if (ia6) { 1003 ia->ia_ifa.ifa_data.ifad_outbytes += 1004 m->m_pkthdr.len; 1005 } 1006 } 1007 #endif 1008 #ifdef OLDIP6OUTPUT 1009 error = (*ifp->if_output)(ifp, m, 1010 (struct sockaddr *)dst, 1011 ro->ro_rt); 1012 #else 1013 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1014 #endif 1015 } else 1016 m_freem(m); 1017 } 1018 1019 if (error == 0) 1020 ip6stat.ip6s_fragmented++; 1021 1022 done: 1023 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1024 RTFREE(ro->ro_rt); 1025 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1026 RTFREE(ro_pmtu->ro_rt); 1027 } 1028 1029 #ifdef IPSEC 1030 if (sp != NULL) 1031 key_freesp(sp); 1032 #endif /* IPSEC */ 1033 1034 return(error); 1035 1036 freehdrs: 1037 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1038 m_freem(exthdrs.ip6e_dest1); 1039 m_freem(exthdrs.ip6e_rthdr); 1040 m_freem(exthdrs.ip6e_dest2); 1041 /* fall through */ 1042 bad: 1043 m_freem(m); 1044 goto done; 1045 } 1046 1047 static int 1048 ip6_copyexthdr(mp, hdr, hlen) 1049 struct mbuf **mp; 1050 caddr_t hdr; 1051 int hlen; 1052 { 1053 struct mbuf *m; 1054 1055 if (hlen > MCLBYTES) 1056 return(ENOBUFS); /* XXX */ 1057 1058 MGET(m, M_DONTWAIT, MT_DATA); 1059 if (!m) 1060 return(ENOBUFS); 1061 1062 if (hlen > MLEN) { 1063 MCLGET(m, M_DONTWAIT); 1064 if ((m->m_flags & M_EXT) == 0) { 1065 m_free(m); 1066 return(ENOBUFS); 1067 } 1068 } 1069 m->m_len = hlen; 1070 if (hdr) 1071 bcopy(hdr, mtod(m, caddr_t), hlen); 1072 1073 *mp = m; 1074 return(0); 1075 } 1076 1077 /* 1078 * Insert jumbo payload option. 1079 */ 1080 static int 1081 ip6_insert_jumboopt(exthdrs, plen) 1082 struct ip6_exthdrs *exthdrs; 1083 u_int32_t plen; 1084 { 1085 struct mbuf *mopt; 1086 u_char *optbuf; 1087 1088 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1089 1090 /* 1091 * If there is no hop-by-hop options header, allocate new one. 1092 * If there is one but it doesn't have enough space to store the 1093 * jumbo payload option, allocate a cluster to store the whole options. 1094 * Otherwise, use it to store the options. 1095 */ 1096 if (exthdrs->ip6e_hbh == 0) { 1097 MGET(mopt, M_DONTWAIT, MT_DATA); 1098 if (mopt == 0) 1099 return(ENOBUFS); 1100 mopt->m_len = JUMBOOPTLEN; 1101 optbuf = mtod(mopt, u_char *); 1102 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1103 exthdrs->ip6e_hbh = mopt; 1104 } else { 1105 struct ip6_hbh *hbh; 1106 1107 mopt = exthdrs->ip6e_hbh; 1108 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1109 caddr_t oldoptp = mtod(mopt, caddr_t); 1110 int oldoptlen = mopt->m_len; 1111 1112 if (mopt->m_flags & M_EXT) 1113 return(ENOBUFS); /* XXX */ 1114 MCLGET(mopt, M_DONTWAIT); 1115 if ((mopt->m_flags & M_EXT) == 0) 1116 return(ENOBUFS); 1117 1118 bcopy(oldoptp, mtod(mopt, caddr_t), oldoptlen); 1119 optbuf = mtod(mopt, caddr_t) + oldoptlen; 1120 mopt->m_len = oldoptlen + JUMBOOPTLEN; 1121 } else { 1122 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1123 mopt->m_len += JUMBOOPTLEN; 1124 } 1125 optbuf[0] = IP6OPT_PADN; 1126 optbuf[1] = 1; 1127 1128 /* 1129 * Adjust the header length according to the pad and 1130 * the jumbo payload option. 1131 */ 1132 hbh = mtod(mopt, struct ip6_hbh *); 1133 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1134 } 1135 1136 /* fill in the option. */ 1137 optbuf[2] = IP6OPT_JUMBO; 1138 optbuf[3] = 4; 1139 *(u_int32_t *)&optbuf[4] = htonl(plen + JUMBOOPTLEN); 1140 1141 /* finally, adjust the packet header length */ 1142 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1143 1144 return(0); 1145 #undef JUMBOOPTLEN 1146 } 1147 1148 /* 1149 * Insert fragment header and copy unfragmentable header portions. 1150 */ 1151 static int 1152 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1153 struct mbuf *m0, *m; 1154 int hlen; 1155 struct ip6_frag **frghdrp; 1156 { 1157 struct mbuf *n, *mlast; 1158 1159 if (hlen > sizeof(struct ip6_hdr)) { 1160 n = m_copym(m0, sizeof(struct ip6_hdr), 1161 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1162 if (n == 0) 1163 return(ENOBUFS); 1164 m->m_next = n; 1165 } else 1166 n = m; 1167 1168 /* Search for the last mbuf of unfragmentable part. */ 1169 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1170 ; 1171 1172 if ((mlast->m_flags & M_EXT) == 0 && 1173 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1174 /* use the trailing space of the last mbuf for the fragment hdr */ 1175 *frghdrp = 1176 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1177 mlast->m_len += sizeof(struct ip6_frag); 1178 m->m_pkthdr.len += sizeof(struct ip6_frag); 1179 } else { 1180 /* allocate a new mbuf for the fragment header */ 1181 struct mbuf *mfrg; 1182 1183 MGET(mfrg, M_DONTWAIT, MT_DATA); 1184 if (mfrg == 0) 1185 return(ENOBUFS); 1186 mfrg->m_len = sizeof(struct ip6_frag); 1187 *frghdrp = mtod(mfrg, struct ip6_frag *); 1188 mlast->m_next = mfrg; 1189 } 1190 1191 return(0); 1192 } 1193 1194 /* 1195 * IP6 socket option processing. 1196 */ 1197 int 1198 ip6_ctloutput(op, so, level, optname, mp) 1199 int op; 1200 struct socket *so; 1201 int level, optname; 1202 struct mbuf **mp; 1203 { 1204 register struct in6pcb *in6p = sotoin6pcb(so); 1205 register struct mbuf *m = *mp; 1206 register int optval = 0; 1207 int error = 0; 1208 struct proc *p = curproc; /* XXX */ 1209 1210 if (level == IPPROTO_IPV6) { 1211 switch (op) { 1212 1213 case PRCO_SETOPT: 1214 switch (optname) { 1215 case IPV6_PKTOPTIONS: 1216 /* m is freed in ip6_pcbopts */ 1217 return(ip6_pcbopts(&in6p->in6p_outputopts, 1218 m, so)); 1219 case IPV6_HOPOPTS: 1220 case IPV6_DSTOPTS: 1221 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1222 error = EPERM; 1223 break; 1224 } 1225 /* fall through */ 1226 case IPV6_UNICAST_HOPS: 1227 case IPV6_RECVOPTS: 1228 case IPV6_RECVRETOPTS: 1229 case IPV6_RECVDSTADDR: 1230 case IPV6_PKTINFO: 1231 case IPV6_HOPLIMIT: 1232 case IPV6_RTHDR: 1233 case IPV6_CHECKSUM: 1234 case IPV6_FAITH: 1235 #ifndef INET6_BINDV6ONLY 1236 case IPV6_BINDV6ONLY: 1237 #endif 1238 if (!m || m->m_len != sizeof(int)) 1239 error = EINVAL; 1240 else { 1241 optval = *mtod(m, int *); 1242 switch (optname) { 1243 1244 case IPV6_UNICAST_HOPS: 1245 if (optval < -1 || optval >= 256) 1246 error = EINVAL; 1247 else { 1248 /* -1 = kernel default */ 1249 in6p->in6p_hops = optval; 1250 } 1251 break; 1252 #define OPTSET(bit) \ 1253 if (optval) \ 1254 in6p->in6p_flags |= bit; \ 1255 else \ 1256 in6p->in6p_flags &= ~bit; 1257 1258 case IPV6_RECVOPTS: 1259 OPTSET(IN6P_RECVOPTS); 1260 break; 1261 1262 case IPV6_RECVRETOPTS: 1263 OPTSET(IN6P_RECVRETOPTS); 1264 break; 1265 1266 case IPV6_RECVDSTADDR: 1267 OPTSET(IN6P_RECVDSTADDR); 1268 break; 1269 1270 case IPV6_PKTINFO: 1271 OPTSET(IN6P_PKTINFO); 1272 break; 1273 1274 case IPV6_HOPLIMIT: 1275 OPTSET(IN6P_HOPLIMIT); 1276 break; 1277 1278 case IPV6_HOPOPTS: 1279 OPTSET(IN6P_HOPOPTS); 1280 break; 1281 1282 case IPV6_DSTOPTS: 1283 OPTSET(IN6P_DSTOPTS); 1284 break; 1285 1286 case IPV6_RTHDR: 1287 OPTSET(IN6P_RTHDR); 1288 break; 1289 1290 case IPV6_CHECKSUM: 1291 in6p->in6p_cksum = optval; 1292 break; 1293 1294 case IPV6_FAITH: 1295 OPTSET(IN6P_FAITH); 1296 break; 1297 1298 #ifndef INET6_BINDV6ONLY 1299 case IPV6_BINDV6ONLY: 1300 OPTSET(IN6P_BINDV6ONLY); 1301 break; 1302 #endif 1303 } 1304 } 1305 break; 1306 #undef OPTSET 1307 1308 case IPV6_MULTICAST_IF: 1309 case IPV6_MULTICAST_HOPS: 1310 case IPV6_MULTICAST_LOOP: 1311 case IPV6_JOIN_GROUP: 1312 case IPV6_LEAVE_GROUP: 1313 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m); 1314 break; 1315 1316 case IPV6_PORTRANGE: 1317 optval = *mtod(m, int *); 1318 1319 switch (optval) { 1320 case IPV6_PORTRANGE_DEFAULT: 1321 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1322 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1323 break; 1324 1325 case IPV6_PORTRANGE_HIGH: 1326 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1327 in6p->in6p_flags |= IN6P_HIGHPORT; 1328 break; 1329 1330 case IPV6_PORTRANGE_LOW: 1331 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1332 in6p->in6p_flags |= IN6P_LOWPORT; 1333 break; 1334 1335 default: 1336 error = EINVAL; 1337 break; 1338 } 1339 break; 1340 1341 #ifdef IPSEC 1342 case IPV6_IPSEC_POLICY: 1343 { 1344 caddr_t req = NULL; 1345 size_t len = 0; 1346 1347 int priv = 0; 1348 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) 1349 priv = 0; 1350 else 1351 priv = 1; 1352 if (m) { 1353 req = mtod(m, caddr_t); 1354 len = m->m_len; 1355 } 1356 error = ipsec6_set_policy(in6p, 1357 optname, req, len, priv); 1358 } 1359 break; 1360 #endif /* IPSEC */ 1361 1362 default: 1363 error = ENOPROTOOPT; 1364 break; 1365 } 1366 if (m) 1367 (void)m_free(m); 1368 break; 1369 1370 case PRCO_GETOPT: 1371 switch (optname) { 1372 1373 case IPV6_OPTIONS: 1374 case IPV6_RETOPTS: 1375 #if 0 1376 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1377 if (in6p->in6p_options) { 1378 m->m_len = in6p->in6p_options->m_len; 1379 bcopy(mtod(in6p->in6p_options, caddr_t), 1380 mtod(m, caddr_t), 1381 (unsigned)m->m_len); 1382 } else 1383 m->m_len = 0; 1384 break; 1385 #else 1386 error = ENOPROTOOPT; 1387 break; 1388 #endif 1389 1390 case IPV6_PKTOPTIONS: 1391 if (in6p->in6p_options) { 1392 *mp = m_copym(in6p->in6p_options, 0, 1393 M_COPYALL, M_WAIT); 1394 } else { 1395 *mp = m_get(M_WAIT, MT_SOOPTS); 1396 (*mp)->m_len = 0; 1397 } 1398 break; 1399 1400 case IPV6_HOPOPTS: 1401 case IPV6_DSTOPTS: 1402 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) { 1403 error = EPERM; 1404 break; 1405 } 1406 /* fall through */ 1407 case IPV6_UNICAST_HOPS: 1408 case IPV6_RECVOPTS: 1409 case IPV6_RECVRETOPTS: 1410 case IPV6_RECVDSTADDR: 1411 case IPV6_PORTRANGE: 1412 case IPV6_PKTINFO: 1413 case IPV6_HOPLIMIT: 1414 case IPV6_RTHDR: 1415 case IPV6_CHECKSUM: 1416 case IPV6_FAITH: 1417 #ifndef INET6_BINDV6ONLY 1418 case IPV6_BINDV6ONLY: 1419 #endif 1420 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1421 m->m_len = sizeof(int); 1422 switch (optname) { 1423 1424 case IPV6_UNICAST_HOPS: 1425 optval = in6p->in6p_hops; 1426 break; 1427 1428 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0) 1429 1430 case IPV6_RECVOPTS: 1431 optval = OPTBIT(IN6P_RECVOPTS); 1432 break; 1433 1434 case IPV6_RECVRETOPTS: 1435 optval = OPTBIT(IN6P_RECVRETOPTS); 1436 break; 1437 1438 case IPV6_RECVDSTADDR: 1439 optval = OPTBIT(IN6P_RECVDSTADDR); 1440 break; 1441 1442 case IPV6_PORTRANGE: 1443 { 1444 int flags; 1445 flags = in6p->in6p_flags; 1446 if (flags & IN6P_HIGHPORT) 1447 optval = IPV6_PORTRANGE_HIGH; 1448 else if (flags & IN6P_LOWPORT) 1449 optval = IPV6_PORTRANGE_LOW; 1450 else 1451 optval = 0; 1452 break; 1453 } 1454 1455 case IPV6_PKTINFO: 1456 optval = OPTBIT(IN6P_PKTINFO); 1457 break; 1458 1459 case IPV6_HOPLIMIT: 1460 optval = OPTBIT(IN6P_HOPLIMIT); 1461 break; 1462 1463 case IPV6_HOPOPTS: 1464 optval = OPTBIT(IN6P_HOPOPTS); 1465 break; 1466 1467 case IPV6_DSTOPTS: 1468 optval = OPTBIT(IN6P_DSTOPTS); 1469 break; 1470 1471 case IPV6_RTHDR: 1472 optval = OPTBIT(IN6P_RTHDR); 1473 break; 1474 1475 case IPV6_CHECKSUM: 1476 optval = in6p->in6p_cksum; 1477 break; 1478 1479 case IPV6_FAITH: 1480 optval = OPTBIT(IN6P_FAITH); 1481 break; 1482 1483 #ifndef INET6_BINDV6ONLY 1484 case IPV6_BINDV6ONLY: 1485 optval = OPTBIT(IN6P_BINDV6ONLY); 1486 break; 1487 #endif 1488 } 1489 *mtod(m, int *) = optval; 1490 break; 1491 1492 case IPV6_MULTICAST_IF: 1493 case IPV6_MULTICAST_HOPS: 1494 case IPV6_MULTICAST_LOOP: 1495 case IPV6_JOIN_GROUP: 1496 case IPV6_LEAVE_GROUP: 1497 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp); 1498 break; 1499 1500 #ifdef IPSEC 1501 case IPV6_IPSEC_POLICY: 1502 { 1503 caddr_t req = NULL; 1504 size_t len = 0; 1505 1506 if (m) { 1507 req = mtod(m, caddr_t); 1508 len = m->m_len; 1509 } 1510 error = ipsec6_get_policy(in6p, req, len, mp); 1511 break; 1512 } 1513 #endif /* IPSEC */ 1514 1515 default: 1516 error = ENOPROTOOPT; 1517 break; 1518 } 1519 break; 1520 } 1521 } else { 1522 error = EINVAL; 1523 if (op == PRCO_SETOPT && *mp) 1524 (void)m_free(*mp); 1525 } 1526 return(error); 1527 } 1528 1529 /* 1530 * Set up IP6 options in pcb for insertion in output packets. 1531 * Store in mbuf with pointer in pcbopt, adding pseudo-option 1532 * with destination address if source routed. 1533 */ 1534 static int 1535 ip6_pcbopts(pktopt, m, so) 1536 struct ip6_pktopts **pktopt; 1537 register struct mbuf *m; 1538 struct socket *so; 1539 { 1540 register struct ip6_pktopts *opt = *pktopt; 1541 int error = 0; 1542 struct proc *p = curproc; /* XXX */ 1543 int priv = 0; 1544 1545 /* turn off any old options. */ 1546 if (opt) { 1547 if (opt->ip6po_m) 1548 (void)m_free(opt->ip6po_m); 1549 } else 1550 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 1551 *pktopt = 0; 1552 1553 if (!m || m->m_len == 0) { 1554 /* 1555 * Only turning off any previous options. 1556 */ 1557 if (opt) 1558 free(opt, M_IP6OPT); 1559 if (m) 1560 (void)m_free(m); 1561 return(0); 1562 } 1563 1564 /* set options specified by user. */ 1565 if (p && !suser(p->p_ucred, &p->p_acflag)) 1566 priv = 1; 1567 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) { 1568 (void)m_free(m); 1569 return(error); 1570 } 1571 *pktopt = opt; 1572 return(0); 1573 } 1574 1575 /* 1576 * Set the IP6 multicast options in response to user setsockopt(). 1577 */ 1578 static int 1579 ip6_setmoptions(optname, im6op, m) 1580 int optname; 1581 struct ip6_moptions **im6op; 1582 struct mbuf *m; 1583 { 1584 int error = 0; 1585 u_int loop, ifindex; 1586 struct ipv6_mreq *mreq; 1587 struct ifnet *ifp; 1588 struct ip6_moptions *im6o = *im6op; 1589 struct route_in6 ro; 1590 struct sockaddr_in6 *dst; 1591 struct in6_multi_mship *imm; 1592 struct proc *p = curproc; /* XXX */ 1593 1594 if (im6o == NULL) { 1595 /* 1596 * No multicast option buffer attached to the pcb; 1597 * allocate one and initialize to default values. 1598 */ 1599 im6o = (struct ip6_moptions *) 1600 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1601 1602 if (im6o == NULL) 1603 return(ENOBUFS); 1604 *im6op = im6o; 1605 im6o->im6o_multicast_ifp = NULL; 1606 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1607 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1608 LIST_INIT(&im6o->im6o_memberships); 1609 } 1610 1611 switch (optname) { 1612 1613 case IPV6_MULTICAST_IF: 1614 /* 1615 * Select the interface for outgoing multicast packets. 1616 */ 1617 if (m == NULL || m->m_len != sizeof(u_int)) { 1618 error = EINVAL; 1619 break; 1620 } 1621 ifindex = *(mtod(m, u_int *)); 1622 if (ifindex < 0 || if_index < ifindex) { 1623 error = ENXIO; /* XXX EINVAL? */ 1624 break; 1625 } 1626 ifp = ifindex2ifnet[ifindex]; 1627 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1628 error = EADDRNOTAVAIL; 1629 break; 1630 } 1631 im6o->im6o_multicast_ifp = ifp; 1632 break; 1633 1634 case IPV6_MULTICAST_HOPS: 1635 { 1636 /* 1637 * Set the IP6 hoplimit for outgoing multicast packets. 1638 */ 1639 int optval; 1640 if (m == NULL || m->m_len != sizeof(int)) { 1641 error = EINVAL; 1642 break; 1643 } 1644 optval = *(mtod(m, u_int *)); 1645 if (optval < -1 || optval >= 256) 1646 error = EINVAL; 1647 else if (optval == -1) 1648 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1649 else 1650 im6o->im6o_multicast_hlim = optval; 1651 break; 1652 } 1653 1654 case IPV6_MULTICAST_LOOP: 1655 /* 1656 * Set the loopback flag for outgoing multicast packets. 1657 * Must be zero or one. 1658 */ 1659 if (m == NULL || m->m_len != sizeof(u_int) || 1660 (loop = *(mtod(m, u_int *))) > 1) { 1661 error = EINVAL; 1662 break; 1663 } 1664 im6o->im6o_multicast_loop = loop; 1665 break; 1666 1667 case IPV6_JOIN_GROUP: 1668 /* 1669 * Add a multicast group membership. 1670 * Group must be a valid IP6 multicast address. 1671 */ 1672 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1673 error = EINVAL; 1674 break; 1675 } 1676 mreq = mtod(m, struct ipv6_mreq *); 1677 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1678 /* 1679 * We use the unspecified address to specify to accept 1680 * all multicast addresses. Only super user is allowed 1681 * to do this. 1682 */ 1683 if (suser(p->p_ucred, &p->p_acflag)) { 1684 error = EACCES; 1685 break; 1686 } 1687 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1688 error = EINVAL; 1689 break; 1690 } 1691 1692 /* 1693 * If the interface is specified, validate it. 1694 */ 1695 if (mreq->ipv6mr_interface < 0 1696 || if_index < mreq->ipv6mr_interface) { 1697 error = ENXIO; /* XXX EINVAL? */ 1698 break; 1699 } 1700 /* 1701 * If no interface was explicitly specified, choose an 1702 * appropriate one according to the given multicast address. 1703 */ 1704 if (mreq->ipv6mr_interface == 0) { 1705 /* 1706 * If the multicast address is in node-local scope, 1707 * the interface should be a loopback interface. 1708 * Otherwise, look up the routing table for the 1709 * address, and choose the outgoing interface. 1710 * XXX: is it a good approach? 1711 */ 1712 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 1713 ifp = &loif[0]; 1714 } else { 1715 ro.ro_rt = NULL; 1716 dst = (struct sockaddr_in6 *)&ro.ro_dst; 1717 bzero(dst, sizeof(*dst)); 1718 dst->sin6_len = sizeof(struct sockaddr_in6); 1719 dst->sin6_family = AF_INET6; 1720 dst->sin6_addr = mreq->ipv6mr_multiaddr; 1721 rtalloc((struct route *)&ro); 1722 if (ro.ro_rt == NULL) { 1723 error = EADDRNOTAVAIL; 1724 break; 1725 } 1726 ifp = ro.ro_rt->rt_ifp; 1727 rtfree(ro.ro_rt); 1728 } 1729 } else 1730 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1731 1732 /* 1733 * See if we found an interface, and confirm that it 1734 * supports multicast 1735 */ 1736 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1737 error = EADDRNOTAVAIL; 1738 break; 1739 } 1740 /* 1741 * Put interface index into the multicast address, 1742 * if the address has link-local scope. 1743 */ 1744 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1745 mreq->ipv6mr_multiaddr.s6_addr16[1] 1746 = htons(mreq->ipv6mr_interface); 1747 } 1748 /* 1749 * See if the membership already exists. 1750 */ 1751 for (imm = im6o->im6o_memberships.lh_first; 1752 imm != NULL; imm = imm->i6mm_chain.le_next) 1753 if (imm->i6mm_maddr->in6m_ifp == ifp && 1754 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1755 &mreq->ipv6mr_multiaddr)) 1756 break; 1757 if (imm != NULL) { 1758 error = EADDRINUSE; 1759 break; 1760 } 1761 /* 1762 * Everything looks good; add a new record to the multicast 1763 * address list for the given interface. 1764 */ 1765 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 1766 if (imm == NULL) { 1767 error = ENOBUFS; 1768 break; 1769 } 1770 if ((imm->i6mm_maddr = 1771 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 1772 free(imm, M_IPMADDR); 1773 break; 1774 } 1775 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 1776 break; 1777 1778 case IPV6_LEAVE_GROUP: 1779 /* 1780 * Drop a multicast group membership. 1781 * Group must be a valid IP6 multicast address. 1782 */ 1783 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1784 error = EINVAL; 1785 break; 1786 } 1787 mreq = mtod(m, struct ipv6_mreq *); 1788 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1789 if (suser(p->p_ucred, &p->p_acflag)) { 1790 error = EACCES; 1791 break; 1792 } 1793 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1794 error = EINVAL; 1795 break; 1796 } 1797 /* 1798 * If an interface address was specified, get a pointer 1799 * to its ifnet structure. 1800 */ 1801 if (mreq->ipv6mr_interface < 0 1802 || if_index < mreq->ipv6mr_interface) { 1803 error = ENXIO; /* XXX EINVAL? */ 1804 break; 1805 } 1806 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1807 /* 1808 * Put interface index into the multicast address, 1809 * if the address has link-local scope. 1810 */ 1811 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1812 mreq->ipv6mr_multiaddr.s6_addr16[1] 1813 = htons(mreq->ipv6mr_interface); 1814 } 1815 /* 1816 * Find the membership in the membership list. 1817 */ 1818 for (imm = im6o->im6o_memberships.lh_first; 1819 imm != NULL; imm = imm->i6mm_chain.le_next) { 1820 if ((ifp == NULL || 1821 imm->i6mm_maddr->in6m_ifp == ifp) && 1822 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1823 &mreq->ipv6mr_multiaddr)) 1824 break; 1825 } 1826 if (imm == NULL) { 1827 /* Unable to resolve interface */ 1828 error = EADDRNOTAVAIL; 1829 break; 1830 } 1831 /* 1832 * Give up the multicast address record to which the 1833 * membership points. 1834 */ 1835 LIST_REMOVE(imm, i6mm_chain); 1836 in6_delmulti(imm->i6mm_maddr); 1837 free(imm, M_IPMADDR); 1838 break; 1839 1840 default: 1841 error = EOPNOTSUPP; 1842 break; 1843 } 1844 1845 /* 1846 * If all options have default values, no need to keep the mbuf. 1847 */ 1848 if (im6o->im6o_multicast_ifp == NULL && 1849 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 1850 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 1851 im6o->im6o_memberships.lh_first == NULL) { 1852 free(*im6op, M_IPMOPTS); 1853 *im6op = NULL; 1854 } 1855 1856 return(error); 1857 } 1858 1859 /* 1860 * Return the IP6 multicast options in response to user getsockopt(). 1861 */ 1862 static int 1863 ip6_getmoptions(optname, im6o, mp) 1864 int optname; 1865 register struct ip6_moptions *im6o; 1866 register struct mbuf **mp; 1867 { 1868 u_int *hlim, *loop, *ifindex; 1869 1870 *mp = m_get(M_WAIT, MT_SOOPTS); 1871 1872 switch (optname) { 1873 1874 case IPV6_MULTICAST_IF: 1875 ifindex = mtod(*mp, u_int *); 1876 (*mp)->m_len = sizeof(u_int); 1877 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 1878 *ifindex = 0; 1879 else 1880 *ifindex = im6o->im6o_multicast_ifp->if_index; 1881 return(0); 1882 1883 case IPV6_MULTICAST_HOPS: 1884 hlim = mtod(*mp, u_int *); 1885 (*mp)->m_len = sizeof(u_int); 1886 if (im6o == NULL) 1887 *hlim = ip6_defmcasthlim; 1888 else 1889 *hlim = im6o->im6o_multicast_hlim; 1890 return(0); 1891 1892 case IPV6_MULTICAST_LOOP: 1893 loop = mtod(*mp, u_int *); 1894 (*mp)->m_len = sizeof(u_int); 1895 if (im6o == NULL) 1896 *loop = ip6_defmcasthlim; 1897 else 1898 *loop = im6o->im6o_multicast_loop; 1899 return(0); 1900 1901 default: 1902 return(EOPNOTSUPP); 1903 } 1904 } 1905 1906 /* 1907 * Discard the IP6 multicast options. 1908 */ 1909 void 1910 ip6_freemoptions(im6o) 1911 register struct ip6_moptions *im6o; 1912 { 1913 struct in6_multi_mship *imm; 1914 1915 if (im6o == NULL) 1916 return; 1917 1918 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 1919 LIST_REMOVE(imm, i6mm_chain); 1920 if (imm->i6mm_maddr) 1921 in6_delmulti(imm->i6mm_maddr); 1922 free(imm, M_IPMADDR); 1923 } 1924 free(im6o, M_IPMOPTS); 1925 } 1926 1927 /* 1928 * Set IPv6 outgoing packet options based on advanced API. 1929 */ 1930 int 1931 ip6_setpktoptions(control, opt, priv) 1932 struct mbuf *control; 1933 struct ip6_pktopts *opt; 1934 int priv; 1935 { 1936 register struct cmsghdr *cm = 0; 1937 1938 if (control == 0 || opt == 0) 1939 return(EINVAL); 1940 1941 bzero(opt, sizeof(*opt)); 1942 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */ 1943 1944 /* 1945 * XXX: Currently, we assume all the optional information is stored 1946 * in a single mbuf. 1947 */ 1948 if (control->m_next) 1949 return(EINVAL); 1950 1951 opt->ip6po_m = control; 1952 1953 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 1954 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1955 cm = mtod(control, struct cmsghdr *); 1956 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 1957 return(EINVAL); 1958 if (cm->cmsg_level != IPPROTO_IPV6) 1959 continue; 1960 1961 switch(cm->cmsg_type) { 1962 case IPV6_PKTINFO: 1963 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 1964 return(EINVAL); 1965 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 1966 if (opt->ip6po_pktinfo->ipi6_ifindex && 1967 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr)) 1968 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] = 1969 htons(opt->ip6po_pktinfo->ipi6_ifindex); 1970 1971 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index 1972 || opt->ip6po_pktinfo->ipi6_ifindex < 0) { 1973 return(ENXIO); 1974 } 1975 1976 /* 1977 * Check if the requested source address is indeed a 1978 * unicast address assigned to the node. 1979 */ 1980 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 1981 struct ifaddr *ia; 1982 struct sockaddr_in6 sin6; 1983 1984 bzero(&sin6, sizeof(sin6)); 1985 sin6.sin6_len = sizeof(sin6); 1986 sin6.sin6_family = AF_INET6; 1987 sin6.sin6_addr = 1988 opt->ip6po_pktinfo->ipi6_addr; 1989 ia = ifa_ifwithaddr(sin6tosa(&sin6)); 1990 if (ia == NULL || 1991 (opt->ip6po_pktinfo->ipi6_ifindex && 1992 (ia->ifa_ifp->if_index != 1993 opt->ip6po_pktinfo->ipi6_ifindex))) { 1994 return(EADDRNOTAVAIL); 1995 } 1996 /* 1997 * Check if the requested source address is 1998 * indeed a unicast address assigned to the 1999 * node. 2000 */ 2001 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr)) 2002 return(EADDRNOTAVAIL); 2003 } 2004 break; 2005 2006 case IPV6_HOPLIMIT: 2007 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 2008 return(EINVAL); 2009 2010 opt->ip6po_hlim = *(int *)CMSG_DATA(cm); 2011 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255) 2012 return(EINVAL); 2013 break; 2014 2015 case IPV6_NEXTHOP: 2016 if (!priv) 2017 return(EPERM); 2018 2019 if (cm->cmsg_len < sizeof(u_char) || 2020 /* check if cmsg_len is large enough for sa_len */ 2021 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 2022 return(EINVAL); 2023 2024 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm); 2025 2026 break; 2027 2028 case IPV6_HOPOPTS: 2029 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2030 return(EINVAL); 2031 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm); 2032 if (cm->cmsg_len != 2033 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3)) 2034 return(EINVAL); 2035 break; 2036 2037 case IPV6_DSTOPTS: 2038 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2039 return(EINVAL); 2040 2041 /* 2042 * If there is no routing header yet, the destination 2043 * options header should be put on the 1st part. 2044 * Otherwise, the header should be on the 2nd part. 2045 * (See RFC 2460, section 4.1) 2046 */ 2047 if (opt->ip6po_rthdr == NULL) { 2048 opt->ip6po_dest1 = 2049 (struct ip6_dest *)CMSG_DATA(cm); 2050 if (cm->cmsg_len != 2051 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1) 2052 << 3)) 2053 return(EINVAL); 2054 } 2055 else { 2056 opt->ip6po_dest2 = 2057 (struct ip6_dest *)CMSG_DATA(cm); 2058 if (cm->cmsg_len != 2059 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) 2060 << 3)) 2061 return(EINVAL); 2062 } 2063 break; 2064 2065 case IPV6_RTHDR: 2066 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2067 return(EINVAL); 2068 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm); 2069 if (cm->cmsg_len != 2070 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3)) 2071 return(EINVAL); 2072 switch(opt->ip6po_rthdr->ip6r_type) { 2073 case IPV6_RTHDR_TYPE_0: 2074 if (opt->ip6po_rthdr->ip6r_segleft == 0) 2075 return(EINVAL); 2076 break; 2077 default: 2078 return(EINVAL); 2079 } 2080 break; 2081 2082 default: 2083 return(ENOPROTOOPT); 2084 } 2085 } 2086 2087 return(0); 2088 } 2089 2090 /* 2091 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2092 * packet to the input queue of a specified interface. Note that this 2093 * calls the output routine of the loopback "driver", but with an interface 2094 * pointer that might NOT be &loif -- easier than replicating that code here. 2095 */ 2096 void 2097 ip6_mloopback(ifp, m, dst) 2098 struct ifnet *ifp; 2099 register struct mbuf *m; 2100 register struct sockaddr_in6 *dst; 2101 { 2102 struct mbuf *copym; 2103 struct ip6_hdr *ip6; 2104 2105 copym = m_copy(m, 0, M_COPYALL); 2106 if (copym == NULL) 2107 return; 2108 2109 /* 2110 * Make sure to deep-copy IPv6 header portion in case the data 2111 * is in an mbuf cluster, so that we can safely override the IPv6 2112 * header portion later. 2113 */ 2114 if ((copym->m_flags & M_EXT) != 0 || 2115 copym->m_len < sizeof(struct ip6_hdr)) { 2116 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2117 if (copym == NULL) 2118 return; 2119 } 2120 2121 #ifdef DIAGNOSTIC 2122 if (copym->m_len < sizeof(*ip6)) { 2123 m_freem(copym); 2124 return; 2125 } 2126 #endif 2127 2128 #ifndef FAKE_LOOPBACK_IF 2129 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2130 #else 2131 if (1) 2132 #endif 2133 { 2134 ip6 = mtod(copym, struct ip6_hdr *); 2135 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 2136 ip6->ip6_src.s6_addr16[1] = 0; 2137 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 2138 ip6->ip6_dst.s6_addr16[1] = 0; 2139 } 2140 2141 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL); 2142 } 2143 2144 /* 2145 * Chop IPv6 header off from the payload. 2146 */ 2147 static int 2148 ip6_splithdr(m, exthdrs) 2149 struct mbuf *m; 2150 struct ip6_exthdrs *exthdrs; 2151 { 2152 struct mbuf *mh; 2153 struct ip6_hdr *ip6; 2154 2155 ip6 = mtod(m, struct ip6_hdr *); 2156 if (m->m_len > sizeof(*ip6)) { 2157 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2158 if (mh == 0) { 2159 m_freem(m); 2160 return ENOBUFS; 2161 } 2162 M_COPY_PKTHDR(mh, m); 2163 MH_ALIGN(mh, sizeof(*ip6)); 2164 m->m_flags &= ~M_PKTHDR; 2165 m->m_len -= sizeof(*ip6); 2166 m->m_data += sizeof(*ip6); 2167 mh->m_next = m; 2168 m = mh; 2169 m->m_len = sizeof(*ip6); 2170 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2171 } 2172 exthdrs->ip6e_ip6 = m; 2173 return 0; 2174 } 2175 2176 /* 2177 * Compute IPv6 extension header length. 2178 */ 2179 int 2180 ip6_optlen(in6p) 2181 struct in6pcb *in6p; 2182 { 2183 int len; 2184 2185 if (!in6p->in6p_outputopts) 2186 return 0; 2187 2188 len = 0; 2189 #define elen(x) \ 2190 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2191 2192 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2193 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2194 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2195 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2196 return len; 2197 #undef elen 2198 } 2199